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ABSTRACT

TRAJECTORY GENERATION TECHNIQUES FOR CABLE DRIVEN
PARALLEL ROBOTS

Abdul Moiz AWAN

Master’s of Philosophy, Department of Mechanical Engineering
Supervisor: Prof. Dr. S. Caglar BASLAMISLI

June 2024, 141 pages

The aim of this thesis is to implement CNC-based trajectory generation techniques with
Cable Driven Parallel Robots (CDPRs). CDPRs are a special type of parallel robots that
use motors and cables to manipulate an end-effector in space. Cable robots are becoming
popular due to several advantages they have over traditional manipulators such as their
large workspace and lightweight actuators. For the cable robots to perform properly there
are a number of parameters that need to be studied. These include maintaining positive
cable tension, cable elasticity, trajectory generation, controller design, and structural

optimization.

The scope of this thesis is limited to planar cable robots, where a four-cable robot has
been chosen for the analysis. The reason for choosing a four-cable robot is that the fourth
actuator offers a redundancy which allows control of the end effector with 3 DOFs while
also being able to maintain tension. Maintain positive tension is very important as unlike
traditional manipulators, CDPRs are not able to push against the end-effector, only pull.

A positive tension algorithm ensures that none of the cables ever go slack. Cable elasticity
[



and its incorporation into the mathematical model of the cable robot is another important
part of the developed model.

Trajectory generation is one of the most important topics in this research as it uses CNC-
based trajectory generation algorithms to generate trajectories for a cable robot. These
algorithms range from simple linear or circular interpolation to complicated 5" order
splines which ensure continuity up to at least the second derivative. A combination of
splines, and simple segments are used to generate standard and custom shapes and non-
uniform data supplied by the user is also simulated by connecting splines with the data.
These trajectories are tested in different scenarios and for different conditions such as
changing speed or some non-zero angle reference for the end-effector.

The controller design is another important aspect. It is a cascade controller which is very
common for controlling motors. The controller gains are determined based on the settling
time and the maximum overshoot. Lastly the structural optimization of the cable robot
for dexterity, stiffness, and workspace is studied where the optimized robot was found to
provide better results. A GUI is developed which incorporates all the different codes to

make an easy-to-use tool for designing and simulating a cable robot.

Keywords: Cable Driven Parallel Robot, Cascade Control, Trajectory Generation,
Optimization, Cable Elasticity, GUI



OZET

KABLOYLA CALISAN PARALEL ROBOTLAR iCiN ROTA OLUSTURMA
YONTEMLERI

Abdul Moiz AWAN

YUksek Lisans, Makina Miihendisligi Boliimii
Tez Damismani: Prof. Dr. S. Caglar BASLAMISLI

Haziran 2024, 141 sayfa

Bu tezin amaci, Kabloyla Calisan Paralel Robotlar (KCPR'ler) ile CNC tabanli rota
olusturma tekniklerini uygulamaktir. KCPR'ler, motorlar ve kablolar kullanarak bir ug
efektoriini uzayda manipile eden 06zel bir paralel robot tiridir. Kablo robotlari,
geleneksel manipiilatorlere gére genis calisma alani ve hafif aktiiatorler gibi cesitli
avantajlar1 nedeniyle popiiler hale gelmektedir. Kablo robotlarinin diizgiin ¢alismasi i¢in
incelenmesi gereken bir¢cok parametre bulunmaktadir. Bunlar arasinda pozitif kablo
geriliminin korunmast, kablo esnekligi, yoriinge olusturma, kontrolor tasarimi ve yapisal

optimizasyon yer almaktadir.

Bu tezin kapsami, dort kablolu bir robotun analiz icin secildigi diizlemsel kablo robotlar
ile smirlidir. Dort kablolu bir robotun secilmesinin nedeni, dordinci akttatorin bir
yedeklilik sunmasi ve bu sayede 3 serbestlik derecesi (DOF) ile ug¢ efektoriiniin
kontroliinii saglarken ayni zamanda gerilimi koruyabilmesidir. Pozitif gerilimin
korunmasi ¢ok oOnemlidir ¢linkii geleneksel manipulatorlerin aksine, KPR'ler ug
efektoriine karsi itme yapamazlar, yalnizca g¢ekebilirler. Pozitif gerilim algoritmasi,

kablolardan hicbirinin gevsememesini saglar. Kablo esnekligi ve bu esnekligin kablo



robotunun matematiksel modeline dahil edilmesi, gelistirilen modelin 6nemli bir

pargasidir.

Bu arastirmadaki en énemli konulardan biri yoriinge olusturmadir ¢linkii CNC tabanl
yoriinge olusturma algoritmalarini kullanarak kablo robotu i¢in ydriingeler olusturur. Bu
algoritmalar, basit dogrusal veya dairesel enterpolasyondan, en az ikinci tiirevine kadar
stirekliligi saglayan karmasik 5. dereceden splinelere kadar ¢esitlilik gdsterir. Standart ve
0zel sekiller olusturmak i¢in splineler ve basit segmentlerin bir kombinasyonu kullanilir
ve kullanici tarafindan saglanan uniform olmayan veriler de splinelerle birlestirilerek
simiile edilir. Bu yoriingeler, farkli hiz degistirme senaryolar1 veya ug¢ efektor igin sifir

olmayan bir ac1 referansi gibi farkli kosullar altinda test edilir.

Kontrol6r tasarimi da bir diger 6nemli konudur. Bu tasarim, motorlari kontrol etmek i¢in
cok yaygin olan bir kaskad kontroldrdiir. Kontroldr kazanglari, yerlesme siiresi ve
maksimum asim temel alinarak belirlenir. Son olarak, kablo robotunun hareket kabiliyeti,
rijitlik ve ¢alisma alani i¢in yapisal optimizasyonu incelenir ve optimize edilmis robotun
daha iyi sonuclar sagladig: goriiliir. Tiim farkli kodlar1 bir araya getiren ve kablo robotu
tasarlamak ve simiile etmek i¢in kullanimi kolay bir ara¢ sunan bir grafik kullanici

arayiizi (GUI) gelistirilmistir.

Anahtar Kelimeler: Kabloyla Calisan Paralel Robot, Kademeli Kontrol, Rota
Olusturma, Optimizasyon, Kablo Esnekligi, GKA
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1. INTRODUCTION

1.1. Overview

Parallel manipulators are devices which use a set of linkages in parallel to an end-effector
which can have translational or rotational motion, defined as the Degrees-of-Freedom or
DOFs of the system. Cable-Driven-Parallel-Robots or CDPRs are specialized type of
parallel robotic manipulators which use cables that are constantly in tension to manipulate
an object or end-effector. The Cable Robot has a number of cables and motors which are
used to manipulate the end-effector and follow and maintain a desired trajectory and pose.
Advantages of using Cable Robots include lower mass and cost compared to traditional
robots. Cable Robots can also have very large workspaces, but a large area is needed to
accommodate such setups. Disadvantages include the actuator redundancy needed to

operate cable robots as the cables need to be kept constantly in tension.

A critical aspect of the cable robot design is trajectory generation. The method of
trajectory generation can affect the accuracy of the CDPR. Another important factor is
the optimization of the cable robot. The location of the attachment points for the cables
on the end-effector, and the locations of the motors can significantly impact the
performance of a cable robot. This study focuses on accurate trajectory generation,
controller design, and cable robot optimization to create a more efficient design for a

cable robot.

1.2. Thesis Objectives and Outcomes

The primary objective of this thesis was to model and simulate a 3-DOF Planar Cable
Robot and use different techniques to develop different trajectories for the robot to follow.
Particularly, trajectory generation techniques traditionally used for CNC applications
were implemented in the context of cable robots to achieve highly accurate results and

improving the cable robot performance.



Additional objectives include the development of a Cascade Controller for simulating the
Cable Robot and the design optimization using different cost functions. These include

dexterity, stiffness, and workspace optimization.

A comprehensive analysis is carried out testing the cable robot performance before and
after optimization for different trajectories. All of this procedure is packaged into an easy-
to-use GUI application which can be used to completely design and simulate a cable robot

device.

1.3. Research Contribution

In light of the reviewed literature, there are no other studies implementing CNC trajectory
generation techniques for Cable Robots. The GUI developed as a part of this thesis is also

a unique tool which offers functionality not comparable with other existing tools.

The research contributions of this thesis can be summed up as given below:

. Implementation of different trajectory generation techniques, particularly
from CNC trajectory generation, for a CDPR.
. Comparison of different trajectory generation techniques and results before

and after optimization.

1.4. Thesis Organization

The structure of the thesis is organized as follows: Chapter 2 provides a background and
literature review about different types of Cable Robots. Moreover, literature related to
cable robot modelling, trajectory generation, and optimization is also discussed. Chapter
3 provides the methodology and detailed information about the cable robot modelling
including cable modelling. The different methods and algorithms used for trajectory
generation are discussed in Chapter 4. Chapter 5 presents the controller design used to
run the cable robot to follow the designed trajectories and Chapter 6 provides information

about the Cable Robot optimization. Chapter 7 provides the results and discussion for

2



different simulations and finally, Chapter 9 provides the conclusion and outlines the
future work to be done. Figures of the GUI are provided in the Appendix.



2. BACKGROUND AND LITERATURE REVIEW

In this Chapter, a detailed literature review and background of cable driven robots is
presented. Firstly, cable driven parallel robots are introduced along with their potential
applications. Then, the concepts behind cable robot modelling, trajectory generation,

controller design and cable robot optimization are presented from different studies.

2.1. Cable Driven Parallel Robots Background

Cable driven parallel robots (CDPRs) are a special type of parallel robots that use several
cables to manipulate the end-effector or the payload. These flexible cables replace the
traditional rigid links used in serial manipulators. By using cables, CDPRs have several
advantages over conventional manipulators which include much larger workspaces, lower
costs of manufacturing, as well as significantly increased payload-to-weight
ratios[1][2][3,4]. CDPRs have gained the attention of researchers due to these properties
and several theoretical and practical applications have been discovered for these robots

including robotic cranes, modular solar collectors, sports cameras, and many more.

The NIST Robocrane is widely accepted as one of the first implementations of a Cable
Driven Parallel Robot. It was developed in 1992 at the National Institute of Standards and
Technology in Maryland, USA. It consists of a triangular platform suspended by 6 cables.
Each vertex of the platform is connected to two cables, and the cables are actuated by 6
winches. This allows the platform to be positioned at a specific pose and orientation. The
robot is kinematically constrained when all the cables are in tension and in this case a
fixed relation is present between the length of the cables and the position and orientation

of the system. The Robocrane was capable of having both manual and closed loop control.
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Figure 2.1. NIST RoboCrane [5]

During manual control, a Stewart platform with potentiometers was used for a master-
slave rate control, while the closed loop control a computer is used to calculate the desired

cable lengths and implement position, velocity, and force control.[5]

Tang performed a detailed study of different implementations of CDPRs. Cable robots
are divided into two categories, suspended robots and redundantly constrained robots. For
suspended robots, gravity is necessary in maintaining positive cable tension. While for
redundantly constrained robots, the actuator forces are enough to maintain cable tension.
The Robocrane is an example of a suspended CDPR. Other challenges associated with
the design of cable robots include cable models, static and dynamic workspace, and
tension distribution. Based on the literature, the two most popular types of control are
cable length based (joint space) and end-effector position based (task space) control. A
simple PD controller-based feedback control using cable lengths is a common control
scheme, while other researchers have also used Computed Torque controllers in the task
space, but these rely on the availability of accurate sensors. Cable robots are most
commonly used in large telescopes, medical rehabilitation robotics, sports cameras, and

large simulators.[3] These CDPRs are used in a variety of applications ranging from



mobile cranes, rehabilitative equipment, video cameras etc.[6] CDPRs have also been
extensively used in rehabilitative applications [7-9]. The controller for a CDPR is
generally designed in the task space of the robot as the dynamic equations of the model
are also determined in the task space. Therefore, the design of the controller becomes less
challenging. However, control in the task space can require many complex sensors, so the

joint space might be preferable for controller design.[10]

2.2. Cable Robot Modelling

The use of cables to manipulate the end effector introduces a unique challenge as the
cables can only be in tension and cannot exert a compressive force. The slackness of the
cables is also not desirable. This introduces a new and unique control problem. CDPRs
are divided into under-constrained, fully constrained, and redundantly constrained
categories. In under-constrained systems the tension of the cables is usually provided by
gravity. In fully constrained systems, an added extra actuator is used to provide tension
in the cables using internal forces, and in redundantly constrained systems, even more
actuators are added as compared to a fully constrained system, and the tension can be

provided either by suspension or with internal forces.[11]

Qian et al. conducted a review of CDPRs covering the history of CDPR development.
Due to the development of control theory and design improvements, CDPRs have greatly
improved in terms of their dynamic and kinematic performances and have seen increased
use in practical applications. However, they are still rarely used as compared to traditional
serial manipulators. The review paper analyzes several Cable Driven Parallel robots
which are controlled using different algorithms. It highlights the need for the integrated
design of different configurations of CDPRs, the development of higher performance
control algorithms, and — lastly — to improve the stiffness and load bearing capacity using
composite materials [6]. Electronic motors are the most common methods of actuation.
The cables and pulleys used for the system can be of different materials. A variety of
controllers have also been used to control CDPRs such as hybrid, PD, model predictive,
and adaptive control highlighted in [11-14], however the most common controller is a

PID controller. The CDPR can be seen as a combination of the actuator, the pulleys, the



cables, and the end effectors. The position of the pulleys and the actuators limits the final
achievable workspace.

