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ABSTRACT

ADVANCING SOFTWARE DEFECT PREDICTION THROUGH
ENSEMBLE XAI METHODS: INSIGHTS AND PERFORMANCE

EVALUATION

Bahar GEZİCİ GEÇER

PhD of Science, Computer Engineering
Supervisor: Doç. Dr. Ayça KOLUKISA TARHAN

May 2024, 194 pages

This doctoral thesis presents a comprehensive investigation into enhancing the

interpretability and transparency of Machine Learning (ML) models in the domain

of Software Defect Prediction (SDP) through Model-Agnostic eXplainable Artificial

Intelligence (XAI) methods. The primary objective is to elucidate the decision-making

processes of ML models, both at individual (local) and global levels, thus bridging the

gap between predictive power and comprehensibility demanded by stakeholders in the SDP

domain.

The methodological approach adopted involves an iterative and exploratory process, utilizing

XAI techniques such as ELI5, SHAP, and LIME, among others. These techniques are

systematically applied across multiple case studies, each focusing on specific aspects

of model interpretability and transparency in SDP. Through iterative refinement and

exploration, the research uncovers insights into the importance of features, contributions

to individual predictions, and overall model decisions. Furthermore, ensemble modeling

techniques are integrated to amalgamate feature importance scores obtained from diverse
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XAI methods, thereby optimizing predictive accuracy while simultaneously preserving

interpretability.

This research significantly contributes to the field of SDP by furnishing a thorough

understanding of ML model decision-making processes. It enhances model interpretability

and transparency, effectively addressing critical gaps in traditional feature selection and

outlier detection methodologies. Moreover, it offers valuable insights into ensemble

modeling approaches, elucidating their role in optimizing predictive accuracy while

maintaining interpretability. Validation of the developed methodologies is conducted through

rigorous empirical studies and comparative analyses, thus ensuring their effectiveness and

usability in real-world SDP scenarios.

Keywords: explainable AI, XAI, defect prediction, artificial intelligence, machine learning
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ÖZET

ENTEGRE XAI YÖNTEMLERİ İLE YAZILIM HATA TAHMİNİNİN
GELİŞTİRİLMESİ: ANALİZLER VE PERFORMANS

DEĞERLENDİRMESİ

Bahar GEZİCİ GEÇER

Doktora, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Ayça KOLUKISA TARHAN

Mayıs 2024, 194 sayfa

Bu doktora tezi, Yazılım Hatası Tahmini (SDP) alanındaki Makine Öğrenimi (ML)

modellerinin yorumlanabilirliğini ve şeffaflığını Modelden Bağımsız Açıklanabilir Yapay

Zeka (XAI) yöntemleri aracılığıyla geliştirmeye yönelik kapsamlı bir araştırma sunmaktadır.

Temel amaç, hem lokal (yerel) hem de küresel düzeyde makine öğrenmesi modellerinin karar

verme süreçlerini aydınlatmak ve böylece SDP alanındaki paydaşların talep ettiği tahmin

gücü ile anlaşılabilirlik arasındaki boşluğu doldurmaktır.

Benimsenen metodolojik yaklaşım, diğerlerinin yanı sıra ELI5, SHAP ve LIME gibi XAI

tekniklerini kullanan yinelemeli ve keşifsel bir süreci içermektedir. Bu teknikler, her biri

SDP’de model yorumlanabilirliği ve şeffaflığının belirli yönlerine odaklanan çok sayıda vaka

çalışmasında sistematik olarak uygulanmaktadır. Yinelemeli iyileştirme ve keşif yoluyla

araştırma, özelliklerin önemi, lokal tahminlere katkıları ve genel model kararlarına ilişkin

içgörüleri ortaya çıkarmaktadır. Ayrıca, çeşitli XAI yöntemlerinden elde edilen özellik önem

puanlarını birleştirmek için topluluk modelleme teknikleri entegre edilmiş, böylece tahmin

doğruluğu optimize edilirken aynı zamanda yorumlanabilirlik de korunmuştur.
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Bu araştırma, makine öğrenimi modeli karar verme süreçlerinin kapsamlı bir şekilde

anlaşılmasını sağlayarak SDP alanına önemli ölçüde katkıda bulunmaktadır. Geleneksel

özellik seçimi ve aykırı değer tespit metodolojilerindeki kritik boşlukları etkili bir

şekilde ele alarak modelin yorumlanabilirliğini ve şeffaflığını artırmaktadır. Ayrıca,

yorumlanabilirliği korurken tahmin doğruluğunu optimize etmedeki rollerini aydınlatarak,

topluluk modelleme yaklaşımları hakkında değerli bilgiler sunmaktadır. Geliştirilen

metodolojilerin doğrulanması, titiz ampirik çalışmalar ve karşılaştırmalı analizler yoluyla

gerçekleştirilmekte, böylece gerçek dünyadaki SDP senaryolarında etkinlikleri ve

kullanılabilirlikleri sağlanmaktadır.

Keywords: açıklanabilir yapay zeka, XAI, hata tahmini, yapay zeka, makine öğrenimi
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1. INTRODUCTION

Before a software system is made public or put into use, a method called ”software defect

prediction (SDP)” seeks to locate and rank any potential weak points. Enhancing software

quality, cutting expenses, and wisely allocating testing resources are the objectives. Defect

prediction encompasses a wide array of methodologies and metrics, ranging from traditional

statistical models [2, 3] to advanced machine learning algorithms [4]. Studies in software

defect prediction (SDP) cover various facets of the field, including data mining methods

[5], early defect prediction [6], and decision-making processes [7]. These research efforts,

documented across academic literature, provide valuable insights for both academics and

industry professionals. In software engineering, predicting defects plays a vital role in

increasing the quality of software systems, since finding and fixing those defects are one

of the most expensive activities within the software development life cycle [6]. For example,

before deploying a software product, it is very critical to predict whether there are remaining

defects in it. When a customer observes the defects after the software product is deployed,

the customer’s trust in that product will decrease.

There is an increasing demand for AI-based software systems in industry and this is mostly

because of the significant advances in machine learning (ML) models such as deep learning.

Since some ML models are “black-box”, it is very difficult to understand or interpret the

decision-making process or the key factors involved in the decision, or to get insights about

the behavior of these models [8]. Although the prediction performances of these models

are good, understanding the reasons behind the predictions is a very hard task. As a user

understands a model or a prediction, trust in them will increase; and, if a user trusts a

prediction or a model, s/he will be more motivated to use it. Therefore, getting insights

about the model or predictions will make them more transparent, provide information about

feature importance and human decision-making, and in turn, will build trust.

Explainability is one of the most studied quality attributes, and stakeholders adopting

Artificial Intelligence (AI), particularly Machine Learning (ML) software, are becoming
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more and more interested in it. Understanding the reasoning behind the predictions is crucial

since AI-based techniques have a black-box character; and, their application in SDP is not

an exception. Even, explaining ML models used for SDP is especially important due to the

abstract and changeable nature of software product and therefore, the need of traceability in

software development process. Interestingly, how AI explainability is addressed by design,

how XAI methodologies might be applied for different user groups, and what opportunities

can support the development of user-centered and explainable SDP have not yet been

studied. Since complex software systems require diverse perspectives for understanding and

different techniques capture different aspects of model behavior, a combination of techniques

enhances the overall interpretability.

In addition to the gap that exists in literature, we may exemplify several practical scenarios

to highlight the necessity of this investigation. For instance, consider a scenario where a

XAI method indicates that a specific code module’s complexity is a significant predictor

of defects. Developers can then prioritize a thorough review and testing of this module.

Simultaneously, project managers, armed with the knowledge that the model relies heavily on

this factor, can allocate resources more efficiently. End-users, in turn, can better understand

the potential areas of concern flagged by the model, fostering a collaborative and informed

approach to software defect prevention. In essence, the application of the XAI method

not only enhances the interpretability of SDP models but also empowers stakeholders

with actionable insights to make informed decisions throughout the software development

lifecycle. Another motivating scenario that vividly demonstrates the practical implication

of an accurate SDP facilitated by XAI is where a software development team is working

on a critical project with tight deadlines. Traditional ML models, while predicting software

defects, might lack transparency, leaving developers in the dark about the specific reasons

behind the predictions. By employing XAI methods in SDP, developers may not only

receive accurate predictions but also gain insights into the influential factors driving those

predictions. This transparency becomes particularly crucial when prioritizing bug fixes,

allowing developers to focus on the most critical areas of the codebase, ultimately leading to

more efficient and timely software development. Furthermore, consider the case of a project
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manager responsible for overseeing multiple software development projects simultaneously.

In this scenario, the ability to comprehend and trust the predictions of SDP models is

paramount. With the use of XAI techniques, project managers can make well-informed

decisions about resource allocation, project timelines, and risk management. The newfound

transparency in the predictive process enables project managers to navigate complex projects

with confidence and agility. These examples illustrate the practical relevance of this research

by emphasizing how the incorporation of XAI in SDP directly impacts the efficiency,

reliability, and overall success of software developments.

1.1. Research Problem

In recent years, the widespread adoption of ML techniques has revolutionized various

fields, including SDP. Defect prediction plays a pivotal role in ensuring the reliability and

quality of software systems by identifying potential defects early in the development process.

However, as ML models increasingly find applications in SDP, there arises a critical need for

understanding their decision-making processes, particularly concerning the interpretability

and transparency of these models.

The general problem addressed in this thesis revolves around the need to enhance the

interpretability and transparency of machine learning models applied to software defect

prediction. Specifically, it focuses on developing methodologies and frameworks that enable

stakeholders to understand the underlying logic of these models, interpret their predictions,

and trust their outcomes.

This problem encompasses various challenges, including:

• Understanding the importance of features in datasets used in SDP and their impact on

model predictions.

• Explaining the rationale behind individual predictions and model decisions to diverse

user groups (e.g., Data Scientist, Domain Expert, End User).
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• Facilitating the visualization and inspection of ML models to aid decision-making

processes.

• Improving the transparency of feature selection and outlier detection techniques in

SDP.

• Developing ensemble models that offer both local and global interpretability for

enhanced decision support.

By addressing these challenges, this doctoral thesis delves into the realm of Model-Agnostic

Explainability methods to illuminate the black box nature of ML models utilized in SDP.

The primary objective is to unravel the intricacies of both local (individual) and global

predictions, thus shedding light on the contributing factors behind model decisions. Through

a series of research questions (RQs) and empirical explorations, this thesis endeavors to

bridge the gap between the predictive power of ML models and the comprehensibility

demanded by stakeholders in the SDP domain.

1.2. Proposed Solution

To address the overarching problem of enhancing interpretability and performance in

machine learning for software defect prediction, this thesis proposes a multifaceted approach

encompassing the following key strategies through a series of research questions and

empirical explorations, guided by our research methodology adhering to an exploratory

strategy based on Design Science Research (DSR) principles [9]. This methodology

prioritizes iterative problem-solving cycles to devise inventive solutions for real-world issues.

1. Model-Agnostic Explainability Methods: Employing model-agnostic explainability

techniques such as SHAP, LIME, and ELI5 to elucidate the underlying rationale of ML

models used in SDP. These methods facilitate the identification of important features,

understanding their contributions to individual predictions, and comprehending the

overall decision-making process of the models.
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2. XAI-Enabled SDP Framework: Introducing an XAI-enabled framework tailored

specifically for SDP, integrating various ML explanations and evaluation measures.

This framework aims to provide a systematic approach for interpreting different types

of ML models, catering to diverse user types within the software development and

quality assurance domain.

3. Transparency-enhancing Techniques: Developing methodologies to enhance

transparency in feature selection and outlier detection processes employed in SDP.

By leveraging XAI methods, the strengths and limitations of these techniques can be

elucidated, fostering a deeper understanding of their impact on model interpretability

and overall performance.

4. Ensemble Modeling for Interpretability: Proposing ensemble modeling techniques

that prioritize both local and global interpretability in SDP. By aggregating insights

from multiple interpretable models, ensemble approaches aim to enhance the

comprehensibility of predictions while maintaining competitive accuracy levels.

5. Comparative Evaluation: Conducting a comprehensive comparative evaluation of

proposed solutions against existing literature and benchmark datasets. This evaluation

will provide insights into the effectiveness, reliability, and practical applicability of the

proposed methodologies in real-world SDP scenarios.

Through the integration of these strategies, this thesis endeavors to advance the

state-of-the-art in interpretable and transparent ML approaches for SDP, ultimately

empowering stakeholders with actionable insights, fostering trust in ML-based

decision-making processes, and facilitating the development of reliable software systems.

1.3. Scope of the Thesis

This thesis focuses on enhancing interpretability and transparency in ML models for SDP

through a multi-case exploratory study. The scope of this thesis encompasses the following

key aspects:
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1. Interpretability Enhancement

• Investigating methodologies and techniques to improve the interpretability of ML

models used in SDP.

• Exploring model-agnostic explainability methods, such as SHAP, LIME, and

ELI5, to understand feature importance, contributions to individual predictions,

and overall model decisions.

2. Transparency Enhancement

• Addressing challenges related to transparency in feature selection, outlier

detection, and model decision-making processes in SDP.

• Developing and evaluating XAI-enabled SDP frameworks to enhance algorithm

transparency, model visualization, and user trust in SDP systems.

3. Multi-Case Exploratory Study

• Conducting a series of case studies on diverse SDP datasets (e.g., KC2,

PC1, CM1) to explore different facets of interpretability and transparency

enhancement.

• Investigating local and global prediction analysis, model interpretability, feature

selection, and ensemble modeling techniques across multiple case studies.

4. Comparative Analysis and Validation

• Performing comparative analyses to evaluate the performance, usability, and

effectiveness of the proposed methodologies against existing approaches and

benchmarks.

• Validating the developed solutions through empirical studies on different SDP

datasets.

By addressing these key aspects within the defined scope, this thesis aims to contribute

to the advancement of interpretable and transparent ML approaches for SDP, ultimately
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enhancing decision-making processes and fostering trust in ML-based software quality

assurance practices.

1.4. Contributions

This doctoral thesis contributes to the field of SDP by:

• Providing a comprehensive understanding of ML model decision-making processes

through XAI methods.

• Enhancing model interpretability and transparency, thereby facilitating the deployment

of ML models in SDP applications by providing a XAI-enabled framework that

explores five different ML methods (RF, GB, NB, MLP, and NN) with well-known

XAI methods (SHAP, LIME, ELI5, Anchor, Protodash) to give several user types (i.e.

Data Scientist, Domain Expert, End User) the capacity to methodically explain local

and global ML-based SDP results.

• Addressing critical gaps in traditional feature selection and outlier detection methods

by leveraging XAI techniques.

• Offering insights into ensemble modeling approaches for optimizing predictive

accuracy while maintaining interpretability.

Through these contributions, this research aims to empower SDP stakeholders with the

knowledge and tools necessary to navigate the complexities of ML models effectively,

ultimately improving the reliability and quality of software systems.

1.5. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions and the scope of the thesis.
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• Chapter 2 provides bacjground information about SDP, ML models and XAI methods

used in this study.

• Chapter3 provides related academic studies in the context of explainability.

• Chapter 4 gives a detail about the XAI-Enabled SDP framework adopted in this thesis.

• Chapter 5 introduces research methodology.

• Chapter 6 outlines the experimental studies conducted for software defect prediction

utilizing XAI methods.

• Chapter 7 gives the results for Case Study 1.

• Chapter 8 gives the results for Case Study 2.

• Chapter 9 gives the results for Case Study 3.

• Chapter 10 gives the results for Case Study 4.

• Chapter 11 discusses our findings, emphasizing the efficacy of different XAI methods.

• Chapter 12 addresses validity threads.

• Chapter 13 concludes with implications and future work in defect prediction modeling.
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2. BACKGROUND

2.1. Software Defect Prediction (SDP)

The prediction of software defects uses historical data from earlier software initiatives to

create predictive models. To forecast the likelihood of defects in new or existing code,

these models are trained using attributes or metrics collected from code and other software

artifacts. Code complexity, code churn, code size, and developer experience are frequently

utilized characteristics in software fault prediction. To create these models, statistical and

machine learning methods are frequently used. Below, we summarize some attempts in the

academic literature in the context of SDP. Since there are many scientific studies in this

field from the past to the present and since the main focus of this study is not SDP but

the explainability of the models, we summarize five SDP studies with the highest average

number of citations.

Basili et al. [10] authored a paper, which is a landmark in the field, in 1996. The

study addressed the limitations of code metrics as inputs for software defect prediction.

It highlighted the requirement for a clearly defined measuring methodology and the fact

that not all measures are equally valuable for predicting software defects. In order to assist

developers in selecting the best tools for spotting potential defects, Juang et al. [11] compared

and contrasted many static analysis techniques for bug detection. Machine learning methods

were investigated by Menzies et al. [3] for predicting software defects. The authors showed

how these methods could boost prediction accuracy and give information on the variables

that affected defects most predictably. Moonen and Deursen [12] examined the relationship

between software updates and defect prediction. The study highlighted how past change

information could be a useful indicator of potential faults in the future. A study by Bavota

et al. [13] covered a wider range of machine learning research in software engineering,

including defect prediction. It offered a thorough summary of current research in the area.

These are few and well-recognized examples of significant publications in SDP. With

improvements in ML, data mining, and software analytics, the field is still evolving, making
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it essential for enhancing software quality and development procedures. To improve defect

prediction accuracy and utility, researchers are always creating new strategies and improving

already-existing ones.

2.2. Machine Learning Models

There are numerous ML models, each developed for a particular purpose or type of difficulty.

In this study, we examine the ML models by categorizing them under three headings. The

categorization of ML models into tree-based, neural network-based, and probabilistic-based

approaches is not universally standardized across all studies or resources. However, these

categorizations are common in various ML textbooks [14], [15], [16] and academic papers

[17], [18], [19],[20], [21].

1. Tree-based ML model: is a class of algorithms that use decision trees as their

fundamental building blocks. These models utilize tree structures to represent

and make predictions based on the relationships between input features and target

variables. Decision Trees, Random Forest, Gradient Boosting Machines (GBM),

XGBoost are some commonly used tree-based models. Tree-based models have

several advantages, including the ability to handle both numerical and categorical

features, interpretability (especially with shallow decision trees), and capturing

non-linear relationships and interactions between variables. They are robust to outliers

and can handle missing values. However, they may be prone to overfitting, and the

interpretability may decrease with deeper and more complex trees. These tree-based

models find applications in various domains, including classification, regression, and

feature selection. They are widely used for tasks such as risk analysis, fraud detection,

customer segmentation, and recommendation systems, among others. In this study,

we used GBM and RF that mix various decision trees to increase the classification’s

robustness and accuracy that build an ensemble of decision trees in a stage-wise

manner [22].
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2. Neural network-based ML model: A sort of technique called neural network-based

ML models uses the error, or the difference between expected and actual values, to

gauge how effectively the model is working [23], [24]. These models are frequently

employed for tasks like regression analysis and classification. To perform better, all

of these models rely on reducing the difference between expected and actual values.

In this study, we used the Multilayer Perceptron (MLP) that can be applied to a

variety of tasks, such as classification, regression analysis, and image recognition.

Neural network-based ML models are particularly useful for complex problems where

traditional rule-based systems may be inadequate.

3. Probabilistic ML model: ML models that are built on probabilistic notions and

principles are known as probabilistic ML models [25], [26]. These models quantify

the uncertainty and variability associated with the data by incorporating probability

distributions and statistical methods into the predictions they make. ML models with a

probabilistic basis can be used for many different classification issues. Instead of just

labeling an input, these models often predict the likelihood that it belongs to a specific

class. When there is doubt in the data and the decision is not definite, this can be

quite helpful. Naive Bayes (NB), Logistic Regression (LR), Random Forests (RF) are

some examples for this type of ML classification problems. In this study, we used NB

classifier that is based on Bayes’ theorem and assumes that features are conditionally

independent given the class label.

2.3. Explainability and XAI methods

The demand to understand the systems we use is quite natural. Since AI-based software

systems need to become more opaque due to their inherent complexity, sometimes people

such as domain experts, system engineers, and customers struggle to understand particular

parts of them. [27], [28]. Due to the difficulties involved in understanding AI-based

software systems, there is an increasing interest about the explainability of these systems.

Explanations offer numerous benefits, including enhancing comprehension of the system,

justifying decisions, fostering trust, and improving usability. Conversely, inadequate
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explanations can breed distrust [29], diminish user acceptance and satisfaction with the

system [30], and hinder the adoption of new technologies. Consequently, ensuring

explainability is vital for enhancing the quality of AI-based software systems and should

be integrated into their development process.

According to Miller et al. [31], a commonly used definition of explainability is the extent to

which an individual can understand the arguments for a decision or behavior. By (1) making

every decision transparent and (2) directly describing the thinking behind each result, AI/ML

models can be made more accessible [28]. As a consequence, there have been attempts to

look into how to provide reasons for the decisions made by complex, black-box models. The

public and academic communities are very interested in explainability, which is the ability

to make AI algorithms understandable to people, as a result of the rapidly expanding use

of AI and ML technologies, particularly those using opaque deep neural networks. This is

a problem since lay users frequently request AI explanations. These users may not have a

strong comprehension of AI technically, but they do have preconceived notions about what

makes good explanations for judgments made in a similar area. As an illustration, among the

most common methods for elucidating the prediction of an ML classifier, as numerous XAI

algorithms aim to achieve, is displaying the features with the largest weights that contribute

to the model prediction [32]. A model that predicts a patient has the flu, for example, may

use the symptoms of sneezing and headache as supporting data [33]. It is debatable, however,

if such an explanation considerably improves a medical decision-support tool or satisfies a

doctor’s requirement to comprehend the AI. To bridge the gap between user requirements

and XAI algorithms for efficient transparency, user-centered methods and interdisciplinary

cooperation to explainability have been urged by the HCI (Human Computer Interaction)

field. This new area of study typically expands on frameworks for human explanations or

carries out empirical research on how explanation elements affect human cooperation with

AI.

Decision trees like those in white-box AI/ML models were commonly employed in earlier

studies. We may exploit the transparency of such white-box AI/ML models to determine

each feature’s relative impact on the learned outcomes by directly examining the model
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components. As opposed to sophisticated black-box AI/ML models, white-box AI/ML

models usually produce generic explanations and are frequently less accurate. In terms of

transparency and interpretability of the decision-making process, black-box and white-box

AI are two distinct approaches to creating and developing artificial intelligence systems.

A sort of machine learning algorithm known as ”black-box AI” bases its decision-making

process on complicated, challenging-to-understand algorithms. The system’s decisions

do not have a clear definition; instead, they develop through interactions between the

data and the algorithm. Concerns regarding the possibility of bias and prejudice in the

decision-making process have been raised by the lack of transparency and interpretability

of the decision-making process in black-box AI systems. Contrarily, white-box AI describes

a class of AI systems where the decision-making process is more open and understandable.

With white-box AI, the system’s decision-making is based on clearly stated rules or logic

that are accessible to people for review and comprehension. This strategy offers greater

interpretability and transparency, which can be useful for finding any systemic biases or

inaccuracies. white-box AI, also known as explainable AI (XAI), enables consumers and

developers to comprehend how the system generates a specific conclusion or prediction.

This can increase confidence in the system and guarantee that it is coming to just and moral

conclusions.

An explanation of how an answer was obtained is essential for guaranteeing confidence

and transparency in many applications. One such application is in medicine, where the

doctors must be absolutely certain of their conclusions. For instance, they want to know

how AI assessed a CT scan image to determine whether a person has an illness. AI-based

systems aren’t entirely faultless. Understanding how a result was reached can, therefore,

not only promote trustworthiness but also help prevent potentially fatal mistakes. Answers

to additional ”wh*” questions (such as ”why,” ”when,” ”where,” etc.) may be necessary

in some other applications (such as law and order). These ”wh*” inquiries are beyond the

capabilities of conventional AI.

This necessity for explainability has given rise to Explainable AI (XAI), a new field of AI

study. Figure 2.1 demonstrates how XAI can expand the capabilities of AI by addressing the
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”wh” issues that were absent from conventional AI. Essential applications like health care,

defense, law enforcement, etc. have shown a lot of interest in the XAI since in these fields,

providing an explanation for how an answer was arrived at (i.e., responses to ”wh” queries)

is just as crucial as providing the actual answer. XAI research has thus become a top focus

in both academia and industry. Even if several studies have already been put forth, more and

more work is still needed to fully utilize XAI.

Dataset
Black-box Model Model

Prediction
Explainable AI methods

Local Global

                  User

       Decision or Recommendation

Figure 2.1 The process for both local and global explainability

Explainability methods seek to reveal the steps used by a model to arrive at a specific

prediction, enabling people to comprehend and, if necessary, intervene or correct

the decision-making process. Feature importance analysis, saliency maps, decision

trees, and counterfactual justifications are a few common explainability methodologies.

Recently, model-independent techniques have been used to explain the predictions of these

sophisticated black-box AI/ML models at the instance and global levels (e.g., SHAP [34],

LIME [33], etc.). Below, we list the XAI methods used in this study as described in Table

2.1. In the following paragraphs, we also overview these XAI methods.
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Table 2.1 XAI methods used in this study

XAI Method
Scope

Intuition behind
Global Local

SHAP ✓ ✓ explain the contribution of each feature in a prediction.

LIME ✓

provide a local explanation for a specific prediction by

fitting a simple model that approximates the behavior of

the complex machine learning model in the vicinity of

the prediction.

ANCHOR ✓
generate a set of rules that approximate the decision-

making process of the machine learning model.

ELI5 ✓ ✓
provide a simple and easy-to-understand explanation

of how the machine learning model is making its predictions.

PROTODASH ✓
find the most representative and diverse set of prototypes

that capture the essence of the entire dataset.

PDP ✓ ✓
understand the relationship between a target variable and

a predictor variable while holding all other variables constant.

SHAP (SHapley Additive exPlanations.) A machine learning model’s predictions are

deciphered using the SHAP method, which is an explainability method [34]. It offers a

framework for determining the significance of each feature for each prediction, enabling

us to gauge the relative contributions of various features to the model’s output. Any kind

of ML model can be used with the SHAP because it is model-agnostic. It enables for the

identification of key features in a model and offers an unifying framework for analyzing

complex models, like deep learning models. Moreover, feature significance plots that depict

the SHAP values can be used to help non-technical stakeholders understand the model’s

output. Overall, the SHAP method, which is well-known in the explainable AI community,

provides a strong and adaptable approach for describing ML models. It offers a clear and

understandable approach to comprehend how a model generates its predictions, which makes

it simpler to trust and utilize in practical applications.

LIME (Local Interpretable Model-agnostic Explanations). In 2016, Ribeiro, Singh, and
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Guestrin proposed the suggestion of this model-agnostic method [33]. An explainability

method called LIME is used to decipher the predictions provided by an ML model. By

building a local, interpretable model that roughly represents the behavior of the original

model close to the prediction, it gives an explanation for a specific prediction. The LIME

method can be combined with other explainability methods to acquire a more thorough

knowledge of a model’s behavior. Overall, it is a good method for describing the behavior of

ML models.

ELI5 (Explain Like I’m Five) is an open-source Python library used for explaining ML

models [35]. By emphasizing the key elements that contribute to a certain prediction, it offers

a straightforward and natural approach to interpret a model’s behavior. Model-agnostic, or

adaptable to any kind of ML model, is how ELI5 is defined. In order to decide which features

are most crucial for a certain prediction, the model’s learning weights and input data features

are examined. Moreover, ELI5 offers visualizations that can aid users in understanding the

behavior of the model, like feature significance plots and decision tree visualizations.

