


BUTSON-HADAMARD CODES AND RELATED QUANTUM
CODES

BUTSON-HADAMARD KODLAR VE ILGILI KUANTUM
KODLAR

DAMLA ACAR

PROF. DR. BULENT SARAC
Supervisor
ASSOC. PROF. DR. OGUZ YAYLA

Co-supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Doctor of Philosophy

in Mathematics

July 2024



ABSTRACT

BUTSON-HADAMARD CODES AND RELATED QUANTUM CODES

Damla Acar

Doctor of Philosophy, Mathematics
Supervisor: Prof. Dr. Biillent SARAC
Co-supervisor: Assoc. Prof. Dr. OGUZ YAYLA
July 2024, 117 pages

A Butson-Hadamard (BH) matrix H is a square matrix of dimension n whose entries are
complex roots of unity such that 7 1* = n/. In the first part of this thesis, we deal with codes
obtained from BH matrices, called BH codes, focusing on their minimum distances. We first
consider the usual Hamming distance and find lower bounds for distances of BH codes.
Then we turn our attention to homogeneous weights, and search for distances of BH code
families under these weights. Next, we introduce the notion of quasi-homogeneous weights
as a generalization of homogeneous weights and show that certain BH codes equipped
with quasi-homogeneous weights are Plotkin optimal. In addition, we obtain distances of
BH codes under certain quasi-homogeneous weights. Our results are applied to determine
parameters of p-ary codes projected under Gray isometries from BH codes over Z,., where
p is a prime number and e > 2 is an integer. In the second part of this thesis, we study
quantum stabilizer codes and give two constructions. In particular, we give a constructive
proof to show that if there exist a classical linear code ¢ C F;‘ of dimension k and a classical
linear code ¥ C F;r,i of dimension s, where ¢ is a power of a prime number p, then there
exists an [nm, ks, 6], quantum stabilizer code with § determined by ¢ and Z by identifying
the stabilizer group of the code. In the construction, we use a particular type of Butson
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Hadamard matrices equivalent to multiple Kronecker products of the Fourier matrix of order
p. We also consider the same construction of a quantum code for a general normalized
Butson Hadamard matrix and search for a condition for the quantum code to be a stabilizer

code.

Keywords: Butson-Hadamard matrices; BH-codes; generalized Gray map; Plotkin bound;

quantum stabilizer codes.
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OZET

BUTSON-HADAMARD KODLAR VE ILGILI KUANTUM KODLAR

Damla Acar

Doktora, Matematik
Damisman: Prof. Dr. Biilent SARAC
Es Damisman: Doc. Dr. OGUZ YAYLA
Ocak 2024, 117 sayfa

n boyutlu bir Butson-Hadamard matrisi, H, girigleri birimin karmasik kokleri olan ve

H H* = nl kosulunu saglayan bir kare matristir.

Bu tez c¢aligmasinin birinci kisminda Butson-Hadamard matrislerinden elde edilen kodlar
ve bu kodlarin minimum uzaklig1 tizerine bazi sinirlar kanitlanmigtir. Ayrica yari-homojen
agirlik kavrami tanimlanip bu agirlik altinda BH-matrislerden elde dilen kod ailelerinin
minimum uzakliklar1 incelenmistir. Modifiye Butson-Hadamard matrislerinden elde edilen
kodlarin parametreleri homojen olmayan Gray doniigsiim altinda verilmis ve bu kodlarin
Plotkin optimal oldugu sonucuna ulagilmistir. Tezin ilk kisminda, BH matrislerinden elde
edilen, BH kodlar:1 olarak adlandirilan kodlar ele alinarak bu kodlarin minimum uzakliklari
ile ilgili sonuglar elde edilmistir. Ilk olarak, bilinen Hamming uzaklig1 ele alinarak BH
kodlariin uzakliklari icin alt sinirlar verilmistir. Ardindan homojen agirliklar gz oniine
alinip bu agirliklar alinda BH kod ailelerinin uzakliklari incelenmistir. Daha sonra, homojen
agirliklarin genellestirmesi olarak kabul edilen yari-homojen agirlik kavrami tanitilmistir.
Ayrica bu agirliklar altinda belirli BH kodlarinin Plotkin-optimal oldugu gosterilmisgtir.

Daha sonra belirli yari-homojen agirliklar altinda BH kodlarinin mimimum uzakliklar1 elde
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edilmigtir. Elde edilen sonuglar p asal sayis1t e > 2 i¢in Z,. iizerindeki BH kodlarindan
Gray doniisiimii altinda p-ary kodlarin parametrelerini belirlemek icin uygulanmistir. Ikinci
kisimda ise BH matrisler ile kuantum kodlar1 arasindaki baglantiy1 belirlemek adina kuantum
sabitleyen kodlar1 ¢aligilarak iki kuantum kod yapisi verilmistir. p bir asal say1 ve ¢, p’nin
bir kuvveti olsun. Swrastyla 6" C Fj ve 2 C FJi k ve s boyutlu iki lineer kod ise o zaman
sabitleyen grubu ile tanimlanan ve ¢, Z ile belirli 0 ile bir [nm, ks, §], kuantum sabitleyen
kodunun varlig1 kanmitlanmistir. Bu kodu olusturuken p boyutlu Fourier matrislerin Kronecker
carpimlarina denk olan Butson-Hadamard matrisler kullanilmistir. Ayni1 zamanda genel
bir normallestirilmis Butson-Hadamard matrisi i¢in bir kuantum kodu yapis1 ele alinarak

kuantum kodunun sabitleyen bir kod olmasi i¢in gerekli olan kosullar arastirilmistir.

Keywords: Butson-Hadamard matrisler; kodlar; genellestirilmis Gray doniisiimii; Plotkin

sinir; kuantum sabitleyen kodlart.
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GENISLETILMIS OZET

Giris

Kodlama teorisi, Claude Shannon tarafindan 1948 yilinda temelleri "A Mathematical Theory
of Communication" ¢aligmasi ile atilan ve kriptografi, verilerin depolanmasi ve iletilmesi,
hata diizeltme, uydu ve uzay iletisimi, DNA dizilimi gibi pek ¢ok farkli alanda uygulamasi
olan bir disiplindir. Veri iletiminin gergeklestigi fiziksel ortama kanal adi verilir. Kanal
olarak telefon hatlari, kompakt disk yiizeyleri kullanilabilecegi gibi atmosfer ve uzay da
kullanilabilir. Shannon calismasinda kanal kapasitesi olarak adlandirilan bir say1 belirlemis

ve bu sayinin altindaki oranda giivenilir bir iletisimin miimkiin oldugunu kanitlamigtir.

Kanal boyunca bilginin iletilmesi esnasinda cesitli nedenlerden dolay1 bozulmalar meydana
gelebilir. Eger herhangi bir bozulma olmazsa bilgiler aym sekilde iletilir ancak pratikte bu
durum miimkiin degildir. Bu nedenle kodlama teorisi kanaldaki giiriiltiiden kaynakli iletim

hatalarimin belirlenmesi ve miimkiinse diizeltilmesi problemi ile ilgilenir.

Bilgilerin hizl1 bir sekilde kodlanmas1 ya da baska bir deyisle kanala uygun hale getirilmesi,
kodlanmig bilgilerin kolayca iletilmesi, alinan mesajlarin hizli bir sekilde dekodlanmasi,
kanalda meydana gelen hatalarin diizeltilmesi ve birim zamanda maksimum bilginin

iletilmesi kodlama teorisinin temel amaclaridir.

Kodlama iglemi i¢in bilginin kanala uygun olacak sekilde sembollerle ifade edilmesi gerekir.
Bu amagla kullanilan sembollerin sonlu bir .4 kiimesine alfabe ve .A nin elemanlarina kod
sembolii denir. Alfabe olarak genelde p bir asal olmak iizere F, sonlu cismi kullanilmasina
ragmen 7, sonlu halkalar {izerindeki kodlar da literatiirde olduk¢a fazla calisilmigtir. Tez
calismamizda Zj tizerindeki kodlar ele alacagiz. n bir pozitif tamsayr olmak {izere,
girigleri A kiimesinin elemanlar1 olan n-uzunluklu bir vektore n-uzunluklu bir s6zciik denir.
n-uzunluklu bir C' kodu, A" in bostan farkli bir alt kiimesidir ve C nin elemanlar1 da

n-uzunluklu kod sozciikleri olarak adlandirilir.
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C, n-uzunluklu bir kod olmak {iizere, herhangi bir ¢ = cyco...¢, € C kod sozctigiiniin
Hamming agirhig: sifirdan fakli koordinatlarinin sayisidir ve wt(c) ile gostetilir. C' kodundaki
herhangi iki farkli ¢ = ¢1¢ .. . ¢, b = b1by . . . b, kod sozciidiiniin d(b, ¢) seklinde gosterilen
Hamming uzaklig1 ise b ve c¢ nin farkli koordinatlarinin sayisidir. C' kodunun farkli kod
sozciiklerinin uzakliklarinin mimimum degerine kodun minimum uzakligi denir ve d(C') ile

gosterilir.

Shannon 1n ¢alismasi giivenilir bir iletisimin miimkiin oldugunu séylemesine ragmen bunun
nasil yapilacag ilk kez Richard W. Hamming tarafindan [1] ¢aligmasinda gosterilmistir.
Eger alinan mesaj kod sozciigii degilse o zaman iletim esnasinda bir hataya maruz kaldigi
aciktir. Dolayisiyla hata belirlenebilir. Fakat alinan mesaj kod sozciiklerinden biri ise o
zaman hata belirlenemeyebilir. Ornegin; C kodu olarak Fj uzayini alalim ve 0100 mesajini
alictya gonderelim. Iletim sonunda alictmin 1100 mesajim aldigini varsayalim. O halde
1100 € C' oldugundan alict herhangi bir hata meydana gelmedigini ve gonderilen mesajin

1100 oldugunu diisiinebilir. Dolayistyla bu durumda hata belirlenemez.

C' = {00000,01011,10101,11110} kodu i¢in alinan mesajm r = 10000 oldugunu
varsayalim. O halde 10000, C' nin bir elemeni olmadig1 icin hatali iletildigi aciktir.

Dolayisiyla » mesaj1 kendine en yakin olan kod sozciigii olarak diizeltilir. Dolayisiyla

d(10000, 00000) = 1, d(10000,01011) = 4, d(10000, 10101) = 2, d(10000, 11110) = 3

oldugundan 10000 mesaji 00000 seklinde diizeltilir. Eger alinan mesaj » = 00011 ise o

zaman
d(00111,00000) = 3,d(00111,01011) = 2,d(00111,10101) = 2,d(00111,11110) = 3
olacagindan gonderilen mesaj icin iki olasilik vardir. Bu nedenle mesaj iizerinde meydana

gelen hata diizeltilemez.

t bir pozitif tamsay1 olmak iizere, bir C' kodu, kod sozciikleri iizerindeki ¢ veya daha az sayida

hatay1 diizeltebiliyorsa bu koda ¢-hata diizeltici kodu denir. Kodlarin belirleyebilecekleri
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ve diizeltebilcekleri hata miktarlart minimum uzakliklarina bagli olarak verilir. Minimum
uzaklig1 d olan bir kod ¢t < [(d — 1)/2] i¢in ¢ hata diizeltici ve (d — 1) hata belirleyici
koddur.

M adet kod sozciigii iceren n uzunluklu bir kodun minimum uzakligi d ise o zaman bu
kod (n, M, d) seklinde gosterilir. Kodlama teorisinin temel amaglar1 g6z oniine alindiginda
kodlama isleminin hizli olmasi i¢in kodun uzunlugu kii¢iik ve birim zamanda fazla bilginin
iletilmesi icin M degeri biiyiik olmalhdir. Ayrica fazla sayida hatanin diizeltilebilmesi d

sayisinin biiyiik olmasi ile miimkiin olur.

Kolay kodlama ve dekodlama islemlerine sahip oldugu icin lineer kodlar kodlama teorisinde
Oonemli bir yere sahiptir. Z; lzerindeki n-uzunluklu bir lineer kod Z7 uzaymin bir
altmodiiliidiir. Bu tez calismasinda, Z; sonlu halkas iizerinde genel olarak lineer olmayan
kodlar ele alinmis ve bu kodlarin Hamming agirli§i, homojen agirliklar ile onlarin bir
genellemesi olarak tanimladigimiz yari-homojen agirlik (quasi-homogeneous) gibi farkli

agirliklara gore minimum uzakliklar ¢alisiimagtir.

Homojen agirlik kavrami I. Constantinescu ve W. Heise tarafindan 1997 yilinda ilk kez [2]
calismasinda tanmitilmistir. Sonlu bir R halkasi tizerinde tanimli reel degerli bir w fonksiyonu

w(0) = 0 olmak tizere agsagidaki iki kosulu saglasin,

(i) ziley, R halkasmn iki farkli elemeant olsun. O halde Rz = Ry ise o zaman w(z) =

w(y).
(i1) x, R halkasinin sifirdan farkli bir eleman1 olmak iizere
> w(y) = 7| Rzl
yERx

olacak sekilde bir 7 reel sayis1 vardir. O zaman w fonksiyonuna bir homojen agirlik

denir ve v, w agirhginin R iizerindeki ortalama degeri olarak adlandirilir.

Z,, iizerinde taniml ve parametreleri (n, M, d) olan bir C' kodunu ortalama degeri y olan Z}!
tizerindeki bir homojen agirlindan elde edilen uzaklik fonksiyonu ile ele alalim. O halde eger
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d > ynise o zaman M < d/(d —~yn) genellestirilmis Plotkin sinir1 saglanir ve M > d/(d —
vn) — 1 ise o zaman C' koduna Plotkin-optimaldir denir. Bu tezde .Aj; olarak tanimlanan
kodun homojen agirlik altinda Plotkin-optimal oldugu M. Greferath, G.McGuire ve M. E.
O’Sullivan tarafindan kanitlanmistir (bknz. [3]).

Nordstrom-Robinson, Kerdock, Preparata ve Goethals gibi lineer olmayan kodlar Z,
tizerindeki lineer kodlarin Gray doniisiim altinda ikili (binary) goriintiileri olarak inga
edilebilir [4]. Daha sonra Gray doniisiimler Z; halkasina genellenerek [5], sadece ikili
kodlar ile sinirli kalmamigtir. Boylece Z,c halkasi iizerinde Gray doniisiimler ile agirhik
fonksiyonlart iiretilebilir. Gray doniisiimiin M. Greferath ve S. E. Schmidt tarafindan verilen
Z,. uzerine genellemesi asagidaki gibidir, v € Z,. elemanmnin p-ary gosterimi u; € Z,
olmak iizere u = Zf;é u;p’ seklinde olsun. O halde 1 tiim girigleri 1 olan p¢~! uzunluklu

vektor ve Y, siitunlart Zg_l uzayimn farkli vektorleri olan (e — 1) x p®~! matris olmak iizere
Gr:Zye = 28 Gi(u) = (U, -y Ue—2)Y + Ue11oo1. (1)

Dahas1 G : Z3. — (Z]’f—l)" olacak sekilde bilesensel olarak genisletebiliriz ve bunu yine

G, ile gosterecegiz.

wy, ve dp, sirastyla Hamming agirlik ve Hamming uzakligi gostersin. G; Gray doniisiimii ve
wy, agirhigr kullanarak Z,, halkast iizerinde bir wq (u) = wy,(G1(u)) agirhg tanimlayalim. O

halde G, (Z}., d) lizerinde uzaklik koruyan bir doniigiim olur dyle ki

di(z,y) = Zwl(lyi — ;)

r=(21,.., %),y = (Y1, Yn) € Zpe vew; agirh@indan tiiretilen uzaklik fonksiyonudur.

Ayrica wy, ortalama degeri v = (p — 1)p°~? olan bir homojen agirhiktir,
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Kuantum Kodlama Teorisi

Kuantum mekanigi yasalarina gore calisan kuantum bilgisayarlarin klasik bilgisayarlara gore
hesaplama giicliniin daha iyi olup olmayacag diisiincesi 1980 li yillarin basindan itibaren
calisilmistir. Peter Shor, 1994 yilinda [6] calismasinda kuantum bilgisayarlar kullanilarak
biiylik tam sayilarin asal carpanlarina etkili bir sekilde ayrilabilecegini gostermisgtir.
Asal carpanlara ayirma probleminin zorluguna dayanan RSA gibi sifreleme algoritmalar
internet iglemlerinin giivenligini sagladigindan, Shor tarafindan elde edilen sonu¢ kuantum

bilgisayarlara olan ilgiyi artirmistir.

Klasik bilgi teorisinin temel birimi bitlerdir. Bilgi bitlerde depolanir ve islenir. Kuantum
bilgi teorisinde ise bilgi, bitler yerine kuantum bit ya da kisaca kiibit ad1 verilen birimlerde
saklanir. Bitler O ve 1 ile temsil edilirken kiibitler iki boyutlu bir Hilbert uzayin (H5)
vektorleri ile temsil edilir. Bu tezde Hilbert uzay: olarak kompleks vektor uzayi alinarak

hem iki boyutlu hem de daha yiiksek boyutlu kuantum sistemler (kiiditler) ¢aligilmistir.

F,, g¢-elemanli sonlu cismi ve standart i¢ ¢arpim ile g-boyutlu C? vektdr uzayim
alalim. Vektor uzaymn bir ortonormal tabant {|0),|1),...,|¢ — 1)} olsun. O halde bir
kiiditin durumu C? uzaymin bir vektoriidiir ve dolayisiyla taban elemanlarinin bir lineer
kombinasyonu olarak yazilabilir. O halde bir |¢) kiiditin durumu |ag|* + |aq|* + -+ +

|otg—1|> = 1 olmak iizere agagidaki gibidir,

’¢>:a0‘0>+061’1>++th,1‘q—1>

Kuantum bilgi teorisinin klasik bilgi teorisinden ayrildigr bir diger nokta g-ary bir klasik
sistemde bitler 0, 1,...,¢ durumlarinda sadece birinde iken kiiditler |0),[1),... ¢ — 1)

durumlarinin yaninda bunlarin bir lineer kombinasyonu olan siiperpozisyonunda da olabilir.

Kiiditler, kiibitlere gore daha biiyiik bir durum uzayina sahip olduklari i¢in daha fazla bilgi
temsil ederler dolayistyla kuantum bilginin depolanmasi ve iglenmesi i¢in kiibitlere gére daha

elveriglidirler. Dahasi birden fazla kiidit i¢eren bir kuantum sistem ile ayn1 anda birden fazla



durum temsil edilecegi icin kuantum hesaplama daha etkili bir sekilde gerceklesir. n-kiidit
iceren bir kuantum sistem C? uzayinin n kez tensor ¢arpilmasiyla elde edilir. n-kiiditlerin bir
kiimesine kuantum register denir. Bir kiiditte oldugu bir n-kiiditin durumu (C?)®" uzayinin
ortonormal taban elemanlarinin lineer kombinasyonu seklindedir. Kiibitin hesaplamali taban

elemanlarinin n-kez tensor carpilmasiyla elde edilen
B={|r1) ®|12) @ ... ® |zy) |z; € Fp, 1 < i < n}

kiimesi (C?)®™ uzay1 igin bir ortonormal taban olur. Taban elemanlarini ise |z1) ® |22) ®

... ®|z,) yerine |x1zy . .. x,) seklinde gosterecediz.

Kiiditler siiperpozisyon halinde olabilir bu yiizden durumlar1 hakkinda bilgi edinmek
icin 6lgmemiz gerekir. Olgiim sonucunda kiidit taban durumlarindan birine ¢oker ve
siiperpozisyon durumu bozulur. Boylece 6lciim sonucunda klasik bilgi elde edilir. Hangi
taban durumuna cokecegi siiperpozisyon durumundaki katsayilara bagli olarak degisir. Daha
acik bir sekilde ifade edersek; (C?)™ uzayinin alt uzaylarinm bir O := {M, ..., M} kiimesi,
i # jigin M; L M; ve (C9)" = M, & My & ... & M, saghyorsa o zaman O kiimesine
bir gozlenebilir (observable) denir. O halde bir n-kiiditin herhangi bir |¢)) durumu, |¢);),
|v) durumunun M; alt uzay: iizerine izdiisiimii olacak sekilde tek tiirlii ) = > 7 | oy 1)
yazilir. P; : (C7)" — M;, [#)) — |¢;) olsun. O halde |¢) durumu p(i) = |P; ||¢)|? olasilikla

M alt uzayindadir ve dl¢iim sonucu ise 7 olur. Ol¢iimden sonra n-kiidit

Bily)

W%’> = p(z

~—

durumuna ¢oker.

Bir n-kiiditin bir durumunun 6l¢iimiinii 6rnekle agiklayalim. ¢ = 3 ve n = 2 olmak iizere
(C1)" uzaymin B = {[0) = [00), 1) = [01),]2) = [02).]3) = [10),]4) = [11),]5) =
|12),16) = |20),|7) = |21),|8) = |22)} hesaplamali taban: ele alalim. Burada, |0) =
(100),]1) = (010)7,|2) = (001)T olmak iizere |0) := |00) = |0) ® |0) = (100000000)”

olur ve diger taban elemanlar1 da benzer sekilde hesaplanir. Zle |c;|? = 1 olacak sekilde
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2-kiiditin bir |¢)) = 3°°_ @, |i) durumunu ele alalim. O halde birinci kiiditi 6lgmek icin

My = Spanc{|00) , |01) ,]02)},
Ml = Spanc{|10> ) |11> ) |12>}7

My = Spanc{|20> ) |21> ) |22>}
olmak iizere O; = {My, My, My} gozlenebilirini ele alalim. Olgiimden sonra p, =
Z?:o |c;]? olasilikla O elde edilir ve 2-kiidit

(&%) ‘00> + o |01> + Qo ’02>
Viao? + laa[? + Jaof?

durumuna ¢oker. Benzer sekilde 6l¢iim sonucunda p; = 2?13 olasilik ile 1 elde edilir ve
2-kiibit
(6% ‘10> + oy |11> + o5 ’12>
Vas]? + feul? + fas]?

durumuna ¢oker. Ikinci kiiditi 6lgmek igin ise

M3 = Spanc{|00> ) |10> ) |2O>}7
M4 = Spaﬂc{|01> ) |11> ) |21>}7

Ms = Spanc{[02),[12) , |22)1.

olmak iizere Oy = {Mj, My, M5} gozlenebiliri kullanilir ve yukaridakine benzer sekilde

Olctim ¢iktist ile olasilig1 ve 6l¢iim sonucunda 2-kiiditin ¢oktiigii durum bulunabilir.