The open-source WireX [15] has the capability to generate geometry and perform
kinematic and static analysis of CDPRs. It is also able to analyze the workspace of the
designed CDPRs as well as other useful features. However, it has limited design and

analysis capabilities, and it is not able to design a controller for the analyzed system.

A CDPR has the additional challenge compared to a regular parallel manipulator with
rigid links, that it is only able to pull on the end-effector and not push. This means, the
cables need to be in a constant state of tension. Oh et al. provide a detailed approach to
determining the statics and dynamics of a generalized cable robot with ‘n’ number of
cables as well as determining the feasible regions for the cable arrangements. To maintain
positive cable tension, a cable robot needs one more cable than the desired DOFs. So, for
a planar robot if planar movement and rotation is desired, a four-cable robot would be
suitable. This paper particularly presented an approach to control cable robots with

redundant cables while also maintaining positive cable tension [1].

Based on the resources studied above, the design problem of the cable robot can be
divided into a few different sections. CDPRs can have a number of different
configurations and orientation, any number of cables, controllers, and these robots each
have a different performance objective.

Zarebidoki [16] performed a thorough review of cable robots considering these exact
parameters. The CDPRs are classified into Incompletely Restrained, Completely
Restrained, and Redundantly Restrained mechanisms. Based on the literature,
redundantly constrained devices are not very common, while completely restrained
devices are the most common. Incompletely restrained devices are also used but they are
usually feasible for suspended devices. Planar and Spatial devices are also equally
common but planar devices are almost always completely restrained. While modelling
the cable robots, another important aspect to consider are the cables. The simplest way of



modelling the cables are non-elastic massless cables. Other papers model cables with
elasticity, and cables with mass, while a small subset of the literature deals with cables
with both mass and elasticity. Cable elasticity is important as the extension of the cables
can have important implications regarding trajectory tracking and control. Cable mass
can cause cable sag, especially in larger devices. Cable sag is very complicated to model
and can often be neglected for small to intermediate sized cable robots, while cable
elasticity is more relevant to most design problems. The paper also shows the workspace
of a CDPR as an important factor and compares literature optimizing the workspace based
on the positioning of the cable configurations. The wrench-closure workspace considers
the area where positive tension can be maintained while the wrench-feasible workspace
considers both upper and lower bounds for the cable tension. Lastly, the trajectory
planning and control of the cable robots are an important factor. For robots with inelastic
or elastic cables, different control approaches can be developed but PID and fuzzy control

were common techniques.

Figure 2.2 below shows the profile for a cable under sag.
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Figure 2.2. Sagging Cable Profile between two points [17]

The cable catenary equations are well known, and for the case where the cable is

inextensible the equations are given below [17],
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Where Xiend and ziend are the coordinates in the global frame of the end point of the cable,
Txi and T are the components in the x and z direction of the cable tension, pv is the
density of the cable, g is gravitational acceleration in the negative z direction, L; is the
cable length, and Ti is the total magnitude of cable tension. To obtain the cable lengths,
and ultimately the desired cable angles for a specified position, these equations need to
be solved iteratively using a function like fsolve() at each time step as well as some kind
of optimization algorithm which finds the solution with the cable tensions kept to a
minimum. With the addition of cable elasticity, cable sag becomes a very challenging and
computationally expensive aspect of the cable robot which more most cases except really
large cable robots can be essentially ignored.

2.2. Trajectory Generation

Trajectory generation is another important part of the cable robot design process. Hwang
[18] used a trajectory generation algorithm to suppress oscillations in under-constrained
cable robots such as those suspended due to gravity. The unwanted oscillations are
prevented according to both experimental and simulation data.

Kevac [19] also developed an algorithm to generate the trajectory of a cable suspended
parallel robot which is cable of tracking different objects. Jiang [20] developed a
trajectory generation method where considering the mathematical model for the
kinematic and dynamic formulations of the robot. It is assumed that there are positive
constant ratios between the cable tensions and cable lengths. Assuming positive constant
ratios between the cable tensions and lengths, the dynamic equations can be converted
into linear differential equations with constant coefficients for positioning. Concurrently,
the orientation equation becomes a pendulum-like differential equation. These equations

can then be solved to determine the trajectory.



In the literature, there is a lack of publications where CNC-based trajectory generation
techniques have been implemented with cable robots. These trajectory generation
techniques use 5™ order splines which guarantee continuity of the trajectory at least up to
the second derivative which can result in smoother trajectories for different custom and

non-custom shapes.

2.2. Control System

The controller chosen for implementation with the cable robot model is a Cascade
Controller. Cascade controllers are popular for controlling electronic motors and consist
of two cascading control loops. The inner-loop is a speed control loop, whereas the outer-
loop is a position control loop. Cascade control can be particularly beneficial in cable
robot applications. When controlling cable robots, it is often difficult to obtain the exact
position of the end-effector so joint space-based control strategies are preferred over task

space control strategies.

Khosravi [21] developed a cascade controller for a 3-DOF planar-cable-robot which is
similar to our application. Experimental results showed that the cascade controller was
able to track the desired trajectory effectively with very minimal error. Similarly, [22]
developed an adaptive cascade controller for the KNTU CDPRM which is a 6-DOF cable
robot. Experimental results again verified that the tracking errors are quite small. The
adaptive algorithm is able to change the gains of the controller as needed. Khalilpour [23]
developed a cable robot and used sliding mode cascaded controller for trajectory tracking.
During experimentation, the results for both cases with and without the inner loop are
given and the addition of the inner loop, i.e., using the cascade control structure

significantly increased the tracking performance.

2.2. Cable Robot Optimization

The scope of this thesis is limited to Planar CDPRs which are completely restrained, that

is the number of cables used in the robot is the number of DOFs plus one. Table 2.1 below
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shows different sources and the associated cost functions being used for cable robot

optimization.

Table 2.1. Cost Functions for Cable Robot Optimization

No. Paper Name Objective Function

1 “On the Design of Cable-Suspended Planar | Maximize workspace,
Parallel Robots” [24] Maximize Global Condition

Index

2 “Workspace optimization for a planar cable- | Maximize workspace
suspended direct-driven robot” [25] efficiency (based on shape
of workspace rather than

size)

3 “DESIGN AND OPTIMIZATION OF A | Minimize sum of maximum
PLANAR CABLE ROBOT” [26] tensions during

performance of task

4 “Optimization based Trajectory Planning of | Minimize position and
Mobile Cable-Driven Parallel Robots” [27] velocity vectors to find

most efficient path

5 “Design and optimization of three-degree-of- | Maximize workspace and
freedom planar adaptive cable-driven parallel | Dexterity

robots using the cable wrapping phenomenon”
[28]

6 “Optimizing Stiffness and Dexterity of Planar | Maximum dexterity with
Adaptive Cable-Driven Parallel Robots” [29] target stiffness, OR,
Maximum stiffness with

target dexterity

7 “Orientation ~ Workspace and Stiffness | Maximize stiffness,
Optimization ~ of  Cable-Driven Parallel | Tension Factor, Minimize
Manipulators with Base Mobility” [30] error between desired and

actual joint positions
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“Multi-Objective Optimal Design of a Cable-
Driven Parallel Robot Based on an Adaptive
Adjustment Inertia Weight
Optimization Algorithm” [31]

Particle Swarm

Maximize Workspace
Index, and Dexterity Index

“Simulation and optimization of automated

masonry construction using cable robots” [32]

Minimize spline time,
Maximize stiffness,
Minimize energy

consumption

10

for
Robots

Based on Various Workspace Conditions” [33]

“Cable Attachment

Reconfigurable Cable-Driven Parallel

Optimization

Maximize Tension Factor,
or Minimize Cable Force

Sum

11

“Kinematic Analysis and Design Optimization of

a Cable-Driven Universal Joint Module” [34]

Maximize tension-closure

workspace volume

Analyzing the different sources, Dexterity, Stiffness, and Workspace optimization stand

out as a clear trend, therefore these cost functions have been chosen for the cable robot

optimization procedure.
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3. MODELLING METHODOLOGY

This chapter will describe the modelling problem of the cable driven parallel robot. This
will include the kinematics, dynamic equations of the cable robot, positive tension
algorithm, and addition of cable elasticity to the model.

3.1. Problem Formulation

The scope of this thesis is limited to a planar 4-Cable robot. The robot has 3-DOFs
namely, translatory motion in the X-axis, translatory motion in the Y-axis, and rotation
about the Z-axis (rotation in the plane of motion). As the robot has 4 cables and 3-DOFs,

it is redundantly actuated and has the ability to maintain positive tension in the cables.

If a cable robot is not redundantly actuated it is not able to maintain positive cable tension
without an external force (such as gravity). 4 cables allow the planar robot to have
freedom of motion and rotation while maintaining positive cable tension. If more than 4
cables are used, it does not affect the DOFs of the cable robot however the computational

complexity of the problem increases.

To model the cable robot, the first step is to determine the forward and inverse kinematics
of the system as well as the dynamic formulation. Using the obtained equations, the model
of the Cable Robot can be simulated using MATLAB/Simulink. The basic model of the
cable robot needs to be a general formulation where the user can specify different cable
connection points, motor positions, mass, inertia, workspace etc. according to the design
specification. After the basic model is developed, cable elasticity has to be incorporated
followed by the positive cable tension algorithm which ensures that none of the cables
end up sagging which is very important. The mass and subsequent sagging of cables has
not been considered within the scope of this thesis as it is generally negligible apart from
some very large cable robots.

Figure 3.1 below shows the general configuration for a planar CDPR with four cables.

Here A; are the motor positions, B are the cable connection points measured from the
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center of the end-effector, L; are the lengths of the cables, and o; are the angles made by
the cables in the global frame. The global coordinate system used for the modelling
process is located at the central point of the area defined by the motor positions. The

motor positions and end-effector cable connection points are usually symmetric.

Figure 3.1. A generic 4-cable planar robot [10]

3.2. Cable Robot Modelling — Inverse Kinematics

For cable robots, the inverse kinematics problem is usually more important and is easier
to solve as compared to the forward kinematics problem. For the inverse kinematics, the
position and pose of the end-effector is given while the required motor positions or cable
lengths must be calculated. Figure 3.2 below shows the kinematic configuration for the

manipulator.
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Figure 3.2. CDPR showing the cable and end-effector angle [10]

As the motor positions Ai and the end-effect cable connection points B; are usually
symmetric, it can be said that these points are on circles with radii Ra and Rg respectively.
We can also define 0ai and 0gi which are the angles of the lines connecting the points A;
and B; to the center of the global coordinate system assuming the end-effector is placed
at that point. Then, if the end-effector rotates by an angle ¢, the new angles ¢i of points

Bi are given as,
¢i = ¢ + 05, 3.1)
Based on these, the points A; and B; can be given as,
A; = [Racos (84), Rasin (6,)]" (32)
The end-effector position and orientation is given as,
X = [x6,y6, 1" (3.3)
And the joint variables or the cable lengths are given as,
L =1Ly Ly L3 Ls]" (3.4)

Then for each limb where i =1, 2, 3, 4, based on the geometry, the loop-closure equation

IS given as,

A,G = A,B, — GB, (3.5)

Rewriting the loop closure equation in terms of its components,
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X¢ — Xa; = Li cos(a;) — Rp cos(¢;)
(3.6)
Y¢ — Yai = Lsin (a;) — Rgsin (¢;)
Here, xai and yai are the x and y components of the position vectors of points Ai and B;
respectively. To solve the above equation, it is necessary to eliminate oj and solve for L.
Rearranging we obtain,
L; cos(a;) = x; — x4; + Rg cos(¢;)
(3.7)
Lisin(a;) = yg — Yai + R sin(¢;)
By adding the squares of both equations, the expression for calculating the cable lengths

is given as,

2 . 211/2
L= [(xG — Xa; + Rpcos (¢i)) + (yg — y4i + Rpsin (¢i)) ] (3.8)
And the limb angles o; are obtained as,

a; = Atan 2[(ys — Ya; + Rpsin (¢,)), (x — xa; + Rzcos (¢,))] (3.9)

Therefore, the inverse kinematics problem has a unique solution for each manipulator
location. This approach is used to calculate the required cable length and the equivalent
motor angles as a function of the generated trajectories so motor reference trajectories

can be generated in the task space for the cascade controller described in section 5.

3.3. Cable Robot Modelling — Forward Kinematics

In the forward kinematics problem, the cable lengths (L;) are known and the manipulator

location needs to be determined. First, we define two intermediate variables given below,

(= S o ) @10
Then taking the square of Equation 3.11, it becomes,
L} = (g +x)* + (v + y))? (3.11)
Solving for xg and yg,
X2+ yE+rixg+sye+tu; =0 (3.12)

Where,
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r= 2%, S =2y, W =xf +yf —LF (3.13)

Equation 3.13 provides four quadratic relationships for i = 1, 2, 3, 4. Subtracting each

equation from the other yields linear equations in terms of xg and ye.

