AUTOMATIC ARRHYTHMIA CLASSIFICATION FROM
ELECTROCARDIOGRAM MEASUREMENTS WITH
DEEP LEARNING

DERIN OGRENME iLE ELEKTROKARDIYOGRAM
OLCUMLERINDEN OTOMATIK ARITMI
SINIFLANDIRMA

BERKCAN YURTSEVER

PROF. DR. EBRU AKCAPINAR SEZER

Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Master of Science

in Computer Engineering

June 2024






ABSTRACT
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ECG signals have an important place in detecting arrhythmias. Arrhythmias are irregular
heartbeats. One of the most popular studies in this field is the classification of arrhythmias
with artificial neural networks. In the thesis study, a classification study of arrhythmias
was carried out with artificial neural networks using ECG lead signals. In this way, it can
be determined directly whether there is an arrhythmia or not as soon as an ECG recording
is taken.

The dataset used in the study was obtained by combining the ECG recordings in the PTB-
XL and Chapman datasets. The types and numbers of arrhythmias in each data set vary.
When working on a single data set, trained models will be successful in classifying certain
arrhythmias. However, it will fail to classify arrhythmias that are not included in the
dataset. To avoid this problem, instead of working on a single data set, two different data
sets were combined and a common data set was studied. Thus, models with general
success in classifying arrhythmias were obtained.

More than one arrhythmia can be found in an ECG recording. Since an ECG recording
may contain more than one arrhythmia, a threshold value approach was used to classify
multi-label ECG recordings. Thus, the trained models were able to detect multiple
arrhythmias in ECG recordings.

An ECG recording may contain no arrhythmias. The 'no arrhythmia' class has been
defined to classify ECG recordings that do not contain any arrhythmia. Defining the 'no

arrhythmia' class is a new approach. By defining the 'no arrhythmia' class, it can be



determined whether the ECG recordings contain any arrhythmia. In ECG recordings
containing arrhythmia, more than one arrhythmia can be detected with the threshold value
approach.

We trained SE-ResNet34 and FCN artificial neural networks to classify arrhythmias
detected through ECG recordings. The Squeeze and Excitation (SE) layer enable the
network to perform dynamic channel-wise feature recalibration. One-dimensional
convolutional network was used for feature extraction from 12-lead ECG recordings in
the dataset. The convolutional network used is 34-layer ResNet.

By using the weight function, less weight was given to arrhythmias that occurred more
frequently in the data set, and more weight was given to arrhythmias that occurred less
frequently. The weight function is given as a parameter while training the model. The
studies were conducted for 5, 10, and 15 classes of arrhythmia entities. Training the model
on 5 arrhythmias takes less time than on 10 and 15 arrhythmias, since it contains fewer
neurons in terms of running time.

Changing the threshold value greatly affects the success of the model. While many
arrhythmia classes occur at low threshold values, only a single arrhythmia class occurs at
high threshold values. The reason for this is that if no arrhythmia exceeds the threshold
value, the arrhythmia with the highest prediction score is considered as the output of the
model.

In the FCN model, when working with 5, 10 or 15 arrhythmias, the best results were
always obtained when the threshold value was 55%. In the ResNet model, the best results
were obtained at 35% threshold values when working with 5 arrhythmias, and at 10%
threshold values when working with 10 and 15 arrhythmias.

In the thesis study, it was seen that the FCN model was more successful in detecting
arrhythmias than the ResNet model.

In the models created, arrhythmias can be detected with success rates ranging from 60
percent to 90 percent. The current study may help cardiologists make a diagnosis by

preventing misinterpretation of ECG signals.

Keywords: Electrocardiogram (ECG), Classification, Deep Learning, Arrhythmia.



OZET

DERIN OGRENME iLE ELEKTROKARDiIYOGRAM OLCUMLERINDEN
OTOMATIK ARITMI SINIFLANDIRMA

Berkcan YURTSEVER

Yiiksek Lisans, Bilgisayar Miihendisligi
Tez Damismani: Prof. Dr. Ebru AKCAPINAR SEZER
Haziran 2024, 61 sayfa

EKG sinyalleri aritmilerin tespitinde dnemli bir yere sahiptir. Aritmiler diizensiz kalp
atiglaridir. Bu alanda yapilan en popiiler ¢alismalardan biri de aritmilerin yapay sinir
aglari ile siniflandirilmasidir. Tez ¢alismasinda EKG sinyalleri kullanilarak yapay sinir
aglari ile aritmilerin siniflandirilma ¢alismasi yapilmistir. Bu sayede EKG kaydi alinir
alinmaz aritmi olup olmadig1 dogrudan tespit edilebilmektedir.

Calismada kullanilan veri kiimesi, PTB-XL ve Chapman veri kiimelerindeki EKG
kayitlarinin birlestirilmesiyle elde edilmistir. Her veri kiimesindeki aritmilerin tiirleri ve
sayilarn farklilik gosterir. Tek bir veri kiimesi ilizerinde calisirken, egitilmis modeller
belirli aritmileri siniflandirmada basarili olabilmektedir. Ancak veri kiimesinde yer
almayan aritmileri siniflandirmada basarisiz olabilmektedir. Bu sorunu dnlemek igin tek
bir veri kiimesi tizerinde ¢alismak yerine iki farkli veri kiimesi birlestirilerek ortak bir
veri kiimesi tlizerinde ¢alisildi. Boylece aritmilerin siniflandirilmasinda genel basariya
sahip modeller elde edilmistir.

Bir EKG kaydinda birden fazla aritmi bulunabilir. Bir EKG kaydi birden fazla aritmi
icerebileceginden, ¢ok etiketli EKG kayitlarinin siniflandirilmasinda esik deger yaklagimi
kullanilmigtir. Boylece egitilen modeller, EKG kayitlarinda yer alan ¢oklu aritmileri
tespit edebilmektedir.



Bir EKG kaydinda herhangi bir aritmi bulunmayadabilir. 'Aritmi yok' sinifi, herhangi bir
aritmi icermeyen EKG kayitlarini simiflandirmak i¢in tanimlanmigtir. 'Aritmi yok'
siifinin tanimlanmasi1 yeni bir yaklasimdir. 'Aritmi yok' smifi tanimlanarak EKG
kayitlarinin herhangi bir aritmi igerip icermedigi belirlenebilir. Aritmi iceren EKG
kayitlarinda esik deger yaklasimiyla birden fazla aritmi tespit edilebilmektedir.

EKG kayitlarindan tespit edilen aritmileri siniflandirmak i¢cin SE-ResNet34 ve FCN
yapay sinir aglar1 egitildi. Sikistirma ve Uyarma (SE) katmani, agin dinamik kanal
bazinda Ozellik yeniden kalibrasyonu gerceklestirmesini saglar. Veri setindeki 12
derivasyonlu EKG kayitlarindan 6zellik ¢ikarimi igin tek boyutlu evrisimsel ag kullanildi.
Kullanilan evrigimli ag 34 katmanli ResNet'tir.

Agirlik fonksiyonu kullanilarak veri setinde daha sik meydana gelen aritmilere daha az,
daha az siklikta meydana gelen aritmilere ise daha fazla agirlik verilmistir. Model
egitilirken agirlik fonksiyonu parametre olarak verilmektedir. Caligmalar 5, 10 ve 15.
simif aritmi varliklari i¢in yiritildii. Modeli 5 aritmi lizerinde egitmek, ¢alisma siiresi
bakimindan daha az néron icerdiginden, 10 ve 15 aritmiye gore daha az zaman
almaktadir.

Esik degerinin degistirilmesi modelin basarisini biiyiik 6lgtide etkilemektedir. Diisiik esik
degerlerinde bir¢ok aritmi siiflandirilirken, yiiksek esik degerlerinde yalnizca tek bir
aritmi siiflandirilmaktadir. Bunun nedeni esik degerini asan herhangi bir aritmi
olmamasi durumunda tahmin puani en yiiksek olan aritminin modelin ¢iktis1 olarak
dikkate alinmasidir.

FCN modelinde 5, 10 veya 15 aritmi ile ¢alisirken en iyi sonuglar her zaman esik degeri
%355 oldugunda elde edilmistir. ResNet modelinde en iyi sonuglar 5 aritmi ile ¢aligirken
%35 esik degerlerinde, 10 ve 15 aritmi ile calisirken ise %10 esik degerlerinde elde
edilmistir.

Tez ¢alismasinda FCN modelinin aritmileri tespit etmede ResNet modeline gore daha
basarili oldugu goriilmiistiir.

Olusturulan modellerde yiizde 60 ile yilizde 90 arasinda degisen basari oranlariyla
aritmiler tespit edilebilmektedir. Bu ¢alisma, EKG sinyallerinin yanlis yorumlanmasini

onleyerek kardiyologlarin tan1 koymasina yardimci olabilir.

Anahtar Kelimeler: Elektrokardiyogram (EKG), Siniflandirma, Derin Ogrenme, Aritmi.
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1. INTRODUCTION

Electrocardiogram (ECG or EKG) is a recording of the heart’s electrical activity through
repeated cardiac cycles. Thanks to electrodes placed on the body, the electrical activity
of the heart is measured in a timeline. These electrodes placed on the body detect small
electrical changes that occur in the heart muscle during each cardiac cycle.

