

TRAJECTORY GENERATION TECHNIQUES FOR

CABLE DRIVEN PARALLEL ROBOTS

KABLOYLA ÇALIŞAN PARALEL ROBOTLAR İÇİN

ROTA OLUŞTURMA YÖNTEMLERİ

ABDUL MOIZ AWAN

PROF. DR. S. ÇAĞLAR BAŞLAMIŞLI

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Mechanical Engineering.

2024

This research is lovingly dedicated to my parents Asif Hayat and Sadaf Noran. They

have always believed in me and empowered me to pursue my dreams of becoming an

engineer. Without their love and support I would not be here today. I love you Ammi

and Abbu.

i

ABSTRACT

TRAJECTORY GENERATION TECHNIQUES FOR CABLE DRIVEN

PARALLEL ROBOTS

Abdul Moiz AWAN

Master’s of Philosophy, Department of Mechanical Engineering

Supervisor: Prof. Dr. S. Çağlar BAŞLAMIŞLI

June 2024, 141 pages

The aim of this thesis is to implement CNC-based trajectory generation techniques with

Cable Driven Parallel Robots (CDPRs). CDPRs are a special type of parallel robots that

use motors and cables to manipulate an end-effector in space. Cable robots are becoming

popular due to several advantages they have over traditional manipulators such as their

large workspace and lightweight actuators. For the cable robots to perform properly there

are a number of parameters that need to be studied. These include maintaining positive

cable tension, cable elasticity, trajectory generation, controller design, and structural

optimization.

The scope of this thesis is limited to planar cable robots, where a four-cable robot has

been chosen for the analysis. The reason for choosing a four-cable robot is that the fourth

actuator offers a redundancy which allows control of the end effector with 3 DOFs while

also being able to maintain tension. Maintain positive tension is very important as unlike

traditional manipulators, CDPRs are not able to push against the end-effector, only pull.

A positive tension algorithm ensures that none of the cables ever go slack. Cable elasticity

ii

and its incorporation into the mathematical model of the cable robot is another important

part of the developed model.

Trajectory generation is one of the most important topics in this research as it uses CNC-

based trajectory generation algorithms to generate trajectories for a cable robot. These

algorithms range from simple linear or circular interpolation to complicated 5th order

splines which ensure continuity up to at least the second derivative. A combination of

splines, and simple segments are used to generate standard and custom shapes and non-

uniform data supplied by the user is also simulated by connecting splines with the data.

These trajectories are tested in different scenarios and for different conditions such as

changing speed or some non-zero angle reference for the end-effector.

The controller design is another important aspect. It is a cascade controller which is very

common for controlling motors. The controller gains are determined based on the settling

time and the maximum overshoot. Lastly the structural optimization of the cable robot

for dexterity, stiffness, and workspace is studied where the optimized robot was found to

provide better results. A GUI is developed which incorporates all the different codes to

make an easy-to-use tool for designing and simulating a cable robot.

Keywords: Cable Driven Parallel Robot, Cascade Control, Trajectory Generation,

Optimization, Cable Elasticity, GUI

iii

ÖZET

KABLOYLA ÇALIŞAN PARALEL ROBOTLAR İÇİN ROTA OLUŞTURMA

YÖNTEMLERİ

Abdul Moiz AWAN

Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Danışmanı: Prof. Dr. S. Çağlar BAŞLAMIŞLI

Haziran 2024, 141 sayfa

Bu tezin amacı, Kabloyla Çalışan Paralel Robotlar (KÇPR'ler) ile CNC tabanlı rota

oluşturma tekniklerini uygulamaktır. KÇPR'ler, motorlar ve kablolar kullanarak bir uç

efektörünü uzayda manipüle eden özel bir paralel robot türüdür. Kablo robotları,

geleneksel manipülatörlere göre geniş çalışma alanı ve hafif aktüatörler gibi çeşitli

avantajları nedeniyle popüler hale gelmektedir. Kablo robotlarının düzgün çalışması için

incelenmesi gereken birçok parametre bulunmaktadır. Bunlar arasında pozitif kablo

geriliminin korunması, kablo esnekliği, yörünge oluşturma, kontrolör tasarımı ve yapısal

optimizasyon yer almaktadır.

Bu tezin kapsamı, dört kablolu bir robotun analiz için seçildiği düzlemsel kablo robotları

ile sınırlıdır. Dört kablolu bir robotun seçilmesinin nedeni, dördüncü aktüatörün bir

yedeklilik sunması ve bu sayede 3 serbestlik derecesi (DOF) ile uç efektörünün

kontrolünü sağlarken aynı zamanda gerilimi koruyabilmesidir. Pozitif gerilimin

korunması çok önemlidir çünkü geleneksel manipülatörlerin aksine, KPR'ler uç

efektörüne karşı itme yapamazlar, yalnızca çekebilirler. Pozitif gerilim algoritması,

kablolardan hiçbirinin gevşememesini sağlar. Kablo esnekliği ve bu esnekliğin kablo

iv

robotunun matematiksel modeline dahil edilmesi, geliştirilen modelin önemli bir

parçasıdır.

Bu araştırmadaki en önemli konulardan biri yörünge oluşturmadır çünkü CNC tabanlı

yörünge oluşturma algoritmalarını kullanarak kablo robotu için yörüngeler oluşturur. Bu

algoritmalar, basit doğrusal veya dairesel enterpolasyondan, en az ikinci türevine kadar

sürekliliği sağlayan karmaşık 5. dereceden splinelere kadar çeşitlilik gösterir. Standart ve

özel şekiller oluşturmak için splineler ve basit segmentlerin bir kombinasyonu kullanılır

ve kullanıcı tarafından sağlanan uniform olmayan veriler de splinelerle birleştirilerek

simüle edilir. Bu yörüngeler, farklı hız değiştirme senaryoları veya uç efektör için sıfır

olmayan bir açı referansı gibi farklı koşullar altında test edilir.

Kontrolör tasarımı da bir diğer önemli konudur. Bu tasarım, motorları kontrol etmek için

çok yaygın olan bir kaskad kontrolördür. Kontrolör kazançları, yerleşme süresi ve

maksimum aşım temel alınarak belirlenir. Son olarak, kablo robotunun hareket kabiliyeti,

rijitlik ve çalışma alanı için yapısal optimizasyonu incelenir ve optimize edilmiş robotun

daha iyi sonuçlar sağladığı görülür. Tüm farklı kodları bir araya getiren ve kablo robotu

tasarlamak ve simüle etmek için kullanımı kolay bir araç sunan bir grafik kullanıcı

arayüzü (GUI) geliştirilmiştir.

Anahtar Kelimeler: Kabloyla Çalişan Paralel Robot, Kademeli Kontrol, Rota

Oluşturma, Optimizasyon, Kablo Esnekliği, GKA

vi

ACKNOWLEDGEMENT

I would like to thank Prof. Dr. S. Çağlar Başlamişli who has always gone above and

beyond to support me in this research. I have not only benefited from his academic

experience, but also the advice and insight he has provided for different problems. He has

always taken a personal interest in my academic progress and well-being. I would like to

thank him for always motivating me and providing me with the opportunity to work under

his supervision.

I would also like to thank my family, who have enabled and encouraged me to pursue

higher education in Turkey. While it is difficult being away from them, they have always

supported me and ensured that all my needs are met.

I would also thank my BS Thesis supervisor Dr. Sana Waheed who helped me apply for

this MS program and was my role model as an academic and a researcher.

Lastly, I would like to thank my friends who have always been there for me through thick

and thin. While we are far from each other they have always been my support system and

helped me deal with any challenge I have faced. I would like to thank Ammar Ijaz

particularly who was a huge support during the final days of this research.

vii

TABLE OF CONTENTS

ABSTRACT ... i

ÖZET ... iii

ACKNOWLEDGEMENT ... vi

TABLE OF CONTENTS .. vii

LIST OF TABLES .. x

LIST OF FIGURES ... xi

SYMBOLS AND ABBREVIATIONS ... xv

1. INTRODUCTION .. 1

1.1. Overview .. 1

1.2. Thesis Objectives and Outcomes ... 1

1.3. Research Contribution ... 2

1.4. Thesis Organization ... 2

2. BACKGROUND AND LITERATURE REVIEW .. 4

2.1. Cable Driven Parallel Robots Background .. 4

2.2. Cable Robot Modelling .. 6

2.2. Trajectory Generation .. 9

2.2. Control System .. 10

2.2. Cable Robot Optimization ... 10

3. MODELLING METHODOLOGY ... 13

3.1. Problem Formulation ... 13

3.2. Cable Robot Modelling – Inverse Kinematics ... 14

3.3. Cable Robot Modelling – Forward Kinematics ... 16

3.4. Cable Robot Modelling – Dynamics ... 18

3.5. Cable Robot Modelling – Motor Dynamics .. 20

3.6. Maintaining Positive Cable Tension [35] .. 21

3.7. Addition of Cable Elasticity .. 23

4. TRAJECTORY GENERATION .. 25

viii

4.1. Trapezoidal Acceleration [36] .. 25

4.1.1. Linear Interpolation ... 28

4.1.2. Circular Interpolation .. 29

4.1.3. Microsplines .. 31

4.1.4. Determination of Spline Start and End Points .. 33

4.1.5. Spline Start/End Acceleration and Velocity .. 36

4.1.6. Optimization of Speed and Acceleration Initial Conditions 37

4.1.7. Determination of Correct Spline Timing .. 37

4.2. Trajectory Generation 1 – Standard Shapes ... 38

4.3. Trajectory Generation 2 – Custom Data .. 39

4.4. Trajectory Generation 3 - Jerk Limited Trajectory Generation Using 5th Order

Spline Interpolation [36].. 42

4.4.1. Quintic Spline Path Generation ... 43

4.4.2. Trajectory Generation Algorithm .. 48

4.4.3. Reconstructing Trajectory at Desired Control Loop Frequency 54

5. CONTROLLER DESIGN ... 56

6. CABLE ROBOT OPTIMIZATION.. 60

6.1. Dexterity Optimization [28] ... 60

6.2. Stiffness Optimization [37] .. 61

6.3. Workspace Optimization [38] .. 64

6.4. Optimization Algorithms.. 68

6.4.1. MATLAB fmincon algorithm ... 68

6.4.2. MATLAB patternseach algorithm .. 69

6.4.3. MATLAB fgoalattain algorithm ... 70

6.5. Combined Optimization ... 70

7. SIMULATIONS AND RESULTS .. 71

7.1. Cable Robot Parameters ... 71

7.2. Controller Design ... 72

7.3. Optimization ... 73

7.4. Trajectory Generation .. 78

7.5. Simulation .. 80

7.5.1. Trajectory Generation 1 – Circle ... 80

ix

7.5.2. Trajectory Generation 1 – Rectangle .. 84

7.5.3. Trajectory Generation 3 – Spiral .. 94

7.5.4. Trajectory Generation 2 – Custom Data ... 98

7.5.5. Simulations with Increasing Speed ... 106

7.5.6. Simulations with Non-zero orientation angle ... 114

7.5.7. Results with Non-Optimized Configuration ... 122

7.6. Discussion .. 125

8. CONCLUSION AND RECOMMENDATIONS ... 127

9. REFERENCES ... 129

APPENDICES .. 132

APPENDIX 1 –GRAPHICAL USER INTERFACE.. 132

CURRICULUM VITAE ... 141

x

LIST OF TABLES

Table 2.1. Cost Functions for Cable Robot Optimization ... 11

Table 4.1. Starting and Ending accelerations for spline for different segments 36

Table 4.2. Initial and Final Conditions for first and second spline 40

Table 7.1. Cable Robot Parameters ... 71

Table 7.2. Controller gains .. 72

Table 7.3. Values of cost functions for each optimization .. 74

xi

LIST OF FIGURES

Figure 2.1. NIST RoboCrane [5] .. 5

Figure 2.2. Sagging Cable Profile between two points [17] ... 8

Figure 3.1. A generic 4-cable planar robot [10] ... 14

Figure 3.2. CDPR showing the cable and end-effector angle [10] 15

Figure 3.3. Iterative Forward Kinematics Procedure for a CDPR [10] 18

Figure 3.4. Free-Body-Diagram for an end-effector attached with four cables 19

Figure 3.5. End-effector dynamics [35] .. 20

Figure 3.6. An example of a motor’s Torque-Speed Curve .. 23

Figure 3.7. Diagram of Length of Elastic Cable ... 24

Figure 4.1. Trapezoidal Acceleration Profile .. 26

Figure 4.2. Linear Interpolation between two points .. 29

Figure 4.3. Circular Interpolation between two points ... 30

Figure 4.4. Spline at the corner between two line-segments .. 31

Figure 4.5. Spline Start/Corner/End points between two line segments 34

Figure 4.6. Spline Start/Corner/End points between a line and arc segment 35

Figure 4.7. Spline Start/Corner/End points between two arc segments 36

Figure 4.8. Standard trajectory composed of linear and arc segments 38

Figure 4.9. Trajectory generated for custom data ... 40

Figure 4.10. Trajectory generation procedure for Algorithm 3 42

Figure 4.11. Path generation with quintic splines ... 43

Figure 5.1. Cascade Control of Motor .. 56

Figure 5.2. Final Controller Diagram ... 59

Figure 6.1. GCI as a function of motor position ... 61

Figure 6.2. SN as a function of motor positions ... 64

Figure 6.3. WVI as a function of motor positions .. 66

Figure 6.4. Feasible Workspace before optimization ... 67

Figure 6.5 Feasible Workspace after optimization ... 68

Figure 7.1 Step response of cascade inner loop. ... 72

Figure 7.2 Cascade outer loop step response .. 73

Figure 7.3 Initial condition of cable robot .. 74

Figure 7.4 Dexterity optimized cable robot configuration ... 75

xii

Figure 7.5 Stiffness optimized cable robot configuration ... 76

Figure 7.6 Workspace optimized cable robot structure ... 77

Figure 7.7 Feasible region of workspace before optimization .. 78

Figure 7.8 Feasible region of workspace after optimization ... 78

Figure 7.9 Circular Trajectory ... 79

Figure 7.10 Rectangle Trajectory .. 80

Figure 7.11 Circle – Trapezoidal Acceleration ... 81

Figure 7.12 Circle – Real vs Actual Trajectory .. 82

Figure 7.13 Circle – Tracking Errors .. 82

Figure 7.14 Circle – Desired Tensions .. 83

Figure 7.15 Circle – Real Tension .. 83

Figure 7.16 Rectangle – P2P – Trapezoidal Acceleration .. 84

Figure 7.17 Rectangle – P2P – Desired/Real trajectory .. 85

Figure 7.18 Rectangle – P2P – Corner zoom .. 85

Figure 7.19 Rectangle – P2P – Tracking Errors .. 86

Figure 7.20 Rectangle – P2P – Desired Tensions ... 86

Figure 7.21 Rectangle – P2P – Real Tensions .. 87

Figure 7.22 Rectangle – Continuous – Trapezoidal Acceleration 88

Figure 7.23 Rectangle – Continuous – Desired vs Actual Trajectory 88

Figure 7.24 Rectangle – Continuous – Corner Zoom ... 89

Figure 7.25 Rectangle – Continuous – Tracking Errors .. 89

Figure 7.26 Rectangle – Continuous – Desired Tensions ... 90

Figure 7.27 Rectangle – Continuous – Real Tensions .. 90

Figure 7.28 Rectangle – Splines – Trapezoidal Acceleration ... 91

Figure 7.29 Rectangle – Splines – Desired vs Real Trajectory 92

Figure 7.30 Rectangle – Splines – Corner Zoom .. 92

Figure 7.31 Rectangle – Splines – Tracking Errors .. 93

Figure 7.32 Rectangle – Splines – Desired Tensions .. 93

Figure 7.33 Rectangle – Splines – Real Tensions ... 94

Figure 7.34 Spiral – Reference points ... 95

Figure 7.35 Spiral – Trapezoidal Acceleration ... 95

Figure 7.36 Spiral – Desired vs Actual Trajectory .. 96

Figure 7.37 Spiral – Tracking Errors .. 96

xiii

Figure 7.38 Spiral – Desired Tensions .. 97

Figure 7.39 Spiral – Real Tensions ... 97

Figure 7.40 Custom Data A – Trajectory ... 98

Figure 7.41 Custom Data A – Desired vs Real Trajectory ... 99

Figure 7.42 Custom Data A – Tracking Errors ... 99

Figure 7.43 Custom Data A – Desired Tensions .. 100

Figure 7.44 Custom Data A – Real Tensions ... 100

Figure 7.45 Custom Data B – Trajectory .. 101

Figure 7.46 Custom Data B – Desired vs Actual Trajectory .. 101

Figure 7.47 Custom Data B – Tracking Errors ... 102

Figure 7.48 Custom Data B – Desired Tensions .. 102

Figure 7.49 Custom Data B – Real Tensions .. 103

Figure 7.50 Custom Data C – Trajectory .. 103

Figure 7.51 Custom Data C – Desired vs. Actual Trajectory 104

Figure 7.52 Custom Data C – Tracking Errors ... 104

Figure 7.53 Custom Data C – Desired Tensions .. 105

Figure 7.54 Custom Data C – Actual Tensions .. 105

Figure 7.55 Circle 0.06 m/s2 – Trapezoidal Acceleration ... 106

Figure 7.56 Circle 0.06 m/s2 – Desired vs Actual Trajectory 107

Figure 7.57 Circle 0.06 m/s2 – Tracking Errors .. 107

Figure 7.58 Circle 0.06 m/s2 – Desired Tensions ... 108

Figure 7.59 Circle 0.06 m/s2 – Actual Tensions ... 108

Figure 7.60 Circle 0.12 m/s2 – Trapezoidal Acceleration ... 109

Figure 7.61 Circle 0.12 m/s2 – Desired vs Actual Trajectory 109

Figure 7.62 Circle 0.12 m/s2 – Tracking Errors .. 110

Figure 7.63 Circle 0.12 m/s2 – Desired Tensions ... 110

Figure 7.64 Circle 0.12 m/s2 – Real Tensions .. 111

Figure 7.65 Circle 0.18 m/s2 – Trapezoidal Acceleration ... 111

Figure 7.66 Circle 0.18 m/s2 – Desired vs Actual Trajectory 112

Figure 7.67 Circle 0.18 m/s2 – Tracking Errors .. 112

Figure 7.68 Circle 0.18 m/s2 – Desired Tensions ... 113

Figure 7.69 Circle 0.18 m/s2 – Trapezoidal Acceleration ... 113

Figure 7.70 Circle – 5 degree – Desired vs Actual trajectory 114

xiv

Figure 7.71 Circle – 5 degree – Tracking Errors .. 115

Figure 7.72 Circle – 5 degree – Desired Tensions ... 115

Figure 7.73 Circle – 5 degree –Actual Tensions .. 116

Figure 7.74 Circle – 15 degree – Desired vs Actual trajectory 116

Figure 7.75 Circle – 15 degree – Tracking Errors .. 117

Figure 7.76 Circle – 15 degree – Tracking Errors .. 117

Figure 7.77 Circle – 15 degree – Real Tension .. 118

Figure 7.78 Circle – 30 degree – Desired vs Actual Trajectory 118

Figure 7.79 Circle – 30 degree – Tracking Errors .. 119

Figure 7.80 Circle – 30 degree – Desired Tensions ... 119

Figure 7.81 Circle – 30 degree – Real Tensions .. 120

Figure 7.82 Circle – 70 degree – Desired vs Actual Trajectory 120

Figure 7.83 Circle – 70 degree – Tracking Errors .. 121

Figure 7.84 Circle – 70 degree – Desired Tensions ... 121

Figure 7.85 Circle – 70 degree – Real Tensions .. 122

Figure 7.86 Non-optimized cable robot configurations .. 123

Figure 7.87 Circle – Non-Optimized – Desired vs Actual Trajectory 123

Figure 7.88 Circle – Non-Optimized – Tracking errors ... 124

Figure 7.89 Circle – Non-Optimized – Real Tensions ... 124

Figure Appendix 1.1 GUI Tab 1 ... 132

Figure Appendix 1.2 GUI Tab 2 ... 133

Figure Appendix 1.3 GUI Tab 3 ... 134

Figure Appendix 1.4 GUI Tab 4 ... 135

Figure Appendix 1.5 GUI Tab 5 ... 136

Figure Appendix 1.6 GUI Tab 6 ... 137

Figure Appendix 1.7 GUI Tab 7 ... 138

Figure Appendix 1.8 GUI Tab 8 ... 139

Figure Appendix 1.11 GUI Tab 11 ... 140

xv

SYMBOLS AND ABBREVIATIONS

Symbols

αi Cable Angles

θ End-Effector orientation angle

Li Cable Lengths

L0i Initial Cable Lengths

Ai Motor Positions

Bi End Effector Cable Connection Points

RA/RB Distance of Ai/Bi from center of global frame

J Motor Inertia

C Motor damping

τ Motor torque

T Cable Tensions

ki Cable stiffness

Abbreviations

CDPR/M Cable Driven Parallel Robot/Manipulator

DOF Degree of Freedom

COG/CG Center of Gravity

CT Cornering Tolerance

SN Stiffness Number

GCI Global Conditioning Index

WFW Wrench Feasible Workspace

SFW Stiffness Feasible Workspace

WVI Workspace Volume Index

1

1. INTRODUCTION

1.1. Overview

Parallel manipulators are devices which use a set of linkages in parallel to an end-effector

which can have translational or rotational motion, defined as the Degrees-of-Freedom or

DOFs of the system. Cable-Driven-Parallel-Robots or CDPRs are specialized type of

parallel robotic manipulators which use cables that are constantly in tension to manipulate

an object or end-effector. The Cable Robot has a number of cables and motors which are

used to manipulate the end-effector and follow and maintain a desired trajectory and pose.