X
A [yg] =b (3.14)
Where,
TL—Ty S1— 5 Uz —Ug
T | W 619
Ty =11 S4— 51 U — Uy

All the elements of the A and b matrices are functions of ¢. Although only two equations
from above are sufficient to evaluate X and yc in terms of ¢, however using all four
equations helps to achieve tractable solutions even at singular configurations. This

equation can be solved using the pseudoinverse of A,
X6] _ gt .
ya] =At.b (3.16)
Where,
At = (ATA) AT (3.17)

Equation 3.16 gives the solution with least-squares error for xc and ys. To obtain ¢,
Equations 3.12 and 3.16 are combined, resulting in a single function where the unknown

variable is ¢:
fi(¢) = x& + yé +rixg + s;ye + w; (3.18)
Then consider,
4
F@) =) fi®) (319)
i=1

and use numerical methods that use iterative search routine to obtain the actual solution
for the function f(¢) = 0. It appears that any function from Equation 3.18 could be used
to obtain the solution, however, all the four equations are summed up and used together,
it allows the equation to have a tractable solution even at singular configurations. Figure
3.3 below shows the flowchart explaining the procedure for the forward kinematics

problem.
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Figure 3.3. Iterative Forward Kinematics Procedure for a CDPR [10]

3.4. Cable Robot Modelling — Dynamics

Figure 3.4 below shows a Free-Body-Diagram for the cable robot end-effector.
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Figure 3.4. Free-Body-Diagram for an end-effector attached with four cables

Here, fq is the vector of external forces, M is end-effector mass, g is the vertical
acceleration is gravitational effects are considered, T are the cable tensions, B; are the
cable attachment points, Rg; are the distances of B; from the COG of the end-effector, 14
is external torque, and Og; are the angles in the global coordinate system of the points Bi.

CG is the position of the end-effector in the global coordinate system given as,
CG = [x¢,¥6 ] (3.20)
Then the positions of B; are given as,
B; = [xg + Rpi * cos (0p; + ¢) ¥y + Rp; * sin (0p; + ¢)] (3.21)

Then the unit vector from the position of the center of the end-effector CG, to the

connection points Bi is given as,

NRg; =

I(xBi — x6) /N (xgi — %)% + (Vg — }’G)zl (3.22)
i — ¥e) /N (pi — %6)% + Vi — ¥6)?

Similarly, the unit vector between Ai and Bi is given as,

(Xai = %5:) /| (Xai = X51)% + (Vai — V5i)? (3.23)
Vai — ¥8i) /N Cai = X50)% + Vai — Vbi)?

Si:

Then the dynamics equations for the 3-DOF planar robot end-effector are given as,
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M.%Xc = fax + T1S1x + T2S2 + T3Sz + TySyx
MYG = fdy - Mg + Tlsl,y + Tzsz‘y + T3S3‘y + T4_S4_’y

IL.§=14+ (RpiNgy, X T1S1) + (Rpingy, X T1S1) + (Rpingy,
+ (Rping,, X T151)

3.5. Cable Robot Modelling — Motor Dynamics

Figure 3.5 below shows the free-body-diagram of a motor or actuator.
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Figure 3.5. End-effector dynamics [35]

The equation for the dynamics of the actuator can then be written as,

JB+CB+f=1t—1T

(3.24)

(3.25)

X T;1S1)
(3.26)

(3.27)

Where, the inertia of the motor is represented by J, B is the motor angle, C is the damping,

fis coulomb friction, t is the torque supplied by the motor, r is the radius of the motor or

cable spool, and T is the tension in the cable attached to the motor. Assuming the tensions

acting in the cable are larger than zero, the tensions can be expressed in terms of the motor

torque, speed and acceleration given as below,

1 .. .
T=—G-JE-Ch-f)

(3.28)

The torque signal from the controller is used to obtain the required tensions.
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3.6. Maintaining Positive Cable Tension [35]

It is necessary to always maintain positive cable tension to prevent cable sag, as the torque
command obtained from the controller may not always achieve this. Equation 3.29 below
shows how the cable forces (T) can be used to obtain the resultant end-effector wrench

vector (WR) by multiplying with the Jacobian matrix (S).
ST = Wy (3.29)

For CDPRs with actuation redundancy, like our case, obtaining the required end-effector

wrench Wr can have infinite solutions solving the above equation.
Inverting Equation 3.29 we can write it as,
T=S"Wy+ (I, —S*S)z (3.30)

The first term of the equation represents the particular solution required to obtain the
desired wrench, while the second term is the homogeneous solution that is able to project
the vector z into the null space of the Jacobian matrix S. For calculating positive tensions
for the planar robot possessing one redundant actuator, the approach is given below,

tp1 ny
tpz n;

T = +a 3.31
tps ns (3:31)
tps Ny

Here the first vector is the solution of the first term of equation 3.30, while the second
vector ‘N’ is the kernel vector obtained from the matrix S, multiplied by arbitrary scalar
a. This approach determines if a specified point is inside the static workspace for a given
CDPR. To ensure the point is in the static workspace, all components of N = [n1, n2, nz,
ns]™ must have the same sign, i.e., all nj >0 or ni < 0. If any n; = 0 then the point is not in
the static workspace. If the above conditions are satisfied it is possible to find a scalar a

that guarantees positive tensions. Here N is given as,
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([ cos (0, —6; —6,) —cos (B, — 03 +6,) N
|+sin (6, — 05 + 0,) —sin (0, + 05 — 6,)]
n1 [ cos (91 + 93 - 94) — COS (01 - 03 - 94) ]
_ nZ _ _+Sin (91 + 93 - 94) - Sin (01 - 03 + 94)_
N N n3 N < [ cos (91 - 92 - 94) — COS (01 + 02 - 94) ] ( (332)
Ny |+sin (6; — 0, — 6,) +sin (6; — 6, + 6,)]

[ cos (91 + 92 - 93) — COS (01 - 02 + 93) 1
__Sin (91 - 92 - 93) - Sin (01 - 02 + 93)_

—
N

Here 0 are the cable angles and the allowable angles are 0° < 01 < 90°, 90° < 6, < 180°,
180° < B3 < 270°, and 270° < 64 < 360°. For these given ranges, the signs of all the
components of N are always the same for the square formed by the four motors, decreased
by half the length of the end-effector on the sides and increased at the top and bottom for
the general configuration shown in Figure 3.1.

a from Equation 3.31 can be calculated as given below,

R
ai=M (3.33)

n;

Then, the largest o is selected at each control cycle. The tensions obtained from Equation
3.31 are input to the positive tension algorithm and the new tensions are used to obtain
the actual torque signal given as,

Teom = Tpos * 1 (3.34)

Here tcom IS the torque signal, Tpos is the positive tension, and r; is the motor radius. The
torque command is supplied to the motor which generates a torque depending on the
torque-speed curve of the motor. Figure 3.6 shows a typical torque-speed curve for a
PMDC motor.
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Typical PMDC Motor Performance
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Figure 3.6. An example of a motor’s Torque-Speed Curve

The torque generated by the motor is used in Equation 3.28 to obtain the acceleration,

velocity, and position of the motors.

3.7. Addition of Cable Elasticity

For adding cable elasticity, the extension of the cable needs to be determined. For a given
cable, the actual length of any cable would be given by the actual difference between the
location of the points Ai and Bi. This distance is written as AiBi. The unstretched length
of cable that is released from the motor spool, is given as f.ri, and the initial cable lengths
when the end-effector is at its initial location are represented as Lo and can be calculated
using equation 3.8.

Each cable has a certain stiffness, ks; which is given as,

EA
ksi = L_l (3.35)
Then the cable forces for elastic cables are given as,
Ty = ksi(AiB; + Bri — Loi) (3.36)

Here AiBi is the actual cable length, Pri is the length of the cable unwound from the motor,
and Lo, the initial cable length at the initial position. This force is then used in the dynamic
equations 3.24, 3.25, and 3.26. Figure 3.7 below shows the diagram of the elastic cable.
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Figure 3.7. Diagram of Length of Elastic Cable
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4. TRAJECTORY GENERATION

This chapter will discuss three trajectory generation methods. These are CNC trajectory
generation methods which have been implemented for generating trajectories for cable
robots. These methods use the trapezoidal acceleration profile to generate different
trajectories. Methods 1 and 2 use a combination of linear, circular, and micro-spline
interpolation to generate standard and custom trajectories. Method 3 uses splines to

generate trajectories based on provided coordinates for a custom trajectory.

4.1. Trapezoidal Acceleration [36]

Figure 4.1 shows the trapezoidal acceleration profile. The profile is divided into 7 distinct
sections. Initially the acceleration is zero, but it increases steadily during section 1 until
it reaches a value A. In section 2, the acceleration remains constant at this value A. In
section 3, the acceleration reduces until it becomes zero. Section 4 consists of a constant
velocity section, so the acceleration is equal to zero. Section 5 consists of a deceleration
phase, where the deceleration increases until it reaches a value -D, followed by a phase
of constant deceleration in section 6, and in section 7 the deceleration slowly decreases
to zero. The profile has a starting velocity of fs, and ending velocity of fe, and a constant
velocity reached during section 5 given as F. The time duration for each section is given
as Ty, To, T3, T4, Ts, Te, and Tr.

The Jerk during these phases is given as,

i 0<t<t
0 t<t<t,
—J; t,St<t,
Jo=| 0 H<t<t, (4.1)
—Js ty St<tg
0 ts<t<tg
J; te<t<t,

The acceleration, velocity, and position are then given as,
t
a(t) =a(t;) + | J(r)dt 4.2)
ti
t

£ = £t + f a(@)dr 4.3)

t
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Figure 4.1. Trapezoidal Acceleration Profile

Acceleration is given as,
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Here 1« Is a relative time parameter. It begins from zero at the start of each phase k.
Velocity is given as,

( 1 -

fs + Ehrf, 0 <t < ty, f5: initial feedrate
1

fi + A1y, t1 St <tyfi =f5‘|'E]1Tl2

1
f2 + At _§]3T§' t, St <tsf, =f1+ AT,

1
f@=1\fs t3 St <ty fz =/ +AT3_E]3T32 =F (4.6
1
ﬁt—ifs‘fé’ ty St <tsfa=f3
1
fs — D1, ts <t <tsfs= f4§]5T52

1
kf6_DT7+§j7T%’ t6StSt7'f6:f5_DT6

And distance is given as,

f(@
( 1
st + ghti, 0<t<t
1 2 1 3
Sl+f1T2§AT2, tl St<t2, 51 =SS +]CST1+€]1T1
1 2 1 3 1 2
Sz +f2T3 +EAT3 _8131-3, tz S t < t3, 52 = 51 +f1T2 +EAT2
1 , 47
=453+ f3T4, ts St <ty S3==5,+ f,T;5 +§AT3 —g]3T3
1
Sy + faTs — g]sfg: ty St <ts S, =53+ f3T,
1 2 1 3
S5+f5T6—§DT6, t5St<t6,55:S4+ﬁl,T5—g]5T5
1 2 1 3 1 2
(Se + feT7 — EDT7 + 817T7' te St <ty S¢ =55+ fsT _EDTG

Where sk represents the total distance covered at the conclusion of each phase ‘k’. The

individual distances that are covered during separate phases are given as,
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1
ly =s1+ fTy + g]1T13

1 2
ly =53 =51 =fiT, + 5 AT;

2
L, 1
l3 =53 —5,=f,T53 + EAT3 —g]3T3
L =+ ly =54 — 53 = f3Ty (4.8)

1
ls =55 — 54 = f4Ts — g]sTs3

1 2
le = 56— 55 = fsT _EDTe

1 2 1 3
Ll7 =5S; =S¢ = feI7 _EDT7 +g]7T7

Furthermore it holds that,

A= T, =]3T;
(4.9)
D =JsTs = J;T;

Keeping in mind the fact that the require velocity ‘F’ must be reached at the conclusion

of the 3" phase,
fs=F->T =1[F—f—1]T2—AT +1]T2] (4.10)

Then the velocity at the end of the 7" phase, reached at the conclusion of the trajectory is

given as,

1 1 1 1
fr = fo= DTy 4 5J5TF = fo > Ty = 5| F = fo = 3JsT2 = DT, + 5 1,72| (411)

Additionally, according to the definition of the acceleration profile, at the conclusion of

the 7" phase, the total covered distance must be equal to the total travel length ‘L’

1 1
S7 = Sg +f6T7_EDT72+g]7T’? =L (412)

4.1.1. Linear Interpolation

Figure 4.2 shows the representation for linear interpolation from point Ps to Pe with a

velocity f.
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X, X,
Figure 4.2. Linear Interpolation between two points
The path and angle of travel is given as,
L = Ax? 4+ Ay?,Ax = x, — X5, Ay = Y, — ¥s (4.13)
A
0 =tan™ () (4.14)
Ax

Then the trapezoidal acceleration approach described in section 4.1 is used to calculate
the variation of displacement, velocity, acceleration and jerk. The displacement variation
is added to the initial position to generate the tool trajectory.