Kuantum Hata Belirleme ve Diizeltme

Klasik bilgi teorisinde oldugu gibi kuantum bilgi teorisinde de giiriiltiilii bir ortamda bilginin
iletilmesi veya depolanmasi problemi iizerine calisilir. Kuantum bilginin dekoherans adi
verilen cevresel etkilesimler ve diger nedenlerden dolay1 olusabilecek giiriiltiiden korunmasi
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gerekir. Klasik bilgide sadece bit hatalarini diizeltmek gerekirken burada bit hatalarinin yani
sira faz hatalarimin da diizeltilmesi gerekir. Dolayisiyla klasik duruma gore diizeltilmesi
gereken hata uzay1 ¢cok daha biiyiiktiir. Diger bir zorluk ise kiiditin durumu iizerinde meydana
gelecek hatalart diizeltmek icin o durumu Ol¢gmemiz gerekir. Fakat Olciimler yukarida
bahsettigimiz gibi durumu ¢okertebilir bu da durumun degismesine neden olur. Son olarak
klasik kodlarda hata diizeltmek i¢in en basit hata diizeltme kodlarindan olan tekrarli kodlar
kullanilir. 0 mesajinin 000 ve 1 mesajinin 111 seklinde kodlandig: 3-tekrarh kodu gz 6niine
alirsak 000 kod sozciigiiniin ikinci bitinde bir hata meydana gelirse elde edilecek 010 iletisini
majority vote kod ¢o6zme yontemini kullanilarak 000 seklinde diizeltebiliriz. Fakat kuantum
kodlar i¢in bu durum no-cloning teorem ile gegerli degildir. Tiim bu sebeplerden dolay1
kuantum hata diizeltmenin miimkiin olmadig: diisiiniiliyordu. Fakat 1995 yilinda Shor
tarafindan, 1 kiibit bilgiyi 9 kiibite kodlayan ve herhangi 1 kiibit (kuantum bit) iizerindeki
rastgele bir hatay1 diizeltebilen kuantum kodun [7] tanitilmasiyla kuantum hata diizletme
kodlarina olan ilgi artmistir. Ayni y1l icerisinde bagimsiz olarak Andrew Steane tarafindan
herhangi 1-kiibit hatay: diizeltebilen 7-kiibit kod [8] tanitilmistir. Ayrica Bennett ve digerleri
1 kiibit bilgiyi 5-kiibite kodlayan ve 1 kiibit iizerindeki hatay1 diizeltebilen kod tasarladilar
(bknz. [9]).

Bir kuantum kodu tasarlamadan ©Once hangi tiir hatalar ile kars1 karsiya olacagimizi
belirlemek, o hatalara uygun hata diizeltme yontemlerini gelistirmek adina 6nem tegkil eder.
Bunun yan1 sira bazi kuantum kodlar belirleyebilecekleri ya da diizeltebilecekleri hatalara
gore tasarlanir. Dolayisiyle oncelikle calisacagimiz kuantum kodlara uygun hata modelini

tanitacagiz.

q bir p asalinin bir kuvveti olmak iizere n-uzunluklu bir g-ary kuantum kod, (C?)®" uzayinin
bir alt uzayidir ve [n, k, d], seklinde gosterilir. a,b € F, ve w birimin p-inci dereceden
bir ilkel kokii olmak tizere X (a), Z(b) hatalari C? uzayi iizerinde unitary operatorlerdir ve

asagidaki gibi tamimlanir:

X(a)|z) = |z +a), Z(Ob)|x):=w" |z).
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burada tr fonksiyonu F, uzayindan F, uzayina iz fonksiyonudur.

Hatalarin asagida verilen 6zelliklere sahip bir & = {X(a)Z(b) | a,b € F,} kiimesini ele

alalim.

(i) I birim matrisini icerir,
(i) Iki farkli elemaninin carpimi baska bir elemanin skaler bir katidir,

(iii) Herhangi iki farkli A, B € £ elemani igin tr(A'B) = 0 saglanr.

q? liniter matrisin yukaridaki 6zelliklere sahip bir kiimesine bir iyi hata taban1 (nice error
basis) denir. Bir kiidit iizerinde tanimli bu hata operatorlerini n-kiidit {izerine genisletmek
icin iki 1yi hata tabaninin tensor ¢carpiminin da yine bir iyi hata tabam oldugu gerceginden
faydalanabiliriz (bknz. [10]). Dolayisiyla, X (a) = X(a1)®...® X(a,) ve Z(b) = Z(b;) ®
... ® Z(by,) olacak sekilde

En ={X(a)Z(b)|a = (a1,az,...,a,),b= (b1,b,...,b,) €Fy}

kiimesi bir n-kiidit icin bir iyi hata tabanidir. Ornegin, i kompleks birim olmak iizere bir

kiibitin hesaplamali taban durumlari iizerindeki etkisi

0210) = [1), 02 [1) = |0)
0:10) = 10), 0= |1) = —[1)

oy |0) = =i[1), oy [1) =i]0)

seklinde olan 2 x 2 Pauli matrislerinin G; = {5, 0., 0,, 0.} kiimesi C* uzay: iizerinde bir
iyi hata tabanidir. Burada o, bit-degistirme hatas1 ve o, faz-degistirme hatasi olarak da
adlandirilir. Ayrica oy = —i0,0, oldugunu kolayca sdyleyebiliriz. Bu hata tabanini n-kiibit

izerine G, = {E; ® ... ® E,, | E; € G, } olacak sekilde genisletebiliriz.

Ik kuantum hata diizeltme kodu Shor tarasindan 1995 yilinda tanitilan 9-kiibit koddur.
1-kiibit bilgi 9-kiibite kodlanir. Ayrica 3-kiibit bit degistirme kodu ile 3-kiibit faz degistirme
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kodunun birlesiminden olusur. Bu kod iizerinden kodlama ve kod ¢6zme adimlarim ele

alalim.

3-kiibit bit degistirme kodu hesaplamali taban durumlari olan |0) ve |1) durumlarini agagidaki

gibi kodlar ve boylece no-cloning teorem ile celismez,

|0) — 000}, 1) — |111).

Dolayistyla herhangi bir « [0) 4 5 |1) kiibit durumu « |000) + (3 |111) seklinde kodlar.

3-kiibit faz degistirme kodunu kullanarak taban durumlarini [0) — [+ + +),|1) = |— — =)

olacak sekilde kodlariz.

Burada

1

+) = %(\@ +n), 1= \/5(|0> — D).

O halde 9-kiibit kodu olustururken oOncelikle 3-kiibit faz-degistime kodu kullanarak
hesaplamali taban durumlarimi |0) — |+ + +) ve |1) — |— — —) olarak kodlariz ve
daha sonra bu kiibitleri 3-kiibit bit-degistirme kodu kullanarak |[+) — [000) 4 |111) ve
|—) — ]000) — |111) seklinde kodlariz.

O halde |0); ve |1), sirasiyla |0) ve |1) durumlarinin mantiksal durumlarin gostermek tizere

Shor kodunun kod sozciikleri asagidaki gibidir,

(]000) + [111))(|000) + |111))(|000) + |111))

2v/2
(]000) — |111))(J000) — |111))(|000) — |111))

2v/2

0) = [02) =

1) = [1L) =
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[letim sirasinda meydana gelebilecek herhangi bir hata durumunda hata diizeltme adimlarini
aciklayalim.  Bunun i¢in Oncelikle bir-degistirme hatasi o, meydana gelirse nasil
diizeltilecegini ele alalim. 3-kiibit bit-degistirme kodunu goz oniine alirsak [¢)) = «|0) +
F11) durumunun |¢') = «|000) + $|111) seklinde kodlanacagmi biliyoruz. Hatanin

meydana gelip gelmedigini anlamak i¢in durumu 6l¢cmemiz gerekir. Bu nedenler

Hy = Spanc{|000) , |111)}, H; = Spanc{|100),|011)},
Hy = Spanc{[010), [101)}, H; = Spanc{]001), |110)}.

olmak iizere O = {Hy, Hy, Hy, H3} gozlenebilirini alalim. O halde 6l¢iim sonucunda durum
0 elde edersek ya da bagka bir deyisle |¢') € Hj ise herhangi bir hata meydana gelmemisgtir.
Fakat eger Ol¢iim sonucu ¢ ise 0 zaman z-inci bitte hata meydana gelmistir sonucunu elde
ederiz. Diizeltmek i¢in ise ¢-inci bite tekrar o, uygulariz. Faz hatalarim diizeltmek i¢in
3-kiibit faz-degistirme kodu, Q = Spanc{|++ +),|— — —)} ele alahm. Bit degisme
hatalar1 icin ele aldigimiz gozlenebilire benzer bir gozlenebilir alip ayni islemleri yaparak

faz degisme hatalarim diizeltebiliriz.

Kuantum Sabitleyen Kodlari

Kuantum hata diizeltme kodlar1 arasinda 6nemli bir yere sahip olan kuantum sabitleyen
kodlar birbirlerinden bagimsiz olarak Daniel Gottesman [11] ile Calderbank ve digerleri [12]
tarafindan 1990 I1 yillarin baginda tamtilmistir. Boylece kuantum hata diizeltme kodlarinin
tanimlanmas1 ve analizi i¢in sistematik bir yol belirlemiglerdir. Klasik lineer kodlarla
yakindan iligkilidir ve bu sayede klasik yontemler ile analiz edilebilirler. Bu sebeplerden

dolay1 toplamsal kodlar olarak da adlandirilirlar.

Calderbank ve digerleri [13] kuantum sabitleyen kodun hata diizeltme performansinin dual
kodlar1 tarafindan kapsanan (self-orthoganal) klasik ikili (binary) kodun ozelliklerine gore
belirlendigini gostermislerdir. Ilk kuantum hata diizeltme kodlar1 arasinda yer alan Shor

kodu, Steane kodu, CSS kodlar birer ikili kuantum sabitleyen kodlardir (bknz. [7], [14],
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[13]). Daha sonra Ashikhmin ve Knill [15] tarafindan bu yapi ikili olmayan kuantum kodlara
genellenmistir. Ketkar ve digerleri ise [10] kuantum Hamming kodlari, kuantum kuadratik

kalan kodlar1 gibi kodlar1 incelemislerdir.

Kuantum sabitleyen kodlarda durumlarin kendileri yerine onlar1 sabit birakan operatorler ile
caligilir. Bu nedenle hata belirleme ve diizeltme iglemleri kuantum hata diizeltme kodlarma

gore daha basittir.

Ornegin; kod sozciikleri

1
0), :ﬁ(|000> +|111) 4 |222))
1
’1>L :ﬁ(|012> + ‘120> + |201>)
2), ——(|021) + [102) + [210))

QI

3

olan 3-kiidit kodu gz Oniine alalim. w birimin ti¢iincii dereceden bir kokii olsun ve X ile Z

asagidaki tanimlansin

00 1 1 0 0
X=X1=|101].Z2=Z1)=|0 w 0
010 0 0 w?

O halde X X X ve ZZZ operatorleri C = {|0), , |1); ,|2), } kiimesini sabit birakir bagka bir
deyisle 1 < i < 3i¢in XXX |i), = |i),,ZZZ i), = |i),. Dolayisiyla {XXX, ZZZ}

operatorler C' kiimesini sabitler deriz.
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Benzer sekilde, kod sozciikleri (5) esitlikleri ile verilen bir kuantum sabitleyen kod olan

9-kiibit kodu i¢in sabitleyen operatorler asagidaki gibidir:

ZZIIII IZZITIII, ITTZZ1111,
ITTTZZITL IITTTTZZ1, 111111127,

XXXXXXIII, ITTXXXXXX.

Burada [ birim operatér olmak iizere, yukarida tamimlandigi sekliyle X (1) ve Z(1)

operatorlerini kolaylik olmasi agisindan X, 7 ile gosterdik.

Sabitleyen kuantum kodunun tanimini vermeden once kullanacagimiz bazi kavramlari ele
alalm. & = {X(a)Z(b) | a,b € F} daha 6nce tanimladigimiz n-kiidit i¢in bir iyi hata
tabani olsun. Bu kiimeyi bir grup yapmak istiyoruz dolayisiyla kompleks fazlar1 elemanlara
katsay1 olacak sekilde diizenlersek P, = {w°X(a)Z(b) | a,b € F},c € F,}, pg°™ elemanl
bir grup olur. Burada w birimin p > 2 asali icin p-inci dereceden bir ilken kokiidiir. p = 2

durumunda P,, grubu 4¢?" elemanl olur.

n-uzunluklu bir g-ary kuantum kodu i¢in P,, grubunun bir

Stab(Q) = {E € Pn : E|¢) = |¢) her|¢) € Q}

alt grubuna () kodunun sabitleyen grubu denir. Asikar olmayan bir kuantum kod i¢in P,
grubunun her alt grubu sabitleyen grup olmaz. Dolayisiyla asikar olmayan bir kuantum ()
kodu i¢in Stab(Q), —I operatoriinii icermez ve P, grubunun bir abel alt grubudur. Tersine

eger S, P, grubunun —/ operatdriinii icermeyen bir abel alt grubu ise 0 zaman

Fix(S) = {[v) € (C")*" : E[¢) = [)) her E € S} = (] eig(E,1).

EeS

olacak sekilde tanimli Fix(S) bir kuantum koddur. O halde eger Q = Fix(Stab(Q)) ise o

zaman () koduna bir kuantum sabitleyen kodu denir.
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(), n-uzunluklu bir g-ary kuantum sabitleyen kod ve Stab(Q) = S olsun. Eger S alt
grubunun {irete¢ sayist r ise o zaman () kodu n-mantiksal kiiditi m = n — r fiziksel
kiidite kodlayan bir [n,n — 7], koddur. Ayrica S grubunun iiretegleri hata olup olmadigini
kontrol etmek i¢in kullanilan kontrol operatorleridir. Eger iletim esnasinda herhangi bir hata
meydana gelmediyse 6l¢iim sonucu +1 olur aksi halde w birimin p-inci dereceden bir ilkel
kokii olmak iizere 6l¢iim sonucu {w,w?; ..., wP~'} elemanlarindan biri olur ve dolayisiyla

bir hata meydana gelmistir.

S sabitleyen grubu ile bir () kuantum kodu ya .S grubunda yer alan elemanlarin bir skaler kati
olan ya da S deki en az bir eleman ile degismeli olmayan hatalar1 belirleyebilir. Bu nedenle

‘P., grubundaki degismeli elemanlar 6nemlidir. Bu elemanlar1 belirlemek i¢in 6ncelikle
2n c
Pn— F",wX(a)Z(b) — (a|b)

doéniisiimiinii tamimlayalm. Buradan £ = w°X(a)Z(b), E' = wX(d)Z(V) € P, ise
EE' = @t -Va)E'E gldugundan E ve £’ degismelidir ancak ve ancak tr(ba’ — ba) = 0
elde ederiz. O halde

{(a,b),(d',b))s = tr(ba’ — ba)

seklinde tanimlanan fonksiyona iz simplektik i¢ carpim (trace symplectic inner product)
denir. O halde P, grubundaki iki wX (a)Z(b),w® X (a’)Z(V') hatas1 degismelidir ancak ve
ancak karsilik gelen (a,b), (a/,0') € F2" vektorleri iz simplektik i¢ carpima gore diktir ve

(a,b) Lg (a',b") seklinde gosterilir. Buna gore S kiimesinin simplektik duali ise

St ={(a|b) €F>: ((a|b),(s | 1), = 0 forall (s,¢) € S}.

P, grubunun F = wF;...LE, seklindeki elemanmmin agirligi, birim olmayan F;
operatorlerinin sayisi olarak tanimlanir. .S sabitleyen grubu ile bir ) kuantum kodu igin .S
grubunun elemanlari kod sozciiklerine etki etmez ayrica Cp, (S), S grubunun P,, grubundaki

merkezleyeni olmak tizere C'p, (S) de olmayan bir hata kod tarafindan belirlenebilir. Buradan
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S sabitleyeni ile bir () kuantum kodunun minimum uzaklig1 asagidaki gibidir:

min{wt(E) | E € Cp, (S)\ S}, ifS C Cp (S)
min{wt(E) | E€ S\ {I}},  ifS = Cp (S).

d(Q) =

Minimum uzaklig1 d olan bir kuantum kod agirligi en fazla |(d — 1)/2] olan tiim hatalar
diizeltir (bknz. [16]). Son olarak daha sonraki boliimlerde kullancagim simplektik agirlik
kavramini verelim. Cp, (S) kiimeasinin ¢ altindaki goriintiisii S5 olur. O halde Then we
(a | b) in F2" vektoriiniin simplektik agirligini, P, grubundaki X (a)Z(b) operatdriiniin

agirligi olarak tanimlariz. Daha agik bir sekilde ifade edersek,

swt(a | b) = [{i: (a;, b;) # (0,0)},

ve burada a = (aq,...,a,), b= (by,...,b,).

Butson-Hadamard Matrisler

Bir Butson-Hadamard matrisi H, girisleri birimin kompleks kokleri olmak iizere HH' =
nl, kosulunu saglayan n x n kare matristir. [ matrisinin girigleri birimin £-mnc1 dereceden
kokleri ise 0 zaman BH(n, k) seklinde gosterilir. 1k kez A.T. Butson tarafindan 1962 yilinda
[17] calismasinda yer verilen Butson-Hadamard matrislerin kriptografi, hata diizeltme,
kuantum bilgi teknolojisi, telekomiinikasyon gibi pek ¢ok alanda uygulamasi vardir daha

fazla bilgi i¢in [18-21] ¢aligmalarina bakilabilir.

Tezin ilerleyen kisimlarinda Z; sonlu halkas1 iizerinde tanimlayacagimiz kodlar1 tanitirken
kolaylik saglamasi acisindan BH matrislerin logaritmik form adi verilen farkli bir gdsterimini

kullancagiz. Bir H = [(*4], BH (n, k) matrisinin logaritmik formu L. (H )[a;;] matrisidir.

H, ve H, iki BH(n,k) matris olmak iizere eger biri digerinden satir veye siitun
permiitasyonlar1 ile ya da bir satir veye siitunu birimin ayni k-inc1 dereceden kokii ile
carpilarak elde ediliyorsa o zaman bu iki matrise dentirler denir. Her BH matris ilk satir ve
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stitunu 1 olan bir BH matrise denktir. Bu formdaki matrislere normallestirilmis BH matrisler

denir.

BH matrisleri olusturmak icin fark matrisleri ad1 verilen bagka matris aileleri de kullanilabilir.
G eleman sayis1 k olan bir sonlu grupolsunohaldei = 1,...,7;j = 1,..., kX i¢in D = [d;;]
matrisinin giriglerinin her 1 < i # j < ri¢in {d;; — d;;} kiimesi G grubunun elemanlarini
A kez iceriyors o zaman D matrisine bir (k, kA; A\, G)-fark matrisi denir. Genel Hadamard
matrisler fark matrislerinin bir 6zel halidir. Bir A4 genel Hadamard matrisi Drake tarafindan
verilen tanima gore girigleri |G| = k olan G grubunun elemanlari olan bir £\ x kX matristir
oyle ki H ile HT, (k, kA; A\, G)-fark matrisleridir ve GH(k, G) ile gosterilir. BH matrisler ile
GH matrisler, G grubunu bir p asali i¢in birimin p-inci dereceden koklerinin ¢arpimsal grubu
C, olarak alirsak cakisirlar. Ayrica bu durumda BH(pA, p) matrislerinin logaritmik formlari

Z, tizerindeki pA x p\ GH matrislerdir.

Sonuclar

Bu kisimda tez calismamiz boyunca elde etti§imiz sonuglari sunacagiz. Ilk olarak

Butson-Hadamard matrislerin denkligi ile ilgili olarak yaptigimiz ¢alismalar1 ele alalim.

Bu kistm boyunca R bir sonlu Frobenius halka, M bir sonlu R-bimodiil ve M iizerindeki

dejenere olmayan bilineer formlarin kiimesi de BLF (M) ile gosterilsin.

BLF(M) kiimesinin M {iizerindeki herhangi bir dejenere olmayan bilineer formu B, M
modiiliiniin sol(sag) R-modiil otomorfizmalarmin kiimesi Aut(zM)(Aut(Mpg)) lizerine

asagidaki gibi etkisini alalim,

B :MxM R

(z,y) —— B(7(2),9)
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B":Mx M R

(z,y) B(z,n(y))-

O halde ilk olarak BLF(M) kiimesinin, M iizerinde herhangi bir dejenere olmayan
B bilineer form ve M modiiliiniin sol (sag) R modiil otomorfizmalar ile karakterize

edilebilecegini gosterdik. Daha acik olarak

BLFE(M) ={B-~:v € Aut(gM)}
={B-n:nec Aut(Mg)}.

Daha sonra x , R halkasinin bir iirete¢ karakteri ve B, B" ise M = {xg = 0,2y,...,2,}

R-bimodiiliiniin iki dejenere olmayan bilineer formu olmak iizere

H = [X(B(:,2;))]o<i j<n

ve

H' = [X(B'(zi,%;))]o<ij<n

matrislerinin satir denk (satir permiitasyonu ile denk) oldugu sonucunu elde ettik.
Burada iirete¢ karakteri sabit tutup dejenere olmayan bilineer formlar1 degistirdik. Bir
sonraki sonucta ise dejenere olmayan bilineer formu sabit tutarak iirete¢ karakterleri

degistirdigimizde elde edecegimiz

H = [x(B(xi,7;))]o<ij<n

ve

H' = [X'(B(zi, z;))|o<ij<n

matrislerinin yine satir-denk oldugunu gosterdik.
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Boylece R halkasinin herhangi bir y iirete¢ karakteri ve M = {0 = xzg,x1,...,Z,}

R-bimodiilii ile M iizerinde taniml1 herhangi bir dejenere olmayan bilineer form B i¢in

X (B(wi, fj))]ogi,jgm

seklinde tanimlanan tiim matrislerin denk oldugunu elde ettik. Bu sonuctan yola ¢ikarak,
w = e¥/P birimin p-inci dereceden bir kokii ve f; : 4 — F,, 1 < i < ¢* igin lineer
doniisiimler olmak iizere H = [w” i(cj)]lgi,quk seklinde tanimlanan tiim matrislerin Fourier
matrislerin bir Kronecker ¢arpimina denk oldugunu sdyleyerek Butson-Hadamard matrisler

i¢in bir denklik kosulu verdik.