Advantages of using Cable Robots include lower mass and cost compared to traditional

robots. Cable Robots can also have very large workspaces, but a large area is needed to

accommodate such setups. Disadvantages include the actuator redundancy needed to

operate cable robots as the cables need to be kept constantly in tension.

A critical aspect of the cable robot design is trajectory generation. The method of

trajectory generation can affect the accuracy of the CDPR. Another important factor is

the optimization of the cable robot. The location of the attachment points for the cables

on the end-effector, and the locations of the motors can significantly impact the

performance of a cable robot. This study focuses on accurate trajectory generation,

controller design, and cable robot optimization to create a more efficient design for a

cable robot.

1.2. Thesis Objectives and Outcomes

The primary objective of this thesis was to model and simulate a 3-DOF Planar Cable

Robot and use different techniques to develop different trajectories for the robot to follow.

Particularly, trajectory generation techniques traditionally used for CNC applications

were implemented in the context of cable robots to achieve highly accurate results and

improving the cable robot performance.

2

Additional objectives include the development of a Cascade Controller for simulating the

Cable Robot and the design optimization using different cost functions. These include

dexterity, stiffness, and workspace optimization.

A comprehensive analysis is carried out testing the cable robot performance before and

after optimization for different trajectories. All of this procedure is packaged into an easy-

to-use GUI application which can be used to completely design and simulate a cable robot

device.

1.3. Research Contribution

In light of the reviewed literature, there are no other studies implementing CNC trajectory

generation techniques for Cable Robots. The GUI developed as a part of this thesis is also

a unique tool which offers functionality not comparable with other existing tools.

The research contributions of this thesis can be summed up as given below:

• Implementation of different trajectory generation techniques, particularly

from CNC trajectory generation, for a CDPR.

• Comparison of different trajectory generation techniques and results before

and after optimization.

1.4. Thesis Organization

The structure of the thesis is organized as follows: Chapter 2 provides a background and

literature review about different types of Cable Robots. Moreover, literature related to

cable robot modelling, trajectory generation, and optimization is also discussed. Chapter

3 provides the methodology and detailed information about the cable robot modelling

including cable modelling. The different methods and algorithms used for trajectory

generation are discussed in Chapter 4. Chapter 5 presents the controller design used to

run the cable robot to follow the designed trajectories and Chapter 6 provides information

about the Cable Robot optimization. Chapter 7 provides the results and discussion for

3

different simulations and finally, Chapter 9 provides the conclusion and outlines the

future work to be done. Figures of the GUI are provided in the Appendix.

 4

2. BACKGROUND AND LITERATURE REVIEW

In this Chapter, a detailed literature review and background of cable driven robots is

presented. Firstly, cable driven parallel robots are introduced along with their potential

applications. Then, the concepts behind cable robot modelling, trajectory generation,

controller design and cable robot optimization are presented from different studies.

2.1. Cable Driven Parallel Robots Background

Cable driven parallel robots (CDPRs) are a special type of parallel robots that use several

cables to manipulate the end-effector or the payload. These flexible cables replace the

traditional rigid links used in serial manipulators. By using cables, CDPRs have several

advantages over conventional manipulators which include much larger workspaces, lower

costs of manufacturing, as well as significantly increased payload-to-weight

ratios[1][2][3,4]. CDPRs have gained the attention of researchers due to these properties

and several theoretical and practical applications have been discovered for these robots

including robotic cranes, modular solar collectors, sports cameras, and many more.

The NIST Robocrane is widely accepted as one of the first implementations of a Cable

Driven Parallel Robot. It was developed in 1992 at the National Institute of Standards and

Technology in Maryland, USA. It consists of a triangular platform suspended by 6 cables.

Each vertex of the platform is connected to two cables, and the cables are actuated by 6

winches. This allows the platform to be positioned at a specific pose and orientation. The

robot is kinematically constrained when all the cables are in tension and in this case a

fixed relation is present between the length of the cables and the position and orientation

of the system. The Robocrane was capable of having both manual and closed loop control.

 5

Figure 2.1. NIST RoboCrane [5]

During manual control, a Stewart platform with potentiometers was used for a master-

slave rate control, while the closed loop control a computer is used to calculate the desired

cable lengths and implement position, velocity, and force control.[5]

Tang performed a detailed study of different implementations of CDPRs. Cable robots

are divided into two categories, suspended robots and redundantly constrained robots. For

suspended robots, gravity is necessary in maintaining positive cable tension. While for

redundantly constrained robots, the actuator forces are enough to maintain cable tension.

The Robocrane is an example of a suspended CDPR. Other challenges associated with

the design of cable robots include cable models, static and dynamic workspace, and

tension distribution. Based on the literature, the two most popular types of control are

cable length based (joint space) and end-effector position based (task space) control. A

simple PD controller-based feedback control using cable lengths is a common control

scheme, while other researchers have also used Computed Torque controllers in the task

space, but these rely on the availability of accurate sensors. Cable robots are most

commonly used in large telescopes, medical rehabilitation robotics, sports cameras, and

large simulators.[3] These CDPRs are used in a variety of applications ranging from

 6

mobile cranes, rehabilitative equipment, video cameras etc.[6] CDPRs have also been

extensively used in rehabilitative applications [7–9]. The controller for a CDPR is

generally designed in the task space of the robot as the dynamic equations of the model

are also determined in the task space. Therefore, the design of the controller becomes less

challenging. However, control in the task space can require many complex sensors, so the

joint space might be preferable for controller design.[10]

2.2. Cable Robot Modelling

The use of cables to manipulate the end effector introduces a unique challenge as the

cables can only be in tension and cannot exert a compressive force. The slackness of the

cables is also not desirable. This introduces a new and unique control problem. CDPRs

are divided into under-constrained, fully constrained, and redundantly constrained

categories. In under-constrained systems the tension of the cables is usually provided by

gravity. In fully constrained systems, an added extra actuator is used to provide tension

in the cables using internal forces, and in redundantly constrained systems, even more

actuators are added as compared to a fully constrained system, and the tension can be

provided either by suspension or with internal forces.[11]

Qian et al. conducted a review of CDPRs covering the history of CDPR development.

Due to the development of control theory and design improvements, CDPRs have greatly

improved in terms of their dynamic and kinematic performances and have seen increased

use in practical applications. However, they are still rarely used as compared to traditional

serial manipulators. The review paper analyzes several Cable Driven Parallel robots

which are controlled using different algorithms. It highlights the need for the integrated

design of different configurations of CDPRs, the development of higher performance

control algorithms, and – lastly – to improve the stiffness and load bearing capacity using

composite materials [6]. Electronic motors are the most common methods of actuation.

The cables and pulleys used for the system can be of different materials. A variety of

controllers have also been used to control CDPRs such as hybrid, PD, model predictive,

and adaptive control highlighted in [11–14], however the most common controller is a

PID controller. The CDPR can be seen as a combination of the actuator, the pulleys, the

 7

cables, and the end effectors. The position of the pulleys and the actuators limits the final

achievable workspace.

The open-source WireX [15] has the capability to generate geometry and perform

kinematic and static analysis of CDPRs. It is also able to analyze the workspace of the

designed CDPRs as well as other useful features. However, it has limited design and

analysis capabilities, and it is not able to design a controller for the analyzed system.

A CDPR has the additional challenge compared to a regular parallel manipulator with

rigid links, that it is only able to pull on the end-effector and not push. This means, the

cables need to be in a constant state of tension. Oh et al. provide a detailed approach to

determining the statics and dynamics of a generalized cable robot with ‘n’ number of

cables as well as determining the feasible regions for the cable arrangements. To maintain

positive cable tension, a cable robot needs one more cable than the desired DOFs. So, for

a planar robot if planar movement and rotation is desired, a four-cable robot would be

suitable. This paper particularly presented an approach to control cable robots with

redundant cables while also maintaining positive cable tension [1].

Based on the resources studied above, the design problem of the cable robot can be

divided into a few different sections. CDPRs can have a number of different

configurations and orientation, any number of cables, controllers, and these robots each

have a different performance objective.

Zarebidoki [16] performed a thorough review of cable robots considering these exact

parameters. The CDPRs are classified into Incompletely Restrained, Completely

Restrained, and Redundantly Restrained mechanisms. Based on the literature,

redundantly constrained devices are not very common, while completely restrained

devices are the most common. Incompletely restrained devices are also used but they are

usually feasible for suspended devices. Planar and Spatial devices are also equally

common but planar devices are almost always completely restrained. While modelling

the cable robots, another important aspect to consider are the cables. The simplest way of

 8

modelling the cables are non-elastic massless cables. Other papers model cables with

elasticity, and cables with mass, while a small subset of the literature deals with cables

with both mass and elasticity. Cable elasticity is important as the extension of the cables

can have important implications regarding trajectory tracking and control. Cable mass

can cause cable sag, especially in larger devices. Cable sag is very complicated to model

and can often be neglected for small to intermediate sized cable robots, while cable

elasticity is more relevant to most design problems. The paper also shows the workspace

of a CDPR as an important factor and compares literature optimizing the workspace based

on the positioning of the cable configurations. The wrench-closure workspace considers

the area where positive tension can be maintained while the wrench-feasible workspace

considers both upper and lower bounds for the cable tension. Lastly, the trajectory

planning and control of the cable robots are an important factor. For robots with inelastic

or elastic cables, different control approaches can be developed but PID and fuzzy control

were common techniques.

Figure 2.2 below shows the profile for a cable under sag.

Figure 2.2. Sagging Cable Profile between two points [17]

The cable catenary equations are well known, and for the case where the cable is

inextensible the equations are given below [17],

 9

𝑥iend =

|𝑇𝑥𝑖|

𝜌𝐿𝑔
𝑔 [sinh−1⁡ (

𝑇𝑧𝑖
𝑇𝑥𝑖
) − sinh−1⁡ (

𝑇𝑧𝑖 − 𝜌𝐿𝑔𝐿𝐿
𝑇𝑥𝑖

)]

𝑧iend =
1

𝜌𝐿𝑔
[√𝑇𝑥𝑖

2 + 𝑇𝑧𝑖
2 − √𝑇𝑥𝑖

2 + (𝑇𝑧𝑖 − 𝜌𝐿𝑔𝐿𝑖)2]

𝑇𝑖 = √𝑇𝑥𝑖
2 + 𝑇𝑧𝑖

2

(2.1)

Where xiend and ziend are the coordinates in the global frame of the end point of the cable,

Txi and Tzi are the components in the x and z direction of the cable tension, ρL is the

density of the cable, g is gravitational acceleration in the negative z direction, Li is the

cable length, and Ti is the total magnitude of cable tension. To obtain the cable lengths,

and ultimately the desired cable angles for a specified position, these equations need to

be solved iteratively using a function like fsolve() at each time step as well as some kind

of optimization algorithm which finds the solution with the cable tensions kept to a

minimum. With the addition of cable elasticity, cable sag becomes a very challenging and

computationally expensive aspect of the cable robot which more most cases except really

large cable robots can be essentially ignored.

2.2. Trajectory Generation

Trajectory generation is another important part of the cable robot design process. Hwang

[18] used a trajectory generation algorithm to suppress oscillations in under-constrained

cable robots such as those suspended due to gravity. The unwanted oscillations are

prevented according to both experimental and simulation data.

Kevac [19] also developed an algorithm to generate the trajectory of a cable suspended

parallel robot which is cable of tracking different objects. Jiang [20] developed a

trajectory generation method where considering the mathematical model for the

kinematic and dynamic formulations of the robot. It is assumed that there are positive

constant ratios between the cable tensions and cable lengths. Assuming positive constant

ratios between the cable tensions and lengths, the dynamic equations can be converted

into linear differential equations with constant coefficients for positioning. Concurrently,

the orientation equation becomes a pendulum-like differential equation. These equations

can then be solved to determine the trajectory.

 10

In the literature, there is a lack of publications where CNC-based trajectory generation

techniques have been implemented with cable robots. These trajectory generation

techniques use 5th order splines which guarantee continuity of the trajectory at least up to

the second derivative which can result in smoother trajectories for different custom and

non-custom shapes.

2.2. Control System

The controller chosen for implementation with the cable robot model is a Cascade

Controller. Cascade controllers are popular for controlling electronic motors and consist

of two cascading control loops. The inner-loop is a speed control loop, whereas the outer-

loop is a position control loop. Cascade control can be particularly beneficial in cable

robot applications. When controlling cable robots, it is often difficult to obtain the exact

position of the end-effector so joint space-based control strategies are preferred over task

space control strategies.

Khosravi [21] developed a cascade controller for a 3-DOF planar-cable-robot which is

similar to our application. Experimental results showed that the cascade controller was

able to track the desired trajectory effectively with very minimal error. Similarly, [22]

developed an adaptive cascade controller for the KNTU CDPRM which is a 6-DOF cable

robot. Experimental results again verified that the tracking errors are quite small. The

adaptive algorithm is able to change the gains of the controller as needed. Khalilpour [23]

developed a cable robot and used sliding mode cascaded controller for trajectory tracking.

During experimentation, the results for both cases with and without the inner loop are

given and the addition of the inner loop, i.e., using the cascade control structure

significantly increased the tracking performance.

2.2. Cable Robot Optimization

The scope of this thesis is limited to Planar CDPRs which are completely restrained, that

is the number of cables used in the robot is the number of DOFs plus one. Table 2.1 below

 11

shows different sources and the associated cost functions being used for cable robot

optimization.

Table 2.1. Cost Functions for Cable Robot Optimization

No. Paper Name Objective Function

1 “On the Design of Cable-Suspended Planar

Parallel Robots” [24]

Maximize workspace,

Maximize Global Condition

Index

2 “Workspace optimization for a planar cable-

suspended direct-driven robot” [25]

Maximize workspace

efficiency (based on shape

of workspace rather than

size)

3 “DESIGN AND OPTIMIZATION OF A

PLANAR CABLE ROBOT” [26]

Minimize sum of maximum

tensions during

performance of task

4 “Optimization based Trajectory Planning of

Mobile Cable-Driven Parallel Robots” [27]

Minimize position and

velocity vectors to find

most efficient path

5 “Design and optimization of three-degree-of-

freedom planar adaptive cable-driven parallel

robots using the cable wrapping phenomenon”

[28]

Maximize workspace and

Dexterity

6 “Optimizing Stiffness and Dexterity of Planar

Adaptive Cable-Driven Parallel Robots” [29]

Maximum dexterity with

target stiffness, OR,

Maximum stiffness with

target dexterity

7 “Orientation Workspace and Stiffness

Optimization of Cable-Driven Parallel

Manipulators with Base Mobility” [30]

Maximize stiffness,

Tension Factor, Minimize

error between desired and

actual joint positions

 12

8 “Multi-Objective Optimal Design of a Cable-

Driven Parallel Robot Based on an Adaptive

Adjustment Inertia Weight Particle Swarm

Optimization Algorithm” [31]

Maximize Workspace

Index, and Dexterity Index

9 “Simulation and optimization of automated

masonry construction using cable robots” [32]

Minimize spline time,

Maximize stiffness,

Minimize energy

consumption

10 “Cable Attachment Optimization for

Reconfigurable Cable-Driven Parallel Robots

Based on Various Workspace Conditions” [33]

Maximize Tension Factor,

or Minimize Cable Force

Sum

11 “Kinematic Analysis and Design Optimization of

a Cable-Driven Universal Joint Module” [34]

Maximize tension-closure

workspace volume

Analyzing the different sources, Dexterity, Stiffness, and Workspace optimization stand

out as a clear trend, therefore these cost functions have been chosen for the cable robot

optimization procedure.

 13

3. MODELLING METHODOLOGY

This chapter will describe the modelling problem of the cable driven parallel robot. This

will include the kinematics, dynamic equations of the cable robot, positive tension

algorithm, and addition of cable elasticity to the model.

3.1. Problem Formulation

The scope of this thesis is limited to a planar 4-Cable robot. The robot has 3-DOFs

namely, translatory motion in the X-axis, translatory motion in the Y-axis, and rotation

about the Z-axis (rotation in the plane of motion). As the robot has 4 cables and 3-DOFs,

it is redundantly actuated and has the ability to maintain positive tension in the cables.

If a cable robot is not redundantly actuated it is not able to maintain positive cable tension

without an external force (such as gravity). 4 cables allow the planar robot to have

freedom of motion and rotation while maintaining positive cable tension. If more than 4

cables are used, it does not affect the DOFs of the cable robot however the computational

complexity of the problem increases.

To model the cable robot, the first step is to determine the forward and inverse kinematics

of the system as well as the dynamic formulation. Using the obtained equations, the model

of the Cable Robot can be simulated using MATLAB/Simulink. The basic model of the

cable robot needs to be a general formulation where the user can specify different cable

connection points, motor positions, mass, inertia, workspace etc. according to the design

specification. After the basic model is developed, cable elasticity has to be incorporated

followed by the positive cable tension algorithm which ensures that none of the cables

end up sagging which is very important. The mass and subsequent sagging of cables has

not been considered within the scope of this thesis as it is generally negligible apart from

some very large cable robots.

Figure 3.1 below shows the general configuration for a planar CDPR with four cables.

Here Ai are the motor positions, Bi are the cable connection points measured from the

 14

center of the end-effector, Li are the lengths of the cables, and αi are the angles made by

the cables in the global frame. The global coordinate system used for the modelling

process is located at the central point of the area defined by the motor positions. The

motor positions and end-effector cable connection points are usually symmetric.

Figure 3.1. A generic 4-cable planar robot [10]

3.2. Cable Robot Modelling – Inverse Kinematics

For cable robots, the inverse kinematics problem is usually more important and is easier

to solve as compared to the forward kinematics problem. For the inverse kinematics, the

position and pose of the end-effector is given while the required motor positions or cable

lengths must be calculated. Figure 3.2 below shows the kinematic configuration for the

manipulator.

 15

Figure 3.2. CDPR showing the cable and end-effector angle [10]

 As the motor positions Ai and the end-effect cable connection points Bi are usually

symmetric, it can be said that these points are on circles with radii RA and RB respectively.

We can also define θAi and θBi which are the angles of the lines connecting the points Ai

and Bi to the center of the global coordinate system assuming the end-effector is placed

at that point. Then, if the end-effector rotates by an angle ϕ, the new angles ϕi of points

Bi are given as,

 𝜙𝑖 = 𝜙 + 𝜃𝐵𝑖 (3.1)

Based on these, the points Ai and Bi can be given as,

 𝐴𝑖 = [𝑅𝐴cos⁡(𝜃𝐴𝑖), 𝑅𝐴sin⁡(𝜃𝐴𝑖)]
𝑇
 (3.2)

The end-effector position and orientation is given as,

 𝒳 = [𝑥𝐺 , 𝑦𝐺 , 𝜙]
𝑇 (3.3)

And the joint variables or the cable lengths are given as,

 𝐿 = [𝐿1, 𝐿2, 𝐿3, 𝐿4]
𝑇 (3.4)

Then for each limb where i = 1, 2, 3, 4, based on the geometry, the loop-closure equation

is given as,

 𝐴𝑖𝐺⃗⃗⃗⃗⃗⃗ ⃗ = 𝐴𝑖𝐵𝑖⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝐺𝐵𝑖⃗⃗ ⃗⃗ ⃗⃗ (3.5)

Rewriting the loop closure equation in terms of its components,

 16

 𝑥𝐺 − 𝑥𝐴𝑖 = 𝐿𝑖 cos(𝛼𝑖) − 𝑅𝐵 cos(𝜙𝑖)

𝑦𝐺 − 𝑦𝐴𝑖 = 𝐿𝑖sin⁡(𝛼𝑖) − 𝑅𝐵sin⁡(𝜙𝑖)
(3.6)

Here, xAi and yAi are the x and y components of the position vectors of points Ai and Bi

respectively. To solve the above equation, it is necessary to eliminate αi and solve for Li.