4.1.2. Circular Interpolation

Figure 4.3 shows the representation for circular interpolation from point Ps to Pe with a

velocity f.
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Figure 4.3. Circular Interpolation between two points

The path and angle are given as,

L =R(6,-6,) = R6, (4.15)
tanf, = y—e, tanfg = % (4.16)
e xS

The change in position is given as,
6(k) =1l(k) —l(k —1),6(k) = RAO(k) 4.17)

The path as a function of time is given as,

I(t) = RO(t) (4.18)
o)) = (4.19)
I(k) = L(k — 1) + 8(k) = I(k — 1) + RAG (k) (4.20)

And the rotational velocity is given as,
f
== 4.21
w(t) =7 (4.21)
And the rotational position is,

Then the x and y position [x(t), y(t)] and velocities [fx(t), fy(t)] are given as,
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x(t) = RcosO(t) = Rcos (% t) (4.23)
y(£) = Rsind(t) = Rsin (g t) (4.24)

d
£.(0) = d—’: - —gRsine(t) - —g (0 (4.25)
fy (&) = % = %Rcose(t) = %x(t) (4.26)

Similar to the linear interpolation, the trapezoidal acceleration function is used to
determine the displacement, velocity, acceleration and jerk variation which is used to

obtain the trajectory using the above equations.

4.1.3. Microsplines

To construct different shapes, they are divided into segments consisting of linear and
circular sections. These segments are joined using 5™ order splines, particularly sharp
corners which can be difficult for simulation and control. Figure 4.4 below shows two

linear segments joined by a spline.

10 *

Y [mm]

' ' ' ' ' ' End(20.0

0 4+ +/N NN N N
Stari(u-uuuu

Figure 4.4. Spline at the corner between two line-segments
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The x and y equations for the spline is written in the plane formed by the start, end, and

corner points for the spline. The equation for the 5" degree polynomial is given as,
X = ATy + DTk + T3 + di, T2 + e, T + fix (4.27)

Here, aix, bix, Cix, dix, €1, and fix are the coefficients of the 5 order polynomial while 1«

is the normalized time. Ty is the total time of spline travel and t is the time so,

Ty =

t
T_x (4.28)

Since the equation is of the 5" degree, it has 6 unknowns (coefficients). If the first and
second derivatives are taken for x(tx), the initial conditions can be used to obtain the final
expressions for the splines. The initial conditions include qox the spline starting position,
gwx the spline ending position, vox the spline starting velocity, vix the spline ending

velocity, aox the spline starting acceleration, and aix the spline ending acceleration. The
solution for the equation is presented below,

X
= Qox + tvox + (agxt?)/2
— (£°(6Gox — 61x + 3Ty Vox + 3T V1y + (T2a0,)/2 — (TEa1x)/2))/T¢ (4.29)
— (t*(10q0x — 10qyy + 6Ty voy + 4Ty 1y + (3T a0x)/2 — (T2a12)/2)) /T3
+ (t*(15qox — 15q1x + 8TyVoy + TTyv1y + (3T a0,)/2 — (T2 a1,)/2))/ T
The expression for velocity is given as,
X
= Vox + taOX
— (5t*(6qox — 6q1x + 3TxVox + 3Tev1y + (T2a0,)/2 — (T2 A1)/ 2))/ T2 (4.30)
— (3t*(10qox — 10qsx + 6Ty vy + 4T V15 + (3T a0,) /2 — (T1,)/2))/ T
+ (4t3(15q0x — 151y + 8Ty oy + TTev1y + (3T 0x)/2 — (T2a12)/2)) /Ty

The expression for acceleration is given as,
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¥

= Qox

— (20t3(6qox — 61y + 3TyVox + 3TyV1y + (TEa0x) /2 — (T2a1x)/2)) /T2 (4.31)
- (6t(1OCIOx - 1O(hx + 6Tx7-70x + 4Txv1x + (3sza0x)/2 - (szalx)/z))/sz

+ (12t2(1SCIOx - 15(hx + 8Tx7-70x + 7Txle + (3Tx2a0x)/2 - (szalx)/z))/TJ?

And the expression for jerk is given as,

== (60t2 (6CIOx - 6Q1x + 3TxVOx + 3Txle + (szan)/Z - (szalx)/z))/TxS

- (6(1OQOx - 1()('le + 6Txv0x + 4Txle + (3sza0x)/2 - (szalx)/z))/’rx3

(4.32)

+ (24’t(15q0x - 15qlx + 8Txv0x + 7Txle + (3Tx2a0x)/2 - (szalx)/z))/TJ?

These same equations can be written for the y-axis in the same manner and these provide

the position, speed, acceleration, and jerk profile for the spline.

4.1.4. Determination of Spline Start and End Points

The coordinates of the Start-End points are calculated according to the type of segment

(Arc or Line) and the definition of the cornering tolerance. A larger cornering tolerance

results in a larger spline.

As for the line segment, the start/end point of the spline is found by moving
away from the corner point by the cornering tolerance on the line. The point
is determined to be the start or end point based on its position relative to the
edge of the segment.

In the Arc segment, a circle with cornering tolerance radius is drawn at the
corner point on the Arc plane. The intersection point of this drawn circle and
the Arc is the start/end point of the spline. When finding the intersection point,
the intersection formula of two circles with known center and radius is used.
Since two circles can intersect at two different points, the correct intersection
point is determined by taking the point close to the corner point on the Arc.
The intersection point with the smaller distance is the spline start/end point.
Whether it is a starting or ending point is determined by whether the segment

is before or after the corner point.
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Figure 4.5 below shows an example of the beginning and ending points of the spline when
two line segments are being connected. The distance between the start/end points and the

corner point is equal to the cornering tolerance.

ot 4
x
i Segment 1 |
2 Segment 2
®  Spline Start
¥ Spline End
- F Corner Paint .
_E - -
R il
10 F .
0 2 4 G 8 10

Figure 4.5. Spline Start/Corner/End points between two line segments

Figure 4.6 below shows the start and end points of the spline when a line segment is being

connected with an arc segment.
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Figure 4.6. Spline Start/Corner/End points between a line and arc segment

Figure 4.7 below shows the start and end points of the spline when two arc segments are
being connected.
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Figure 4.7. Spline Start/Corner/End points between two arc segments

4.1.5. Spline Start/End Acceleration and Velocity

The starting and ending acceleration for the spline depends on the type of segment before
and after the corner point of the spline. Table 4.1 below summarizes the different

scenarios.

Table 4.1. Starting and Ending accelerations for spline for different segments

Segment before | Segment  after | Spline Start | Spline End
corner point corner point Acceleration (ay) | Acceleration (a,)
Line Arc 0 v1%/R

Line Line 0 0

Arc Line v9%/R 0

Arc Arc v9%/R v,2/R
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Here, vo and vi are the start and end velocities of the spline and R is the radius of the arc
segment. The spline Start-End speeds are taken from the speed of the segments. The speed
of the segment before the corner point is the starting speed of the spline. The speed of the

segment after the corner point is the spline end speed.

4.1.6. Optimization of Speed and Acceleration Initial Conditions

The above formulations are used to develop the spline-based trajectory, however if an
appropriate spline cannot be found, the bisection method is used to determine the proper

maximum speed and acceleration.

In the Bisection Method, the spline start (vo) and end (v1) speeds taken from the feed rate
are multiplied by a reduction ratio of k. The k value is initially taken as 1. The value of k
is equal to half the sum of the maximum drop rate (k) and the minimum drop rate (ki).
With the new k value, velocities and accelerations are reduced and a new spline is
searched. If a suitable spline is found, the minimum reduction rate ki is set to the current
value of k. If a suitable spline cannot be found, the maximum reduction rate ks is set to
the current value of k. Here, the k values in the range in which the appropriate spline is
found are accumulated and the difference between them is examined. The iteration is
completed when the difference is less than 0.005. The beginning and ending accelerations
within the spline occur only when there is an Arc, due to centripetal acceleration. That is,
in other cases, the initial and final accelerations are 0. Since only centripetal acceleration
acts, the acceleration reduction ratio is the square of the velocity reduction ratio. In
addition, since the speed limits along the spline are desired to be lower than the spline
starting and spline ending speeds, the max and minimum speed limits are adjusted
according to the reduced spline starting and ending speeds.

4.1.7. Determination of Correct Spline Timing

For proper spline generation, the correct travel time of the spline must be calculated so
that the total simulation time is not affected by the addition of the spline. The total
distance covered by the original trajectory without the addition of splines is two times the

cornering tolerance.

37



Then using the velocity of the trajectory where the spline is added, the travel time for the
spline is given as,

2 * CorneringTolerance

SplineTravelTime = (4.33)

Velocity

4.2. Trajectory Generation 1 — Standard Shapes

Trajectory Generation 1 uses the above defined formulations to develop many different
trajectories of standard shapes such as circle, square, rectangle etc. Figure 4.8 below
shows a standard rectangular shape which has been constructed using a series of linear

and arc segments.

5.segment

\ 6.segment/

4.segment

<— 3.segment

7.segment

Figure 4.8. Standard trajectory composed of linear and arc segments

This approach has 3 types of trajectory generation:

1. Point-to-Point: In this approach each segment starts and ends at zero velocity for
smooth transition between each segment.

2. Continuous: In this approach the trajectory has a continuous velocity between

segments
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3. Microsplines: In this approach the individual segments are joined using splines as

defined in section 4.1.3.

4.3. Trajectory Generation 2 — Custom Data

Trajectory Generation 2 accepts custom trajectory data as an input. This custom trajectory
data is resampled at the desired sampling rate, but this trajectory can have a certain
starting velocity or acceleration so splines are used to accelerate the end-effector to the
starting conditions of the custom trajectory and decelerate at the end of the custom
trajectory. Figure 4.9 below shows a custom trajectory in red and splines generated at the
beginning and end of the trajectory. Using this approach, trajectories with non-uniform

acceleration and velocities can be simulated.

For the first spline, the angle at the beginning of the custom trajectory data and a cornering
tolerance value is used to determine the starting and corner point for the spline, whereas
the end point is the first point of the custom trajectory data. Meanwhile, for the second
spline, the starting point is the last point of the custom trajectory data, and similar to the
first spline, the angle at the end of the custom trajectory data and the cornering tolerance

are used to determine the corner and end point of the spline.
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Figure 4.9. Trajectory generated for custom data

Table 4.2 below shows the initial conditions for both splines.

Table 4.2. Initial and Final Conditions for first and second spline

First Spline

Second Spline

Initial Position

Calculated according to the
angle at the beginning of
and

custom trajectory

cornering tolerance

The last point in the custom
trajectory data

Initial Speed

The initial speed is zero, the

end-effector starts from rest

The initial velocity is the
velocity at the end of the

custom trajectory

Initial Acceleration

The acceleration is

zero, the end-effector starts

initial

from rest

The initial acceleration is the
acceleration at the end of the

custom trajectory
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velocity at the beginning of
the custom trajectory

Final Position The first point in the custom | Calculated according to the
trajectory data angle at the end of custom
trajectory and cornering
tolerance
Final Velocity The final velocity is the | The final speed is zero, the

end-effector comes to rest at
the end of the spline

Final Acceleration

The final acceleration is the
acceleration at the beginning
of the custom trajectory

The final acceleration is zero,
the end-effector comes to rest
at the end of the spline

The start and corner point for spline 1 are calculated as,

Pstart_spline_l = [

P corner_spline_.1 = [

T
X(1) customdata — €0S(Ocustomdata) * CT * 2
y(l)customdata - Sin(gcustomdata) * CT * 2

T
x(l)customdata - Cos(ecustomdata) * CT
YD) customdata — SiN(Ocustomaata) * CT

(4.34)

(4.35)

Here, CT is the cornering tolerance, 6.,stomaata 1S the angle at the beginning of the

custom data which can be calculated using the first two data points as,

Ax = X(Z)customdata - x(l)customdata

Ay = y(z)customdata - y(l)customdata

(4.36)

Ocustomdata = atan (Ay , Ax)

Additionally, it may also be desired that the end-effector should start and end from a
determined point instead of arbitrary starting and ending points. This can be easily
achieved by using linear interpolation to move the end-effector to the desired starting
point of the first spline, and then from the ending point of the second spline to the desired

end point.
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4.4. Trajectory Generation 3 - Jerk Limited Trajectory Generation Using 51" Order

Spline Interpolation [36]

This trajectory generation technique also uses the trapezoidal acceleration profile
described in section 4.1. This approach is different from the previous approaches as it is
capable of generating non-standard shapes such as a spiral trajectory where the radius of
the arcs is constantly changing. 5™ Order splines guarantee continuity of the trajectory up
to the second derivative at each point. The trajectory generation procedure consists of
three steps:

1. Path Generation Using Quintic (5" Order) Splines
2. Feedrate Generation for the Path
3. Trajectory Resampling at the Control Loop Frequency

Figure 4.10 below illustrates the process.
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Figure 4.10. Trajectory generation procedure for Algorithm 3

42



4.4.1. Quintic Spline Path Generation

In CNC machining, a series of reference points are input to the machine to realize tool
motion and the process of generating these points is known as interpolation. Simpler
techniques like linear and circular interpolation were shown in sections 4.1.1 and 4.1.2,
but quintic splines aim to connect N number of reference knots with N-1 number of fifth
order splines as shown in Figure 4.11 below.