Tez boyunca ele aldigimiz konulardan biri de Butson-Hadamard kodlardir. BH kodlar
sonlu halkalar tizerinde taniml1 kod ailelerinden biridir. Kodlama teorisinde lineer kodlarin
cok fazla calisilmasinin sebebi olusturulma ve hata diizeltme islemlerinin kolay bir
sekilde gerceklestirilmesidir. 1970 li yillardan itibaren ¢alisilmaya baslayan sonlu halkalar
tizerindeki kodlarla ilgili birgok calisma yaymnlanmistir (bknz. [22-24]). Sonlu halkalar
tizerindeki cebirsel kodlama teorisi, baz1 dogrusal olmayan ikili kodlarin aslinda Z, halkas1
tizerinde tanimli lineer kodlarin goriintiileri oldugu gercegi ile onem kazanmustir. Ayrica
BH kodlarin bir 6zel hali olan GH kodlar da yakin donemde ¢alisilmistir. Sonlu halka ve
cisimler lizerinde farkli yontemler ile GH kodlar olusturulmus ve simiflandirilmistir, (bknz.
[22,23,25]). BH kodlarin parametrelerini belirlemek ve boylece etkililigini ortaya koymak
calismalarimizdaki temel problemdir. Burada farkli agirlik fonksiyonlar1 ve onlardan
tiiretilmis uzaklik fonksiyonlarini kullanarak elde ettigimiz kodlarin minimum uzakliklari
icin bazi durumlarda alt sinir vermemize ragmen bazi durumlarda ise tam olarak elde ettik.
Oncelikle homojen agirliklar ile ilgili elde ettigimiz sonuglara yer verecegiz. Bunlardan ilki
sonlu degismeli halkalar iizerinde tanimladigimiz ve homojen olmayan agirliklar kiimesinde
olmasina ragmen homojen agirliklarin gibi 6nemli 6zelliklere sahip olan yari-homojen

agirlik kavramidir.

R sonlu ve degismeli bir halka ve w(0) = 0 olacak sekilde bir w agirlik fonksiyonu, R

halkasinin sifirdan farkli herbir 7 idealinin tiim a + I kosetlerindeki elemanlarin agirliklar
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toplami bir vy reel sayisi igin «|/| degerine esit oluyorsa o zaman w agirlik fonksiyonuna

yari-homojen agirlik denir.

Yari-homojen agirhi@1 tanimladiktan sonra e pozitif bir tamsay1 ve ~y pozitif bir reel say1

olmak iizere asagidaki gibi verilen agirlik fonksiyonunun yari-homojen oldugunu soyledik.

w : Zye — R ve p-ary agilimi u = ug + uip + -+ - + ue_1p° " ile her u € Z,e igin

/

mu, if Ue—1 = 0
w(u) = prl, if0 <ty <p—2
2 .
\;% - pe—2zp_1)ua ifue 1 = p—1

w, Z,e lizerinde taniml1 ve ortalama degeri 7y olan bir yari-homojen agirhiktir.

Ele alacagimiz BH kodlar1 tanimlayalim. Z} uzaymin bostan farkli ve A/ boyutlu herhangi
bir alt kiimesine bir k-ary (n, M) kod denir. H bir normallestirilmis BH(n, k) matris ve
L(H) ile de onun logaritmik formunu gosterelim. Ayrica, N birimin tiim k-inc1 dereceden
koklerinin ¢arpimsal grubu olsun. O halde dort farkli tipteki k-ary kodu asagidaki gibi

tanimlayacagiz:
Ay: k-ary (n — 1,n,d,) kodu, L(H) matrisinin ilk siitunu silinerek elde edilen matrisin
satirlarindan olusur,

By: k-ary (n — 1,nk,dg) kodu her & € N i¢in oH translate lerinin L(aH) logaritmik

formunun ilk siitunu silinerek elde edilen matrisin satirlarindan olusur,

Ci: k-ary (n,nk,dc) koduher o € N igin aH translate lerinin L(«H ) logaritmik formunun

satirlarindan olugur

Dy: k-ary (n + 1,n%/dp) kodu, k& = n olmak lizere her @« € N i¢gin [L(aH) | ¢]
blok matrisinin satirlarindan olusur, burada ¢, L(H) matrisinin ilk siitunu disindaki

herhangi bir siitunudur.
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Herhangi Ay, By, Cx, ya da D;, seklindeki kodlar genel olarak bir H normallestirilmig
BH(n, k) matrisinden elde edilen bir BH kodu olarak adlandirilir. Kolaylik olmas1 a¢isindan
sirastyla Ay, By, Ci, ya da Dy kodlarimin minimum uzakliklarint d 4, dg,dc ve dp ile

gosterecegiz.

Ik olarak yukarida tanimladigimz kodlarin klasik Hamming agirhig: altindaki minimum
uzakliklart i¢in [ = min{i > 2 : i|k} ileds > n — %, dg > n — % —1,dc>n— %, ve
dp >n— ? olacak sekilde birer alt sinir verdik ve SageMath yardimiyla 6rnekler tizerinde

gosterdik.

Agirlik fonksiyonunu herhangi bir homojen agirlik alarak kodlarin minimum uzakliklarim
tam olarak hesapladik ve sonucu olarak e > 2 i¢in normallestirilmis BH(n, p®) matrisler
icin agirlik fonksiyonu olarak Hamming agirlik ve G5 Gray doniisiimiinden elde ettigimiz
wy agirhik fonksiyonu ile minimum uzakliklarini verdik. Normallestirilmis bir BH(9, 9)
matrisinden elde edilen kodlarin minimum uzakliklarim1 SageMath programi yardimiyla elde

ederek onek olarak verdik.

p bir asal say1 e > 2 bir tamsay1 ve w, vy ortalama degeri ile bir yari-homojen agirlik
olmak iizere normallestirilmig bir BH(n, p®) matristen elde edilen .4, tipteki BH kodun kod
sozciiklerinin esuzaklikli ve bu uzakligin da yn oldugunu sdyledik. Ayrica bu kod ailesinin
Plotkin optimal oldugunu da elde ettik. Daha sonra By, Ci, ve Dj, kodlarinin da minimum
uzakliklarini kanitladik ve p = 2 durumunu ayr inceleyerek normallestirilmis BH(n, p©)

matrislerden elde edilen kodlarin yari-homojen agirlik altinda minimum uzakliklarini

(i) Eger e = 2ise 0 zaman dy = ny, dg = (n — 2)7, dc = dp = n~.
(i) Egere > 2ven > 4iseozamands = ny,dg = (n—1)v/2¢7%, do = dp = ny/2¢72%.
olacak sekilde elde ettik. Bunun bir sonucu olarak da 6zel bir yari-homojen agirlik olan G

Gray doniistimii ile klasik Hamming agirligi kullnarak minimum uzakliklart Ay, By, C, ve

Dy, kodlar i¢in kanitladik.
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Tezin son kisminda Butson-Hadamard kodlarin uygulamalarindan biri olan kuantum hata
diizeltme kodlarimi inceledik. Burada iki klasik lineer kod ve Fourier matrislerin bir
Kronecker ¢arpimi olan bir BH matris kullanarak bir kuantum kod elde ettik. Daha agik

olarak,

¢ C Fy, 1 < k < r olmak iizere bir g-ary [n, k, d;| klasik lineer kod olsun. % kodunun
kod sozciiklerini (C?)®™ uzayinda kuantum durumlari olusturmak i¢in kullanacagiz. Bunu da
asagidaki gibi yapacagiz: ¢ kodundan F, uzayina fonksiyonlarin bir kiimesi { f5 : A € F«},

w = e?™/? ve her \ € F, igin

1 (¢
Oy = ﬁwa ©c) (2)

cE?

olsun. O halde ¢ durumlari (C?)®™ uzayimin bir alt uzayi i¢in ortonormal bir taban olusturuu

ancaj-k ve ancak satirlar1 F, in elemanlar1 ve siitunlar1 da C kodunun elemanlart ile indislenen

k

q* x ¢"

H = [wf*(c)]Aquk cECs 3)

matrisi bir BH(¢*,p) olur. 2 C FZ}“’ s boyutlu bir klasik lineer kodolsun ve her A =
(A, ..oy Am) € P igin
Dy 1=y, @ ... ® By, € (CTFM 4)

tanimlayalim. O halde Qy (%, 2) ile gosterilen nm uzunluklu bir kuantum kodu (C?)®"™

uzayinin her A € & igin ®, tarafindan gerilen altuzayi olarak tanimlayacagiz. Yani,
Qu(¥€,2) :=span{®, : A € }. ®)

Qu(¢,2), (CH)*™m uzaymin ¢**-boyutlu alt uzaydir dolayisiyla 0, Qg(¢, %) bir
[nm, ks, 0], kuantum koddur. Burada 6, Qy (%, Z) kodunun minimum uzakligidir. Shor
tarafindan verilen 9-kiibit kod ile [26] calismasinda verilen 9-kiidit kod yukaridaki sekilde
tanimlanan kodlarin bir 6zel halidir. Daha genel olarak C ile D klasik lineer kodlar
tekrarli kod ve BH (g, p) matrisi alimirsa o zaman elde edilcek kuantum Q7 (C, D) kodu [27]

calismasinda yer alan kodlar ile ¢akisir.
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Yukarida nasil olusturulacagini gosterdigimiz @y (C, D) kuantum kodlari esit ise o zaman H
ve H' BH matrislerinin satir denk oldugunu gosterdik. Tersinin ise D kodunun 1-boyutlu
tekrarli kod alindiginda dogru olacagim elde ettik. Buradaki kuantum kodun sabitleyen
kuantum kod olmas1 i¢in gerekli olan kosullar1 arastirdik ve asagidaki sonuca ulagtik:

© : Fu — FI /%", O(\) =X, ile thaimlanan bir F,-uzay izomorfizmas: olsun.
2° = {(xx, -, Xn,) t (A1, Am) € Zand xy, € O(\;) forall 1 < i < m}.

tanimlayalim. O halde kuantum kodu olustururken kullandigimiz H = [w/ ()] AEF y ce%
matrisi her A\, \;,\s € F, ve ¢ € F, olmak iizere fy, + fo, = fa+x Ve foo = cfi
saglantyorsa o zaman Q) (C, D) kodu bir [nm, ks, ], kuantum sabitleyen koddur ve burada
§ = min{d(C, ¢} dyle ki ¢/ = min{wt(X) : X € 2°\ (¥+)™}. Dahast literatiirde
yer alan CSS kodlardan farkli olarak sabitleyen grubun elemanlarini da soyliiyoruz.
Qu(%,2) kodunun sabitleyen grubu X(ci,...,cy)Z(dy,...,d,,), hatalarindan olugur
oyleki (ci,...,Cn) € (pep ker(Fa)anddy, ..., d, € €. Buradaeger D = {(A,..., ) :
A € F,} C Fp! lineer kodunu tekrarli kod alirsak o zaman kodun minimum uzaklig:
d = min{d(C), m} olur ve sabitleyen grubu da X (cy,...,¢,)Z(d1,...,dy,,) hatalarindan

olugur 8yle ki ¢y, ...,c, €ECve > " ¢; =0,dy...,dy € CH.

Son olarak, yukarida verdigimiz sekilde olusturulan kuantum kodun hangi kosullar altinda
bir kuantum sabitleyen kod verdigini arastirdik. Bdylece ¢, p asalinin bir kuvveti olmak
iizere H bir BH(¢", p) ve C C F? boyutu k olan bir klasik lineer kod, D = {(X,...,A\) : A €
F,} C F} ise F, iizerinde 1-boyutlu lineer kod olsun. Eger Qx(C, D) bir sabitleyen kod ise
o zaman H, p-boyutlu Fourier matrisin rk-kez Kronecker capimidir. Bu sonug ile aradigimiz

kosullar elde ettik.
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Chapter 1

INTRODUCTION

The foundations of coding theory were laid with the publication of Claude Shannon’s paper
[28]. This theory studies the ways to recover the original information when data transmitted
over a channel is subjected to noise and gets corrupted. Shannon proved that if the data is
encoded before transmission, it can be corrected with a certain degree of accuracy in case
of used in this sense is the Hamming codes, introduced by Richard Hamming and used in
digital communication systems. These codes, which detect and correct single errors, were
widely used in early computer systems. Until the early 1970s, error-correcting codes defined
over finite fields and vector spaces were studied. In 1972, Hamming codes were generalized

to arbitrary integer residue rings by Blake in [29].

The codes constructed by Nordstorm-Robinson, Kerdock, Preparate, Goethals, and
Delsarte-Goethals have better parameters than any known linear codes. Hammons et.al [4]
have shown that the codes can be constructed as the images of linear codes over Z, under
Gray map. This encourages the study of nonlinear codes over rings. Butson-Hadamard
codes that derived from Butson-Hadamard matrices [25, 30, 31] and are a special case
of codes over finite rings. These codes are used in a wide range of applications such
as communications, signal processing, and combinatorial designs. The orthogonality
of Butson-Hadamard matrices enhances the error-correcting capabilities of these codes.
Additionally, their definition over finite rings allows for the design codes that are suitable for
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different channel conditions and hardware constraints. In [3], it is shown that certain types
of Butson-Hadamard codes, which correspond to type A codes in this thesis, meet Plotkin
bound under a homogeneous weight by determining their parameters. In other words, it is
shown that they have the maximum number of codewords for a fixed minimum distance and
length. Furthermore, the minimum distance of another certain type of Butson-Hadamard

codes, referred to as I3 in this thesis, have been found under a specific homogeneous weight

(w1).

Generalized Hadamard codes, which are a particular type of Butson-Hadamard codes, have
been studied in [23-25], recently. Here, generalized Hadamard codes, or simply GH codes,
were constructed using different methods on finite rings and finite fields. In [23], for a prime
p and e > 1, additive GH codes, that is, subsets of the vector space FZE which are linear
over the prime field F,, were constructed over F,.. The recursive construction of a particular
type of GH codes over Z,Z,> and the relations between these obtained codes and the linear
GH codes over Z,» were given in [25]. Finally, Bhunia et al. provided a classification of the

corresponding linear GH codes over Z,,s using certain types of GH codes over Z,;.

Another application of Butson-Hadamard codes is quantum information theory. The interest
in quantum error-correcting codes increased, with the publication of the 9-qubit code [7] by
Shor in 1995, which can correct any error on a single qubit. The 7-qubit code [8] introduced
by Steane, and 5-qubit code [9] introduced by Bennett et al. are some of these contributions.
Later, a condition for when errors in a given set could be corrected was provided by Knil and
Laflamme [32]. However, providing the basis states in these examples is not easy because the
dimension of the code space increases exponentially with the number of qubits. Moreover,
it is also important to find error correction methods easily. Quantum stabilizer codes, first
introduced by Daniel Gottesman [11], and Robert Calderbank [13] eliminate these issues by
compactly defining encoding and decoding steps. They also play a role similar to linear
codes in classical coding theory. The first examples of quantum error-correcting codes
are CSS(Calderbank-Shor-Steane) codes introduced by Robert Calderbank, Peter Shor and
Andrew Steane, constructed using two classical linear codes and under certain conditions

(see, [13], [8]).



The aim of this thesis is to determine the minimum distance of codes obtained from a
normalized BH matrix. In Chapter 3 we give a proof of the fact that the BH matrices
considered in Chapter 6 and Theorem 6.10 are equivalent to a Knocker product of Fourier
matrices. In Theorem 5.1, a lower bound for the minimum distance of such codes is given,
where the distance function is chosen as the usual Hamming distance. Then we consider
distance functions induced by homogeneous weights and give the minimum distance of BH
codes in Theorem 5.3. In chapter 5 with Section 2, we turn our attention to non-homogeneous
weights and show that there is a particular type of non-homogeneous weights, that we
call quasi-homogeneous weights, for which certain BH codes are Plotkin optimal. We
note that our introduction of quasi-homogeneous weights is based on the fact that the
non-homogeneous weight introduced in [33] satisfies a property that is also shared by
homogeneous weights (see Definition 4.1 and the paragraph preceding it). Then we think
of BH codes equipped with a certain type of quasi-homogeneous weights and find their
minimum distances in Theorem 5.6. We apply our results to determine parameters of p-ary
codes (p prime) which are images of BH codes under some Gray isometries (see Corollaries

5.4 and 5.8).

In Chapter 6, we give our general method for constructing a quantum code using p-ary and
g-ary classical codes and a BH(¢*, p) matrix, where p is a prime and ¢ is a power of p. In
Chapter 6 and Section 2, we look for a BH matrix for which our construction gives a stabilizer
quantum code. In particular, we show that if the BH matrix used in the construction has a
particular form such that it is equivalent to a Kronecker product of the Fourier matrix of order
p, then the resulting quantum code is a stabilizer code. In the next section, we search for a
converse; and consider a certain g-ary classical code in the construction. In particular, we
prove that if the resulting quantum code is a stabilizer code, then the BH matrix used in the

construction must be equivalent to a Kronecker product of the Fourier matrix of order p.



Chapter 2

BASIC NOTIONS IN QUANTUM
CODING THEORY

1. Classical coding theory

Coding theory studies the methods necessary for the efficient and effective transmission of
information from one place to another. It is developed to minimize the effects of noise that
may occur during the transmission. For example, it is used in cases such as transmission from
a whether or a distant satellite, reducing noise from compact disc recordings, and transmitting

Saturn and Jupiter photographs taken by the Voyager spacecraft.

The physical medium used for transmitting information is referred to as a channel.
Atmosphere and telephone lines are examples of channels. The information received
may differ from the information sent because of the undesirable disturbances called noise.
Lightning, poor spelling, poor hearing, sunspots, and competing phone messages can cause
noise. Coding theory deals with detecting and correcting errors caused by noise on the
channel. The fundamental problem here is determining which message was sent based on
the received information. To transmit information through a channel, we must express the

information in a way that is suitable for the channel. We refer to the structures we use for
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this purpose as alphabets. More formally, an alphabet A is a finite set. The alphabet A is
generally chosen as finite fields. In binary codes, the finite field of two elements Fo = {0, 1}
is considered, while more generally, for a prime p, the finite fields F, = {0,1,...,p — 1}
are also used the alphabet in many codes. In this thesis, we consider codes over finite rings,
which have been extensively studied recently (see, [34], [35]). The elements of A are called
code symbols. A word of length n is a sequence a; . . . a,,, Where each a; belongs to A, which
is also represented by the vector (ay, ..., a,). A code of length n is a non-empty subset C' of

A™ and the elements of C are called codewords.

Certain parameters have been established to decide which codes are good. Three
fundamental parameters are used when defining and evaluating codes. The first parameter is
the number of bits contained in the codewords, which is referred to as the code length. The
second parameter is the number of codewords in the code. The last parameter is about the

distance of distinct pairs of codewords.

Definition 2.1. Let C be a code of length n and ¢ = ¢; . . . ¢, be a codeword of C'. Then the
Hamming weight of ¢ is wt(c) = [{i | ¢; # 0}]. Also, letb = by ...b,,c = cy,...c, with

b # c. Then the Hamming distance between b and c is defined by

d(b,c) =wt(b—c) = |{i| b; # ¢}

The minimum distance of a code C' is defined as the smallest distance between two distinct

codewords in C.

A code containing M codewords of length n and having minimum distance d is expressed as
(n, M, d). In the trasmission of messages, the goals are to quickly encode the messages to be
sent, to ensure the easy transmission of the encoded messages, to rapidly decode the recieved
message, and to transmit a large amount of information during each transmission. As the
length of the code n increases, the transmission of the codewords slows down. Therefore,
to increase the transmission speed, the length of the code should be small. Additionally, for

detecting more errors, d should be large. Lastly, for transmitting a wide variety of messages,



M should be large. These are all considerations observed when constructing a code and are

fundamental objectives of coding theory.

1.1. Error Detection and Error Correction

In this section, we discuss the conditions regarding which errors that may occur during

encoding can be detected and corrected.We explain decoding process with examples.

Assume that the transmitted message is not a codeword. Then it is clear that there is an
error during the transmission. Thus, the error can be detected. However, if the transmitted
message is one of the codewords, then it might be assumed that there is no error, and thus

the error cannot be detected.

Let C' be a code. Assume that c is sent as a codeword and w is received as the message.
Then, the vector e = w — c is called the error vector. C' detects an error e if and only if for

every codeword ¢ € C, e + cis not a codeword in C'.

Example 2.1. Let C = {000,001,010,011,100,101,110,111}.  Since all recieved
codewords are again elements of C, any error that occurs during transmission cannot be
detected by C'. Also, since there is no need to do anything to convert it to a codeword when

an error occurs in a recieved message, it does not correct errors.

Example 2.2. Let us consider 3-repetition code C' = {000, 111}. So, 0 and 1 are encoded as
000 and 111, respectively. If no errors occur during transmission, the message 0 is recieved
as 000. However, suppose that an error occurred and it was recieved as 010. Then, this
message is corrected to either 000 or 111. It is decoded as the codeword closest to it. If we
calculate the distance between codewords of the recieved message, we obtain d(000,010) =

1 and d(111,010) = 2. Therefore, the message 010 is corrected to 000.

Now, assume that the received message is 011. Similarly, the message 011 is corrected to
111, but this decoding process is incorrect. As a result, while the code C'is able to correct a

one-bit error, it cannot correct a two-bit error.



Definition 2.2. Let 4 be an alphabet and C' C A" be a code of length n. Then C' is called
t-error correcting code if for all x € C' there exists at most one ¢ € C with d(z,c) < t.
Also, the code C detects t errors when d(z, ¢) < t and ¢ € C, in the case that x cannot be a

codeword. It is also called ¢-error detecting code.

Theorem 2.3. [36] Let C be a code with minimum distance d. Then it is a t-error correcting

code fort < |(d —1)/2)| and it is (d — 1)-error detecting code.