Partial Dependence Plot (PDP) is an open-source Python library for model interpretation

and explainability [36]. A partial dependence plot (PDP) is a useful tool for visualizing the

relationship between a target variable and a set of predictor variables in a machine learning

model.

Anchor is an explainability method that aims to provide interpretable and understandable

explanations for the predictions made by machine learning models. It was introduced by

Ribeiro et al. in 2018 as a way to generate rule-based explanations for individual instances

[37]. The key idea behind Anchor is to identify a compact rule or condition that holds true

for a specific instance and correlates with its predicted outcome. This rule is referred to as

an ”anchor.” An anchor represents a simplified explanation that captures the most important

factors leading to a particular prediction.

Protodash is an explainability technique used to interpret the behavior of ML models [38].

The prototype hypothesis, on which it is founded, contends that individuals classify objects

according to prototypes, or representative examples, of each category. The Protodash method
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finds a group of prototypes that most accurately reflect a specific class of data points.

The behavior of an ML model is then explained using these prototypes by emphasizing

the characteristics that are unique to each prototype. The Protodash method employs

the prototypes after they have been found to describe the behavior of a ML model by

emphasizing the attributes that are most crucial for each prototype. As it concentrates on

representative samples rather than the full dataset, this strategy offers a more understandable

and comprehensible explanation of the model’s behavior. All things considered, the

Protodash method is a potent tool for deciphering ML models, especially when the data

is high-dimensional and challenging to display. By concentrating on typical cases, it offers

a more understandable and interpretable description of the model’s behavior, which can aid

users in better comprehending the model’s behavior and identifying areas for improvement.

The goal of explainable AI is to improve processes and make sense of the outcomes of

ML and AI approaches. It strives the comprehensible, interpretable, and transparently

the black-box character of the advanced predictive algorithms. To put it another way, we

require XAI to support the predictions made by models, account for their shortcomings and

misconceptions, enhance the models, and find new information, theories, and insights [39].

XAI methods can be categorized according to their scope (local vs. global). The scope

of an interpretation reveals its localisation or globality. Local interpretation is centered on

comprehending a single sample prediction, whereas global techniques aim to describe the

behavior of the model as a whole [40]. Achieving global interpretability is frequently a

challenge in practice due to the computational load of evaluating huge datasets with a rich

range of factors, even if it is essential to recognize the overall factor importance, which

produces ”population-level” decisions [39]. In order to grasp the model globally, several

interesting local techniques have recently been developed that combine local interpretations

in various contexts [40], [33], [41], [35]. They include SHAP, LIME, and ELI5.
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3. RELATED WORK

The ”related work” section of this doctoral thesis is divided into two subsections to

provide a focused examination of distinct yet interrelated aspects of the research domain.

This structured division allows for a comprehensive exploration of both general principles

applicable to ML models and domain-specific considerations relevant to SDP, facilitating a

deeper understanding of the research landscape.

3.1. Explaining ML models

This subsection delves into foundational studies and methodologies pertaining to the

interpretability and transparency of machine learning models. This subsection encompasses

discussions on various explainability techniques, including SHAP, LIME, and ELI5, aimed

at elucidating the decision-making processes of ML models.

In the literature, there are some attempts to explain AI-based software, more specifically ML

and deep learning models. Misheva et al. implemented SHAP and LIME methods over an

ML-based model in the credit risk management domain [42]. Knapivc et al. analyzed the

Explainable Artificial Intelligence (XAI) methods of SHAP and LIME for decision support

in medical domain [43]. Another study that covers the explainability methods belongs to

Islam et al. [44]. The authors defined explainability and interpretability from different

perspectives (e.g., psychology and social science), and focused on the feature importance

for explaining the ML model. Mane et al. conducted a study over a deep neural network

model in cybersecurity domain [45], where they used different explanation methods such as

SHAP, LIME, Contrastive Explanations Method (CEM), ProtoDash, and Boolean Decision

Rules. Another study belongs to Bugaj et al. [46], which investigates the explainability of

LightGBM modelling over a Home Credit dataset. In this study, the authors used SHAP

method to provide a clear understanding for the local prediction, and proposed to improve

the prediction results by considering the SHAP values.
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Palacio et al. [47] establish a new conceptual framework to integrate research and techniques

created in the discipline of explainable AI in order to tackle the increasing heterogeneity and

lack of consensus on what defines an explainable or interpretable model (XAI). Two key

definitions, ”explanation” and ”interpretation,” serve as the foundation for this framework.

The authors start by pointing out two crucial requirements for such a framework: 1-

Commensurable: commonly used measures must exist in order to accurately examine two

distinct methods, 2- Universal: the context must be defined by a general process. The

authors provide a real-world example where their framework can be used to compare several

XAI techniques which are LIME, SHAP and MDNet, illuminating the degree to which they

individually address various explainability pipeline aspects.

Ehsan et al. [48] focus on the issue of mapping the sociotechnical gap between societal needs

and technical affordances in XAI systems. They empirically develop a framework to make it

easier to map the sociotechnical gap in XAI using two case studies from two distinct fields

(sales and mental health). The technological and social wings in this structure each had three

construction pieces. The social wing comprises elements of trust, actionability, and values,

while the technical wing includes data, model, and explanations. The authors offer a set of

starter questions for each of these building pieces to help close the sociotechnical gap in XAI

systems.

Hu et al. [49] propose the DARPA-sponsored Explainable AI Toolkit (XAITK), which relies

on the achievements of the four-year DARPA XAI initiative. The toolkit has XAI-specific

functionalities and provides a standard, searchable structure that offers technical and

scientific direction for comprehending and utilizing AI technologies.

In order to increase transparency at each level of the ML process, Mane and Rao devise an

explainable AI framework and deploy deep neural networks for network intrusion detection

[45]. The authors apply SHAP, LIME, Contrastive Explanations Method (CEM), ProtoDash

and Boolean Decision Rules via Column Generation (BRCG) methods to o NSL-KDD

dataset to generate explanations. They evaluate explanations by considering user groups as

Network analyst, data scientist, and end-user. As a result, the framework describes offered
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explanations at each stage of the machine learning pipeline that are appropriate for various

users in network intrusion detection systems.

Sanneman and Shah provide a three-level framework (perception, comprehension, and

projection) to construct and assess explanations for the behavior of AI systems [50]. The

authors suggest that XAI levels are based on what informational requirements human users

have.

Wali and Khan [51] offer an intrusion detection system (IDS) capable of detecting all sorts

of harmful content in network traffic using the global explanations created by the SHAP

method. This IDS examines model justifications created during the creation and review phase

for increasing user confidence and preserving operational integrity to provide the transparent

decision-making strategy.

Heimerl et al. release NOVA, a cutting-edge annotation tool for emotional behavior analysis

that employs an interactive approach that includes the ”human in the loop” [52]. NOVA uses

cutting-edge eXplainable AI (XAI) algorithms to give users visual explanations in addition to

a confidence value for automatically produced observations. By performing a user research

with 53 participants, the authors look into how such approaches can help non-experts in

terms of trust, as well as developing accurate mental models about the system. The findings

show that, XAI visualisations assist users in developing more accurate mental models of the

ML system. However, the authors argue that explanations in the field of AI should pay more

attention to user needs in addition to the categorization problem and the model they seek to

describe.

Kapcia et al. introduce ExMed, a framework that lets domain experts use XAI data analytics

without explicitly needing programming knowledge [53]. The two real-world medical

case studies—the first analyzing the effectiveness of the COVID19 control measure and

the second calculating lung cancer patient life expectancy using the synthetic Simulacrum

health dataset—illustrate its range of applications. Using XAI techniques, it may combine

the adaptability of medical sub-domain transferability with an essence of trust through

explainability.
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Amini et al. examine all types of crash characteristics to identify the risk variables that lead

to collisions with serious injuries [54]. To choose the machine learning algorithm with the

highest prediction performance as the basis model, their approach first looks at a variety of

machine learning models. Then, it applies two well-known state-of-the-art XAI approaches

(namely, leave-one-covariate-out and TreeExplainer) from the literature. Lastly, their method

establishes a unified ranking list of the most crucial factors causing serious auto accident

injuries by using an information fusion strategy.

Rohlfing et al. provide a theoretical foundation that enabled them to investigate explainability

as a social and interactive process [55]. Two processes that affect the course of contact on

a microlevel are proposed by the authors to achieve the specific purpose of an explanation:

Monitoring and scaffolding are first. Both are well-known from studies on interaction and

development, with monitoring at the heart of a good interaction and scaffolding at the center

of social learning.

Jin et al. work together to develop the end-user-centered XAI framework (EUCA) by fusing

the knowledge of AI and HCI [56]. The authors begin by identifying twelve end-user-friendly

explaining formats, such as feature-, example-, and rule-based explanations, that did not

require expert understanding of the topic. To put EUCA into practice, XAI designers can

make prototyping cards again for twelve explanatory forms using the available layouts and

examples.

Houda et al. build an entirely novel XAI-based framework to provide explanations about

any crucial deep learning-based decisions for IoT-related intrusion detection systems (IDSs)

[57]. To find IoT-related intrusions, their approach use a novel IDS for IoT networks

that they also designed by utilizing deep neural networks. On base of their DNN-based

model, the system applies three primary XAI methods: RuleFit, Local Interpretable

Model-Agnostic Explanations (LIME), and Shapley Additive Explanations (SHAP). To

improve the understanding of DL-based decisions, their approach can offer either local and

global explanations.
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El-khawaga et al. propose a framework that enables comparing the explanations produced by

a chosen number of XAI approaches that are now on the market in the context of Predictive

Process Monitoring (PPM) [58]. Their study compare the XAI techniques at various degrees

of granularity (global and local XAI).

Naz et al. propose an explainable AI-based framework to solve the issue of classification

result explainability in the healthcare arena using medical picture CXRs [59]. This study

provides a framework for explainability of lung disorders and first categorizes the pulmonary

condition, and then uses the interpretable LIME model to further explain the categorization

findings.

In Table 3.1, we categorize the related studies in the context of AI-based software by

considering different levels of explainability.

3.2. Explaining software defect prediction models

In the recent years, particularly from 2020 onwards, there has been a growing effort to

investigate the explainability and comprehensibility of defect prediction models.

Mohammadkhani et al. [60] performed a systematic literature review on the 24 most relevant

published studies in eXplainable Artificial Intelligence for Software Engineering (XAI4SE),

selected from a pool of 869 primary studies identified through keyword search. The study

highlights the significance of defect prediction in software engineering, comprising 68%

of the identified studies, emphasizing its prevalence in software maintenance. It notes a

predominant application of XAI methods to classic machine learning models over more

intricate ones. However, it underscores a notable absence of standard evaluation metrics

for XAI methods in the literature, leading to confusion among researchers and a deficiency

of benchmarks for comparisons.

Esteves and colleagues suggested examining the model constructed with the XGBoost

algorithm across various projects within the Jureczko datasets [61]. Their emphasis was on

determining feature significance through a model sampling technique, aiming to assess how
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the number of features affects the performance of defect prediction models. They employed

the SHAP method to comprehend the defect model, finding that the significance of feature
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numbers could differ based on the project.

Shin et al. [62] investigated the reliability of two explainability methods, which are LIME

and Breakdown, under different defect prediction models. Since they observed inconsistent

results from these two model-agnostic techniques, they concluded that these methods are

unrealiable for explaining the defect prediction models.

Santos and Figueiredo [63] conducted an exploratory study over five different Java projects

by using XGBoost algortihm and, feature importance and SHAP methods. According to

their results, they concluded that although it is difficult to generate a unique solution for

defect prediction, it is possible to identify defects with different features’ combination.

Jiarpakdee et al. [64] conducted an empirical study that focuses on local and global

explainability of datasets consisting of 32 releases that span 9 open-source software

systems. They used LIME and Breakdown methods, and concluded that there is a need

for explainability of software defect prediction, and these methods are useful for both global

and instance level.

Mori and Uchira [65] investigated the trade-off between model accuracy and interpretability

for software defect prediction. They proposed a new ”superposed naive Bayes (SNB)”

classification model over 13 real world projects, and compared the accuracy and

interpretability results with different classification algortihms such as ensemble learners,

regression models, decision trees, support vector machines, Bayesian learners, neural

networks, and rule-based learners. According to their results, their proposed SNB method

gave an optimal accuracy and interpretability result by comparing to the other algorithms.

Al-Smadi et al. [66] introduce a novel framework employing eleven machine learning

classifiers across twelve datasets for software defect prediction. To address feature selection,

four nature-inspired search algorithms—particle swarm optimization, genetic algorithm,

harmony algorithm, and ant colony optimization—are utilized. The synthetic minority

oversampling technique (SMOTE) is adopted to tackle data imbalance issues. Moreover,

the Shapley additive explanation model is employed to highlight the most influential
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features. Results indicate that gradient boosting, stochastic gradient boosting, decision

trees, and categorical boosting exhibit superior performance, achieving over 90% accuracy

and ROC-AUC. Additionally, the ant colony optimization technique surpasses other feature

extraction methods in this study.

Begum et al. [67] focus on the preprocessing and experimentation with machine learning

models for software fault diagnosis using four real datasets provided by NASA, each

containing twenty-one features. The preprocessing involved employing the Synthetic

Minority Oversampling Technique and Label Encoding techniques to handle data imbalance

and categorical variables, respectively. The study experimented with thirteen machine

learning models for software fault diagnosis, including Random Forest Regression, Linear

Regression, Naı̈ve Bayes, Decision Tree Classifier, Logistic Regression, KNeighbors

Classifier, AdaBoost, Gradient Boosting Classifier, Gradient Boosting Regression, XGB

Regressor, XGBoost Classifier, Extra Trees Classifier, and Support Vectors Machine. After

evaluation, the XGBR model demonstrated superior performance based on metrics like

accuracy, mean square error, and R2 score. Moreover, the study employed XAI techniques

such as LIME and SHAP to identify and interpret software fault-related features, providing

insights into model predictions and feature importance.//

As seen in the previous sub-sections, there are studies that focus on the explainability

of ML models in different domains as well as in SDP domain. However, there is no

study that investigates the explainability of ML models for software defect prediction,

which is very important to assure product quality in software engineering, by using several

post-hoc model-agnostic methods (i.e., ELI5, SHAP, and LIME) over different NASA defect

prediction datasets (i.e., KC2, PC1, CM1). The datasets and methods used in this study

have not been investigated together in the literature. Therefore, in this study, we focus

on understanding the RF, GB, NB, and MLP classifiers by using several post-hoc and

model-agnostic methods over different well-known SDP datasets.

Our study represents a pioneering endeavor within the realm of Explainable AI, particularly

focusing on SDP. Unlike previous research, which often superficially examines user
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types, goals, and AI explainability, our work stands out by introducing a groundbreaking

framework tailored specifically to the intricate nuances of SDP. As illustrated in Table

3.1, we systematically categorize related studies based on various levels of explainability,

highlighting our study as the first to comprehensively address the distinct challenges within

SDP.

What sets us apart is our proactive approach to not only synthesizing insights from existing

perspectives but also integrating them into a cohesive framework. This framework not only

identifies critical gaps within the SDP domain but also provides a structured roadmap to

effectively bridge these gaps through the incorporation of diverse explanation types and

evaluation measures. By adopting such a comprehensive strategy, our study significantly

advances the practical implementation of interpretable AI in SDP, thereby enriching the

broader landscape of AI-based software research.

Furthermore, we contribute to the field by developing ensemble models for both local and

global interpretability in SDP. Leveraging techniques such as SHAP, ELI5, and LIME, we

rank feature importance scores globally and locally, thus creating interpretable ensemble XAI

models. These models not only enhance the interpretability of SDP outcomes but also offer

insights into the underlying mechanisms driving the predictions, thereby improving trust and

transparency.

In addressing a pervasive challenge within feature importance analysis, we shed light on

the often-overlooked impact of explainability methods. Unlike conventional approaches

that may introduce opacity to model predictions, our methodology ensures clarity and

transparency, enhancing the overall understanding of SDP outcomes.

Moreover, we challenge the conventional wisdom surrounding feature importance analysis

in SDP performance studies. Unlike previous works that lack a transparent rationale for data

point removal, our methodology ensures replicability by providing a clear basis for feature

selection. This approach enhances the validity and robustness of our findings, setting a new

standard for future research in the field.
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In summary, our study not only pushes the boundaries of Explainable AI within the

context of SDP but also provides practical tools and insights to enhance the transparency,

interpretability, and reliability of AI-based SDP systems.
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4. METHODOLOGY

Our research methodology follows an exploratory approach grounded in Design Science

Research (DSR) principles [9], which emphasizes iterative problem-solving cycles to

develop innovative solutions for practical problems. We sequentially performed the

following tasks across four case studies, each focused on enhancing interpretability and

transparency in ML for software defect prediction.

The case studies adopted in this thesis centers around the utilization of various XAI

techniques, such as ELI5, SHAP, and LIME, to enhance the transparency and interpretability

of ML models in SDP. Unlike conventional approaches, which often lack transparency in

feature selection and outlier detection, this research prioritizes clear explanations and insights

into the decision-making process.

Furthermore, the thesis employs ensemble modeling techniques to leverage the strengths of

various XAI methods, both locally and globally. By integrating feature importance scores

from SHAP, ELI5, and LIME, and employing ML classifiers such as RF, GB, NB, and MLP,

this research seeks to optimize predictive accuracy while maintaining interpretability.

This research follows a structured methodology, to address the challenges and objectives

outlined in the study. The methodology is organized into five main phases as shown in

Figure 4.1:

The structured methodology for addressing the problem of enhancing interpretability and

transparency in ML models for SDP can be described in detail as follows:

1. Problem Identification and Motivation:

• Initially, a Systematic Literature Review (SLR) [68] is conducted to explore

existing research in the domain of software quality for AI-based software.

• Through the SLR, a new software quality attribute, ”Explainability,” is identified,

motivating further investigation into its role in ML models for SDP.
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Problem Identification and Motivation

Initially, a Systematic Literature Review (SLR) is conducted to
explore existing research in the domain of software quality for AI-

based software.

Through the SLR, a new software quality attribute, "Explainability,"
is identified, motivating further investigation into its role in ML models

for SDP.

    Artifact Identification and Development

Case Study 1: Local and Global Prediction Analysis on KC2 Defect
Prediction Dataset

Case Study 4: Ensemble Modeling for Locally and Globally
Interpretable SDP Models on CM1 SDP Dataset

Case Study 3: Applying XAI methods for  Feature Selection and
Outlier Detection Methodologies on PC1 SDP Dataset

Case Study 2: Exploring ML Model Performance and Interpretability
by proposing a XAI-enable framework on KC2 SDP Dataset

Design and Development

Design and implement methodologies for each case study carried
out for 3 datasets, utilizing appropriate ML algorithms and XAI

techniques.

Evaluation

Quantitatively evaluate the performance and interpretability of ML
models using appropriate metrics.

Qualitatively assess the effectiveness and usefulness of XAI
techniques in enhancing transparency and understanding.

Compare results with existing literature and benchmarks to validate
the contributions of the proposed methodologies.

Reflection and Learning

Reflect on the strengths and limitations of the developed artifacts and
methodologies.

Identify opportunities for further research and improvement in the
field of software quality and ML interpretability.

Document insights and lessons learned throughout the research
process for future reference.

Objective: Understand both local (individual) and global
prediction of ML models using model-agnostic

explainability methods.

Research Questions:
RQ1:  According to the model, which features in the data
are more important?

RQ2:  What are the contributions of each feature for any
individual prediction? Do they affect the individual
predictions positively or negatively? (Local prediction)

RQ3:  What is the effect of each feature on the prediction
of the whole model? (Global prediction)

Objective: To explain different types of ML models for
several user types by considering various ML
explanations/evaluation measures for SDP

Research Questions:
 
RQ 1. Model Interpretability: RQ 1.1. What is the overall
logic of the model in making decisions? RQ 1.2. Is the
logic reasonable, so that we can deploy the model with
confidence?

RQ 2. Model Visualization and Inspection:
 RQ 2.1. Why is the model recommending this sample's
results as yes or no (e.g. defective/non-defective)? RQ 2.2.
How can I inform my decision by looking at similar
individuals?

RQ 3. Algorithm Transparency and User Trust:
  RQ 3.1. Why is this outcome (such as my
software is defective) generated?

Objective: Improve transparency and interpretability of
feature selection and outlier detection processes in SDP.

Research Questions:
RQ1:  What are the strengths and limitations of ELI5,
SHAP, and LIME in facilitating feature selection and outlier
detection for SDP?

RQ2: How do ELI5, SHAP, and LIME impact feature
importance, model interpretability, outlier identification, and
the overall performance of defect prediction models?.

Objective: Develop ensemble models for both local and
global interpretability in SDP.

Research Questions:
RQ1:How can feature importance scores be ranked
globally and locally using SHAP, ELI5, and LIME?

RQ2. How can ensemble feature importance ranks be
utilized to create interpretable ensemble XAI models?

RQ3. How do the accuracy results compare with existing
literature, allowing for an evaluation of model
performance?

Figure 4.1 The steps of DSR method proposed in this study
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• Identify the problem: The lack of interpretability in machine learning

models for software defect prediction hinders stakeholders’ understanding of

decision-making processes.

• Justify the problem: Inadequate transparency can lead to mistrust in the

predictions, potentially impacting software quality.

2. Artifact Identification and Development:

• Four case studies are identified and developed to address different aspects of the

problem:

– Case Study 1: Local and Global Prediction Analysis on KC2 SDP Dataset

* Objective: Understand both local (individual) and global prediction of

ML models using model-agnostic explainability methods.

* Research Questions:

· RQ1: Identify important features according to the model.

· RQ2: Analyze contributions of each feature for individual predictions.

· RQ3: Investigate the effect of each feature on the prediction of the

whole model.

– Case Study 2: Exploring ML Model Performance and Interpretability by

proposing an XAI-enabled framework on KC2 SDP Dataset

* Objective: Increase performance of ML models for SDP while

enhancing model interpretability.

* Research Questions:

· RQ1: Evaluate the overall logic of ML models in decision-making.

· RQ2: Visualize and inspect model decisions for better understanding.

· RQ3: Assess algorithm transparency and user trust in SDP models.

– Case Study 3: Applying XAI methods for Feature Selection and Outlier

Detection Methodologies on PC1 SDP Dataset

* Objective: Improve transparency and interpretability of feature selection

and outlier detection processes in SDP.
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* Research Questions:

· RQ1: Examine limitations of traditional methods in feature selection

and outlier detection.

· RQ2: Prioritize transparency and interpretability through XAI

techniques (ELI5, SHAP, LIME) and provide clear explanations for

feature selection and outlier detection decisions.

– Case Study 4: Ensemble Modeling for Locally and Globally Interpretable

SDP Models on CM1 SDP Dataset

* Objective: Develop ensemble models for both local and global

interpretability in SDP.

* Research Questions:

· RQ1: Rank feature importance scores globally and locally using

SHAP, ELI5, and LIME.

· RQ2: Ensemble feature importance ranks to create interpretable

ensemble XAI models.

· RQ3: Compare accuracy results with existing literature to evaluate

model performance.

3. Design and Development:

• Methodologies for each case study are designed and implemented, utilizing

appropriate ML algorithms and XAI techniques.

4. Evaluation:

• The performance and interpretability of ML models are quantitatively evaluated

using performance metrics such as accuracy, precision, recall, and F1-score.

• The effectiveness and usefulness of XAI techniques in enhancing transparency

and understanding are qualitatively assessed.

• Results are compared with existing literature and benchmarks to validate the

contributions of the proposed methodologies.
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5. Reflection and Learning:

• Strengths and limitations of the developed artifacts and methodologies are

reflected upon.

• Opportunities for further research and improvement in the field of software

quality and ML interpretability are identified.

• Insights and lessons learned throughout the research process are documented for

future reference.

By following this structured methodology, the research aims to address the overarching

objective of enhancing interpretability, transparency, and model performance in ML models

in the domain of software quality assurance for SDP, with each component contributing to a

comprehensive understanding and effective solution development.
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5. IMPLEMENTATION OVERVIEW

We propose to answer the set of questions that were derived from the constituents of

conceptualization of design science as a paradigm [9] as listed below:

1. Problem instance

(a) What specific problem is the paper addressing?

2. Problem Understanding Approach

(a) How did the authors gain an understanding of the problem they aimed to solve?

3. Proposed Solution(s)

(a) How were the identified problems addressed through proposed interventions?

4. Design Approach

(a) How did the authors formulate and reach their proposed solution?

5. Validation Approach

(a) How did the authors implement the intervention/solution to validate its

effectiveness in addressing the problem instance?

6. The Technological Rule

(a) What outcomes do the authors aim to achieve through their research?

(b) In what contexts or situations does their proposed solution apply?

7. Relevance, Convincing the Target Stakeholder

(a) What types of problems and solutions are encompassed by the technological rule

proposed in the paper?

(b) Who are the relevant stakeholders for these problem-solution pairs?
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(c) How do the authors persuade their readers regarding the relevance of the

problem-solution pair to the stakeholders involved?

8. Rigor

(a) What actions were implemented to ensure the comprehension of the problem

instance is both reliable and accurate?

(b) How were measures taken to guarantee that the proposed intervention effectively

addresses the problem instance?

(c) What methodologies were utilized to validate the design decisions made during

the development of the proposed solution?

9. Novelty

(a) What are the unique and innovative contributions of the paper to the field?

This doctoral thesis adopts an exploratory research method to investigate and address the

challenges associated with enhancing interpretability and transparency in ML for SDP. The

methodology employed in this research follows a systematic and iterative process aimed at

exploring innovative solutions and gaining insights into the complex interplay between ML

models, software datasets, and interpretability techniques. By adopting the DSR paradigm as

a structured methodology as shown in Figure 5.1, we provide a comprehensive understanding

of our research approach, intervention, and its implications for practitioners and stakeholders

in the domain of SDP and ML interpretability.

5.1. Details of each step of the proposed methodology followed during

implementation

In this subsection, we will give the details of 9 steps of the proposed methodology shown in

Figure 5.1.
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Technological Rule: 

1- Providing practitioners with transparent and interpretable ML models for
SDP, facilitating informed decision-making in software development.

2- This rule applies in situations where ML models are used for defect
prediction in software development, and stakeholders require
transparency and interpretability in model decision-making.

The problem of enhancing interpretability and
transparency in ML models for SDP, focusing on a
concrete instance of SDP models' opacity hindering
their adoption in real-world software development
scenarios.

Problem Instance

The solution proposed to solve the identified
problem involves the development and
implementation of an XAI-enabled framework
comprising four case studies targeting different
aspects of SDP model interpretability.

Solution

Validation Approach

Implementing the XAI-enabled framework in real-world SDP datasets,
evaluating its effectiveness in enhancing model interpretability through
quantitative and qualitative analyses.

                                  Problem Understanding:
                                       Understanding of the problem through a 
                                       comprehensive SLR examining existing 
                                        research in the domains of software 
                                       quality and ML model interpretability, 
                                       identifying a gap in the explainability 
                                       of SDP models.

Solution design approach:
Synthesizing insights from the SLR, 
incorporating methodologies from existing 
XAI literature, and iteratively refining 
the framework based on empirical evidence.