Rearranging we obtain,

 𝐿𝑖 cos(𝛼𝑖) = 𝑥𝐺 − 𝑥𝐴𝑖 + 𝑅𝐵 cos(𝜙𝑖)

𝐿𝑖 sin(𝛼𝑖) = 𝑦𝐺 − 𝑦𝐴𝑖 + 𝑅𝐵 sin(𝜙𝑖)
(3.7)

By adding the squares of both equations, the expression for calculating the cable lengths

is given as,

𝐿𝑖 = [(𝑥𝐺 − 𝑥𝐴𝑖 + 𝑅𝐵cos⁡(𝜙𝑖))

2
+ (𝑦𝐺 − 𝑦𝐴𝑖 + 𝑅𝐵sin⁡(𝜙𝑖))

2
]
1/2

 (3.8)

And the limb angles αi are obtained as,

 𝛼𝑖 = Atan⁡ 2[(𝑦𝐺 − 𝑦𝐴𝑖 + 𝑅𝐵sin⁡(𝜙𝑖)), (𝑥𝐺 − 𝑥𝐴𝑖 + 𝑅𝐵cos⁡(𝜙𝑖))] (3.9)

Therefore, the inverse kinematics problem has a unique solution for each manipulator

location. This approach is used to calculate the required cable length and the equivalent

motor angles as a function of the generated trajectories so motor reference trajectories

can be generated in the task space for the cascade controller described in section 5.

3.3. Cable Robot Modelling – Forward Kinematics

In the forward kinematics problem, the cable lengths (Li) are known and the manipulator

location needs to be determined. First, we define two intermediate variables given below,

{
𝑥𝑖 = −𝑥𝐴𝑖 + 𝑅𝐵cos⁡(𝜙𝑖)

𝑦𝑖 = −𝑦𝐴𝑖 + 𝑅𝐵sin⁡(𝜙𝑖)
 (3.10)

Then taking the square of Equation 3.11, it becomes,

 𝐿𝑖
2 = (𝑥𝐺 + 𝑥𝑖)

2 + (𝑦𝐺 + 𝑦𝑖)
2 (3.11)

Solving for xG and yG,

 𝑥𝐺
2 + 𝑦𝐺

2 + 𝑟𝑖𝑥𝐺 + 𝑠𝑖𝑦𝐺 + 𝑢𝑖 = 0 (3.12)

Where,

 17

 𝑟𝑖 = 2𝑥𝑖, ⁡𝑠𝑖 = 2𝑦𝑖 , ⁡𝑢𝑖 = 𝑥𝑖
2 + 𝑦𝑖

2 − 𝐿𝑖
2 (3.13)

Equation 3.13 provides four quadratic relationships for i = 1, 2, 3, 4. Subtracting each

equation from the other yields linear equations in terms of xG and yG.

 𝐴 ⋅ [
𝑥𝐺
𝑦𝐺
] = 𝑏 (3.14)

Where,

𝐴 = [

𝑟1 − 𝑟2 𝑠1 − 𝑠2
𝑟2 − 𝑟3 𝑠2 − 𝑠3
𝑟3 − 𝑟4 𝑠3 − 𝑠4
𝑟4 − 𝑟1 𝑠4 − 𝑠1

] , ⁡𝑏 = [

𝑢2 − 𝑢1
𝑢3 − 𝑢2
𝑢4 − 𝑢3
𝑢1 − 𝑢4

] (3.15)

All the elements of the A and b matrices are functions of ϕ. Although only two equations

from above are sufficient to evaluate xG and yG in terms of ϕ, however using all four

equations helps to achieve tractable solutions even at singular configurations. This

equation can be solved using the pseudoinverse of A,

 [
𝑥𝐺
𝑦𝐺
] = 𝐴† ⋅ 𝑏 (3.16)

Where,

 𝐴† = (𝐴𝑇𝐴)−1𝐴𝑇 (3.17)

Equation 3.16 gives the solution with least-squares error for xG and yG. To obtain ϕ,

Equations 3.12 and 3.16 are combined, resulting in a single function where the unknown

variable is ϕ:

 𝑓𝑖(𝜙) = 𝑥𝐺
2 + 𝑦𝐺

2 + 𝑟𝑖𝑥𝐺 + 𝑠𝑖𝑦𝐺 + 𝑢𝑖 (3.18)

Then consider,

𝑓(𝜙) =∑  

4

𝑖=1

 𝑓𝑖(𝜙) (3.19)

and use numerical methods that use iterative search routine to obtain the actual solution

for the function f(ϕ) = 0. It appears that any function from Equation 3.18 could be used

to obtain the solution, however, all the four equations are summed up and used together,

it allows the equation to have a tractable solution even at singular configurations. Figure

3.3 below shows the flowchart explaining the procedure for the forward kinematics

problem.

 18

Figure 3.3. Iterative Forward Kinematics Procedure for a CDPR [10]

3.4. Cable Robot Modelling – Dynamics

Figure 3.4 below shows a Free-Body-Diagram for the cable robot end-effector.

 19

Figure 3.4. Free-Body-Diagram for an end-effector attached with four cables

Here, fd is the vector of external forces, M is end-effector mass, g is the vertical

acceleration is gravitational effects are considered, Ti are the cable tensions, Bi are the

cable attachment points, RBi are the distances of Bi from the COG of the end-effector, τd

is external torque, and θBi are the angles in the global coordinate system of the points Bi.

CG is the position of the end-effector in the global coordinate system given as,

 𝐶𝐺 = [𝑥𝐺 , 𝑦𝐺 ⁡] (3.20)

Then the positions of Bi are given as,

 𝐵𝑖 = [𝑥𝐺 + 𝑅𝐵𝑖 ∗ cos⁡(𝜃𝐵𝑖 + 𝜙) 𝑦𝐺 + 𝑅𝐵𝑖 ∗ sin⁡(𝜃𝐵𝑖 + 𝜙)] (3.21)

Then the unit vector from the position of the center of the end-effector CG, to the

connection points Bi is given as,

𝑛𝑅𝐵𝑖 = [

(𝑥𝐵𝑖 − 𝑥𝐺)/√(𝑥𝐵𝑖 − 𝑥𝐺)2 + (𝑦𝐵𝑖 − 𝑦𝐺)2

(𝑦𝐵𝑖 − 𝑦𝐺)/√(𝑥𝐵𝑖 − 𝑥𝐺)2 + (𝑦𝐵𝑖 − 𝑦𝐺)2
] (3.22)

Similarly, the unit vector between Ai and Bi is given as,

𝑆𝑖 = [

(𝑥𝐴𝑖 − 𝑥𝐵𝑖)/√(𝑥𝐴𝑖 − 𝑥𝐵𝑖)2 + (𝑦𝐴𝑖 − 𝑦𝐵𝑖)2

(𝑦𝐴𝑖 − 𝑦𝐵𝑖)/√(𝑥𝐴𝑖 − 𝑥𝐵𝑖)2 + (𝑦𝐴𝑖 − 𝑦𝐵𝑖)2
] (3.23)

Then the dynamics equations for the 3-DOF planar robot end-effector are given as,

 20

 𝑀. 𝑥̈𝐺 = 𝑓𝑑𝑥 + 𝑇1𝑆1,𝑥 + 𝑇2𝑆2,𝑥 + 𝑇3𝑆3,𝑥 + 𝑇4𝑆4,𝑥 (3.24)

𝑀. 𝑦̈𝐺 = 𝑓𝑑𝑦 −𝑀𝑔 + 𝑇1𝑆1,𝑦 + 𝑇2𝑆2,𝑦 + 𝑇3𝑆3,𝑦 + 𝑇4𝑆4,𝑦 (3.25)

 𝐼. 𝜙̈ = 𝜏𝑑 + (𝑅𝐵1𝑛𝑅𝐵1 × 𝑇1𝑆1) + (𝑅𝐵1𝑛𝑅𝐵1 × 𝑇1𝑆1) + (𝑅𝐵1𝑛𝑅𝐵1 × 𝑇1𝑆1)

+ (𝑅𝐵1𝑛𝑅𝐵1 × 𝑇1𝑆1)
(3.26)

3.5. Cable Robot Modelling – Motor Dynamics

Figure 3.5 below shows the free-body-diagram of a motor or actuator.

Figure 3.5. End-effector dynamics [35]

The equation for the dynamics of the actuator can then be written as,

 𝐽𝛽̈ + 𝐶𝛽̇ + 𝑓 = 𝜏 − 𝑟𝑇 (3.27)

Where, the inertia of the motor is represented by J, β is the motor angle, C is the damping,

f is coulomb friction, τ is the torque supplied by the motor, r is the radius of the motor or

cable spool, and T is the tension in the cable attached to the motor. Assuming the tensions

acting in the cable are larger than zero, the tensions can be expressed in terms of the motor

torque, speed and acceleration given as below,

𝑇 =

1

𝑟
(𝜏 − 𝐽𝛽̈ − 𝐶𝛽̇ − 𝑓) (3.28)

The torque signal from the controller is used to obtain the required tensions.

 21

3.6. Maintaining Positive Cable Tension [35]

It is necessary to always maintain positive cable tension to prevent cable sag, as the torque

command obtained from the controller may not always achieve this. Equation 3.29 below

shows how the cable forces (T) can be used to obtain the resultant end-effector wrench

vector (WR) by multiplying with the Jacobian matrix (S).

 𝐒𝐓 = 𝐖𝑅 (3.29)

For CDPRs with actuation redundancy, like our case, obtaining the required end-effector

wrench WR can have infinite solutions solving the above equation.

Inverting Equation 3.29 we can write it as,

 𝐓 = 𝐒+𝐖𝑅 + (𝐈𝑛 − 𝐒
+𝐒)𝐳 (3.30)

The first term of the equation represents the particular solution required to obtain the

desired wrench, while the second term is the homogeneous solution that is able to project

the vector z into the null space of the Jacobian matrix S. For calculating positive tensions

for the planar robot possessing one redundant actuator, the approach is given below,

𝐓 = {

𝑡𝑃1
𝑡𝑃2
𝑡𝑃3
𝑡𝑃4

} + 𝛼 {

𝑛1
𝑛2
𝑛3
𝑛4

} (3.31)

Here the first vector is the solution of the first term of equation 3.30, while the second

vector ‘N’ is the kernel vector obtained from the matrix S, multiplied by arbitrary scalar

α. This approach determines if a specified point is inside the static workspace for a given

CDPR. To ensure the point is in the static workspace, all components of N = [n1, n2, n3,

n4]
T must have the same sign, i.e., all ni > 0 or ni < 0. If any ni = 0 then the point is not in

the static workspace. If the above conditions are satisfied it is possible to find a scalar α

that guarantees positive tensions. Here N is given as,

 22

𝐍 = {

𝑛1
𝑛2
𝑛3
𝑛4

} =

{

 [
cos⁡(𝜃2 − 𝜃3 − 𝜃4) − cos⁡(𝜃2 − 𝜃3 + 𝜃4)

+sin⁡(𝜃2 − 𝜃3 + 𝜃4) − sin⁡(𝜃2 + 𝜃3 − 𝜃4)
]

[
cos⁡(𝜃1 + 𝜃3 − 𝜃4) − cos⁡(𝜃1 − 𝜃3 − 𝜃4)

+sin⁡(𝜃1 + 𝜃3 − 𝜃4) − sin⁡(𝜃1 − 𝜃3 + 𝜃4)
]

[
cos⁡(𝜃1 − 𝜃2 − 𝜃4) − cos⁡(𝜃1 + 𝜃2 − 𝜃4)

+sin⁡(𝜃1 − 𝜃2 − 𝜃4) + sin⁡(𝜃1 − 𝜃2 + 𝜃4)
]

[
cos⁡(𝜃1 + 𝜃2 − 𝜃3) − cos⁡(𝜃1 − 𝜃2 + 𝜃3)

−sin⁡(𝜃1 − 𝜃2 − 𝜃3) − sin⁡(𝜃1 − 𝜃2 + 𝜃3)
]
}

 (3.32)

Here θi are the cable angles and the allowable angles are 0º < θ1 < 90º, 90º < θ2 < 180º,

180º < θ3 < 270º, and 270º < θ4 < 360º. For these given ranges, the signs of all the

components of N are always the same for the square formed by the four motors, decreased

by half the length of the end-effector on the sides and increased at the top and bottom for

the general configuration shown in Figure 3.1.

α from Equation 3.31 can be calculated as given below,

𝛼𝑖 =

(𝑡𝑚𝑖𝑛 − 𝑡𝑝𝑖)

𝑛𝑖
 (3.33)

Then, the largest αi is selected at each control cycle. The tensions obtained from Equation

3.31 are input to the positive tension algorithm and the new tensions are used to obtain

the actual torque signal given as,

 𝜏𝑐𝑜𝑚 = 𝑇𝑝𝑜𝑠 ∗ 𝑟𝑖 (3.34)

Here τcom is the torque signal, Tpos is the positive tension, and ri is the motor radius. The

torque command is supplied to the motor which generates a torque depending on the

torque-speed curve of the motor. Figure 3.6 shows a typical torque-speed curve for a

PMDC motor.

 23

Figure 3.6. An example of a motor’s Torque-Speed Curve

The torque generated by the motor is used in Equation 3.28 to obtain the acceleration,

velocity, and position of the motors.

3.7. Addition of Cable Elasticity

For adding cable elasticity, the extension of the cable needs to be determined. For a given

cable, the actual length of any cable would be given by the actual difference between the

location of the points Ai and Bi. This distance is written as AiBi. The unstretched length

of cable that is released from the motor spool, is given as β.ri, and the initial cable lengths

when the end-effector is at its initial location are represented as L0 and can be calculated

using equation 3.8.

Each cable has a certain stiffness, ks,i which is given as,

𝑘𝑠,𝑖 =

𝐸𝐴

𝐿𝑖
 (3.35)

Then the cable forces for elastic cables are given as,

 𝑇𝑖 = 𝑘𝑠,𝑖(𝐴𝑖𝐵𝑖 + 𝛽𝑟𝑖 − 𝐿0,𝑖) (3.36)

Here AiBi is the actual cable length, βri is the length of the cable unwound from the motor,

and L0,i the initial cable length at the initial position. This force is then used in the dynamic

equations 3.24, 3.25, and 3.26. Figure 3.7 below shows the diagram of the elastic cable.

 24

Figure 3.7. Diagram of Length of Elastic Cable

 25

4. TRAJECTORY GENERATION

This chapter will discuss three trajectory generation methods. These are CNC trajectory

generation methods which have been implemented for generating trajectories for cable

robots. These methods use the trapezoidal acceleration profile to generate different

trajectories. Methods 1 and 2 use a combination of linear, circular, and micro-spline

interpolation to generate standard and custom trajectories. Method 3 uses splines to

generate trajectories based on provided coordinates for a custom trajectory.

4.1. Trapezoidal Acceleration [36]

Figure 4.1 shows the trapezoidal acceleration profile. The profile is divided into 7 distinct

sections. Initially the acceleration is zero, but it increases steadily during section 1 until

it reaches a value A. In section 2, the acceleration remains constant at this value A. In

section 3, the acceleration reduces until it becomes zero. Section 4 consists of a constant

velocity section, so the acceleration is equal to zero. Section 5 consists of a deceleration

phase, where the deceleration increases until it reaches a value -D, followed by a phase

of constant deceleration in section 6, and in section 7 the deceleration slowly decreases

to zero. The profile has a starting velocity of fs, and ending velocity of fe, and a constant

velocity reached during section 5 given as F. The time duration for each section is given

as T1, T2, T3, T4, T5, T6, and T7.

The Jerk during these phases is given as,

𝐽(𝜏) =

(

𝐽1 0 ≤ 𝑡 < 𝑡1
0 𝑡1 ≤ 𝑡 < 𝑡2
−𝐽3 𝑡2 ≤ 𝑡 < 𝑡3
0 𝑡3 ≤ 𝑡 < 𝑡4
−𝐽5 𝑡4 ≤ 𝑡 < 𝑡5
0 𝑡5 ≤ 𝑡 < 𝑡6
𝐽7 𝑡6 ≤ 𝑡 < 𝑡7)

 (4.1)

The acceleration, velocity, and position are then given as,

𝑎(𝜏) = 𝑎(𝑡𝑖) + ∫ 𝐽(𝜏)𝑑𝜏

𝑡

𝑡𝑖

 (4.2)

𝑓(𝜏) = 𝑓(𝑡𝑖) + ∫ 𝑎(𝜏)𝑑𝜏

𝑡

𝑡𝑖

 (4.3)

 26

𝑙(𝜏) = 𝑙(𝑡𝑖) + ∫ 𝑓(𝜏)𝑑𝜏

𝑡

𝑡𝑖

 (4.4)

Figure 4.1. Trapezoidal Acceleration Profile

Acceleration is given as,

𝑎(𝜏) =

{

𝐽1𝜏1, 0 ≤ 𝑡 < 𝑡1
𝐴, 𝑡1 ≤ 𝑡 < 𝑡2
𝐴 − 𝐽3𝜏3, 𝑡2 ≤ 𝑡 < 𝑡3
0, 𝑡3 ≤ 𝑡 < 𝑡4
−𝐽5𝜏5, 𝑡4 ≤ 𝑡 < 𝑡5
−𝐷, 𝑡5 ≤ 𝑡 < 𝑡6
−𝐷 + 𝐽7𝜏7, 𝑡6 ≤ 𝑡 ≤ 𝑡7

 (4.5)

 27

Here τk is a relative time parameter. It begins from zero at the start of each phase k.

Velocity is given as,

𝑓(𝜏) =

{

 𝑓5 +

1

2
𝐽1𝜏1

2, 0 ≤ 𝑡 < 𝑡1, 𝑓5: initial feedrate

𝑓1 + 𝐴𝜏2, 𝑡1 ≤ 𝑡 < 𝑡2, 𝑓1 = 𝑓5 +
1

2
𝐽1𝑇1

2

𝑓2 + 𝐴𝜏3 −
1

2
𝐽3𝜏3

2, 𝑡2 ≤ 𝑡 < 𝑡3, 𝑓2 = 𝑓1 + 𝐴𝑇2

𝑓3, 𝑡3 ≤ 𝑡 < 𝑡4, 𝑓3 = 𝑓2 + 𝐴𝑇3 −
1

2
𝐽3𝑇3

2 = 𝐹

𝑓4 −
1

2
𝐽5𝜏5

2, 𝑡4 ≤ 𝑡 < 𝑡5, 𝑓4 = 𝑓3

𝑓5 − 𝐷𝜏6, 𝑡5 ≤ 𝑡 < 𝑡6, 𝑓5 = 𝑓4
1

2
𝐽5𝑇5

2

𝑓6 − 𝐷𝜏7 +
1

2
𝐽7𝜏7

2, 𝑡6 ≤ 𝑡 ≤ 𝑡7, 𝑓6 = 𝑓5 − 𝐷𝑇6

 (4.6)

And distance is given as,

 𝑓(𝜏)

=

{

 𝑓s𝜏1 +

1

6
𝐽1𝜏1

3, 0 ≤ 𝑡 < 𝑡1

𝑠1 + 𝑓1𝜏2
1

2
𝐴𝜏2

2, 𝑡1 ≤ 𝑡 < 𝑡2, ⁡𝑠1 = 𝑠s + 𝑓s𝑇1 +
1

6
𝐽1𝑇1

3

𝑠2 + 𝑓2𝜏3 +
1

2
𝐴𝜏3

2 −
1

6
𝐽3𝜏3

3, 𝑡2 ≤ 𝑡 < 𝑡3, ⁡𝑠2 = 𝑠1 + 𝑓1𝑇2 +
1

2
𝐴𝑇2

2

𝑠3 + 𝑓3𝜏4, 𝑡3 ≤ 𝑡 < 𝑡4, ⁡𝑠3 = 𝑠2 + 𝑓2𝑇3 +
1

2
𝐴𝑇3

2 −
1

6
𝐽3𝑇3

3

𝑠4 + 𝑓4𝜏5 −
1

6
𝐽5𝜏5

3, 𝑡4 ≤ 𝑡 < 𝑡5, 𝑠4 = 𝑠3 + 𝑓3𝑇4

𝑠5 + 𝑓5𝜏6 −
1

2
𝐷𝜏6

2, 𝑡5 ≤ 𝑡 < 𝑡6, 𝑠5 = 𝑠4 + 𝑓4𝑇5 −
1

6
𝐽5𝑇5

3

𝑠6 + 𝑓6𝜏7 −
1

2
𝐷𝜏7

2 +
1

6
𝐽7𝜏7

3, 𝑡6 ≤ 𝑡 ≤ 𝑡7, ⁡𝑠6 = 𝑠5 + 𝑓5𝑇6 −
1

2
𝐷𝑇6

2

(4.7)

Where sk represents the total distance covered at the conclusion of each phase ‘k’. The

individual distances that are covered during separate phases are given as,

 28

𝑙𝑘 =

{

 𝑙1 = 𝑠1 + 𝑓s𝑇1 +

1

6
𝐽1𝑇1

3

𝑙2 = 𝑠2 − 𝑠1 = 𝑓1𝑇2 +
1

2
𝐴𝑇2

2

𝑙3 = 𝑠3 − 𝑠2 = 𝑓2𝑇3 +
1

2
𝐴𝑇3

2 −
1

6
𝐽3𝑇3

3

𝑙4 = 𝑠4 − 𝑠3 = 𝑓3𝑇4

𝑙5 = 𝑠5 − 𝑠4 = 𝑓4𝑇5 −
1

6
𝐽5𝑇5

3

𝑙6 = 𝑠6 − 𝑠5 = 𝑓5𝑇6 −
1

2
𝐷𝑇6

2

𝑙7 = 𝑠7 − 𝑠6 = 𝑓6𝑇7 −
1

2
𝐷𝑇7

2 +
1

6
𝐽7𝑇7

3

 (4.8)

Furthermore it holds that,

 𝐴 = 𝐽1𝑇1 = 𝐽3𝑇3

𝐷 = 𝐽5𝑇5 = 𝐽7𝑇7
(4.9)

Keeping in mind the fact that the require velocity ‘F’ must be reached at the conclusion

of the 3rd phase,

𝑓3 = 𝐹 → 𝑇2 =

1

𝐴
[𝐹 − 𝑓s −

1

2
𝐽1𝑇1

2 − 𝐴𝑇3 +
1

2
𝐽3𝑇3

2] (4.10)

Then the velocity at the end of the 7th phase, reached at the conclusion of the trajectory is

given as,

𝑓7 = 𝑓6 − 𝐷𝑇7 +

1

2
𝐽7𝑇7

2 = 𝑓e → 𝑇6 =
1

𝐷
[𝐹 − 𝑓e −

1

2
𝐽5𝑇5

2 − 𝐷𝑇7 +
1

2
𝐽7𝑇7

2] (4.11)

Additionally, according to the definition of the acceleration profile, at the conclusion of

the 7th phase, the total covered distance must be equal to the total travel length ‘L’

𝑠7 = 𝑠6 + 𝑓6𝑇7 −

1

2
𝐷𝑇7

2 +
1

6
𝐽7𝑇7

3 = 𝐿 (4.12)

4.1.1. Linear Interpolation

Figure 4.2 shows the representation for linear interpolation from point Ps to Pe with a

velocity f.