Next, the alphabet A will be considered as the ring Z; over which we often think of
non-linear codes. A linear code of length n over R = Z; is an R submodule of Z} and

additionally, if the minimum distance is d, then it is denoted as [n, k, d].

There are many ways to create new codes from linear codes. One of these is through dual

codes.

Definition 2.4. Suppose that C is a code of length n. Then the dual code of C consists of the

vectors y of length n such that
Z ziy; =0
i=1

for all z; € C. The dual code of C is denoted by C*.

Because of linear codes algebraic structures, defining, encoding and decoding processes of
linear codes are easier compared to non-linear codes. Therefore, they have been studied
more than non-linear codes. However, non-linear codes have been discovered with better
error-correcting capabilities than any known linear code. More explicitly, some non-linear
codes have more codewords than any linear code with the same length and minimum

distance. Kerdock [37] and Preparata [38] codes are some examples of these codes.

1.2. Homogeneous Weight Function

Homogeneous weights were introduced by I. Constantinescu and W. Heise, [2]. They can
be viewed as a generalization of Hamming weight in some sense. Also, the results obtained
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regarding the Hamming weight for codes over finite fields have corresponding homogeneous
weight versions for codes over rings. Now, we introduce some definitions and theorems used

in this thesis.

Definition 2.5. [3] A real-valued function w on the finite ring R is called a homogeneous
weight if w(0) = 0 and the following hold:
(i) Rx = Ry implies w(z) = w(y) for all x,y € R.

(i1) There exists a real number ~ such that

> w(y) = ~|Ral,

yERx

for all non-zero x € R. The number 7 is called the average value of w on R.

For instance, the Lee weight w;, on Z4 defined by w.(0) = 0,wr(1) = wr(3) = 1 and

wr(2) = 2 is a homogeneous weight with the average value v = 1.

The following theorem shows the existence and uniqueness of homogeneous weights on a

finite ring for any given non-negative average value ~.

Theorem 2.6. [39] A weight w on a finite ring R with identity is homogeneous if and only
if there exists a real number v > 0 such that w(x) = v(1 — (0, Rx)/|R*x|) for all x € R,
where R* denotes the set of unit elements of R and 1 is the Mobius function on the partially

ordered set of principal left ideals of R with respect to inclusion.

Let C be a k-ary (n, M, d) code equipped with the distance function induced by a specified
homogeneous weight on Z}! with the average value . If d > ~yn, then the generalized Plotkin

bound M < d/(d — ~yn) holds (see [40, Theorem 2.2]), and when
M >d/(d—vn) -1, (D)

we say that C is Plotkin-optimal.



Greferath et al. in [3] consider BH codes of type A, (see Ch. 5 for definition) in connection
with the generalized Plotkin bound, where they employ homogeneous weights, and prove

that these codes meet the Plotkind bound.

Theorem 2.7. [3, Theorem 5.4] Let H be a normalized BH(n, k) matrix. Then the BH code
of type Ay, obtained from H equipped with a homogeneous weight on Z;, with the average

value v has parameters (n — 1,n,vyn), and so it meets the Plotkin bound.

In order to produce weight functions on the ring Z,., where p is a prime number and e > 2
is an integer, it is customary to use Gray maps. The first use of Gray map appears in [41], in
which it is shown that some well-known good non-linear binary codes can be expressed as
images of linear codes over Z,. Later, the Gray map given in [41] has been generalized to a
Gray map from Zss to ng_l by Carlet in [42]. Carlet’s Gray map has been generalized to a

e—1

map from Z, to ZV" ~ in [43], for a prime p, defined by

Gi(u) = (ug, .-, Ue—2)Y 4 Ue_11c1, (2)

for every v € Z,e, where u = Zf;& u;p" with u; € Z,, the p-ary expansion of u, 1, ;

denotes the all-one vector of length p*~!, and Y is a matrix whose columns are all different
A\ "N

vectors in Z;fl (see also [44]). The extension of (G; from Z;’e into (de 1) , also denoted

(1, is defined componentwise.

There also exists Boolean function theory based definition of the map G;. Let u be any

element of Z,c and u = Y ;_ w;p'" its p-ary expansion for some u; € {0,1,...,p — 1}.

The image of u by a Gray map G is defined to be the Boolean function on GF'(p)¢

Gi(u) s (Y1, Yem1) = Ue + 25;11 U Y.

We remark that for every u € Z,. with the p-ary expansion v = » :_ u;p"" ', Gi(u) is

the evaluation map of the first-degree polynomial P,(Xy,..., Xc 1) = w3 Xeq + -+ +

1

ue—1X1 + u.. Suppose that we write the elements of GF(p)¢~! in a fixed order, say, as



@1, ..., 1. Then one may associate to G (u), for each u € Z,e, a unique p°~'-tuple,
namely (P,(a1),. .., P,(ay-1)). Hence, Gy gives a bijection between Z,,. and the first-order
generalized p-ary Reed-Muller code GRM (1, e—1). Note that we do not distinguish between
the map G1(u) and its correspondence in GRM (1,e — 1), which we demonstrate in the

following example.

Example 2.3. Suppose that e = 3 and p = 2. Then the Gray map for u is defined as follows:

Gl(u) : (91792) — U3 + ULY1 + U2Yo,

where (ya,y1) € Z3, in lexicographical order; are taken as follows:

Y1 | Y2
0|0
0|1
110
1|1

If u = 6, then its binary representation is equal to (ugusuy) = (110). Therefore if (y1,y2) =
(0,0) then we get G1(6)(0,0) = 1. If we continue like this we can get Boolean function
G1(6) = (1010).

Let wy, (resp., dp,) be the usual Hamming weight (resp., Hamming distance). We define the
weight wy on Z,e by wy(u) = wy(G1(u)) so that the Gray map G turns into an isometric
embedding of (Zze, dy) into ((Zg‘l) , dh) , where d; is the distance function induced by

wy, that is
n

di(x,y) = Zwl(yi — ;)

i=1
forall x = (21,...,2,) andy = (y1,...,¥n) in ZJ.. We note that w;(0) = 0 and for any

u#0

n(u) = Pt =t ifue Zp\{pt T 2p L (p = D) 3)
1 L
peL otherwise.
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Note that w; is a homogeneous weight with the average value v = (p — 1)p*2

If w is a homogeneous weight with the average value v over a Frobenius ring R, then
> reyrs W(r) = y|I] for every non-zero right or left ideal I of R, see [3, Proposition 2.6],
a property which plays a crucial role in proving that some linear codes produced from
a bimodule over R by using a non-degenerate bilinear form meet the Plotkin bound [3,
Theorem 4.3]. Note that this important property of a homogeneous weight is shared also

by some non-homogeneous weights. Later, we formalize such a weight (see Ch. 4).

2. Basic Notions in Quantum Coding Theory

This chapter consists of essential definitions and theorems from quantum coding theory used

in this thesis without proof.

In this thesis, both two and higher-dimensional quantum systems have been studied. Let F,
be a finite field of ¢ elements. We consider the ¢g-ary quantum digits, or simply qudits, over
F, as the fundamental unit of quantum information. Specifically, in the case of ¢ = 2, it is

called a qubit.

The state of a qudit over F, can be defined as a vector in the space CY, where the inner
product is the standard inner product. The space is spanned by a set of orthonormal basis
vectors {|0),|1),...,|¢ — 1)}. These basis elements are also referred to as computational
basis states. Therefore a state of a qudit can be represented as a linear combination of
its computational basis states. In other words, a qudit can be in a superposition of its

computational basis states, that is a qudit can be indicated as follows:

) = ao[0) +ay 1) + - +a, 1 ]g—1) € C

where |ag* + |aa|* + -+ + |ag_1]* = 1, and «; for 0 < ¢ < ¢ — 1 are complex probability

amplitudes.
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One of the main differences between classical and quantum information is that in classical
information, bits can be in states 0, 1, ..., ¢ — 1. However, in quantum information, qudits can

be in states |0) , |1),...,|¢ — 1) or in superposition of them.

The n-fold tensor product of C? extends naturally to quantum systems involving multiple

qudits. A set of n qudits is called an n-qudit quantum register. We use

as an orthonormal basis for (C?)". The basis elements are called computational basis states.
For simplicity, we write the basis elements as |z1xs ... x,) instead of 1 ® 73 ® ... ® x,,.
Therefore every vector in (C?)™ can be written as a linear combination of the vectors |x) €

Fr.

Example 2.4. Let C? be three-dimensional complex vector space and label |0) = (é) ,

1) = (2), and |2) = (%). Then some of the basis elements of (C*)? are as follows

10) == [00) = 1) = 101) = [2) = 102) = [3) = [10) =

[elelelelelelelelg
[elelelololalel Y]
[elelelelole]l jol]
OOO0OoOOHOOO

Other basis elements, such as |4) := |11) ,|5) := [12),|6) := |20}, |7) := |21),|8) := |22)

can be found, similarly.

A state of any two-quitrit (i.e., ternary quantum digit) is |1) = o |0) + ao1 |[1) + a2 |2) +
@00

@01
@02

Qg |3> “+ aqq |4> + a9 |5> + Qg |6> + a9 |7> + Q99 ’8> = gi? ,Will’l Z$€Z§ |Oém’2 = 1.
aiz
Q21
Qg2

The complex coefficients o, for x € Z% are probability amplitudes.

A state of a quantum register is not known unless the state of the register is measured. For a

measurement of (C,)®" there are n possible outcomes which are classical information. After

12



the measurement the state is collapsed into a basis state and the original state of the register

is destroyed, and cannot be reconstructed. More formally, it is defined as follows.

Definition 2.8. Let O := {Mj, ..., M} be the set of subspaces of (C?)" such that M, L M;
with i # jand (CY)" = M; & ... & M,. Then O is called an observable. A measurement
of an n-qudit with respect to the observable O is as follows: Any state |¢)) € (C,)®" can
be written uniquely [¢)) = >"° | «a; [1);) where [¢;) is the projection of [¢)) onto M;. Let
P, - (C9)"™ — M, |¢) — |i;). For this state take a subspace M; with probability p(i) =
17 [)

2, and output is i. After the measurement, the n-qudit collapses to the state

\_ Pl
i (i)

The orthonormal basis (4) is a nice observable which is called the standard observable. If

|¢)) € (C?)®" then we write

n

Wy => Gl 4)

J=1

After the measurement |¢)) will collapse to the basis state |j) with the probability |(j | 1)|?.

Example 2.5. Let ¢ = 2,n =1, and H = {|+) ,|—)} be the Hadamard basis where

_0+m iy 10 =11
If we take a state 1)) = ~v10) + (1)
_ 7 +¢ TG
) = L5 1 + T )

then the outcome of a measurement |) with respect to H will be 0 (resp.,1) with probability
|7+ C[2/2 (resp..|y — ¢I7/2).

Example 2.6. Suppose that

I¥0) = ap [000) + ay [001) + g [010) + cxg [011) + cg [100) + vy [101) + e [110) + w7 [111)

13



is a state of 3-qubit. Then the measurement of the first qubit of 3-qubit 1)) is as follows.
Consider the observable O = {M,, M, } where

My = Spanc{]000) , [001) ,|010) ,|011)} and M; = Spanc{|100),|101),|110),|111)}.

Then after measurement, we get 0 as the outcome with probability py = Z?:o |;|? and the

state is
(67} ‘OOO> + o ’001> + Qo ‘010> + a3 ’011>

V0o + faa? + ool + |os)?

We get 1 as the outcome with probability p; = Z:: 4 loi|* and the post-measurement state is

0y [100) + a5 [101) + ag [110) + a7 [111)
V]aal? + Jas|? + Jag)? + | ]? .

Accordingly, the second qubit of 1) can be measured using the observable O' = { My, M3}

where

M, = Spanc{|000) , |001) ,]100) , |101)} and M3 = Spanc{|010) ,|011),|110),|111)}

Classical information can be copied, but this is not generally valid for quantum information.
This is another important difference between classical and quantum information theory. The
no-cloning theorem states that only non-orthonormal quantum states cannot be cloned. It is
ensured by L.Park in 1970 [45] and then reconsidered in 1982 by W.Wootters and W.Zurek
[46] and separately by D.Dieks [47]. It is one of the earliest results of quantum computation

and quantum information.

Theorem 2.9. There is no unitary operator U such that U(|1)) ® |0)) = 1) ® 1) for all
[¥) ,|¢) € (C)™

14



3. Quantum Error Detection and Correction

Classical error-correcting codes have a well-developed theory but it cannot be directly carried
over to quantum computers for some reasons. One of the classical techniques pretend that
all the bits can be measured in the computer but for a quantum computer, this would destroy
any superposition. Moreover, while a classical computer only needs to preserve the values
of 0 and 1, a quantum computer also needs to preserve the phase information in addition to
that. Secondly, considering the classical repetition code where 0 is encoded as 000 and 1 is
encoded as 111, we correct the state 011 to 111 based on the majority vote but due to the
No-cloning theorem, there is no quantum counterpart of such a code. However, Shor and

Steane show that these challenges can be overcome [7,48].

Quantum systems are not completely isolated from the environment. This exposes them to
bit errors, phase errors, and even decoherence situations. Hence, it is important to determine
the error model to characterize potential errors. On the other hand, some error-correcting

codes are specifically designed based on the types of errors they will detect and correct.

Let ¢ be a power of a prime p. A quantum code of length n is a subspace of (C?)®". We
represent a g-ary quantum code that encodes & qudit into n qudits as [n,k],. Now, let
X (a)and Z(b) be unitary operators on C? as follows, where a,b € F, and w is a primitive

p-th root of unity and tr denotes the trace function from F, to F,,
X(a)|z) = |z +a), Z(Ob)|x):=w" |z).
That the set of error operators, £ = {X (a)Z(b) | a,b € F,} has the following properties:

(i) & contains the identity matrix I.
(i1) The product of two elements of £ is equal to a scalar multiple of another element of £.

(iii) tr(ATB) =0forall A, B € £ and A # B.
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Indeed, fora = 0, X (a) = Z(a) = I and X (a)Z(b) X (a") Z(V') = w* ) X (a4 a') Z(b+ V)
for all a,a’, b, € F,. Therefore, we see that (i) and (ii) are satisfied. Additionally, given
A= X(a)Z(b)and B = X(d)Z(V),

tr(A'B) = tr(Z(—=b) X (d — a)Z(V))
=tr(X(a —a)Z(V)Z(-D))
=tr(X(a —a)Z(t' — b)) = 0.

Here we consider the case p = 2 separately.If we take w = —1 then we ignore the complex

phases. Therefore, we take w as the 4-th root of unity for p = 2.

A nice error basis is a set of ¢ unitary matrices that satisfies the above properties. (see [49]).
The set £ is a basis for the set of ¢ x ¢ complex matrices with the Frobenius inner product,

that is, for two complex matrices A and B, (A, B) = tr(ATB).

Let &£ and & be two nice error bases. Then, according to the definition of a nice error basis
and the identity
(Er1 ® Ey)(Es ® Ey) = E1E3 ® EyEy,

we obtain that £ ® &, is also a nice error basis. In this way, £ can be extended to a nice error

basis for an n-qudit as follows
gn = {X(a)Z(b) | a = (CLl,CLQ, ceey an),b = (bl, bg, ce ;bn) S FZ}

with X (a) = X(a1) ® X(a2) ® ... ® X(a,) and Z(b) = Z(b1) @ Z(bs) ... ® Z(b,). In

other words, &, is a nice error basis on complex vector space (C)qn (see [50)).

For instance, G; = {I»,0,,0,,0.} is a nice error basis on C* where, I is the 2 x 2 identity

matrix and



are the well-known Pauli matrices. Furthermore, G, = {F; ® --- ® E,, | E; € G,} is a nice

error basis on (C?)®™,

3.1. Shor’s nine qubit code

The code discovered by Shor [7] in 1995 is a simple example of quantum error-correcting
codes that provides protection against the effects of any error on a single qubit. Additionally,
along with the example discovered by Steane [48] in 1996, it is the first quantum error
correction code. It encodes a single qubit of information into nine qubits. The code is
obtained by combining three-qubit bit-flip and phase-flip code. First, we encode the qubit

using the three-qubit phase flip code:
0) = |+++), [1)—=]-—-)
and then encode each of these qubits using the three-qubit bit-flip code:

1 1
+) — E(\OOO) +1(111)), |-) — 7 |000) — [111) .

Therefore the codewords of the Shor code are given as follows:

(1000) -+ [111))(|000) + [111))(|000) + [111))

2v/2
(]000) — |111))(J000) — |111))(|000) — |111))

22 '

0) = [02) = 5)

1) = 1) = ©)

where |0z) and |1.) indicates logical |0) and logical |1) states. Now, we give the error
correction procedure for this code. First, we show how the bit-flip error o, is corrected.

Thus let us consider three-qubit bit-flip code with the following encoding,

|0) = [0z) = |000)

1) — |1.) = [111).
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Thus the single qubit |¢)) = «|0) + §|1) is encoded as |¢') = «|000) + 3 |111). Let us
consider the observable O = { Hy, H, Hy, H3} where

Hy = Spanc{|000) , [111)}, H; = Spanc{|100),|011)},

Hy = Spanc{|010), |101)}, Hj = Spanc{|001),[110)}.

If the measurement of the encoded state |¢)') yields 0 then no bit-flip error has occurred.
Otherwise, if the measurement yields ¢, then a bit-flip error has occurred in the i-th
bit. In other words after the measurement if |¢)') € H, then there is no bit-flip error
occurred. But if [¢)') € H; then i-th bit is flipped. So, to correct the error that occurred
in the i-th bit, that bit is flipped again. Now, if we consider the 3-qubit phase-flip code
@ = Spanc{|+ + +),|— — —)} and use an observable similar to O, we similarly correct

the phase-flip errors.

4. Quantum Stabilizer Codes

Quantum stabilizer codes, introduced independently by Daniel Gottesman [11] and by
Calderbank et al. [12] in the early 1990s, are an important class of quantum error-correcting
codes. These codes, also known as additive codes, play a role similar to linear codes in
classical coding theory. Quantum stabilizer codes have been extensively studied. Many
well-known quantum error correcting codes are stabilizer codes. The Shor [7], Steane [14]
codes, and CSS code [13] which are among the first quantum error-correcting codes, are
binary quantum stabilizer codes. Additionally, they have also been studied in [51-55]. Then,
the extension of binary quantum codes to qudits was given by Ashikhmin and Knill [15]. On
the other hand, quantum stabilizer codes over finite fields were provided by Ketkar et al. [10]

by characterizing non-binary stabilizer codes over F, in terms of g-ary classical codes.

In quantum stabilizer codes, operators that stabilize the state are used instead of the state
itself. Therefore, a more compact and efficient representation of quantum states is obtained.
Focusing on stabilizer operators also simplifies the process of error detection and error
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correction. For instance, consider the following codewords of 3-qutrit code,

1
0}, =—7=(1000) + [111) + [222))
1
1), :ﬁ(|012> + ]120) + |201))
2), ——(j021) + [102) + [210))

S

3

and two operators X X X and ZZZ where w is a primitive 3-rd root of unity

00 1 1 0 0
X=X1=|101].Z2=Z1)=|0 w 0
010 0 0 w?

Then, these two operators have no effect on the codewords, that is XXX |i), =
iy, , ZZZ |i);, = |i); forall 1 < ¢ < 3. It is said that the codewords |0), ,|1);,]2);
are stabilized by { XX X, ZZ7}.

Group theory concepts are used in the construction of stabilizer codes. Recall that the nice
error basis &, = {X(a)Z(b) | a,b € F}}. If we define P, = {w°X(a)Z(b) |a,b € F},c €
F,}. where w is a p-th root of unity, then P, is a finite group and its order is pg" for p > 2.
When p = 2, we take w = 17, the complex unit, with ¢ = 0, 1, 2, 3; therefore the order of P,
is 4¢°".

Definition 2.10. Let () be a quantum g-ary code of length n. Then the subgroup
Stab(Q) = {F € P, : E|¢) = |¢) for all [¢) € Q}

of P, is called the stabilizer group of ().

In addition, for a non-trivial quantum code (), not all subgroups of P,, may be stabilizer

groups, observe that Stab((Q) satisfies the following two conditions for any non-trivial code

0.
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(i) Let w be a primitive p-th root of unity and ¢ € F,, then wl ¢ Stab(Q)), since for all
) € Q,w I 1) = w|) = |¢) would give |¢)) = 0 or w® = 1. Therefore, we can
also say Stab(Q) N Z(P,) = I.

(ii) Stab(Q) is an abelian subgroup of P,. If E,F € Stab(@ and EF = w°FFE then
|Y) = EF |¢) wFE ) = w|y) for all [¢) € Q, which yields |¢) = 0 or w® = 1.

Since @ is not a trivial w® = 1, and thus Stab(() must abelian.

Conversely, suppose that S is a subgroup of P, that satisfies the above two conditions. Then

we can define a quantum code as follows,

Fix(S) = {|[¢)) € (C)®" : E|¢) = [¢)forall E € S} = () eig(E, 1).
EeS
In other words, the quantum code defined above is the joint eigenspace of all the operators
with eigenvaluel in the stabilizer group S. From the definition, if () is a quantum code then
it can be seen that ) C Fix(Stab(Q)). If the equality holds then, @ is called a quantum
stabilizer code. Equivalently, there exists a subgroup S of P, that satisfies the conditions (i)

and (ii), and Fix(S) = @ if and only if () is a quantum stabilizer code.

Now, let () be a g-ary quantum stabilizer code of length n and Stab(()) = S. Then
the dimension of @ is ¢"/|S| (see [16]). If S is generated by {si, So,...,s,}, which are
independent stabilizer generators, then |.S| = ¢”, which gives that dim(Q) = ¢"~". Therefore

() encodes n logical qudits into m = n — r physical qudits, that is @) is [n,n — r],-code.

The r stabilizer generators can be considered as the check operators of the code since they
are used to identify and detect errors in the code. If the state remains undamaged during the
transmission, the measurement outcome is +1; otherwise, the measurement outcome is an

element of {w, w?,...,wP™1}, where w is a primitive p-th root of unity.

For quantum codes, an error E is detectable by a quantum code @ if and only if (¢, c2) =
Ag{cy, co) for all ¢q,co € Q. Before providing the characterization of detectable errors in

quantum stabilizer codes, we need some group theory concepts. Let Cp, (S) denote the
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centralizer of S in P,,, where S is a subgroup of P,,. Also SZ(P,) is the group generated by
the subgroups S and Z(P,,) where Z(P,,) is the center of P,,.