ECG signals consist of 12 lead signals. Ten different electrodes are placed on the patient’s
legs and chest to record the patient’s ECG. In this process, the electrical activity of the
heart is recorded from 12 different angles. Recordings are usually 10 seconds long. Each
of the 12 different recorded angles represents a separate lead signal. With this method,
the electrical activity of the heart is recorded in each cardiac cycle [1].

Arrhythmias are irregular heartbeats. Arrhythmias indicate a problem with the heart’s
rhythm or speed. The heart may beat too fast, too slowly, or in an irregular rhythm.

Of course, it is very normal for the heart to beat too fast or too slow during times of rest
or physical activity. However, irregular rhythm disorders in the heart indicate
arrhythmias.

Arrhythmias can be detected and treated. Arrhythmias, if left untreated, can damage the
brain and other organs, especially the heart. This may result in stroke, cardiac arrest or
heart failure [2]. The main way to detect arrhythmias is ECG recordings. The movements
of the heart can be monitored and recorded with ECG recordings. The ECG recording
showing the heart rhythm of a patient with arrhythmia will be different from the ECG
recording of a patient with a healthy heart. Thus, arrhythmias can be detected by
cardiologists. However, the fact that there are many arrhythmias and some arrhythmias
are seen in fewer patients than others makes it difficult to detect arrhythmias.

12-lead ECG signals play a critical role in detecting arrhythmias and heart-related
disorders. Early detection and classification of arrhythmias is very important for
successful treatment.

While some arrhythmias are common, some arrhythmias are rare. For example, "sinus
bradycardia” appears common, while "left ventricular hyperthrophy" appears rare. This
makes it difficult to classify arrhythmias.

Arrhythmias can be classified with artificial neural networks. Before the development of
artificial neural networks, there were arrhythmia classification studies using machine
learning methods [51]. Machine learning methods such as SVN and genetic algorithm

were used in this regard. In addition to these studies, noise reduction studies were also
1



carried out in ECG recordings to make it easier for cardiologists to classify arrhythmias
[52].

There are more than 100 types of arrhythmias. If no artificial intelligence application is
used, it is entirely up to the cardiologist to detect arrhythmia from ECG records. Here, an
unintentional incorrect classification may occur or an existing arrhythmia may be
overlooked. To avoid this problem, artificial neural networks are trained with ECG
signals.

Since there are different types and numbers of arrhythmias in each data set, a common
data set was obtained by combining two different data sets. Thus, instead of designing a
model that is successful in classifying specific arrhythmias, a model that is successful in
classifying arrhythmias in general has been designed.

ECG recordings may contain more than one arrhythmia. However, no arrhythmia may be
involved. The 'no arrhythmia' class was defined to classify ECG recordings that do not
contain any arrhythmia. ‘No arrhythmia' is a new approach. A threshold value approach
was used to classify ECG recordings containing multiple arrhythmias. Arrhythmias
exceeding the threshold value are the outputs of the model.

FCN and ResNet models were used as models. In general, the FCN model was more
successful than the ResNet model in all conditions. Multi-label training - single-label
output, multi-label training - multi-label output approaches have been studied.
Accordingly, a success rate of 80% to 90% was achieved in the multi-label training single-
label output approach. This approach is extremely successful if the ECG recording
contains a single arrhythmia. However, if there is more than one arrhythmia in the ECG
recording, this method can detect only one of them. At this stage, the multi-label training
- multi-label output approach is used. In this method, when trying to detect all arrhythmias
in the ECG recording, the success rate drops to the range of 48%-65%.

This thesis aims to classify arrhythmias with artificial neural networks and thus help
cardiologists. Thanks to the thesis study, possible arrhythmia types can be reported as
soon as an ECG recording is taken. This can be extremely helpful in arrhythmia

classification work, which is entirely the job of cardiologists.



2. BACKGROUND OVERVIEW

In this section, ECG signals, arrhythmias, SNOMED-CT, artificial neural networks, feed
forward neural network, convolutional neural network (CNN), residual network (ResNet)
and fully connected network (FCN) are explained in detail.

2.1. ECG Signals

An example of 12-lead ECG signal can be seen in Figure 2.1. When Figure 2.1 is divided
in half, it can be seen that there are 6 different derivation signals (I, Il, Ill, aVR, aVL,
aVF) on the left side and 6 different derivation signals (v1, v2, v3, v4, v5, v6) on the right
side.

{ i |
e ey

Figure 2.1 Sample ECG Recording

The representation in Figure 2.1 is a standard representation. ECG recordings can be
viewed this way in many places. The ECG recording shown is a 10-second recording.
Each rise, fall and sudden jump in the ECG recording has a meaning. These meanings
can be seen in Figure 2.2 when the ECG recording is examined more closely.
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As stated in Figure 2.3, 10 electrodes must be placed on the patient’s body in order to
record a 12-lead ECG. The locations of these electrodes and the lead signals they
represent can be seen in Figure 2.3.
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2.2. Arrhythmias

Arrhythmias, as explained in Section 1, are disorders that indicate a problem in the rhythm
of the heart. Arrhythmias can be detected with ECG devices that examine the functioning
of the heart over time [5].

Arrhythmias may be noticed by patients with various symptoms before being detected by
ECG signals. Arrhythmias have similar symptoms. Popular arrhythmias seen in
arrhythmia disorders can be listed as follows [6]:

e Chest Pain

e Difficulty when exercising, getting tired easily

e Continuously feeling of low energy

e Heart palpitations, feeling that the heart is beating too fast or too slow

e Shortness of breath

¢ Instant sweating without any reason such as exercise

Although most arrhythmias are harmless, some can have a profound impact on life. For
example, ventricular fibrillation or ventricular tachycardia can cause fainting and sudden
death.

The normal heart rhythm for adults is between 60 and 100 beats per minute. Normal heart
rhythm in professional athletes may be below 60.

Generally, arrhythmias are divided into 5 main categories. This distinction is determined
by the heart rate and where in the heart there is discomfort. Arrhythmia groups can be
summarized as follows [7]:

1. Tachycardia: Itis a fast heart rhythm. Causes the heart to beat more than 100 beats
per minute.

2. Bradycardia: It is a slow heart rhythm. Causes the heart to beat less than 60 beats
per minute.

3. Premature Heartbeat: It is an occasional extra heartbeat. It is usually harmless and
does not cause symptoms. However, premature heartbeat can be dangerous if the
patient already has heart disease.

4. Supraventricular Arrhythmias: These are tachycardias. It occurs in special tissue
that transmits electrical signals from the atria to the ventricles.

5. Ventricular Arrhythmias: These are tachycardias that start in the lower chambers

of the heart. They can be life-threatening



Atrial Fibrillation (AF) is the most common irregular heart rhythm that causes the atria
to contract abnormally [8]. The most important and feared side effect is that it paves the
way for clots to form in the heart, and these clots break off and travel to different parts of
the body (especially the brain) and cause serious problems. Figure 2.4 shows a 12-lead

ECG recording of atrial fibrillation arrhythmia as an example.
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Figure 2.4 Example of 12-lead ECG Recording of Atrial Fibrillation Arrhythmia [9]

The most popular method for detecting arrhythmias is ECG devices. However, ECG
devices are not the only method. Arrhythmias can be detected with different devices and
methods. Methods used to detect arrhythmias other than ECG signals can be summarized
as follows [10]:

e Chest X-ray: This method takes pictures of the heart using radiation. In this way,

it can be seen whether there is an enlargement of the heart.
e Coronary Angiogram: X-rays are used to view blood flow in the heart arteries.
e Echocardiogram (echo): Using sound waves, images are taken from various parts

of the chest and a detailed picture of the heart is created.

2.3. SNOMED-CT

SNOMED-CT is an international terminology used in the healthcare industry [11]. Each
arrhythmia has a SNOMED CT code. Examples of arrhythmia types, their abbreviations
and SNOMED-CT codes can be seen in Table 2.1.



Table 2.1 SNOMED-CT Codes of Some Arrhythmias

Dx Abbreviation SNOMED-CT Code
1st degree av block IAVB 270492004
Atrial fibrillation AF 164889003
Atrial flutter AFL 164890007
Bradycardia Brady 426627000

2.4. Artificial Neural Networks

Artificial neural networks are similar to biological neural networks in their working
method. Just like biological neural networks, neurons in artificial neural networks are
connected to each other and data is transferred between neurons in this connection [12].
Artificial neural networks always have an input layer and an output layer. The layer in
between is called the hidden layer. The Hidden Layer does not have to be present in

artificial neural networks. However, it can also be found in multiple layers.

Input Hidden
Layer Layers

Figure 2.5 Sample Architecture of Artificial Neural Network

There are many different types of neural networks. ResNet and FCN models were used
in the thesis study. These definitions are explained because the basis of the ResNet model

is Convolutional Layer, and the basis of FCN model is feedforward neural networks.



2.5 Feedforward Neural Network

Feedforward networks are one of the simplest networks among artificial neural networks
[13]. In this network model, data travels only forward from each layer to the next layer.
No input is given to the previous layer in any way. There is no cycle in this model. Feed-

forward artificial neural networks were the first artificial neural networks invented [14].