 29

Figure 4.2. Linear Interpolation between two points

The path and angle of travel is given as,

 𝐿 = √∆𝑥2 + ∆𝑦2, ∆𝑥 = 𝑥𝑒 − 𝑥𝑠, ∆𝑦 = 𝑦𝑒 − 𝑦𝑠 (4.13)

𝜃 = 𝑡𝑎𝑛−1 (

∆𝑦

∆𝑥
) (4.14)

Then the trapezoidal acceleration approach described in section 4.1 is used to calculate

the variation of displacement, velocity, acceleration and jerk. The displacement variation

is added to the initial position to generate the tool trajectory.

4.1.2. Circular Interpolation

Figure 4.3 shows the representation for circular interpolation from point Ps to Pe with a

velocity f.

 30

Figure 4.3. Circular Interpolation between two points

The path and angle are given as,

 𝐿 = 𝑅(𝜃𝑒−𝜃𝑠) = 𝑅𝜃𝑡 (4.15)

 𝑡𝑎𝑛𝜃𝑒 =
𝑦𝑒
𝑥𝑒
, 𝑡𝑎𝑛𝜃𝑠 =

𝑦𝑠
𝑥𝑠

 (4.16)

The change in position is given as,

 𝛿(𝑘) = 𝑙(𝑘) − 𝑙(𝑘 − 1), 𝛿(𝑘) = 𝑅∆𝜃(𝑘) (4.17)

The path as a function of time is given as,

 𝑙(𝑡) = 𝑅Ɵ(𝑡) (4.18)

Ɵ(𝑡) =

𝑙(𝑡)

𝑅
 (4.19)

 𝑙(𝑘) = 𝑙(𝑘 − 1) + 𝛿(𝑘) = 𝑙(𝑘 − 1) + 𝑅∆𝜃(𝑘) (4.20)

And the rotational velocity is given as,

𝜔(𝑡) =

𝑓

𝑅
 (4.21)

And the rotational position is,

Ɵ(𝑡) =

𝑓

𝑅
∗ 𝑡 (4.22)

Then the x and y position [x(t), y(t)] and velocities [fx(t), fy(t)] are given as,

 31

𝑥(𝑡) = 𝑅𝑐𝑜𝑠Ɵ(𝑡) = 𝑅𝑐𝑜𝑠 (

𝑓

𝑅
𝑡) (4.23)

𝑦(𝑡) = 𝑅𝑠𝑖𝑛Ɵ(𝑡) = 𝑅𝑠𝑖𝑛 (

𝑓

𝑅
𝑡) (4.24)

𝑓𝑥(𝑡) =

𝑑𝑥

𝑑𝑡
= −

𝑓

𝑅
𝑅𝑠𝑖𝑛Ɵ(𝑡) = −

𝑓

𝑅
𝑦(𝑡) (4.25)

𝑓𝑦(𝑡) =

𝑑𝑦

𝑑𝑡
=
𝑓

𝑅
𝑅𝑐𝑜𝑠Ɵ(𝑡) =

𝑓

𝑅
𝑥(𝑡) (4.26)

Similar to the linear interpolation, the trapezoidal acceleration function is used to

determine the displacement, velocity, acceleration and jerk variation which is used to

obtain the trajectory using the above equations.

4.1.3. Microsplines

To construct different shapes, they are divided into segments consisting of linear and

circular sections. These segments are joined using 5th order splines, particularly sharp

corners which can be difficult for simulation and control. Figure 4.4 below shows two

linear segments joined by a spline.

Figure 4.4. Spline at the corner between two line-segments

 32

The x and y equations for the spline is written in the plane formed by the start, end, and

corner points for the spline. The equation for the 5th degree polynomial is given as,

 𝑥 = 𝑎1𝑥𝜏𝑥
5 + 𝑏1𝑥𝜏𝑥

4 + 𝑐1𝑥𝜏𝑥
3 + 𝑑1𝑥𝜏𝑥

2 + 𝑒1𝑥𝜏𝑥
1 + 𝑓1𝑥 (4.27)

Here, a1x, b1x, c1x, d1x, e1x, and f1x are the coefficients of the 5th order polynomial while τx

is the normalized time. Tx is the total time of spline travel and t is the time so,

𝜏𝑥 =

𝑡

𝑇𝑥
 (4.28)

Since the equation is of the 5th degree, it has 6 unknowns (coefficients). If the first and

second derivatives are taken for x(τx), the initial conditions can be used to obtain the final

expressions for the splines. The initial conditions include q0x the spline starting position,

q1x the spline ending position, v0x the spline starting velocity, v1x the spline ending

velocity, a0x the spline starting acceleration, and a1x the spline ending acceleration. The

solution for the equation is presented below,

 𝑥

= 𝑞0𝑥 + 𝑡𝑣0𝑥 + (𝑎0𝑥𝑡
2) 2⁄

− (𝑡5(6𝑞0𝑥 − 6𝑞1𝑥 + 3𝑇𝑥𝑣0𝑥 + 3𝑇𝑥𝑣1𝑥 + (𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
5⁄

− (𝑡3(10𝑞0𝑥 − 10𝑞1𝑥 + 6𝑇𝑥𝑣0𝑥 + 4𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
3⁄

+ (𝑡4(15𝑞0𝑥 − 15𝑞1𝑥 + 8𝑇𝑥𝑣0𝑥 + 7𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
4⁄

(4.29)

The expression for velocity is given as,

 𝑥̇

= 𝑣0𝑥 + 𝑡𝑎0𝑥

− (5𝑡4(6𝑞0𝑥 − 6𝑞1𝑥 + 3𝑇𝑥𝑣0𝑥 + 3𝑇𝑥𝑣1𝑥 + (𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
5⁄

− (3𝑡2(10𝑞0𝑥 − 10𝑞1𝑥 + 6𝑇𝑥𝑣0𝑥 + 4𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
3⁄

+ (4𝑡3(15𝑞0𝑥 − 15𝑞1𝑥 + 8𝑇𝑥𝑣0𝑥 + 7𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
4⁄

(4.30)

The expression for acceleration is given as,

 33

 𝑥̈

= 𝑎0𝑥

− (20𝑡3(6𝑞0𝑥 − 6𝑞1𝑥 + 3𝑇𝑥𝑣0𝑥 + 3𝑇𝑥𝑣1𝑥 + (𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
5⁄

− (6𝑡(10𝑞0𝑥 − 10𝑞1𝑥 + 6𝑇𝑥𝑣0𝑥 + 4𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
3⁄

+ (12𝑡2(15𝑞0𝑥 − 15𝑞1𝑥 + 8𝑇𝑥𝑣0𝑥 + 7𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
4⁄

(4.31)

And the expression for jerk is given as,

 𝑥

= −(60𝑡2(6𝑞0𝑥 − 6𝑞1𝑥 + 3𝑇𝑥𝑣0𝑥 + 3𝑇𝑥𝑣1𝑥 + (𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
5⁄

− (6(10𝑞0𝑥 − 10𝑞1𝑥 + 6𝑇𝑥𝑣0𝑥 + 4𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
3⁄

+ (24𝑡(15𝑞0𝑥 − 15𝑞1𝑥 + 8𝑇𝑥𝑣0𝑥 + 7𝑇𝑥𝑣1𝑥 + (3𝑇𝑥
2𝑎0𝑥) 2⁄ − (𝑇𝑥

2𝑎1𝑥) 2⁄)) 𝑇𝑥
4⁄

(4.32)

These same equations can be written for the y-axis in the same manner and these provide

the position, speed, acceleration, and jerk profile for the spline.

4.1.4. Determination of Spline Start and End Points

The coordinates of the Start-End points are calculated according to the type of segment

(Arc or Line) and the definition of the cornering tolerance. A larger cornering tolerance

results in a larger spline.

• As for the line segment, the start/end point of the spline is found by moving

away from the corner point by the cornering tolerance on the line. The point

is determined to be the start or end point based on its position relative to the

edge of the segment.

• In the Arc segment, a circle with cornering tolerance radius is drawn at the

corner point on the Arc plane. The intersection point of this drawn circle and

the Arc is the start/end point of the spline. When finding the intersection point,

the intersection formula of two circles with known center and radius is used.

Since two circles can intersect at two different points, the correct intersection

point is determined by taking the point close to the corner point on the Arc.

The intersection point with the smaller distance is the spline start/end point.

Whether it is a starting or ending point is determined by whether the segment

is before or after the corner point.

 34

Figure 4.5 below shows an example of the beginning and ending points of the spline when

two line segments are being connected. The distance between the start/end points and the

corner point is equal to the cornering tolerance.

Figure 4.5. Spline Start/Corner/End points between two line segments

Figure 4.6 below shows the start and end points of the spline when a line segment is being

connected with an arc segment.

 35

Figure 4.6. Spline Start/Corner/End points between a line and arc segment

Figure 4.7 below shows the start and end points of the spline when two arc segments are

being connected.

 36

Figure 4.7. Spline Start/Corner/End points between two arc segments

4.1.5. Spline Start/End Acceleration and Velocity

The starting and ending acceleration for the spline depends on the type of segment before

and after the corner point of the spline. Table 4.1 below summarizes the different

scenarios.

Table 4.1. Starting and Ending accelerations for spline for different segments

Segment before

corner point

Segment after

corner point

Spline Start

Acceleration (𝒂𝟎)

Spline End

Acceleration (𝒂𝟏)

Line Arc 0 𝑣1
2/𝑅

Line Line 0 0

Arc Line 𝑣0
2/𝑅 0

Arc Arc 𝑣0
2/𝑅 𝑣1

2/𝑅

 37

Here, v0 and v1 are the start and end velocities of the spline and R is the radius of the arc

segment. The spline Start-End speeds are taken from the speed of the segments. The speed

of the segment before the corner point is the starting speed of the spline. The speed of the

segment after the corner point is the spline end speed.

4.1.6. Optimization of Speed and Acceleration Initial Conditions

The above formulations are used to develop the spline-based trajectory, however if an

appropriate spline cannot be found, the bisection method is used to determine the proper

maximum speed and acceleration.

In the Bisection Method, the spline start (v0) and end (v1) speeds taken from the feed rate

are multiplied by a reduction ratio of k. The k value is initially taken as 1. The value of k

is equal to half the sum of the maximum drop rate (kf) and the minimum drop rate (ki).

With the new k value, velocities and accelerations are reduced and a new spline is

searched. If a suitable spline is found, the minimum reduction rate ki is set to the current

value of k. If a suitable spline cannot be found, the maximum reduction rate kf is set to

the current value of k. Here, the k values in the range in which the appropriate spline is

found are accumulated and the difference between them is examined. The iteration is

completed when the difference is less than 0.005. The beginning and ending accelerations

within the spline occur only when there is an Arc, due to centripetal acceleration. That is,

in other cases, the initial and final accelerations are 0. Since only centripetal acceleration

acts, the acceleration reduction ratio is the square of the velocity reduction ratio. In

addition, since the speed limits along the spline are desired to be lower than the spline

starting and spline ending speeds, the max and minimum speed limits are adjusted

according to the reduced spline starting and ending speeds.

4.1.7. Determination of Correct Spline Timing

For proper spline generation, the correct travel time of the spline must be calculated so

that the total simulation time is not affected by the addition of the spline. The total

distance covered by the original trajectory without the addition of splines is two times the

cornering tolerance.

 38

Then using the velocity of the trajectory where the spline is added, the travel time for the

spline is given as,

𝑆𝑝𝑙𝑖𝑛𝑒𝑇𝑟𝑎𝑣𝑒𝑙𝑇𝑖𝑚𝑒 =

2 ∗ 𝐶𝑜𝑟𝑛𝑒𝑟𝑖𝑛𝑔𝑇𝑜𝑙𝑒𝑟𝑎𝑛𝑐𝑒

𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦
 (4.33)

4.2. Trajectory Generation 1 – Standard Shapes

Trajectory Generation 1 uses the above defined formulations to develop many different

trajectories of standard shapes such as circle, square, rectangle etc. Figure 4.8 below

shows a standard rectangular shape which has been constructed using a series of linear

and arc segments.

Figure 4.8. Standard trajectory composed of linear and arc segments

This approach has 3 types of trajectory generation:

1. Point-to-Point: In this approach each segment starts and ends at zero velocity for

smooth transition between each segment.

2. Continuous: In this approach the trajectory has a continuous velocity between

segments

 39

3. Microsplines: In this approach the individual segments are joined using splines as

defined in section 4.1.3.

4.3. Trajectory Generation 2 – Custom Data

Trajectory Generation 2 accepts custom trajectory data as an input. This custom trajectory

data is resampled at the desired sampling rate, but this trajectory can have a certain

starting velocity or acceleration so splines are used to accelerate the end-effector to the

starting conditions of the custom trajectory and decelerate at the end of the custom

trajectory. Figure 4.9 below shows a custom trajectory in red and splines generated at the

beginning and end of the trajectory. Using this approach, trajectories with non-uniform

acceleration and velocities can be simulated.

For the first spline, the angle at the beginning of the custom trajectory data and a cornering

tolerance value is used to determine the starting and corner point for the spline, whereas

the end point is the first point of the custom trajectory data. Meanwhile, for the second

spline, the starting point is the last point of the custom trajectory data, and similar to the

first spline, the angle at the end of the custom trajectory data and the cornering tolerance

are used to determine the corner and end point of the spline.

 40

Figure 4.9. Trajectory generated for custom data

Table 4.2 below shows the initial conditions for both splines.

Table 4.2. Initial and Final Conditions for first and second spline

 First Spline Second Spline

Initial Position Calculated according to the

angle at the beginning of

custom trajectory and

cornering tolerance

The last point in the custom

trajectory data

Initial Speed The initial speed is zero, the

end-effector starts from rest

The initial velocity is the

velocity at the end of the

custom trajectory

Initial Acceleration The initial acceleration is

zero, the end-effector starts

from rest

The initial acceleration is the

acceleration at the end of the

custom trajectory

 41

Final Position The first point in the custom

trajectory data

Calculated according to the

angle at the end of custom

trajectory and cornering

tolerance

Final Velocity The final velocity is the

velocity at the beginning of

the custom trajectory

The final speed is zero, the

end-effector comes to rest at

the end of the spline

Final Acceleration The final acceleration is the

acceleration at the beginning

of the custom trajectory

The final acceleration is zero,

the end-effector comes to rest

at the end of the spline

The start and corner point for spline 1 are calculated as,

𝑃𝑠𝑡𝑎𝑟𝑡_𝑠𝑝𝑙𝑖𝑛𝑒_1 = [

𝑥(1)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 − cos(𝜃𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎) ∗ 𝐶𝑇 ∗ 2

𝑦(1)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 − sin(𝜃𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎) ∗ 𝐶𝑇 ∗ 2
]
𝑇

 (4.34)

𝑃𝑐𝑜𝑟𝑛𝑒𝑟_𝑠𝑝𝑙𝑖𝑛𝑒_1 = [

𝑥(1)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 − cos(𝜃𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎) ∗ 𝐶𝑇

𝑦(1)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 − sin(𝜃𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎) ∗ 𝐶𝑇
]
𝑇

 (4.35)

Here, CT is the cornering tolerance, 𝜃𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 is the angle at the beginning of the

custom data which can be calculated using the first two data points as,

 Δ𝑥 = 𝑥(2)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 − 𝑥(1)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎

Δ𝑦 = 𝑦(2)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 − 𝑦(1)𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎

𝜃𝑐𝑢𝑠𝑡𝑜𝑚𝑑𝑎𝑡𝑎 = atan⁡(Δ𝑦⁡, Δ𝑥)

(4.36)

Additionally, it may also be desired that the end-effector should start and end from a

determined point instead of arbitrary starting and ending points. This can be easily

achieved by using linear interpolation to move the end-effector to the desired starting

point of the first spline, and then from the ending point of the second spline to the desired

end point.

 42

4.4. Trajectory Generation 3 - Jerk Limited Trajectory Generation Using 5th Order

Spline Interpolation [36]

This trajectory generation technique also uses the trapezoidal acceleration profile

described in section 4.1. This approach is different from the previous approaches as it is

capable of generating non-standard shapes such as a spiral trajectory where the radius of

the arcs is constantly changing. 5th Order splines guarantee continuity of the trajectory up

to the second derivative at each point. The trajectory generation procedure consists of

three steps:

1. Path Generation Using Quintic (5th Order) Splines

2. Feedrate Generation for the Path

3. Trajectory Resampling at the Control Loop Frequency

Figure 4.10 below illustrates the process.

Figure 4.10. Trajectory generation procedure for Algorithm 3

 43

4.4.1. Quintic Spline Path Generation

In CNC machining, a series of reference points are input to the machine to realize tool

motion and the process of generating these points is known as interpolation. Simpler

techniques like linear and circular interpolation were shown in sections 4.1.1 and 4.1.2,

but quintic splines aim to connect N number of reference knots with N-1 number of fifth

order splines as shown in Figure 4.11 below.