Proposition 2.11. [10] Suppose that S < P, is the stabilizer group of a stabilizer code ()
of dimension dim(Q)) > 1. An error E € ‘P, is detectable by the quantum code Q) if and only

if either E is an element of SZ(P,,) or does not belong to the centralizer Cp, (S).

In other words, a quantum code ) with the stabilizer group S can determine errors that are
either a scalar multiple of the elements in S or do not commute with at least one element
in S. Therefore, the classification of the commuting elements in P,, is important. First,
we identify the following group homomorphism from the multiplicative group P,, onto the
additive group F?",

¥ Pp— B wX(a)Z(b) — (a] b). (7)

Let £ = w°X(a)Z(b) and E' = w® X (a’)Z (V') be elements of P,,. Then, since
EE/ — wtr(ba/_b/a)ElE7

the errors £ and £ commute if and only if tr(ba’ — b’a) = 0. This leads to the definition of

a function from F." x F2" to F, by
{(a]b),(a" | b)), :=tr(ba" —b'a)

called the trace symplectic inner product. Hence the errors w®X (a)Z(b) and w® X (a') Z(V)
in P, commute if and only if the corresponding vectors (a,b) and (a’,) in F." are
orthogonal with respect to the trace symplectic inner product, denoted by (a,b) L, (a’,b').
Suppose that S is the image of S under ¢ and S is a subgroup of P,,. Then, the symplectic
dual of S is defined as

St ={(a|b) e F": ((a]b),(s|t))s =0forall (s,t) € S}.
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Note that, the weight of an error operator £ in P,, of the form w°E; ® ... ® E, is given by

wt(E) =[{i: Ei # 1} ],

that is, the number of non-identity tensor factors. The minimum distance of a quantum code
( is an essential factor since it is used to determine the maximum number of errors that code
can reliably detect and correct. A quantum code with minimum distance d can detect errors
in P,, with weight up to d, since a corrupted codeword with an error of weight d or more

could be a valid codeword in the code,and therefore it is undetectable.

Considering a quantum code () with the stabilizer group S, we know that errors in $ have
no impact on the codewords. Additionally, we say from Proposition 2.11 that an error not
in Cp, (S) can be detected by the code. Therefore, the minimum distance of the quantum

stabilizer code () with stabilizer S is given as,

min{wt(E) | E € Cp,(S)\ S}, if S C Cp,(S)
min{wt(E) | E € S\ {[}}, if S =Cp,(S).

d(Q) =

Also a quantum code with minimum distance d can correct all errors with weight at most
|(d — 1)/2] (see, [16]). Note that, the image of Cp, (S) under 1 is S*5. Then we define
the symplectic weight of the vector (a | b) in F2" as the weight of X (a)Z(b) in P,. More
specifically,

swt(a | b) = [{i: (a;,b;) # (0,0)},

where a = (aq,...,a,) and b = (by,...,b,).

4.1. Stean code

The Steane code [8] was constructed in 1996 by Andrew Steane which is a quantum
stabilizer code that encodes one logical qubit into seven physical qubits and it can correct all
single-qubit error and detect up to two-qubits errors. It is constructed from [7, 4, 3] classical
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binary Hamming code and its dual. Also, this code corrects the bit-flip and phase-flip errors,

separately which simplifies the error correction process.

The stabilizer generators of the Steane code are

My | X X X X I T 1
Myl X X I I X X I
My X T X I X I X
My| 7z Z Z Z I I 1
M|\ 2 Z 1 1 Z Z 1
Mg\ 2z I Z I Z 1 Z

and the logical operators X = XXXXXXX,Z = ZZZZZZZ. Then, with the stabilizer

group of the code being S, the basis codewords of the code are written as follows.

1
0), = =——(]/0000000) + |1111000) + |1100110) + |1010101
00, = 37 =5-/5(10000000) + [1111000} + [1100110) + [1010101)

+]0011110) + [0101101) + [0110011) + |1001011)),

- 1
1), = X|0), :ﬁ(|0000111> +|1111111) 4 |1100001) + |1010010)

+]0011001) + ]0101010) + [0110100) + |1001100)).

One can see that the generator elements of Cp, (S) \ Sare XX X[l and ZZZIIII.
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5. Butson-Hadamard Matrices

A Butson-Hadamard matrix of order n is an n X n square matrix whose entries are the
complex root of unity such that HH' = nl, where I is the identity matrix of order n and
HT is the complex conjugate transpose of H. If all the entries are k-th roots of unity, then
we write it as BH(n, k). Butson-Hadamard matrices were introduced by A.T. Butson in
[17]. They generalize the Hadamard matrices, which have entries of £1 and satisfy the
condition HH” = nl,. Butson-Hadamard matrices are used in constructing orthogonal
arrays and difference sets, which are important in experimental designs, error correction and

cryptography, for more information see [18], [19], [20], [21].

Let H = [(*4] be a BH(n, k) matrix. Then we denote its logarithmic form as L;(H) = [a;;],
where ( is a k-th primitive root of unity. This representation provides convenience in the

description of the codes we obtain over Zy.

Suppose that H; and H, are two BH(n, k) matrices. If one can be obtained from other by
row or column permutations or by multiplying all entries in a row or a column by the same
primitive root of unity, then these two matrices are said to be equivalent. Every BH matrix
is equivalent to a BH matrix with its first row and first column consisting of 1’s. Matrices of

this form are called normalized.

Note that when ¢ is a primitive n-th root of unity, then the n x n Fourier matrix F,, =

[¢i=DU=D]2_ is a normalized BH(n, n) matrix.
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Example 2.7. Let  be a primitive 6-th root of unity then

11 1 1 1 1 1 0000000
1 ¢ ¢t ¢ 0145331
1 ¢4 ¢ ¢3¢ 0413531
H=11¢ ¢ ¢ ¢t ¢ ¢ | LH=|0531413
1 ¢ ¢ ¢ ¢ ¢ ¢ 035411 3
1 ¢ ¢ ¢ ¢ ¢ ¢ 0331145
1 ¢ ¢ ¢ ¢ ¢ ¢ 0113354

H and L(H) are respectively a normalized BH(7,6) matrix and its logaritmic form.

The difference matrices introduced by Drake [56] are used to construct Butson-Hadamard
matrices. A matrix D = [d;;],7 = 1,...r,;j5 = 1,... kX with entries from the group G
of order k is called an (k, kA; \, G)-difference matrix if each element of G occurs A times
in the sequence {d;; — djt}fil forall 1 < i # j < r, see [57]. Generalized Hadamard
matrices, which are a special case of difference matrices, coincide with the logarithmic forms
of Butson-Hadamard matrices under certain conditions. A generalized Hadamard matrix H
in the sense of Drake is a kA x k) square matrix whose entries are the elements of a group
G of order k, such that H and HT are (k, k); \, G)-difference matrices and denoted by
GH(k, G) (see also [18], Definition 4.9, where G is considered multiplicative). Note that, if
the multiplicative group C,, of all p-th roots of unity is taken as the group (G, where p is prime,
then the BH matrices over GG coincide with the GH matrices. Furthermore, in this case, the
logarithmic forms of BH(pA, p) matrices coincide with the pA x pA GH matrices over Z,,. In
addition, if G = Zy, then every A = [)\;;] matrix of dimension £\ is the logarithmic form of

the BH(k, k) matrix.
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Example 2.8. Suppose that G = Cs is the cyclic group of order 5 and ( is a generator of G

then the following matrix is a GH(5,Cs),

1L ¢ ¢t ¢t ¢
¢ 1 ¢ ¢ ¢
H=1¢ ¢ 1 ¢ ¢
¢t ¢ 1 ¢
¢ ¢t ¢t g1

Indeed, for H = [h;j], the difference set of the first two rows {hyjhy;}°_, = {¢*, ¢, ¢%,1,¢%}
contains all elements of the group exactly once. Similarly, the pairwise difference sets of all

rows can be also obtained. Moreover, since H is symmetric, we say that H is GH(5,Cs).
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Chapter 3

Equivalence of Butson-Hadamard

Matrices

In this section, it has been established that BH matrices, which satisfy a condition on the
powers of the roots of unity at their entries, are equivalent. Moreover, it has been stated that

these matrices are also equal to a Kronecker product of Fourier matrices.

The conditions under which BH matrices exist and the equivalence problem of these
matrices have been studied by various researchers. Among them are Ferenc Szollesi, who
demonstrated the existence of the BH(19, 6) matrices [58], and Ronan Egan and Patraig O
Cathain [59], and Patric R. G. C)stergard [60] who provided results on the classification of

BH matrices.

First, we introduce some concepts that we used to obtain the results. Let J(R) denote the
intersection of all maximal left ideals of a finite ring R, which is known as the Jacobson
radical of R. This is also equal to the intersection of all maximal right ideals. Furthermore,
let soc(gR) denote the sum of all left ideals of the ring R. Similarly, let soc(Rr) denote the
sum of all right ideals of R. Finally, if we denote by R the character group of the additive
group of R, that is the set of all Z-homomorphisms from R to C — {0}, then ﬁ has the
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structure of an R — R bimodule by defining x"(x) := x(rz) and "x(z) := x(ar) for all
r,x € Rand xy € R.

Definition 3.1. [3] A finite ring R that satisfies the following equivalent conditions is called
a Frobenius ring.
i. R J(R) and soc(rR) are isomorphic left R-modules.
ii. R J(R) and soc(Rp) are isomorphic right R-modules
iii soc(gR) is left principal.
iv. soc(Rp) is right principal.
v. Rand R are isomorphic as left R modules.
vi. Rand R are isomorphic as right R modules.
Definition 3.2. Let B be a bilinear form on an M module. If B(v, w) = 0 = w = 0, then B
is called a non-degenerate bilinear form.
Throughout this chapter, 12 will denote a finite Frobenius ring and M a finite R-bimodule.
We also denote the set of all non-degenerate bilinear forms on M by BLE(M).

Let B : M x M — R be a non-degenerate bilinear form on M. Associated to B are there

right R-module homomorphisms, for all x € M, defined by

B(z) : M R

y+——= B(z,y)

that is B(z)(y) = B(x,y) for all z,y € M. It follows that B(z) € M* = Hom(Mg, Rg)

for every x € M. Note the following properties:

* B(x + x2) = B(x1) + B(xs) for all 21,29 € M.
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* B(rxz) = rB(z) in the left R-module M*forall € Rand x € M.
* B(xr) = B(«') if and only if z = 2’ for all x, 2’ € M.

o M*={B(x):z € M}.

Let Aut(gpM) (respectively, Aut(Mpg)) denote the group of left (respectively, right)
R-module automorphisms of M, equipped with the usual composition of maps. Given
v € Aut(gM) and n € Aut(Mpg), one can define two mappings assosiated with B as
follows:

B :MxM R

(z,y) ———— B(y(2),y)

B" - MxM R

(z,y) B(z,n(y))
Observe that both B’ and B” are non-degenerate bilinear forms. Thus both groups Aut(zM)
and Aut(Mpg) act on BLF(M). We write B = B -~y and B” = B - 1.

Theorem 3.3. Let B be any non-degenerate bilinear form on M. Then we have

BLF(M) ={B-v:v € Aut(gM)}
={B-n:nec Aut(Mg)}.

Proof. The arguments above the theorem show that { B-v : v € Aut(zgM)} lies in BLF(M).

Conversely, let B’ be any other non-degenerate bilinear form on M. We shall show that

B’ = B - v for a suitable v € Aut(pM).

Let M = {0,2q1,...,2,}. Since M* = {B(0),B(z1),...,B(z,)} =
{B'(0), B' (1), ..., B'(x,)}, there exists ¢ € S, such that B'(x;) = B(2,(;)). Now define
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v : M — M by ~v(0) =0and y(x;) = x,(; foreachi = 1,... n. Notice that

B'(x,y) = B(v(z),y)

for all z,y € M. Thus we complete the proof by showing that v € Aut(gM).

Let z; + x; = ;. Since

B(zqr) = B'(xk)
= B'(z; + x;)
= B'(z;) + B'(x;)
= B(zo@)) + B(2o(;)

= B(2o6) + To())
we have Z,(;) + To(j) = To). It follows that
V(@i +x5) = V(¥k) = Ty = To(i) + Tog) = V(@) + V(75),
i.e. 7y is additive. On the other hand if r € R and rz; = x;, then

B(xo(;)) = B'(x;)
= B'(rx;)
=rB'(x;)
= rB(z6(:))

= B(T’xg(i)),
hence x,(jy = r1,(;), which yields

V(rzi) = v(75) = 243y = 1200 = rY(20),
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as desired. This completes the proof of the first equality. By symmetric arguments, one

easily prove the other equality. 0

Proposition 3.4. Let x be a generating character of R and let B, B’ be two non-degenerate

bilinear forms of the R-bimodule M = {xq = 0, z1,...,x,}. Then the matrices

H = [X(B(:, 2;))]o<i,j<n

and

H' = [x(B'(zi,x;))]o<ij<n

are equivalent (by row permutation).

Proof. There exists an o € S, such that B'(z;, ;) = B(24(i).,;) forall 0 <4, j < n by the
proof of Theorem 3.3. Thus H' = [x(B'(z;,z;))] = [B(xs(), x;)] is H with rows permuted
by o. U

Lemma 3.5. Let x and X' be two generating characters of the ring R. Then there exists a

unit element a € R such that ' = x°.

Proof. Since Y is a generating character then there exists an element a of R such that ' = ya.
Similarly, there exists an element a’ of R such that y = x’a’. Therefore y(1 — aa’) = 0 and

x # 0. Then x' = xa = x® and a is a unit element of R.

O

Proposition 3.6. Let y and X' be two generating characters of the ring R and let B be a
non-degenerate bilinear form on the R-bimodule M = {xq = 0,21,...,x,}. Then the

matrices

H = [X(B(:,2;))]o<i,j<n

and

H' = [X'(B(zi, 2;))]o<i,j<n

are equivalent (by row permutation).
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Proof. By above lemma, there exists a unit element a € R such that Y’ = x“. Since a is
unit, we have aM = M. It follows that there exists o € S, such that az; = x,; for all

1=1,...,n. Now

H' = [X'(B(wi,25))] = [X"(B(wi, 25))] = [x(aB(w, z5))] = [x(Blaws, z;))] = [X(B(2o(), ;)]

is clearly the matrix [y (B(x;, x;))] with rows permuted by o. O

Proposition 3.7. For the R-bimodule M = {xy = 0, x1,...,x,}, the matrices of the form

[X(B(wi, xj))]OSi,jgm

where Y is a generating character of Rand B : M x M — R is a non-degenerate bilinear

form on M, are all equivalent.

Proof. For every non-degenerate bilinear form B’ on M distinct from B according to
Proposition 3.4, H = [x(B'(x;, z;))]o<ij<n is equivalent to H. Similarly for every x’
distinct from x according to Proposition 3.6, H” = [x'(B(xi,;))]o<ij<n is equivalent to

H. This completes the proof. 0

Corollary 3.8. Let H = [w/i)],; ;o v, where w = €*™/? and f; : € — F, is a linear
transformation for each 1 < i < ¢*. Then H is equivalent to a Kronecker product of Fourier

matrices.

Proof. Since f; € L(€,F,) for 1 < i,j < ¢" and € is isomorphic to F,» then we use
the composition of F,-space isomorphisms x : ¢ — Fux — L(%,F,). Let B : € x
% — F, be a transformation defined as B(c,¢’) = f;(¢) such that x(c) = f;. Then B
is a non-degenerate bilinear form. Also x : F, — C — {0}, x(a) = w* is a generating
character for F,,. If we combine these we say H = [w/i(®)],; icov = [x(B(ci, ¢;))]1<ij<qr-
On the other hand B" : F x Fyr — Fr, B(i,7) = ij is a non-degenerate bilinear form
and x' : Fjx — C — {0}, x/(a) = w” is a generating character. Then the Fourier matrix
Fij = [wY] = [X'(B'(i,j))]1<i j<¢+ The desired result is obtained by Proposition 3.7. [
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Chapter 4

New Results on Weight Functions

1. Quasi-homogeneous weight function

In this section, we begin with the definition of new weight function over finite commutative
rings, which we call quasi-homogeneous weight. This weight belongs to the set of

non-homogeneous weights, but it possesses crucial properties as homogeneous ones.

Definition 4.1. A weight w on the commutative finite ring R is called quasi-homogeneous if

w(0) = 0 and there exists a real number -y such that

PORUGER]

rea+1

for each a € R and each non-zero ideal I of R. The number 7 is called the average value of

w.
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Proposition 4.2. Let e be a positive integer and v be a positive real number. Define a

mapping w : Z,e — R by

mua ifue—1 =0
wlu) = 2, ifO0<tey <p—2
2 .
\%_mua fuer=p—1

e—1

for all w € Z,. with the p-ary expansion v = ug + wip + -+ + ue_1p* . Then w is a

quasi-homogeneous weight on Z,. with the average value .
Proof. Fix 0 < s < e — 1. We show that for any a € Z,.,

> wlu) =yp7
u€a+(p*)
which completes the proof. Note that it is enough to assume 0 < a < p* — 1. Note also
that for any v € a + (p®), there exists a unique n € Z,. such that 0 < n < p~* — 1 and
u=a+np’. Writta =ay+a1p+---+as_p tandn =ng+mp+ -+ ne_s_1p° "L,
where 0 < a;,n; <p—1foreach: =0,...,s—1andj =0,...,e—s—1. Hence, a typical

element u of a 4+ (p®) can be written uniquely as
u=ag+ap+--+as1p" " +nep® +np" 4 e op™ A e 1p”,

where the a;’s and n;’s all lie in {0,...p — 1}. We separate the sum of w(u)’s, where u

ranges over a + (p®), into three sums as follows:

(I) The sum of the w(u)’s for u € a + (p°) withn._,_; =0, i.e.,
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(IT) the sum of the w(u)’s foru € a + (p°) with0 < n._,_; < p—2,1i.e.,

e—s—1

vp(p —2)p
p—1

)

(IT) the sum of the w(u)’s for u € a + (p°) withn._,_1 =p — 1,i.e.,

2,e—s—1 Spe—s—1(e—s—1
PP Y e—s—1 pp (p — 1) e—s—1 e—1
- P e+ +p T (p—1)p
p—1 p2(p—1) 2
It is now easy to see that the numbers in (I)—(III) sum up to yp°®~%. 0

In [33], a Gray map (denoted G in this chapter) on Z,. (for a prime number p) has been

introduced as a generalization of the Gray map on Z, as follows: For v € Z,,

() ifu < pe~1, then Gy(u) € Zgﬁ_l has 1’s in the first « locations and 0’s elsewhere;
(i) if u > p®~!, then Gy (u) = ¢ + Ga(r), where g and r < p°~! are positive integers such

thatu = qp* ' +rand 7= (q,q,...,¢,q) € dejl.

Let wo be the weight on Z,,. defined by ws(u) = wy,(G2(u)). Then we have

u, if u < pel
w2<u> - pe—17 if pe—l <u< pe o pe—l

pe —u, if pe _pe—l < S pe.

It is now easy to see, by Proposition 4.2, that w, is a quasi-homogeneous weight (that is not

homogeneous) with the average value v = p*~2(p — 1).

Define the distance function dy on Z,. by
da(u, v) = ws(u — v)

for u,v € Z,e. Then Gy : (Zpe,d2) — (de_l, dy) is a distance preserving map, where d,
denotes the Hamming distance (see [33, Theorem 2.1]).
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Remark 4.3. We see that both weights w; and w, share the same average value v = (p —
1)p®~2. In fact, w; is the only homogeneous weight on Z,c with the average value v =
(p — 1)p°=2, see Theorem 2.2 in [3]. It follows that our consideration of quasi-homogeneous
weights enables us to work with some non-homogeneous weights with the same common

average value and flourishes our repository of weights in this manner.
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Chapter 5

Butson-Hadamard codes

In this section, we present the results we obtained regarding Butson-Hadamard codes defined
over finite rings. Interest in codes over finite rings has increased with the discovery that
nonlinear codes such as Kerdock and Preparata can be obtained as the images of codes over
Z, under the Gray map [4]. Here we will present the results we obtained regarding the

parameters of BH codes with different weight functions.

The codes we consider in this chapter are defined over rings Z;. Any non-empty subset of Z}}
of size M will be called a k-ary (n, M) code. We follow the definitions from [61] to obtain
codes over Z;, from a normalized BH matrix. Let H be a normalized BH(n, k) matrix and
L(H) its logarithmic form. Also, let N denote the multiplicative group of all k-th roots of

unity. We define four types of k-ary codes as follows:

Az k-ary (n — 1,n,d4) code consisting of the rows of L(H) with the first column deleted,

By: k-ary (n — 1,nk, dg) code consisting of the rows of the logarithmic form L(«aH) of the

translate o H, for all &« € N, with the first column deleted,

Ci: k-ary (n,nk,dc) code consisting of the rows of the logarithmic form L(aH) of the

translate o, foralla € N,
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Dy: k-ary (n + 1,n?,dp) code, with k& = n, consisting of the rows of the block matrix

[L(aH) | ¢] forall &« € N, where c is a fixed non-initial column of L(H).

Note that the deletion of the first column of L(H) in defining codes of type .4 has no impact

on the distance since the first coordinates of the lines of L(H) are all zero.

Any code of type Ay, By, Ci, or Dy, is generally referred to as a BH code obtained from the
normalized BH(n, k) matrix H. For the sake of simplicity, we denote the minimum distance
of a BH code (with respect to a specified distance or weight function) by d 4, dg, d¢, or dp
according to its type, being Ay, By, Ci, or Dy, respectively, with no reference to £ and the

distance function when they are trivial from the context.

In the first section of this chapter, we study codes obtained from Butson-Hadamard (BH)
matrices and their translates under an homogeneous weight. Then, in the second section,
we define quasi-homogeneous weight and study the parameters of codes obtained from BH

matrices under a certain quasi-homogeneous weight.

1. BH codes with homogeneous weights

In this section we study the minimum distance of BH codes with respect to homogeneous
weights. The following arguments, based on facts from [62], are repeatedly used in the

sequel.