The operation of feed-forward artificial neural networks is extremely simple. It consists
of only two stages. Feedforward phase and backpropagation phase.

e Feedforward Phase: In this phase, data propagates forward in the input layer. The
weighted sum of the inputs is calculated and passed through an activation
function. This process is done in each hidden layer. This process continues until
it reaches the output layer. A prediction is made when the data reaches the output
layer from the input layer.

e Backpropagation Phase: Error is calculated when the prediction process is
performed. For this, the difference between the predicted result and the expected
result is calculated. The weights in the networks are adjusted to reduce the error

from the output layer to the input layer.

The feed-forward artificial neural network structure can be seen in Figure 2.6. Since it is

a feed-forward network structure, arrow symbols always move forward.
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Figure 2.6 The Structure of Feed Forward Neural Network [15]

2.6. Convolutional Neural Network (CNN)

Convolutional neural networks are generally used in image classification and object
identification studies.
There are 3 main layers in convolutional neural networks [16]:

e Convolutional Layer

e Pooling Layer

e Fully Connected Layer
Convolutional layer is the first layer of CNN networks. After the convolutional layer, a
convolutional layer may come again or the pooling layer comes [17]. The fully connected
layer is the last layer of CNN networks. With each additional layer, the complexity of the
network increases.

The CNN network structure can be seen in Figure 2.7.
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Figure 2.7 CNN Architecture
2.6.1. Convolutional Layer

The convolutional layer forms the basis of CNN networks and most of the calculations
are done in this layer [18]. It takes very few parameters. These are input data, filter and
feature map. By adding additional convolutional layers, the complexity of the model can
be increased, allowing the model to learn smaller parts [19].

The convolution layer can be one-dimensional, two-dimensional or three-dimensional
(1D, 2D or 3D). The only difference between these convolution layers is the shape of the
input space. The shape of the convolution layer is determined according to the subject to
be studied. For example, a one-dimensional convolution layer can be used in a study on
audio files, a two-dimensional convolution layer can be used in a study on images, and a
three-dimensional convolution layer can be used in a study on video.

In the thesis study, ResNet model was used and one-dimensional convolution layer was
preferred as the convolution layer. This is due to the fact that ECG signals contain one-

dimensional numerical data depending on time.

2.6.2 Pooling Layer

Dimension reduction is achieved with pooling layers. Similar to the convolutional layer,
the entire input is scanned with the filter. However, there is no weight in the pooling layer.
Instead, the output array is obtained using an aggregate function. There are two main
types of pooling [20]:
e Max Pooling: The largest data in the input data to which the filter is applied is
produced as output. The max pooling method is used more frequently than the
average pooling method.
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e Average Pooling: The average of the input data to which the filter is applied is

produced as output.

2.7. Residual Network (ResNet)

A deep learning network with more than 100 layers can theoretically be designed.
However, it is difficult to train. Here, ResNet allows very deep networks to be trained
efficiently. When there are too many layers, data is lost in the following layers due to
gradient descent, which gradually slows down. This situation is also called the Vanishing
Gradient problem. ResNet uses shortcuts to solve this problem [21]. Jumping from one
layer to another is achieved with a shortcut. ResNet architecture can be seen in Figure
2.8.

F(x)

F(x)+x

Figure 2.8 Residual Network

ResNet34, ResNet50 and ResNet101 are popular ResNet models used [22]. The numbers
at the end of the model name indicate how many layers there are in that model. With the
ResNet architecture, deep neural networks containing many layers can be trained without
increasing the training error rate [23]. The symbol X in Figure 2.8 represents the output

value from the neuron in the previous layer.

2.8. Fully Connected Network (FCN)

Neural networks consisting of multiple fully connected layers are called deep neural
networks [24]. Fully Connected Deep Network consists of fully connected layers. Here,
there is a relationship between any neuron in a layer and all the neurons in the previous

layer. The fully connected layer can be seen in Figure 2.9.
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Figure 2.9 A fully connected layer in a deep network [25]

The fully connected network obtained by using fully connected layers can be seen in
Figure 2.10.
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Figure 2.10 A multilayer deep fully connected network [25]

2.9. Output Layer Activation Function

The last layer of artificial neural networks includes the activation function. The choice of
activation function directly affects model success [26]. How to choose the activation
function in the output layer depends on the category of the study. Sigmoid and softmax
functions are frequently used in classification studies [27]. If a regression study is to be

performed, the linear activation function is used [28]. Because values are unbounded.
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Since the classification study was carried out in the thesis study, sigmoid and softmax
activation functions were used.

Sigmoid and softmax functions used in classification studies can be seen in Figure 2.11
and Figure 2.12.

0.5
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Figure 2.11 Sigmoid Function

10 -

Figure 2.12 Softmax Function

The linear activation function used in regression studies can be seen in Figure 2.13.
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Figure 2.13 Linear Function

2.10. Confusion Matrix

Confusion matrix is a table used to evaluate the success of the model on the data set.
Many inferences can be made about the success of the model just by looking at the
confusion matrix. Which classes the model is successful in classifying and which classes
it is unsuccessful in classifying can be determined from the confusion matrix table.

For example, when 5 different arrhythmias are studied, the confusion matrix can be seen
in Table 2.2.

Table 2.2 Example Of 5 Arryhthmia Confusion Matrix

Predicted Label
Ml | TAb | LAD | SB | SNR
Ml 34 | 11 20 10 | 3
TAb 5 |68 12 4 |2
LAD |12 |24 70 18 | 11
SB 7 |17 3 60 | 12
SNR |11 |3 15 20 | 55

True Label

Actual classes are on the left side of Table 2.2, and estimated classes are on the top side.
Accordingly, 34 ECG records containing the MI class were classified as MI. 11 ECG
records containing the MI class were classified as TAb. The ratio of the sum of the

numbers on the diagonal to the entire table gives the success rate.
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What has been explained so far is the standard confusion matrix frequently used in
machine learning methods. If a data has more than one type at the same time, then the
standard confusion matrix cannot be used. For example, if an ECG recording has both
LAD and MI arrhythmia types, then the standard confusion matrix is not used. Because
it is correct to classify that ECG recording as either Ml or LAD.

This situation creates a multiclass confusion matrix. If the data in the dataset can have
more than one type at the same time, multiclass confusion matrix is used. Multiclass
confusion matrix is a type-based standard confusion matrix.

For example, in the study of classifying 5 different arrhythmia types, 5 different confusion
matrices are defined because each ECG record may contain more than one arrhythmia
type. In each confusion matrix, it is observed whether the arrhythmia class to which it
belongs is classified correctly.

As an example, in Table 2.3, the confusion matrix of a species in a multi-label

environment can be seen.

Table 2.3 Confusion Matrix of MI Arrhythmia Type in Multi-Label Environment

Predicted Label
E NOT Ml | M
©
:':, NOT MI |50 6
T M 5 70

As can be seen from Table 2.3, in a multi-label environment, the confusion matrix for
each class is calculated in 2x2 size. Thus, it can be seen from the confusion matrix table
whether the class is classified correctly or not.

In the thesis study, multi-label confusion matrix was used to evaluate model performance
in multi-label training, multi-label output studies, since ECG recordings may contain

more than one type of arrhythmia.
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3. RELATED WORK

Classifying and detecting arrhythmias with artificial neural networks can help doctors
interpret ECG recordings. Over the past 10 years, many traditional machine learning
techniques have been used to interpret ECG recordings containing 12 lead signals and
diagnose heart diseases [29, 30]. However, since artificial neural networks can achieve a
higher success rate than traditional machine learning techniques, studies on this subject
have increased in the literature in the last five years. The majority of studies have potential
for more accurate classification of arrhythmias [31, 32]. It is appropriate to use deep
neural networks consisting of multiple processing layers to interpret ECG signals [33].
Because each layer can learn more abstract and higher-level representations of the input
data. It is seen that LSTM and CNN network structures are frequently used in arrhythmia
classification studies. As a result of this situation, ECG signals can be interpreted with
deep neural networks. For this reason, there are studies in the literature to integrate the
features of domain knowledge into artificial neural networks to achieve a higher success
rate [34, 35].

It seems that artificial neural networks were not widely used in arrhythmia classification
studies before 2015. It is seen that SVM, KNN and genetic algorithm are used in
classification studies [51, 53]. However, different approaches have been applied to detect
arrhythmias. In 1991, noise reduction studies were carried out by applying an adaptive
filter to ECG signals [52]. This method has been especially applied to detect certain
arrhythmias. As of 2015, studies on arrhythmia detection of artificial neural networks
have increased. In an article published in 2022, it is seen that arrhythmia classification
studies were carried out with data obtained from loT devices [54].

The lack of sufficient ECG recording data and the fact that the arrhythmias in these ECG
recordings are not well classified make it difficult to develop automatic interpretation
algorithms for 12-lead ECGs [36]. Most previous studies in the literature have studied
specific arrhythmias on a limited number of patients in relatively homogeneous data sets.
These models perform well on the training dataset but not on the external testing set [37,
40]. In order to avoid this problem, the dataset created by combining two different
datasets, PTB-XL [38] and Chapman [39] datasets, was studied. For comparison, this
study aims to classify arrhythmias through ECG recordings containing 12 lead signals by

training both SE-ResNet34 and FCN deep neural networks.
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There are a lot of articles in the literature about arrhythmia classification in machine
learning. Some of the studies on arrhythmia classification according to chronological

order can be seen in Table 3.1.