Figure 4.11. Path generation with quintic splines

These splines make up an entire composite curve where continuity is guaranteed up to the

second derivative for the entire path. The point where two splines meet is called a knot

represented as Pi. To estimate the first and second derivatives at these points, a 3rd order

polynomial can be fit between the points Pi-1, Pi+1, Pi, and Pi+2, given as

 𝑄𝑖(𝑢) = 𝑎𝑖𝑢
3 + 𝑏𝑖𝑢

2 + 𝐶𝑖𝑢 + 𝑑𝑖 (4.37)

Here u is the cord length of each segment between knots. For a two-dimensional case,

𝑄𝑖 = [

𝑄𝑥𝑖
𝑄𝑦𝑖

] , 𝑎𝑖 = [
𝑎𝑥𝑖
𝑎𝑦𝑖
] , 𝒃𝑖 = [

𝑏𝑥𝑖
𝑏𝑦𝑖
] , 𝑐𝑖 = [

𝑐𝑥𝑖
𝑐𝑦𝑖
] , 𝑑𝑖 = [

𝑑𝑥𝑖
𝑑𝑦𝑖
] (4.38)

Now the cord length between two consecutive knots Pi-1 and Pi is give as,

 𝑙𝑖−1 = √(𝑥𝑖 − 𝑥𝑖−1)2 + (𝑦𝑖 − 𝑦𝑖−1)2 (4.39)

Also, we can define additional terms as,

 44

 𝑙𝑖−1,𝑖 △= 𝑙𝑖−1 + 𝑙𝑖, 𝑙𝑖−1,𝑖+1△= 𝑙𝑖−1 + 𝑙𝑖 + 𝑙𝑖+1 (4.40)

Then, the coefficients of the polynomial are given as,

𝑎𝑖 =

1

Δ
[
Δ𝑎𝑥
Δ𝑎𝑦

] , 𝑏𝑖 =
1

Δ
[
Δ𝑏𝑥
Δ𝑏𝑦

] , 𝑐𝑖 =
1

Δ
[
Δ𝑐𝑥
Δ𝑐𝑦

] , 𝑑𝑖 = [
𝑥𝑖−1
𝑦𝑖−1

] (4.41)

Where,

Δ = |

𝑙𝑖−1
3 𝑙𝑖−1

2 𝑙𝑖−1
𝑙𝑖−1,𝑖
3 𝑙𝑖−1,𝑖

2 𝑙𝑖−1,𝑖

𝑙𝑖−1,𝑖+1
3 𝑙𝑖−1,𝑖+1

2 𝑙𝑖−1,𝑖+1

| , Δ𝑎𝑥 = |

𝑥𝑖 − 𝑥𝑖−1 𝑙𝑖−1
2 𝑙𝑖−1

𝑥𝑖+1 − 𝑥𝑖−1 𝑙𝑖−1,𝑖
2 𝑙𝑖−1,𝑖

𝑥𝑖+2 − 𝑥𝑖−1 𝑙𝑖−1,𝑖+1
2 𝑙𝑖−1,𝑖+1

| (4.42)

Δ𝑏𝑥 = |

𝑙𝑖−1
3 𝑥𝑖 − 𝑥𝑖−1 𝑙𝑖−1
𝑙𝑖−1,𝑖
3 𝑥𝑖+1 − 𝑥𝑖−1 𝑙𝑖−1,𝑖

𝑙𝑖−1,𝑖+1
3 𝑥𝑖+2 − 𝑥𝑖−1 𝑙𝑖−1,𝑖+1

| , Δ𝑐𝑥

= |

𝑙𝑖−1
3 𝑙𝑖−1

2 𝑥𝑖 − 𝑥𝑖−1
𝑙𝑖−1,𝑖
3 𝑙𝑖−1,𝑖

2 𝑥𝑖+1 − 𝑥𝑖−1

𝑙𝑖−1,𝑖+1
3 𝑙𝑖−1,𝑖+1

2 𝑥𝑖+2 − 𝑥𝑖−1

|

(4.43)

Δay, Δby, and Δcy can be calculated similarly by substituting the x terms with y. Then the

first derivative (ti) and the second derivative (ni) at each know can be calculated as:

𝑡𝑖 △= [

𝑡𝑥𝑖
𝑡𝑦𝑖
] =

d𝑄𝑖
 d𝑢

|𝑢 = 𝑙𝑖−1 = (3𝑎𝑖𝑢
2 + 2𝑏𝑖𝑢 + 𝑐𝑖)|𝑢=𝑙 (4.44)

𝑛𝑖 △= [

𝑛𝑥𝑖
𝑛𝑣𝑖
] =

d2𝑄𝑖
 d𝑢2

|𝑢 = 𝑙𝑖 − 1 = (6𝑎𝑖𝑢 + 2𝑏𝑖)|𝑢=𝑙𝑖−1
(4.45)

However, the knots P1, PN-1, and PN don’t have enough points before or after them so t1

and n1 is estimated using,

 𝑄2(𝑢)|𝑢=0 (4.46)

tN-1 and nN-1 are obtained using,

 𝑄𝑁−2(𝑢)|𝑢=𝐼𝑁−3+𝑙𝑁−2 (4.47)

tN and nN are obtained using,

 𝑄𝑁−2(𝑢)|𝑢=𝑙𝑁−3+𝑙𝑁−2+𝑙𝑁−1 (4.48)

This gives the following equation,

 𝑡1 = 3𝑎2𝑢
2 + 2𝑏2𝑢 + 𝑐2, 𝑛1 = 6𝑎2𝑢 + 2𝑏2 for 𝑢 = 0 (4.49)

 45

 𝑡𝑁−1 = 3𝑎𝑁−2𝑢
2 + 2𝑏𝑁−2𝑢 + 𝑐𝑁−2, 𝑛𝑁−1 = 6𝑎𝑁−2𝑢 + 2𝑏𝑁−2 for 𝑢 =

𝑙𝑁−3 + 𝑙𝑁−2
(4.50)

 𝑡𝑁 = 3𝑎𝑁−2𝑢
2 + 2𝑏𝑁−2𝑢 + 𝑐𝑁−2, 𝑛𝑁 = 6𝑎𝑁−2𝑢 + 2𝑏𝑁−2 for 𝑢 = 𝑙𝑁−3 +

𝑙𝑁−2 + 𝑙𝑁−1
(4.51)

The expression for the quintic spline is given as,

 𝑆𝑖(𝑢) = 𝐴𝑖𝑢
5 + 𝐵𝑖𝑢

4 + 𝐶𝑖𝑢
3 + 𝐷𝑖𝑢

2 + 𝐸𝑖𝑢 + 𝐹𝑖 (4.52)

Which is fit between consecutive knots. Then for two-dimensional case,

𝑆𝑖 = [

𝑆𝑥𝑖
𝑆𝑦𝑖
] , 𝐴𝑖 = [

𝐴𝑥𝑖
𝐴𝑦𝑖

] , 𝐵𝑖 = [
𝐵𝑥𝑖
𝐵𝑦𝑖

] , … , 𝐹𝑖 = [
𝐹𝑥𝑖
𝐹𝑦𝑖
] (4.53)

Now the following boundary conditions must be considered, to fit a spline between two

consecutive points Pi and Pi+1

 𝑆𝑖(𝑢)|𝑢=0 = 𝑝𝑖 = [
𝑥𝑖
𝑦𝑖
] , 𝑆𝑖(𝑢)|𝑢=𝑙𝑖 = 𝑝𝑖+1 = [

𝑥𝑖+1
𝑦𝑖+1

]

d𝑆𝑖(𝑢)

d𝑢
|
𝑢=0=

= 𝑡𝑖 = [
𝑡𝑥𝑖
𝑡𝑦𝑖
] ,
d𝑆𝑖(𝑢)

d𝑢
|
𝑢=𝑙𝑖

= 𝑡𝑖+1 = [
𝑡𝑥,𝑖+1
𝑡𝑦,𝑖+1

]

d2𝑆𝑖(𝑢)

d𝑢2
|
𝑢=0=

= 𝑛𝑖 = [
𝑛𝑥𝑖
𝑛𝑦𝑖
] ,
d2𝑆𝑖(𝑢)

d𝑢2
|
𝑢=𝑙𝑖

= 𝑛𝑖+1 = [
𝑛𝑥,𝑖+1
𝑛𝑦,𝑖+1

]
}

 (4.54)

The x-axis solution for equation 4.52 is given below. The solution in the y-direction can

also be easily obtained by substituting each ‘x’ term with ‘y’.

𝐴𝑥𝑖⁡=

1

𝑙𝑖
5 [6(𝑥𝑖+1 − 𝑥𝑖) − 3(𝑡𝑥,𝑖+1 + 𝑡𝑥𝑖)𝑙𝑖 + 0.5(𝑛𝑥,𝑖+1 − 𝑛𝑥𝑖)𝑙𝑖

2]

𝐵𝑥𝑖⁡=
1

𝑙𝑖
4 [15(𝑥𝑖 − 𝑥𝑖+1) + (7𝑡𝑥,𝑖+1 + 8𝑡𝑥𝑖)𝑙𝑖 + (1.5𝑛𝑥𝑖 − 𝑛𝑥,𝑖+1)𝑙𝑖

2]

𝐶𝑥𝑖 =
1

𝑙𝑖
3 [10(𝑥𝑖+1 − 𝑥𝑖) − (4𝑡𝑥,𝑖+1 + 6𝑡𝑥𝑖)𝑙𝑖 − (1.5𝑛𝑥𝑖 − 0.5𝑛𝑥,𝑖+1)𝑙𝑖

2]}

𝐷𝑥𝑖 = 0.5𝑛𝑥𝑖

𝐸𝑥𝑖 = 𝑡𝑥𝑖

𝐹𝑥𝑖 = 𝑥𝑖

(4.55)

 46

Once the coefficients are determined, the total travel length can be calculated as,

𝐿 = ∑  

𝑁−1

𝑖=1

𝑠𝑖 = ∑  

𝑁−1

𝑖=1

∫  
𝑠𝑖

0

 d𝑠 (4.56)

Here L is length of travel or total length of the trajectory while si represents the length of

each individual spline segment.

The length for each arc si of the spine is equal to each chord length ‘li’ from each spline

split into Mi segments. Then, for each increment of the chord, the corresponding spline

points are calculated. Then the change in the x and y positions can be used to obtain the

displacement si. Therefore, Mi can be written as,

𝑀𝑖 = round⁡ (

𝑙𝑖
𝐹 ⋅ 𝑇s

) (4.57)

Then cord increment becomes,

 𝑑𝑙𝑖 = 𝑙𝑖/𝑀𝑖 (4.58)

The Mi points on the ith spline are given as,

 [
𝑥𝑖𝑗
𝑦𝑖𝑗
] = 𝐴𝑖(𝑗 ⋅ 𝑑𝑙𝑖)

5 + 𝐵𝑖(𝑗 ⋅ 𝑑𝑙𝑖)
4 + 𝐶𝑖(𝑗 ⋅ 𝑑𝑙𝑖)

3 + 𝐷𝑖(𝑗 ⋅ 𝑑𝑙𝑖)
2

+ 𝐸𝑖(𝑗 ⋅ 𝑑𝑙𝑖) + 𝐹𝑖

(4.59)

The arc length between 2 successive points is given as,

d𝑠𝑖𝑗 ≅ √(d𝑥𝑖𝑗)

2
+ (d𝑦𝑖𝑗)

2
= √(𝑥𝑖𝑗 − 𝑥𝑖,𝑗−1)

2
+ (𝑦𝑖𝑗 − 𝑦𝑖,𝑗−1)

2
 (4.60)

Then the total travel length becomes,

𝐿 = ∑  

𝑁−1

𝑖=1

 ∫  
𝑠𝑖

0

  d𝑠 ≅ ∑  

𝑁−1

𝑖=1

 ∑  

𝑀𝑖

𝑗=1

  d𝑠𝑖𝑗

= ∑  

𝑁−1

𝑖=1

 ∑  

𝑀𝑖

𝑗=1

 √(𝑥𝑖𝑗 − 𝑥𝑖,𝑗−1)
2
+ (𝑦𝑖𝑗 − 𝑦𝑖,𝑗−1)

2

(4.61)

Sometimes velocity fluctuations occur due to the actual arc length and the chord length

of segments being different different. For interpolation without this fluctuation in

 47

velocity, the magnitude of displacement between each interpolation step is kept constant.

This increment Δs is defined such that the speed at the time step being equal to the

sampling rate Ti is not larger than the maximum speed requirement.

So if the total travel length (L) was covered with the maximum velocity (fmax), then the

step size is given as,

𝑁𝑖 = round⁡ (

𝐿

𝑓max𝑇s
) (4.62)

Which gives,

 Δ𝑠 = 𝐿/𝑁𝑖 (4.63)

Path increment can also be given as,

 Δ𝑠 = √(Δ𝑥)2 + (Δ𝑦)2 (4.64)

Here the equations are given as

 Δ𝑥 = 𝑥𝑖,𝑗+1 − 𝑥𝑖𝑗 = 𝐴𝑥𝑖𝑢
5 + 𝐵𝑥𝑖𝑢

4 + 𝐶𝑥𝑖𝑢
3 + 𝐷𝑥𝑖𝑢

2 + 𝐸𝑥𝑖𝑢 + 𝐹𝑥𝑖 − 𝑥𝑖𝑗

Δ𝑦 = 𝑦𝑖,𝑗+1 − 𝑦𝑖𝑗 = 𝐴𝑦𝑖𝑢
5 + 𝐵𝑦𝑖𝑢

4 + 𝐶𝑦𝑖𝑢
3 + 𝐷𝑦𝑖𝑢

2 + 𝐸𝑦𝑖𝑢 + 𝐹𝑦𝑖 − 𝑦𝑖𝑗
} (4.65)

It is necessary to find the variable ‘u’. It is given by the tenth order polynomial,

 𝑔(𝑢) = 𝛼0𝑢
10 + 𝛼1𝑢

9 +⋯+ 𝛼10 (4.66)

 𝛼0 = 𝐴𝑥𝑖
2 + 𝐴𝑦𝑖

2

𝛼1 = 2(𝐴𝑥𝑖𝐵𝑥𝑖 + 𝐴𝑦𝑖𝐵𝑦𝑖)

𝛼2 = 𝐵𝑥𝑖
2 + 𝐵𝑦𝑖

2 + 2(𝐴𝑥𝑖𝐶𝑥𝑖 + 𝐴𝑦𝑖𝐶𝑦𝑖)

𝛼3 = 2(𝐵𝑥𝑖𝐶𝑥𝑖 + 𝐵𝑦𝑖𝐶𝑦𝑖 + 𝐴𝑥𝑖𝐷𝑥𝑖 + 𝐴𝑦𝑖𝐷𝑦𝑖)

𝛼4 = 𝐶𝑥𝑖
2 + 𝐶𝑦𝑖

2 + 2(𝐴𝑥𝑖𝐸𝑥𝑖 + 𝐴𝑦𝑖𝐸𝑦𝑖 + 𝐵𝑥𝑖𝐷𝑥𝑖 + 𝐵𝑦𝑖𝐷𝑦𝑖)

𝛼5 = 2(𝐴𝑥𝑖𝐹𝑥𝑖
′ + 𝐴𝑦𝑖𝐹

′⁡𝑦𝑖 + 𝐵𝑥𝑖𝐸𝑥𝑖 + 𝐵𝑦𝑖𝐸𝑦𝑖 + 𝐶𝑥𝑖𝐷𝑥𝑖 + 𝐶𝑦𝑖𝐷𝑦𝑖)

𝛼6 = 𝐷𝑥𝑖
2 + 𝐷𝑦𝑖

2 + 2(𝐵𝑥𝑖𝐹
′⁡𝑥𝑖 + 𝐵𝑦𝑖𝐹

′⁡𝑦𝑖 + 𝐶𝑥𝑖𝐸𝑥𝑖 + 𝐶𝑦𝑖𝐸𝑦𝑖)

𝛼7 = 2(𝐷𝑥𝑖𝐸𝑥𝑖 +𝐷𝑦𝑖𝐸𝑦𝑖 + 𝐶𝑥𝑖𝐹
′⁡𝑥𝑖 + 𝐶𝑦𝑖𝐹

′⁡𝑦𝑖)

𝛼8 = 𝐸𝑥𝑖
2 + 𝐸𝑦𝑖

2 + 2(𝐷𝑥𝑖𝐹
′⁡𝑥𝑖 + 𝐷𝑦𝑖𝐹

′⁡𝑦𝑖)

𝛼99 = 2(𝐸𝑥𝑖𝐹𝑥𝑖
′ + 𝐸𝑦𝑖𝐹

′⁡′)

𝛼10 = 𝐹′2 + 𝐹′2⁡𝑦𝑖 − (Δ𝑠)
2

 (4.67)

 48

The equation can be solved using iterative solving methods. It was solved using the

Newton-Rhapson method as shown below. A good initial guess for this to work well is

Δ𝑠 ∗ 𝑗, where j is the number of steps in each spline segment.

𝑥𝑛+1 = 𝑥𝑛 −

𝑓(𝑥𝑛)

𝑓′(𝑥𝑛)
 (4.68)

4.4.2. Trajectory Generation Algorithm

This algorithm requires some inputs which define the acceleration profile. These are the

following:

• Sampling Time (Ts)

• Total Distance Covered (L)

• Total Interpolation Steps (Ni)

• Initial, desired, and final velocities (fs, F, and fe, respectively)

• Magnitude of desired Acceleration (A) and Deceleration (D)

• Maximum Jerk Magnitude (J)

First it must be checked that the Acceleration, Deceleration, and Jerk variables have the

proper sign.

 𝐴 = sgn⁡(𝐹 − 𝑓s) ⋅ |𝐴|, ⁡𝐽1 = 𝐽3 = sgn⁡(𝐴) ⋅ |𝐽|

𝐷 = sgn⁡(𝐹 − 𝑓e) ⋅ |𝐷|, 𝐽5 = 𝐽7 = sgn⁡(𝐷) ⋅ |𝐽|
} (4.69)

In the trajectory's initial phase, if the value of A is less than zero, this signifies

deceleration, however if the value of D is less than zero, this denotes acceleration. If both

A and D are zero in value, then the trajectory only has a constant speed phase.

The input for the total interpolation steps must also be realistic. If the magnitudes of both

acceleration and deceleration variables is not zero, then 𝑁𝑖 ≥ 4 so that the acceleration

and deceleration phases (1, 3, 5, 7) are all able to be active. However, if either the

magnitude of the acceleration of deceleration is zero, then it is enough to have 𝑁𝑖 ≥ 2 as

only two phases are required minimum in this case. Similarly, if no acceleration or

 49

deceleration phases are present then the condition becomes 𝑁𝑖 ≥ 1 which ensures that the

length of travel doesn’t become negative and only a constant speed phase would be

present. Based on the supplied values, the following conditions must be checked and

satisfied.

Jerk Check

The magnitude of the required jerk should not violate the demanded acceleration and

deceleration conditions. Equation 4.70 is used to verify this condition.

𝐽 ≤ min (

|𝐴|

𝑇s
,
|𝐷|

𝑇s
) (4.70)

If the condition is not satisfied (when acceleration and deceleration are present) then jerk

is set to the minimum value as,

𝐽 = min (

|𝐴|

𝑇
,
|𝐷|

𝑇
) (4.71)

If either the acceleration or deceleration is zero, then only the corresponding non-zero

term is used to check this condition. If both are zero however, then it is not necessary to

perform this check.

Acceleration Check

If the acceleration is not zero, then the velocity at the conclusion of the third stage must

be equal to the required maximum velocity ‘F’ or ‘fmax’. This process may or may not

include a constant acceleration second phase. The time for the second phase ‘T2’ is then

obtained from Equation 4.10 which is either zero or greater than zero. The acceleration

check is then given as,

𝑇2 =

𝐹 − 𝑓s
𝐴

−
𝐴

𝐽1
≥ 0 (4.72)

This check must only my performed if acceleration is not zero. If equation 4.72 is not

satisfied then T2 is set to zero, and the actual acceleration can be obtained by Equation

4.73 which gives the maximum possible magnitude. The jerks and time for the first and

third phase are also adjusted according to J1=J3 and T3=A/J3.

 50

 𝐴 = sgn⁡(𝐴) ⋅ √𝐽1(𝐹 − 𝑓s) (4.73)

Deceleration Check

Similarly, if the deceleration is not zero, then the final velocity at the conclusion of the

last stage must be equal to the required end velocity ‘fe’. This process may or may not

include a constant deceleration sixth phase. The time for the sixth phase ‘T6’ is then

obtained from Equation 4.11 which is either zero or greater than zero. The deceleration

check is then given as,

𝑇6 =

𝐹 − 𝑓e
𝐷

−
𝐷

𝐽5
≥ 0 (4.74)

This check must only my performed if deceleration is not zero. If equation 4.74 is not

satisfied then T6 is set to zero, and the actual deceleration can be obtained by Equation

4.75 which gives the maximum possible magnitude. The jerks and time for the fifth and

seventh phase are also adjusted according to J5=J7 and T7=D/J7.