Given a BH(n, k) matrix H = [(*7], where ( is a primitive k-th root of unity, we have
¢¥i1=%1 4 ... 4 (4n—%n = () for each pair (4, j) with 1 < i # j < n. Itis proved in [62] that
if k£ has prime factorization pi* . .. p¢, then the number of terms in such a vanishing sum of
powers of ( is of the form mip; + - - - + m,ps, where each m; (1 < ¢ < s) is a non-negative
integer. Suppose that p; is the smallest prime divisor of k. Then 1 + (,, + ({p,)? + ... +
(Cp )Pt =0, where (,, = ¢ k/p1and there are at least p; terms in a vanishing sum of powers
of (. This yields that in any vanishing sum of powers of ( with n terms, the number of 1’s
(equivalently, the number of a certain power (* of {) cannot exceed n/p;. In particular, the
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number of columns with the same entry in two rows is at least n/p;. Moreover; if r = 1, that
is, k = p° is a power of a prime p, then any vanishing sum of powers of ( is obtained from
the relation 1 + ¢, + ... + Cf,’_l = (0 by addition and rotation. In particular, the difference of
the i-th and j-th rows of L(H), i.e., [a;1 — a1 . .. Qi — Gy, is a disjoint union of cosets of
the ideal p*~'Z,¢ in Z. For a detailed explanation see Corollary 3.4 and the paragraph after
Theorem 2.2 in [62].

Although this section is reserved for investigations of BH codes equipped with distance
functions induced by homogeneous weights, we start with the usual Hamming distance and

give lower bounds for the minimal distances of BH codes.

Theorem 5.1. Let H be a normalized BH(n, k) matrix. Then for a BH code obtained from

HwehavedAZn—?,dB >n—?—1, dczn—?,anddl) Zn—?,where

[ = min{i > 2 : ilk}.

Proof. Let ( be a k-th primitive root of unity and suppose that H = [(“/]. Then there are
at least [ terms in a vanishing sum of powers of { and the number of columns with the same
entry in two rows of H cannot exceed 7 by arguments given before the theorem. That is,

n

n—dy <2 andsodAzn—l

l’

Let a and (3 be different powers of (. As in the preceding paragraph, one can obtain that the
distance between two rows of aH (or SH) is at least n — 7. Let R; denote the i-th row of H,
fori =1,2,...,n, with the first column deleted. Clearly, d;,(aR;, BR;) = n—1. (Recall that
dy, denotes the Hamming distance.) On the other hand, the number of the coordinates with
the same entry between aR; and SR; is the same as the number of the terms equal to o' 3
in the vanishing sum (%1 ~%! + ... 4 (%»~%» = (). So, by a similar argument as the one used
above, one can see that d,(aRR;, BR;) > n—1— 7 fori # j. It follows that dg > n —1— 7.

Similarly, one can obtain that dc > n — 7 since Cy. has codewords of length n.

Finally, since the codewords in D are obtained by adding an extra coordinate to the

codewords of C; we have dp > do > n — 7. L]

Example 5.1. Let  be a primitive 10-th root of unity and
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11 1 1 1 1 1 1 1 000000000
1 ¢> ¢ ¢ ¢ ¢ ¢ g 0533593871
L ¢t ¢ ¢ ¢ ¢ ¢ 04571358909
L¢3 ¢ ¢ ¢ ¢¢e e 0375189 365
Hi=|[1¢ ¢ ¢ ¢ ¢ E T LH)=[09 1553727
1 ¢ ¢ ¢ ¢ ¢ ¢ ¢ 095135176
1 ¢ ¢" ¢ ¢ ¢ ¢ ¢ ¢ 0179615753
1 ¢m ¢ ¢t ¢ ¢ ¢ 079495351
L¢P ¢ ¢¢ 0529773165

be a BH(9, 10) matrix, and L(H) its logarithmic form. It can be verified that the minimum
distance between the rows of Hy is equal to dy = T and satisfies dy > n — %, where n. = 9
and | = 2. Now consider By. In this case, we have Ay, and its translates as codewords. If
we calculate the minimum distance by SageMath, we get dg = 5 and so dg > n(1 — %) -1
Again, by using SageMath, we can get that the minimum distance for CY is dc = 6, which

b n
satisfies do > n — 7

Example 5.2. Let ¢ be a primitive 6-th root of unity. Then

—_

1 1 1 1 1
¢ ¢ ¢ ¢
¢ ¢t
¢ 1 ¢ ¢
¢t 1 ¢t ¢
L ¢ ¢ @ ¢

,L(H2> =

—_ = =

—_

o o o o o o
S S O U NS S
N N e S S O
w o w o w o
NORE O O R O
— N W e ol O

is a BH(6,6) matrix. If we take the second column of L(Hs) and calculate the minimum

distance for Dy, by SageMath, we get dp = 4, so dp > n(1 — %) holds.
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Remark 5.2. We note that it is possible to find a code with larger alphabet without decreasing
the minimum distance by combining two BH matrices with the help of the Chinese
Remainder Theorem. Let h, k be coprime positive integers, , o and [ be primitive h-th, k-th
and hk-th roots of unity, respectively. Also let H; = [(%i] and Hy = [a%] be normalized
BH(n, h) and BH(n, k) matrices, respectively. Let d; and d, be the minimum distance
between the rows of [a;;] and between the rows of [b;;], respectively. Let H = [3%] be
the normalized matrix obtained from H; and H, such that ¢;; = a;; mod h and ¢;; = b;;

mod k. Then the minimum distance between the rows of [¢;;] satisfies d > max{d;, d>}.

In Theorem 5.1 above, we have given lower bounds for the minimum distance of BH codes
with respect to the Hamming distance. In the following theorem, we obtain minimum

distances of BH codes with respect to the distance induced by a homogeneous weight.

Theorem 5.3. Let H be a normalized BH(n, k) matrix and let k = p$* ... p% be the prime
factorization of k, where p1 < ... < ps. Then for the BH codes obtained from H equipped

with a homogeneous weight w on Zy, with the average value -y, the following hold:

(i) da=ny
(ii) Fors > 1,
(a) dB:nﬁy—%ifngannddB:(n—l)’y<1—m) ifn > po;
(b) dc = dD =ny <1 — —(p1—1)1(p2—1)>'
(iii) For s =1,

p1y

(a) dp = ny — 22,

(b) do = dp = n~.

Proof. (1) follows from Theorem 2.7.

For the proof of (ii) and (iii), set / = max{w(a) : a € Z;\{0}} and ¢/ = min{w(a) :
a € Z\{0}}. Let H = [(*4], where ( is a primitive k-th root of unity, and R; = [a;; =
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0, aia, . .., a;,] be the i-th row of L(H). For u € Zj, we denote the i-th row of L((*H) by
u+ R;. Thatis, u+ R; = [u + apn = u,u + a;o,...,u + a;). Let d denote the distance

function induced by w. The distance between the rows v + R; and v + R;, for u,v € Z;, is

dlu+ R;,v+ R;) = Zw(u +ay—v—aj) = Zw(ait —ajt + (u—v)).
t=1 t=1
First, assume that ¢ # j. We follow the same circle of ideas given in the proof of [3, Theorem

5.4]. Forr € Z;, let
fr=Hte{l,...,n}au—aj+ (u—v) =7} /n.

Then f, is a probability distribution on Zj, which is admissible since

n

Z frCT = %Z C‘aitfajtJr(u,U)

reZy, t=1

_ gufv

n

see [3, Lemma 5.3]. Now

n

dlu+ Ri,v+ Rj) = Zw(ait —aj+ (u—v)) = nz frw(r) = ny,

t=1 reR

by [3, Proposition 3.3], and hence

Zw(ait —ajt+ (u—v)) =ny—w(u—v).

t=2
If we choose u — v such that w(u — v) = ¢, we see that the minimum distance between the
rows u + R; and v + R; with the first column deleted, where 7 # j, is equal to ny — ¢. On
the other hand, d(u + R;,v + R;) = nw(u — v). Then the minimal distance between the
rows u + R; and v + R;, where u # v, with the first column deleted, is equal to (n — 1)¢'. It
follows that dp = min{ny — ¢, (n — 1)¢'}.
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The BH code of type C; differs from the one of type B; only in the first coordinate. It,

therefore, follows from the discussions above d¢ = min{n~y, nf'}.

Note that

1 .
£ — fypl and gl — ’7 1 B (pl—l)(pg—l)] ’ lfS > 1

p1—1

v, ifs=1

by Corollary 2 and Remark 2 in [63]. If s = 1, clearly, dg = min{ny — ¢,(n — 1){'} =

ny — S and de = min{ny,nl'} = ny = nl’. Now suppose s > 1. Then ny — ¢ =

v {n— <1+ﬁ>} and (n — 1)0/ =~ {n— (1—}—#@2_1))}. Since

1 / n—1 _pp—1
p—1/ (pp—=1)(p2—1) n—-1’

ny — £ > (n — 1)¢ if and only if po < n. Therefore,

dB: n’y_%a 1fn§p2
1 .
On the other hand, dc = min{ny,nl'} = nl’ = ny (1 — m>.

Now we consider a BH code of type D;, for arbitrary s > 0. By definition, it is clear that
de < dp < d¢ + (. On the other hand, for any u € Z, such that w(u) = ¢, u = (u.1,,0) €
Z,ZH, where 1,, denotes the all 1’s vector of length n, lies in any BH code of type D;. Since

w(u) = nl = de. It follows that dp = d¢, completing the proof. O

Corollary 5.4. Let p be a prime number, ¢ > 2 an integer and H a normalized
BH(n, p®) matrix. Then for BH codes obtained from H equipped with the homogeneous
weight w, (see (3)), we have dy = doc = dp = nlp — 1)p°? and

dg=n(p—1)p~2 —p L

Proof. Apply Theorem 5.3 for s = 1 and v = (p — 1)p*~2. O
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Example 5.3. Let p = 3, e = 2 and ( be the primitive 9-th root of unity. Then for the
BH(9,9) matrix

1 ¢ ¢ ¢ ¢t ¢ ¢

1 ¢ ¢t ¢ ¢ ¢ ¢ e

¢ ¢ 1 ¢ ¢ 1@’

H=11¢ ¢& ¢ ¢ ¢ ¢ ¢ ¢,

1 ¢ ¢ ¢ ¢ ¢ ¢

1 ¢ ¢ 1 ¢ ¢ 1 ¢

1 ¢m ¢ ¢ ¢ ¢ ¢ ¢

1 ¢® ¢ ¢ ¢ ¢t ¢

we have

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 (0] 0 1 2 (0] 2 1 1 1 1 1 2 0 1 [0} 2 2 2 2 2 0 1 2 1 0
0 0 0 0 2 1 1 2 0 2 2 2 2 1 0 0 1 2 1 1 1 1 0 2 2 0 1
0 0 (0] 1 1 1 2 2 2 0 (0] 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
G1(L(H)) = 0 0 0 1 2 0 2 1 0 1 1 1 2 0 1 0 2 1 2 2 2 0 1 2 1 0 2
0 0 0 1 0 2 0 1 2 2 2 2 0 2 1 2 0 1 1 1 1 2 1 0 1 2 0
0 0 (0] 2 2 2 1 1 1 (0] (0] 0 2 2 2 1 1 1 0 0 (0] 2 2 2 1 1 1
0 0 0 2 0 1 1 0 2 1 1 1 0 1 2 2 1 0 2 2 2 1 2 0 0 2 1
0 [0} (0] 2 1 (0] 2 0 1 2 2 2 1 (0] 2 1 2 (0] 1 1 1 (0] 2 1 0 1 2

Here, the average value of the weight w1 is calculated as v = 2. By using SageMath [64], we
obtain that dy = 18 = nv, dg = 15 = ny — 1%’ dc = 18 = ny. Moreover, concatenating
any non-initial column of L(H) to Cy, we get dp = 18.

2. BH Codes with Quasi-homogeneous Weights

In this section, we study codes obtained from normalized BH matrices under a
quasi-homogeneous weight. We explicitly give the minimum distance of code families of

type Ay, Bi, Ci, or Dy, for some prime power k = p° and p > 2. The case p = 2, is also

44



studied separately. In particular, we studied similar code families under a certain Gray map

of a quasi-homogeneous map.

Proposition 5.5. Let p be a prime number, ¢ > 2 be an integer, and w be a
quasi-homogeneous weight with the average value ~y. If H is a normalized BH(n, p®) matrix,
then the distance between distinct codewords of the BH code (of type A, ) obtained from H

with respect to w is always yn.

Proof.  Let d denote the distance function on Zj. induced by w. Since H is a
Butson-Hadamard matrix, n = mp for some m € Z*. Let R; denote the i-th row of L(H)
for 1 <4 < p. Then the difference R; — IR; of i-th and j-th rows, with ¢ # j, consists of the

elements of the disjoint union of m cosets of pe—lzpe, say Cq,...,C,,. It follows that

d(R;,R;) = Z Z w(r) = myp = yn,

t=1 reC;

which completes the proof. 0

The above proposition shows that any BH code of type A;, where k = p° is a prime power, is
transformed by (7, into an equidistant code over Z,. It also follows from the above result that
a BH code of type A, where k = p° is a prime power, equipped with a quasi-homogeneous
weight is necessarily Plotkin optimal. Now we are ready to prove an analogous result to

Corollary 5.4 for BH codes equipped with certain quasi-homogeneous weights.

Theorem 5.6. Let p > 2 be a prime number, ¢ > 2 be an integer, and H be a normalized
BH(n, p®) matrix. Also let w be a quasi-homogeneous weight with the average value
defined as in Proposition 4.2. Then, for a BH code obtained from H equipped with the
weight w, we have dy = ny, dg = (n — 1)y/p*2(p — 1), do = dp = ny/p*2(p — 1).

Proof. By Proposition 5.5, we have d4 = yn.

Let d denote the distance function induced by w. Let n = pm. We write R; and v + R;, for

u € Zye, to denote the i-th row of L(H) and L(¢"H), respectively. Since the elements of
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R, — R, the difference of the i-th and j-th rows of L(H ), with ¢ # j, forms a disjoint union of
m cosets of the ideal p°~'Z,c of Z,e, the same is also true for the translate (v —v) + R; — R,

where u, v € Z,e. Therefore,
d(u+ Ri,v+ Rj) =w((u—v) + R; — Rj) = ny

as in the proof of Proposition 5.5. If R, denotes the row matrix R; with the first column
omitted, d(u + Rj,v + R}) = ny — w(u — v) for distinct 7 and j. On the other hand,
dlu+ R,v+ R]) = (n — Dw(u — v). It follows that dg = min{ny — ¢,(n — 1)},
where { = max{w(a) : @ € Z,.} and ¢’ = min{w(a) : a € Z,e and a # 0}. Moreover,
dc = dp = min{ny,nl'}. Notice that £ = w(p*™') = vp/(p — 1) and ¢’ = w(l) =
w(p® — 1) = v/p*~2(p — 1). Thus dp is the minimum of

b=y 2V =) = g (pm—m— 1)
p—1 p2p—1) p2(p—1)
and
n—1 pm — 1

p—1)  p2p-1)

Thus, in order to compare ny — £ and (n — 1)¢', it is enough to compare p°~(pm — m — 1)

(n =D =7

and pm — 1.

1

Define the function f(z) = p* Y(pr —x — 1) —pr+1= (p°—p* ! —p)z —p° '+ 1on

R. Since p¢ — p~1 — p > 0, for p > 2, f(x) is increasing. On the other hand, since

O =p"p-2)—p+1=0p"-1)(p-2-1>0,

f(x) > 0 for all z > 1. In particular, we have p* '(pm —m — 1) > pm — 1 =n — 1,
hence dg = (n — 1)y/p*?(p — 1). Finally, we get dc = dp = min{ny,nl'} =
min{ny,ny/p**(p — 1)} = ny/p*(p - 1) O

The case when p = 2 is handled in the following theorem.
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Theorem 5.7. Let H be a normalized BH(n, 2°) matrix and let w be a quasi-homogeneous
weight with the average value vy defined as in Proposition 4.2. Then, for a BH code obtained

Jfrom H equipped with the weight w, the following hold:

(i) Ife =2, thendy = nvy, dg = (n — 2)y, do = dp = n.

(ii) Ife > 2andn > 4, thenda = nv, dg = (n — 1)7/2°72, dc = dp = ny /272

Proof. Similar to the proof of Theorem 5.6. 0J
Example 5.4. Let H = [(*7] be the BH(9,9) matrix given in Example 5.3. Then

00 0 0 OO O 0O 0 0 0 0 00 00 0 0 00 0 0 0 0 0 0 O
o0 0o 1 0 0 1 1 0 1 1 1 2 1 1 2 2 1 2 2 2 0 2 2 0 0 2
oo 0o 1 1 0 2 1 1 2 2 2 0 0 2 1 0 0 1 1 1 2 2 1 0 2 2
o0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2 0 0 0 1 1 1 2 2 2
H =[Go(LH)]=| 0o 0o o 2 1 1 0o o 2 1 1 1 0 2 2 1 1 0 2 2 2 1 0 0 2 2 1
oo 0 2 2 1 1 0 0 2 2 2 1 1 0 0 2 2 1 1 1 0 0 2 2 1 1
o 0o 0 2 2 2 1 1 1 0 0 0 2 2 2 1 1 1 0 0 0 2 2 2 1 1 1
oo 0o o0 2 2 2 2 1 1 1 1 1 0 0 0 0 2 2 2 2 2 1 1 1 1 0
o 0o 0o 0o 0o 2 0 2 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 0 1 0 0

Go(Ag) contains of the rows of H' as codewords with the first 3 columns deleted. By
SageMath [64], we have dg,4, = 18. Similarly, we get that dg,z,) = 8, da,cs) = 9
and ng(Dg) =0

Corollary 5.8. Let p be a prime number and ¢ > 2 be an integer. If either p > 2 or
p =2, ¢ > 2 and n > 4, then the image of a length-n BH code of type Ay, By, Ci, and
Dy, where k = p°, under the Gray map (G5 are p-ary codes whose distances are given by
dayay) =np 2(p — 1), dey,) = n — 1, and dey(c,) = deypy) = n. On the other hand, if
p¢ =4, then dg,(a,) = np® 2(p — 1), days,) = n — 2, and dgy(c,) = day(py) = 1.

Proof. Apply Theorem 5.6 and Theorem 5.7 for v = p~1(p — 1). O
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Chapter 6

Quantum Stabilizer Codes

In this chapter, we demonstrate the construction of an [nm, ks, 0], quantum stabilizer code,
given classical linear codes ¢ C F;‘ with dimension k and 2 C F;r,i with dimension s. The
parameter 0 is determined by identifying the stabilizer group associated with codes ¢ and Z.
Our approach employs a specific class of Butson Hadamard matrices, equivalent to multiple
Kronecker products of the Fourier matrix of order p. We also investigate the conditions for
a quantum code, constructed using a normalized Butson Hadamard matrix, to qualify as a

stabilizer code.

1. The General Construction

Let € C Fg be a g-ary [n, k, d;] classical linear code, where 1 < k < r. We shall use the
codewords of € to create quantum states in (C?)®", as follows: Let {f : A € F .} be a set

of functions from % into F, and let

1
- § A(e)

ce?
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for all A\ € Fu, where w = e*/?. Note that the ¢,’s form an orthonormal basis for a

subspace of (C?)®" if and only if the ¢* x ¢* matrix

H = [wP\er , cev, (2)

with rows indexed by the elements of F and columns indexed by the elements of ¢, both

written in a fixed order, forms a BH(¢", p) matrix.

Let 2 C F;’}C be a classical linear code of dimension s and define
@A = ¢A1 X... gb)\m € (Cq)®nm (3)

forall A = (A,..., \p) € 2. We form a quantum code, denoted Q (%, Z), of length nm
to be the subspace of (C?)®™™ spanned by ®, forall A € 2, i.e.,

Qu(€,2) = span{®, : A € Z}. 4)

Note that Qx (%, 2) is a ¢**-dimensional subspace of (C4)®"™", namely, Qg (¢, Z) is an
[nm, ks, d], quantum code where ¢ is the minimum distance of Qy (%, Z). On the other
hand, there exists a one-to-one correspondance v : F’;S — 2, and so one can set the logical
state |a), as P,y for each a € F}*. Then Qy (%, 2) is a quantum code of length nm that

encodes ks logical g-states.

Example 6.1. If p=q=2,% = 2 = {000,111} C F3, and

in (2), then the construction of the quantum code Qy (%, 2) as in (4) coincides with the

well-known Shor’s 9-qubit code.
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Example 6.2. Letp = q =3, ¢ = ¥ = {000, 111, 222}, and

1 1 1

H=11 w w?

1 w? w

27ri/3'

in (2), where w = e Then the quantum code obtained as in (4) is the same as the

nine-qutrit error correcting code considered in Sect. V of [65].

More generally, if € = 2 = {(\,...,\) : A € F;} C F", the one-dimensional linear code
over Fy. spanned by (1,1,...,1) € F", and H is any BH(q, p) matrix, then the quantum
code Qu(€,P) in (4) is among the [m?,1,m], quantum error-correcting codes studied
in [66]. In view of the next section, we see that if the matrix H is chosen to be a normalized

Butson-Hadamard matrix of Fourier type, then Qy (€, 9) turns out to be a stabilizer code.

Remark 6.1. Let 2 be a ¢*-ary linear code of length m. If there exists a positive integer i
with 1 < ¢ < m such that for every codeword A in &, the i-th coordinate of A is zero, then
we can project Z onto a ¢*-ary linear code &’ of length m — 1 by deleting the i-th coordinate
of each codeword of &, where the minimum distance remains unaltered, and use ¢’ instead
of 2 in the construction of Q) (%, Z). Thus, throughout this note, we shall assume that the
code Z in the above construction, is non-trivial (i,e., neither 0 nor FZ}:) and that for every

integer 1 < ¢ < m, there exists a codeword in & whose i-th coordinate is equal to 1.

Proposition 6.2. Let € be a g-ary linear code of dimension k and length n, and let 9 be
a ¢*-ary linear code of dimension s and length m (where 0 < s < m). Let H and H'
be BH(q¢",p) matrices. If Qu(€¢,2) = Qu/(€,9), then H and H' are row-equivalent
BH matrices. The converse also holds when 9 = {(A,...,A) : X € Fu} C Fl is the

one-dimensional linear code over F .