Relevance, convincing the target stakeholder:
 
1- The technological rule captures problems related to opacity in SDP models and provides solutions that are relevant to practitioners and stakeholders involved in
software development.

2- Stakeholders such as software developers, project managers, and quality assurance teams find the problem-solution pairs relevant in enhancing
their understanding and trust in SDP models.

3- The authors convince their readers of the relevance of the problem-solution pair by providing empirical evidence and comparative analyses demonstrating the
effectiveness of the XAI-enabled framework.
 

Rigor:

1- Actions taken to ensure the understanding of the problem instance's validity include conducting a rigorous SLR

2- Validating the intervention as a solution to the problem instance involves iterative development and benchmarking against existing methodologies and
benchmarks.

3- Design choices are validated through empirical studies and comparison with alternative approaches, ensuring the robustness and effectiveness of the proposed
framework.

Novelty:

 The development of an XAI-enabled framework tailored specifically for enhancing interpretability and transparency in SDP models, the application of this
framework across multiple case studies, and the synthesis of empirical  evidence to demonstrate its effectiveness in real-world scenarios.
 

Figure 5.1 The visual abstract of proposed methodology in this study

1- Problem Instance. This doctoral thesis addresses the problem of enhancing

interpretability and transparency in ML models for SDP, focusing on a concrete instance of

SDP models’ opacity hindering their adoption in real-world software development scenarios.

2- Problem understanding approach.

• We firstly gained an understanding of the problem through a comprehensive SLR [68]

(Systematic Literature Review on Software Quality for AI-based Software) examining

existing research in the domains of software quality for AI-based software, identifying

a gap in the explainability of SDP models.
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• Identified gaps, limitations, and emerging trends in the field to define the research

problem and objectives.

One of the RQ in the SLR study we conducted during this thesis study is ”What are

the experienced challenges of quality in AI-based software?”. By answering this RQ, we

provided a detailed understanding of the popular research areas being investigated up to now

in the scientific literature. As shown in Figure 5.2, we classified each challenge under a

specific topic.

1. Software Quality. There are traditional quality models in the software engineering

world. Given that AI-based software diverges from conventional software, there is no

well-defined guideline, framework, road map, or model on measuring software quality for

AI-based software. Therefore, inadequate process definitions to be followed, quality metrics,

attributes, and assurance techniques cause new challenges in the academia or industry.

2. Software Development. AI-based software systems consistently display unique

characteristics (e.g. being black-box) in engineering because models (components) are

constructed by training with data in an inductive manner. Also, it is possible to encounter

unexpected outcomes. Hence, it might cause new problems with development processes

when trying to evaluate the quality of these systems.

3. Design. This category is about designing systems that imply ML models (components) by

considering and performing the characteristics of “Change Anything Change Everything”

(CACE) [69]. A slight change in training data may affect learning results, thus on the

functional behavior of such systems.

4. Social Aspect. This category is about the communication between developers,

development skills, the combination of data scientists, software engineers, and different kinds

of branches when developing such systems.

5. Testing. Testing ML systems pose difficulties that appear from the different nature of

ML systems, compared to relatively more deterministic conventional software systems [70].

Certain machine learning applications are designed to grasp the characteristics of datasets in

36



scenarios where human users lack knowledge of the correct answers. Testing and debugging

such machine learning software is difficult because there is no reliable test oracle. [71].

18

11

4

4

3Testing

Social Aspect

Design

Software Development

Software Quality

0 5 10 15 20
Number of Articles

Figure 5.2 Distribution of experienced challenges in the primary studies

According to the results, the ”Software Quality” challenge is the most experienced challenge

faced by the researchers with 18 studies, followed by 11 studies with the ”Software

Development” challenge.

The list of challenges in the ”Software Development” category is about the difficulties due

to the different nature of AI-based software from traditional ones. The necessity of new

measurements has emerged to understand and explain the quality characteristics required

for AI-based software since developing such software is inherently challenging and not

transparent. Unlike traditional software, it solves more complex problems, its behavior

depends on training data, and it is dependent on data and processes.

For the challenges identified in our SLR study, we then focused on the ”Software Quality”

challenge and made an in depth analysis over this challenge. To comprehend and describe

the current state of the art in this subject and examine its limitations and open issues that will

guide future research, we did a comprehensive analysis of the literature from 1988 to 2021

and chose 280 primary articles.

To find and choose the pertinent papers in the literature for this study, we performed a

string-based search. Before beginning the investigation, we consulted our earlier systematic
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literature review (SLR) study [68] to gain knowledge and get more familiar with the context

of quality for AI-based software, and we used its findings to construct search strings.

In order to improve search results for string-based searches, first we established search keys

by adding synonyms and abbreviations as supplemental terms. To reach potentially relevant

papers, we constructed and searched for 14 different sentences on Elsevier, ACM, IEEE, and

Google Scholar to make a complementary search. After construction the search terms, the

finals search string was composed of the terms that represent Population- AI-based software

and Intervention- Software Quality of AI-based software by following the guidelines of

Kitchenham [72]. We finalized our search terms as in Table 5.1.

Based on the investigation for all the quality attributes , we proposed to show the most

investigated QAs by plotting their frequency. Figure 5.3 shows the frequency of all attributes

in ISO 25010 and the newly founded ones out of ISO 25010.

Figure 5.3 Radar chart for the frequency of each QA.

According to the results, by considering 280 studies we acquired after inclusion/exclusion

criteria, we observed that the most investigated quality attributes (with the frequency of

primary studies), which are not in ISO 25010, are Explainability (108), Fairness (74), and
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Table 5.1 Search strings defined and number of studies returned on Google Scholar, Elsevier, ACM,
and IEEE databases

Search String #
returned
studies
(Elsevier)

#
returned
studies
(ACM)

#
returned
studies
(IEEE)

#
returned
studies
(Scholar)

1. (“Quality Attributes” OR “Non Functional Requirements” OR “Quality
Characteristics” OR ”Quality Model” OR “ISO 25010”) AND (“Machine
Learning” OR “ML” OR “Artificial Intelligence” OR “AI” OR “Deep
Learning” OR “Computer Vision” OR “Neural Network”) AND (software
OR systems).

2,738 1,899 3,664 25

2. (“Functional Suitability” OR “Functional Completeness” OR “Functional
Correctness” OR “Functional Appropriateness”) AND (“Machine
Learning” OR “ML” OR “Artificial Intelligence” OR “AI” OR “Deep
Learning” OR “Computer Vision” OR “Neural Network”) AND (software
OR systems).

2,663 623 142 9,190

3. (“Performance Efficiency” OR “Time Behavior” OR “Resource
Utilization” OR “Capacity”) AND (“Machine Learning” OR “ML” OR
“Artificial Intelligence” OR “AI” OR “Deep Learning” OR “Computer
Vision” OR “Neural Network”) AND (software OR systems)

2,692 33,563 28,931 2,170,000

4. (“Compatibility” OR “Interoperability”) AND (“Machine Learning”
OR “ML” OR “Artificial Intelligence” OR “AI” OR “Deep Learning” OR
“Computer Vision” OR “Neural Network”) AND (software OR systems)

2,636 13,618 2,951 2,160,000

5. (“Usability” OR “Learnability” OR “Accessibility”) AND (“Machine
Learning” OR “ML” OR “Artificial Intelligence” OR “AI” OR “Deep
Learning” OR “Computer Vision” OR “Neural Network”) AND (software
OR systems)

2,699 23,035 2,683 3,640,000

6. (“Reliability” OR “Maturity” OR “Availability” OR “Recoverability” OR
“Fault Tolerance”) AND (“Machine Learning” OR “ML” OR “Artificial
Intelligence” OR “AI” OR “Deep Learning” OR “Computer Vision” OR
“Neural Network”) AND (software OR systems)

2,640 54,336 22,887 3,320,000

7. (“Security” OR “Privacy”) AND (“Machine Learning” OR “ML” OR
“Artificial Intelligence” OR “AI” OR “Deep Learning” OR “Computer
Vision” OR “Neural Network”) AND (software OR systems)

2,639 42,516 30,243 5,640,000

8. (“Maintainability” OR “Modularity” OR “Testability” OR “Reusability”
OR “Modifiability”) AND (“Machine Learning” OR “ML” OR “Artificial
Intelligence” OR “AI” OR “Deep Learning” OR “Computer Vision” OR
“Neural Network”) AND (software OR systems)

2,642 11,139 1,756 85,700

9. (“Portability” OR “Adaptability”) AND (“Machine Learning” OR “ML”
OR “Artificial Intelligence” OR “AI” OR “Deep Learning” OR “Computer
Vision” OR “Neural Network”) AND (software OR systems)

2,639 9,635 2,796 507,000

10. (“Explainability” OR “XAI”) AND (“Machine Learning” OR “ML”
OR “Artificial Intelligence” OR “AI” OR “Deep Learning” OR “Computer
Vision” OR “Neural Network”) AND (software OR systems)

2,637 1,941 581 41,900

11. (“Fairness”) AND (“Machine Learning” OR “ML” OR “Artificial
Intelligence” OR “AI” OR “Deep Learning” OR “Computer Vision” OR
“Neural Network”) AND (software OR systems)

2,637 7,275 733 359,000

12. (“Safety”) AND (“Machine Learning” OR “ML” OR “Artificial
Intelligence” OR “AI” OR “Deep Learning” OR “Computer Vision” OR
“Neural Network”) AND (software OR systems)

2,649 19,229 14,067 4,340,000

13. (“Understandability” OR “Transparency”) AND (“Machine Learning”
OR “ML” OR “Artificial Intelligence” OR “AI” OR “Deep Learning” OR
“Computer Vision” OR “Neural Network”) AND (software OR systems)

2,663 8,997 935 1,050,000

14. (“Trustworthiness”) AND (“Machine Learning” OR “ML” OR
“Artificial Intelligence” OR “AI” OR “Deep Learning” OR “Computer
Vision” OR “Neural Network”) AND (software OR systems)

2,636 2,681 372 150,000
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Transparency (50). Also, among the quality attributes in the ISO 25010; Security (26),

Reliability (22), and Functional Suitability (15) are the most investigated ones. Although

it is observed that quality attributes in ISO 25010 are suitable for AI-based software, there

are much more attempts at the newly added quality attributes specific to AI-based software.

Therefore, in our doctoral thesis, we delve into the findings derived from our SLR

studies concerning the challenges encountered in the ”Software Quality” and ”Software

Development” domain, particularly in the context of AI-based software. Our study highlights

the inherent disparities between AI-based software and traditional ones, elucidating the

unique difficulties stemming from their distinct nature. A prominent revelation from our

research is the pressing need for novel metrics and methodologies to grasp and elucidate the

essential quality attributes requisite for AI-based software. We underscore the complexity

inherent in developing such software, compounded by its opaque and intricate nature. Unlike

conventional software, AI-driven systems tackle more intricate problems, and their behavior

is contingent upon the nuances of their training data and underlying processes. Through our

doctoral thesis, we aim to shed light on the critical importance of explainability in AI-based

software, addressing the challenges unearthed through our rigorous SLR study within the

realm of software development.

3- Proposed solution(s). The intervention proposed to solve the identified problem involves

the development and implementation of an XAI-enabled framework comprising four case

studies targeting different aspects of SDP model interpretability.

Within this section, each case study can be introduced as a distinct intervention proposed to

address the identified problem of enhancing interpretability and transparency in ML models

for SDP. Each case study represents a unique approach or methodology designed to tackle

different facets of the problem. Here’s how each case study can be introduced as a distinct

intervention proposed to address the identified problem:

Case Study 1: Local and Global Prediction Analysis on KC2 SDP Dataset: In this case

study, we propose an intervention aimed at understanding both local (individual) and global

prediction of ML models using model-agnostic explainability methods. The objective is
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to enhance the interpretability and transparency of ML models for SDP by analyzing the

importance of features in the data, their contributions to individual predictions, and their

effects on overall model predictions.

Case Study 2: Exploring ML Model Performance and Interpretability by proposing an

XAI-enabled framework on KC2 SDP Dataset: This case study presents an intervention to

improve the interpretability of ML models for SDP by proposing a XAI-enabled framework.

By exploring different types of ML models and leveraging various XAI explanations and

evaluation measures, we aim to enhance the understanding of model logic, visualization, and

algorithm transparency, thus enabling confident deployment of the models.

Case Study 3: Applying XAI methods for Feature Selection and Outlier Detection

Methodologies on PC1 SDP Dataset: In this case study, we introduce an intervention

to enhance the transparency and interpretability of feature selection and outlier detection

processes in SDP models. By applying XAI methods such as ELI5, SHAP, and LIME, we

aim to improve the understanding of feature importance, model interpretability, and outlier

identification, thus optimizing the overall performance of defect prediction models.

Case Study 4: Ensemble Modeling for Locally and Globally Interpretable SDP Models

on CM1 SDP Dataset: This case study proposes an intervention to develop ensemble models

for both local and global interpretability in SDP. By leveraging SHAP, ELI5, and LIME to

rank feature importance scores globally and locally, we aim to create interpretable ensemble

XAI models. Additionally, we compare the accuracy results with existing literature, allowing

for an evaluation of model performance and demonstrating the effectiveness of the proposed

approach.

Each of these case studies represents a unique intervention designed to address specific

aspects of the problem of enhancing interpretability and transparency in ML models for

SDP, thereby contributing to the development of a comprehensive XAI-enabled framework

for SDP.
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4- Design approach. We arrived at our proposed solution by synthesizing insights from the

SLR, incorporating methodologies from existing XAI literature, and iteratively refining the

framework based on empirical evidence and stakeholder feedback.

In the ”Design approach” section, we discuss each case study in more detail by explaining

how the proposed solutions were developed and implemented. Here’s how we structure the

discussion for each case study:

For Case Study 1, which focuses on Local and Global Prediction Analysis on the KC2

Defect Prediction Dataset, the following points discuss the rationale, methodology, analysis,

and implementation details:

Rationale for Dataset Selection:

• The KC2 Defect Prediction Dataset was selected due to its widespread use as a

benchmark dataset in software defect prediction research. It contains a diverse range of

software metrics and defect labels, making it suitable for analyzing the interpretability

and transparency of ML models in SDP.

Methodology for Local and Global Prediction Analysis:

In this part, we give details about methodology of Case Study 1, and Fig. 5.4 shows the

taxonomy of explainability methods used in this study.

XAI

Data Type Tabular
Data

Scope
Local

Global

Stage Post-hoc

Model
Model-
agnostic

SHAP
LIME

ELI5
SHAP

Figure 5.4 Taxonomy of methods applied in Case Study 1

• The methodology involves utilizing model-agnostic explainability methods such as

ELI5, SHAP, and LIME to analyze local and global predictions of ML models.
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• For local prediction analysis, individual instance-level explanations are generated to

understand how each feature contributes to a particular prediction.

• For global prediction analysis, aggregate feature importance measures are calculated

to assess the overall impact of each feature on model predictions.

Analysis of Features’ Importance:

• Feature importance analysis is conducted to understand the relative importance of

different features in the dataset according to the ML model.

• This analysis involves calculating SHAP values or LIME explanations for each feature,

indicating their contributions to individual predictions.

• Additionally, global feature importance measures such as mean absolute SHAP values

or feature permutation importance are computed to assess their impact on the overall

model predictions.

Implementation Process:

• Preprocessing steps may include handling missing values to prepare the KC2 dataset

for analysis.

• ML models are trained using various algorithms such as RF, GB, NB, and MLP.

• Model-agnostic explainability methods like SHAP or LIME are then applied to the

trained models to generate explanations for individual predictions.

• Evaluation procedures involve assessing the fidelity of the explanations, measuring the

model’s predictive performance, and comparing the interpretability of different ML

models.
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By following these steps, the Case Study 1 aims to provide insights into the interpretability

and transparency of ML models for SDP, specifically focusing on understanding local and

global prediction behaviors using the KC2 Defect Prediction Dataset.

In Case Study 2, we explore ML model performance and interpretability within the context

of software defect prediction using the proposed XAI-based framework for SDP as shown

İn Figure 5.5. This framework is designed to offer insights into the decision-making process

behind the models used for defect prediction, leveraging Explainable AI (XAI) techniques to

enhance interpretability and transparency.

1. Model Interpretability

Model-based Explanation

SHAP

ANCHOR
Global Explainability

     User Type

Data Scientist

Research Questions (Objective)

RQ 1.1.  What is the overall logic of the model
in making decisions?

RQ 1.2. Is the logic reasonable, so that we can
deploy the model with confidence?

asks

     2. Model Visualization and Inspection

Attribution-based Explanation

ELI5 Partial Plot

LIMESHAP

Feature Importance

Example-based Explanation

Protodash     Local Explainability

Domain Expert

Research Questions (Objective)

RQ 2.1. Why is the model recommending this
sample's results as yes or no (e.g.,
defective/non-defective)?

RQ  2.2. How can I inform my decision by
looking at similar individuals?

asks

     3. Algorithm Transparency and User
Trust

SHAP

End User

Research Questions (Objective)

RQ 3.1. Why is this outcome (such as my
software is defective) generated?

asks

     Data Preparation

Data

Model Development

   Trained ML Model of SDP

Probabilistic-
based ML Model

Neural network-
based ML Model

Tree-based ML
Model 

Model
     Evaluation

D
ef

ec
t P

re
di

ct
io

ns

XAI-based Analysis

LIME
Local Explainability

Attribution-based Explanation

Figure 5.5 The proposed XAI framework for SDP in Case Study 2

Data preparation:

• Data collection and cleaning are essential steps in preparing the data needed for

software defect prediction.

Model development:
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• Creating an ML model for defect prediction involves using various methods, including

decision trees, logistic regression, or deep neural networks. In this study, ML models

are categorized into distance-based, neural network-based, and probabilistic-based

models, and each is analyzed individually.

Model evaluation:

• The performance of the ML models is assessed using metrics such as accuracy,

precision, recall, and F1-score. It’s crucial to ensure that the model is reliable and

precise enough to be applied for defect prediction.

Interpretation and visualization:

• The findings from the XAI analysis are interpreted and presented in an approachable

manner. Visuals like feature importance plots, summary plots, or heatmaps are created

to aid users in understanding how the model generates its predictions.

XAI-based analysis:

• XAI approaches are employed to examine the decision-making process of the models.

This provides insights into the parameters crucial for defect prediction and the

logic behind the model’s predictions. The XAI analysis is categorized into ”Model

interpretability,” ”Model visualization and Inspection,” and ”Algorithm transparency

and User trust,” using methods such as SHAP, LIME, ELI5, Partial plot, Anchor, and

Protodash.

By following this framework, Case Study 2 aims to provide a comprehensive understanding

of ML model performance and interpretability in software defect prediction, utilizing XAI

techniques to enhance transparency and facilitate informed decision-making in software

development.
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In Case Study 3, we focus on applying XAI methods for Feature Selection and Outlier

Detection Methodologies on the PC1 SDP Dataset. The following points discuss the dataset,

methodology, utilization of XAI methods, and implementation details:

Rationale for Dataset Selection:

• The PC1 SDP Dataset is introduced as the dataset used in this case study, selected

based on its relevance and suitability for exploring feature selection and outlier

detection methodologies in software defect prediction. Justification for its selection

may include factors such as dataset size, diversity of software metrics, and availability

of labeled defect data.

Methodology for applying XAI methods:

• XAI methods, including ELI5, SHAP, and LIME, are employed for feature selection

and outlier detection in the PC1 SDP Dataset.

• Feature selection involves using XAI methods to identify the most important features

contributing to model predictions, thereby improving model interpretability.

• Outlier detection leverages XAI techniques to pinpoint instances deviating

significantly from the norm, potentially indicating anomalous behavior or data quality

issues.

• Our methodology involved meticulous execution of feature selection using ELI5 and

SHAP across diverse models like RF, GB, NB, and MLP. This ensured a thorough

examination of feature importance and model interpretability. Additionally, our

pioneering use of LIME for outlier detection deepened our understanding of model

behavior, which is vital for robust defect prediction.

The visual abstract template shown in Figure 5.6 highlights the technological rule proposed,

the problem-solution instance addressed, and the assessment of the produced knowledge in

terms of relevance, rigor, and novelty.
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Technological Rule: 

1- Incorporating Explainable Artificial Intelligence (XAI) methods into  SDP processes.

2- Utilizing ELI5, SHAP, and LIME XAI methods for feature selection and outlier detection.

3- Integrating XAI methods with ML models (RF, GB, NB, MLP) on NASA SDP datasets.

Lack of transparency and
interpretability in SDP models

hinders decision-making processes.

Problem Instance

Implement a structured XAI-
enabled SDP process.

Solution

Validation approach:

Conduct empirical analysis and 
experimentation to evaluate the 
effectiveness of XAI methods in 
feature  selection and outlier
detection across different ML 
models.

Problem
Understanding:

The problem is well
known and reported in

several studies

      Solution design
        approach: 

 
Develop a flow diagram 
(Figure 2) illustrating the

integration of XAI methods
with SDP models.

Relevance: Addressing the need for transparent and interpretable machine learning techniques in SDP.
 

Rigor: Conducting empirical studies and experiments to rigorously evaluate the proposed XAI methods.
 

Novelty: Providing valuable insights into the practical utility and effectiveness of ELI5, SHAP, and LIME
XAI methods within the SDP domain.

 

Figure 5.6 A visual abstract template capturing the key elements of Case Study 3

Utilization of XAI methods:

• XAI methods such as ELI5, SHAP, and LIME are utilized to enhance feature

importance, model interpretability, and outlier identification.

• These methods provide insights into the relative importance of features, the impact

of individual features on model predictions, and the rationale behind outlier

classifications.

By following this methodology, Case Study 3 aims to demonstrate the effectiveness of XAI

methods for enhancing feature selection and outlier detection in software defect prediction,

providing insights into model interpretability in the PC1 SDP Dataset.

Case Study 4 delves into Ensemble Modeling for Locally and Globally Interpretable SDP

Models on the CM1 SDP Dataset. Here’s a discussion of the key aspects:

Rationale for Dataset Selection:
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• The CM1 SDP Dataset is introduced as the dataset under scrutiny in this case study.

Its selection is justified by its relevance to the investigation of ensemble modeling

techniques for locally and globally interpretable SDP models. Factors such as dataset

characteristics, defect prediction context, and availability of labeled data contribute to

its suitability for this study.

Methodology for Ensemble Modeling with XAI methods:

• Ensemble modeling methodology revolves around achieving both local and global

interpretability using SHAP, ELI5, and LIME. Ensembling XAI methods involves

aggregating the insights from multiple XAI techniques to provide a more

comprehensive view of model behavior. This approach combines the strengths of

individual XAI methods and offers enhanced interpretability and reliability in ML

models.

Ensemble XAI-enabled SDP Models

• Denote SDP models that ensemble different XAI methods for improved interpretability

and performance in defect prediction tasks.

Utilization of Feature Importance Scores:

• Feature importance scores, obtained through SHAP, ELI5, and LIME, are ranked

globally and locally to create interpretable ensemble XAI models. This process

involves identifying the most influential features in predicting defects both at the

individual instance level and across the entire dataset. By incorporating feature

importance rankings from multiple XAI methods, the ensemble models aim to enhance

interpretability while maintaining predictive accuracy.

Figure 5.7 outlines how we have adopted and applied the DSR methodology suggested by

Engström et al. [9] to our study, in order to address the challenges faced in SDP through the

exploration of ensemble XAI methods.
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    Problem Identification

1- Explore the challenges in defect prediction modeling, focusing on the need for improved interpretability and performance.

2- Identify the research gap: Recognize the lack of comprehensive approaches that integrate ensemble XAI methods for SDP

Idea Generation and Formulation

1- Generate ideas for integrating ensemble learning with XAI techniques to address the identified challenges.

2- Formulate research questions: Define specific questions related to the effectiveness of ensemble XAI methods in SDP and
their impact on model interpretability.

Design and Prototyping

1- Design the ensemble XAI methodology: Develop a systematic approach for combining XAI techniques.

2- Prototype implementation: Implement a prototype of the proposed methodology, including data preprocessing, model training,
and XAI integration.

Evaluation and Validation

1- Conduct experiments: Execute experiments using the CM1 defect prediction dataset to evaluate the performance of
ensemble XAI models.
2- Validate results: Analyze the experimental results to assess the effectiveness of the designed artifacts in improving model
interpretability and predictive accuracy.

Reflection and Iteration

1- Reflect on findings: Reflect on the outcomes of the experiments and the insights gained from the evaluation process.

2- Iterate on the design: Identify areas for refinement or enhancement in the ensemble XAI methodology based on the
experimental results and feedback.

Figure 5.7 DSR methodology adopted and followed in Case Study 4

Implementation Process:

• The implementation process entails ensemble model training, evaluation, and

comparison with existing literature.

• We combine and create ensemble feature importance scores by ranking features based

on importance in each method (ELI5, SHAP and LIME). We calculate ensemble

importance scores by averaging the rank values of each XAI method for each feature.

• We select the top k features based on ensemble importance scores obtained from the

previous steps and use the selected features.

• Then, we retrain the ML models and calculate various performance metrics including

accuracy, precision, recall, F1-score, and AUC for the retrained model using the test

dataset.
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• Evaluation metrics such as accuracy, precision, recall, F1-score and AUC are utilized

to assess the performance of ensemble models.

• Comparisons with existing literature provide insights into the effectiveness of the

proposed approach in enhancing both local and global interpretability of SDP models.

By following this methodology, Case Study 4 aims to demonstrate the effectiveness of

ensemble modeling techniques in enhancing the interpretability of SDP models while

maintaining predictive performance. The CM1 SDP Dataset serves as a suitable platform

for exploring these techniques and contributing to the advancement of interpretable defect

prediction methodologies.

To summarize, by discussing each case study in the ”Design approach” section, we

provide readers with a comprehensive understanding of how the proposed solutions were

developed and implemented to address the identified problem of enhancing interpretability

and transparency in ML models for SDP.

5- Validation approach.

• We iterate on the design and implementation of the proposed solutions based on the

feedback received from professors and preliminary evaluations.

• We applied the intervention/solution to the problem instance by implementing the

XAI-enabled framework in real-world SDP datasets (KC2, PC1, CM1), evaluating

its effectiveness in enhancing model interpretability through quantitative and

qualitative analyses, and validated the effectiveness and generalizability of the refined

methodologies through rigorous experimentation, comparative analysis, and case

studies.

Here, the iterative nature of the implementation process is highlighted. Each case study

is applied to the problem instance (SDP models’ opacity) to validate its effectiveness

in enhancing interpretability and transparency. Through iterative experimentation and
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evaluation, the performance of each case study is assessed, and adjustments may be made

based on the insights gained.

6- The Technological Rule.

• The effect we wish to achieve through our research is to provide practitioners

with transparent and interpretable ML models for SDP, facilitating informed

decision-making in software development.

• This rule applies in situations where ML models are used for defect prediction in

software development, and stakeholders require transparency and interpretability in

model decision-making.

• In summary, the proposed solution in the thesis is the development and implementation

of an XAI-enabled framework for enhancing interpretability and transparency in SDP

models.

7- Relevance, convincing the target stakeholder.

• The technological rule captures problems related to opacity in SDP models and

provides solutions that are relevant to practitioners and stakeholders involved in

software development.

• We convince our readers of the relevance of the problem-solution pair by providing

empirical evidence and comparative analyses demonstrating the effectiveness of the

XAI-enabled framework.