 𝐷 = sgn⁡(𝐷) ⋅ √𝐽5(𝐹 − 𝑓e) (4.75)

Travel Total Length Check

The total length of the travel ‘L’ which is specified at the beginning of the procedure must

be covered at the conclusion of the seven different phases. Depending on the

requirements, the constant velocity phase may or may not be present. So T4 is greater than

or equal to zero. By considering the jerks J1=J3 for phase 1 and 3, the jerks J5=J7 for phase

5 and 7, the times T1=T3=A/J1 for phase 1 and 3, and the time T5=T7=D/J5 for phases 5

and 7, the total length equation is given as,

𝐿 = (

1

2𝐴
+
1

2𝐷
)𝐹2 + (

𝐴

2𝐽1
+
𝐷

2𝐽5
+ 𝑇4) 𝐹 + (

𝐴𝑓s
2𝐽1

+
𝐷𝑓e
2𝐽5

−
𝑓s
2

2𝐴
−
𝑓e
2

2𝐷
) (4.76)

Acceleration and Deceleration terms should not be considered if those phases are not

present. For the T4 condition to hold the following equation must be satisfied.

 51

𝑇4 =

1

𝐹
[𝐿 − {(

1

2𝐴
+
1

2𝐷
)𝐹2 + (

𝐴

2𝐽1
+
𝐷

2𝐽5
) 𝐹

+ (
𝐴𝑓s
2𝐽1

+
𝐷𝑓e
2𝐽5

−
𝑓s
2

2𝐴
−
𝑓e
2

2𝐷
)}] ≥ 0

(4.77)

If equation 4.77 is not satisfied then the time of the fourth phase ‘T4’ is set to zero and the

maximum velocity that is achieved during the interpolation becomes equal to the

maximum possible magnitude given as,

𝐹 =

−𝛽 + √𝛽2 − 4𝛼𝛾

2𝛼
 (4.78)

Where,

𝛼 =

1

2𝐴
+
1

2𝐷
, 𝛽 =

𝐴

2𝐽1
+
𝐷

2𝐽5
, 𝛾 =

𝐴𝑓s
2𝐽1

+
𝐷𝑓e
2𝐽5

−
𝑓s
2

2𝐴
−
𝑓e
2

2𝐷
− 𝐿 (4.79)

If equation 4.78 has complex roots, the procedure has to be restarted and the values for

A, D, J, and F need to be adjusted until the condition can be satisfied.

Calculating Travel Length of Segments

The final velocity for each phase given as f1, f2, …, f6, and the travel length of each phase

given as l1, l2, …, l6 can be calculated using Equation 4.7 and 4.8 and then using Equation

4.80 below the required interpolation steps during phases 1, 3, 5, and 7 can be calculated.

𝑁1 = round (

𝑙1
Δs
) , 𝑁3 = round (

𝑙3
Δ𝑠
)

𝑁5 = round⁡ (
𝑙𝑙𝑙
Δs
) ,𝑁7 = round (

𝑙𝑙
𝛥𝑠
)

(4.80)

If the length of any phase given as li is non-zero but the corresponding Ni is zero, it must

be set equal to one. Consequently, the total steps of interpolation for the combined

acceleration and combined deceleration phases can be obtained using Equation 4.81.

 52

 𝑁acc = round⁡((𝑙1 + 𝑙2 + 𝑙3)/Δ𝑠), 𝑁dec = round⁡((𝑙5 + 𝑙6 + 𝑙7)/Δ𝑠) (4.81)

Then for phase 4, the total steps with constant velocity are obtained as given below,

 𝑁4 = 𝑁 − (𝑁acc + 𝑁dec) (4.82)

Now as Δ𝑠 which is the displacement increment parameter is known, and the total

interpolation steps during each phase are also known, the distance travelled for each phase

is quantized below in Equation 4.83.

 𝑙𝑘⁡
′ = 𝑁𝑘 ⋅ Δs (4.83)

Final Check of Acceleration and Jerk

Using the quantized travel lengths from Equation 4.83, the jerk and acceleration

magnitudes must be adjusted so the desired start, constant, and end velocities can be

satisfied. If a constant velocity phase is present, i.e., T2 > 0, 𝑙1, 𝑙2, and 𝑙3 are substituted

by 𝑙1
′
, 𝑙2

′
, and 𝑙3

′
 in Equation 4.8 and the system of equations in Equation 4.84 can be

solved to obtain the new values for Acceleration (A), time of first phase (T1) and time of

third phase (T3).

𝑓5𝑇1 +

1

6
𝐴𝑇1

2 − 𝑙1
′ = 0

−
1

8
𝐴𝑇1

2 +
1

8
𝐴𝑇3

2 −
1

2
𝑓5𝑇1 −

1

2
𝐹𝑇3 +

𝐹2 − 𝑓s
2

2𝐴
− 𝑙2

′ = 0

𝐹𝑇3 −
1

6
𝐴𝑇3

2 − 𝑙′⁡3 = 0

(4.84)

This also results in the readjustment of J1 and J3. If T2 = 0, then the expression for 𝑙2 from

equation 4.8 is replaced the expression for 𝑓3 from equation 4.7. In this case the system

of equations then becomes,

𝑓s𝑇1 +

1

6
𝐴𝑇1

2 − 𝑙1
′ = 0

1

2
𝐴𝑇1 +

1

2
𝐴𝑇3 + 𝑓s − 𝐹 = 0

(4.85)

 53

1

3
𝐴𝑇3

2 −
1

2
𝐴𝑇1𝑇3 + 𝑓s𝑇3 − 𝑙3⁡

′ = 0

Similarly, for the case when T6 > 0, Equation 4.86 are used and 𝑙5 , 𝑙6 , and 𝑙7 are

substituted by 𝑙5
′
, 𝑙6

′
, and 𝑙7

′
. Then, the following equation can be solved for D, T5, and

T7.

𝐹𝑇5 −

1

6
𝐷𝑇5

2 − 𝑙5
′ = 0

1

8
𝐷𝑇5

2 −
1

8
𝐷𝑇2

2 −
1

2
𝐹𝑇5 −

1

2
𝑓e𝑇7 +

𝐹2 − 𝑓e
2

2𝐷
− 𝑙6

′ = 0

𝑓e𝑇7 +
1

6
𝐷𝑇7

2 − 𝑙7
′ = 0 }

 (4.86)

This also results in the readjustment of J5 and J7. If T6 = 0, then the expression for 𝑙6 from

equation 4.8 is replaced the expression for 𝑓7 from equation 4.7. In this case the system

of equations then becomes,

𝐹𝑇5 −

1

6
𝐷𝑇5

2 − 𝑙5
′ = 0

1

2
𝐷𝑇5 +

1

2
𝐷𝑇7 + 𝑓e − 𝐹 = 0

−
1

3
𝐷𝑇7

2 −
1

2
𝐷𝑇5𝑇7 + 𝐹𝑇7 − 𝑙7

′ = 0}

 (4.87)

These equations can be solved iteratively using numerical methods. Once the values for

the different variables converge, the values for the jerks are updated, and the final

velocities for each phase are also recalculated using Equation 4.7.

Calculation of Time Steps

The final step in the trajectory generation is to calculate the time steps between each

interpolation step for each of the seven phases. The displacement as a function of the time

parameter for the kth phase is given below in Equation 4.88.

𝑠(𝜏𝑘) =

1

6
𝑗0𝑘𝜏𝑘

3 +
1

2
𝑎0𝑘𝜏𝑘

2 + 𝑓0𝑘𝜏𝑘 + 𝑠0𝑘, 0 ≤ 𝜏𝑘 ≤ 𝑇𝑘 (4.88)

 54

where j0k is the initial jerk of the phase, a0k is the initial acceleration of the phase, f0k is

the initial velocity of the phase, and s0k is the initial displacement value of the phase which

were calculated during the previous section. Here τk is the time which is zero at the start

of each phase. As the displacement () is constant for each step then Equation 4.88

becomes

Here n is the interpolation step which goes up to Ni. The interpolation period for each

point is obtained by solving the above equation 4.89 (using Newton-Raphson iterative

algorithm) and then given as,

 𝑇𝑘𝑛
𝑖 = 𝜏𝑘𝑛 − 𝜏𝑘,𝑛−1 (4.90

4.4.3. Reconstructing Trajectory at Desired Control Loop Frequency

A trajectory is obtained in the last section where the displacement is constant but the time

steps are varying. However, it is desired to supply a signal to the control loop at a fixed

frequency. So, the trajectory is reconstructed at this desired frequency to ensure a smooth

acceleration and velocity profile. This is obtained by using a fifth order polynomial with

time as the variable instead of the chord lengths. The first derivative and second derivative

are derived using the same method described in 4.4.1. Then the equation for the

polynomial between any two points is given as,

 𝑥̃(𝜏) = 𝐴𝜏5 + 𝐵𝜏4 + 𝐶𝜏3 + 𝐷𝜏2 + 𝐸𝜏 + 𝐹 (4.91)

This is solved similar to the approach in section 4.4.1 using the initial conditions,

 𝑥̃(0) = 𝑥𝑖 𝑥̃(𝑇𝑖+1
𝑖) = 𝑥𝑖+1

𝑑𝑥̃(0)/𝑑𝜏 = 𝑥̇𝑖̂ 𝑑𝑥̃(𝑇𝑖+1
𝑖)/𝑑𝜏 = 𝑥̇𝑖+1̂

𝑑2𝑥̃(0)/𝑑𝜏2 = 𝑥̈𝑖̂ 𝑑2𝑥̃(𝑇𝑖+1
𝑖)/𝑑𝜏2 = 𝑥̈𝑖+1̂

 (4.92)

where the time interval 𝑇𝑖+1
𝑖 corresponds to the interpolation step associated with the

reference point 𝑥𝑖+1 (i.e. 𝑇𝑖+1
𝑖 = 𝑡𝑖+1 − 𝑡𝑖) and 0 ≤ 𝜏 ≤ 𝑇𝑖+1

𝑖 .

𝑠𝑘𝑛(𝜏𝑘) = 𝑛. Δ𝑠 =

1

6
𝑗0𝑘𝜏𝑘

3 +
1

2
𝑎0𝑘𝜏𝑘

2 + 𝑓0𝑘𝜏𝑘 + 𝑠0𝑘 (4.89)

 55

The polynomial coefficients must be recalculated each time a new reference point is

generated by the algorithm. This process is done recursively and ultimately the final

trajectory is obtained at the desired control loop time period.

 56

5. CONTROLLER DESIGN

The controller chosen to be used with the cable robot is a cascade controller. Cascade

controllers are a popular choice when electric motors are concerned. The general structure

of a cascade controller for an electric motor is given below in Figure 5.1.

Figure 5.1. Cascade Control of Motor

Here the inner speed sloop is controlled using a PI controller, and the outer position loop

is controlled using a P controller. The transfer function
1

𝐽𝑠+𝑏
 represents the motor

dynamics, where J is the motor inertia, and b is the damping term. The second transfer

function
1

𝑠
 is an integrator to obtain the position command.

The open loop transfer function for the inner loop is given as,

𝑂𝐿𝑇𝐹𝑖𝑛𝑛𝑒𝑟 = (𝐾𝑃 +

𝐾𝐼
𝑠
) (

1

𝐽𝑠 + 𝑏
) (5.1)

𝑂𝐿𝑇𝐹𝑖𝑛𝑛𝑒𝑟 =

𝐾𝑃𝑠 + 𝐾𝐼
𝐽𝑠2 + 𝑏𝑠

 (5.2)

The closed loop transfer function is then given as,

𝐶𝐿𝑇𝐹𝑖𝑛𝑛𝑒𝑟 =

𝐾𝑃𝑠 + 𝐾𝐼
𝐽𝑠2 + 𝑏𝑠

1 +
𝐾𝑃𝑠 + 𝐾𝐼
𝐽𝑠2 + 𝑏𝑠

 (5.3)

 57

𝐶𝐿𝑇𝐹𝑖𝑛𝑛𝑒𝑟 =
(𝐾𝑃𝑠 + 𝐾𝐼)

1
𝐽

𝑠2 + (
𝐾𝑃 + 𝑏
𝐽) 𝑠 +

𝐾𝐼
𝐽

 (5.4)

Then the denominator for the closed loop transfer function of the inner loop are given

as,

𝑠2 + (

𝐾𝑃 + 𝑏

𝐽
) 𝑠 +

𝐾𝐼
𝐽
= (𝑠 + 𝑃1)(𝑠 + 𝑃2) (5.5)

Here P1 and P2 are the poles of CLTFinner. Pole placement can be used to determine the

values of Kp and KI given as,

 𝐾𝑃 = (𝑃1 − 𝑃2). 𝐽 − 𝑏

𝐾𝐼 = 𝑃1𝑃2. 𝐽
(5.6)

If the desired settling time and Maximum percentage overshoot are know, then the the

natural frequency and damping are given as,

𝜔𝑛 =

4

𝜁 ∗ 𝑇𝑠

𝜁 = √
𝑙𝑛⁡2(𝑀𝑂/100)

𝜋2 + 𝑙𝑛⁡2(𝑀𝑂/100)

(5.7)

Then the poles are given as,

 𝑠1,2 = −𝜁𝜔𝑛 ± 𝑖𝜔𝑛√1 − 𝜁2 (5.8)

Then the gains can be obtained from the following equation,

𝑠2 + (

𝐾𝑃 + 𝑏

𝐽
) 𝑠 +

𝐾𝐼
𝐽
= 𝑠2 + 2𝜁𝜔𝑛𝑠 + 𝜔𝑛

2 (5.9)

Where,

 𝐾𝑝 = 2𝐽𝜁𝜔𝑛 − 𝑏

𝐾𝐼 = 𝜔𝑛
2 ∗ 𝐽

(5.10)

 58

Now the open loop transfer function for the outer loop is given as,

𝑂𝐿𝑇𝐹𝑜𝑢𝑡𝑒𝑟 = 𝐾𝑃𝑜 .
(𝐾𝑃𝑠 + 𝐾𝐼)

1
𝐽

𝑠2 + (
𝐾𝑃 + 𝑏
𝐽) 𝑠 +

𝐾𝐼
𝐽

.
1

𝑠
 (5.11)

𝑂𝐿𝑇𝐹𝑜𝑢𝑡𝑒𝑟 =
𝐾𝑃𝑜(𝐾𝑃𝑠 + 𝐾𝐼)

1
𝐽

𝑠3 + (
𝐾𝑃 + 𝑏
𝐽) 𝑠2 +

𝐾𝐼
𝐽 𝑠

 (5.12)

Then the transfer function of the outer loop is given as,

𝐶𝐿𝑇𝐹𝑜𝑢𝑡𝑒𝑟 =

𝐾𝑃𝑜.
(𝐾𝑃𝑠 + 𝐾𝐼)

1
𝐽

𝑠2 + (
𝐾𝑃 + 𝑏
𝐽) 𝑠 +

𝐾𝐼
𝐽

.
1
𝑠

1 + 𝐾𝑃𝑜 .
(𝐾𝑃𝑠 + 𝐾𝐼)

1
𝐽

𝑠2 + (
𝐾𝑃 + 𝑏
𝐽) 𝑠 +

𝐾𝐼
𝐽

.
1
𝑠

 (5.13)

It can also be written as,

𝐶𝐿𝑇𝐹𝑜𝑢𝑡𝑒𝑟 =
𝐾𝑃𝑜.

(𝐾𝑃𝑠 + 𝐾𝐼)
1
𝐽

(𝑠 + 𝑃1)(𝑠 + 𝑃2)
.
1
𝑠

1 + 𝐾𝑃𝑜 .
(𝐾𝑃𝑠 + 𝐾𝐼)

1
𝐽

(𝑠 + 𝑃1)(𝑠 + 𝑃2)
.
1
𝑠

 (5.14)

𝐶𝐿𝑇𝐹𝑜𝑢𝑡𝑒𝑟 =
𝐾𝑃𝑜 . (𝐾𝑃𝑠 + 𝐾𝐼)

1
𝐽 .
1
𝑠

(𝑠 + 𝑃3)(𝑠 + 𝑃1
′)(𝑠 + 𝑃2

′)
 (5.15)

Here,

 (𝐾𝑃𝑠 + 𝐾𝐼)
1
𝐽 .
1
𝑠

(𝑠 + 𝑃1
′)(𝑠 + 𝑃2

′)
≈ 1 (5.16)

So,

𝐶𝐿𝑇𝐹𝑜𝑢𝑡𝑒𝑟 =

𝐾𝑃𝑜
(𝑠 + 𝑃3)

=
𝐾𝑃𝑜

(𝑠 + 𝐾𝑃𝑜)
=

1

1
𝐾𝑃𝑜

𝑠 + 1

(5.17)

 59

Then, to determine 𝐾𝑃𝑜, a settling time Ts is given, where

 𝑇𝑠 = 4𝜏 and 𝜏 =
1

𝐾𝑃𝑜
 (5.18)

𝑇𝑠 =

4

𝐾𝑃𝑜
 (5.19)

Then,

𝐾𝑃𝑜 =

4

𝑇𝑠
 (5.20)

Here 𝐾𝑃𝑜 is the gain of the outer loop controller, and it must be 10 times smaller than 𝜔𝑛

of the inner loop. The settling-time of the close outer loop must also be 10 times slower

than the settling time of the inner loop. The actual diagram of the controller with the plant

is shown below in Figure 5.2.

Figure 5.2. Final Controller Diagram

 60

6. CABLE ROBOT OPTIMIZATION

There are a number of parameters that can be chosen for cable robot optimization. These

parameters can be then used to develop a cost function. The objective is to usually

maximize or minimize that cost function to obtain the desirable characteristics for the

cable robot and increasing performance. Table 2.1 in section 2.2 detailed different sources

in the literature dealing with cable robot optimization and the associated cost functions.

Cable Robot Dexterity, Stiffness, and Workspace were the most common themes for

optimization and were chosen for optimization. The variables used during the

optimization process are the motor positions and end-effector cable connection points.

The different cost functions developed are described below.

6.1. Dexterity Optimization [28]

The local kinematic behavior of the system is described by the dexterity index. The

dexterity index is given as,

𝑘(𝐽ℎ) =

𝜆𝑚𝑎𝑥
𝜆𝑚𝑖𝑛

 (6.1a)

Where J represents the Jacobian matrix in a specific configuration, and 𝜆𝑚𝑎𝑥 is the largest

eigenvalue of J, and 𝜆𝑚𝑖𝑛 is the smallest singular value of J. The dexterity index can vary

between 1 and infinity, so normally k(J)-1 is considered which varies between 0 and 1.

Here the calculation of the GCI is done using the homogenous Jacobian matrice given

below, where c is the length of the edge of the end-effector.

𝐽ℎ = 𝐽. 𝑑𝑖𝑎𝑔(1,1,

2

𝑐√2
) (6.1b)

When the index is near 1, the system is far from a singularity. Then a term called the

Global Conditioning Index can be defines as,

𝐺𝐶𝐼 =

1

𝑛
∑𝑘(𝐽ℎ)𝑖

−1

𝑛

𝑖=1

 (6.2)

 61

Where n is the number of points. For a given configuration of the cable robot, the dexterity

index can be evaluated for each point in the workspace and then the GCI is calculated.

When the GCI is closer to 1, the system has better dexterity for the given configuration.

If the end-effector connection point is fixed, Figure 6.1 below shows the value of GCI as

a function of the x and y motor positions.

Figure 6.1. GCI as a function of motor position

6.2. Stiffness Optimization [37]

[37] defines the stiffness matrix for a planar CDPR. The stiffness matrix consists of two

parts as shown below,

𝐊𝑒 =∑  

𝑛

𝑖=1

 𝑘𝐢 [
𝑙𝑖
𝑇 𝑙𝑖𝑙𝑖

𝑇[𝑏̂𝑖 ×]
𝑇

[𝑏̂𝑖 ×]
𝑇𝑙𝑖𝑙𝑖

𝑇 [𝑏̂𝑖 ×]
𝑇𝑙𝑖𝑙𝑖

𝑇[𝑏̂𝑖 ×]
𝑇
] (6.3)

 62

𝐊𝑝 =∑  

𝑛

𝑖=1

 
𝜏𝐢
𝑙𝑖
[

1 − 𝑙𝑖𝑙𝑖
𝑇 [𝑏̂𝑖 ×]

𝑇 − 𝑙𝑖𝑙𝑖
𝑇[𝑏̂𝑖 ×]

𝑇

[𝑏̂𝑖 ×] − [𝑏̂𝑖 ×]
𝑇𝑙𝑖𝑙𝑖

𝑇 [𝑏̂𝑖 ×][𝑏̂𝑖 ×]
𝑇
− [𝑏̂𝑖 ×]

𝑇𝑙𝑖𝑙𝑖
𝑇[𝑏̂𝑖 ×]

𝑇
]

−∑  

𝑛

𝑖=1

  𝜏𝐢 [
0 0
0 [𝑙𝑖 ×][𝑏̂𝑖 ×]

]

Here Ke is the stiffness coming from the elasticity of the cables, and Kp is the stiffness

resulting from the orientation of the cable robot.