Proof. Assume that Qy (¢, 7) = Qu/ (¢, Z). Given A € F ., we use the notations ¢ or ¢\
accordingly the coefficients of the quantum states in (1) come from H or H’. Similarly, we
write ®/, to mean the tensor products of states of the form ¢, in (3).
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Since the sets {¢y : A € Fu} and {¢) : A € F} are orthonormal, they are independent;

hence we have
span{¢, : A € Fu} = span{|c) : c € €} = span{¢) : A € F}.
It follows that there exist by, € C (A, i € Fyr) such that

=Y byd, 5)
HEF &
for all A\ € F .. On the other hand, since Qx(¢,2) = Qu/(%,2), there exist any €
CWA,M e P)such that &y = >, any®), for all A € 2. Rewriting &, for A =
(A, s Am) € D as

(PA == Z b)q;tﬁbL K- & Z b)xluqb,/u

pne Fqk ﬂquk

= Z H b>\mi (QS;” K- & ¢Lm)7
=1

(k1o um)EFZL

we see that forall A = (A\y,..., \y) € 2, [112, basps = aanr if M = (pa, ..., f1) € & and
T1E b =00 M = (pa, ..o, fin) € 2.

Considering the equation (5), we see that there exists a function o : F» — F such that

q
bxs(n) 7 0. Since we assume that & is non-trivial, at least one of the standard basis element
of FZ}Q does not belong to . Without loss of generality, we assume that (1,0,...,0) & 2.
Let A € F . By our assumption on & (see Remark 6.1), there exists (Ay,...,\p) € 2
with \; = A. Then we must have (o()\1),...,0(A\n)) € 2. Let « € Fue \ {0}. Then
(@ + (M), 0(N),...,0(An)) € 2. This gives that by,.br,o(0s) - - - Or,o(r,) = 0, Where
v = a + o(A); hence by, = 0. It follows that by, = 0 for all 4 € F with u # o(\).
Therefore, ¢, = bAo—(,\)%( N for all A € F, and so o is a permutation on F . It is now
straightforward to check that by,(y) is a power of w for all A € F . This completes the proof

of the first assertion since we also have H = [by,]H’. Now the second assertion follows
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since incase Z = {(\,...,\) : A e F,} C F., the row-equivalence of H and H' implies

that @, is a constant multiple of ¢/, for every A € 2. O

2. A Quantum Stabilizer Code

In this section, we use our general construction of quantum codes described in the preceding
section to produce quantum stabilizer codes by choosing a particular set { fy : A € Fgr} of

functions from ¥ into F,, in the formation of the ¢,’s in (1). We start with two lemmas.

Lemma 6.3. Let ¢’ C F| be a linear code over F, and let u € F. Then try,(u.c) = 0 for
all c € € ifand only ifu € €+

Proof. It is enough to prove the “only if" part of the statement. So, suppose that tr,/,(u.c) =
0 for all c € €. Choose an arbitrary nonzero element A € F,. Then ¢ = {Ac : ¢ € €}, and
50 try/p(A(u.c)) = 0 forall c € €. Since A € F, is arbitrary, this implies that u.c = 0 for

allc € €; henceu € €. O

Lemma 6.4. Let ¢ C F be a linear code over Fy and let ¢ = Y, w/(® |c) € (C)*",

where [ : ¢ — F, is a function. Let u € F. Then Z(u) stabilizes ¢ if and only if u € €.

Proof. This is clear by Lemma 6.3 since Z(u)¢ = >, w/ (T an(20) |c) . O

Let € C Fg be a classical linear code over F, of dimension &, where ¢ = p" and 1 < k < n,
and 9 C FZ]L“ be a classical linear code over F » of dimension s with 1 < s < m. Note
that & is also a vector space over F, by restriction of scalars. Let £L(%',F,) be the F,-dual
of €. Thatis, L(¢,F,) is the set of all F,-linear transformations from % to F,. Then
L(%,F,) is a vector space over F, of dimension rk; in other words, £(%, F,) contains ¢
linear transformations of F,-spaces. Also, there exists an F,-space isomorphism « : Fx —
L(€,F,). We set f\ = r(\) for each A € F i, form the matrix H = [wh(c)hquk,ce% which

is necessarily a BH matrix, and define Qy (%, 2) as in (4).
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Note that the above setting of f)’s yields that fy, + f\, = fy,4x, and fon = cfy for all
MAL A2 € Feand ¢ € F,. Given any A = (Aq,...,\,) € 2, define a mapping Fj :
€™ — F,by Fa(cq,...,cm) = fr(c1) + -+ fa,(cw) forall (ci,...,c,) € €. Then
Fy is a linear transformation of F,-spaces. Moreover, by definition of f)’s above, the set
{Fy : A € Z} is a vector space over F, in a natural way since Fy, + Fi, = Fa, 1, and

h.Fy = Fypp forallh € Fyand A, Ay, Ay € 9.

For x € F}, define the mapping py : 4 — F, by px(c) = try/,(c.x). Then py is a linear
transformation of F,-spaces, and given x,y € Fy, px = py ifandonly if x —y € €+ by
Lemma 6.3. Thus we sometimes write px for p,, where X denotes the image of x under the
canonical projection Fj; — F} /€. Note that for each \ € F,. there corresponds x, such
that f\ = px,. This correspondence yields an F,-space isomorphism © : F — F’;/%L,

where O(\) = X, for which f\ = pg,. Define
2° = {(Xr,--»%Xn,) t (M, Am) € Zand x,, € O(\) forall 1 <i < m}.

That is,
7°= | OM)x - xO(\n).

Then, clearly, 2° is an additive code over F,. Note that all the vectors in (€)™ are

elements of Z° corresponding to the zero codeword in 2. Thus, (¢+)™ C 2°.
Now we are ready to state and prove the main theorem of this section.

Theorem 6.5. With the above notation, Qu (€, 2) is an [nm, ks, o], quantum stabilizer
code and § = min{d(%), (}, where { = min{wt(X) : X € 2°\ (¢*+)™}. Moreover, the
stabilizer group of Qu(€, ) consists of the errors X(ci,...,¢y)Z(dy,...,dy,), where
(€1, €m) € peg ker(Fa) and dy, ..., d,, € ¢+

Proof. Let S be the stabilizer group of Qg (%, 2) and let S be its image in anm.
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Ifdy,...,d, € €%, then Z(dy,...,d,,) € €+ by Lemma 6.4. On the other hand, given

e € ¢ and A € F , we have

e)by = wax(c) lc+e) = th(c,e) o) = w ™ HEgp,,

ce? cE?
and so
X(Cl, . 7Cm)(I)A — wFA(Cl ..... cm)q)A
for all ¢;,...,¢c,, € ¢ and A € 2. Thus, given codewords ci,...,c, of €,

X(cy,...,cp) € Sif and only if (cy,...,cp) € [yey ker(Fr). Therefore, S contains
all the errors of the form X(cy,...,¢,)Z(dy,...,d,,) for which cy,...,¢c,, € € with
(€1,...,Cm) € pepker(Fa) and dy,...,d,, € €+. Clearly, the number of the errors
Z(dy,...,dy), where di,...,d,, € €* isequal to |€+| = ¢ *™. We shall show that the

number of errors X (c1, . . .,Cy), where (ci, ..., Cp) € [ycqp ker(Fi) is equal to ¢¥m=*).

Let {Fy,, .- } be an F,-basis for {F) : A € Z}. Each F}, can be represented by a

T‘ks

1 x rkm matrix, say R; with respect to a fixed ordered basis of 4. Then the rks X rks

matrix
R’y

Rrks

represents the F,-linear transformation F' : %™ — F;’“ defined by F(x) =

(Fa,(z),..., Fa,, (x)) with respect to the same ordered basis of 4. Since

ol + -+ s Ryps = 0if and only if ¢ Fa, + -+ - + cpps ., = 0

rks
forany ¢, ..., ks € Fp, we see that the set { Ry, . .., R4} is linearly independent over F,.
Thus R has rank ks, or equivalently, has nullity 7k (m — s). Since ker(F) = (/% ker(Fy,),

dimg, ((peqy ker(Fa)) = dimg, <ﬂ:isl ker(FAi)) = rk(m — s). Then the number of errors

X(ci,...,Cp), where (c1,...,Cp) € (yeqy ker(Fy) is equal to p*m=s) = gk(m=s),
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It follows that |S| > ¢("~®mgkim=s) — gnm=ks  On the other hand, since Qx (¢, %) C
Fix(S), we have

qm::dhna(QHCf,Qﬂ)§<ﬁn¢AFb48»::%gT,
and so |S| < ¢"™ %, This gives that |S| = ¢"™ %, and hence S consists of the errors

of the form X (cy,...,c,,)Z(dy,...,d,,) for which ¢;,...,¢c,, € € with (c1,...,¢c,) €
Naco ker(Fa) and dy,...,d,, € €*. This shows, in particular, that Qy(%,2) is a

stabilizer code.

Finally, we shall show that 6 = min{d(%),¢}. To see this, we first need to determine
S, We claim that S consists of (ag,...,py, | vi,...,vy,) for whichuy, ..., u,, € ¢
and (vi,...,v,,) € 2°. By above, we see that S consists of the sequences (cy,...,Cp, |
di,...,d,) such that (ci,...,¢p) € ey ker(Fy) and dy, ..., d,, € €+ Let (U | V) =
(uy,..., W, | Vi,...,V,) be such that uy,...,u,, € € and (vy,...,v,) € 2°. Let
(C| D) = (ci,...,¢m | di,...,d,,) € S. By the choice of vi,...,V,,, there exists
A= (A,...,\n) € Zsuch that v; € O()\;) for each 1 < i < m. In other words, f\, = py,

(3

for each 1 < ¢ < m. This gives that

m

try/p(C.V) =Y trgp(civi) = Y fio(e;) = Faler, ... cn) =0. (6)
i=1 i=1
It follows that ((C | D), (U | V)), = trg;p(du — v.c) = 0; hence (U | V) € S
Now let (U | V) = (w,...,tup | Vi,...,Vm) € S . Note that given any d € ¢,
(0,...,0 | d,0,...,0),(0,...,0 | 0,d,0,...,0),...,(0,...,0 | 0,...,0,d) all lie in S.
Thus we have try/,(u;.d) = 0 forall d € ¢+ and 1 < i < m. It follows, from Lemma 6.3,
that u; € € for all 1 < i < m. Now we shall show that v € 2°. To see this, it is enough to

show that 2 is equal to the additive code

Vi={(21,...,2m) : Ztrq/p(zi.ci) =0 forall (cy,...,cp) € ﬂ ker(Fa)}  (7)
i=1 A€
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over F,. By (6), we see that 2° C V. To see the reverse inclusion, define Ry,

o ym(zl, ey Z) =ty (221 yi.zi) forally,,..., ¥, %1, ..,%n € F}. Note
that V = ({ker(Rc,. . c,) @ (C1,...,¢nm) € (\peqpker(Fu)}. Moreover, {R., .

(€1,...,€m) € (\pepker(Fa)} is an Fp-space, in a natural way, and the correspondence

(c1,...,¢m) ¥ Re,. e, is an F,-space isomorphism. Thus, by similar arguments as used

.....

above, one can see that the F,-dimension of V is equal to
dim,:p(F”m — dimg, ﬂ ker(Fy) | = rnm — rkm + rks,

and so |V| = ¢"®™gks. One can also see that |2°] = ¢"~%™ ¢**. Since we already have
29 C V, we must have the equality 2° = V. Therefore, S™* consists of (ug,...,uy |

Vi,...,Vy) forwhichuy,...,u,, € €and (vi,...,v,,) € 2°.

Let ¢ € ¥ and suppose that (c,0,...,0) € ker(Fy) for all A € . By our assumption on
9 (see Remark 6.1) the first coordinates of the elements of 2 form up F . It follows that
¢ € xer , ker(fa) = 0. This gives that for every nonzero ¢ € €, the element (c,0,...,0 |
0,...,0) qof (F2)?™ lies in S\ S. Therefore, swt(S *\'S) < d(%). On the other hand, for
any nonzero A = (A,...,\p) € 2, anelement D = (x,,,...,xX,, ) € 2° cannot belong
to ()™ hence the element (0,...,0 | D) of (F)*™ belongs to S \ S. Therefore, we
also have swt(gLS \ S) < £. Consequently, swt(ELS \'S) < min{d(%), ¢}.

Now suppose that swt(S \ S) < min{d(%),}. Let (C | D) € &\ S such that
swt(C | D) = swt(gLs \' S). Since swt(C | D) < d(¥) and C € %™, we must have
C = 0. Butsince D ¢ (¢+)™), we get £ < swt(C | D) < ¢, a contradiction. Therefore,
swt(S°\ S) = min{d(¥), (}. 0

Corollary 6.6. Let the situation be as in Theorem 6.5. If d(€¢') < d(2), then 6 = d(E).

Proof. 1t is not difficult to see that the number ¢ in Theorem 6.5 is at least d(Z). Now the
result follows since 6 = min{d(2), (}. O
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Corollary 6.7. Let the situation be as in Theorem 6.5. Suppose that 9 = {(A,...,\) :
A € Fu} C Fi. Then 6 = min{d(€), m} and the stabilizer group of Qi (¢, 7) consists
of the errors X(ci1,...¢n)Z(d;...dy,), where cq,...,¢c,, € € with Y .",¢c; = 0 and
d,...,d, € ¢+

Proof. It is known from the proof of Theorem 6.5 that € is equivalent to the code

Vi={(z1,...,2%m) : zm:trq/p(zi.ci) =0 forall (cy,...,cp) € ﬂ ker(Fy)}
i=1 N
over Fg. Since 7 = {(A,...,A) : A € Fu} C FR, (hegker(Fa) = {(c1,....cm) €
Em e+t € Macr X fn = 0} such that f)’s are all linear transformations from
¢ to F,. So 2° = {(cy,- - ,qcm) € €™ : ¢, +---+ ¢, = 0}. Therefore the stabilizer
group of Q (€, Z) consists of the errors X (cy,...¢,,)Z(d; ... dy,), where ey, ..., c,, €F
with 7" ¢; = 0 and dy,...,d,, € €*. For a suitable \, ) could be (10...0). Then

wt(X) = m, where X is the m-fold tensor product of x,. The result follows since £ = m. [J

Proposition 6.8. Let the situation be as in Theorem 6.5, where 7 = {(\,...,\) 1 A €
Fye} C Fli. Then

Proof. Let
A= Z lc1...cpn)iCcEF
(Cl 77777 Cm)E‘f(m)
ci1+-+cm=c
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Since forany A = (\,...,\) € &,

1 m
Py =" = Z whizied ¢, Cm)

qkm
(C1yeesCm ) EF (M)

= Z whH(© Z lc1...Cm),

(C1,0mCm) EE M) crtfem=c

—_

ﬁ
=
3

we have Qy (¢, 2) C span A. Since dim(Qp (%€, %)) = ¢* = dim(span A), we have the
equality Qg (%, Z) = span A. O

3. In Search of a Converse

In the previous section, we observed that a quantum stabilizer code can be obtained using
two linear codes and a BH matrix with a condition on its rows. Conversely, in this section
we will provide the conditions that need to be satisfied for a quantum code constructed with

the previously given structure to be a quantum stabilizer code.

Lemma 6.9. Let € be a non-empty subset of F! and let ¢; = Y., w*®|c), ¥; =
> e Wi |c) be elements of (C1)*™ for every 1 < i < m, where w = €*™/? and the

«; and f3; are functions from € into F,. Suppose that
PO QP =1 Q- & Y.

Then there exist b, € F, (1 < r < m) such that v, = W ¢, forall 1 <r < m.

Proof. By assumption, we have the equality

Z wZE'Ll a;(c;) |(:1 .. Cm> = Z wz;il Bi(cq)

(Cl,...7C7n)E<gm (Cl,---7cm)6<6)m

Ci...Cp),
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where ¢ denotes the m-fold Cartesian product of . Hence Y ", a;(c;) = > v Bi(c;)

for every (cy,...,¢,) € €™. Fixacy € €. Then
ar(e) + ) " ai(eo) = Br(e) + > Bileo)
=1 =1
i#r i#r

forallce €and 1 <7 < m. Let

by =) (ai(co) — Bi(co)) -

NE

i=1
£

K

Then a,.(¢c) +b, = B.(c) forallc € € and 1 < r < m. It, therefore, follows that 1, = w’ @,
forall1 <r <m. O

Theorem 6.10. Let H be a normalized BH(q", p) matrix, where p is a prime number and q =
p" for some positive integer r. Let € C F| be a classical linear code over F, of dimension
k, where 1 <k <mn,and 9 = {(X,...,A) : A € Fu} C FJ} be the one-dimensional linear
code over F . If the quantum code Qy (€, 2) is a stabilizer code, then H is equivalent to

the rk-fold Kronecker product of the Fourier matrix of order p.

Proof. Let ¢ = {c; = 0,cy,...,cun }. We can write H = [wfi(cj)]1§i7j§qk, where w = /P
and f; : € — F, is a function for each 1 < i < ¢*. Now, Qg (%€, 2) is the linear span of

{5, ... ,(bﬁm} over F,, where

1

qk
b; = wlite) e\ e (Cq)@m'
)

Suppose that Q = Qg (€, 2) is a stabilizer code and let S = Stab(Q). By Lemma
6.4, (0,...,0 | dy,...,d,,) € Sforalldy,...,d, € €+ Lets = (uy,...,u, |
Vi,...,V;m) € S. Then s is sympletically orthogoanl to the elements of S of the forms
(0,...,0]d,0,...,0),...,(0,...,0] 0,...,0,d) forall d € €*. Thus, tr,,(u;.d) =0
forall1 < i < mandd € ¢*. Therefore, u; € ¢ forall 1 < i < m by Lemma 6.3.
Note that there exists h € F, such that "X (uy, ..., up)Z(v1,...,vp)o5™ = ¢5™ for all
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1 <i<mandu € €. This gives that w"X (u;)Z(v1)p; ® -+ @ X (W) Z(vin)d; =
$; @ --- @ ¢;, and so there exists h;; € F, (1 < i < m, 1 < j < ¢*) such that
X(w)Z(vi)p; = whisg; forall 1 < i < mand1 < j < ¢* by Lemma 6.9. Since
X(W)Z(vi)pj = > peq wlieT1wtap(Vi9) |c) we have

file —wg) + try/p(vic) = fi(c) + hy; (8)

forallc € 4,1 <i<m,and 1 < j < ¢"*. Since H is assumed to be normalized, f(c) = 0
for all c € ¢ and f;(0) = 0 forall 1 < i < ¢*. In parrticular, (8) yields tr,/,(v;.c) = hi
forallc € ¥ and 1 < ¢ < m. Substituting c = 0 and j = 1 in (8), we obtain h;; = 0 for
all 1 < i < m. Hence v; € €+ forall 1 < i < m by Lemma 6.3. Since Zzl hij = —h,
this also shows that » = 0. Note that (8) turns into f;j(c — u;) = f;(c) + h;;, where
hij = fi(—w) = —fj(w;) forall 1 <i<mand1 < j<g"and> " fi(u;) = 0 for all
1 < j < ¢". It follows that

file =) = fi(e) — fi(w) 9)
forallc € €,1 <i<m,and1 < j < ¢". Replacing ¢ by ¢ + u; in (9), we obtain that
file+w) = fi(c) + fi(w;) forallc € €,1 <i <m,and 1 < j < ¢". In particular, we
have f;(>°7", w;) = >, fi(vi) = 0forall 1 < j < ¢*. Since H, whose rank is ¢*, has its
first column consisting of 1’s, this is possible only when > ", u; = 0. It follows that Sis

contained in
m
A={(uy,... . W | Vi, .., V) 1 v; €EEL, 0, €F, V1 < i < m with Zuizo}.
i=1

Rewriting A as

m—1
{(ul,...um_l,—Zui | Vi, Vi)t U, Wy, €F, Vi, ., Vi € CL),
i—1

we have |S| = ¢"™F = (¢¥)™"1(¢" %)™ = | A]; hence S = A. Now (9) gives that f;(c —
c) = fi(c) — f;(c) forall c,c’ € € and 1 < j < ¢*, proving that f; : € — F, is a linear
transformation of F,-spaces. U
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Chapter 7

Conclusion

In this thesis, we investigate the distance parameter of BH codes over the rings Z;, which
are mostly non-linear. We consider BH codes endowed with homogeneous weights firstly
because it is proved in [3] that some BH codes (more precisely, the BH codes referred
to as of type A in this thesis) are Plotkin optimal. Our results in this direction help us
determine parameters of p-ary codes that are images of BH codes obtained from BH(n, p°)
matrices under the generalized Gray map (1. In [33], another generalized Gray map has
been introduced, which is denoted in this chapter by (5. Although the weight induced by
(G, is not homogeneous, we see that it satisfies a nice property which leads us to define
quasi-homogeneous weights (see Definition 4.1). We also see that BH codes of type A from
BH(n, p°) matrices are Plotkin optimal under quasi-homogeneous weights. We then apply
our results to determine the parameters of codes that are images of BH codes under the Gray

map Gs.

As noted in the introductory part of this thesis, a kA x kA GH matrix A = [(;;] is the
logarithmic form of a BH(kA, k) matrix since it has the property that for every pair of
distinct 4, j with 1 < 4,5 < k), the sequence {/;; — Ejt}fél of differences contains each
element of Z; exactly A times. Thus the arguments in Proposition 5.5 and Theorem 5.6
are applicable for GH codes endowed with quasi-homogeneous weights. More generally,
Proposition 5.5 is applicable for every code over a finite commutative ring R equipped with
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a quasi-homogeneous weight whose codewords are precisely the rows of an n X n matrix
A = [a;;] over R such that every sequence {a; —a;; }}_ for distinctiand j with1 <i,j <n
is a disjoint union of cosets of ideals of R. If, in addition, R is a Frobenius ring with a
generating character Y, this formation of A yields a BH matrix. Indeed, the complex matrix
H = [x(a;;)] turns out to be a BH matrix. To see this, let 1 <4, j < n withi # j and suppose
that the sequence {a;; — a;;};-, is equal to the disjoint union of cosets by + I1,...,b, + I,
where by,...,b, € R and Iy,..., I, are ideals of R. Then the (i, j)-entry of the product
H(H)T is

n

ZX(ait —aj) = Z Z X(b+c¢) = Z x(b;) ZX(C) =0

t=1 =1 cel; =1 cely

since the sums over the ideals I3, ..., I, are all zero. On the other hand, the (i,:)-entry of
H(H)T is clearly equal to n. Therefore, H is a BH matrix. Note that Butson-Hadamard
matrices constructed in [27] from bilinear forms over finite Frobenius rings are of the form

described above.