(a) Composite Quintic Spline
¥

Pz Py
Spz
T Sy
Sy il &
Far_jf -
A
}
i
/.
P
P4 } /j

Figure 4.11. Path generation with quintic splines

These splines make up an entire composite curve where continuity is guaranteed up to the
second derivative for the entire path. The point where two splines meet is called a knot
represented as Pi. To estimate the first and second derivatives at these points, a 3" order

polynomial can be fit between the points Pi.1, Pi+1, Pi, and Pi+2, given as
Q,_(u) = aiu3 + biuz + Ciu + di (437)
Here u is the cord length of each segment between knots. For a two-dimensional case,

_ Qxi _ Axi . bxi _ Cyi _ dxi
&%= Qyi]'ai B [ayi]’bi B [byi]’ci = [cyi]'di = [dyi] (4.38)

Now the cord length between two consecutive knots Pi.1 and P; is give as,

L =~ —x-1)%+ (i — ¥i-1)? (4.39)

Also, we can define additional terms as,
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Licgi A=l g+ LG A=l +H i+ iy (4.40)

Then, the coefficients of the polynomial are given as,

1 Aax 1 Abx 1 Acx Xi-1
= — J— _— 4.41
4 A [Aay] A Aby] G A [Acy] ,di [Yi—l] ( )
Where,
1y 17y li—q Xi — Xi—1 17y li—q
A= l7q, 17 lLici | Aax =[x —xiq 1Fq; li—1 (4.42)
li3—1,i+1 li2—1,i+1 li—l,i+1 Xit2 — Xi—1 li2—1,i+1 li—1,iv1
li3—1 Xi — Xj-1 li—q
Dpe =1 Xir—Xxi1 Ly [, A
ll—l,i+1 Xivz — Xi—1  li—1i41
5 , (4.43)
Ly lisq Xi — Xj—1
= li3—1,i liz—l,i Xi+1 — Xi—1

3 2
li—l,i+1 li—l,i+1 Xit2 — Xj—q

Aay, Any, and Acy can be calculated similarly by substituting the x terms with y. Then the
first derivative (tj) and the second derivative (n;) at each know can be calculated as:

t.: do:
ti A= XL = & |u = li—l = (3aiu2 + Zbiu + Ci)lu:l (444)
tyl du

(4.45)

=[] - S

However, the knots P1, Pn-1, and Pn don’t have enough points before or after them so t;

and ny is estimated using,

Q2(Wlu=0 (4.46)
tn-1 and nn-1 are obtained using,
Qn-2 (u)|u=IN_3+lN_2 (4.47)
tn and ny are obtained using,
Qn—2(W lu=ty_s+ly_p+iy_s (4.48)
This gives the following equation,
(4.49)

t; = 3a,u? + 2byu + ¢y, ny = 6a,u + 2b, foru =0
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tN—l = 3aN_2u2 + ZbN_Zu + CN_Z,nN_1 = 6aN_2u + ZbN—Z fOI’ u=

4.50
In-3+ Iy (4.50)
tN = 3aN_2u2 + ZbN_Zu + Cn—2, Ny = 6aN_2u + ZbN_2 fOf u= lN—3 +
(4.51)
Iy—z + Iy-1
The expression for the quintic spline is given as,
Si(U) = Aiu5 + Biu4 + Ciu3 + Diuz + El-u + Fi (452)
Which is fit between consecutive knots. Then for two-dimensional case,
_ Sxi _ Axi _ Bxi _ in
=[5 = [4] = [0 = [5] (459

Now the following boundary conditions must be considered, to fit a spline between two

consecutive points Pi and Pi+1

X; Xi11 \
Si(u)|u=0 =Dpi= I:yi] :Si(u)|u=li = Di+1 = [yi:l]
dsS;(u) e [txi dS;(u) el [tx,i+1]
du u=0= l tyl ’ du u=li i+l ty,l+1 ’ (454)
d?S; (w) o nxi] d?S;(w) o [nx,i+1]
du? o - nyi ’ du? L — Mi+1 — ny,i+1 )

The x-axis solution for equation 4.52 is given below. The solution in the y-direction can

also be easily obtained by substituting each ‘x’ term with ‘y’.

1
Ayi = 5 [6(xi11 — %) = 3(txivs + txi)li + 0.5(np 41 — i) 7]
L

1
Byi = i [15Cx; = xi41) + (7t ivn + 8tx)li + (1.5ny; — iy 141) 17]
L

Cyi = 113[10(xi+1 — %) = (4ty a1 + 6ty )l; — (1.5ny; — O-Snx.i+1)li2]}
: (4.55)
D,; = 0.5n,;
Eyvi =ty
Fyi = x;
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Once the coefficients are determined, the total travel length can be calculated as,

1

N—- N—-
L= s = Zf ds (4.56)

i=1 i=1

Here L is length of travel or total length of the trajectory while s; represents the length of

each individual spline segment.

The length for each arc s; of the spine is equal to each chord length ‘li’ from each spline
split into M; segments. Then, for each increment of the chord, the corresponding spline
points are calculated. Then the change in the x and y positions can be used to obtain the

displacement si. Therefore, Mi can be written as,

li
M; = round (F : Ts) (4.57)

Then cord increment becomes,

The Mi points on the i spline are given as,

x..
[J’Z] = A;( - dl)® + B - dlp)* + GG - dl)* + Dy - dly)?

(4.59)
The arc length between 2 successive points is given as,
~ 2 2 _ 2 2 (4 60)
dsij = [(dxyj)” + (dyi;)” = | (ij = x0j-1)" + (V35 = Vij-1) :
Then the total travel length becomes,
N-1 ; N-1 i
L= Z f s = Z ds;;
i=1 i=1 j=1
(4.61)
N-1 i
= \/(xu Xij— 1) +(le Yij- 1)
i=1 j=1

Sometimes velocity fluctuations occur due to the actual arc length and the chord length
of segments being different different. For interpolation without this fluctuation in
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velocity, the magnitude of displacement between each interpolation step is kept constant.
This increment As is defined such that the speed at the time step being equal to the

sampling rate T; is not larger than the maximum speed requirement.

So if the total travel length (L) was covered with the maximum velocity (fmax), then the

step size is given as,

L
N; = round ( ) 4.62
' fmasz ( )

Which gives,
As = L/N; (4.63)

Path increment can also be given as,

As = /(Ax)? + (Ay)? (4.64)
Here the equations are given as

Ax = Xij+1 — Xij = Axiu5 + Bxiu4 + Cxiu3 + Dxiuz + Exiu + in — Xjj

A_'y = yi,j+1 - yU = Ayius + Byl-u4 + Cyl-u3 + Dyiuz + Eyiu + Fyi - yl]

} (4.65)

It is necessary to find the variable ‘u’. It is given by the tenth order polynomial,
g@w) = agu® + ayu’ + - + ay (4.66)

ay = A% + A,

a1 = 2(AyxiByi + AyiByi)

ay = B + B2 + 2(AxiCyi + Ay Cyyp)

as = Z(BxiCxi + ByiCy; + AyiDyi + AyiDyi)

@y = C2 + C2 + 2(AyiEyi + Ayiyi + ByiDys + ByiDy;)
as = 2(AyiFy + AyiF' i 4 ByiExi + ByiEy; + CiDyi + CyiDy; (4.67)
ag = D2 + D;i + Z(BxiF' xi T ByiF' i + CyiEyi + CyiEyi)
a7 = 2(DxiExi + DyiEyi + CuiF” xi + CyiF' y1)

ag = B + EL + 2(DyiF' 5 4+ DyiF' )

Qoo = 2(EyiFy; + EyiF'")

a0 = F* + F'? ,; — (As)?
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The equation can be solved using iterative solving methods. It was solved using the
Newton-Rhapson method as shown below. A good initial guess for this to work well is
As = j, where j is the number of steps in each spline segment.

f(xn)

x‘l’l+1 = x‘l’l _f,(x )
n

(4.68)

4.4.2. Trajectory Generation Algorithm

This algorithm requires some inputs which define the acceleration profile. These are the

following:

e Sampling Time (Ts)

e Total Distance Covered (L)

e Total Interpolation Steps (N;)

e Initial, desired, and final velocities (fs, F, and fe, respectively)
e Magnitude of desired Acceleration (A) and Deceleration (D)

e Maximum Jerk Magnitude (J)

First it must be checked that the Acceleration, Deceleration, and Jerk variables have the

proper sign.

A=sgn(F—f)-1Al, Ji =Js =sgn(4)- Ul} (4.69)

D =sgn(F—f,)-|D|,Js =], =sgn (D) -|/|

In the trajectory's initial phase, if the value of A is less than zero, this signifies
deceleration, however if the value of D is less than zero, this denotes acceleration. If both
A and D are zero in value, then the trajectory only has a constant speed phase.

The input for the total interpolation steps must also be realistic. If the magnitudes of both
acceleration and deceleration variables is not zero, then N; > 4 so that the acceleration
and deceleration phases (1, 3, 5, 7) are all able to be active. However, if either the
magnitude of the acceleration of deceleration is zero, then it is enough to have N; > 2 as

only two phases are required minimum in this case. Similarly, if no acceleration or
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deceleration phases are present then the condition becomes N; = 1 which ensures that the
length of travel doesn’t become negative and only a constant speed phase would be
present. Based on the supplied values, the following conditions must be checked and

satisfied.

Jerk Check

The magnitude of the required jerk should not violate the demanded acceleration and
deceleration conditions. Equation 4.70 is used to verify this condition.

L

T, (4.70)

]Smin(

If the condition is not satisfied (when acceleration and deceleration are present) then jerk
Is set to the minimum value as,
4] IDI>
= min|(—,— 471
J =mi ( T'T (4.71)
If either the acceleration or deceleration is zero, then only the corresponding non-zero
term is used to check this condition. If both are zero however, then it is not necessary to

perform this check.

Acceleration Check

If the acceleration is not zero, then the velocity at the conclusion of the third stage must
be equal to the required maximum velocity ‘F’ or ‘fmax’. This process may or may not
include a constant acceleration second phase. The time for the second phase ‘T2’ is then
obtained from Equation 4.10 which is either zero or greater than zero. The acceleration

check is then given as,

>0 (4.72)

This check must only my performed if acceleration is not zero. If equation 4.72 is not
satisfied then T is set to zero, and the actual acceleration can be obtained by Equation
4.73 which gives the maximum possible magnitude. The jerks and time for the first and

third phase are also adjusted according to J1=Jz and Ts=A/Js.
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A =sgn (A) -Vi(F = f;) (4.73)

Deceleration Check

Similarly, if the deceleration is not zero, then the final velocity at the conclusion of the
last stage must be equal to the required end velocity ‘fe’. This process may or may not
include a constant deceleration sixth phase. The time for the sixth phase ‘Te’ is then
obtained from Equation 4.11 which is either zero or greater than zero. The deceleration

check is then given as,

>0 (4.74)

This check must only my performed if deceleration is not zero. If equation 4.74 is not
satisfied then Ts is set to zero, and the actual deceleration can be obtained by Equation
4.75 which gives the maximum possible magnitude. The jerks and time for the fifth and

seventh phase are also adjusted according to Js=J7 and T7=D/J5.

D = sgn (D) - Js(F — o) (4.75)

Travel Total Length Check

The total length of the travel ‘L’ which is specified at the beginning of the procedure must
be covered at the conclusion of the seven different phases. Depending on the
requirements, the constant velocity phase may or may not be present. So T4 is greater than
or equal to zero. By considering the jerks J1=Jz for phase 1 and 3, the jerks Js=J7 for phase
5 and 7, the times T1=T3=A/J: for phase 1 and 3, and the time Ts=T;=D/Js for phases 5
and 7, the total length equation is given as,

(11 A D Afy Dfe f& fS
_(—+—)F2+(2—]1+2—]5+T4)F+<2—]1+2]5—ﬂ—ﬁ> (4.76)

Acceleration and Deceleration terms should not be considered if those phases are not

present. For the T4 condition to hold the following equation must be satisfied.
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A DR g2 g2 (4.77)
ooz m)) =

If equation 4.77 is not satisfied then the time of the fourth phase ‘T4’ is set to zero and the
maximum velocity that is achieved during the interpolation becomes equal to the

maximum possible magnitude given as,

— 2
p o “PHVB° —4ay (4.78)
2a
Where,
1 1 A D Afs Df. 52 ez

=t V=t 2 — L (4.79)

“=ata P T Y T2 Y2 T2 2

If equation 4.78 has complex roots, the procedure has to be restarted and the values for

A, D, J, and F need to be adjusted until the condition can be satisfied.