The directional stiffnesses of the cable-robot in the directions of the eigenvectors is

determined by the corresponding eigenvalues of the stiffness matrix. Therefore, the end-

effector could have different stiffnesses in different directions. But for most applications

the stiffness distribution is desired to be uniform in all directions. The stiffness number

represents the uniformity of the stiffness matrix. It is the ratio of the smallest and largest

eigenvalues of the stiffness matrix (K) which is given as,

𝑆𝑁 =

𝜆𝑚𝑖𝑛(𝐾)

𝜆𝑚𝑎𝑥(𝐾)
 (6.4)

The stiffness number varies between 0 and 1. When it is equal to 1 the system is isotropic,

i.e., the stiffness is uniform in each direction. However, the stiffness matrix has non-

homogenous units, so the following expression can be written for the stiffness matrix,

𝐅𝑜 = [

𝐊11 𝐊12
𝐊21 𝐊22

] × [
𝜹
𝝎
] (6.5)

Where Fo is the external wrench given as,

 𝑭𝑜 = [𝑺𝑖,𝑴𝑖]
𝑇 (6.6)

And δ and ω are the infinitesimal translation and rotations of the end-effector.

Then the matrices with homogeneous units are given as,

 𝐔𝒇 = [𝐾11𝑂𝐾11 𝐾12𝑂𝐾12]

𝐔𝒎 = [𝐾21𝑂𝐾21 𝐾22𝑂𝐾22]
 (6.7)

 63

Here, Uf is for force and Um is for moment. 𝑂𝐾11, 𝑂𝐾12, 𝑂𝐾21, and 𝑂𝐾22 are orthogonal

matrices which can be obtained by using the eigenvectors of the matrices 𝐾11
𝑇 𝐾11, 𝐾12

𝑇 𝐾12,

𝐾21
𝑇 𝐾21 , and 𝐾22

𝑇 𝐾22 respectively. Then using the matrices 𝑈𝑓𝑈𝑓
𝑇 and 𝑈𝑚𝑈𝑚

𝑇 with

homogeneous units, the eigenvalues can be obtained and the stiffness numbers can be

calculated for translation and rotational motion.

The stiffness number however has a different magnitude when the end-effector has

different positions. To obtain the stiffness-number index over the entire workspace

defined by the stiffness feasibility condition, it is given as,

𝐴𝑆𝑁 =

∑ 𝑆𝑁𝑖
𝑛
𝑖=1

𝑛
 (6.8)

Where n is the total number of feasible points in the workspace. To check the stiffness

feasible workspace, the eigenvalues of the stiffness matrix are checked for each pose. If

the smallest eigenvalue is positive, that pose is a part of the stiffness feasible workspace

which is a subset of the wrench-feasible workspace. If only linear stiffnesses are

optimized however, performance can be lost in the rotational direction and the cable robot

can become unstable so the average of the Stiffness Number (SN) of the overall stiffness

matrix is chosen as the cost function.

If the end-effector connection point is fixed, Figure 6.2 below shows the value of ASN as

a function of the x and y motor positions when the end-effector connection point is fixed.

 64

Figure 6.2. SN as a function of motor positions

6.3. Workspace Optimization [38]

Obtaining the maximum feasible workspace volume is another important optimization

objective as this allows the cable robot to utilize the maximum amount of area covered

by the motors. The workspace volume index is given as,

 𝑊𝑉𝐼 =
𝑛𝑓𝑒𝑎𝑠

𝑛𝑡𝑜𝑡𝑎𝑙
 (6.9)

Here nfeas are the feasible points in the workspace, and ntotal are the total points in the

workspace. The steps to check the feasibility of the points are:

1. Check the cable length condition given as,

 𝑙𝑖𝑚𝑖𝑛 ≤ 𝑙𝑖 ≤ 𝑙𝑖𝑚𝑎𝑥 , ∀⁡𝑖 = 1,2… ,𝑚 (6.10)

2. Check force-closure condition given as,

 65

 rank⁡ 𝑱 = 𝑛, if 𝑱 ∈ ℝ𝑚×𝑛 where 𝑚 > 𝑛
∀𝑵 ∈ null⁡(𝑨), ∃𝑵𝒉 ∈ ℝ+

𝑚, where 𝑚 > 𝑛
 (6.11)

Here J represents the Jacobian matrix, and A represents the structure-matrix, while N

represents the null-space of the structure matrix A.

3. Calculate the stiffness matrix given in Equation 6.3 and check if it is positive definite.

4. Check the feasible wrench condition given below, and also calculate the cable tensions

and check the cable tension condition.

 ∃{𝜏 ∣ 𝜏 = −𝑨†𝑾+𝑵𝒉,𝑵𝒉 ∈ ℝ+
𝑚, where 𝑛 < 𝑚} ∩

{𝜏 ∣ 0 < 𝜏𝑖,min ≤ 𝜏𝑖 ≤ 𝜏𝑖,max∀𝑖 = 1,2, … ,𝑚}
 (6.12)

Where τ is the cable tension, and τmin and τmax are the minimum and maximum tension

values. If all the above conditions are satisfied the point is added to the feasible points

nfeas.

If the end-effector connection point is fixed, Figure 6.3 below shows the value of WVI as

a function of the x and y motor positions.

 66

Figure 6.3. WVI as a function of motor positions

The feasible workspace at the initial condition of workspace optimization is given as,

 67

Figure 6.4. Feasible Workspace before optimization

And the workspace after optimization is given as,

 68

Figure 6.5 Feasible Workspace after optimization

6.4. Optimization Algorithms

There are three main approaches used for optimization these are given as,

6.4.1. MATLAB fmincon algorithm

This function is used to find the minimum of a constrained nonlinear multivariable

function. fmincon has the following algorithms it can use,

• 'interior-point'

• 'trust-region-reflective'

• ‘sqp'

• ‘sqp-legacy'

• 'active-set'

Here ‘interior-point’ is the default algorithm. The inputs of the fmincon algorithm

include:

 69

1. fun – This is the cost function to be minimized

2. x0 – This is the initial condition

3. A, b – These are the matrices that specify linear inequality constraints

4. Aeq, beq – These are the matrices that specify the linear equality constraints

5. lb, ub – These define the lower and upper bounds

The function is then written as,

min
𝑥
 𝑓(𝑥) such that

{

𝑐(𝑥)⁡≤ 0
𝑐𝑒𝑞(𝑥)⁡= 0
𝐴 ⋅ 𝑥⁡≤ 𝑏

𝐴𝑒𝑞 ⋅ 𝑥⁡= 𝑏𝑒𝑞
𝑙𝑏⁡≤ 𝑥 ≤ 𝑢𝑏

 (6.13)

Or,

 𝑥⁡ = ⁡𝑓𝑚𝑖𝑛𝑐𝑜𝑛(𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏) (6.14)

6.4.2. MATLAB patternseach algorithm

This function is also used to find the minimum of a function using the patternsearch

algorithms. patternsearch has the following algorithms it can use,

• "classic"

• "nups" (Nonuniform Pattern Search)

• "nups-gps"

• "nups-mads"

The inputs of the patternsearch algorithm include:

1. fun – This is the cost function to be minimized

2. x0 – This is the initial condition

3. A, b – These are the matrices that specify linear inequality constraints

4. Aeq, beq – These are the matrices that specify the linear equality constraints

5. lb, ub – These define the lower and upper bounds

The function is then written as,

 𝑥⁡ = ⁡𝑝𝑎𝑡𝑡𝑒𝑟𝑛𝑠𝑒𝑎𝑟𝑐ℎ(𝑓𝑢𝑛, 𝑥0, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏) (6.15)

 70

6.4.3. MATLAB fgoalattain algorithm

fgoalattain is used to solve multi-objective goal attainment problems (to either minimize

or maximize cost functions). The function is given as,

minimize
𝑥,𝛾

⁡γ such that

{

𝐹(𝑥) − 𝑤𝑒𝑖𝑔ℎ𝑡. 𝛾 ≤ 𝑔𝑜𝑎𝑙

𝑐(𝑥) ⁡≤ 0
𝑐𝑒𝑞(𝑥) ⁡= 0
𝐴 ⋅ 𝑥 ⁡≤ 𝑏
𝐴𝑒𝑞 ⋅ 𝑥 ⁡= 𝑏𝑒𝑞
𝑙𝑏 ⁡≤ 𝑥 ≤ 𝑢𝑏

 (6.16)

Or,

 𝑥⁡ = ⁡𝑓𝑔𝑜𝑎𝑙𝑎𝑡𝑡𝑎𝑖𝑛(𝑓𝑢𝑛, 𝑥0, 𝑔𝑜𝑎𝑙, 𝑤𝑒𝑖𝑔ℎ𝑡, 𝐴, 𝑏, 𝐴𝑒𝑞, 𝑏𝑒𝑞, 𝑙𝑏, 𝑢𝑏) (6.17)

Here the inputs are,

1. fun – This is the cost function to be minimized

2. x0 – This is the initial condition

3. goal – This is the specified goal value for the cost function

4. weight – This specifies the weights of different functions in the multi-objective

optimization problem.

5. A, b – These are the matrices that specify linear inequality constraints

6. Aeq, beq – These are the matrices that specify the linear equality constraints

7. lb, ub – These define the lower and upper bounds

6.5. Combined Optimization

The combined optimization problem considers the cable robot dexterity and stiffness cost

functions. The fgoalattain command is used for combined optimization. The workspace

cost function is not compatible with the fmincon or fgoalattain algorithms as it is not a

mathematical formulation as compared to the other cost functions. Both dexterity and

stiffness cost functions are given the same weight, 1, and the goal are set as 1 for each

cost function as they are divided by their maximum values obtained in the individual

optimizations. A high dexterity and isotropic stiffness are both desirable for the cable

robot.

 71

7. SIMULATIONS AND RESULTS

This chapter provides the results for the simulations that are carried out for different

scenarios. The simulations are carried out for different trajectories. Initially the cable

robot is given some parameters, the controller design is done, the optimization is done,

followed by trajectory generation, and ultimately simulation. Separate simulations are

also carried out for custom trajectory data.

The cable robot design procedure has the following steps:

1. Setting the Cable Robot Parameters

2. Designing the controller by pole placement

3. Structural Optimization of the Cable Robot

4. Trajectory Generation

5. Running Simulation

7.1. Cable Robot Parameters

Table 7.1 below shows the Cable Robot Parameters that are used for simulation purposes.

Table 7.1. Cable Robot Parameters

No Parameter Name Value

1 Motor 1 Position in Global Coordinate System [-0.35m, 0.35m]

2 End-Effector Cable connection 1 position [-0.05m, -0.05m]

3 End-Effector mass 0.91 kg

4 End-Effector Inertia 1.5 x 10-3 kg.m2

5 Cable Young’s Modulus 200 GPa

6 Cable cross sectional area 1 x 10-6 m2

7 Motor Inertia 0.0026 kg.m2

8 Motor Damping 0.2 Ns/m

9 Motor Coulomb Friction 0.005 Nm

10 Motor Radius 0.0381 m

11 Minimum Cable Tension 0.5 N

 72

7.2. Controller Design

The cascade controller is designed using the pole placement method described in Section

5. The settling time for the inner loop is set as 0.02s and the maximum overshoot is chosen

as 10%. The settling time is specified as 0.2s for the outer loop. This yields the following

gains,

Table 7.2. Controller gains

Gain Value

Po 20

PI 0.8400

II 297.5984

The step response of the inner loop if given as,

Figure 7.1 Step response of cascade inner loop.

 73

And the step response of the outer loop is given as,

Figure 7.2 Cascade outer loop step response

7.3. Optimization

The motor and end-effector cable attachment points are the variables that are modified

during the optimization procedure. Changing these parameters can significantly impact

the performance of the cable robot. Figure 7.3 below shows the configuration of the Cable

Robot in the initial state.

 74

Figure 7.3 Initial condition of cable robot

Table 7.3 below shows the initial values of the three different cost functions before

optimization, and the value after the individual and combined optimizations.

Table 7.3. Values of cost functions for each optimization

Cost

Function

Initial

Condition

Dexterity

Optimization

Stiffness

Optimization

Workspace

Optimization

Combined

Optimization

Dexterity 0.1575 0.1587 0.1575 0.0571 0.1575

Stiffness 0.0041 0.0038 0.0041 5.4722e-04 0.0041

Workspace

Index

0.8431 0.8101 0.8431 1.0000 0.8431

First the dexterity optimization is carried out. Figure 7.4 shows the new configuration of

the cable robot.

 75

Figure 7.4 Dexterity optimized cable robot configuration

Then the stiffness optimization is carried out. Figure 7.5 shows the new configuration of

the cable robot. It is the same as the initial configuration. It converges to this arrangement

even with different initial conditions.

 76

Figure 7.5 Stiffness optimized cable robot configuration

Lastly, the workspace optimization is carried out. Figure 7.6 shows the new configuration

of the cable robot, as well as the old and new workspace indicated on the model in Figures

7.7 and 7.8.

 77

Figure 7.6 Workspace optimized cable robot structure

 78

Figure 7.7 Feasible region of workspace before optimization

Figure 7.8 Feasible region of workspace after optimization

The last procedure is the combined optimization problem which is run using the

fgoalattain command. The fgoalattain command uses the same algorithms as the fmincon

command, however the workspace cost function is not compatible with these algorithms.

Based on the values obtained in Table 7.3 above, the combined optimization yields the

best result at the initial configuration shown in Figure 7.3. where the motor and cable

connections are at the edges of the base and end-effector respectively. Both the dexterity

and stiffness cost functions are near their maximum values observed in the individual

optimizations.

7.4. Trajectory Generation

For the first set of simulation, two types of standard trajectories are generated. These are

a Circle and Rectangle trajectory. These are generated using the Trajectory generation

 79

algorithm 1. The different trajectory generation approaches are compared. Figures 7.9

and 7.10 below show the circular and rectangular trajectories.

Figure 7.9 Circular Trajectory

 80

Figure 7.10 Rectangle Trajectory

The second set of simulations uses Trajectory generation algorithm 3 to generate a non-

standard shape which is a spiral. A spiral has a constantly changing arc radius which is

not possible to generate using algorithm 1. In the third set of simulations, Trajectory

generation algorithm 2 is used to generate the trajectories for different sets of random

data.

7.5. Simulation

This section includes the simulation results for different scenarios described below.

7.5.1. Trajectory Generation 1 – Circle

The circular trajectory is a basic trajectory that can be generated easily using a single arc

segment. Figure 7.11 below shows the Trapezoidal Acceleration Profile for the circular

trajectory.

 81

Figure 7.11 Circle – Trapezoidal Acceleration

Now, the simulations are carried out with the dexterity optimized configuration motor

and cable connection points using the controller that was designed in section 7.2. Figure

7.12 – 7.15 show the simulation resuls.

 82

Figure 7.12 Circle – Real vs Actual Trajectory

Figure 7.13 Circle – Tracking Errors

 83

Figure 7.14 Circle – Desired Tensions

Figure 7.15 Circle – Real Tension

 84

7.5.2. Trajectory Generation 1 – Rectangle

The rectangular trajectory consists of 4 individual linear segments. In the first simulation

it is generated using the Point-to-Point approach where each segment begins and ends

with zero velocity. Figure 7.16 below shows the Trapezoidal Acceleration Profile for the

rectangular trajectory.

Figure 7.16 Rectangle – P2P – Trapezoidal Acceleration

Now, this simulation is carried out with the standard configuration of the cable robot with

the controller designed in section 7.2. Figure 7.17 – 7.21 show the simulation results.

 85

Figure 7.17 Rectangle – P2P – Desired/Real trajectory

Figure 7.18 Rectangle – P2P – Corner zoom

 86

Figure 7.19 Rectangle – P2P – Tracking Errors

Figure 7.20 Rectangle – P2P – Desired Tensions

 87

Figure 7.21 Rectangle – P2P – Real Tensions

Now the same trajectory is generated using the Continuous approach where the velocity

at the corners does not go to zero. Figure 7.22 below shows the Trapezoidal Acceleration

Profile for the trajectory.

 88

Figure 7.22 Rectangle – Continuous – Trapezoidal Acceleration

Figure 7.23 – 7.27 below show the simulation results.

Figure 7.23 Rectangle – Continuous – Desired vs Actual Trajectory

 89

Figure 7.24 Rectangle – Continuous – Corner Zoom

Figure 7.25 Rectangle – Continuous – Tracking Errors

 90

Figure 7.26 Rectangle – Continuous – Desired Tensions

Figure 7.27 Rectangle – Continuous – Real Tensions

As observed, the high velocity at the corner does not yield good performance. To remedy

this, the rectangular trajectory is generated using Microsplines where the edges of the

 91

segments are joined using splines as given in section 4.1.3. These splines also calculate

the proper spline travel time to preserve the simulation time. Figure 7.28 below shows the

Trapezoidal Acceleration Profile for the trajectory.

Figure 7.28 Rectangle – Splines – Trapezoidal Acceleration

Figure 7.29 – 7.33 show the simulation results.

 92

Figure 7.29 Rectangle – Splines – Desired vs Real Trajectory

Figure 7.30 Rectangle – Splines – Corner Zoom

 93

Figure 7.31 Rectangle – Splines – Tracking Errors

Figure 7.32 Rectangle – Splines – Desired Tensions

 94

Figure 7.33 Rectangle – Splines – Real Tensions

7.5.3. Trajectory Generation 3 – Spiral

Now the spiral type trajectory consists of arc segments with constantly changing radii.

This kind of trajectory generation cannot be handled with simple interpolation. The

trajectory generation algorithm defined in section 4.4 is used to generate this trajectory

by giving it a series of reference points.

Each point is connected with a 5th order spline as given in section 4.4, according to the

desired velocity and acceleration profile. Figure 7.34 below shows the reference points

and the generated trajectory.

 95

Figure 7.34 Spiral – Reference points

Figure 7.35 below shows the Trapezoidal Acceleration profile for the desired trajectory.

Figure 7.35 Spiral – Trapezoidal Acceleration

 96

Figures 7.36 – 7.39 below show the simulation results.

Figure 7.36 Spiral – Desired vs Actual Trajectory

Figure 7.37 Spiral – Tracking Errors

 97

Figure 7.38 Spiral – Desired Tensions

Figure 7.39 Spiral – Real Tensions

 98

7.5.4. Trajectory Generation 2 – Custom Data

While the previous two algorithms are capable of generating a variety of different

trajectories for standard and non-standard shapes, they are not able to simulate a trajectory

where the acceleration and velocity are constantly changing. Often it might be required

to simulate a custom trajectory, which can be fed to the cable robot but it needs to be

compatible.

Three example trajectories can be called as Custom Trajectory A, Custom Trajectory B,

and Custom Trajectory C. These trajectories are resampled at the desired control loop

frequency or sampling rate and then connected with splines and linear segments to the

desired start/end point as given in section 4.3. After Custom Trajectory A is selected,

Figure 7.40 – 7.44 show the simulation results.

Figure 7.40 Custom Data A – Trajectory

 99

Figure 7.41 Custom Data A – Desired vs Real Trajectory

Figure 7.42 Custom Data A – Tracking Errors

 100

Figure 7.43 Custom Data A – Desired Tensions

Figure 7.44 Custom Data A – Real Tensions

After Custom Trajectory B is selected, Figure 7.45 – 7.49 show the simulation results.

 101

Figure 7.45 Custom Data B – Trajectory

Figure 7.46 Custom Data B – Desired vs Actual Trajectory

 102

Figure 7.47 Custom Data B – Tracking Errors

Figure 7.48 Custom Data B – Desired Tensions

 103

Figure 7.49 Custom Data B – Real Tensions

After Custom Trajectory C is selected, Figure 7.50 – 7.54 show the simulation results.

Figure 7.50 Custom Data C – Trajectory

 104

Figure 7.51 Custom Data C – Desired vs. Actual Trajectory

Figure 7.52 Custom Data C – Tracking Errors

 105

Figure 7.53 Custom Data C – Desired Tensions

Figure 7.54 Custom Data C – Actual Tensions

 106

7.5.5. Simulations with Increasing Speed

Another set of simulations is where the Circular Trajectory is used is to simulate the

circular motion with increasing velocities. The simulations are caried out the results are

given below.