Table 3.1 Articles in the Literature About Arrhythmia Classification

Year Article Title Method Summary

1991 Applications of Adaptive The adaptive filter minimizes the
adaptive filtering to Filtering mean-squared error for ECG
ECG analysis: noise signals. It was used to detect
cancellation and arrhythmias such as AF and PVC.

arrhythmia detection

[52]

2009 ECG Arrhythmia Support Vector  Four types of arrhythmias were
Classification with Machines, distinguished with 93% accuracy.
Support Vector Genetic

Machines and Genetic ~ Algorithm
Algorithm [51]

2018 Cardiac arrhythmia Multi-Layer As a result of the study, a success
classification by Perceptron, rate of 88.67% was achieved with

multi-layer perceptron  Convolutional multilayer Percetron and 83.5%

and convolution Neural with convolutional neural
neural networks [42]  Networks networks.

2019 Automatic Cardiac Deep Residual Recordings have variable lengths
Arrhythmia Network, from 6 to 60 seconds. As a result
Classification Using Bidirectional of the study, an F1 score value of
Combination of Deep LSTM 80.6% was obtained.

Residual Network and
Bidirectional LSTM

[41]

2019 Cardiologist level Deep Neural The F1 score value obtained as a
arrhythmia detection ~ Networks result of the study is 0.8337, and
and classification in (DNN) this value is higher than the
ambulatory
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electrocardiograms average cardiologist score of

using a deep neural 0.780.
network [43]

2019 ECG Arrhythmia CNN-1D, CNN- 5 different arrhythmia categories
Classification Using 2D, Fourier were studied. A success rate of
STFT-Based Transformation ~ 90.93% was achieved.

Spectrogram and
Convolutional Neural
Network [44]

2022 Deep Learning CNN, It has achieved success rates
Models for ConvLSTM ranging from 91% to 97%.
Arrhythmia Detection
in 10T Healthcare
Applications [54]

In addition to those mentioned in Table 3.1, there are many studies in the literature on
arrhythmia classification studies. In studies before the last 5 years, it is seen that machine
learning techniques are used more widely instead of artificial neural networks. Since the
success rate of artificial neural networks can be higher, the use of artificial neural
networks in arrhythmia classification studies has increased [45].

The current thesis study has differences from the studies in the literature. The most
important of these is the definition of the 'no arrhythmia' class to classify ECG recordings
that do not contain any arrhythmia. If the 'no arrhythmia' class was not defined, then ECG
records containing no arrhythmia could be classified using the threshold value method.
However, how to determine the threshold value is an important issue here. There are
studies using the threshold approach to classify multi-label arrhythmias and ECG
recordings that do not contain any arrhythmia [47]. However, it is not stated here how the
threshold value is determined.

Studies in the literature show success rates of up to 90%. However, these success rates
are generally the success rates of a single data set. A study in the literature achieved a
success rate of 68% in the training set and 31% in the foreign data set [37]. To avoid these
problems, two separate data sets were combined to obtain a single data set, and all results
were obtained from the combined data set. In arrhythmia classification studies based on

ECG records, combining different data sets to obtain a single data set and obtaining the
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results from the combined data set is an important issue that distinguishes the thesis study
from other studies.
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4. UTILIZED DATASETS & EVALUATION METRICS

This section describes the characteristics of the studied datasets and evaluation metrics.

4.1 Datasets

In this section, the studied datasets are explained in detail. To classify arrhythmia through
ECG signals, two different data sets were combined to obtain a single data set. The reason
for doing this is to prevent the trained model from focusing on a single data set. In the
literature, there are arrhythmia classification studies that provide a 68% success rate on
the test dataset when the dataset is divided into training and test, while a 31% success rate
is achieved when a foreign dataset is given as the test set [37].

A more balanced data set was obtained by combining two different data sets. Because
while some arrhythmias in the PTB-XL dataset are much more common than in the
Chapman dataset, some arrhythmias in the Chapman dataset are also more common in
the PTB-XL dataset.

4.1.1 PTB-XL Dataset [38]

It is a popular dataset used in arrhythmia classification studies. There are 21837 ECG
records taken from 18885 patients in the 7-year period between 1989 and 1996. All ECG
recordings are 10-second recordings. There are 500 samples for each second. Since all
recordings are 10 seconds long, each recording contains 5000 samples in total. Each ECG
recording contains the entire 12-lead signal. ECG records also include patients' age and

gender information.
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Figure 4.1 Gender Distribution on the PTB-XL Dataset
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Figure 4.2 Age Distribution on the PTB-XL Dataset

Table 4.1 The 10 Most Popular Arrhythmias in the PTB-XL Dataset

Index Arrhythmia Name Abbreviation Arrhythmia Count
1 Sinus Rhythm SNR 18092
2 Myocardial Infarction Ml 5261
3 Left Axis Deviation LAD 5146
4 Abnormal QRS abQRS 3389
5 Left Ventricular Hypertrophy LVH 2359
6 T Wave Abnormal TADb 2345
7 Myocardial Ischemia Mls 2175
8 Left Anterior Fascicular Block LANnFB 1626
9 Atrial Fibrillation AF 1514
10 Ventricular Ectopics VEB 1154
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4.1.2 Chapman Dataset [39]

ECG recordings served by Shaoxing Human Hospital, Chapman University in China.
There are 11047 ECG records. It has the same format features as the PTB-XL dataset.
Each ECG recording is 10 seconds long. Each recording contains 500 samples of data per
second, so there are 5000 samples in ECG records. Each ECG recording contains 12 lead

signals. Each ECG record includes patients' age and gender information.
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Figure 4.3 Gender Distribution on the Chapman Dataset

Age Distribution of Chapman Dataset
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Figure 4.4 Age Distribution on the Chapman Dataset
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Table 4.2 The 10 Most Popular Arrhythmias in the Chapman Dataset

Index Arrhythmia Name

Abbreviation

Arrhythmia Count

1 Sinus Bradycardia SB 3889
2 T Wave Abnormal TADb 1876
3 Sinus rhythm SNR 1826
4 Atrial Fibrillation AF 1780
5 Sinus Tachycardia STach 1568
6 Left Ventricular High Voltage LVHV 1295
7 Nonspecific St T Abnormality NSSTTA 1158
8 Supraventricular Tachycardia SVT 1587
9 Right Bundle Branch Block RBBB 454

10 Atrial Flutter AFL 445

4.1.3 Overall Dataset

Both PTB-XL and Chapman datasets were combined to obtain a single dataset. All of the

studies were done on this combined data set. There are a total of 32084 ECG records in

the dataset.

Figure 4.5 shows that out of a total of 32084 ECG records, 17112 are male and 14972 are

female. Men are 14.29% more than women.

17112

Male

14572

Female

Figure 4.5 Gender Distribution on the Overall Dataset

The age distribution of 32084 ECG records starts from 2 to 95. The majority are between

the ages of 61 and 70. The ECG records in this section correspond to 24.21% of the

dataset. The age distribution of the patients in the 32084 ECG recordings can be seen in

Figure 4.6.
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Figure 4.6 Age Distribution on the Overall Dataset

The distribution of arrhythmias in the PTB-XL and Chapman datasets separately and the
distribution of arrhythmias when these datasets are combined can be seen in Table 4.3.
Table 4.3 is sorted by the occurrence of arrhythmias in the combined data set.

Table 4.3 The 10 Most Popular Arrhythmias in the Overall Dataset

Index Dx Abbreviation PTB-XL Chapman Total
1 Sinus rhythm SNR 18092 1826 19918
2 Left Axis Deviation LAD 5146 382 5528
3 Myocardial Infarction Ml 5261 40 5301
4 Sinus Bradycardia SB 637 3889 4526
5 T Wave Abnormal Tab 2345 1876 4221
6 Abnormal QRs abQRS 3389 0 3389
7 Atrial Fibrillation AF 1514 1780 3294
8 Sinus Tachycardia STach 826 1568 2394
9 Left Ventricular LVH 2359 15 2374
Hypertrophy
10 Myocardial Ischemia Mls 2175 0 2175

It can be seen in Table 4.3 that the frequency of occurrence of "Sinus rhythm™ in the PTB-
XL dataset is almost 10 times that of Chapman. However, the incidence of "Sinus
bradycardia™ in the Chapman dataset is more than 6 times higher than PTB-XL. As can
be seen, if the study was carried out on only a single data set, there would be a majority
for certain types of arrhythmia. Since two different data sets were studied, the distribution

of arrhythmias became more balanced.
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4.2. Evaluation Metrics

Various evaluation criteria are used to measure the success of the studies carried out in

this thesis. These are F1 score, recall, accuracy and precision. These metrics can be seen

in Eq. (1), (2), (3) and (4).

Recall *x Precision
F1Score = 2 X

Recall + Precision

TP

Recall = TP-l-—FIV

TP

p .. -
recision TF + FP

TP+TN
TP+ FP+TN +FN

Accuracy =

(1

(2)

(3)

(4)

These evaluation criteria are popular evaluation criteria used in the literature [46].