Calculating Travel Length of Segments

The final velocity for each phase given as fi, 2, ..., fs, and the travel length of each phase
givenas Iy, Iz, ..., 16 can be calculated using Equation 4.7 and 4.8 and then using Equation
4.80 below the required interpolation steps during phases 1, 3, 5, and 7 can be calculated.
Ly 3
N; = round (A_>'N3 = round (A_)

S S

(4.80)

S

N: = round i N —round(l—l)
5 — A y N7 — As

If the length of any phase given as l; is non-zero but the corresponding N; is zero, it must
be set equal to one. Consequently, the total steps of interpolation for the combined

acceleration and combined deceleration phases can be obtained using Equation 4.81.

51



Nace = round ((4 + I + I3)/Ag), Ngee = round ((Is + lg + 1;)/Ag)  (4.81)
Then for phase 4, the total steps with constant velocity are obtained as given below,

Ny=N — (Nacc + Ndec) (4-82)

Now as As which is the displacement increment parameter is known, and the total
interpolation steps during each phase are also known, the distance travelled for each phase

is quantized below in Equation 4.83.

lk "= Nk . AS (483)

Final Check of Acceleration and Jerk

Using the quantized travel lengths from Equation 4.83, the jerk and acceleration
magnitudes must be adjusted so the desired start, constant, and end velocities can be
satisfied. If a constant velocity phase is present, i.e., T> >0, [, 5, and [ are substituted
by l,",1,’, and I5" in Equation 4.8 and the system of equations in Equation 4.84 can be
solved to obtain the new values for Acceleration (A), time of first phase (T1) and time of
third phase (T3).

1 .
f5T1 +€AT1 - ll = O

FZ _ fsz
2A

1 1 1 1
—§AT12 + S AT = S fsTy =5 FTs + ~1,=0 (4.84)

8 2

1
FT3_8AT32_II3:O

This also results in the readjustment of J; and Jz. If T2 = 0, then the expression for [, from
equation 4.8 is replaced the expression for f; from equation 4.7. In this case the system

of equations then becomes,

1 .
f‘ST1+gAT1 _ll =0
(4.85)

1 1
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1 1
§AT32 - EATng +_fST3 - l3 "= 0

Similarly, for the case when Tes > 0, Equation 4.86 are used and lg, ls, and [, are
substituted by I5', I', and I,". Then, the following equation can be solved for D, Ts, and
T5.

1
FTs —EDTSZ —1t=0
1 1 1 1 F?2—f2
§DT52—§DT22—§FT5—§feT7+Te—16=0> (4.86)
1
f.T, +gDT72 -15=0

This also results in the readjustment of Js and J7. If Ts = 0, then the expression for g from
equation 4.8 is replaced the expression for f, from equation 4.7. In this case the system
of equations then becomes,

1 . \
FTS_EDT5 _ls :O
1 1
11 ,

These equations can be solved iteratively using numerical methods. Once the values for
the different variables converge, the values for the jerks are updated, and the final
velocities for each phase are also recalculated using Equation 4.7.

Calculation of Time Steps

The final step in the trajectory generation is to calculate the time steps between each
interpolation step for each of the seven phases. The displacement as a function of the time

parameter for the k' phase is given below in Equation 4.88.

1
s(ty) = gjOlesc‘ + anﬂi + foxTk + Sok, 0 < 1) < T, (4.88)
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where jok is the initial jerk of the phase, aok is the initial acceleration of the phase, fox is
the initial velocity of the phase, and sok is the initial displacement value of the phase which
were calculated during the previous section. Here 1« is the time which is zero at the start
of each phase. As the displacement () is constant for each step then Equation 4.88

becomes

1
Skn(Tk) =n.As = gjokTg + Ea()k‘[]% + fOka + Sok (489)

Here n is the interpolation step which goes up to Ni. The interpolation period for each
point is obtained by solving the above equation 4.89 (using Newton-Raphson iterative

algorithm) and then given as,

Tlin =Tkn — Tkn-1 (4.90

4.4.3. Reconstructing Trajectory at Desired Control Loop Frequency

A trajectory is obtained in the last section where the displacement is constant but the time
steps are varying. However, it is desired to supply a signal to the control loop at a fixed
frequency. So, the trajectory is reconstructed at this desired frequency to ensure a smooth
acceleration and velocity profile. This is obtained by using a fifth order polynomial with
time as the variable instead of the chord lengths. The first derivative and second derivative
are derived using the same method described in 4.4.1. Then the equation for the

polynomial between any two points is given as,

¥(t) = At +Bt*+ Ct3+ D> + ET+ F (4.91)

This is solved similar to the approach in section 4.4.1 using the initial conditions,

x(0) = x; %(Th) = X1
dx(0)/dt =%, d%(Tk,)/dt = %4, (4.92)
d?x(0)/de? =%, d?*%(Ti,)/dt? = %4,

where the time interval T}, corresponds to the interpolation step associated with the

reference point x;,, (i.e. TS, = tis —t;)and 0 < 7 < T ;.
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The polynomial coefficients must be recalculated each time a new reference point is
generated by the algorithm. This process is done recursively and ultimately the final

trajectory is obtained at the desired control loop time period.
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5. CONTROLLER DESIGN

The controller chosen to be used with the cable robot is a cascade controller. Cascade
controllers are a popular choice when electric motors are concerned. The general structure

of a cascade controller for an electric motor is given below in Figure 5.1.

Oref +
% i 1/(Js + b) 1/s

v

Figure 5.1. Cascade Control of Motor

Here the inner speed sloop is controlled using a Pl controller, and the outer position loop

. . f 1
is controlled using a P controller. The transfer function To3b represents the motor

dynamics, where J is the motor inertia, and b is the damping term. The second transfer

function % is an integrator to obtain the position command.

The open loop transfer function for the inner loop is given as,

Kny 1

i1t =1+ 5)
Kps + K;

OLTFinner = 7524 bs (5.2)

The closed loop transfer function is then given as,

Kps + K;

Js? + bs
Kps + K;
1+ Js? + bs

CLTFinper = (5.3)
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(Kps + KI)]l

CLTFinper =

SZ+(KP+b)S+K,

T

(5.4)

Then the denominator for the closed loop transfer function of the inner loop are given

as,
Kp+b
s?+ (—P

7 >s+§=(s+P1)(s+P2)

(5.5)

Here P1 and P> are the poles of CLTFinner. Pole placement can be used to determine the

values of K, and K given as,
Kp=(P,—P,).]—b

K; = PP,.]

(5.6)

If the desired settling time and Maximum percentage overshoot are know, then the the

natural frequency and damping are given as,
4
¢* T

Wy =

_ In2(M0/100)
~ |72+ In2(M0/100)

Then the poles are given as,

S12 = _{wn + iwn\/ 1- {2

Then the gains can be obtained from the following equation,

Kp+b K,
sz+( P] )S+TI=52+ZCwns+wﬁ

Where,

K, = 2J{w, — b

KIZ(UrZL*]
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Now the open loop transfer function for the outer loop is given as,
1
(Kps + Kp) 7 1

sz+(K’%+b)s+%.s

OLTFouter = Kpo-

1
Kpo(Kps + Kp) 7

s3+ (KP]+ b)52 +%s

OLTFouter =

Then the transfer function of the outer loop is given as,
(Kps +K) 7

52+(K’%+b)s+%.

(Kps + KI)%

52+(Kp+b)s+%.

1
KPO' E

CLTFyyter =

Lt o !

It can also be written as,
1
(Kps + Kl)j
Kro PG T Py
1
(Kps + K;) 7
L+ Ko GF PG+ 5y

1
S

CLTFoyter =

1
S

11
KPo- (KPS + KI)TE

CLTF = _ .
outer T (s + P) (s + P, ) (s + P,)

Here,

11
(s+P))(s+P)

So,
KPo KPO 1

CLTF = = =
U (s+P3)  (s+Kpy) 1
K

Po

s+1

58

(5.11)

(5.12)
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(5.14)
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Then, to determine Kp,, a settling time Ts is given, where

T, =4tand T = (5.18)
Po

4
T, = (5.19)

KPO

Then,

4

Kp, = Fs (5.20)

Here Kp, is the gain of the outer loop controller, and it must be 10 times smaller than w,,
of the inner loop. The settling-time of the close outer loop must also be 10 times slower
than the settling time of the inner loop. The actual diagram of the controller with the plant

Is shown below in Figure 5.2.

Positive Tension Algo.

T
+
Brer 4 + Motor Torgue
p Pl Speed Curve
Tref + L
Plant

Figure 5.2. Final Controller Diagram
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6. CABLE ROBOT OPTIMIZATION

There are a number of parameters that can be chosen for cable robot optimization. These
parameters can be then used to develop a cost function. The objective is to usually
maximize or minimize that cost function to obtain the desirable characteristics for the
cable robot and increasing performance. Table 2.1 in section 2.2 detailed different sources
in the literature dealing with cable robot optimization and the associated cost functions.
Cable Robot Dexterity, Stiffness, and Workspace were the most common themes for
optimization and were chosen for optimization. The variables used during the
optimization process are the motor positions and end-effector cable connection points.

The different cost functions developed are described below.

6.1. Dexterity Optimization [28]

The local kinematic behavior of the system is described by the dexterity index. The

dexterity index is given as,

Ainax
k(p) = (6.1a)

Amin

Where J represents the Jacobian matrix in a specific configuration, and A,,,,, is the largest
eigenvalue of J, and 4,,,;,, is the smallest singular value of J. The dexterity index can vary
between 1 and infinity, so normally k(J)* is considered which varies between 0 and 1.
Here the calculation of the GCI is done using the homogenous Jacobian matrice given
below, where c is the length of the edge of the end-effector.

2
Jn =].diag(1,1, E) (6.1b)

When the index is near 1, the system is far from a singularity. Then a term called the
Global Conditioning Index can be defines as,

v .
Gl = ;Z kUi~ 6.2)
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Where n is the number of points. For a given configuration of the cable robot, the dexterity
index can be evaluated for each point in the workspace and then the GCI is calculated.
When the GCl is closer to 1, the system has better dexterity for the given configuration.

If the end-effector connection point is fixed, Figure 6.1 below shows the value of GCI as

a function of the x and y motor positions.

0.15

=
="
£

0.05

Global Conditioning Index

=
O
¥

0.2

Motor Y-position 0 04 Motor X-position

Figure 6.1. GCI as a function of motor position

6.2. Stiffness Optimization [37]

[37] defines the stiffness matrix for a planar CDPR. The stiffness matrix consists of two

parts as shown below,

Ke:z ki

n ZT ~ 1
=1

i

[
o 6.3)
[b; X]TLLT [b; ¥]
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=1 L Lb x| =1 by
_; T [g [1; xﬁbl x]]

Here Ke is the stiffness coming from the elasticity of the cables, and Kp is the stiffness

resulting from the orientation of the cable robot.

The directional stiffnesses of the cable-robot in the directions of the eigenvectors is
determined by the corresponding eigenvalues of the stiffness matrix. Therefore, the end-
effector could have different stiffnesses in different directions. But for most applications
the stiffness distribution is desired to be uniform in all directions. The stiffness number
represents the uniformity of the stiffness matrix. It is the ratio of the smallest and largest

eigenvalues of the stiffness matrix (K) which is given as,

SN = Amin(K) 6.4
™ nax () (64)

The stiffness number varies between 0 and 1. When it is equal to 1 the system is isotropic,
i.e., the stiffness is uniform in each direction. However, the stiffness matrix has non-

homogenous units, so the following expression can be written for the stiffness matrix,

_ [Ki1 K12] o
A x[w] (6.5)

Where F, is the external wrench given as,
F, =[S, M;]" (6.6)

And 6 and o are the infinitesimal translation and rotations of the end-effector.

Then the matrices with homogeneous units are given as,

Uf = [K110K11 K120K12]

6.7
U, = [K210k,, K3220k,,] ©.7
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Here, Us is for force and Um is for moment. Ok, , Ok,,, Ok,,, and Oy, are orthogonal
matrices which can be obtained by using the eigenvectors of the matrices K, K, 1, K1, K, 5,
KI K,,, and KLK,, respectively. Then using the matrices UfoT and U, UL with
homogeneous units, the eigenvalues can be obtained and the stiffness numbers can be

calculated for translation and rotational motion.

The stiffness number however has a different magnitude when the end-effector has
different positions. To obtain the stiffness-number index over the entire workspace

defined by the stiffness feasibility condition, it is given as,

n_SN:
ASN = % (6.8)

Where n is the total number of feasible points in the workspace. To check the stiffness
feasible workspace, the eigenvalues of the stiffness matrix are checked for each pose. If
the smallest eigenvalue is positive, that pose is a part of the stiffness feasible workspace
which is a subset of the wrench-feasible workspace. If only linear stiffnesses are
optimized however, performance can be lost in the rotational direction and the cable robot
can become unstable so the average of the Stiffness Number (SN) of the overall stiffness

matrix is chosen as the cost function.