Circle Speed: 0.06m/s2

Figure 7.55 Circle 0.06 m/s2 – Trapezoidal Acceleration

 107

Figure 7.56 Circle 0.06 m/s2 – Desired vs Actual Trajectory

Figure 7.57 Circle 0.06 m/s2 – Tracking Errors

 108

Figure 7.58 Circle 0.06 m/s2 – Desired Tensions

Figure 7.59 Circle 0.06 m/s2 – Actual Tensions

Circle Speed: 0.12m/s2

 109

Figure 7.60 Circle 0.12 m/s2 – Trapezoidal Acceleration

Figure 7.61 Circle 0.12 m/s2 – Desired vs Actual Trajectory

 110

Figure 7.62 Circle 0.12 m/s2 – Tracking Errors

Figure 7.63 Circle 0.12 m/s2 – Desired Tensions

 111

Figure 7.64 Circle 0.12 m/s2 – Real Tensions

Circle Speed: 0.18m/s2

Figure 7.65 Circle 0.18 m/s2 – Trapezoidal Acceleration

 112

Figure 7.66 Circle 0.18 m/s2 – Desired vs Actual Trajectory

Figure 7.67 Circle 0.18 m/s2 – Tracking Errors

 113

Figure 7.68 Circle 0.18 m/s2 – Desired Tensions

Figure 7.69 Circle 0.18 m/s2 – Trapezoidal Acceleration

 114

7.5.6. Simulations with Non-zero orientation angle

This series of simulations aim to show the performance of the cable robot when the

reference angle for the end-effector. The circular trajectory with 0.06 m/s2 velocity is

chosen.

Angle: 5º

Figure 7.70 Circle – 5 degree – Desired vs Actual trajectory

 115

Figure 7.71 Circle – 5 degree – Tracking Errors

Figure 7.72 Circle – 5 degree – Desired Tensions

 116

Figure 7.73 Circle – 5 degree –Actual Tensions

Angle: 15º

Figure 7.74 Circle – 15 degree – Desired vs Actual trajectory

 117

Figure 7.75 Circle – 15 degree – Tracking Errors

Figure 7.76 Circle – 15 degree – Tracking Errors

 118

Figure 7.77 Circle – 15 degree – Real Tension

Angle: 30º

Figure 7.78 Circle – 30 degree – Desired vs Actual Trajectory

 119

Figure 7.79 Circle – 30 degree – Tracking Errors

Figure 7.80 Circle – 30 degree – Desired Tensions

 120

Figure 7.81 Circle – 30 degree – Real Tensions

Angle: 70º

Figure 7.82 Circle – 70 degree – Desired vs Actual Trajectory

 121

Figure 7.83 Circle – 70 degree – Tracking Errors

Figure 7.84 Circle – 70 degree – Desired Tensions

 122

Figure 7.85 Circle – 70 degree – Real Tensions

At higher angles the cable robot is no longer stable.

7.5.7. Results with Non-Optimized Configuration

A non-optimized configuration is shown below in Figure 7.86.

 123

Figure 7.86 Non-optimized cable robot configurations

The simulation results for the circular trajectory at 0.18 m/s2 velocity are given below.

Figure 7.87 Circle – Non-Optimized – Desired vs Actual Trajectory

 124

Figure 7.88 Circle – Non-Optimized – Tracking errors

Figure 7.89 Circle – Non-Optimized – Real Tensions

With the unoptimized configuration, the cable robot is not stable enough for this

trajectory.

 125

7.6. Discussion

In section 7.5.1 the circular trajectory is generated using Trajectory Generation 1

algorithm which generates standard shapes using linear and circular interpolation

methods. The circle trajectory is generated using the circular interpolation and the

acceleration and velocity profiles are also shown for the generated trajectory. The control

performance for trajectory tracking is good with very minimal error and the cable tensions

are also within acceptable limits.

In section 7.5.2, a rectangular trajectory is generated consisting of linear segments joined

together. Initially the trajectory is generated using a point-to-point approach where each

segment begins and ends at zero velocity so there is no issue while cornering. The tracking

error is very small in this simulation and the cable tensions are also small. The next

simulation is carried out using the continuous approach where the corner point can have

a set velocity. In this simulation, the tracking error is slightly larger as compared to the

previous simulation and more deviation can be observed near the corners of the trajectory.

The cable tensions are also larger. Lastly, the rectangular shape is generated using the

Microsplines, which are used to join the ends of different segments using splines. The

simulation then shows that the tracking error is very small, and the deviation from the

path is minimal.

In the next part in section 7.5.3, Trajectory Generation 3 algorithm is used to design a

non-standard shape trajectory, namely a spiral trajectory. The tracking performance is

suitable. The cable tensions have minimal oscillations and are within an acceptable range.

In section 7.5.4, Trajectory Generation 2 algorithm is used to develop a trajectory for

some custom non-uniform data. For each scenario, the trajectory starts from a given

start/end point, where it does a linear interpolation to the start of the first spline which is

used to connect to the start of the custom data and then after the custom trajectory, another

spline is used to come to a stop where another linear interpolation is used to get back to

the start/end point. For each custom trajectory, A, B, and C, the tracking performance is

good and the cable tensions are also within an acceptable value.

 126

In section 7.5.5, simulations with increasing speed are carried out using the circular

trajectory. With higher speeds we can observe the tracking error to increase. In section

7.5.6, the circular trajectory is tracked but with a non-zero reference theta (end-effector

rotation angle) and the results show good performance until around 70 degrees, after

which the robot becomes unstable at higher angles.

Lastly in section 7.5.7, the same circular trajectory is simulated using a non-optimized

cable robot configuration which runs into some problems so the previous results which

were obtained from the configuration after dexterity optimization improves the

performance of the cable robot.

 127

8. CONCLUSION AND RECOMMENDATIONS

Based on the simulations conducted, the different trajectory generation algorithms are

successfully able to generate trajectories for the cable robot. Trajectory Algorithm 1 is

able to generate standard shapes but it is also able to generate splines in regions where a

corner exists or two segments are being joined so as to prevent and sudden jerk or loss of

performance at that point. Trajectory Algorithm 3, similar to 1 is used for trajectories with

uniform velocity profiles but it is capable of fitting a trajectory on any custom shape. It

was used to simulate a spiral where the radius is constantly changing. Lastly, Trajectory

Algorithm 2 is able to take a custom trajectory with non-uniform speed profile and

simulate it by connecting it with splines. All these trajectory generation algorithms from

CNC literature were successfully implemented with the cable robot model.

The cable robot model itself was a planar 4 cable robot with cable elasticity added as well.

The model was able to simulate the different scenarios at different speeds and angles

while maintaining positive cable tension which is essential for a cable robot. The structure

of the cable robot was also optimized using the fmincon command and the results

indicated an increase in performance compared to an initial condition after optimization.

Other than that, the cascade controller also worked well and the design of it along with

the other elements was incorporated into the GUI interface which can easily be used to

completely design and simulate a planar cable robot.

This type of robot can be used in many different applications such as medical

rehabilitation devices, 3D printers, warehouse crane mechanisms, etc. Future

recommendations include the addition of different types of controllers which can be tuned

for different scenarios. The capability of generating animations can be added to the GUI.

The model can also be expanded to a 3-D cable robot which would be capable of much

more advanced maneuvers.

The combination of the cable robot design and the different trajectory generation

techniques can be particularly useful for medical rehabilitation devices. For providing

robot-aided physiotherapy, patients are required to perform different repetitive exercises.

Robots can greatly aid this process reducing the requirement of trained professionals

being physically present during these exercises. Simpler exercises can use trajectories like

 128

linear and circular interpolation from trajectory generation algorithm 1, with the addition

of splines creating smooth trajectories which would be particularly useful for patients

undergoing therapy. However more complex exercises can require trajectories with

complex structures which can be much better handled by trajectory generation algorithm

3. Lastly, the trajectory generation algorithm 2 could be useful if a medical professional

wanted to record a set of exercises. The coordinates recorded from those exercise could

then be used to generate a custom trajectory with non-uniform speed and acceleration

which would allow the patient to receive much more complicated tasks.

 129

REFERENCES

[1] S.R. Oh, S.K. Agrawal, Cable suspended planar robots with redundant cables:

Controllers with positive tensions, IEEE Trans. Robot. 21 (2005) 457–465.

https://doi.org/10.1109/TRO.2004.838029.

[2] P. Dion-Gauvin, C. Gosselin, Trajectory planning for the static to dynamic

transition of point-mass cable-suspended parallel mechanisms, Mech. Mach.

Theory. 113 (2017) 158–178.

https://doi.org/10.1016/J.MECHMACHTHEORY.2017.03.003.

[3] X. Tang, An Overview of the Development for Cable-Driven Parallel Manipulator,

Https://Doi.Org/10.1155/2014/823028. 2014 (2014).

https://doi.org/10.1155/2014/823028.

[4] B. Zi, S. Qian, Design, analysis and control of cable-suspended parallel robots and

its applications, Des. Anal. Control Cable-Suspended Parallel Robot. Its Appl.

(2017) 1–299. https://doi.org/10.1007/978-981-10-1753-7/COVER.

[5] J.S. Albus, R. V. Bostelman, N. Dagalakis, The NIST ROBOCRANE, 10, No. 5

(1992) 709–724. https://www.nist.gov/publications/nist-robocrane (accessed April

21, 2024).

[6] S. Qian, B. Zi, W.W. Shang, Q.S. Xu, A review on cable-driven parallel robots,

Chinese J. Mech. Eng. (English Ed. 31 (2018) 1–11.

https://doi.org/10.1186/S10033-018-0267-9/FIGURES/19.

[7] D. Huamanchahua, A. Tadeo-Gabriel, R. Chavez-Raraz, K. Serrano-Guzman,

Parallel Robots in Rehabilitation and Assistance: A Systematic Review, 2021

IEEE 12th Annu. Ubiquitous Comput. Electron. Mob. Commun. Conf. UEMCON

2021. (2021) 692–698. https://doi.org/10.1109/UEMCON53757.2021.9666501.

[8] Q. Chen, B. Zi, Z. Sun, Y. Li, Q. Xu, Design and development of a new cable-

driven parallel robot for waist rehabilitation, IEEE/ASME Trans. Mechatronics.

24 (2020) 1497–1507. https://doi.org/10.1109/TMECH.2019.2917294.

[9] H. Jia, W. Shang, F. Xie, B. Zhang, S. Cong, Second-Order Sliding-Mode-Based

Synchronization Control of Cable-Driven Parallel Robots, IEEE/ASME Trans.

Mechatronics. 25 (2020) 383–394.

https://doi.org/10.1109/TMECH.2019.2960048.

[10] H.D. Taghirad, Parallel Robots: Mechanics and Control, Parallel Robot. Mech.

Control. (2013) 1–510. https://doi.org/10.1201/B16096.

[11] M.I. Hosseini, S.A. Khalilpour, H.D. Taghirad, Practical robust nonlinear PD

controller for cable-driven parallel manipulators, Nonlinear Dyn. 106 (2021) 405–

424. https://doi.org/10.1007/S11071-021-06758-9/TABLES/3.

[12] W. Kraus, P. Miermeister, V. Schmidt, A. Pott, Hybrid Position-Force Control of

a Cable-Driven Parallel Robot with Experimental Evaluation, Mech. Sci. 6 (2015)

119–125. https://doi.org/10.5194/MS-6-119-2015.

[13] J.C. Santos, A. Chemori, M. Gouttefarde, Model predictive control of large-

dimension cable-driven parallel robots, Mech. Mach. Sci. 74 (2019) 221–232.

https://doi.org/10.1007/978-3-030-20751-9_19/COVER.

 130

[14] W. Shang, F. Xie, B. Zhang, S. Cong, Z. Li, Adaptive Cross-Coupled Control of

Cable-Driven Parallel Robots with Model Uncertainties, IEEE Robot. Autom. Lett.

5 (2020) 4110–4117. https://doi.org/10.1109/LRA.2020.2988430.

[15] A. Pott, (PDF) WireX – An Open Source Initiative Scientific Software for Analysis

and Design of Cable-driven Parallel Robots, (n.d.).

https://www.researchgate.net/publication/334164626_WireX_-

_An_Open_Source_Initiative_Scientific_Software_for_Analysis_and_Design_of

_Cable-driven_Parallel_Robots (accessed February 20, 2023).

[16] M. Zarebidoki, J.S. Dhupia, W. Xu, A Review of Cable-Driven Parallel Robots:

Typical Configurations, Analysis Techniques, and Control Methods, IEEE Robot.

Autom. Mag. 29 (2022) 89–106. https://doi.org/10.1109/MRA.2021.3138387.

[17] D. Sridhar, R.L. Williams, Kinematics and Statics Including Cable Sag for Large

Cable-Suspended Robots, Proc. ASME Des. Eng. Tech. Conf. 5A-2016 (2016).

https://doi.org/10.1115/DETC2016-60495.

[18] S.W. Hwang, J.H. Bak, J. Yoon, J.H. Park, J.O. Park, Trajectory generation to

suppress oscillations in under-constrained cable-driven parallel robots, J. Mech.

Sci. Technol. 30 (2016) 5689–5697. https://doi.org/10.1007/S12206-016-1139-

9/METRICS.

[19] L. Kevac, M. Filipovic, A. Rakic, The trajectory generation algorithm for the

cable-suspended parallel robot—The CPR Trajectory Solver, Rob. Auton. Syst. 94

(2017) 25–33. https://doi.org/10.1016/J.ROBOT.2017.04.018.

[20] X. Jiang, C. Gosselin, Trajectory generation for three-degree-of-freedom cable-

suspended parallel robots based on analytical integration of the dynamic equations,

J. Mech. Robot. 8 (2016). https://doi.org/10.1115/1.4031501/384152.

[21] M.A. Khosravi, H.D. Taghirad, R. Oftadeh, A positive tensions PID controller for

a planar cable robot: An experimental study, Int. Conf. Robot. Mechatronics,

ICRoM 2013. (2013) 325–330. https://doi.org/10.1109/ICROM.2013.6510127.

[22] P. Gholami, M.M. Aref, H. Taghirad, Adaptive Cascade Control of the KNTU

CDRPM: A Cable Driven Redundant Parallel Manipulator, (2009).

[23] S.A. Khalilpour, R. Khorrambakht, M.J. Harandi, H.D. Taghirad, P. Cardou,

Cascade Terminal Sliding Mode Control of a Deployable Cable Driven Robot,

Proc. - 2019 6th Int. Conf. Control. Instrum. Autom. ICCIA 2019. (2019).

https://doi.org/10.1109/ICCIA49288.2019.9030886.

[24] A. Fattah, S.K. Agrawal, On the Design of Cable-Suspended Planar Parallel

Robots, J. Mech. Des. 127 (2005) 1021–1028. https://doi.org/10.1115/1.1903001.

[25] S. Seriani, M. Seriani, P. Gallina, Workspace optimization for a planar cable-

suspended direct-driven robot, Robot. Comput. Integr. Manuf. 34 (2015) 1–7.

https://doi.org/10.1016/J.RCIM.2015.01.004.

[26] M.H. Kassem, Design and Optimization of a Planar Cable Robot, (2020).

https://dspace.aus.edu:8443/xmlui/handle/11073/19730 (accessed May 22, 2024).

[27] T. Rasheed, P. Long, A.S. Roos, S. Caro, Optimization based Trajectory Planning

of Mobile Cable-Driven Parallel Robots, IEEE Int. Conf. Intell. Robot. Syst.

(2019) 6788–6793. https://doi.org/10.1109/IROS40897.2019.8968133.

 131

[28] C. Sun, H. Gao, Z. Liu, S. Xiang, H. Yu, N. Li, Z. Deng, Design and optimization

of three-degree-of-freedom planar adaptive cable-driven parallel robots using the

cable wrapping phenomenon, Mech. Mach. Theory. 166 (2021) 104475.

https://doi.org/10.1016/J.MECHMACHTHEORY.2021.104475.

[29] S. Abdolshah, D. Zanotto, G. Rosati, S.K. Agrawal, Optimizing stiffness and

dexterity of planar adaptive cable-driven parallel robots, J. Mech. Robot. 9 (2017).

https://doi.org/10.1115/1.4035681/472662.

[30] M. Anson, A. Alamdari, V. Krovi, Orientation Workspace and Stiffness

Optimization of Cable-Driven Parallel Manipulators With Base Mobility, J. Mech.

Robot. 9 (2017). https://doi.org/10.1115/1.4035988/472687.

[31] B. Zhou, S. Li, B. Zi, B. Chen, W. Zhu, Multi-Objective Optimal Design of a

Cable-Driven Parallel Robot Based on an Adaptive Adjustment Inertia Weight

Particle Swarm Optimization Algorithm, J. Mech. Des. 145 (2023).

https://doi.org/10.1115/1.4062458.

[32] T. Bruckmann, R. Boumann, Simulation and optimization of automated masonry

construction using cable robots, Adv. Eng. Informatics. 50 (2021) 101388.

https://doi.org/10.1016/J.AEI.2021.101388.

[33] H.H. Cheng, D. Lau, Cable Attachment Optimization for Reconfigurable Cable-

Driven Parallel Robots Based on Various Workspace Conditions, IEEE Trans.

Robot. 39 (2023) 3759–3775. https://doi.org/10.1109/TRO.2023.3288838.

[34] W.B. Lim, S.H. Yeo, G. Yang, S.K. Mustafa, Kinematic analysis and design

optimization of a cable-driven universal joint module, IEEE/ASME Int. Conf. Adv.

Intell. Mechatronics, AIM. (2009) 1933–1938.

https://doi.org/10.1109/AIM.2009.5229772.

[35] R.L. Williams, P. Gallina, Translational planar cable-direct-driven robots, J. Intell.

Robot. Syst. Theory Appl. 37 (2003) 69–96.

https://doi.org/10.1023/A:1023975507009.

[36] K. Erkorkmaz, Y. Altintas, High speed CNC system design. Part I: Jerk limited

trajectory generation and quintic spline interpolation, Int. J. Mach. Tools Manuf.

41 (2001) 1323–1345. https://doi.org/10.1016/S0890-6955(01)00002-5.

[37] J. Bolboli, M.A. Khosravi, F. Abdollahi, Stiffness feasible workspace of cable-

driven parallel robots with application to optimal design of a planar cable robot,

Rob. Auton. Syst. 114 (2019) 19–28.

https://doi.org/10.1016/J.ROBOT.2019.01.012.

[38] S. Torres-Mendez, A. Khajepour, Design Optimization of a Warehousing Cable-

Based Robot, Proc. ASME Des. Eng. Tech. Conf. 5A (2015).

https://doi.org/10.1115/DETC2014-34672.

 132

APPENDICES

APPENDIX 1 –GRAPHICAL USER INTERFACE

This chapter describes the development of the GUI tool the cable robot codes have been

integrated into. The interface is explained and the layout is provided. The first tab of the

GUI is given below which is used to enter parameters related to the motor, cable, end-

effector and other parameters. After entering the parameters, the button ‘Update

Variables’ is pressed.

Figure Appendix 1.1 GUI Tab 1

The second tab of the GUI is given below. Additional parameters related to the motor and

cable are entered. Point data for the motor torque-speed curve is also entered which is

plotted. After data is entered, the ‘Update Variables’ button must be pressed.

 133

Figure Appendix 1.2 GUI Tab 2

The third tab of the application is for Trajectory Generation Algorithm 1. Here the desired

trajectory can be selected, with the desired velocity and scale (for scaling the predefined

dimensions) and when the ‘Generate’ button is pressed the desired trajectory is generated.

 134

Figure Appendix 1.3 GUI Tab 3

In the fourth tab of the application, Trajectory Generation Algorithm 2 has been

implemented. A .mat file containing the custom data can be loaded using the ‘Load Data’

and after specifying the proper scale, sampling time, and the start/end position, the desired

trajectory is generated and displayed when the ‘Generate’ button is pressed.

 135

Figure Appendix 1.4 GUI Tab 4

The fifth tab contains the Trajectory Generation Algorithm 3. Here the desired parameters

for the trapezoidal acceleration profile are entered and the ‘Load Data’ button is used to

load a .mat file with the custom data for trajectory generation.

 136

Figure Appendix 1.5 GUI Tab 5

Now the sixth tab is used for controller design. The required cascade controller can be

automatically calculated based on the settling time and maximum overshoot specified by

the user and the step response is plotted as well.

 137

Figure Appendix 1.6 GUI Tab 6

The seventh tab shows the feasible workspace based on the end-effector acceleration and

the minimum tensions. It also calculates the static torques.

 138

Figure Appendix 1.7 GUI Tab 7

The eighth tab contains the optimization functionality. Individual or combined

optimization can be performed. The resultant motor and cable connection coordinates are

displayed as well as the value of each cost function after any optimization when the

‘Generate’ button is pressed.

 139

Figure Appendix 1.8 GUI Tab 8

The last and 9th tab is used to run the simulations when all the data has been entered,

controller has been designed and necessary optimization is done. Additional buttons can

be used to save the data file, open the Simulink model or generate detailed plots when

the ‘Generate Plots’ button is pressed (after running the simulation at least once).

 140

Figure Appendix 1.11 GUI Tab 11

	10644905