8- Rigor.

• Actions taken to ensure the understanding of the problem instance’s validity include

conducting a rigorous SLR.

• Validating the intervention as a solution to the problem instance involves iterative

development and benchmarking against existing methodologies and benchmarks.
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• Design choices are validated through empirical studies and comparison with alternative

approaches, ensuring the robustness and effectiveness of the proposed framework.

In this section, the actions taken to ensure the validity of the intervention and the design

choices also underscore the iterative process. The refinement and validation of each case

study’s methodologies, as well as the ongoing assessment of their effectiveness, demonstrate

the rigor of the research approach.

9- Novelty. The novel contributions in the paper include the development of an XAI-enabled

framework tailored specifically for enhancing interpretability and transparency in SDP

models, the application of this framework across multiple case studies, and the synthesis

of empirical evidence to demonstrate its effectiveness in real-world scenarios.

By following this iterative and exploratory approach, our research aims to advance the

understanding and practical application of interpretable and transparent ML techniques in

the context of SDP. Through systematic exploration and iterative refinement, we seek to

contribute valuable insights and innovative solutions to address the challenges faced in

enhancing ML model interpretability and transparency for SDP.
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6. OVERVIEW OF CASE STUDIES

In this section, we outline the case studies conducted for software defect prediction utilizing

XAI methods. Both individual and hybrid approaches of XAI methods have been employed

as locally and globally for the prediction of software defects. The experiments were

implemented using the Python programming language and the KAGGLE tool. The NASA

software defect dataset repository was utilized as the primary dataset for this study.

6.1. Dataset Details

In this study, three datasets are available for software defect prediction: KC2, PC1, and

CM1. These datasets are utilized to apply software defect prediction techniques. Due to

the prevalence of studies utilizing these datasets, a comparative analysis is presented to

demonstrate the significance of the proposed hybrid approach.

Table 6.1 offer insights into the datasets utilized in the study, encompassing module counts,

programming languages, defect percentages, lines of code, and total defects within each

module.

Table 6.1 Description of NASA Software Defect Datasets

Dataset Programming Language Defect Percentage Lines of Code

KC2 C++ 20.50 522

PC1 C 6.94 1109

CM1 C 9.83 498

Additionally, Table 6.2 outlines the attributes present in each dataset, which play a crucial

role in feature selection and subsequent model development for software defect prediction.
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Table 6.2 Attributes Details of NASA Software Defect Datasets Used in This Study

Feature Description Data Type

loc McCabe’s ”line count of code” numeric

v(g) McCabe ”cyclomatic complexity” numeric

ev(g) McCabe ”essential compelxity” numeric

iv(g) McCabe ”design complexity” numeric

n Halstead ”total operators + operands” numeric

v Halstead ”volume” numeric

l Halstead ”program length” numeric

d Halstead ”difficulty” numeric

i Halstead ”intelligence” numeric

e Halstead ”effort” numeric

b Halstead ”number of delivered bugs” numeric

t Halstead’s ”time estimator” numeric

IOCode Halstead’s ”line count” numeric

IOComment Halstead’s ”count of lines of comments” numeric

IOBlank Halstead’s ”count of blank lines” numeric

IOCodeandComment
Halstead’s ”count of lines of code and

comments”
numeric

uniq Op ”unique operators” numeric

uniq Opnd ”unique operands” numeric

total Op ”total operators” numeric

total Opnd ”total operands” numeric

branchCount ”of the flow graph” numeric

problems
module has/has not one or more reported

defects
categorical
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6.2. Evaluation Metrics

The selection of evaluation metrics in this doctoral thesis is underpinned by the fundamental

objective of rigorously assessing the performance of the proposed methodologies in the

context of software defect prediction. Each chosen metric offers unique insights into different

facets of model performance, collectively providing a comprehensive understanding of the

models’ efficacy in achieving the study’s objectives.

Accuracy: Accuracy serves as a fundamental metric quantifying the overall correctness of

predictions made by the models. It delineates the ratio of correctly predicted instances to the

total number of instances in the dataset. Accuracy holds paramount significance in this thesis

as it provides a holistic evaluation of the predictive capabilities of the models under scrutiny.

Precision and Recall: Precision and recall offer nuanced perspectives on the models’

performance in handling positive instances (defective software components). Precision

emphasizes the ability of the models to minimize false positives, ensuring that identified

defects are genuine and actionable. On the other hand, recall focuses on capturing all positive

instances, thereby minimizing the risk of false negatives, which could lead to undetected

defects. These metrics directly relate to the study’s objective of enhancing the accuracy and

reliability of defect prediction models.

F1-score: The F1-score provides a balanced assessment by considering both precision and

recall. It is particularly valuable in scenarios where achieving a balance between false

positives and false negatives is critical. By striving for a high F1-score, the study aims to

develop models that achieve optimal performance across both precision and recall, thereby

maximizing the overall effectiveness of defect prediction.

Area Under the Receiver Operating Characteristic Curve (AUC-ROC): The AUC-ROC

metric evaluates the models’ ability to discriminate between positive and negative instances

across various threshold settings. It directly relates to the objective of developing models

with robust discriminatory power, ensuring reliable differentiation between defective and

non-defective software components. Overall, the selection of these evaluation metrics is
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carefully aligned with the objectives of the study, aiming to develop and assess defect

prediction models that exhibit high accuracy, reliability, and interpretability in real-world

software development contexts.
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7. RESULTS FOR CASE STUDY 1:

Explainable AI for Software Defect Prediction with

Gradient Boosting classifier

In this case study, Model-agnostic explainability methods, including SHAP, ELI5, and LIME,

were employed to analyze feature importance for both local and global predictions. We

seek to understand both local (individual) prediction and global prediction (i.e., model as

a whole). Accordingly, we aim to answer the research questions (RQ) below by using the

model-agnostic explainability methods:

• RQ1. According to the model, which features in the data are more important?

• RQ2. What are the contributions of each feature for any individual prediction? Do

they affect the individual predictions positively or negatively? (Local prediction)

• RQ3. What is the effect of each feature on the prediction of the whole model? (Global

prediction)

with RQ1, we focus on feature importance that the analysis revealed the importance of

features in predicting software defects according to the model. With RQ2, we focus on

contributions to individual predictions. For individual predictions, the contributions of

each feature were examined to determine their impact, either positive or negative, on the

classification outcome. Lastly, with RQ3, we focus on the effect on the whole model. The

effect of each feature on the overall prediction of the model was investigated, shedding light

on their collective influence on model predictions. The results from the feature importance

analysis were interpreted and visualized using various techniques such as feature importance

plots and summary plots. These visualizations facilitated a deeper understanding of the

model’s decision-making process and provided actionable insights for stakeholders.
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7.1. Results for RQ1. According to the model, which features in the

data are more important?

If we decide that an ML classifier is untrustworthy, a widespread task is to modify the feature

sets and retrain the classifier in order to improve generalization, which is known as ”feature

engineering”. Explanations can help in this task by introducing the important features,

especially to remove features which were not generalized. Therefore, with this RQ, we

propose to understand the most important features in the dataset by considering their weights.

To achieve this, we focused on the feature importance and used the concept of ”permutation

importance” within ELI5 library. In doing so, we calculated importance weights after fitting

the model with the GB classifier. By this way, we guaranteed not to change the model or

the prediction of the model. The advantage of using ”permutation importance” concept is

that it is model-agnostic and can be calculated many times with different permutations of

the features. Firstly, we trained the model, and shuffled an individual column randomly

by leaving the target and the other columns in place, and made a prediction. Then, by

checking these prediction and target values, we obtained permutation feature importance

weights within the decrease in a model score. A drop in the model score is indicative of how

much the model depends on the feature. According to the whole process, we observed the

results shown in Fig. 7.1. While the features at the top indicates the most important ones,

the features at the bottom shows the least important ones across the model. According to the

results, the most important features are ”total Opnd” and ”uniq Opnd” features, sequentially.

The first numerical values in the weight column show how much the relevant feature degrades

the performance of the model, while the numerical values after ”+/-” show the change in the

performance of the model after reshuffle.

After analyzing each feature according to their impact on model prediction by using

permutation importance with ELI5, we also investigate for how a feature affect the model

prediction. For this purpose, we showed the partial plot for the feature ”total Opnd”,

”uniq Opnd”, and ”b” as shown in Fig. 8.2, Fig. 7.3 and Fig. 7.4, respectively. The y-axis in

the figures is interpreted as the change in model prediction performance.
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Figure 7.1 Permutation importance weights for features in KC2 dataset

Figure 7.2 Partial dependence plot for the feature ”total Opnd”

Figure 7.3 Partial dependence plot for the feature ”uniq Opnd”
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Figure 7.4 Partial dependence plot for the feature ”b”

In case of Fig. 8.2, we observe that increasing the total number of operands increases the

chances of predicting the defects’ existence as ”yes”, but increasing the number has a small

effect on the model prediction performance. However, when we look at the Fig. 7.3 and Fig.

7.4, we observe that increasing the number of unique operands and number of bugs increases

the chances of predicting the defects’ existence as ”yes”.

Lastly, we depict 2D Partial Dependence Plots for the features of ”total Opnd” and ”b”

in order to observe the interaction between these features. In Fig. 7.5, we see the model

predictions for any combination of the two features. While the results in the graphs of Fig.

8.2 and Fig. 7.4 are supportive with the Fig. 7.5, the model has its highest prediction result

with the increase in the number of errors at a certain level of ”total Opnd”, no matter how

much the value of ”total Opnd” increases.

Although there is no study that investigates the interaction between these two metrics, it is

inevitable to say that increasing in the number of bugs makes the software more defective

[73]. However, while increasing the total number of operands up to the value of 78 increases

the prediction performance, increasing the value of this metric after 78 has only a small affect

on the prediction results.
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Figure 7.5 2D Partial Dependence Plots for the features ”total Opnd” and ”b”

7.2. Results for RQ2. What are the contributions of each feature

for any individual prediction? Do they affect the individual

predictions positively or negatively? (Local prediction)

Up to here, we have observed general insights from a machine learning model. From now on,

we focus on the local prediction, break down the model for a single prediction, and seek to

understand the contribution of each feature on an individual prediction. In order to classify

a single instance as ”yes” or ”no”, and explain a single prediction by the ML model; we

used both SHAP and LIME methods, and then compared the results obtained with these two

methods. We selected an instance from KC2 dataset (row 12) randomly and analyzed the

SHAP and LIME results. We show the respective model outputs for that instance in Fig.7.6

and Fig.7.7.

According to the results, the model predicts the defects’ existence as ”yes” with a change of

70% by using SHAP and LIME methods. This indicates that prediction probabilities of these

two methods are the same.

We describe Fig. 7.6 in detail as the following:
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• Output value: indicates the model prediction performance for a single instance (i.e.,

row 12 of KC2 dataset).

• Base value: indicates the model prediction performance if the model does not know

any training data. It is defined as ”the value that would be predicted if we did not know

any features for the current output”.

• Colors (red or blue): if the features increase the prediction performance, then they are

shown as red; otherwise, they are shown as blue.

Figure 7.6 SHAP results for row 12 of KC2 dataset

Figure 7.7 LIME results for row 12 of KC2 dataset

Each feature contributes to the model’s prediction performance with a specific SHAP value

which may be positive or negative. Sum of the base prediction and all the features’ SHAP

values constitutes the final model prediction performance which is called as ”output value”.

The values near a feature mean that the feature has maximum contribution with these values.

For example, when the value of ”total Opnd” is equal to 78, the model has its best prediction

performance.

We describe Fig. 7.7 in detail as follows:

• Prediction probability: refers to the probability of model prediction for an instance in

case of ”yes” or ”no”. ”Yes/0.7” means with a change of %70, the instance will be

classified as ”yes”.
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• Colors (orange or blue): features having positive correlations with target are shown in

orange; otherwise, in blue.

• loc>45.00: High values of lines of code positively correlate with the existence of

defects.

• t>452.92: High values of total t negatively correlate with the existence of defects.

The central plot in Fig. 7.7 shows the contributions of the top features to the prediction

results corresponding to the weights of linear model which is called as coefficient values

(e.g. coefficient value for ”loc” is 0.12; since it has the max weight, it is shown at the top

of the plot). The leftmost plot shows each feature and its optimal value for contributing

to model prediction result at the maximum level. For example, while the value of ”loc” is

88, the model has its best prediction performance. Based on these findings, we observed

very close results for both SHAP and LIME methods, demonstrating the availability of these

methods to interpret ML models with confidence.

Although the values are extracted using LIME methods for a single instance, for human

understandability we write the rules using the original scales of the data.

Rule: If ”line count of code” is GREATER THAN 45 AND ”total operands” GREATER

THAN 43 AND ”halstead volume” is GREATER THAN 564.78 AND ”number of delivered

bugs” is GREATER THAN 0.19 AND ”unique operators” is GREATER THAN 13.00 AND

”total operators” is GREATER THAN 64.00 AND ”McCabe cyclomatic complexity” is

GREATER THAN 64.00 THEN the code is defectiveness.

7.3. Results for RQ3. What is the effect of each feature on the

prediction of the whole model? (Global prediction)

We firstly have begun by observing about permutation feature importance and partial

dependence plots by RQ1, in order to have an overview of what the model has learned.

After that, we have investigated for SHAP and LIME values with RQ2, in order to break
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down the components of the individual predictions. Finally, with RQ3, we have widened

SHAP values and proposed to see how aggregating many SHAP values could give more

detailed alternatives to permutation feature importance and partial dependence plots. With

permutation feature importance, we have observed which features are most important for the

model. However, we could not get any insights about how a feature matters for the model

with this approach. To enable this, we used SHAP summary plots as shown in Fig. 7.8.

From Fig. 7.8, we get much more detail about each feature’s effect over the model prediction

performance. While color shows each feature value as high or low, horizontal location

shows the SHAP values about whether the effect of that value has caused a higher or lower

prediction performance. According to the plot, we observe that higher values of total Opnd

and uniq Opnd increase the model’s prediction performance.

Figure 7.8 SHAP summary plot for the model

7.4. Comparing the GB feature important results with XAI methods

used in this study

Since GB ML classifier has its own feature importance algorithm, we compare these feature

importance results with XAI results. Fig. 7.9 represent the feature importance results for
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GB ML classifier. If we go into detail with the Fig. 7.1, Fig. 7.8, and Fig. 7.9, we observe

that the most important feature for all methods is total Opnd. In addition, while the most

important feature is the same for all methods, the other features’ importance (ev(g), loc, etc.)

are not in the same order, although their importances are very close with the results of GB

classifier.

Figure 7.9 Feature importance for the GB model
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8. RESULTS FOR CASE STUDY 2:

Explainable AI Framework For Software Defect Prediction

The proposed XAI-enabled framework was analyzed to enhance model interpretability and

transparency. Different ML models were explored, including RF, GB, NB, and MLP.

By offering insights into the decision-making process behind the models used for defect

prediction, XAI can play a significant role in the prediction of software defects. In Figure

5.5, we present our proposed XAI-based framework for SDP. The actions that can be included

in a XAI-based system for SDP are explained in the following paragraphs.

Data preparation: Data collection and cleaning are the steps in the preparation of the data

needed to anticipate software defects. The data should contain details about the software,

such as the amount of code, any prior flaws, and other pertinent information.

Model development: Creating an ML model to predict software defects is the task at hand

in this step. Different methods, including decision trees, logistic regression, or deep neural

networks, might be used to create the model. In this study, we categorize the ML models

into 3 parts as distance-based [20], [19], neural network-based [16], and probabilistic-based

ML models [15], [18], and analyze each of them individually.

Model evaluation: In this step, the model’s performance is assessed using indicators

including accuracy, precision, recall, and F1-score. It’s crucial to make sure the model is

reliable and precise enough to be applied for defect prediction.

XAI-based analysis: In this step, the model’s decision-making process is examined using

XAI approaches. This can give insight into the parameters that are most crucial for predicting

defects as well as the logic behind the predictions made by the model. We analyze the

XAI for SDP in three parts: ”Model interpretability”, ”Model visualization and Inspection”,

and ”Algorithm transparency and User trust”. We used 6 different XAI methods to make

analyses on the explainability of SDP which are SHAP, LIME, ELI5, Partial plot, Anchor,

and Protodash.
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Interpretation and visualization: In this step, the XAI analyses findings are interpreted and

presented in an approachable manner. To aid users in understanding how the model generates

its predictions, visuals like feature importance plots, summary plots, or heatmaps are created.

8.1. Global Explainability

Global explainability in XAI refers to the ability to provide an overarching and

comprehensive explanation or understanding of how an AI or machine learning model

makes decisions across its entire scope. It aims to answer questions about the model’s

behavior at a high level and reveal the key factors, features, or patterns that influence its

decisions on a global scale.

By analyzing the global explainability of different ML models, we can identify the most

influential features in the KC2 defect prediction dataset according to the RF, GB, NB,

MLP, and NN models. Features with higher importance are more influential in the model’s

decision-making process and contribute more to the model’s predictions.

• Feature Importance with ELI5: ELI5 provides a convenient way to visualize feature

importances indicating the relative importance of each feature in the RF classifier’s

prediction. To explain and interpret feature importances using ELI5 on the KC2

defect prediction dataset with an ML classifier, we first need to load the dataset, train

the ML model, and then use ELI5 to calculate and visualize the feature importances.

According to Figure 9.1., we obtained the importance scores for each feature in the

dataset of all 4 models. The higher the score, the more important the feature is for

predicting the target variable (problems). The visualization displays a representation

of the feature importances, allowing us to easily interpret and compare the importance

of different features. The interpretation of feature importances depends on the specific

dataset and context. It is essential to consider domain knowledge and the specific

problem we are trying to solve when interpreting the feature importances. For KC2

dataset, we observed that while the ”uniq Opnd” is the most important feature for
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both RF and GB classifiers, ”total Opnd” is the most important one for NB and ”e” is

the most important one for MLP classifier.

Figure 8.1 Feature importance weights’ for each ML model with ELI5

• Partial Dependence Plot: is used to visualize the relationship between a target variable

and one or more predictor variables while holding other variables constant. In the

context of the KC2 software defect prediction dataset, a PDP can help us understand
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how the predicted defect rate is affected by different features or variables in the dataset.

Interpreting a PDP involves examining the shape of the plot and the trends it reveals.

Here are some key points to consider when interpreting a PDP for the KC2 dataset:

1. X-axis: The x-axis represents the values of the selected feature. It is important to

note the range and distribution of the feature values.

2. Y-axis: The y-axis represents the partial dependence, which indicates the effect of

the feature on the predicted defect rate. It represents the change in the predicted

defect rate when the feature value varies while keeping other variables constant.

3. Main trend: It looks for any overall patterns or trends in the PDP. For example, if

the PDP has an increasing or decreasing trend, it suggests that the feature has a

significant influence on the defect rate.

4. Saturation points: It allows to observe if there are any saturation points where

changing the feature value has little to no effect on the defect rate. This could

suggest that the feature has a limited impact on the prediction once it reaches a

certain threshold.

According to Figure 8.2, while there is an increasing trend for the ”uniq Opnd” and

”b” features, which means that these features have an important effect on the model

prediction performance, there is a saturation point for the ”total Opnd” feature which

means increasing the number after a certain threshold value has a small influence on

the predicted defect rate. This imply that beyond a certain threshold, the ”total Opnd”

feature becomes less relevant in predicting defects. To conclude, by analyzing these

aspects of the PDP, we can gain insights into how different features in the KC2 dataset

influence the predicted defect rate. This information can help us identify important

predictors and understand their impact on the software defect prediction task.

• Shap Summary Plot: To visualize and interpret a Shap summary plot for an ML

model on the KC2 defect prediction dataset, we first loaded the KC2 defect prediction

dataset, preprocessed the dataset by separating the features and the target variable

(problems), splitted the dataset into training and testing sets, trained a ML classifier
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Figure 8.2 Partial dependence plot for ”total Opnd”, ”uniq Opnd”, and ”b” features, sequentially

on the training set, generated Shap values for the test set using the trained model, and

finally created and interpreted the Shap summary plot.

The Shap summary plot will demonstrate how each feature affects the output of the

model. The features will be arranged in ascending order of importance, starting with

the most crucial ones. The impact of each feature is shown as a horizontal bar. Whether

the feature has a high (red) or low (blue) value is indicated by the color of the bar.

The position of the bar indicates whether the feature will have a favorable or negative

influence.

We may determine which features have the biggest impact on the model’s predictions

by examining the Shap summary plot. Positive contributions are represented by red

bars, while negative contributions are represented by blue bars. The influence of the

associated feature increases as the bar length increases.

According to Fig. 8.3, while ”uniq Opnd” feature has the highest contribution for

the RF and GB models, total Opnd and ”e” features are the most important features

for the NB models and MLP models, sequentially. If we look at each plot, it is

possible to say that RF and GB models give similar results. Since NB classifiers are

probabilistic models and do not have a direct way to calculate feature importances,

using SHAP values may not be straightforward. However, we can still generate
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Figure 8.3 SHAP summary plot representation for RF, GB, NB, and MLP models

an approximate Shap summary plot by treating the NB model as a black box and

utilizing Kernel SHAP. In this case, the Shap summary plot provides an overview

of the estimated feature importances based on the approximate Shap values derived
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from the Kernel SHAP explainer. The interpretation of feature importances from

Kernel SHAP for an NB classifier may not be as accurate as for other models, it

is vital to mention. The feature independence assumption made by NB can make it

difficult to capture complicated relationships between features. As a result, the Shap

values and accompanying summary plot might not accurately reflect the features’

true underlying significance to the NB Classifier. In addition, Shap values for MLP

Classifier models may not be as easily interpreted as with other models either. The

interpretation of feature importance is more difficult in MLP models since they can

contain a lot of hidden layers and are hence complex. Although more caution is advised

when evaluating the data, the Shap summary plot can still shed light on the relative

contributions of the features. Lastly, by considering the most important features for the

ELI5 and SHAP summary plots, it is possible to say that both methods gave consistent

result with each other by comparing different ML models’ result.

• Anchor Explanation Heatmap: The anchor explanation heatmap is a technique

used for model interpretation and explanation in machine learning. It is a heatmap

that shows the importance of features or input variables for a given prediction. In

case of the KC2 defect prediction dataset, which contains software metrics and defect

data for 522 software modules, an anchor explanation heatmap could be used to

visualize which software metrics are most important for predicting software defects

across the entire dataset. To generate an Anchor Explanation Heatmap for the KC2

dataset, we loaded the KC2 defect prediction dataset, separated the features and target

variable (defective units), and defined three anchor (feature) conditions based on the

mean values of the features. To generate an anchor explanation heatmap for the KC2

dataset, we used an interpretable machine learning algorithm or a model-agnostic

interpretation technique, permutance importance with ELI5, to extract explanations

for each prediction in the dataset. The importance scores for each software metric then

were aggregated across the entire dataset to generate an anchor explanation heatmap.

We also assigned importance values to each feature based on their relative importance

in the anchor. We then created a matrix to represent the heatmap, filled it in with the
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importance values, and plot the heatmap using matplotlib library [? ].

Choosing the optimal anchor conditions for the KC2 defect prediction dataset

depends on the specific features and characteristics of the dataset, as well as

the goals of the interpretation. There are some considerations to help guide the

selection of anchor conditions such as analyzing feature importance, considering

domain knowledge or expert insights about the KC2 dataset (”Are there any specific

features or conditions that are known to be strongly associated with defects in

software projects?”), conducting exploratory data analysis on the KC2 dataset to

understand the distribution and relationships between features, etc. In this study, we

identified and used the three features that contribute significantly to the prediction

of defects (total Opnd, umiq Opnd, b) as shown in Figure 8.2. These features are

candidates for anchor conditions as they capture the key factors driving the predictions.

Interpreting the results of an Anchor Explanation Heatmap for the KC2 dataset requires

understanding the heatmap visualization and the insights it provides. Here are some

key points to consider when interpreting the results:

1. Heatmap Colors: The heatmap consists of colored cells, where each cell

represents a feature-value combination. The color intensity indicates the

importance of that feature-value combination in determining the prediction.

Darker colors usually indicate higher importance.

2. Importance of Features: The heatmap allows you to assess the relative

importance of different features in the prediction. Features with darker cells in

the heatmap indicate their stronger influence on the prediction. Focus on these

features to gain insights into the underlying patterns and relationships in the

dataset.
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In an anchor explanation heatmap visualization, different anchors represent different

subsets of the data where the prediction is most reliable. Each anchor can be thought

of as a ”sufficient condition” that must be true for the prediction to be valid. The

importance of different anchors depends on the context and purpose of the analysis.

In some cases, a single anchor might be the most important for understanding a

particular prediction, while in other cases, multiple anchors might be necessary to

fully understand the prediction across different subsets of the data. For example, in a
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Figure 8.4 Anchor explanation heatmap for KC2 dataset

defect prediction model for software development, different anchors might represent

different code quality issues or metrics that are associated with defects. One anchor

might represent a particular combination of high code complexity and low code

coverage, while another anchor might represent high coupling between different parts

of the code.

The resulting heatmap will show the importance of each feature in the three anchors

(uniq Opnd>14.5, total Opnd>37.02, b>0.19), with higher importance values shown

in warmer colors (e.g., red) and lower importance values shown in cooler colors (e.g.,

blue). This can help users understand which features are most important in predicting

defects in the KC2 dataset and can be used to identify areas where the model may

need improvement. That is, by examining the heatmap and analyzing the patterns,

decision rules, and importance of features, we can gain a deeper understanding of

the KC2 dataset and the factors that contribute to the prediction of defects. These

insights can help identify key features, potential risk factors, and areas for further

investigation or improvement in software defect prediction. Interpreting different

anchors in an anchor explanation heatmap involves understanding which features or

input variables are most important for each anchor and how they are related to the

prediction. For example, for anchor 1 (uniq Opnd>14.5), the most important features

are ”uniq Opnd”, ”total Opnd”, ”n”, ”uniq Op”, and ”loc”, sequentially in case of RF

classifier. For anchor 2, each feature is of equal importance. For anchor 3 (b>0.19),
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the most important features show similar pattern with anchor 1 condition. This can

help developers prioritize areas for improvement in their code or identify potential

causes of defects across different subsets of the data. In fact, these results support the

findings we obtained with the PDP shown in Figure 8.2. Because as seen in the PDP

graph, the increase in the number of bugs (b) increased the defect prediction rate, and

as seen in the anchor3 case, an increase in the importance value of the features was

observed when the number of bugs (b) was greater than the threshold value of 0.19.

Vice versa, as seen in the PDP plot, it was concluded that increasing the total Opnd

feature above a certain threshold value had no effect on the defect prediction of the

model. Similarly, in the case of anchor2, we observed that all features are of equal

importance, i.e. they have same and small effect on the defect prediction result.

Overall, the interpretation of different anchors in an anchor explanation heatmap

depends on the specific context and purpose of the analysis, and requires an

understanding of the features or input variables that are most important for each

anchor.

• Feature clustering with SHAP: Up to now, we analyzed the importance of each

feature on KC2 dataset using different explainability techniques. In this part, we

propose to understand the importance and impact of different groups of features on

the defect prediction by using feature clustering with SHAP method. The purpose

of this method on the KC2 defect prediction dataset is to identify groups or clusters

of features that exhibit similar patterns of importance in predicting defects. The

goal is to gain insights into the relationships and interactions among the features,

understand their relative importance, and potentially identify feature subsets that are

more informative for defect prediction.