If the end-effector connection point is fixed, Figure 6.2 below shows the value of ASN as

a function of the x and y motor positions when the end-effector connection point is fixed.
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Figure 6.2. SN as a function of motor positions

6.3. Workspace Optimization [38]

Obtaining the maximum feasible workspace volume is another important optimization
objective as this allows the cable robot to utilize the maximum amount of area covered
by the motors. The workspace volume index is given as,

n
wvi =122 (6.9)

Neotal

Here nfeas are the feasible points in the workspace, and niwta are the total points in the

workspace. The steps to check the feasibility of the points are:

1. Check the cable length condition given as,
L; < li < limax’Vi = 1,2 v, m (610)

lmin

2. Check force-closure condition given as,
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rank J =n, if ] € R™"™ where m > n

VN € null (4),aNh € R}, where m > n (6.11)

Here J represents the Jacobian matrix, and A represents the structure-matrix, while N

represents the null-space of the structure matrix A.
3. Calculate the stiffness matrix given in Equation 6.3 and check if it is positive definite.

4. Check the feasible wrench condition given below, and also calculate the cable tensions
and check the cable tension condition.

3{r | t=—-ATW + Nh,Nh € R?, where n < m} n

6.12
{T | 0 < Timin < T; < TimaxVi = 1,2, ...,m} ( )

Where 7 is the cable tension, and tmin and tmax are the minimum and maximum tension
values. If all the above conditions are satisfied the point is added to the feasible points

Nfeas.

If the end-effector connection point is fixed, Figure 6.3 below shows the value of WV1 as

a function of the x and y motor positions.
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Figure 6.3. WVI1 as a function of motor positions

The feasible workspace at the initial condition of workspace optimization is given as,
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WSI - Initial Condition
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Figure 6.4. Feasible Workspace before optimization
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‘trust-region-reflective'

‘interior-point’
‘sqp-legacy’
‘active-set'

qupl

This function is used to find the minimum of a constrained nonlinear multivariable

Here ‘interior-point’ is the default algorithm. The inputs of the fmincon algorithm

There are three main approaches used for optimization these are given as,

function. fmincon has the following algorithms it can use,

Figure 6.5 Feasible Workspace after optimization

6.4. Optimization Algorithms
6.4.1. MATLAB fmincon algorithm

include:



fun — This is the cost function to be minimized
X0 — This is the initial condition
A, b — These are the matrices that specify linear inequality constraints

Aeq, beg — These are the matrices that specify the linear equality constraints

o B~ W D

Ib, ub — These define the lower and upper bounds

The function is then written as,

( c(x)<0
ceq(x)=0
min f(x) such that A-x<b (6.13)
* Aeq - x = beq
Ib<x<ub
Or,

x = fmincon(fun,x0,A,b, Aeq, beq,lb,ub) (6.14)

6.4.2. MATLAB patternseach algorithm

This function is also used to find the minimum of a function using the patternsearch

algorithms. patternsearch has the following algorithms it can use,

. "classic"

. "nups" (Nonuniform Pattern Search)
. "nups-gps"

. "nups-mads"

The inputs of the patternsearch algorithm include:

fun — This is the cost function to be minimized

X0 — This is the initial condition

A, b — These are the matrices that specify linear inequality constraints

Acq, beq — These are the matrices that specify the linear equality constraints

o B w0 D

Ib, ub — These define the lower and upper bounds

The function is then written as,
x = patternsearch(fun,x0, A, b, Aeq, beq, lb, ub) (6.15)
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6.4.3. MATLAB fgoalattain algorithm

fgoalattain is used to solve multi-objective goal attainment problems (to either minimize
or maximize cost functions). The function is given as,

(F(x) —weight.y < goal

c(x) <0
minimize y such that < ceq(x) =0 (6.16)
X,y A-x <b
Aeq - x = beq
\ lb <x<ub
Or,
x = fgoalattain(fun, x0, goal,weight, A, b, Aeq, beq, lb,ub) (6.17)

Here the inputs are,
1. fun—This is the cost function to be minimized
2. X0 — This is the initial condition
3. goal — This is the specified goal value for the cost function
4. weight — This specifies the weights of different functions in the multi-objective

optimization problem.

o

A, b — These are the matrices that specify linear inequality constraints
6. Aeq, beq — These are the matrices that specify the linear equality constraints

7. Ib, ub — These define the lower and upper bounds

6.5. Combined Optimization

The combined optimization problem considers the cable robot dexterity and stiffness cost
functions. The fgoalattain command is used for combined optimization. The workspace
cost function is not compatible with the fmincon or fgoalattain algorithms as it is not a
mathematical formulation as compared to the other cost functions. Both dexterity and
stiffness cost functions are given the same weight, 1, and the goal are set as 1 for each
cost function as they are divided by their maximum values obtained in the individual
optimizations. A high dexterity and isotropic stiffness are both desirable for the cable

robot.
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7. SIMULATIONS AND RESULTS

This chapter provides the results for the simulations that are carried out for different

scenarios. The simulations are carried out for different trajectories. Initially the cable

robot is given some parameters, the controller design is done, the optimization is done,

followed by trajectory generation, and ultimately simulation. Separate simulations are

also carried out for custom trajectory data.

The cable robot design procedure has the following steps:

Setting the Cable Robot Parameters

Trajectory Generation

o B~ w D

Running Simulation

7.1. Cable Robot Parameters

Designing the controller by pole placement

Structural Optimization of the Cable Robot

Table 7.1 below shows the Cable Robot Parameters that are used for simulation purposes.

Table 7.1. Cable Robot Parameters

No | Parameter Name Value

1 Motor 1 Position in Global Coordinate System [-0.35m, 0.35m]
2 End-Effector Cable connection 1 position [-0.05m, -0.05m]
3 End-Effector mass 0.91 kg

4 End-Effector Inertia 1.5 x 10 kg.m?
5 Cable Young’s Modulus 200 GPa

6 | Cable cross sectional area 1x10°m?

7 Motor Inertia 0.0026 kg.m?

8 Motor Damping 0.2 Ns/m

9 Motor Coulomb Friction 0.005 Nm

10 | Motor Radius 0.0381 m

11 | Minimum Cable Tension 05N
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7.2. Controller Design

The cascade controller is designed using the pole placement method described in Section
5. The settling time for the inner loop is set as 0.02s and the maximum overshoot is chosen
as 10%. The settling time is specified as 0.2s for the outer loop. This yields the following

gains,

Table 7.2. Controller gains

Gain Value

P, 20

P, 0.8400

I 297.5984

The step response of the inner loop if given as,

Step Response

=
c

[’
=5}

Amplitude

P I I 1 I I

A Rne - .I MM 1: r‘(;' P .--Lzl:
LY (LR NS LR LRV LN L W LY e

Time (seconds)

Figure 7.1 Step response of cascade inner loop.
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And the step response of the outer loop is given as,

Step Response

]
[#

=
o

Amplitude

e

en

0 0.1 0.2 0.3 0.4

Time {semndsj.

Figure 7.2 Cascade outer loop step response

7.3. Optimization

The motor and end-effector cable attachment points are the variables that are modified
during the optimization procedure. Changing these parameters can significantly impact

the performance of the cable robot. Figure 7.3 below shows the configuration of the Cable

Robot in the initial state.
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Figure 7.3 Initial condition of cable robot

Table 7.3 below shows the initial values of the three different cost functions before

optimization, and the value after the individual and combined optimizations.

Table 7.3. Values of cost functions for each optimization

Cost Initial Dexterity Stiffness Workspace Combined
Function Condition | Optimization | Optimization | Optimization | Optimization
Dexterity 0.1575 0.1587 0.1575 0.0571 0.1575
Stiffness 0.0041 0.0038 0.0041 5.4722e-04 0.0041

Workspace 0.8431 0.8101 0.8431 1.0000 0.8431

Index

First the dexterity optimization is carried out. Figure 7.4 shows the new configuration of

the cable robot.
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Figure 7.4 Dexterity optimized cable robot configuration

Then the stiffness optimization is carried out. Figure 7.5 shows the new configuration of
the cable robot. It is the same as the initial configuration. It converges to this arrangement

even with different initial conditions.
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Figure 7.5 Stiffness optimized cable robot configuration

Lastly, the workspace optimization is carried out. Figure 7.6 shows the new configuration
of the cable robot, as well as the old and new workspace indicated on the model in Figures
7.7 and 7.8.
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Figure 7.7 Feasible region of workspace before optimization
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Figure 7.8 Feasible region of workspace after optimization

The last procedure is the combined optimization problem which is run using the
fgoalattain command. The fgoalattain command uses the same algorithms as the fmincon
command, however the workspace cost function is not compatible with these algorithms.
Based on the values obtained in Table 7.3 above, the combined optimization yields the
best result at the initial configuration shown in Figure 7.3. where the motor and cable
connections are at the edges of the base and end-effector respectively. Both the dexterity
and stiffness cost functions are near their maximum values observed in the individual

optimizations.

7.4. Trajectory Generation

For the first set of simulation, two types of standard trajectories are generated. These are

a Circle and Rectangle trajectory. These are generated using the Trajectory generation
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algorithm 1. The different trajectory generation approaches are compared. Figures 7.9

and 7.10 below show the circular and rectangular trajectories.
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Figure 7.9 Circular Trajectory
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Figure 7.10 Rectangle Trajectory

The second set of simulations uses Trajectory generation algorithm 3 to generate a non-
standard shape which is a spiral. A spiral has a constantly changing arc radius which is
not possible to generate using algorithm 1. In the third set of simulations, Trajectory
generation algorithm 2 is used to generate the trajectories for different sets of random
data.

7.5. Simulation

This section includes the simulation results for different scenarios described below.

7.5.1. Trajectory Generation 1 — Circle

The circular trajectory is a basic trajectory that can be generated easily using a single arc
segment. Figure 7.11 below shows the Trapezoidal Acceleration Profile for the circular

trajectory.
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Figure 7.11 Circle — Trapezoidal Acceleration

Now, the simulations are carried out with the dexterity optimized configuration motor
and cable connection points using the controller that was designed in section 7.2. Figure
7.12 — 7.15 show the simulation resuls.
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Desired vs. Actual Trajectory
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Figure 7.13 Circle — Tracking Errors
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7.5.2. Trajectory Generation 1 — Rectangle

The rectangular trajectory consists of 4 individual linear segments. In the first simulation
it is generated using the Point-to-Point approach where each segment begins and ends
with zero velocity. Figure 7.16 below shows the Trapezoidal Acceleration Profile for the

rectangular trajectory.
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Figure 7.16 Rectangle — P2P — Trapezoidal Acceleration

Now, this simulation is carried out with the standard configuration of the cable robot with

the controller designed in section 7.2. Figure 7.17 — 7.21 show the simulation results.
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Desired vs. Actual Trajectory
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Figure 7.17 Rectangle — P2P — Desired/Real trajectory
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Figure 7.18 Rectangle — P2P — Corner zoom
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Figure 7.21 Rectangle — P2P — Real Tensions

Now the same trajectory is generated using the Continuous approach where the velocity
at the corners does not go to zero. Figure 7.22 below shows the Trapezoidal Acceleration

Profile for the trajectory.
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Figure 7.22 Rectangle — Continuous — Trapezoidal Acceleration

Figure 7.23 — 7.27 below show the simulation results.
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Figure 7.23 Rectangle — Continuous — Desired vs Actual Trajectory
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89



Cable Tensions

25 1 Cable 1| 7
Cable 2
Cable 3
rd Cable 4
201 i
|lr". e
II Vs
g ,15 L . ) .-//_,I 4
% e " / 4
> .
[ f L'/ | -
10 1 || ____-"') e ]
i Ir- |I
J
P
| |
- I
[
rl' IL |I" —
D i 1 1 1 1 1 I-
1] 2 4 3] 8 10 12
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Figure 7.27 Rectangle — Continuous — Real Tensions

As observed, the high velocity at the corner does not yield good performance. To remedy

this, the rectangular trajectory is generated using Microsplines where the edges of the
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segments are joined using splines as given in section 4.1.3. These splines also calculate
the proper spline travel time to preserve the simulation time. Figure 7.28 below shows the

Trapezoidal Acceleration Profile for the trajectory.
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Figure 7.28 Rectangle — Splines — Trapezoidal Acceleration

Figure 7.29 — 7.33 show the simulation results.
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7.5.3. Trajectory Generation 3 — Spiral

Now the spiral type trajectory consists of arc segments with constantly changing radii.
This kind of trajectory generation cannot be handled with simple interpolation. The
trajectory generation algorithm defined in section 4.4 is used to generate this trajectory
by giving it a series of reference points.

Each point is connected with a 5™ order spline as given in section 4.4, according to the

desired velocity and acceleration profile. Figure 7.34 below shows the reference points
and the generated trajectory.
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Figure 7.35 below shows the Trapezoidal Acceleration profile for the desired trajectory.
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Figures 7.36 — 7.39 below show the simulation results.
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7.5.4. Trajectory Generation 2 — Custom Data

While the previous two algorithms are capable of generating a variety of different
trajectories for standard and non-standard shapes, they are not able to simulate a trajectory
where the acceleration and velocity are constantly changing. Often it might be required
to simulate a custom trajectory, which can be fed to the cable robot but it needs to be

compatible.