However, different metrics were also used to calculate the success rates of the created

models in the test dataset.
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5. PROPOSED METHOD

In the studies, classification studies were carried out on the 5, 10 and 15 most popular
arrhythmias in the data set. In addition to these arrhythmias, the no arrhythmia’ class has
also been defined. If an ECG recording contains no arrhythmia then the 'no arrhythmia’
class is set to 1 in one-hot-encoding. Thanks to this approach, there is no ECG record
with all lines 0 in one-hot-encoding. From our studies, we achieved a higher success rate
as a result of considering the ’no arrhythmia’ class as an arrhythmia class. It is very
difficult to evaluate ECG recordings that do not contain any arrhythmia unless the 'no
arrhythmia’ class is defined. If the 'no arrhythmia’ class was not defined, the threshold
value could be used to classify ECG recordings that did not contain any arrhythmia. There
are studies on this subject in the literature [47]. However, how to determine the threshold
value is an important issue here. In this sense, it is a new approach to categorize the
situation in which the ECG recording does not contain any arrhythmia as the 'no
arrhythmia’ class.

Many different models were trained to make comparisons. These trained models can be
categorized as follows:

e Multi-label training, single-label output, no threshold method
e Multi-label training, multi-label output, threshold method available

In the studies, first the number of arrhythmias to be studied is determined. After
determining the number and types of arrhythmias to be studied, a one-hot-encoding
sequence of each ECG record in the dataset is obtained. The approach to obtaining a one
hot encoding sequence is as follows: if an ECG record contains an arrhythmia but it is not
one of the arrhythmias studied, its counterpart in one-hot-encoding is that all columns are
zero. For example, an ECG record may contain 3 different arrhythmias, but if none of
them is the arrhythmia to be studied, then the equivalent of one hot encoding of this ECG
record is that all columns are zero. In this case, that ECG recording is evaluated as 'no
arrhythmia’ because it does not contain any of the arrhythmias we want to study. What
this approach gives us is that no ECG records are deleted from the dataset. If we deleted
the ECG records containing the arrhythmias we wanted to study from the data set, then
we would be working with much fewer ECG records. Thanks to this approach, when
working with 5, 10 and 15 arrhythmias, the number of ECG records in the data set is
constant and equal to 32084. Of course, the number of ‘no arrhythmia’ when working

with 5 arrhythmias is much higher than the number of ‘no arrhythmia’ when working
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with 15 arrhythmias. When working with 5 arrhythmias, there are 4559 number of ‘no
arrhythmia’ classes in the data set, when working with 10 arrhythmias, there are 1452
number of ‘no arrhythmia’ classes in the data set, and when working with 15 arrhythmias,
there are 1230 number of ‘no arrhythmia’ classes.

In the multi-label training and single-label output approach, the probability values of
arrhythmias are examined. The arrhythmia class with the highest prediction score is the
output of the model. If the arrhythmia class found as a result of the model is mentioned
in the ECG record, the prediction process is considered successful, if not, the prediction
process is considered unsuccessful. For example, an ECG recording with arrhythmia
types A and B is considered successful whether the model produces arrhythmia A or
arrhythmia B as output. This approach is quite optimistic; however, ECG recording can
be evaluated with very high success rates. This approach is quite good if the ECG
recording contains no or a single arrhythmia. However, if an ECG recording contains
more than one arrhythmia, only a single one can be detected.

When we look at the studies on ECG recordings, there are not many studies on multi-
label training and multi-label output [48]. The most important issue here is how the model
will produce multi-label output. It is seen that the threshold method is used in articles
published on this subject [47]. However, this article does not explain how the threshold
value is determined.

The multi-label training multi-label output approach is actually an advanced version of
the multi-label training single-label output approach. Here the model can produce
multiple outputs. To produce multiple arrhythmia results, the predictive values of all
arrhythmias are checked one by one. If the predicted value of any arrhythmia is higher
than the threshold value, then that arrhythmia becomes the output of the model. If there
is no arrhythmia exceeding the threshold value, then the arrhythmia with the highest
probability value is considered as the output of the model. Many studies have been
conducted to determine the ideal threshold value. In the Experimental Results section, the
success of models with different threshold values will be explained comparatively. In the
FCN model, the ideal threshold value for all scenarios is fixed and this value is 0.55. In
the ResNet model, there are differences in the ideal threshold value. The ideal threshold
value is 0.35 when working with 5 arrhythmias, and 0.10 when working with 10 and 15
arrhythmias. The approach here is that each arrhythmia has a fixed threshold value and

when that threshold value is exceeded, the relevant arrhythmia is the output of the model.
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In addition to the fixed threshold approach, threshold values can be determined separately
for each arrhythmia. For this, the outputs produced by the model on the validation set and
the arrhythmias in the validation set are examined. In the ECG records where each
arrhythmia is active in the validation set, it is checked what predictive values the model
produces for that arrhythmia. A threshold value is determined based on these values. In
this approach, a higher success rate can be achieved than the fixed threshold value
method, since the threshold value is calculated separately for each type of arrhythmia.
However, the approach to determining threshold values should be done separately for
each model. Because when working with 5 arrhythmias, the ideal threshold value for
sinus arrhythmia is 0.45, while when working with 10 arrhythmias, the ideal threshold
value for sinus arrhythmia may be 0.50. Therefore, although this approach may yield
higher success rates, it is not generalizable.

K-Fold Cross Validation method was used in each model study and the k value was taken
as 10. When training the model, only the first fold was used for training purposes. In
addition to this, shuffle method was used to obtain balanced dataset.

We implemented all the models with Spyder 3.5 and trained them on machines with AMD
Radeon Graphics 512 MB. A learning rate of 0.001 was used. The adaptive momentum

estimation (Adam) optimizer was used to optimize the network parameters.

5.1. ResNet Model

A 34-layer Residual Network model was designed to classify arrhythmias through ECG
recordings. 17 sequential skip connections are available to increase the success of the
one-dimensional CNN (1D Conv) network [49]. Transactions made in each block repeat
each other. As can be seen from Figure 5.1, the module includes a Batch normalization
layer, one-dimensional convolutional layer, ReLU activation layer and SE layer.

In convolutional neural networks, the convolution layer is the basic learning component
of convolutional neural networks. Here is a 7x1 filter with learnable weights. When
important features are detected, the filter is activated by adjusting the weights. By
providing labeled data, the model can learn important features for different classes of
arrhythmias.
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Figure 5.1 The Overall Structure of Residual Network Model

Because each learned filter worked with a local receptive field, each unit of the
transformation output could not benefit from contextual information outside this field. It
is aimed to solve the problem of exploiting channel dependencies with the SE layer
(Squeeze and Excitation block) [50].

First, we compressed global spatial information into a channel descriptor using global
average pooling. In formulaic terms, minimizing ‘U along the A x W spatial dimensions

produced a z € R€ statistic; where the c-th element of z is calculated as follows:

w

1 H
Ze = Figtte) = 770 > ) i, )) &

j=1

Here U = [u1, Ug,..., us] was the output of previous layer, U € R”*"*¢, The transformation
output U could be interpreted as a collection of the local descriptors, which were
expressive for the whole signal.
Secondly, to make use of the information aggregated in the squeeze operation and fully
capture channel-wise dependencies, a simple gating mechanism with a sigmoid function
was used. The Eqg. (2) was used to learn the non-mutually exclusive relationship of this
simple transition mechanism:

s =Fa(zW) = o(gz,W)) = a(W,6(W;2)) (2)
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Where § refers to the ReLU function, W1 € [Rgxcand W, € IR{%XC, r = 16. To reduce the
complexity that may occur in the model and improve generalization, a simple gate
mechanism was parameterized by creating a bottleneck with two fully connected layers.
To perform this process, the dimension reduction layer was used with r reduction ratio
and W1 parameter. ReL U activation function and dimensionality increase layer were used
with W> parameter. The final output of the block was obtained by rescaling the

transformation output U with the activation function:

X = Fscate(Ue, Sc) =S¢~ U (3)
Where X = [%,,%,, ..., %3] and Fyqqe(uc, s.) refers to channel-wise multiplication
between the feature map u, € R¥*Wand the scalar s..
Following this, a fully connected layer was used to transform the features to a [Number
Of Studied Arrhythmia x 1] vector of numerical values, which corresponded to the
outputs for each class. The sigmoid function was used to display these values as
probabilities and produce results between 0 and 1. The network structure takes 10-second
ECG recordings as input and produces a prediction for each arrhythmia. The closer to
zero the value obtained from the sigmoid function as a result of the prediction made in
the ECG recording, the less likely it is that the relevant arrhythmia will be found in the
ECG recording. Similarly, the closer to one the output of the sigmoid function is, the more

likely it is that the relevant arrhythmia will be present in the ECG recording.