By applying the shap feature clustering method, which combines hierarchical

clustering with SHAP values, we clustered the features based on their individual

76



contributions to the model predictions. This allowed us to group features together that

have similar effects on the prediction outcomes. The resulting feature clusters and

their characteristics then be visualized and analyzed to identify meaningful patterns

and relationships. We looked for similarities or differences among the features within

each cluster, identified any patterns or relationships that emerged from the cluster

analysis. Figure 8.5 shows the feature clusters using visualization techniques as a

bar plot (Figure 8.5(a)) and, for clarity, as a dendrogram (Figure 8.5(b)). To draw

meaningful conclusions about the clusters and their characteristics, we combined the

bar plot and dendrogram interpretation. This provided us a visual representation of

the feature clusters and their relationships.

According to Figure 8.5(a), (”total Opnd” + 5 other features) are collectively most

important for defect prediction. By looking at Figure 8.5(b), we can see these five

features which are uniq Opnd, b, total Op, n, v in detail. By examining the clusters as

shown in Figure 8.5(b), we can identify which features tend to have higher or lower

importance values, providing insights into the relative significance of different sets of

features. The vertical axis of the dendrogram represents the measure of dissimilarity

or distance between the clusters being merged. The height at which two clusters merge

indicates how dissimilar or similar they are. Lower merge heights suggest higher

similarity, while higher merge heights indicate greater dissimilarity. Clusters that

merge at lower heights on the dendrogram are more similar to each other than those

that merge at higher heights. Closer proximity of branches indicates a higher level of

similarity, while greater distance indicates a larger dissimilarity. For example, ”l”+”d”

features are much more similar with each other comparing with ”IOComment” feature.

By using feature clustering, we also can perform subset identification of features

that exhibit similar patterns of importance. For example, (”total Opnd”+ 5 other

features) is one subset, (”loc”+”e”+”t”+”IOCode”) is another subset. This can be

useful for feature selection, as it allows you to potentially identify smaller subsets of

features that retain the predictive power of the entire feature set. These subsets can
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Figure 8.5 Feature clustering representation as bar plot and dendogram plot for KC2 dataset
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help simplify the model and improve interpretability without sacrificing performance.

In addition, understanding feature clusters can provide guidance for decision-making

in defect prediction tasks. For example, if certain clusters consistently exhibit high

importance, they can be prioritized for further investigation or targeted for specific

interventions to mitigate defects.

Overall, the purpose of feature clustering with SHAP method on the KC2 defect

prediction dataset was to gain insights into the structure and relationships among the

features and their importance in predicting defects. This analysis can aid in feature

selection, model interpretation, and decision support for defect prediction tasks. This

interpretation can help understand the importance and impact of different groups of

features on the defect prediction.

8.2. Local Explainability

Local explainability in XAI refers to the ability to provide an explanation or insight into how

a specific AI or machine learning model arrived at a particular decision or prediction for an

individual data point or instance. It aims to answer questions like ”Why did the model make

this prediction for this specific case?” by focusing on the factors, features, or patterns that

influenced that particular decision.

• Shap Waterfall Plot: To communicate the reasoning behind the prediction to

stakeholders, clients, or end-users who may not have a technical background, the

waterfall plot provides a visual and intuitive explanation of the model’s decision

for a specific instance. The plot provides a clear narrative of the decision-making

process, allowing you to follow the sequence of feature contributions. It helps answer

questions like ”Why did the model make this prediction?” and ”Which features were

the most influential in the decision?”, etc.
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Figure 8.6 represent the waterfall visualization for a specific instance (instance 0)

on KC2 dataset. Interpreting a SHAP waterfall plot for local explainability involves

understanding the contribution of each feature and how they collectively influence the

model’s prediction for a specific instance. Here’s a step-by-step guide to interpreting a

SHAP waterfall plot:

Figure 8.6 Waterfall plot for the first instance of KC2 dataset with RF classifier

1. Start with the base value: The SHAP waterfall plot typically begins with the

model’s base value, representing the average prediction for the entire dataset.

This serves as the starting point for the explanation. The base value represents the

expected model output when no specific features are observed or known. It serves

as a reference point for understanding the contributions of individual features to

the prediction. For this instance, base value is E[f(x)]=0.15. This indicates that

the expected model output, on average, is 0.15 when no features are considered.

While x-axis represent the prediction effect value, y-axis represents the value of

each feature for a specific instance (instance 0) on KC2 dataset.
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2. Observe the first feature contribution: The first horizontal bar in the plot

represents the contribution of the first feature. It shows the impact of that feature

on the prediction compared to the base value. The height and direction of the bar

indicates the magnitude and direction of the feature’s effect. The first feature in

the plot is the ”total Opnd” and it affects the model prediction negatively (-0.04)

as blue bars indicate the negative effect and red bars indicate the positive effect

on the model prediction. Positive contributions indicate that the feature increases

the prediction, while negative contributions indicate a decrease in the prediction.

3. Follow the subsequent feature contributions: Move along the plot, observing

each subsequent horizontal bar. Each bar represents the contribution of a specific

feature and shows how it influences the prediction relative to the previous step.

The height and direction of the bars indicate the individual feature effects.

While ”total Opnd” is the first feature that contributes to the prediction most

(0.04), ”e”=0.03, ”v”=0.02, ”uniq Opnd”=0.02, etc. are the other features that

contributes to prediction, sequentially.

4. Cumulative effect: As we progress through the plot, the cumulative effect of

all the feature contributions becomes apparent. The cumulative sum of the

horizontal bars represents the final prediction for the instance. By adding up

the contributions (0.15 - 0.02-0.01-0.01+0.02-0.02+0.02-0.02-0.02-0.03-0.04),

we can see how the model arrived at the specific prediction for that instance

f(x)=0.01 (There may be small biases due to the rounding).

To conclude, the plot visually represents how each feature affects the prediction. It

shows the direction and magnitude of the effect, indicating whether a feature increases

or decreases the prediction. This information helps in understanding the specific

role of each feature in the model’s decision for that instance. For complex models

with numerous features and intricate interactions, the waterfall plot simplifies the

explanation process. It breaks down the prediction into manageable steps, making it

easier to comprehend the contribution of each feature.
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• Shap Force Plot: This visualization technique serves as a tool for local explainability

in machine learning models. It aids in comprehending the contribution of individual

features to determine the output or prediction of the model, specifically for a given

instance, denoted as instance 0.

Figure 8.7 Force plot for a single instance (instance 0) on KC2 dataset

To interpret a SHAP force plot visualization on the KC2 defect prediction dataset, we

first need to understand the dataset and the purpose of the defect prediction task. Figure

8.7 represents SHAP force plot that provides insights into the contribution of individual

features (metrics in this case) to the prediction of whether a module is defective or not.

Each feature is represented by a horizontal bar in the plot, and the length and color of

the bar indicate its impact on the prediction. Here’s how we can interpret the plot:

1. Positive and Negative Contributions: In a SHAP force plot, the bars can

extend both to the left (negative contribution-blue bar) and to the right (positive
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contribution-red bar) of the plot’s center line. The direction indicates whether

the feature value is pushing the prediction towards a defective or non-defective

outcome. Positive values contribute to a higher likelihood of being defective,

while negative values contribute to a lower likelihood. For example, for the

force plot for GB classifier, while ”uniq Opnd” feature has positive values and

contributes to the prediction as non-defective, ”loc” feature contributes negatively

and pushes the prediction towards defective prediction.

2. Length of the Bars: The length of the bars represents the magnitude of the

feature’s contribution. Longer bars indicate greater importance or influence of

that feature on the prediction. By comparing the lengths of the bars, we can

identify the most influential features in the defect prediction task. These are the

metrics that have the most significant impact on determining whether a module

is defective or not. If we look at Figure 8.7 for the GB classifier, we can say that

”uniq Opnd” feature contributes the most to the model prediction.

3. Overall Prediction: The SHAP force plot also displays an overall base value,

often represented by a horizontal dashed line. This base value indicates the

average prediction of the model without considering any specific feature values.

The cumulative effect of the feature contributions determines the final prediction,

which can be calculated by summing up the lengths of the bars. For example,

let us examine the force plot for RF classifier. While base value is 0.21, the final

prediction that means the cumulative effect of the all features’ contribution for

the specific instance (instance 0) is f(x)=0.69.

To conclude, SHAP force plots offer transparent explanations by showing how each

feature contributes to the final prediction. This transparency is crucial, especially

when the model’s predictions have high stakes or need to be justified to end users. By

displaying the contributions visually, end users can gain a deeper understanding of

how their input affects the model’s output. In addition, SHAP force plots can assist

in error analysis by highlighting the features that contributed the most to incorrect

predictions. When a model makes a mistake, understanding the reasons behind
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it becomes crucial for diagnosing and rectifying potential issues. End users can

leverage SHAP force plots to identify which features might be causing errors and take

appropriate actions to address those shortcomings.

• LIME: It can be used to provide interpretability to machine learning models trained

on the KC2 defect prediction dataset. When applying to the KC2 defect prediction

dataset, LIME can provide local explanations for individual predictions made by the

model. By using LIME on the KC2 dataset, we can gain insights into the important

features that contribute to the predictions of defects. LIME assigns importance weights

to different software features, indicating their relative influence on predictions. By

visualizing these feature importances, we can identify which metrics have a significant

impact on defect predictions.

When using the ”show in notebook” method of the LIME explanation object to

visualize explanations in a notebook environment for the KC2 defect prediction

dataset, it generates a visual representation of the local explanation for a specific

instance as shown in Figure 8.8. The visualization provides insights into the features

that contribute to the model’s prediction for that instance.

The ”show in notebook” method typically generates a table (right side of the figure)

and a bar chart (left side of the figure) to represent the feature importances. The table

displays the features along with their corresponding contributions to the prediction,

while the bar chart visually represents the magnitudes of these contributions.

Interpreting the LIME visualization on the KC2 defect prediction dataset involves

understanding the information presented in the table and the bar chart. Here’s how

we can interpret them:

1. Table

– Features: The table lists the features (software metrics) used in the dataset.
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Figure 8.8 LIME representation for a single instance (instance 0) on KC2 dataset
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– Contributions: Each feature has an associated contribution value, indicating

its influence on the prediction. Positive contributions (orange ones) suggest

that higher values of the feature contribute to the prediction of a defective

module, while negative contributions (blue ones) suggest the opposite. For

example, if we look at Figure 8.8 by considering RF classifier, while higher

value of total Opnd, loc, uniq Opnd, and the other features shown as blue

contribute to the model prediction as non-defective, higher value of feature

”e” contributes to the model prediction as defective.

– Importance: The table include additional information, such as feature

importance degree, which can help you understand the relative significance

of each feature. The most important feature is given at top, and from top to

bottom, feature importance degree decreases. If we look at Figure 8.8 for the

RF classifier (at the top of the Figure), we can say that the most important

features are ”total Opnd”, ”loc”, and ”uniq Opnd” features, sequentially.

From the table, we also can see the specific value for the specific instance

that means the value of ”total Opnd” for that instance (instance 0) is 1.00

and, increasing the value of this feature contributes to the prediction of a

defective module.

2. Bar Chart

– Feature Importance: The bar chart visually represents the feature

importance’s. Each bar corresponds to a feature, and its length indicates

the magnitude of its contribution. Longer bars represent more influential

features. Near the bars, there are coefficient values for each corresponding

feature, which represent the importance level the features. If we look at

Figure 8.8 for the RF classifier (at the top of the figure), we can say that

the most important features are ”total Opnd”, ”loc”, and ”uniq Opnd” by

considering the coefficient values as 0.06, 0.03, and 0.03, sequentially.

– Positive and Negative Contributions: The bars can be colored differently to

represent positive and negative contributions. Positive contributions may be
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displayed in one color (e.g., orange) while negative contributions in another

color (e.g., blue). This coloring helps differentiate features that increase or

decrease the likelihood of a defect.

By analyzing the table and bar chart, we can identify the specific features that have

a significant impact on the prediction of defects in the KC2 dataset. The feature

contributions highlight the direction and magnitude of their influence, providing

insights into why the model made a particular prediction for the instance being

explained. It’s also important to note that interpretation may vary depending on the

specific context of the dataset and the model used. According to the result of RF

and GB, while ”total Opnd” is found as the most influential feature for the model

prediction, ”e” and ”t” features are most influential features for NB and MLP models.

Overall, interpreting the LIME visualization allows end-users to gain a better

understanding of the factors influencing the model’s predictions, identify important

software metrics for defect occurrence, and make informed decisions regarding

software quality and defect prevention efforts.

• Protodash method: In the specific case of applying the Protodash method to

the KC2 defect prediction dataset, the purpose would be to gain insights and

understanding about the characteristics of software modules that are prone to defects.

The Protodash method, when combined with domain expertise, can help identify

the most representative modules and uncover patterns or features that contribute to

defect-proneness. We now demonstrate how to produce explanations by choosing

similar or prototypical modules to a developer in question that a domain expert could

find interesting. This could make it easier for the domain expert to comprehend

whether a software module is defective or not in light of other similar software

modules. One should be aware that the chosen prototype modules are a part of the

training set that was used to train a ML model that predicts whether these modules are
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defective or not. The method also computes weights for each prototype illustrating

how similar it is to the relevant software module(s).

In this part, we will examine one instance of getting prototypes—one for a case where

the software module was defective (problems=1). In that situation, we present the

top five prototypes from the training data and the similarity of their feature values.

To apply the Protodash method to the KC2 defect prediction dataset using a neural

network (NN), we firstly preprocessed the dataset. This involves handling missing

values, normalizing numerical features, encoding categorical variables, and splitting

the dataset into training and testing sets. Then, we build and train an NN model using

the training set of the KC2 dataset.

Case 1- Obtain feature representations as explanations for a software module

predicted as ”1”: We used the trained NN model to obtain similar features for each

module in the dataset. We considered a sofware module (id=8) whose label was

defective (1) as shown in Figure 8.9.

Case 2- Find top five similar prototypes: After selecting the module, we found similar

modules predicted as ”1” using the protodash explainer. Then, in Figure 8.10, we

showed related software modules and the degree to which they have similarities with

the selected module, as shown in the final row of the table below named as ”Weight”.

Once the prototypes are selected, it is better to analyze and interpret them

in collaboration with domain experts. Examining the commonalities and

differences among the prototypes, identifying the critical features that contribute to

defect-proneness, and gaining insights into the characteristics of the modules prone

to defects are the steps to be followed. This step requires domain expertise and

qualitative analysis to provide meaningful interpretations of the selected prototypes.
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Figure 8.9 Feature−value information for the specified instance (id=8) on KC2 dataset

Case 3: Calculate how closely a feature of a prototypical sample looks similar to that

of the selected sample. The closer a prototype sample’s weight is to 1, the more closely

it resembles the chosen sample in that attribute. In Figure 8.11, we can examine how

many features of prototypes resemble those of the selected sample. Following that, a

clear explanation is given.

The five prototypical samples that are most similar to the chosen sample are shown in

Figure 8.10. According to the importances of the weights that the method outputs, the

prototype listed under column 0 is by far the most typical sample (weight=0.59). This

is verified intuitively by the feature similarity table in Figure 8.11, which shows that

17 out of the 21 features in this prototype are similar with %80 degree to those of the
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Figure 8.10 Feature−value information for the top five similar samples and similarity weights with
the chosen sample on KC2 dataset
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Figure 8.11 Feature weights similarity degree of top five similar samples with the chosen sample on
KC2 dataset

chosen sample for which we are attempting to explain the prediction. Additionally,

the domain expert believes that the selected module is a member of a group of

defective modules who have virtually number of bugs (feature ”b”) after examining

the prototypical samples and their features. The domain expert might feel more

comfortable labeling the software modules as defective after hearing this explanation.

To conclude, the findings from the XAI-enabled framework analysis were interpreted and

visualized using techniques such as feature importance plots, SHAP summary plots, and

LIME explanations. These visualizations enhanced the understanding of the models’

decision-making processes and facilitated informed decision-making by stakeholders.
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9. RESULTS FOR CASE STUDY 3:

Applying XAI Methods for Feature Selection and Outlier Detection in Software Defect

Prediction

In this case study, the effectiveness of ELI5, SHAP, and LIME in facilitating feature selection

was assessed. The feature importance scores generated by each method were compared,

and their impact on model interpretability and predictive performance was analyzed. In

addition, the ability of the XAI methods to identify outliers in the dataset was evaluated.

Metrics such as precision, recall, and F1-score were computed to assess the accuracy of

outlier detection and the robustness of the models against anomalies. ELI5 and SHAP

provided valuable insights into the relative importance of features and their contributions

to model predictions. These explanations enhanced the interpretability of the models and

facilitated a deeper understanding of the underlying data patterns. LIME was utilized for

outlier detection, allowing for the identification of instances that deviated significantly from

the norm. The explanations provided by LIME helped understand the reasons behind outlier

classifications and highlighted potential data quality issues. Here is the flow diagram of the

whole process applied in this study as shown in Figure 9.1. For this purpose, we used PC1

defect prediction dataset to demonstrate the execution of the process flow.

9.1. ELI5 for Global Feature Selection

ELI5 is a XAI method that facilitates feature selection and provides explanations for machine

learning models. While ELI5 does not offer a direct feature selection method, it provides

insights into feature importance at a global level. It can be used to interpret models

and calculate feature importances based on coefficients (for linear models), permutation

importance (by shuffling feature values and observing the impact on model performance),

and tree-based model feature importance. We firstly propose to find the most important

features in PC1 dataset by using ELI5 as shown in Figure 9.2.
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PC1
dataset

Load Dataset

Preprocess Data

Normalize Data

Feature Selection

Analyze Feature Importance using
ELI5 and SHAP

Perform k-fold cross-validation (k=5)

Train RF, GB, NB, and MLP models
on the dataset

Calculate feature importance using
ELI5 and SHAP for each model

separately

Select top 'n' features based on
importance scores from ELI5 and

SHAP for each model

Outlier Detection

Use LIME to explain a
selected instance from

dataset

Calculate prediction
performance of selected

instance

Perform Outlier Detection
using LIME

Detect and remove outlier(s)
in the selected instance

Model Training and Evaluation

Train RF, GB, NB, MLP Models

Feature Selection

Train models on the selected
top 'n' features from ELI5 and

SHAP

Evaluate Metrics

Feature Selection
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and recall for each model using

selected features from ELI5
and SHAP

Outlier Detection

Calculate accuracy for selected
instance after handling

outlier(s)
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Calculate accuracy for selected
instance after handling

outlier(s)

Figure 9.1 Flow diagram of the XAI-enabled SDP process followed in this study
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Figure 9.2 Feature Importance results using ELI5 for ML models

By considering findings from Figure 9.2, we selected the most important features as shown

in Table 9.1 and calculated performance metrics (accuracy, precision, recall, f-score) for each

model separately.
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Table 9.1 Selected features with ELI5 for each model

ML model Selected Features
RF ’lOComment’, ’locCodeAndComment’

GB
’V’, ’branchCount’, ’lOComment’, ’uniq Op’, ’total Op’, ’lOCode’, ’D’,
’loc’, ’E’, ’locCodeAndComment’, ’total Opnd’

NB ’iv(G)’, ’lOComment’
MLP ’T’,’V’,’E’,’I’,’total Opnd’,’uniq Opnd’,’lOCode’,’lOComment’

Table 9.2 Performance metric results with ELI5 for all ML models

ML model Accuracy Recall Precision
Cetiner et al. (RF) [1] 0.837 0.60 0.24
Our Study (RF with ELI5) 0.922 0.92 0.90
Cetiner et al. (GB) 0.831 0.57 0.17
Our Study (GB with ELI5) 0.916 0.91 0.88
Cetiner et al. (NB) 0.810 0.43 0.24
Our Study (NB with ELI5) 0.868 0.91 0.88
Cetiner et al. (MLP) 0.823 0.00 0.00
Our Study (MLP with ELI5) 0.919 0.91 0.88

We firstly loaded the PC1 dataset and selected the specific attributes (Table 9.1) for

each model, splitted the data into training and testing sets, normalized the data using

”StandardScaler”. Then, we initialized each model classifier, separately, conducted k-fold

cross-validation to evaluate the model’s performance (Since the study we selected to compare

the our result use k=5, we also selected k=5). Finally, we fit each model on the training set

and evaluated their performance metrics on the test set.

In Table 9.2, we showed each performance metric based on their average value for each

model and compared the result with the study of Cetiner et al. [1]. Since they used average

value of accuracy, recall, and precision metrics, in order to reduce bias while comparing the

studies with each other, we also used average values.

The accuracy results of the algorithms used for the PC1 dataset with feature selection with

ELI5 are shown in Figure 9.3. Cetiner et al. [1] used Principal Component Analysis (PCA)

method for feature selection, and after performing this method, the number of features were

reduced to 15 from 21 features. Then, they compared the results (accuracy, recall, f-score)

for ML models as shown in Table 9.2. We followed the same preprocessing steps with
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Figure 9.3 Comparison of accuracy results with ELI5 in our study with the results repoted by
Cetiner et al. [1]

the study of Cetiner et al. and compared our results with them. According to the results,

fitting the models by selecting features with ELI5 gave better performance results than

traditional feature selection method (i.e.PCA) for all ML models. In traditional one, we do

not know which features are important, why selecting 15 features, or what these 15 features

are. However, with XAI methods, we knew the importance of each feature in the model

and we could select the important ones for fitting the model in a more understandable and

interpretable way.

9.2. SHAP for Global Feature Selection

SHAP offers a powerful technique for explaining the output of machine learning models

by attributing feature importance to individual predictions. In the context of global feature

selection, SHAP computes Shapley values, a concept from cooperative game theory, to

quantify the contribution of each feature to the model’s output across the entire dataset. By

considering all possible feature subsets and their respective contributions, SHAP generates a

comprehensive understanding of feature importance, aiding in global feature selection.
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In this part, we again fitted the model with the same preprocessing steps given in the previous

Section 9.1. for all ML models (RF, GB, NB, MLP), and found the most important features

by using SHAP method. After finding the most important ones, we reduced the feature set

according to the findings of SHAP method. After finding the most important features for

each model, we trained them again by selecting these important features only and observed

the performance results for each model. Finally, we compared our results with the ones

obtained by Cetiner et al. [1] and emphasized strengths and/or weaknesses of using SHAP

method for feature selection.

Figure 9.4 Feature Importance with SHAP for RF model

Figure 9.5 Feature Importance with SHAP for GB model

As shown in Figure 9.4, 9.5, 9.6, and 9.7, we identified the most important features for the

ML models of RF, GB, NB, and MLP, respectively. According to the SHAP results, we listed

97



Figure 9.6 Feature Importance with SHAP for NB model

Figure 9.7 Feature Importance with SHAP for MLP model

Table 9.3 Selected features by considering SHAP values for ML models

ML model Selected Features
RF ’uniq Opnd’,’lOBlank’,’I’, ’N’, ’total Opnd’,’E’, ’loc’,’lOCode’,’V’

GB
’total Opnd’,’I’, ’lOBlank’, ’uniq Opnd’,’N’, ’T’, ’lOComment’,
’uniq Op’,’loc’

NB
’lOCode’,’loc’, ’branchCount’, ’lOComment’, ’uniq Opnd’,’V’,’v(g)’,’N’,
’total Opnd’

MLP ’E’,’T’,’V’, ’total Op’,’total Opnd’,’N’, ’branchCount’,’loc’, ’uniq Opnd’

the most important features that were taken into account while fitting the model in Table 9.3.

According to results, while the number of features for each ML model was reduced to 9,

each ML model had different features by considering their SHAP values.

After selecting the most important features for each model, we again fitted the model
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with the selected features. As preprocessing step, we applied normalization and k-fold

cross-validation (k=5). After all, we calculated performance metrics (accuracy, recall,

precision) as shown in Table 9.4.

Table 9.4 Performance metric results with SHAP for ML models

ML model Accuracy Recall Precision
Cetiner et al. (RF) [1] 0.837 0.60 0.24
Our Study (RF with SHAP) 0.930 0.93 0.92
Cetiner et al. (GB) 0.831 0.57 0.17
Our Study (GB with SHAP) 0.923 0.92 0.91
Cetiner et al. (NB) 0.810 0.43 0.24
Our Study (NB with SHAP) 0.878 0.92 0.91
Cetiner et al. (MLP) 0.823 0.00 0.00
Our Study (MLP with SHAP) 0.921 0.92 0.91

The accuracy results of the algorithms used for the PC1 dataset with feature selection with

SHAP are shown in Figure 9.8. Cetiner et al. [1] used Principal Component Analysis (PCA)

method for feature selection, and after performing this method, the number of features were

reduced to 15 from 21 features. Then, they compared the results (accuracy, recall, f-score)

for ML models as shown in Table 9.2. We followed the same preprocessing steps with the

study of Cetiner et al. and compared our results with them. According to results, fitting

the models by selecting features with SHAP gave better performance results than traditional

feature selection method (PCA) for all ML models.

In traditional one, we do not know which features are important, why selecting 15 features,

or what these 15 features are. However, with XAI methods, we knew the importance of each

feature in the model and we could select the important ones for fitting the model in a more

understandable and interpretable way.

To conclude, when applied for global feature selection, both SHAP and ELI5 enabled the

identification of essential features that significantly impacted model predictions. These

methods helped prioritize features based on their contributions to the model’s overall

performance. Therefore, by evaluating and ranking features using SHAP’s Shapley values or

ELI5’s importance metrics, one can streamline the feature selection process, focusing on the

most relevant features for model accuracy and interpretability.
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Figure 9.8 Comparison of accuracy results with SHAP in our study with the results reported by
Cetiner et al. [1]

In summary, the application of SHAP and ELI5 for global feature selection involves

leveraging their explainability techniques to assess the importance of features across the

entire dataset. These methods aid in identifying key features crucial for model predictions,

ultimately improving the understanding and selection of impactful features in machine

learning models.

9.3. LIME for Outlier Detection

LIME is primarily used for explaining the predictions of machine learning models on

individual instances. Although it is not specifically designed for outlier detection, it can

help in understanding how a model makes predictions on different data points.

To use LIME in Python for understanding outlier predictions before and after outlier removal

using a Random Forest model, we followed these steps: We firstly loaded our PC1 Defect

Prediction Dataset, defined features and targeted variable, split data into train and test

sets, trained an RF Classifier, selected instances for which we wanted explanations (for

outlier analysis), used LIME to explain model predictions for selected instances, printed

the explanation for each instance, and displayed explanation in notebook. Beforing detecting
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outliers, we firstly wanted to see LIME explanations for two randomly selected instances as

shown in Figure 9.9 and 9.10, and used LIME to explain model predictions for the dataset.

LIME could give us insight into how the model makes predictions for different instances.

Figure 9.9 LIME explanation results for instance 0 in RF model

Figure 9.10 LIME explanation results for instance 1 in RF model

Since the prediction probabilities were very high for instance 0, we decided to detect

outliers for instance 1 and calculated prediction probabilities after removing outliers for that

instance. We then analyzed the explanation and identified potential outlier features. The

process involved using LIME to explain predictions, identifying outliers based on the model’s

behavior, removing those outliers, and then evaluating the model’s accuracy before and after

the removal process. We firstly initialized LIME explainer and fetched the specific instance

we wanted to explain (i.e. instance 1). Then, we generated LIME explanation for the specific

instance, got feature importances or contributions from LIME explanation for the instance,

and calculated mean and standard deviation of contributions for this instance. We finally

defined thresholds for outlier detection (2 standard deviations from the mean), identified
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potential outlier features based on thresholds, and displayed potential outlier features for this

instance. According to results, we found that ”IOBlank” feature was an outlier, as shown in

Figure 9.11.