In the latter part of this thesis, our focus shifts to the exploration of quantum stabilizer codes,
presenting two distinct constructions. Specifically, we provide a constructive demonstration
to establish that a quantum stabilizer code is guaranteed to exist from given two classical
linear codes with certain parameters. Furthermore we also state the stabilizer group of
this quantum stabilizer code. In our construction, we employ a specialized type of Butson
Hadamard matrices, which are equivalent to multiple Kronecker products of the Fourier
matrix. Furthermore, we extend our exploration to consider the construction of a quantum
code using a generalized normalized Butson Hadamard matrix, aiming to discern conditions

under which the resulting quantum code qualifies as a stabilizer code.
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Chapter 8

Impacts of Quantum Technologies on the

Defence Technologies

The concept of fourth-generation warfare emerged in the 1990s. Given its occurrence in an
environment heavily reliant on information systems and network technologies, the use of
advanced technologies has become crucial. Intelligence gathering systems and remotely
controlled weapons significantly influence the course of warfare. Therefore, possessing
state-of-the-art military technologies is among the primary objectives of countries. This

leads to the consideration of quantum technologies.

The concept of quantum technology is generally the name given to the developments referred
to as the first and second quantum revolutions. The first quantum revolution encompassed
nuclear energy, magnetic resonance imaging, and advanced communication and imaging
devices, while the second quantum revolution involved understanding the applications of
quantum entanglement. In other words, the second quantum revolution aims to manipulate

and control quantum systems such as atoms, ions, photons, and electrons.

Throughout this section, we will refer to the second quantum revolution with quantum
technology. The two significant advancements of the second quantum revolution are

understanding the applications of quantum entanglement and achieving stable qubits.
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Quantum computing steps are highly sensitive to ecological factors called decoherence.
Stable qubits enable the reduction or control of these environmental interactions. Thus,

extending the lifetime of qubit states ensures more reliable results during computations.

Quantum technologies have the potential to affect human life in very different ways. Among
these areas of impact is the defense industry. Because it is believed that quantum technologies
have the potential to change the way and outcomes of war. It will lead to changes in modern
warfare techniques, focusing on improving existing weapons rather than creating new ones.
Areas where quantum technologies may have an impact include military service, security,
space, and intelligence. However, theoretical progress is more advanced than practical

implementation, especially challenging on military platforms.

Quantum bits are defined by their states, unlike classical bits. Additionally, since qubits
can be in superposition meaning they can be both 1 and 0 simultaneously, they contribute
to an increase in computational power. With n qubits, 2" states can be represented. When
a measurement occurs at the end of a quantum algorithm, the superposition collapses into
a single state, so multiple about the statistical distribution of the qubits’ states. As a result,
since the computational capacity will increase, only quantum computers can achieve this.
Furthermore, due to the no-cloning theorem, information cannot be copied, necessitating
more complex error correction. Since the quantum state will be disturbed after measurement,
the measurement must occur indirectly. Despite all these conditions, it provides secure
communication that cannot be eavesdropped on by unwanted parties. Since a quantum
measurement is required for unwanted interventions, the state is disturbed and the system
collapses. Therefore, by comparing measurements, it is possible to detect any unwanted
interference. Quantum systems cannot be directly applied to weapons due to their sensitivity
to the environment and their ability to be manipulated only at temperatures close to absolute

zero. Therefore, let us look at the potential application scenarios.
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Quantum Computation

Quantum computing refers to performing calculations using the laws of quantum mechanics.
Unlike classical computers, quantum computers can process all possible superpositions of
the |0) and |1) states simultaneously, making them more efficient in some cases. For
certain problems, they are faster than classical computers, and therefore, they can perform

calculations that are impossible for classical computers.

Quantum computing was proposed in the 1980s to model the behavior of very small
physical structures. Later, in the 1990s, it gained importance with the introduction of
Shor’s algorithm. This algorithm, if used in quantum computers, would exponentially speed
up some cryptanalysis methods, thereby reducing the reliability of certain cryptographic
systems used in both civilian and military communications. However, in general, quantum
computing will not directly replace classical computing; it will only be used for problems

with high complexity.

Although the work in the 1990s remained theoretical, advancements in creating and
controlling qubits today have enabled many research groups to develop quantum computers
to solve real-world problems in programming, optimization, machine learning, and
simulation. However, the fundamental obstacles that need to be overcome when building

these computers are problems of noise and decoherence.

Quantum systems interact with the external environment through electromagnetic waves and
vibrations. Therefore, the information on qubits can be distorted. Since it is impossible to
completely isolate them from the external environment, these interactions can be minimized.
This can be achieved through quantum error correction, which increases the accuracy rate of

quantum computing.

Another limitation is that the qubits are entangled, meaning the state of any qubit is related
to the states of other qubits. For these reasons, many qubits will be required to compensate
for the lost qubits. According to the upper bound given by Alexander Holevo in 1973, the

information obtained from n-qubits cannot be more than the information obtained from
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n-bits. Therefore, most of the data in qubits cannot be retrieved. A quantum computer
needs a physical system that forms and manipulates the qubits. Superconductors, which
are materials capable of demonstrating very small quantum effects, are used for this purpose.
Despite the obstacles previously mentioned, superconducting quantum computers have made

significant progress, and research on them is still ongoing.

The first demonstration of a superconducting qubit was in 1999, but since superconductors
require a temperature of —273 degrees, achieving this is physically challenging and
expensive to set up. These issues have increased interest in developing room-temperature
superconductors. China, Japan, and the USA are reported having research efforts on this

topic.

To summarize America’s efforts, in 2018, they established the National Quantum Initiative
Act, playing significant role in researching and developing quantum technologies over a
five-year period. In 2021, they developed a chip named Eagle with 127 qubits, followed by
the introduction of another chip named Osprey with 443 qubits in 2022. Aiming to double
the number of qubits each year, IBM introduced the first quantum computer with over 1000
qubits in 2023. This computer is based on the Condor chip, which has 1121 superconducting
qubits. These advancements in the private sector have paved the way for the use of quantum
computers, one of the branches of quantum technologies used in defense in the military field

as well.

Like the United States, China developed a quantum computer in 2021. In 2023, it introduced
Zuchangzhi, a quantum processor with 176-qubits, and later that same year, it developed
Jiuzhang, the world’s largest photonic qubit quantum computer with 25 photons. Thus,
China is the only country to have made advancements in both photonic and superconducting

quantum computing technologies.

Lastly, Canada introduced the first commercial quantum computer, the D-Wave One. Also,
it has two universal quantum computers: IBM Quantum One and MonarQ, which have 24

superconducting qubits.
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We can explain the effects of quantum computers in the military fields as follows. First, since
quantum computers can store much more data compared to classical computers, countries
possessing these computers can create a significant impact on military operations. In
addition, quantum computers can be used to create simulations for training purposes. Thus,

the way armies operate can be changed.

Quantum sensing is another quantum technology used in the military field. Quantum
sensors can detect very small changes in electric and magnetic fields. Thus, they can
be used to determine the locations of enemy submarines and mines. Additionally, since
they can measure very weak signals, quantum sensors can also be used to monitor radio
communications. Moreover, they can accurately detect the location of a missile launched
by the enemy and identify a nuclear signature, which refers to certain specific physical,

chemical, or radioactive markers used in the detection and analysis of a nuclear explosion.

Quantum Communication

Quantum communication is fundamentally based on the transmission of quantum states
between two or more parties. In 2019, for the first time, information was transmitted between
two computer chips via quantum entanglement without physical electronic connections.
Additionally, laboratory experiments showed that a good entanglement connection between
two chips occurs when the photons in both chips share a single quantum state. Currently,
research is focused on how quantum entanglement should work and how it can simplify

communication processes.

One of the application areas of quantum communication is to protect the privacy of
communication channels through quantum cryptography. In quantum cryptography,
quantum key distribution(QKD) holds a significant place. Quantum key distribution uses
quantum mechanical principles to perform cryptographic tasks and break cryptographic
systems. We can simply explain how the QKD system works as follows. In a cryptographic

communication between two parties, Alice and Bob, random sequences of numbers are used
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as keys, and single photons polarized randomly as Os and 1s are used to transmit these
keys. Both parties are connected via a quantum channel and a classical channel. Alice
generates a random stream of qubits sent over the quantum channel. After Bob receives this
stream, he performs classical operations with Alice over the classical channel to check if
an eavesdropper, will be revealed through the correlation of two-bit lists obtained after the

transmission of qubits between the sender and receiver.

Most applications and protocols are limited to two communicating parties. Therefore, this
reduces the practical applicability of QKD because it is difficult to create and manipulate
more than two entangled particles. Work is being done to solve this problem. A quantum
network architecture has been developed that distributes the quantum states of a single
entangled photon source to many users while minimizing the necessary resources without
compromising functionality and security. In this architecture, there is no need to adapt
the entanglement source to add a user. The network can easily scale to a large number
of users. Long-distance entanglement distribution is another problem. Quantum repeaters
are used to overcome this. Classical repeaters simply measure and copy the signal coming
from one side and transmit it to the other side at a higher power, but this is not possible
in quantum. In quantum, this process is carried out by entanglement swapping. That is,
entangled photons coming from Alice and Bob are received by the repeater and transformed
into an entanglement between Alice and Bob. In this case, the photons need to travel only half
the distance, increasing the chance of reaching their destination. One method used to solve
the problems arising from the range of quantum communication is satellite-based QKD. With
this method, encrypted messages are sent to distant ground stations using low-orbit satellites.
This could change the sharing of sensitive data by protecting people’s information against

increasing cybersecurity threats.

At the current stage, quantum communication has reached a level where quantum
information is transmitted and exchanged between remote nodes of a network. With these
developments in the field of quantum communication, it is expected that specialized quantum

communication networks will be built for the military and some changes will be made to
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existing military communication applications, rather than directly replacing current military

communication methods with quantum communication.

Quantum Cryptography

Quantum computers tend to break classical cryptographic methods and also threaten the
future of cyber security. Modern cryptography is vulnerable to advances in computational
power, such as progress made in factoring large integers. Therefore, quantum cryptography
is needed for these reasons. Quantum cryptography emerged in the early 1970s with Steven
Wiesner’s book Conjugate Coding, [67]. Like other quantum technologies, it relies on
the laws of quantum mechanics. It is based on two principles of quantum mechanics:
Heisenberg’s uncertainty principle and the photon polarization principle. These principles
state, respectively, that the position and velocity of an object cannot be known precisely
at the same time, and that an eavesdropper cannot copy an unknown quantum state. If
any characteristic is measured, other information will be disturbed. Based on these laws,

it ensures secure communication between two parties.

Although modern cryptography relies on mathematical algorithms and IT applications,
quantum cryptography provides security based on fundamental physical laws. The biggest
advantage in this case is that the encoded information cannot be copied. Quantum
cryptography transmits information using a series of photons through a fiber optic cable
from one place to another. By measuring and comparing certain properties of these photons,
the key on both sides can be estimated and checked for security. More specifically, the sender
transmits photons to the receiver using a filter that randomly assigns one of four polarizations
and bit assignments: vertical(1 bit), horizontal (0 bit), 45°right(1 bit), and 45°left(0 bit). The
photons reach a receiver that will read the photon polarization using two beam splitters,
horizontal/vertical, and diagonal. The receiver cannot know which beam splitter to use
for each photon. The receiver sends the used beam splitters to the sender, who compares

them and discards the incorrect ones, leaving the remaining bit sequence as the key. If any
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eavesdropper reads or copies the photon, the state of the photon will change, making this

detectable. Therefore, the possibility of these operations going undetected is not possible

Communication is an important part of daily life.  Additionally, it holds a very
vital importance in military operations because information superiority is achieved
through this means. Therefore, the security of communication is crucial for military
applications, and quantum communication offers improvements in these capabilities. Since
quantum computers can break asymmetric cryptographic protocols using Shor’s algorithm,
quantum-safe methods must be developed. Similarly, symmetric cryptographic algorithms
can also be broken using Grover’s algorithm. In symmetric encryption, it is possible to make
it quantum-safe by doubling the key length. Maintaining information dominance and secure
communication in the military field is important for the successful execution of missions. In
symmetric encryption, which is preferred for secure communication, keys must be distributed
between parties before the mission starts, and it is not possible to frequently change the keys

during the mission.

A secret key exchange is required for secure communication. Using QKD protocols, a shared
key can be securely generated. In a military environment, key distribution is often conducted
among ships, satellites, submarines, aircraft or unmanned aerial vehicles, and ground-based
stations and vehicles. Transmission between two ground-based stations can be carried out
through fiber optic communication. This communication allows for key distribution among
locations such as headquarters, bases, and airports. However, each situation presents unique
challenges. For example, free-space quantum distribution is only possible with a direct line of
sight. Various experiments have been conducted for the military applications of quantum key
distribution, but these experiments were carried out without considering a specific user. QKD
is one of the methods that can be used for secure quantum communication. Alternatively,

post-quantum cryptography and secure couriers can also be used.
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Post-Quantum Cryptography

Quantum computers can break RSA, Diffie-Hellman, and elliptic curve cryptography.
These algorithms, which have a wide range of applications, protect inter-institutional
communications, important government data, individual privacy, and corporate ownership.
The need to develop secure encryption against quantum computers is urgent. For this,
the concept of post-quantum cryptography has been developed. This concept involves
the use of traditional cryptographic tools in conjunction with quantum computers to

overcome cryptographic attacks. It is also known as quantum-resistant or quantum-resistant

cryptography.

New quantum-resistant algorithms are based on mathematical problems that are hard for
quantum computers and provide a new model when working with encrypted data. For
example, fully homomorphic encryption allows operations to be performed on encrypted
data. This eliminates the need for trusted third parties. Data remains secure and private
in distrusted environments. Since it remains always encrypted, the likelihood of sensitive
information being compromised is low. All features can be used since no feature needs to be
removed to ensure data privacy. Fully homomorphic encryption is secure against quantum

attacks.

The first significant studies related to post-quantum cryptography began in the late 1990s.
One of the first proposed algorithms was the McEliece cryptosystem introduced by
Robert McEliece in 1978. This algorithm 1is resistant to quantum attacks but has not
been widely adopted due to its large key size. It is based on error-correcting codes.
There are cryptosystems that are divided into different families depending on the problem
of which their security is based. These include isogeny-based cryptography, which is
based on the problem of finding an isogeny between two supersingular curves E and E’.
Lattice-based cryptography uses lattices either in the system itself or in the security proof,
multivariate polynomial cryptography consists of asymmetric cryptographic structures based
on multivariate polynomials over a finite field, and finally, hash-based digital signatures
involving cryptographic hash functions.
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In 2016, the National Standards and Technology Institute requested post-quantum algorithm
proposals to find quantum-resistant algorithms. The first round of the standardization
process, which has now been completed, took place in 2016. During this round, 82
submissions were received and evaluated based on security performance and application
features. These submissions consist of algorithms in one of the five categories mentioned

above.

In the first round, algorithms that did not meet the minimum security and functionality
criteria were eliminated, while the remaining algorithms were assessed for security flexibility
and applicability for both classical and quantum computers. As a result, 26 candidate
algorithms were selected for the second round. Thus, the strengths and weaknesses of the

algorithms were identified.

In the second round, which started in 2019 and was completed in 2020, the candidate
algorithms were evaluated in terms of their purpose, security effectiveness, and suitability
for different conditions. They were assessed for security against various types of attacks,
speed, key size, and memory usage performance. Based on the results, 7 finalists and 8

alternative candidates were determined.

Candidates were asked to analyze the algorithms they proposed in the third round, which
started in 2020 and was completed in 2021, to prove their theoretical and practical security.
After making the necessary updates, 3 digital signature algorithms and 4 PKE(Public Key
Encryption)/KEM(Key Encapsulation Mechanism) encryption algorithms were selected at
the end of this round. The selected algorithms are lattice-based, hash-based, and code-based

algorithms.

In 2022, during the fourth stage, the candidate algorithms were discussed, and updates
were explained. Then in 2024, NIST standardized the lattice-based post-quantum algorithm
CRYSTALS-KYBER for public key encryption.

Institutions and organizations need to develop their quantum readiness roadmaps and make

early plans for the transition to post-quantum cryptographic standards to protect against
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potential future hostile cryptographic attacks. This standardization effort by NIST enables
institutions to have a roadmap and inventory, initiating the risk assessment process against
quantum attacks. It provides the necessary guidance for these processes and is important in

this regard.

From the perspective of defense technologies, it holds significant importance to ensure secure
communication resistant to quantum decryption for military operations, intelligence, and
control systems. Thanks to standardization, multiple defense systems can operate securely
together. This is important because it ensures that multiple systems can communicate

securely in situations where joint operations are necessary.

One of the post-quantum cryptographic algorithm classes is code-based algorithms. These
consist of cryptosystems based on error-correcting codes. Without detecting and correcting
bit changes occurring during communication, secure communication cannot be ensured,
which would cause problems with significant impacts, especially in military fields. Error
detection by adding control bits is one of the fundamental features of error-detecting codes.
Naturally, the primary goal is to increase the probability of secure transmission while keeping

the number of additional bits to a minimum.

In this sense, the first error-correcting code is the McEliece code introduced in 1978.
It consists of a known error-correcting code, the Goppa code, and a reversible linear
transformation used to obscure it. This cryptosystem differs from those commonly used
and isdependent on the difficulty of factoring integers or finding discrete logarithms. In the
McEliece cryptosystem, a secret error-correcting code, initially corrupted by randomly added
errors by the sender, is used to attempt to obtain plaintexts from ciphertexts. Its security
depends on these processes. Thus, while other cryptosystems are not quantum-resistant,

McEliece is resistant to quantum attacks.

Due to the large key sizes, this situation has been optimized through many modifications. In
1986, Niederreiter proposed the use of binary general Reed-Solomon codes. This change
reduced the key size and thus improved speed in software and hardware applications.

Additionally, McEliece has become an important candidate for post-quantum cryptography
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after these modifications. Indeed, it was proposed by Daniel J. Bernstein and others for the

competition initiated by NIST in 2017.

Quantum Network

The aim of a quantum network, or in other words, quantum internet, is to transmit quantum
information through certain channels. Since quantum information is generally carried by
photons, it is very susceptible to distortions. Optical fiber infrastructures are commonly used
as channels for transmitting quantum information. Although they are preferred to minimize

losses during transmission, high losses can still occur.

As the distance between parties increases, the complexity of the network grows because more
nodes are required. This necessitates the use of components such as quantum repeaters or
quantum keys. Another channel is space. It is used for transmitting quantum information
over long distances. However, it is more challenging compared to other channels because
photons have limited use in space. For these reasons, quantum satellites are used in quantum

networks.

In communication with satellites, the losses between the satellite and the ground are less
than the losses between two distant nodes on the ground. Quantum repeaters are used in
long-distance quantum communication due to photon loss and decoherence. Since arbitrary

qubit states cannot be copied, quantum repeaters entangle qubits located at the end nodes.

Quantum repeaters require quantum memory. However, there is currently no reliable
quantum memory available. A reliable repeater could be used in quantum key distribution

rather than for entanglement at end nodes.

Another step is quantum key distribution independent of the measurement devices in
experiments. This not only replaces unreliable repeaters with reliable ones but also serves

as a key itself. Even if the central node is attacked, the key remains secure. After these
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steps, central nodes will be replaced with quantum keys and repeaters, providing a quantum

information network.

Quantum internet is used for quantum key distribution, transmission of quantum information
between quantum computers over long distances, authentication, performing distributed
quantum computing tasks as a single quantum computer, and instead of gathering
information about a system that reduces sensor errors, it evaluates universal properties in

an entangled sensor network.

A quantum network enables direct and reliable communication between quantum computers.
By dividing a task into smaller sub-tasks and performing them across several quantum
computers, higher performance can be achieved based on the performance of a single

quantum computer.

Protecting sensitive information plays a crucial role in securely transmitting defense-related
data during operations. By offering a more resilient network infrastructure, it reduces the
likelihood of eavesdropping on critical communications. Enhanced sensors can provide more
accurate data and early warning systems, which can accelerate the decision-making process
in the face of any threat. Finally, it ensures secure communication between countries on the

same side.

Conclusion

Recent technological developments have impacted every area of life. Among these,
defense technologies, which are one of the most important areas for countries, are
included. Advances in physics have led to theoretical developments, which have been
followed by changes in applications. Quantum physics, or quantum mechanics, has
introduced new concepts into our lives. These concepts have led to the reorganization of
classical communication methods, classical coding theory, and classical encryption methods

according to the principles of quantum mechanics.
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In defense technologies, which are crucial for information security and secure
communication, error-correcting codes play a significant role. Because quantum systems
are inherently more sensitive and interact more with the environment compared to classical
systems. This increases the potential error rate. Developments related to quantum computers
have accelerated recently, with many countries establishing their own quantum research units
or collaborating with other countries to avoid falling behind in these advancements. Because
in the future, quantum attacks and threats may occur. They want to develop defense methods

against such situations.

Results of studies conducted for this purpose include simulations performed by quantum
computers. Additionally, the competition to develop encryption algorithms resistant to
quantum computers has ended, and post-quantum cryptographic algorithms in areas such

as encryption and digital signatures have been standardized.

In this thesis, results have been obtained on classical coding theory. Classical error-correcting
codes have been acquired, their parameters determined, and their properties examined in this

context.

Subsequently, due to the above mentioned reasons, quantum coding theory has been studied.
In this section, a structural method has been provided to obtain quantum error-correcting
codes. Similarly, their parameters have been determined to assess their effectiveness. These
codes, obtained using linear code families and BH matrices, are generalizations of some code
families in the literature. The necessary condition for the obtained codes to be a stabilizer
code family, which is a special family of quantum codes, has been specified, and the types of
elements in the stabilizer set that could provide an advantage for the decoding process have

been indicated.
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