Three example trajectories can be called as Custom Trajectory A, Custom Trajectory B,
and Custom Trajectory C. These trajectories are resampled at the desired control loop
frequency or sampling rate and then connected with splines and linear segments to the
desired start/end point as given in section 4.3. After Custom Trajectory A is selected,
Figure 7.40 — 7.44 show the simulation results.
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Figure 7.40 Custom Data A — Trajectory
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After Custom Trajectory B is selected, Figure 7.45 — 7.49 show the simulation results.
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After Custom Trajectory C is selected, Figure 7.50 — 7.54 show the simulation results.
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7.5.5. Simulations with Increasing Speed

Another set of simulations is where the Circular Trajectory is used is to simulate the
circular motion with increasing velocities. The simulations are caried out the results are

given below.

Circle Speed: 0.06m/s?

Distance
o5k T T T I_______j__- ]
g P e —
i) e - i i i i
[1] 2 4 -] 8 10 12
Lt
Speed
0 0.05ff ' '. :
E | |
{} i i i i i I-
[1] 2 - 6 8 10 12
5
Acceleration
T T T T T
1 ﬁgi . i
\I
051 i i i i i ¥ 7]
1] 2 4 G 8 10 12
5
Jerk
10 T T T T T
ul
| _
E
_1.:. i i i i i
0 2 = 6 8 10 12
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Circle Speed: 0.12m/s?
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7.5.6. Simulations with Non-zero orientation angle

This series of simulations aim to show the performance of the cable robot when the

reference angle for the end-effector. The circular trajectory with 0.06 m/s? velocity is

chosen.
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Figure 7.70 Circle — 5 degree — Desired vs Actual trajectory
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At higher angles the cable robot is no longer stable.

7.5.7. Results with Non-Optimized Configuration

A non-optimized configuration is shown below in Figure 7.86.
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Figure 7.86 Non-optimized cable robot configurations

The simulation results for the circular trajectory at 0.18 m/s? velocity are given below.
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With the unoptimized configuration, the cable robot is not stable enough for this

trajectory.
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7.6. Discussion

In section 7.5.1 the circular trajectory is generated using Trajectory Generation 1
algorithm which generates standard shapes using linear and circular interpolation
methods. The circle trajectory is generated using the circular interpolation and the
acceleration and velocity profiles are also shown for the generated trajectory. The control
performance for trajectory tracking is good with very minimal error and the cable tensions
are also within acceptable limits.

In section 7.5.2, a rectangular trajectory is generated consisting of linear segments joined
together. Initially the trajectory is generated using a point-to-point approach where each
segment begins and ends at zero velocity so there is no issue while cornering. The tracking
error is very small in this simulation and the cable tensions are also small. The next
simulation is carried out using the continuous approach where the corner point can have
a set velocity. In this simulation, the tracking error is slightly larger as compared to the
previous simulation and more deviation can be observed near the corners of the trajectory.
The cable tensions are also larger. Lastly, the rectangular shape is generated using the
Microsplines, which are used to join the ends of different segments using splines. The
simulation then shows that the tracking error is very small, and the deviation from the

path is minimal.

In the next part in section 7.5.3, Trajectory Generation 3 algorithm is used to design a
non-standard shape trajectory, namely a spiral trajectory. The tracking performance is
suitable. The cable tensions have minimal oscillations and are within an acceptable range.
In section 7.5.4, Trajectory Generation 2 algorithm is used to develop a trajectory for
some custom non-uniform data. For each scenario, the trajectory starts from a given
start/end point, where it does a linear interpolation to the start of the first spline which is
used to connect to the start of the custom data and then after the custom trajectory, another
spline is used to come to a stop where another linear interpolation is used to get back to
the start/end point. For each custom trajectory, A, B, and C, the tracking performance is

good and the cable tensions are also within an acceptable value.
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In section 7.5.5, simulations with increasing speed are carried out using the circular
trajectory. With higher speeds we can observe the tracking error to increase. In section
7.5.6, the circular trajectory is tracked but with a non-zero reference theta (end-effector
rotation angle) and the results show good performance until around 70 degrees, after

which the robot becomes unstable at higher angles.

Lastly in section 7.5.7, the same circular trajectory is simulated using a non-optimized
cable robot configuration which runs into some problems so the previous results which
were obtained from the configuration after dexterity optimization improves the

performance of the cable robot.
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8. CONCLUSION AND RECOMMENDATIONS

Based on the simulations conducted, the different trajectory generation algorithms are
successfully able to generate trajectories for the cable robot. Trajectory Algorithm 1 is
able to generate standard shapes but it is also able to generate splines in regions where a
corner exists or two segments are being joined so as to prevent and sudden jerk or loss of
performance at that point. Trajectory Algorithm 3, similar to 1 is used for trajectories with
uniform velocity profiles but it is capable of fitting a trajectory on any custom shape. It
was used to simulate a spiral where the radius is constantly changing. Lastly, Trajectory
Algorithm 2 is able to take a custom trajectory with non-uniform speed profile and
simulate it by connecting it with splines. All these trajectory generation algorithms from

CNC literature were successfully implemented with the cable robot model.

The cable robot model itself was a planar 4 cable robot with cable elasticity added as well.
The model was able to simulate the different scenarios at different speeds and angles
while maintaining positive cable tension which is essential for a cable robot. The structure
of the cable robot was also optimized using the fmincon command and the results
indicated an increase in performance compared to an initial condition after optimization.
Other than that, the cascade controller also worked well and the design of it along with
the other elements was incorporated into the GUI interface which can easily be used to

completely design and simulate a planar cable robot.

This type of robot can be used in many different applications such as medical
rehabilitation devices, 3D printers, warehouse crane mechanisms, etc. Future
recommendations include the addition of different types of controllers which can be tuned
for different scenarios. The capability of generating animations can be added to the GUI.
The model can also be expanded to a 3-D cable robot which would be capable of much

more advanced maneuvers.

The combination of the cable robot design and the different trajectory generation
techniques can be particularly useful for medical rehabilitation devices. For providing
robot-aided physiotherapy, patients are required to perform different repetitive exercises.
Robots can greatly aid this process reducing the requirement of trained professionals

being physically present during these exercises. Simpler exercises can use trajectories like
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linear and circular interpolation from trajectory generation algorithm 1, with the addition
of splines creating smooth trajectories which would be particularly useful for patients
undergoing therapy. However more complex exercises can require trajectories with
complex structures which can be much better handled by trajectory generation algorithm
3. Lastly, the trajectory generation algorithm 2 could be useful if a medical professional
wanted to record a set of exercises. The coordinates recorded from those exercise could
then be used to generate a custom trajectory with non-uniform speed and acceleration

which would allow the patient to receive much more complicated tasks.
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APPENDICES

APPENDIX 1 -GRAPHICAL USER INTERFACE

This chapter describes the development of the GUI tool the cable robot codes have been

integrated into. The interface is explained and the layout is provided. The first tab of the

GUI is given below which is used to enter parameters related to the motor, cable, end-

effector and other parameters. After entering the parameters, the button ‘Update

Variables’ is pressed.

Model Param. Motor & Cable Traj. Gen. 1

Traj. Gen. 2 Tra). Gen. 3 Cascade Contrc >

Workspace Parametiers

Motor and Cable Parameters

Workspace 0
Dimensions

Motor X 0
Position

Motor Y 0
Position

Mo. of Cables |4 v

Coulomb 0
Friction
Inertia 0
Damping 0
Radius 0

End Effector Parameters

Other Parameters

End Effector 0
Dimensions

Mass 0

Inertia a

Connection 0
X Point

Connection 0
¥ Point

Gravity 0
X
Gravity 0
Y
Gravity 0
z
Update Variables

Figure Appendix 1.1 GUI Tab 1

The second tab of the GUI is given below. Additional parameters related to the motor and

cable are entered. Point data for the motor torque-speed curve is also entered which is

plotted. After data is entered, the ‘Update Variables’ button must be pressed.
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Model Param. Motor & Cable Traj. Gen. 1 Tra). Gen. 2 Tra). Gen. 3 Cascade Contrc > <4
Torgues (M/m) Speeds (RPM)
Torque-Speed Curve
T 0 v 0
T2 i} V2 i} 08
E
Z 06
T3 0 V3 0 =
=
=04
T4 0 V4 ol |2
02
TS5 0 V5 0
0
0 0.5 1
Speed (rad/s)
Motor 0
Vollage
Cable Unit 0
Stiffness Update Variables
Minimum 0
Tension
Maximum 0
Tension

Figure Appendix 1.2 GUI Tab 2

The third tab of the application is for Trajectory Generation Algorithm 1. Here the desired

trajectory can be selected, with the desired velocity and scale (for scaling the predefined

dimensions) and when the ‘Generate’ button is pressed the desired trajectory is generated.
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[ MATLAB App — O g
Model Param. Motor & Cable Traj. Gen. 1 Traj. Gen. 2 Traj. Gen. 3 Cascade Controller >

Standard Shapes Generated Trajectory
- ) 1
Shape | Circle r
Circle 08
Straight Line X 0.6
Straight Line ¥ >
Square 04
Reciangle 0.2
Lemniscate
) . 0
Diagonal Line 0 05 1
X
Select Starting Point
Velocity 0 Scale 0

Figure Appendix 1.3 GUI Tab 3

In the fourth tab of the application, Trajectory Generation Algorithm 2 has been
implemented. A .mat file containing the custom data can be loaded using the ‘Load Data’
and after specifying the proper scale, sampling time, and the start/end position, the desired

trajectory is generated and displayed when the ‘Generate’ button is pressed.
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4 MATLAB App - O X

Model Param. IMotor & Cable Tra). Gen. 1 Tra). Gen. 2 Tra). Gen. 3 Cascade Controller >

Cusiom Trajectory Data Selection Generated Trajectory

1 L,V G}

Load Data 0.8

0.6
=
0.4

Start X 0

Start ¥ 0

Scale 0

0.2

Ts 0 0

Generate

Figure Appendix 1.4 GUI Tab 4

The fifth tab contains the Trajectory Generation Algorithm 3. Here the desired parameters
for the trapezoidal acceleration profile are entered and the ‘Load Data’ button is used to

load a .mat file with the custom data for trajectory generation.
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4| MATLAB App - O *

Model Param. Motor & Cable Tral. Gen. 1 Tra). Gen. 2 Traj. Gen. 3 Cascade Controller >

Standard Shapes Generated Trajectory
1
Load Data
0.8
A 0 D 0 06
-—
fe 0 fs 0 0.4
02
F 0 J 0
0
0 0.5 1
Ts 0 X

Generate

Figure Appendix 1.5 GUI Tab 5

Now the sixth tab is used for controller design. The required cascade controller can be
automatically calculated based on the settling time and maximum overshoot specified by
the user and the step response is plotted as well.
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< Gen. 2 Tra). Gen. 3 Cascade Controller Acc. Workspace Optimization Simulation -+

Layout Step Responze
Title
1
]
1/(0s + ) ,.‘.Il 1/s I *
=05
0
0 05 1
"
PID Gains
Flant C1
E 0 P_out 0
P_in 0
MO 1] Plant C2
I_in 0

Calculate Gains

Figure Appendix 1.6 GUI Tab 6

The seventh tab shows the feasible workspace based on the end-effector acceleration and

the minimum tensions. It also calculates the static torques.
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< Gen.?2 Traj. Gen. 3 Cascade Controller Acc. Workspace Optimization Simulation +

Workspace Limits based on Acceleration
Generate
Title
1 -
o9l Acceleration a
081 Minimum 0
Tension
0.7
Static Torques
06
=051 LL 0
04
T2 0
0.3r
0.2
T3 0
01
0 . . . . i
0 0.2 0.4 0.6 08 1 T4 1]
X

Figure Appendix 1.7 GUI Tab 7

The eighth tab contains the optimization functionality. Individual or combined
optimization can be performed. The resultant motor and cable connection coordinates are
displayed as well as the value of each cost function after any optimization when the

‘Generate’ button is pressed.
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< Gen. 2 Traj. Gen. 3 Cascade Controller Acc. Workspace Optimization Simulation +

Cable Robot Layout
Title i - -
1 ‘ Display Initial Condition
0.8
‘ Dexterity Optimization
0.6
- ‘ Stiffness Opfimization
0.4
0.2 ‘ ‘Workspace Optimization
0 . . . . )
] 0.2 0.4 0.6 0.8 1
X ‘ Combined Optimization
. A 0
Dexterity 0 Stiffness 0 Workspace 0
E 0

Figure Appendix 1.8 GUI Tab 8

The last and 9" tab is used to run the simulations when all the data has been entered,
controller has been designed and necessary optimization is done. Additional buttons can
be used to save the data file, open the Simulink model or generate detailed plots when

the ‘Generate Plots’ button is pressed (after running the simulation at least once).
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< Gen 2 Tra). Gen. 3 Cascade Contraller Acc. Workspace Optimization Simulation +

Tracking Performance

Simulation 0
Tirme

Run Sim

Save Data File

Generate Plots

Open Simulink Model

Figure Appendix 1.11 GUI Tab 11
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