Figure 9.11 Box Plot of Feature Contributions with Outliers within a Single LIME Explanation for
Instance-1

Since we detected the outlier feature (”IOBlank”) for instance 1, then, we removed this

feature from the specified instance, fitted the model again, used LIME to explain model

predictions for the modified instance, displayed the explanation for the modified instance in

notebook as shown in Figure 9.12.

According to the result, we observed that prediction probabilities were increased from 0.74

to 0.81. For the modified instance, we also created a bar plot for feature contributions as

shown in Figure 9.13. By considering the figure, we observed that while ev(g), uniq Op, and

I features contributed to the model prediction positively, the other seven features contributed

negatively.

We also created visualizations (box plots) to display the distribution of feature contributions

across multiple explanations as shown in Figure 9.14.
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Figure 9.12 LIME explanation results for modified Instance-1

Figure 9.13 Feature importances or contributions from LIME explanation for modified Instance-1

Box plots of feature contributions obtained from LIME explanations provide a visual

summary of the variability, distribution, and comparative importance of features in

explaining the model’s predictions across various instances. These visualizations aid

in understanding the model’s behavior and feature influences. A box plot of feature

contributions obtained from LIME explanations can provide several insights:

• Feature Importance Range (Box Length (Interquartile Range)): Box plots illustrate the

spread and central tendency of feature contributions. Features’ contributions to model
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Figure 9.14 Box plot of feature contributions across multiple explanations by LIME XAI method

predictions are visualized using box plots. Each feature’s box plot displays the spread

(interquartile range), median, and outliers of its contributions across instances. The

length of the box (interquartile range) indicates the variability of feature importance

values. The whiskers show the range of values beyond the upper and lower quartiles.

The box in the box plot represents the interquartile range (IQR), which contains the

middle 50% of the data. The length of the box indicates the variability or spread of the

feature importance values. A longer box signifies a larger spread of values, suggesting

higher variability in the feature’s contribution across instances. A feature with a longer

box suggests a wider range of influence on model’s predictions, potentially indicating

higher importance. In order to see the spread of these values in a more understandable

way, we plot the mean contributions and threshold values for each feature as shown in

Figure 9.15. We look for features that exhibit significantly high or low contributions

across various predictions. For example in box plot, ”locCodeAndComment” feature
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has a longer box and if we look at Figure 9.15, we can see that this feature’s

contribution is high and it positively effects the model prediction. While ”IOBlank”

feature has the biggest contribution with the threshold >8.00, in the box plot, it also

has the biggest feature contribution among all features.

The median (line inside the box) represents the central tendency of feature

contributions. A higher or lower median position compared to other features

indicates relatively higher or lower mean contributions, respectively. For example,

since IOBlank feature with the threshold <=1.00 has higher median value than the

threshold range in 3.00 < lOBlank <=8.00 according to Figure 9.14, the mean

contribution of this feature with the threshold lOBlank<=1.00 is also higher than the

threshold range in 3.00 < lOBlank <=8.00, too.

The whiskers (lines extending from the box) show the range of non-outlier values.

Features with wider whiskers (I>41.09) or more outliers may have extreme

contributions (IOBlank>8.00), potentially impacting predictions significantly.

The comparison of the lengths and positions of boxes and whiskers among different

features in a model’s analysis is typically performed using techniques like box plots.

This comparison helps assess the significance or relative importance of each feature

concerning the model’s predictions. By comparing the lengths of boxes, positions

of medians, and presence of outliers among different features, a relative hierarchy of

feature importance is inferred as shown in Figure 9.15. Features with longer boxes,

higher medians, or more outliers may be considered relatively more influential in the

model’s predictions.

• Outliers and Extreme Values: Outliers in the box plot signify potential instances

where the feature has an exceptionally high or low contribution compared to other

instances. These outliers can represent instances where the model’s decision heavily
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Figure 9.15 Mean feature contributions with threshold

relies on specific feature values. Individual data points lying beyond the whiskers

are considered outliers. These outliers represent instances where the feature has an

exceptionally high or low contribution compared to other instances.

We first propose to identify outliers both for a single instance (Figure 9.11) and across

various instances (Figure 9.14). We determine the instances or feature contributions

marked as outliers in the box plot. These are data points lying beyond the whiskers

of the box plot. By examining the raw data for these instances and focusing on

the influential features, we investigate the specific feature values for these instances

that caused the outlier status. For our randomly selected instance, we identify that

”IOBlank” feature is an outlier, and compare the prediction performances of an ML

model (accuracy) with and without outliers. We analyze how the model’s decision or

prediction is influenced by the extreme feature value (IOBlank) in these instances. We

propose to improve an ML model’s prediction performance by removing the outlier
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from this instance, and achieve an improvement on prediction results from 0.74 to 0.81.

By performing these analyses, we gain a deeper understanding of the outliers’ impact

on the model’s predictions, assess the significance of extreme feature values, and

potentially improve the model’s robustness by addressing these outliers with their

reasons explained.

• Comparative Analysis: Comparing multiple box plots (for different instances or

features) can reveal how certain features consistently contribute more or less to

model predictions across various instances. It helps understand which features are

consistently influential or less impactful. Conducting a deeper analysis by comparing

multiple box plots for different instances or features can provide insights into the

consistency of feature contributions across instances and help identify influential or

less impactful features.

For this purpose, we generate box plots for feature contributions across various

instances and features. We plot these side-by-side to visually compare their

distributions as shown in Figure 9.14. We observe the relative positions, lengths of

boxes, and the spread of whiskers across different features and instances. Features

such as I>41.09 and uniq Opnd>25.00 with consistently higher median values

indicate their significant contributions to model predictions across various instances.

Features such as 7.00<IOCode<13.00 with narrow interquartile ranges and fewer

outliers demonstrate more consistent and stable contributions.

• Distribution of Feature Contributions: The distribution of contributions for each

feature can help understand the variability in the impact of different features across

instances. Understanding the spread of contributions aids in identifying features

crucial for model predictions. We obtain threshold values for each feature across
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various instances and it can be crucial. Because, establishing thresholds can contribute

to making the model more interpretable by converting continuous features into

meaningful categories or ranges.

Interpretability improves as these thresholds provide a clear understanding of how

each feature contributes to model predictions based on specific ranges or groups.

Same features may contribute to an ML model’s prediction performance as both

positively and negatively according to their threshold ranges. For example, while

uniq Opnd feature with the threshold values in range 8.00<uniq Opnd<12.00

contribute negatively, the same feature with the threshold value >25.00 contributes

positively to the model’s prediction performance. In addition, obtaining threshold

values for each feature in software quality analysis is essential for setting standards,

automating assessments, detecting issues early, and ensuring compliance while

facilitating continuous improvement and informed decision-making throughout the

software development lifecycle.

To conclude, the impact of the XAI methods on the overall performance of defect prediction

models was analyzed in this case study. The incorporation of XAI methods resulted in

improved model performance, as evidenced by higher accuracy, precision, and recall scores

compared to baseline models. The transparent and interpretable nature of the models

facilitated more informed decision-making in software defect prediction. In addition, the

performance of the XAI-based approach was compared to traditional feature selection

methods. The results demonstrated the superiority of XAI methods in terms of accuracy

and interpretability.
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10. RESULTS FOR CASE STUDY 4:

Enhancing Software Defect Prediction Modeling through Ensemble XAI Methods

This section provides a comprehensive overview of the results obtained from Case Study

4, highlighting the effectiveness of ensemble XAI methods in enhancing software defect

prediction modeling on the CM1 SDP Dataset. The feature importance scores generated by

SHAP, ELI5, and LIME were combined to rank features globally and locally. This ensemble

approach provided a comprehensive understanding of feature contributions at both individual

prediction and overall model levels, thereby enhancing model interpretability. The ensemble

feature importance ranks were utilized to create interpretable ensemble XAI models. By

integrating feature importance scores from multiple XAI methods, the ensemble models

achieved a balance between predictive accuracy and interpretability, allowing stakeholders

to make informed decisions based on transparent model insights. The ensemble XAI models

were assessed for their ability to provide both global and local interpretability. Metrics such

as feature importance scores at both levels were analyzed to understand the contributions of

individual features to model predictions. Standard evaluation metrics including accuracy,

precision, recall, and F1-score were computed to gauge the predictive performance of

the ensemble models. Additionally, area under the receiver operating characteristic curve

(AUC-ROC) was calculated to assess the models’ discriminative ability and performance

across different thresholds. Lastly, the accuracy results of the ensemble XAI models

were compared with those reported in existing literature, enabling an evaluation of model

performance. The ensemble models demonstrated competitive performance compared to

state-of-the-art defect prediction models, further validating the efficacy of the proposed

approach.

10.1. Ensemble Modeling of XAI methods with ML Classifiers

In this subsection, we firstly calculate performance metrics without using XAI methods, just

with using traditional ML models (RF, GB, NB, and MLP) by performing the following
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tasks:

1. Imports necessary libraries including GridSearchCV from sklearn.model selection,

various metrics from sklearn.metrics, and modules from sklearn.ensemble.

2. Defines a parameter grid (param grid) to search over for hyperparameter tuning.

3. Splits the dataset into training and testing sets using train test split.

4. Creates a ML classifier (rf model, gb model, nb model, mlp model).

5. Uses GridSearchCV to find the best hyperparameters for the ML classifiers based on

the specified parameter grid and 5-fold cross-validation.

6. Trains the ML models with the best hyperparameters on the entire training set.

7. Evaluates the performance of the model after hyperparameter tuning using accuracy,

precision, recall, f-score, and AUC scores on the test dataset.

Then, we perform following subsections to integrate different XAI methods on different ML

models.

10.1.1. Ensembling ELI5 and SHAP XAI methods with RF model

In this part, we integrate SHAP and ELI5 methods to calculate feature importance scores

as globally, create an ensemble ranking of features based on these scores, demonstrate the

process of retraining an RF model using the selected features based on ensemble importance

scores, and evaluating its performance using various metrics and the ROC curve. This

approach allows for assessing the impact of feature selection and ensemble modeling on

model performance in a software defect prediction task. Table 10.1 provides insights into the

importance of different features in the CM1 dataset for predicting defects.
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Table 10.1 Various features along with their importance scores calculated using two different XAI
methods: SHAP and ELI5 with RF

Feature SHAP Importance ELI5 Importance SHAP Rank ELI5 Rank Ensemble Rank

loc 0.026 0.032 4.00 1.50 2.75

v(g) 0.007 0.000 16.00 17.00 16.50

ev(g) 0.002 0.000 19.00 17.00 18.00

iv(g) 0.001 0.006 20.00 5.00 12.50

n 0.025 0.001 5.00 11.00 8.00

v 0.016 0.000 7.00 17.00 12.00

l 0.028 0.000 3.00 17.00 10.00

d 0.014 0.002 10.00 6.00 8.00

i 0.008 0.002 15.00 7.00 11.00

e 0.005 0.000 17.00 17.00 17.00

b 0.066 0.002 2.00 9.50 5.75

t 0.004 0.000 18.00 17.00 17.50

IOCode 0.001 0.000 21.00 17.00 19.00

IOComment 0.015 0.032 9.00 1.50 5.25

IOBlank 0.001 0.024 12.00 3.00 7.50

IOCodeandComment 0.072 0.000 1.00 17.00 9.00

uniq Op 0.023 0.014 6.00 4.00 5.00

uniq Opnd 0.012 0.002 11.00 8.00 9.50

total Op 0.009 0.000 13.00 17.00 15.00

total Opnd 0.015 0.002 8.00 9.50 8.75

branchCount 0.009 0.001 14.00 12.00 13.00

In addition, we also create three separate horizontal bar charts, each representing the

importance ranks of features as calculated by different methods: SHAP, ELI5, and Ensemble

as shown in Figure 10.1, 10.2, and 10.3, respectively.

These results provide insights into the importance of different features in the CM1 dataset

for predicting defects. In the following, we provide an interpretation of Table 10.1.

1. Feature Importance:

• Table 10.1 lists various features along with their importance scores calculated

using two different methods: SHAP and ELI5.
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Figure 10.1 Importance ranks of features as calculated by ELI5 method with RF

Figure 10.2 Importance ranks of features as calculated by SHAP method with RF

• Each feature’s importance is ranked based on its importance score from each

method.

• Features such as Loc, uniqOp, IOComment, and B have relatively higher

importance scores compared to others.

2. Ranking:

• Features are ranked based on their importance scores from each method, with

lower rank indicating higher importance as shown İn Figure 10.1, 10.2, and 10.3.
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Figure 10.3 Importance ranks of features as calculated by ENSEMBLE (ELI5+SHAP) method with
RF

• The Ensemble Rank column in the Table represents the average rank of each

feature across both SHAP and ELI5 methods, providing a combined measure of

feature importance.

3. Interpretation:

• Features with lower ensemble rank values are considered more important for

predicting defects in the dataset.

• For example, Loc has an ensemble rank of 2.75, indicating it is among the most

important features for defect prediction.

• Conversely, features with higher ensemble rank values, such as ev(g) and

IOCode, are considered less important for prediction.

4. Insights:

• The ensemble ranking provides a comprehensive view of feature importance by

considering multiple methods.

• It helps prioritize features for further analysis or feature selection in machine

learning models.
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• The combination of SHAP and ELI5 methods enhances the robustness of

feature importance assessment, potentially improving model interpretability and

predictive performance.

The bar charts allow for a visual comparison of feature importance ranks across different

methods, making it easier to identify discrepancies or similarities in feature importance

rankings. In contrast, the table presents the feature importance ranks separately for each

method, without visualizing the comparison between them.

The bar charts allow for a visual comparison of feature importance ranks across ELI5,

SHAP, and ensembling ELI5 and Shap methods, making it easier to identify discrepancies

or similarities in feature importance rankings. They provide visualizations of feature

importance ranks calculated by different methods, allowing for easier comparison and

interpretation compared to the tabular representation provided above (Table 10.1. The visual

representation provided by the bar charts helps in interpreting the relative importance of

features more intuitively, as the lengths of the bars directly represent the importance ranks.

For example, since the IOCodeAndComment feature has the lowest importance ranks for

ELI5, it means that it gives the highest contribution to the ML model performance.

In summary, these results guide feature selection and model development by highlighting the

most influential features for defect prediction based on ensemble ranking. After selecting

the most important features by considering the findings of ensemble XAI model, we retrain

the RF model and recalculate the performance metrics that are accuracy, precision, recall,

f-score, and AUC (Area Under the Curve) as shown in Table 10.2. We select the top

k (k=6) features based on ensemble importance scores calculated earlier, create a new

feature matrix (X ensemble) containing only the selected features and retrains a RF classifier

(rf model ensemble) using the selected features. For the evaluation metrics calculation, we

use the retrained ensemble model to make predictions on the test dataset and calculate various

evaluation metrics including accuracy, precision, recall, F1-score, and AUC based on the

predictions. By following these steps, we demonstrate the process of feature selection,

retraining the model with selected features, evaluating the performance of the ensemble
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model using various metrics. This helps in assessing the effectiveness of the ensemble

approach in improving model performance compared to using all features.

Table 10.2 Performance metrics results before and after ensembling SHAP and ELI5 XAI methods
with RF

ML model Accuracy Recall Precision F-score AUC
RF (without using
XAI methods) 0.90 0.90 0.87 0.87 0.76

RF (with ensemble
XAI methods
(ELI5+SHAP)

1.00 1.00 1.00 1.00 1.00

The results in Table 10.2 indicate a significant improvement in the model’s performance after

ensembling compared to before ensembling, as explained in detail below:

• Before ensembling, the accuracy was 90%, indicating that 90% of the predictions

made by the model were correct. After ensembling, the accuracy improved to 100%,

indicating that all predictions made by the ensemble model were correct.

• Before ensembling, the precision was 0.87, indicating that 87% of the positive

predictions made by the model were correct. After ensembling, the precision improved

to 100%, indicating that all positive predictions made by the ensemble model were

correct.

• Before ensembling, the recall was 0.90, indicating that 90% of the actual positive

instances were correctly identified by the model. After ensembling, the recall improved

to 100%, indicating that all actual positive instances were correctly identified by the

ensemble model.

• Before ensembling, the F1-score was 0.87, which is the harmonic mean of precision

and recall. It reflects the balance between precision and recall in the predictions made

by the model. After ensembling, the F1-score improved to 100%, indicating a perfect

balance between precision and recall in the predictions made by the ensemble model.
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• Before ensembling, the AUC was 0.76, which represents the model’s ability to

discriminate between positive and negative instances. After ensembling, the AUC

improved to 1.0000, indicating perfect discriminative ability of the ensemble model,

where it correctly ranks all positive instances above negative instances.

In summary, the metrics show a remarkable enhancement in the model’s performance after

ensembling, with all evaluation metrics reaching their perfect values. This suggests that

the ensemble model is highly effective in making accurate predictions, achieving perfect

precision, recall, F1-score, and AUC.

10.1.2. Ensembling SHAP and LIME XAI methods with RF model

We firstly calculate the feature importances using SHAP and LIME for the given instance

as locally. SHAP values are calculated using the shap values obtained from a trained

model (rf model), and the mean absolute SHAP values across samples are computed

for each feature. LIME explanations are generated using a LimeTabularExplainer object

(lime explainer) with the instance data and model predictions. Then, we combine the feature

importances from SHAP and LIME into an ensemble feature importance measure. This is

done by taking the average of the SHAP and LIME importances for each feature. As shown

in Figure 10.4, 10.5, and 10.3, we generate three subplots for SHAP, LIME, and ensemble

feature importances for the selected instance in the CM1 dataset.

We plot horizontal bar charts where the lengths of the bars represent the importances of

each feature and provide a visual comparison of feature importances obtained from SHAP,

LIME, and the ensemble, allowing for an intuitive understanding of feature importance

rankings. The feature names are displayed on the y-axis, and the importances are represented

by the lengths of the bars. Figures facilitate insights into which features are considered

most influential by each explanation method and how the ensemble method combines them.

According to the Figure 10.6, we can say that the most important features are IOComment,

uniqOp, IOBlank, Loc, B, etc.
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Figure 10.4 Importance scores of features as calculated by SHAP method for a specific instance with
RF

Figure 10.5 Importance scores of features as calculated by LIME method for a specific instance with
RF
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Figure 10.6 Importance scores of features as calculated by ENSEMBLE (SHAP+LIME) method for
a specific instance with RF

Before utilizing ensemble XAI methods (SHAP+LIME), the accuracy of the model was

calculated to be % 91 as shown in Figure 10.7. This accuracy score represents the proportion

of correct predictions made by the model. After applying ensemble XAI methods and

selecting the most important features, the accuracy of the model was recalculated. The

selected features were identified as IOComment, uniqOp, IOBlank, Loc, V, and B features.

The recalculated accuracy was found to be % 90.67, which suggests a slight decrease in

accuracy compared to the initial accuracy score. In summary, this case highlights the impact

of feature selection using ensemble XAI methods on the model’s accuracy. Despite a slight

decrease in accuracy after feature selection, it demonstrates the importance of refining the

model by focusing on the most relevant features identified through XAI techniques. By

reducing the number of features used in the model, it becomes easier to interpret the model’s

predictions and understand the factors contributing to those predictions. This is particularly

important in scenarios where model transparency and explainability are crucial. While

selecting a small number of features can offer advantages such as improved interpretability,

reduced complexity, and faster computation, it’s essential to strike a balance between
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simplicity and predictive performance. Thorough evaluation and validation are crucial to

ensure that the chosen feature set maintains or enhances the model’s predictive accuracy

while meeting interpretability and efficiency requirements.

Figure 10.7 Prediction probability result for a single instance before ensembling for RF

Overall, this subsection help visualize and compare feature importances obtained from

SHAP, LIME, and their ensemble, aiding in the interpretation and understanding of model

predictions and feature contributions. Despite the slight decrease in accuracy, this case

suggests that refining the model through feature selection is essential. By focusing on the

most relevant features identified through ensembled XAI techniques, the model becomes

more precise and interpretable. This underscores the importance of leveraging XAI methods

not only for model interpretation but also for improving model performance by selecting the

most informative features.

10.1.3. Ensembling ELI5 and SHAP XAI methods with GB model

In this section, we amalgamate SHAP and ELI5 methodologies to compute feature

importance scores at a global level using a GB classifier. By leveraging these XAI techniques,

we establish an ensemble ranking of features, which serves as a comprehensive assessment

of their relative importance in the prediction process. Subsequently, we exemplify the

iterative procedure of retraining a GB model using the top-ranked features identified through

ensemble importance scores. Through rigorous evaluation utilizing diverse performance

metrics and the ROC curve, we elucidate the impact of feature selection and ensemble

modeling on the predictive efficacy of the GB classifier in the context of software defect
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prediction. This holistic approach not only enhances the interpretability of the GB model

but also elucidates the intricate relationship between feature selection strategies, ensemble

modeling techniques, and predictive performance in the software defect prediction domain.

Table 10.3 presents the importance scores assigned to different features in the CM1 dataset

for predicting defects using a GB classifier. The importance scores calculated using two

different XAI methods: SHAP and ELI5 reflect the relative contribution of each feature to

the predictive performance of the model. Features with higher importance scores are deemed

more influential in the prediction process.

Table 10.3 Various features along with their importance scores calculated using two different XAI
methods: SHAP and ELI5 with GB classifier

Feature SHAP Importance ELI5 Importance SHAP Rank ELI5 Rank Ensemble Rank

loc 0.368 0.065 4.00 2.00 3.00

v(g) 0.112 0.002 17.00 17.00 17.00

ev(g) 0.046 0.004 19.00 15.00 17.00

iv(g) 0.245 0.006 6.00 13.00 9.50

n 0.113 0.012 16.00 9.00 12.5

v 0.200 0.014 8.00 7.00 7.50

l 0.148 0.005 14.00 14.00 14.00

d 0.170 0.018 11.00 6.00 8.50

i 0.490 0.035 3.00 5.00 4.00

e 0.106 -0.001 18.00 21.00 19.50

b 0.217 0.007 7.00 12.00 9.50

t 0.04 -0.001 20.00 20.00 20.00

IOCode 0.175 0.010 10.00 10.00 10.00

IOComment 0.528 0.064 1.00 3.00 2.00

IOBlank 0.156 0.012 12.00 8.00 10.00

IOCodeandComment 0.000 0.000 21.00 19.00 20.00

uniq Op 0.517 0.125 2.00 1.00 1.50

uniq Opnd 0.193 0.008 9.00 11.00 10.00

total Op 0.153 0.003 13.00 16.00 14.50

total Opnd 0.29 0.038 5.00 4.00 4.50

branchCount 0.127 0.002 15.00 18.00 16.50

120



Furthermore, we generate three distinct horizontal bar charts, depicting the importance ranks

of features calculated through various methods: SHAP, ELI5, and Ensemble with GB, as

depicted in the accompanying Figure 10.8, 10.9, and 10.10, respectively.

Figure 10.8 Importance ranks of features as calculated by ELI5 method with GB

Figure 10.9 Importance ranks of features as calculated by SHAP method with GB

This table and Figure 10.8, 10.9, and 10.10 present the feature importance scores and

ranks for the CM1 dataset, as calculated by two different methods: SHAP and ELI5. The

importance scores represent the relative significance of each feature in predicting defects,

with higher scores indicating greater importance.

In the following, we provide an interpretation of Table 10.3.
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Figure 10.10 Importance ranks of features as calculated by ENSEMBLE (ELI5+SHAP) method
with GB

1. Feature Importance:

• Table 10.3 presents the importance scores of various features derived from two

distinct methods: SHAP and ELI5.

• Each feature’s importance is ranked based on its importance score from each

method.

• Notably, features including uniqOp, IOComment, Loc, I, and etc. exhibit

relatively higher importance scores compared to others, indicating their greater

influence on the model’s predictions.

2. Ranking:

• The table includes the ranks assigned to each feature based on their importance

scores derived from both SHAP and ELI5 methods. A lower rank signifies

higher importance, with the features ranked closer to 1 being considered the

most influential. Features are ranked based on their importance scores from each

method, with a lower rank indicating higher importance, as illustrated in Figure

10.8, 10.9, and 10.10.

• The Ensemble Rank column in the Table represents the average rank of each

feature across both SHAP and ELI5 methods, offering a consolidated measure
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of feature importance. This ranking considers the combined importance from

both methods, offering a comprehensive assessment of each feature’s predictive

significance. For instance, features such as ’uniqOp’ and ’IOComment’

have notably high SHAP and ELI5 importance scores, resulting in low

ranks across both methods and the ensemble rank. Conversely, features

like ’IOCodeAndComment’ have importance scores of zero, indicating their

negligible contribution to defect prediction.

3. Interpretation:

• Features with lower ensemble rank values are deemed more crucial for predicting

defects in the dataset.

• For instance, uniqOp, with an ensemble rank of 1.50, is identified as one of the

most significant features for defect prediction.

• Conversely, features with higher ensemble rank values, such as

IOCodeAndComment, are regarded as less influential for prediction purposes.

4. Insights:

• The ensemble ranking offers a holistic perspective on feature importance by

leveraging multiple methods.

• It aids in prioritizing features for deeper analysis or inclusion in machine learning

models.

• The fusion of SHAP and ELI5 methodologies bolsters the reliability of feature

importance evaluation, thereby enhancing model interpretability and predictive

efficacy.

Overall, this table and figures provides valuable insights into the relative importance of

different features in predicting defects in the CM1 dataset, facilitating informed feature

selection and model refinement strategies.

123



After identifying the most influential features through the ensemble XAI model results for

the GB classifier, we proceed to retrain the model and reassess its performance metrics.

These metrics include accuracy, precision, recall, F1-score, and the AUC, detailed in Table

10.4. To facilitate feature selection, we leverage the ensemble importance scores obtained

earlier and select the top k features, where k is set to 6. Subsequently, we construct a new

feature matrix (X ensemble) comprising solely the chosen features and train a GB classifier

(gb model ensemble) using this refined set of features. To gauge the model’s efficacy, we

utilize the retrained ensemble model to predict outcomes on the test dataset and compute

diverse evaluation metrics, encompassing accuracy, precision, recall, F1-score, and AUC

based on these predictions. This sequential process enables us to showcase the efficacy

of feature selection, the subsequent model retraining with the selected features, and the

evaluation of ensemble model performance using an array of metrics. Such an approach aids

in assessing the ensemble method’s impact on enhancing model performance compared to

utilizing the entire feature set. Table 10.4 presents the performance metrics before and after

integrating SHAP and ELI5 explainability methods into the GB machine learning model.

Table 10.4 Performance metrics results before and after ensembling SHAP and ELI5 XAI methods
with GB

ML model Accuracy Recall Precision F-score AUC
GB (without using
XAI methods) 0.90 0.90 0.87 0.87 0.70

GB (with ensemble
XAI methods
(ELI5+SHAP)

0.97 0.73 1.00 0.85 1.00

The results in Table 10.4 indicate a significant improvement in the model’s performance after

ensembling compared to before ensembling, as explained in detail below:

• Before ensembling the XAI methods, the GB model achieved an accuracy of 90%.