5.2. FCN Model

The developed Fully Convolutional Network structure is quite simple compared to
ResNet. Again, since the total number of samples of each ECG record is 5000 and there
are a total of 12 lead signals, an input of size (5000, 12) is taken. A 3-layer Conv 1D
network structure is used in the hidden layer. The activation function in each of these
layers is ReLU. There are as many neurons as the number of arrhythmias studied in the
output layer and the activation function is sigmoid. The FCN model structure can be seen
in Figure 5.2.
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Figure 5.2 The Overall Structure of Fully Convolutional Network

5.3. Weight Function

Some types of arrhythmia may be more common than other types of arrhythmia in the
dataset. This may prevent the model from focusing on more common arrhythmias in the
data set and thus successfully detecting less common arrhythmia types. To avoid this
problem, a weight function was designed to be used in model training. Thus, less weight
was given to the more common arrhythmia types in the data set, and higher weight was

given to the less common ones. The relevant equation can be seen in the following:

] ) Number of ECG
weight[i] = (4)

4 = bincount (y_arr([i])

Number Of ECG refers to the total number of ECG recordings in the dataset. bincount is
a function here. Counts the number of times the relevant arrhythmia appears and does not
appear in the data set. y_arr refers to the column of the arrhythmia in one-hot-encoding.
Square rooting was used for smoothing. Thanks to this function, less weight is given to
common arrhythmia types in the data set, while more weight is given to less common
arrhythmia types.

A good weight function can increase model success. In addition, it is very important to
use the weight function in arrhythmia classification studies. Because while some
arrhythmias are quite common in the data set, some arrhythmias are very rare. This makes
it difficult to classify the small number of arrhythmias in the data set. To prevent this, the

weight function should be used.
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6. EXPERIMENTAL RESULTS

6.1 Multi Label Training — Single Label Output

The success and other features of the ResNet & FCN models in the data set consisting of

ECG recordings in the multi-label training single-label output approach are shown in
Table 6.1.

Table 6.1 Multi Label Training-Single Label Output ResNet, FCN Model Results

Model Type ResNet FCN ResNet FCN ResNet FCN
Number of Arrhythmias
Studied
No Arrhythmia Class is

5 5 10 10 15 15

Yes Yes Yes Yes Yes Yes
Available

Total Number of Classes
Studied
Number of ECG
Recordings Containing No 4559 4559 1452 1452 1230 1230
Arrhythmia
Number of ECG
Recordings Containing 1 17872 17872 16789 16789 14868 14868
Arrhythmia
Number of ECG
Recordings Containing 2 7383 7383 7931 7931 7972 7972
Arrhythmia
Number of ECG
Recordings Containing 3 2224 2224 3677 3677 4349 4349
Arrhythmia
Number of ECG
Recordings Containing 4 46 46 1812 1812 2374 2374
Arrhythmia
Number of ECG
Recordings Containing 5 0 0 348 348 1012 1012
Arrhythmia
Number of ECG

Recordings Containing 6 0 0 75 75 226 226
Arrhythmia

32



Number of ECG

Recordings Containing 7 0 0 0 0 50 50
Arrhythmia
Number of ECG
Recordings Containing 8 0 0 0 0 3 3
Arrhythmia
Number of Total ECG 32084 32084 32084 32084 32084 | 32084
Total Number of Unique
Combinations 27 27 238 238 813 813
Accuracy Score 0,837 0,878 0,804 0,899 0,835 0,90

As can be seen in Table 6.1, the unique combination numbers of arrhythmias in the dataset
are also shown in each model run. It appears that as the number of arrhythmias studied
increases, the number of unique combinations also increases. When training the data set,
care should be taken to treat ECG recordings that do not contain any arrhythmia as
containing the 'no arrhythmia' class. For example, if 5 different arrhythmias are studied,
there should be 6 cells in the output layer. Because if the 'no arrhythmia'’ class is included,
there are 6 different classes. An ECG recording may contain any or none of 5 different
arrhythmias. This allows us to classify ECG recordings that do not contain any
arrhythmia.

As can be noticed in Table 6.1, the number of ECG recordings studied is always constant.
In Table 6.1, it is important to pay attention the number of ECG recordings that do not
contain any arrhythmia. As the number of arrhythmias studied increases, the number of
ECG recordings containing no arrhythmia decreases. The reason for this is that when
working with 5 arrhythmias, the types of arrhythmias in the ECG records in the data set
may not be one of these 5 arrhythmias. ECG records that do not contain any of these 5
arrhythmias are also considered as 'no arrhythmia’. When working with 15 arrhythmias,
many ECG records in the data set are covered. Because it covers many ECG records from
the 15 most popular arrhythmia datasets. Since there are a small amount of ECG records
not covered, the number of ‘no arrhythmia’ ECG records when working with 15
arrhythmias is less than the number of ‘no arrhythmia’ ECG records when working with
5 arrhythmias.

The same studies done for ResNet in Table 6.1 were also done for the Fully Connected

Layer network structure. While the results of ResNet and FCN are obtained, the only
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difference is the network structures. No change in the weight function or pre-processing
operation was made.
As can be seen from the comparison of Table 6.1, the success of the FCN model is greater

than the ResNet model when all other conditions remain the same.

6.2 Multi Label Training — Multi Label Output

Multi-label training multi-label output approach is an improved version of multi-label
training single-label output. The difference here is that the arrhythmia with the highest
predictive value is not considered as the output of the model. Each arrhythmia is
compared individually with the determined threshold value. All arrhythmias exceeding
the threshold value are the output of the model. If any arrhythmia does not exceed the
threshold value, then the arrhythmia with the highest probability value becomes the
output of the model.

The success rates obtained when 0.40, 0.45, 0.50, 0.55, 0.60 and 0.65 are given as

threshold values for FCN model, respectively, can be seen in Table 6.2.

Table 6.2 Threshold Value Effect When Working With 5, 10, 15 Arrhythmias in the FCN

Model
Number of Arrhythmias No Arrhythmia Total Number of Accuracy
Studied Class is Available Classes Studied Threshold Score
5 Yes 6 0,40 0,626
5 Yes 6 0,45 0,639
5 Yes 6 0,50 0,650
5 Yes 6 0,55 0,660
5 Yes 6 0,60 0,658
5 Yes 6 0,65 0,653
10 Yes 11 0,40 0,540
10 Yes 11 0,45 0,552
10 Yes 11 0,50 0,552
10 Yes 11 0,55 0,553
10 Yes 11 0,60 0,550
10 Yes 11 0,65 0,541
15 Yes 16 0,40 0,492
15 Yes 16 0,45 0,502
15 Yes 16 0,50 0,506
15 Yes 16 0,55 0,507
15 Yes 16 0,60 0,501
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15 Yes 16 0,65 0,490

The only difference in obtaining Table 6.2 is the threshold values. Other than that, the
models are exactly the same. Generally, the highest success rate was achieved at a
threshold value of 0.55 in all cases. In line with the results obtained from the table here,
it can be stated that the ideal threshold value is 0.55 for the FCN model. When Table 6.2
Is examined, it is seen that success rates decrease as we move away from the ideal
threshold value, and success rates increase as we approach the ideal threshold value.
When the threshold value is selected as 0.55, the multi-label training multi-label output
results of the FCN model on 5, 10 and 15 arrhythmias can be seen in the Figures and
Tables below.

In multi-label training, multi-label output study, the standard confusion matrix cannot be
used because there may be more than one arrhythmia in an ECG recording. As explained

Section 2.10, the confusion matrix is calculated separately for each class.

Table 6.3 FCN Model, Classification Report, 5 Arrhythmia, Threshold=0,55

precision recall fl-score support
MlI 0,775 0,623 0,691 531
TAb 0,556 0,306 0,394 422
LAD 0,740 0,593 0,659 553
SB 0,902 0,914 0,908 452
SNR 0,931 0,954 0,943 1992
NO_ARR 0,724 0,759 0,741 456

NOT_TAb -

True label
True label

TAb

NOT_MI ] NOT_TAb TAb
Predicted label Predicted label

Figure 6.1 Confusion Matrix, FCN Model, 5 Arrhythmia, Arrhythmia Type: MI, TAb
Threshold=0,55
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True label
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NOT_LAD LAD NOT_SB SB
Predicted label Predicted label

Figure 6.2 Confusion Matrix, FCN Model, 5 Arrhythmia, Arrhythmia Type: LAD, SB
Threshold=0,55

NOT_SNR NOT_NO_ARR -

True label
True label

SNR NO_ARR

T
NOT_SNR SNR
Predicted label Predicted label

NOT_NO_ARR NO_ARR

Figure 6.3 Confusion Matrix, FCN Model, 5 Arrhythmia, Arrhythmia Type: SNR, NO_ARR
Threshold=0,55

Table 6.4 FCN Model, Classification Report, 10 Arrhythmia, Threshold=0,55

precision recall fl-score support

Mls 0,715 0,544 0,618 217
M1 0,770 0,513 0,616 528
LVH 0,727 0,400 0,516 240
AF 0,858 0,864 0,861 323
TAb 0,620 0,232 0,337 423
abQRS 0,796 0,319 0,455 342
LAD 0,734 0,473 0,575 548
SB 0,906 0,850 0,877 454
SNR 0,925 0,936 0,930 1995
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STach 0,824 0,855

0,839

235

NO_ARR 0,742 0,655

0,696

145

NOT_MIs

True label
True label

Mis

NOT_Mis Mis
Predicted label

NOT_MI Mi

Predicted label

Figure 6.4 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: Mls, Ml

Threshold=0,55

NOT_LVH

True label
True label

WVH

NOT_LVH
Predicted label

NOT_AF

Predicted label

Figure 6.5 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: LVH, AF

Threshold=0,55



NOT_TAb NOT_abQRS

True label
True label

TAb abQRS

NOT_TAb
Predicted label

TAb NOT_abQRS abQRs

Predicted label

Figure 6.6 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: TAb, abQRS
Threshold=0,55