However, after incorporating the ensemble XAI methods, the accuracy substantially

increased to 97%, indicating an enhancement in overall prediction accuracy.

• The recall metric measures the proportion of actual positives that were correctly

identified by the model. Prior to ensembling XAI methods, the GB model exhibited a
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recall of 90%. Post-ensembling, the recall decreased to 73%, suggesting that while the

model’s ability to identify defects decreased slightly, it remains relatively high.

• Precision reflects the proportion of true positive predictions among all positive

predictions made by the model. Before ensembling XAI methods, the precision of

the GB model was 87%. However, after integrating the ensemble XAI methods, the

precision increased to 100%, indicating that all positive predictions made by the model

were indeed correct.

• The F-score is the harmonic mean of precision and recall, providing a balance between

the two metrics. Before ensembling XAI methods, the GB model achieved an F-score

of 0.87. After ensembling, the F-score improved to 0.85, indicating a slight decrease

in overall balance between precision and recall, likely due to the decrease in recall

mentioned earlier.

• The AUC of the ROC curve measures the model’s ability to distinguish between

positive and negative classes. The GB model without XAI methods achieved an AUC

of 0.70. However, after incorporating the ensemble XAI methods, the AUC improved

to 1.00, suggesting an enhancement in the model’s ability to discriminate between

defective and non-defective instances.

.

In summary, the integration of SHAP and ELI5 XAI methods into the GB ML model led

to improvements in accuracy, precision, and AUC, albeit with a slight decrease in recall.

This suggests that while the model became more precise and accurate in its predictions, it

may have sacrificed a bit of its ability to identify all actual defects. Nonetheless, the overall

performance enhancements demonstrate the efficacy of ensembling XAI methods for defect

prediction with the GB model.
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10.1.4. Ensembling SHAP and LIME XAI methods with GB model

We begin by computing feature importances locally for a given instance using SHAP and

LIME methods. SHAP values are derived from the shap values obtained through a trained

GB model (gb model), followed by the calculation of mean absolute SHAP values across

samples for each feature. For LIME explanations, we utilize a LimeTabularExplainer object

(lime explainer) with the instance data and model predictions. Subsequently, we amalgamate

the feature importances obtained from SHAP and LIME into an ensemble feature importance

metric. This aggregation involves averaging the SHAP and LIME importances for each

feature. As illustrated in Figure 10.11, 10.12, and 10.13, three subplots are generated to

visualize the SHAP, LIME, and ensemble feature importances for the selected instance in the

CM1 dataset.

Figure 10.11 Importance scores of features as calculated by SHAP method for a specific instance
with GB

We generate horizontal bar charts depicting the feature importances obtained from SHAP,

LIME, and the ensemble, offering a visual comparison. These charts provide an intuitive

understanding of feature importance rankings, with feature names presented on the y-axis
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Figure 10.12 Importance scores of features as calculated by LIME method for a specific instance
with GB

Figure 10.13 Importance scores of features as calculated by ENSEMBLE (SHAP+LIME) method
for a specific instance with GB
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and importances represented by the lengths of the bars. The figures offer insights into the

most influential features identified by each explanation method and demonstrate how the

ensemble method amalgamates them. As shown in Figure 10.13, prominent features include

IOComment, uniqOp, uniqOpnd, I, IOBlank, B, among others.

Before incorporating ensemble XAI methods, the model achieved an accuracy of %87 for a

single instance as shown in Figure 10.14. However, after applying ensemble XAI methods

and selecting the most important features, the accuracy of the model was recalculated to be

%90. Therefore, the recalculated accuracy of %90 represents an improvement over the initial

accuracy score of %87.

Figure 10.14 Prediction probability result for a single instance before ensembling with GB

In summary, this case emphasizes the significance of employing ensemble XAI methods for

feature selection with GB as locally, showcasing their positive impact on model accuracy.

There is an increase in accuracy after the feature selection process, since the recalculated

accuracy of %90 represents an improvement over the initial accuracy score of %87. This

improvement underscores the effectiveness of refining the model by focusing on the most

influential features identified through XAI techniques. By streamlining the feature set, the

model’s interpretability is enhanced, allowing for a clearer understanding of the factors

driving predictions.

10.1.5. Ensembling ELI5 and SHAP XAI methods with NB model

In this section, we merge SHAP and ELI5 methodologies to assess feature importance

globally, employing a NB classifier. Utilizing these XAI techniques, we establish an
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ensemble ranking of features, providing a comprehensive evaluation of their importance in

the predictive process. We demonstrate the iterative process of retraining the NB model using

the top-ranked features identified through ensemble importance scores. Through rigorous

evaluation, including various performance metrics and the ROC curve, we elucidate the

impact of feature selection and ensemble modeling on the predictive efficacy of the NB

classifier in software defect prediction. This comprehensive approach not only enhances

the interpretability of the NB model but also elucidates the intricate relationship between

feature selection strategies, ensemble modeling techniques, and predictive performance in the

software defect prediction domain. Table 10.5 showcases the importance scores of different

features in the CM1 dataset for predicting defects using the NB classifier. The importance

scores, calculated using SHAP and ELI5 methods, reflect each feature’s relative contribution

to the model’s predictive performance. Higher importance scores indicate greater influence

in the prediction process.

Additionally, we produce three separate horizontal bar charts illustrating the importance

ranks of features determined using different methodologies: SHAP, ELI5, and Ensemble

with NB. These charts are presented in Figure 10.15, 10.16, and 10.17, respectively.

Figure 10.15 Importance ranks of features as calculated by ELI5 method with NB
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Table 10.5 Various features along with their importance scores calculated using two different XAI
methods: SHAP and ELI5 with NB classifier

Feature SHAP Importance ELI5 Importance SHAP Rank ELI5 Rank Ensemble Rank

loc 0.007 0.007 9.00 2.00 5.50

v(g) 0.004 0.006 13.00 3.00 8.00

ev(g) 0.002 0.000 15.00 11.50 13.25

iv(g) 0.004 -0.000 14.00 14.00 14.00

n 0.008 -0.001 8.00 15.00 11.5

v 0.007 0.004 10.00 5.00 7.50

l 0.001 0.000 18.00 11.50 14.75

d 0.006 -0.005 11.00 21.00 16.00

i 0.009 0.005 3.00 4.00 3.50

e 0.001 -0.003 16.00 19.50 17.75

b 0.000 0.000 19.00 11.50 15.25

t 0.001 -0.002 17.00 17.00 17.00

IOCode 0.000 -0.001 20.50 16.00 18.25

IOComment 0.011 0.008 1.00 1.00 1.00

IOBlank 0.008 -0.003 6.00 18.00 12.00

IOCodeandComment 0.000 0.000 20.50 11.50 16.00

uniq Op 0.008 -0.003 4.00 19.50 11.75

uniq Opnd 0.009 0.004 2.00 6.00 4.00

total Op 0.008 0.002 7.00 8.00 7.50

total Opnd 0.008 0.001 5.00 9.00 7.00

branchCount 0.006 0.002 12.00 7.00 9.50

The table, along with Figure 10.15, 10.16, and 10.17, showcases the feature importance

scores and ranks for the CM1 dataset, evaluated through SHAP and ELI5 methods. These

scores indicate the relative importance of each feature in defect prediction, with higher scores

denoting increased significance.

In the following, we provide an interpretation of Table 10.5.

1. Feature Importance:

• Table 10.5 displays the significance scores of different features obtained from

two separate approaches: SHAP and ELI5.
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Figure 10.16 Importance ranks of features as calculated by SHAP method with NB

• The ranking of each feature’s importance is determined by its respective score

from each method.

• Notably, features like IOComment, I, uniqOpnd, and others demonstrate

relatively higher importance scores, suggesting their stronger impact on the

model’s predictions.

2. Ranking:

• The table provides the ranks assigned to each feature based on their significance

scores obtained from both SHAP and ELI5 methods. A lower rank indicates

higher importance, with features closer to rank 1 considered the most influential.

Features are ranked according to their importance scores from each method, with

lower ranks indicating greater importance, as depicted in Figure 10.15, 10.16,

and 10.17.

• The Ensemble Rank column in the table indicates the average rank of each

feature across both SHAP and ELI5 methods, offering a unified measure of

feature importance. This ranking amalgamates the importance from both

131



Figure 10.17 Importance ranks of features as calculated by ENSEMBLE (ELI5+SHAP) method
with NB

methods, providing a comprehensive evaluation of each feature’s predictive

significance. For example, features like ’IOComment’ and ’I’ exhibit notably

high SHAP and ELI5 importance scores, resulting in low ranks across

both methods and in the ensemble rank. Conversely, features such as

’IOCodeAndComment’ possess importance scores of zero, indicating their

minimal contribution to defect prediction.

3. Interpretation:

• Features assigned lower ensemble rank values are considered more critical for

predicting defects within the dataset.

• For instance, ”IOComment,” ranked at 1.00 in the ensemble, emerges as the most

significant features for defect prediction.

• On the other hand, features with higher ensemble rank values, like

”IOCodeAndComment,” are seen as less influential for prediction purposes.

4. Insights:
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• The ensemble ranking provides a comprehensive view of feature importance by

integrating multiple XAI methods.

• It assists in prioritizing features for further examination or integration into

machine learning models.

• The combination of SHAP and ELI5 methodologies strengthens the reliability

of feature importance assessment, thus improving model interpretability and

predictive performance as shown below.

After identifying the most influential features through the ensemble XAI model results for

the NB classifier, we move forward to refine the model and evaluate its performance using

various metrics. These metrics, including accuracy, precision, recall, F1-score, and AUC,

are detailed in Table 10.6. Leveraging the ensemble importance scores obtained earlier, we

select the top k features, where k is set to 6, to facilitate feature selection. Subsequently,

we create a new feature matrix (X ensemble) containing only the chosen features and train a

NB classifier (nb model ensemble) using this refined set of features. To assess the model’s

effectiveness, we employ the retrained ensemble model to make predictions on the test

dataset and calculate diverse evaluation metrics, such as accuracy, precision, recall, F1-score,

and AUC, based on these predictions. This stepwise process allows us to demonstrate the

effectiveness of feature selection, subsequent model retraining with the selected features, and

the evaluation of ensemble model performance using a range of metrics. Such an approach

helps us understand the impact of the ensemble method on improving model performance

compared to using the entire feature set. Table 10.6 provides insights into the performance

metrics before and after incorporating SHAP and ELI5 explainability methods into the NB

machine learning model.

Table 10.6 presents the performance metrics before and after incorporating SHAP and ELI5

XAI methods into the NB classifier. Before ensembling XAI methods, the NB model

achieved an accuracy of %85, with recall, precision, F-score, and AUC values of %85,

%83, %84, and 0.72, respectively. After ensembling SHAP and ELI5 XAI methods, there

was a slight improvement in accuracy to %86. However, other metrics remained relatively
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Table 10.6 Performance metrics results before and after ensembling SHAP and ELI5 XAI methods
with NB

ML model Accuracy Recall Precision F-score AUC
NB (without using
XAI methods) 0.85 0.85 0.83 0.84 0.72

NB (with ensemble
XAI methods
(ELI5+SHAP)

0.86 0.85 0.83 0.84 0.72

unchanged, with recall, precision, F-score, and AUC values remaining consistent at %85,

%83, %84, and 0.7, respectively. This suggests that while ensembling XAI methods led to a

marginal enhancement in accuracy, it did not significantly impact other performance metrics.

10.1.6. Ensembling SHAP and LIME XAI methods with NB model

We initiate the process by computing feature importances locally for a specific instance using

SHAP and LIME techniques. SHAP values are computed based on the shap values extracted

from a trained NB model (nb model), and the mean absolute SHAP values across samples are

determined for each feature. For LIME interpretations, we employ a LimeTabularExplainer

object (lime explainer) with the instance data and model predictions. Following this, we

merge the feature importances obtained from SHAP and LIME into a unified ensemble

feature importance measure. This amalgamation entails averaging the SHAP and LIME

importances for each feature. Subsequently, three subplots are generated to visualize the

SHAP, LIME, and ensemble feature importances for the selected instance in the CM1 dataset,

as depicted in Figure 10.18, 10.19, and 10.20.

We create horizontal bar charts illustrating the feature importances derived from SHAP,

LIME, and the ensemble, facilitating visual comparisons. These charts offer an intuitive

representation of feature importance rankings, with feature names displayed on the y-axis

and importances indicated by the lengths of the bars. The figures provide insights into

the most influential features identified by each explanation method and showcase how the
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Figure 10.18 Importance scores of features as calculated by SHAP method for a specific instance
with NB

Figure 10.19 Importance scores of features as calculated by LIME method for a specific instance
with NB
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Figure 10.20 Importance scores of features as calculated by ENSEMBLE (SHAP+LIME) method
for a specific instance with NB

ensemble method combines them. Notably, as depicted in Figure 10.20, important features

include IOComment, T, E, Loc, uniqOpnd, totalOpnd, among others.

Before integrating ensemble XAI methods, the model attained a %100 accuracy for a single

instance, as depicted in Figure 10.21. However, following the application of ensemble XAI

methods and the selection of the most crucial features, the model’s accuracy was reevaluated

to be %87. Consequently, the revised accuracy of %87 reflects a decrease from the initial

accuracy score of %100.

Figure 10.21 Prediction probability result for a single instance before ensembling with NB
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This case suggests that the initial model achieved perfect accuracy (%100) for a single

instance before incorporating ensemble XAI methods. However, after applying these

methods and selecting the most important features, the model’s accuracy decreased to

%87. This decrease indicates that the model’s predictive performance became slightly less

accurate after feature selection and ensemble XAI methods were employed. Despite the

decrease in accuracy, the model may still provide valuable insights, as it focuses on the most

influential features for prediction. This scenario highlights the trade-off between accuracy

and interpretability, where a more interpretable model with selected features may sacrifice

some accuracy compared to a less interpretable model that uses all available features.

10.1.7. Ensembling ELI5 and SHAP XAI methods with MLP model

In this section, we leverage SHAP and ELI5 methods to evaluate feature importance on a

global scale, employing an MLP model. By utilizing these XAI techniques, we establish an

ensemble ranking of features, providing a comprehensive assessment of their significance in

the predictive process. We illustrate the iterative process of retraining the MLP model using

the top-ranked features identified through ensemble importance scores. Through thorough

evaluation, incorporating various performance metrics and the ROC curve, we elucidate the

impact of feature selection and ensemble modeling on the predictive efficacy of the MLP

classifier in software defect prediction. This comprehensive approach not only enhances the

interpretability of the MLP model but also sheds light on the complex relationship between

feature selection strategies, ensemble modeling techniques, and predictive performance in

the software defect prediction domain. Table 10.7 presents the importance scores of different

features in the CM1 dataset for predicting defects using the MLP classifier. These scores,

calculated using SHAP and ELI5 methods, reflect the relative contribution of each feature to

the model’s predictive performance, with higher scores indicating a greater influence in the

prediction process.
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Table 10.7 Various features along with their importance scores calculated using two different XAI
methods: SHAP and ELI5 with MLP classifier

Feature SHAP Importance ELI5 Importance SHAP Rank ELI5 Rank Ensemble Rank

loc 0.013 4.618e-02 7.00 5.00 6.00

v(g) 0.011 6.024e-03 9.00 11.00 10.00

ev(g) 0.000 4.016e-04 16.50 13.00 14.75

iv(g) 0.000 -4.440e-17 16.50 15.00 14.75

n 0.038 -2.570e-02 5.00 21.00 13.00

v 0.413 2.096e-01 2.00 2.00 2.00

l 0.006 -4.016e-04 11.00 16.50 13.75

d 0.009 8.835e-03 10.00 10.00 10.00

i 0.102 1.353e-01 3.00 3.00 3.00

e 0.504 2.904e-01 1.00 1.00 1.00

b 0.000 -4.016e-04 16.50 16.50 16.50

t 0.102 7.952e-02 4.00 4.00 4.00

IOCode 0.000 -6.827e-03 16.50 19.00 17.75

IOComment 0.013 2.851e-02 6.00 6.00 6.00

IOBlank 0.000 1.205e-02 16.50 9.00 12.75

IOCodeandComment 0.000 0.000e+00 16.50 14.00 15.25

uniq Op 0.000 2.008e-03 16.50 12.00 14.25

uniq Opnd 0.011 -1.365e-02 8.00 20.00 14.00

total Op 0.000 2.048e-02 16.50 7.00 11.75

total Opnd 0.000 1.406e-02 16.50 8.00 12.25

branchCount 0.000 -2.409e-03 16.50 18.0 17.25

Moreover, we generate three distinct horizontal bar charts demonstrating the importance

ranks of features assessed through various methodologies: SHAP, ELI5, and Ensemble with

MLP. These visualizations are depicted in Figure 10.22, 10.23, and 10.24, correspondingly.

The table, accompanied by Figure 10.22, 10.23, and 10.24, presents the feature importance

scores and ranks for the CM1 dataset, assessed using SHAP and ELI5 methods. These

scores reflect the relative importance of each feature in defect prediction, with higher scores

indicating greater significance. Based on the feature importance scores and ranks derived

from SHAP and ELI5 methods, as well as the ensemble rankings, we can interpret the

following:
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Figure 10.22 Importance ranks of features as calculated by ELI5 method with MLP

Figure 10.23 Importance ranks of features as calculated by SHAP method with MLP

1. Feature Importance:

• Table 10.7 exhibits the significance scores of various features derived from two

distinct methods: SHAP and ELI5.

• The importance ranking of each feature is determined by its score from each

method.

• Features such as E and V are deemed highly important for predicting defects, as

they hold the top ranks across all methods, indicating their significant influence

on the model’s predictions.
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Figure 10.24 Importance ranks of features as calculated by ENSEMBLE (ELI5+SHAP) method
with MLP

2. Ranking:

• The table assigns ranks to each feature based on their significance scores obtained

from both SHAP and ELI5 methods. Lower ranks signify higher importance,

with features closer to rank 1 considered the most influential. Features are ranked

based on their importance scores from each method, with lower ranks indicating

greater importance. This ranking is illustrated in Figure 10.22, 10.23, and 10.24.

• The Ensemble Rank column in the table represents the mean rank of each

feature across both SHAP and ELI5 methods, serving as a consolidated measure

of feature importance. This ranking integrates the significance from both

methods, offering a comprehensive assessment of each feature’s predictive

relevance. For instance, features like ’E’ and ’V’ demonstrate notably high SHAP

and ELI5 importance scores, resulting in low ranks across both methods and in

the ensemble rank. Conversely, features such as ’IOCode’ hold importance scores

of zero, signifying their minimal impact on defect prediction.

3. Interpretation:

• Features assigned lower ensemble rank values are considered more critical for

predicting defects within the dataset.

140



• The feature importance rankings consistently prioritize E and V, suggesting their

consistent impact on the model’s performance.

• Conversely, features like IOComment and Loc also hold relatively high

importance scores, although they rank slightly lower compared to E and V.

• Features with lower ensemble ranks, such as N, L, uniqOpnd, and uniqOp, are

considered less impactful for prediction purposes, as they consistently rank lower

across all methods.

4. Insights:

• Overall, the ensemble ranking provides a consolidated view of feature

importance, considering the contributions from both SHAP and ELI5 methods,

thereby offering a comprehensive assessment of each feature’s predictive

significance.

Upon identifying the most influential features through the ensemble XAI model outcomes for

the MLP classifier, our next step involves refining the model and evaluating its performance

using various metrics. These metrics, encompassing accuracy, precision, recall, F1-score,

and AUC, are meticulously detailed in Table 10.8. Utilizing the ensemble importance

scores derived earlier, we opt to select the top k features, with k set at 6, to facilitate

the feature selection process. Following this selection, we construct a new feature matrix

(X ensemble) containing solely the chosen features and proceed to train an MLP classifier

(mlp model ensemble) using this refined set of features. To gauge the effectiveness of the

model, we employ the retrained ensemble model to predict outcomes on the test dataset

and calculate diverse evaluation metrics, such as accuracy, precision, recall, F1-score, and

AUC, based on these predictions. This systematic process allows us to demonstrate the

effectiveness of feature selection, subsequent model retraining with the selected features,

and the evaluation of ensemble model performance using a range of metrics. Such an

approach facilitates an understanding of the impact of the ensemble method on improving

model performance compared to using the entire feature set. Table 10.8 presents insights into
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the performance metrics before and after integrating SHAP and ELI5 explainability methods

into the MLP machine learning model.

Table 10.8 Performance metrics results before and after ensembling SHAP and ELI5 XAI methods
with MLP

ML model Accuracy Recall Precision F-score AUC
MLP (without using
XAI methods) 0.89 0.89 0.81 0.85 0.32

MLP (with ensemble
XAI methods
(ELI5+SHAP)

0.90 0.89 0.81 0.85 0.37

Table 10.8 illustrates the performance metrics before and after integrating SHAP and ELI5

XAI methods into the NB classifier. Initially, without ensembling XAI methods, the NB

model achieved an accuracy of %89, accompanied by recall, precision, F-score, and AUC

values of %89, %81, %85, and 32%, respectively. Following the incorporation of SHAP and

ELI5 XAI methods, a slight improvement in accuracy to %90 was observed. However, the

other metrics, including recall, precision, F-score, and AUC, remained relatively consistent at

%85, %83, %84, and 37%, respectively. This suggests that while ensembling XAI methods

resulted in a marginal accuracy enhancement, it had minimal impact on other performance

metrics.

10.1.8. Ensembling SHAP and LIME XAI methods with MLP model

We commence the process by locally computing feature importances for a specific instance

using SHAP and LIME methodologies. SHAP values are derived from the shap values

extracted from a trained MLP model (mlp model), and the mean absolute SHAP values

across samples are calculated for each feature. For LIME interpretations, we utilize a

LimeTabularExplainer object (lime explainer) with the instance data and model predictions.

Following this, we combine the feature importances obtained from SHAP and LIME into

a consolidated ensemble feature importance metric. This fusion involves averaging the

SHAP and LIME importances for each feature. Subsequently, three subplots are generated
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to visualize the SHAP, LIME, and ensemble feature importances for the selected instance in

the CM1 dataset, as depicted in Figure 10.25, 10.26, and 10.27.

Figure 10.25 Importance scores of features as calculated by SHAP method for a specific instance
with MLP

Figure 10.26 Importance scores of features as calculated by LIME method for a specific instance
with MLP

Horizontal bar charts are generated to visually depict the feature importances obtained from

SHAP, LIME, and the ensemble, allowing for easy comparisons. These charts present an
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Figure 10.27 Importance scores of features as calculated by ENSEMBLE (SHAP+LIME) method
for a specific instance with MLP

intuitive overview of feature importance rankings, with feature names showcased on the

y-axis and importances represented by the lengths of the bars. The figures shed light on

the most influential features identified by each explanation method and demonstrate the

ensemble method’s integration of these findings. Particularly noteworthy, as illustrated in

Figure 10.27, prominent features encompass E, V, T, I IOComment, Loc, among others.

Prior to integrating ensemble XAI methods, the model achieved a %100 accuracy for a single

instance, as illustrated in Figure 10.28. However, after applying ensemble XAI methods and

identifying the most crucial features, the model’s accuracy was reassessed to be %190. Thus,

the updated accuracy of %190 indicates a decline from the initial accuracy score of %100.

The decrease in accuracy from %100 to %90 after applying ensemble XAI methods suggests

that the feature selection process may have had a detrimental effect on the model’s predictive

performance. While the ensemble XAI methods helped identify the most crucial features, it’s

possible that the selected features did not adequately represent the underlying patterns in the

data, leading to a reduction in predictive accuracy. This could be due to several factors, such
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Figure 10.28 Prediction probability result for a single instance before ensembling with MLP

as the complexity of the feature interactions or the presence of noise in the data. It highlights

the importance of carefully evaluating the impact of feature selection techniques on model

performance and considering alternative approaches to improve predictive accuracy.

In addition, the findings from the NB and MLP local ensembling results reveal a notable

pattern. Initially, the model achieved perfect accuracy (%100) for a single instance before

integrating ensemble XAI methods. However, after applying these methods and selecting the

most significant features, the model’s accuracy decreased to %87 and %90, respectively. This

observation suggests a slight decline in predictive performance following feature selection

and ensemble XAI methods. Despite this decrease, the model’s focus on crucial features

may still offer valuable insights. It highlights the delicate balance between accuracy and

interpretability, where opting for a more interpretable model with selected features may entail

a slight compromise in accuracy compared to a less interpretable model using all available

features.

Indeed, the decision regarding the trade-off between performance and interpretability hinges

on individual requirements or preferences for the model. If maximizing predictive accuracy

is paramount, then utilizing all available features without ensembling XAI methods may

be preferable. However, if interpretability is of greater importance, opting for a more

interpretable model with reduced features through ensembling XAI methods may be the

preferred choice. This approach enables a clearer understanding of the model’s predictions

by focusing on the most influential features. Therefore, the decision should align with the

specific needs or objectives of the task at hand.
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10.2. Comparative Analysis with Previous Studies Regarding Accuracy

Table 10.9 illustrates a comparative analysis encompassing various ML methods employed

in antecedent investigations. Our investigation entailed a comprehensive comparison of

several ML methods that were previously regarded as state-of-the-art, such as RF, GB,

NB, and MLP. These methods were scrutinized on our designated dataset, CM1. Our aim

was to enhance ML models’ performance and interpretability through comparative analysis

employing various state-of-the-art ML models and our ensembling XAI methods. Upon

evaluation, our investigated methods demonstrated notable efficacy, exhibiting enhancements

in accuracy compared to preceding state-of-the-art methods.

This table presents a comparison of accuracy results obtained from various ML techniques

applied to the CM1 dataset across different research studies. The first column indicates the

dataset, followed by ML techniques used in previous studies along with their corresponding

accuracy values reported in those studies. Additionally, the table includes accuracy results

from our study both before and after incorporating ensemble XAI methods.

• Dataset: Indicates the dataset being analyzed, in this case, CM1.

• ML Techniques: Lists various ML techniques used in the studies (RF, GB, NB, MLP).

• Accuracy (Research References): Shows the reported accuracy values from previous

research studies.

• Accuracy (Our Study) (without Ensemble XAI): Displays the accuracy results from

our study without employing ensemble XAI methods.

• Accuracy (Our Study) (with Ensemble XAI): Shows the accuracy results from our

study after incorporating ensemble XAI methods.

For the RF technique, previous research studies reported accuracy’s ranging from 0.70 to

0.99. In our study, the accuracy without ensemble XAI was 0.90, and with ensemble XAI, it

improved to 1.00. For the GB technique, previous studies reported accuracy’s ranging from
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Table 10.9 Comparison of the performance of different ML techniques across studies

Dataset ML
Techniques

Accuracy
(Research
References)

Accuracy
(Our Study
without
Ensemble XAI)

Accuracy
(Our Study
with
Ensemble XAI)

CM1

RF

0.91 ([74])
0.89 ([75])
0.84 ([1])
0.89 ([76])
0.85 ([77])
0.70 ([78])
0.88 ([79])
0.83 ([80])
0.99 ([81])

0.90 1.00

GB

0.90 ([74])
0.83 ([1])
0.86 ([82])
0.80 ([67])

0.90 0.97

NB

0.82 ([75])
0.81 ([1])
0.85 ([76])
0.86 ([77])
0.74 ([78])
0.87 ([79])
0.94 ([81])
0.52 ([67])

0.85 0.86

MLP

0.87 ([75])
0.82 ([1])
0.89 ([76])
0.89 ([79])

0.89 0.90

0.80 to 0.90. In our study, the accuracy without ensemble XAI was 0.90, and with ensemble

XAI, it increased to 0.97. Similar comparisons are provided for the NB and MLP techniques.