True label
True label

NOT_LAD LAD

NOT_SB SB
Predicted label

Predicted label

Figure 6.7 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: LAD, SB
Threshold=0,55

NOT_SNR NOT_STach

True label
True label

SNR STach

NOT_SNR SNR NOT_STach STach
Predicted label Predicted label

Figure 6.8 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: SNR, STach
Threshold=0,55
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NO_ARR

NOT_NO_ARR NO_ARR
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Figure 6.9 Confusion Matrix, FCN Model, 10 Arrhythmia, Arrhythmia Type: NO_ARR,
Threshold=0,55

Table 6.5 FCN Model, Classification Report, 15 Arrhythmia, Threshold=0,55

precision recall fl-score support
Mis 0,766 0,566 0,651 226
Mi 0,815 0,542 0,651 528
LVH 0,711 0,432 0,537 250
VEB 0,571 0,209 0,306 115
AF 0,872 0,891 0,881 329
TAb 0,600 0,253 0,356 415
abQRS 0,711 0,373 0,489 343
LAD 0,721 0,576 0,640 549
SB 0,892 0,904 0,898 448
SNR 0,937 0,928 0,932 1991
STach 0,832 0,843 0,837 235
NSSTTA 0,630 0,192 0,294 151
STD 0,250 0,023 0,042 132
LANFB 0,757 0,561 0,644 155
LVHV 0,638 0,285 0,394 130
NO_ARR 0,684 0,650 0,667 123
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Figure 6.10 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: Mls, Ml
Threshold=0,55

NOT_LVH NOT_VEB

True label
True label

VH VEB

NOT_LVH LvH

NOT_VEB VEB
Predicted label Predicted label

Figure 6.11 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: LVH, VEB
Threshold=0,55

NOT_AF NOT TAb

True label
True label

AF TAb

NOT_AF AF NOT_TAb TAb
Predicted label Predicted label

Figure 6.12 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: AF, Tab
Threshold=0,55
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abQRS

NOT_abQRS abQRS

NOT_LAD LAD
Predicted label

Predicted label

Figure 6.13 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: abQRS, LAD
Threshold=0,55

NOT_SB NOT_SNR

True label
True label

SB SNR

NOT_SB SB NOT_SNR SNR
Predicted label Predicted label

Figure 6.14 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: SB, SNR
Threshold=0,55

NOT_STach NOT_NSSTTA

True label
True label

STach NSSTTA

NOT_STach STach
Predicted label

NOT_NSSTTA NSSTTA
Predicted label

Figure 6.15 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: STach, NSSTA
Threshold=0,55
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NOT_STD NOT_LANFB

True label
True label

LANFB

NOT_STD STD NOT_LANFB LANFB
Predicted label Predicted label

Figure 6.16 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: STD, LanFB
Threshold=0,55

NOT_LVHV NOT_NO_ARR

True label
True label

LVHV NO_ARR

NOT_LVHV WHYV NOT_NO_ARR NO_ARR
Predicted label Predicted label

Figure 6.17 Confusion Matrix, FCN Model, 15 Arrhythmia, Arrhythmia Type: LVHV,
NO_ARR Threshold=0,55

The same multi-label training and multi-label output studies conducted for FCN were also
performed for ResNet. The success rates obtained when 0.05, 0.10, 0.15, 0.20, 0.25, 0.30,
0.35 and 0.40 are given as threshold values for ResNet model, respectively, can be seen
in Table 6.6.

Table 6.6 Threshold Value Effect When Working With 5, 10, 15 Arrhythmias in the ResNet

Model
Number of Arrhythmias No Arrhythmia Total Number of Accuracy
Studied Class is Available Classes Studied Threshold Score
5 Yes 6 0,05 0,583
5 Yes 6 0,10 0,608
5 Yes 6 0,15 0,614
5 Yes 6 0,20 0,615
5 Yes 6 0,25 0,615
5 Yes 6 0,30 0,615
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5 Yes 6 0,35 0,618
5 Yes 6 0,40 0,617
10 Yes 11 0,05 0,533
10 Yes 11 0,10 0,545
10 Yes 11 0,15 0,541
10 Yes 11 0,20 0,539
10 Yes 11 0,25 0,536
10 Yes 11 0,30 0,531
10 Yes 11 0,35 0,528
10 Yes 11 0,40 0,527
15 Yes 16 0,05 0,48
15 Yes 16 0,10 0,482
15 Yes 16 0,15 0,479
15 Yes 16 0,20 0,473
15 Yes 16 0,25 0,471
15 Yes 16 0,30 0,468
15 Yes 16 0,35 0,465
15 Yes 16 0,40 0,461

In Table 6.6, the highest threshold value is shown as 0,40. Because, there was no change
in the success rate at threshold values from 0,40 to 0,95.

The reason why the success rate does not change between the threshold values of 0,40
and 0,95 is due to the sharpness of the model prediction scores. As a result of the model,
the prediction score of an arrhythmia belonging to an ECG record may be 0,95. The
prediction score of other arrhythmias may vary between 0,01 — 0,05. In this case, no
change in success rates can be seen when the threshold value changes between 0,40 and
0,95.

There is another reason why success rates change despite the increase in the threshold
value. The prediction scores produced by the ResNet model for ECG recordings are not
always sharp. Sometimes the prediction scores of arrhythmias from an ECG recording do
not exceed 0,40. In this case, when the threshold value is between 0,40 — 0,95, no
arrhythmia can exceed the threshold value. When any arrhythmia does not exceed the
threshold value, the arrhythmia with the highest predictive value becomes the output of
the model. Thus, whether the threshold value is 0,40 or 0,95, the same result is produced

and the success rate does not change.
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The only difference in obtaining Table 6.6 is the threshold values. Other than that, the
models are exactly the same.

While working on 10 and 15 arrhythmias with the ResNet model, the highest success rate
was obtained when the threshold value was 0,10. The highest success rate when working
with 5 arrhythmias was achieved when the threshold value was 0,35. These threshold
values were used in the classification report and confusion matrix studies of the ResNet
model. Multi-label training multi-label output results of the ResNet model on 5, 10 and

15 arrhythmias can be seen in the Figures and Tables below.

Table 6.7 ResNet Model, Classification Report, 5 Arrhythmia, Threshold=0,35

precision recall fl-score support
Mi 0,844 0,448 0,588 531
TAb 0,600 0,235 0,337 422
LAD 0,836 0,241 0,374 553
SB 0,972 0,907 0,938 452
SNR 0,951 0,891 0,920 1992
NO_ARR 0,762 0,816 0,788 456

NOT_MI NOT_TAb

True label
True label

Mi TAb

NOT_MI Mi NOT_TAb TAb
Predicted label Predicted label

Figure 6.18 Confusion Matrix, ResNet Model, 5 Arrhythmia, Arrhythmia Type: MI, TAb
Threshold=0,35
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NOT_LAD NOT SB

True label
True label

SB

NOT_LAD LAD NOT SB SB
Predicted label Predicted label

Figure 6.19 Confusion Matrix, ResNet Model, 5 Arrhythmia, Arrhythmia Type: LAD, SB

True label

Threshold=0,35

NOT_SNR NOT_NO_ARR

True label

SNR NO_ARR

T
NOT_SNR SNR NOT_NO_ARR NO_ARR
Predicted label Predicted label

Figure 6.20 Confusion Matrix, ResNet Model, 5 Arrhythmia, Arrhythmia Type: SNR,
NO_ARR Threshold=0,35

Table 6.8 ResNet Model, Classification Report, 10 Arrhythmia, Threshold=0,10

precision recall fl-score support
Mls 0,734 0,585 0,651 217
Ml 0,833 0,500 0,625 528
LVH 0,746 0,417 0,535 240
AF 0,802 0,941 0,866 323
TAb 0,527 0,277 0,363 423
abQRS 0,800 0,058 0,109 342
LAD 0,705 0,396 0,507 548
SB 0,900 0,927 0,913 454
SNR 0,936 0,938 0,937 1995
STach 0,865 0,928 0,895 235
NO_ARR 0,642 0,779 0,704 145
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NOT_Mis NOT_MI
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True label
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NOT_MIs Mis NOT_MI M
Predicted label Predicted label

Figure 6.21 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: Mls, Ml
Threshold=0,10

NOT_LVH NOT_AF
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NOT_LVH LvH

NOT_AF AF
Predicted label

Predicted label

Figure 6.22 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: LVH, AF
Threshold=0,10

NOT_TAb NOT_abQRS

True label
True label

TAb abQRs

NOT_TAb TAb NOT _abQRS abQRS
Predicted label Predicted label

Figure 6.23 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: TAb, abQRS
Threshold=0,10
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Figure 6.24 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: LAD, SB
Threshold=0,10

NOT_SNR NOT_STach

True label
True label

SNR STach
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Figure 6.25 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: SNR, STach
Threshold=0,10

NOT_NO_ARR -

True label

NO_ARR

NOT_NO_ARR NO_ARR
Predicted label

Figure 6.26 Confusion Matrix, ResNet Model, 10 Arrhythmia, Arrhythmia Type: NO_ARR,
Threshold=0,10
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Table 6.9 ResNet Model, Classification Report, 15 Arrhythmia, Threshold=0,10

precision recall fl-score support
Mis 0,778 0,527 0,628 226
Ml 0,808 0,479 0,602 528
LVH 0,793 0,384 0,518 250
VEB 0,584 0,391 0,469 115
AF 0,796 0,924 0,855 329
TAb 0,561 0,231 0,328 415
abQRS 0,759 0,120 0,207 343
LAD 0,754 0,373 0,499 549
SB 0,909 0,935 0,922 448
SNR 0,939 0,927 0,933 1991
STach 0,893 0,889 0,891 235
NSSTTA 0,483 0,192 0,275 151
STD 0,526 0,076 0,132 132
LANFB 0,800 0,232 0,360 155
LVHV 0,615 0,246 0,352 130
NO_ARR 0,630 0,789 0,700 123

NOT_MIs

True label
True label

Mis.

NOT_MiIs Mis NOT_MI Mi
Predicted label Predicted label

Figure 6.27 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: Mls, Ml
Threshold=0,10
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NOT_LVH NOT_VEB

True label
True label

WH VEB

NOT_LVH WVH

NOT_VEB
Predicted label

Predicted label

VEB

Figure 6.28 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: LVH, VEB
Threshold=0,10

NOT_AF NOT_TAb
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True label
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NOT_AF AF NOT_TAb TAb
Predicted label Predicted label

Figure 6.29 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: AF, Tab
Threshold=0,10

NOT_abQRS NOT_LAD

True label
True label

abQRS

NOT_abQRS abQRS

NOT_LAD
Predicted label

Predicted label

LAD

Figure 6.30 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: abQRS, LAD
Threshold=0,10
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Figure 6.31 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: SB, SNR
Threshold=0,10
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Predicted label Predicted label

Figure 6.32 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: STach,
NSSTTA Threshold=0,10

NOT_STD NOT_LANFB

True label
True label
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NOT_STD STD

NOT_LAnFB LANFB
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Predicted label

Figure 6.33 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: STD, LanFB
Threshold=0,10
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NOT_LVHV NOT_NO_ARR
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Figure 6.34 Confusion Matrix, ResNet Model, 15 Arrhythmia, Arrhythmia Type: LVHV,
NO_ARR Threshold=0,10

6.3 Weight Function

The weight function is of great importance in achieving these success rates of the models.
For comparison purposes, experiments were made with different weight functions in
multi label training and single label output. In the studies so far, the weight function
specified in Section 5.3, Eq. (4) was used. For testing purposes, the weight function in
this section Eq. 1 was used and the results in Table 6.6 were obtained.

ohell] = Number Of ECG 1
wetgntitl = 5= bincoun(y_arrl[i]) .

When looking at the relationship between weight functions, there is a square root
operation in the weight function used so far (Section 5.3, Eq. (4)). Having a square root
operation enables smoother data to be obtained. Multiplication by 4 is seen as a constant
in the denominator. However, looking at Section 6.3 Eq. (1), there is no square root
operation. There is 2 in the denominator, not 4. For this reason, this weight function is
expected to produce sharper values.

In Table 6.1, the study results can be seen when the FCN model is trained with the weight
function in Section 5.3, Eq. (4). If the same network is trained according to the weight
function in Section 6.3, Eq. (1) rather than the function in Section 5.3, Eq. (4), the results
in Table 6.6 are obtained. The success rates of two different weight functions can be seen
in Table 6.6.
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Table 6.10 The Effect of Two Different Weight Functions on FCN Model Success

No
No Square | Square Square No Square Square
Square
. ) Root Root Root Root Root
Weight Function ) ) Root ) ) )
Weight Weight ) Weight Weight Weight
. : Weight : . .
Function | Function ] Function Function Function
Function
Number of Arrhythmias
. 5 5 10 10 15 15
Studied
No Arrhythmia Class is
. Yes Yes Yes Yes Yes Yes
Available
Total Number of
) 6 6 11 11 16 16
Classes Studied
Number of ECG
Recordings Containing 4559 4559 1452 1452 1230 1230
No Arrhythmia
Number of ECG
Recordings Containing 17872 17872 16789 16789 14868 14868
1 Arrhythmia
Number of ECG
Recordings Containing 7383 7383 7931 7931 7972 7972
2 Arrhythmia
Number of ECG
Recordings Containing 2224 2224 3677 3677 4349 4349
3 Arrhythmia
Number of ECG
Recordings Containing 46 46 1812 1812 2374 2374
4 Arrhythmia
Number of ECG
Recordings Containing 0 0 348 348 1012 1012
5 Arrhythmia
Number of ECG
Recordings Containing 0 0 75 75 226 226
6 Arrhythmia
Number of ECG
Recordings Containing 0 0 0 0 50 50
7 Arrhythmia
Number of ECG
Recordings Containing 0 0 0 0 3 3
8 Arrhythmia
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Number of Total ECG 32084 32084 32084 32084 32084 32084

Total Number of
. o 27 27 238 238 813 813
Unique Combinations

Accuracy Score 0,864 0,878 0,888 0,899 0,89 0,90

The only difference between the models in Table 6.8 is the weight functions. The data
sets studied, arrhythmia numbers and everything are exactly the same. The weight
function in Section 5.3, Eq. (4) achieved higher success in all comparisons than the one
in Section 6.3, Eq. (1). The main reason for this is the square root operation in Section
5.3, Eg. (4). If an arrhythmia occurs frequently in the data set, it is given less weight,
whereas if it occurs less often, it is given more weight. What is important here is the
coefficient to be applied. With the square root expression, giving too high a weight is
prevented, the value is softened, and it is increased at very low weights. Because when
the square root operation is applied to numbers between 0-1, the number grows.

When the studies carried out in the thesis study are compared with the studies in the
literature, the thesis study stands out with some differences. The 'no arrhythmia’ class has
been defined to classify ECG recordings that do not contain any arrhythmia. This
approach is completely new in the literature. There are studies in the literature where the
threshold value method is used to classify ECG recordings that do not contain any
arrhythmia [47]. Accordingly, if any arrhythmia in an ECG record does not exceed the
threshold value, then the relevant ECG record is evaluated as 'no arrhythmia'. However,
it is not explained here how the threshold value is determined. In the thesis study, a
success rate of 80% to 90% was achieved with the single-label output approach. This is a
very high success rate compared to other studies in the literature. However, if there is
more than one arrhythmia in an ECG recording, only one of them can be detected. In this
case, the multi-label output approach should be used. In this approach, since it tries to
detect all arrhythmias in the ECG recording, the success rate decreases to 48%-62%. It is
seen that studies in the literature work on fixed data sets. As a result of this situation, the
models produced may be successful in detecting arrhythmias in the studied data set, but
may fail to detect arrhythmias in another data set. In the literature, there is a study in
which a success rate of 68% was achieved on the trained dataset, while a success rate of

31% was achieved on the foreign dataset [37].
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7. CONCLUSION

We performed an arrhythmia classification study on 5, 10, 15 arrhythmias on 32084 ECG
records. To prevent the trained models from producing results by relying on a single data
set, two different data sets were combined to create a single data set. The results obtained
in the studies were taken from the combined data set.

Both FCN and ResNet models were trained and the model successes were shown
comparatively. In cases where model successes are shown, the only difference is the
network structure, all other conditions are kept the same. In general, the FCN model
showed higher success than the ResNet model.

The effect of using different weight functions on model success has been shown. When
two different weight functions are compared, it is seen that the weight function containing
square roots (Section 5.3, Eq. (4)) achieves higher success due to its smoothing feature.
The 'no arrhythmia' class has been defined in order to classify ECG recordings that do not
contain any arrhythmia. The 'no arrhythmia' class was included in all classification
studies. Thanks to this approach, the models can also classify ECG recordings that do not
contain any arrhythmia as successful. Defining the 'no arrhythmia' class is a new
approach. Defining the 'no arrhythmia' class is an important issue that distinguishes the
thesis study from other studies in the literature.

Models were trained separately with both multi-label training, single-label output and
multi-label training, multi-label output approach. While success rates between 80% and
90% were achieved in the multi-label training and single-label output approach, success
rates of 46-62% were achieved in the multi-label training and multi-label output
approach. Threshold approach was used to produce multi-label output. While all other
conditions are the same, the effect of changing only the threshold value on the model
success is shown comparatively. In the FCN model, the ideal threshold value for all
scenarios is fixed and this value is 0.55. In the ResNet model, there are differences in the
ideal threshold value. The ideal threshold value is 0.35 when working with 5 arrhythmias,
and 0.10 when working with 10 and 15 arrhythmias.

There are arrhythmia classification studies in the literature with higher success rates than
the current thesis study. However, these success rates were generally obtained on a single
data set. There is a study in which the success rate decreased from 68% to 31% when the
same study was conducted on a different data set [37]. The results obtained in the thesis

study, unlike the results in the literature, were obtained by combining two different data
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sets. This approach is an important issue that distinguishes the thesis study from the
studies in the literature.
There are more than 100 types of arrhythmias. While some of these are quite common,
some are quite rare. Highly trained personnel are needed to examine the ECG recordings
and make the correct diagnosis of arrhythmia. This study may facilitate cardiologists in
classifying arrhythmias.
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