Overall, the table provides insights into how different ML techniques performed on the CM1

dataset in previous studies compared to our study, highlighting the impact of ensemble XAI

methods on improving accuracy in most cases. As a result, our study demonstrates the

potential benefits of incorporating ensemble XAI methods in machine learning modeling,

leading to improved accuracy and enhanced interpretability.
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11. DISCUSSION

This doctoral thesis presents a comprehensive investigation into enhancing the

interpretability and transparency of ML models in the domain of SDP through

Model-Agnostic XAI methods. The primary objective is to elucidate the decision-making

processes of ML models, both at individual (local) and global levels, thus bridging the

gap between predictive power and comprehensibility demanded by stakeholders in the SDP

domain.

Our research adopts an iterative exploratory approach, starting with a ”Systematic Literature

Review on Software Quality for AI-based Software”, encompassing four distinct case studies

aimed at enhancing SDP models. Each case study builds upon the insights gained from

its predecessors, resulting in a cumulative understanding of the complex interplay between

ML models and XAI methods in the context of defect prediction. The iterative exploratory

approach adopted across the four case studies has provided valuable insights into the

development and enhancement of SDP models. By systematically building upon previous

findings and methodologies, we have advanced our understanding of the role of XAI in defect

prediction. Moving forward, this iterative process lays the foundation for future research

aimed at further refining and optimizing SDP models for real-world applications.

The methodological approach adopted involves an iterative and exploratory process, utilizing

XAI techniques such as ELI5, SHAP, and LIME, among others. These techniques are

systematically applied across multiple case studies, each focusing on specific aspects

of model interpretability and transparency in SDP. Through iterative refinement and

exploration, the research uncovers insights into the importance of features, contributions

to individual predictions, and overall model decisions.

Furthermore, ensemble modeling techniques are integrated into the iterative process,

allowing for the amalgamation of feature importance scores obtained from diverse XAI

methods. This iterative and exploratory approach not only optimizes predictive accuracy but

also ensures the preservation of model interpretability throughout the enhancement process.
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The findings from Case Study 1 shed light on the importance of explainability in

AI-based software systems, particularly in the context of software defect prediction. The

implementation of post-hoc model-agnostic methods, namely ELI5, LIME, and SHAP,

over a Gradient Boosting model provided valuable insights into both local and global

explanations. These explanations are crucial for enhancing transparency, reducing bias, and

building trust in AI-based systems. Our analysis revealed that all three methods—ELI5,

LIME, and SHAP—consistently provided explanations that were aligned with each other.

This consistency underscores the reliability of the explanations generated by these XAI

techniques, thereby instilling confidence in the decision-making process of the AI-based

software. The insights gained from Case Study 1 pave the way for future research endeavors.

One potential avenue for exploration is the analysis of different ML and XAI techniques over

more complex software datasets. Additionally, leveraging explanations obtained from XAI

techniques to improve ML model performance represents a promising direction for future

investigations.

The findings from Case Study 1 underscore the critical role of explainable AI in software

defect prediction. As we transition to Case Study 2, which focuses on the development of an

Explainable AI Framework for Software Defect Prediction, we aim to build upon the insights

gained from the results of Case Study 1. By leveraging the lessons learned and best practices

identified in Case Study 1, we seek to enhance the interpretability and transparency of ML

models for defect prediction in Case Study 2. Through the integration of advanced XAI

techniques and the refinement of our framework, we aspire to address the evolving needs and

challenges in the field of AI-based software development.

The findings from Case Study 2 highlight the critical role of explainability in software

engineering, particularly in the context of defect prediction and software quality. Leveraging

the KC2 defect prediction dataset, our study explored the explanations provided by five

different ML models— RF, GB, NB, MLP, and NN—using six distinct explainability

methods. This comprehensive analysis offered valuable insights into the factors influencing

software defects and provided actionable guidance for improving software quality.
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The utilization of multiple explainability techniques offered several advantages in the context

of defect prediction and software quality. These techniques provided complementary

insights, enabling a comprehensive understanding of the underlying factors driving software

defects. By leveraging a diverse set of explainability methods, our study encompassed a

broad spectrum of perspectives, enriching our analysis and enhancing the reliability of our

findings.

The field of explainability in software engineering is dynamic and continues to evolve

rapidly. Our study identified several promising directions for future research and

development in this domain. These include advancing techniques for explainability,

addressing challenges posed by black-box models, evaluating the effectiveness of

explainability methods, integrating explainability into development processes, tailoring

explanations to user needs, and conducting user studies to assess the impact of explanations

on software quality.

As we transition to Case Study 3, which focuses on applying XAI methods for feature

selection and outlier detection in software defect prediction, we aim to build upon the insights

gained from the results of Case Study 2. By leveraging the lessons learned and best practices

identified in Case Study 2, we seek to further enhance the transparency, trustworthiness,

and effectiveness of ML models in improving software quality. Through the integration of

advanced XAI techniques and the refinement of our methodologies, we aspire to address the

evolving challenges in the field of software defect prediction and contribute to the ongoing

advancement of software engineering practices.

The findings from Case Study 3 delves into a critical gap prevalent in traditional

feature selection and outlier detection methodologies within the SDP domain. Traditional

approaches often operate opaquely, leaving unanswered questions about the underlying

rationale behind feature selection or outlier identification. This lack of transparency not only

impedes the interpretability of models but also raises concerns regarding their reliability and

trustworthiness. Through our work, we aimed to address these limitations by leveraging XAI

techniques to bring clarity and understanding to these processes.
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Our meticulous examination of traditional methods underscored their inherent opacity and

the consequent lack of insight into the decision-making process. In contrast, our approach

prioritized transparency and interpretability, utilizing ELI5, SHAP, and LIME to provide

clear and comprehensible explanations for feature selection and outlier detection decisions.

By doing so, we not only enhance the interpretability of models but also foster trust and

confidence in the predictive outcomes generated by these models.

Our findings not only highlight the inadequacies of traditional black-box methods but

also underscore the transformative potential of XAI techniques in revolutionizing the SDP

landscape. By elucidating the decision-making process and enhancing model interpretability,

our approach fosters greater accountability and transparency in software defect prediction.

This not only empowers stakeholders to make informed decisions but also facilitates

collaboration between domain experts and data scientists, leading to more robust and

effective defect prediction models.

Our empirical analysis provides novel insights into the strengths and limitations of each

XAI method, offering valuable guidance on their practical applicability within the SDP

domain. By rigorously assessing the impact of these methodologies on defect prediction

model performance, we ensure a comprehensive evaluation encompassing all critical aspects

of model interpretability and reliability.

The feature selection process, executed with meticulous care using ELI5 and SHAP, offered

a comprehensive analysis of feature importance and model interpretability across a diverse

range of models including RF, GB, NB, and MLP. This comprehensive examination not only

sheds light on the relative importance of features but also facilitates a deeper understanding

of model behavior and performance characteristics across different algorithms.

Moreover, our pioneering implementation of LIME for outlier detection represents a

significant contribution to the SDP domain. By employing LIME, we were able to delve

deeper into model behavior and identify anomalous instances crucial for robust defect

prediction. This approach not only enhances the reliability of defect prediction models
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but also offers valuable insights into the underlying data distribution and model decision

boundaries.

Outlier detection using XAI methods offers improved interpretability, flexibility, granularity,

and robustness compared to traditional approaches in generic data science. These advantages

make XAI methods valuable tools for understanding and addressing outliers in various

domains. XAI methods provide explanations for outlier classifications, enabling users to

understand the factors contributing to outlier detection decisions. This transparency enhances

trust in the outlier detection process and helps domain experts validate the relevance of

detected anomalies. Traditional outlier detection methods often lack interpretability, making

it challenging to understand the rationale behind outlier classifications [83]. In addition, XAI

methods are model-agnostic, meaning they can be applied to any machine learning model

regardless of its complexity or underlying algorithm. This flexibility allows users to interpret

the decisions of various outlier detection models, facilitating comparisons between different

approaches. In contrast, traditional outlier detection methods are often specific to certain

algorithms or assumptions, limiting their applicability across diverse datasets and models

[84].

Furthermore, our study contributes to advancing the broader field of ML interpretability by

demonstrating the practical applicability of ELI5, SHAP, and LIME in a real-world context.

The insights gained from our empirical analysis provide valuable guidance for researchers

and practitioners seeking to leverage XAI techniques for enhancing model transparency and

reliability across various domains.

In summary, by synthesizing and presenting these findings, we significantly enriched

the understanding of ELI5, SHAP, and LIME’s role in enhancing SDP models,

providing valuable contributions to the field of software engineering. Through rigorous

experimentation and analysis driven by our leadership, we demonstrated the inadequacies

of traditional methods and showcased the effectiveness of our XAI-driven approach. By

shining a light on the black box of traditional techniques, we uncovered the shortcomings

and highlighted the need for more transparent and interpretable methodologies in SDP.
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Building upon the insights gained from Case Study 3, future research in Software Defect

Prediction could explore several promising avenues for advancement and refinement of

methodologies. One potential direction is the extension of XAI techniques such as ELI5,

SHAP, and LIME to different domains beyond SDP, such as healthcare, finance, or climate

science, where interpretability and outlier detection are crucial. Investigating strategies for

weighting and aggregating explanations from different XAI methods could also be explored,

potentially leading to the development of hybrid approaches that leverage the strengths of

multiple XAI techniques for defect prediction datasets.

As we transition to Case Study 4, which focuses on enhancing Software Defect Prediction

Modeling through Ensemble XAI Methods, we aim to build upon the foundations laid in

Case Study 3. By leveraging the insights and methodologies developed in Case Study 3, we

seek to further refine and optimize our approach to defect prediction modeling. Through the

integration of ensemble XAI methods and the exploration of novel techniques, we aspire to

advance the state-of-the-art in SDP methodologies and contribute to the ongoing evolution

of software engineering practices.

Our study has delved into the realm of software defect prediction with the objective

of enhancing both predictive accuracy and interpretability through the integration of

ensemble XAI methods within Case Study 4. By leveraging SHAP, ELI5, and LIME

techniques alongside RF, GB, NB, and MLP models, we have explored novel avenues for

improving defect prediction model performance. Our study unveils significant implications

for both academic research and industrial applications. By exploring the integration of

ensemble XAI methods, such as SHAP, ELI5, and LIME, within the realm of SDP, we

offer novel insights. Our findings not only introduce a pioneering approach but also

demonstrate its efficacy in enhancing the performance of defect prediction models. Through

meticulous experimentation and analysis, we underscore how this approach enhances both

interpretability and predictive accuracy in defect prediction.

In the realm of SDP, accurately identifying potential defects is crucial for ensuring software

quality and reliability. Yet, conventional ML models often lack transparency, posing
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challenges for developers and project managers in understanding the underlying factors

driving defect predictions. Our integration of ensemble XAI methods addresses this

challenge by providing interpretable insights into the features significantly influencing defect

predictions.

Our methodological approach follows an iterative and exploratory path, employing XAI

methods like ELI5, SHAP, and LIME across various ML methods. This iterative refinement

and exploration unravel insights into feature importance, individual prediction contributions,

and overall model decisions.

The flow diagram depicted in Figure 11.1 embodies the principles of design science research,

delineating the XAI-enabled SDP process tailored for NASA’s CM1 dataset. Serving as

a structured implementation blueprint, it paves the way for future empirical studies. Our

research aligns with the iterative problem-solving ethos of design science research by

integrating XAI methods with ML models and domain-specific datasets, thereby enhancing

decision-making in SDP using transparent and interpretable ML techniques.

Ensemble modeling techniques are seamlessly integrated into the iterative process,

facilitating the amalgamation of feature importance scores derived from diverse XAI

methods. This iterative and exploratory approach not only optimizes predictive accuracy but

also ensures the preservation of model interpretability throughout the enhancement process

Through meticulous experimentation and analysis, we have demonstrated the effectiveness

of ensembling XAI methods in uncovering the underlying patterns within software metrics.

By doing so, we have facilitated more accurate and reliable defect predictions. Our

findings underscore the importance of balancing predictive performance with interpretability,

particularly in the software fect prediction domain, where transparency and insight into

prediction factors are crucial for informed decision-making.

The integration of ensemble XAI methods offers a promising approach to addressing the

inherent trade-offs between predictive accuracy and interpretability. By identifying the most

influential features while maintaining model transparency, we provide developers and project
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Process of ML models for Predictive Performance

1- Importing necessary libraries
2- Defining parameter grids for hyperparameter tuning
3- Splitting the dataset into training and testing sets
4- Creating an ML classifier (rf_model, gb_model, nb_model, mlp_model).
5- Using GridSearchCV for hyperparameter optimization
6- Training the ML models with the best hyperparameters
7- Evaluating the performance of the ML models after hyperparameter tuning using
accuracy, precision, recall, f-score, and AUC scores

     Ensembling ELI5 and SHAP XAI methods with each ML model

Calculating feature importance scores with ELI5

Calculating feature importance scores with SHAP

Creating an ensemble ranking of features

Retraining an ML model using the selected features based
on ensemble importance scores

Reevaluating the ML model's performance using
accuracy, precision, recall, f-score, and AUC scores

    Ensembling SHAP and LIME XAI methods with each ML
model

Calculating the feature importances using SHAP

Calculate the feature importances using LIME

Combining the feature importances from SHAP and LIME into
an ensemble feature importance measure

Calculating accuracy before ensembling

Recalculating accuracy after applying ensemble XAI methods
and selecting the most important

features,

GLOBAL EXPLAINABILITY LOCAL EXPLAINABILITY

ITERATE THIS PROCESS 
FOR EACH ML MODEL 

(RF, GB, NB, MLP)

ITERATE THIS PROCESS 
FOR EACH ML MODEL 
(RF, GB, NB, MLP)

Comparative Analysis

Comparing the accuracy results before and after ensembling

Comparative Analysis

Comparing the ML model's performance before and after
ensembling using accuracy, precision, recall, f-score, and

AUC scores

Comparing with Previous Studies Regarding Accuracy

Figure 11.1 The flow diagram illustrates the XAI-enabled SDP process, tailored for NASA’s CM1
dataset.

managers with actionable insights to prioritize testing and maintenance activities, ultimately

enhancing software quality and reliability.

However, it’s essential to acknowledge the potential limitations and challenges associated

with ensembling XAI methods. These may include the need for careful evaluation of

trade-offs and the necessity for domain-specific adaptation. Future research endeavors could

focus on further refining ensemble XAI techniques, exploring additional machine learning

models, and investigating their applicability across diverse software engineering contexts.
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In summary, Case Study 4 contributes to advancing the field of software defect prediction

by introducing an innovative approach that integrates ensemble XAI methods to enhance

both predictive accuracy and interpretability. By bridging the gap between machine learning

models and human understanding, we pave the way for more transparent, reliable, and

effective defect prediction systems in software development practice.

To conclude, this research significantly contributes to the field of SDP by furnishing a

thorough understanding of ML model decision-making processes. It enhances model

interpretability and transparency, effectively addressing critical gaps in traditional feature

selection and outlier detection methodologies. Moreover, it offers valuable insights

into ensemble modeling approaches, elucidating their role in optimizing predictive

accuracy while maintaining interpretability. Validation of the developed methodologies is

conducted through rigorous empirical studies and comparative analyses, thus ensuring their

effectiveness and usability in real-world SDP scenarios.
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12. THREATS TO VALIDITY

Before delving into the findings of our study, it is imperative to acknowledge and address

potential validity threats that may affect the robustness and generalizability of our results.

By identifying and mitigating these threats, we aim to ensure the reliability and validity

of our conclusions. In this section, we discuss various validity threats, including internal,

external, construct, and reliability validity, and outline the actions taken to minimize their

impact on our study. Through a comprehensive evaluation of validity threats, we strive

to enhance the credibility and trustworthiness of our research findings in the domain of

software defect prediction.

Internal Validity

• By using techniques such as cross-validation, we regularize ML models to prevent

overfitting and improve generalizability.

• We perform hyperparameter tuning using techniques like grid search cross validation

while ensuring robust validation methods to avoid bias in parameter selection.

• We conduct thorough data preprocessing, including handling missing values and

document preprocessing steps to ensure transparency and reproducibility.

• To mitigate validity threats in the context of using ELI5 and SHAP for feature selection

and LIME for outlier detection, we conducted comparative analysis and baseline

Models.

• We compared the performance of SHAP and ELI5 against established baseline models

and traditional techniques for feature selection.

External Validity
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• We ensure the external validity of our study by validating model performance

across multiple ML models and comparing our results with and without ensembling

XAI methods. Additionally, we establish the external validity of our findings

by benchmarking our performance metrics against studies from the literature that

predominantly concentrate on the performance of traditional ML models. This

comprehensive approach enables us to evaluate the generalizability of ensembling XAI

techniques in enhancing defect prediction model performance, while also providing

contextual insights by comparing our results with established methodologies in the

field.

• The generalizability of the findings to other software defect prediction contexts may

be a concern. The dataset used in the study may not fully represent the diversity of

software projects, development practices, and defect types encountered in real-world

scenarios, limiting the external validity of the findings

Construct Validity

• Despite their strengths, ELI5, SHAP, and LIME possess certain limitations, such as

computational complexity and potential biases in interpretations, warranting cautious

utilization and further research.

• The interpretability provided by ELI5, SHAP, and LIME, although comprehensive and

detailed, might be too complex for non-technical stakeholders, contrasting with some

traditional methods that offer simpler, albeit less detailed, explanations.

• We standardize the implementation of XAI methods and provide detailed

documentation to ensure consistency and reproducibility. We validate the robustness

of XAI techniques through cross-validation.

• We evaluate model complexity and considered simpler models when possible to

enhance interpretability. We used feature selection technique to reduce complexity

while maintaining predictive performance.
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Reliability

• We document all steps of the modeling process, including data preprocessing, model

training, hyperparameter tuning, and evaluation.

• We address missing values through robust data preprocessing techniques.
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13. CONCLUSION

In conclusion, this doctoral thesis has adopted an iterative and exploratory approach,

beginning with a comprehensive ”Systematic Literature Review on Software Quality

for AI-based Software” and progressing through four distinct case studies focused on

enhancing Software Defect Prediction (SDP) models. Each case study serves as a building

block, leveraging insights gained from its predecessors to deepen our understanding of the

intricate relationship between Machine Learning (ML) models and eXplainable Artificial

Intelligence (XAI) methods within the context of defect prediction. Through this iterative

process, we have not only advanced the development and refinement of SDP models but also

illuminated the pivotal role of XAI in augmenting predictive accuracy and interpretability.

By systematically building upon prior findings and methodologies, we have laid a solid

foundation for future research endeavors aimed at further optimizing SDP models for

real-world applications. Our thesis underscores the importance of embracing iterative

exploration in addressing the evolving challenges of AI-based software development, thereby

contributing to the advancement of both theory and practice in the field.

Firstly, we performed a systematic literature review for software quality of AI-based

software. The main goal of this study is searching for ”How is quality defined or investigated

for the AI-based software?.” To answer this research goal, we searched within six different

databases for determining the furthest appropriate papers on the topic and selected 29

primary studies. After all, we analyzed the data collected from these studies to answer

the 23 research questions under five main headings. This SLR is among the first exhaustive

reviews that examined the scope and discussion of quality characteristics and their assurance,

challenges, solutions, and existing quality models for the software quality in AI-based

software in the period from 1988 to 2020. Based on the findings from this SLR, we

provided important insights about the challenges of AI-based software by categorizing them

with different perspectives such as ”Software Quality”, ”Software Development”, ”Design”,

”Social Aspect”, and ”Testing”, traditional or AI-based software quality attributes, quality

models, and the domain or type of the software that are subjected to the primary studies. The
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results of this study are useful for observing the challenges about explainability for AI-based

software. Because in contrast to traditional engineering-based approaches, ML systems

often adopt a scientific-based development methodology. This shift introduces a level of

uncertainty into system outputs, responses, and decision-making processes, emphasizing the

importance of explainability.

By addressing the challenges related to explainability in AI-based software, the culmination

of our research endeavors across all four case studies has yielded valuable insights and

advancements in the domain of SDP through XAI methods. Each case study has contributed

to our understanding of the decision-making processes underlying ML models, enhancing

transparency and interpretability while optimizing predictive accuracy. Contributions and

Importance of the Findings:

1. Case Study 1: Explainable AI for Software Defect Prediction with Gradient

Boosting Classifier: In this study, we applied three post-hoc model-agnostic

methods—ELI5, LIME, and SHAP—to a Gradient Boosting model for software

defect prediction, examining both local and global explanations. Our findings

indicate that all three methods consistently provide explanations that align with each

other. However, there remains substantial potential for enhancing the reliability

and robustness of eXplainable Artificial Intelligence (XAI) methods in the AI-based

software, particularly within the ML industry. Addressing the limitations inherent in

these methods is crucial, necessitating further development efforts. Generally, SHAP is

favored for both local and global explanations; however, in cases where its computation

cost becomes prohibitively high due to exponential runtime, ELI5 may serve as a

suitable alternative for global explanations, and LIME for local ones.

Looking ahead, our future research aims to extend our analysis to encompass various

ML and XAI techniques applied to more intricate software datasets. Furthermore,

we plan to leverage the insights gleaned from these explanations to enhance ML

model performance. This may involve exploring different approaches, such as the
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construction of new feature sets based on the explanations provided, thus facilitating a

deeper understanding and optimization of AI-based software systems.

2. Case Study 2: Explainable AI Framework For Software Defect Prediction:

Explainability plays a pivotal role in software engineering, particularly within the

realm of defect prediction and software quality assessment, as demonstrated by the

significance attributed to the KC2 defect prediction dataset. This dataset, a widely

recognized benchmark in defect prediction research, encompasses 21 software metrics

alongside binary labels indicating defect presence. The ability to elucidate the

predictions of defect prediction models is paramount for comprehending the intricacies

influencing software quality. Through the analysis of these explanations, software

engineers gain valuable insights into the specific metrics or patterns contributing to

defects. Armed with this knowledge, they can effectively prioritize efforts towards

improving critical aspects of software, such as code complexity, coupling, and coding

practices, thus bolstering software quality, reducing defects, and enhancing overall

reliability and maintainability.

In our study, we endeavor to comprehensively understand five distinct machine

learning (ML) models—RF, GB, NB, MLP, and NN—both locally and globally. To

achieve this, we leverage six diverse explainability methods—SHAP, LIME, ELI5,

Partial Dependence Plots (PDP), Anchor, and Protodash. The utilization of multiple

explainability techniques presents numerous advantages in the context of defect

prediction and software quality assessment, facilitating a deeper comprehension of the

factors underpinning software defects and offering actionable insights into software

quality enhancement strategies.

The landscape of explainability in software engineering is dynamic and continually

evolving. As such, there exist numerous avenues for future research and development

endeavors, spanning various ML models, explainability methods, and software

quality considerations. The trajectory of explainability in software engineering

involves advancing techniques, tackling challenges associated with black-box models,

evaluating explainability methodologies, integrating explainability into development
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workflows, tailoring explanations to user requirements, and conducting user-centric

studies to gauge the impact of explanations on software quality. By embracing

and exploring these directions, we can further augment the transparency, reliability,

and efficacy of ML models in fortifying software quality standards. Through the

implementation of post-hoc model agnostic methods such as ELI5, LIME, and SHAP,

we elucidated the importance of local and global explanations in SDP. By answering

research questions related to feature importance and its impact on individual and

overall predictions, we laid the groundwork for subsequent studies.

3. Case Study 3: Applying XAI Methods for Feature Selection and Outlier Detection

in Software Defect Prediction: As we transition to Case Study 3, which focuses on

applying XAI methods for feature selection and outlier detection in software defect

prediction, we aim to build upon the insights gained from the results of Case Study 2.

By leveraging the lessons learned and best practices identified in Case Study 2, we seek

to further enhance the transparency, trustworthiness, and effectiveness of ML models

in improving software quality. Through the integration of advanced XAI techniques

and the refinement of our methodologies, we aspire to address the evolving challenges

in the field of software defect prediction and contribute to the ongoing advancement of

software engineering practices.

In this study, we addressed a critical gap in conventional feature selection and

outlier detection methods within the realm of SDP. Traditional approaches often

lack transparency and fail to provide clear insights into the rationale behind feature

selection or outlier identification. In contrast, our work prioritized transparency

and comprehensibility through the application of XAI techniques. By scrutinizing

the limitations of conventional methods, we highlighted their opaque nature and the

absence of insight into decision-making processes. This stands in stark contrast to our

approach, which leveraged ELI5, SHAP, and LIME on the PC1 SDP dataset to provide

transparent and interpretable results.

The meticulous execution of feature selection using ELI5 and SHAP, across various

models such as RF, GB, NB, and MLP, ensured a thorough examination of feature
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importance and model interpretability. Furthermore, our pioneering use of LIME

for outlier detection deepened our understanding of model behavior, which is crucial

for robust defect prediction. Through empirical analysis, we not only evaluated the

strengths and limitations of each XAI method but also comprehensively assessed their

impact on defect prediction model performance. By synthesizing these findings, we

made significant contributions to understanding the roles of ELI5, SHAP, and LIME in

enhancing SDP models, while also shedding light on the shortcomings of traditional

methods and advocating for more transparent and interpretable methodologies in SDP.

Future research stemming from this study, which utilized ELI5 and SHAP for

feature selection and LIME for outlier detection, could explore several promising

avenues to further advance and refine SDP methodologies. Additionally, investigating

strategies for weighting and aggregating explanations from different XAI methods,

and subsequently integrating these strategies to create a hybrid approach that harnesses

the strengths of various XAI methods for defect prediction datasets, presents another

potential avenue for future exploration.

4. Case Study 4: Enhancing Software Defect Prediction Modeling through

Ensemble XAI Methods: In conclusion, our study delves into the domain of

software defect prediction with the aim of improving both predictive accuracy and

interpretability through the integration of ensemble XAI methods. By harnessing

SHAP, ELI5, and LIME techniques alongside RF, GB, NB, and MLP models, we

explore innovative pathways to enhance defect prediction model performance.

Through meticulous experimentation and analysis, we showcase the efficacy

of ensembling XAI methods in revealing underlying patterns within software

metrics, thereby enabling more precise and dependable defect predictions. Our

findings underscore the importance of striking a balance between predictive

power and interpretability, particularly within the software development domain,

where transparency and insight into prediction factors are essential for informed

decision-making.
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Nevertheless, it is crucial to acknowledge the potential limitations and challenges

associated with ensembling XAI methods, including the necessity for careful

evaluation of trade-offs and the need for domain-specific adaptation. Future research

endeavors could concentrate on further refining ensemble XAI methods, exploring

additional ML models, and examining their applicability across diverse software

engineering contexts.

In summary, our study contributes to the advancement of SDP by introducing an

innovative approach that integrates ensemble XAI methods to enhance both predictive

accuracy and interpretability. By bridging the gap between ML models and human

understanding, we pave the way for more transparent, reliable, and effective defect

prediction systems in software development practices.

Looking ahead, future research aims to extend our analysis to encompass various ML

and XAI techniques applied to more intricate software datasets. Furthermore, leveraging

the insights gleaned from these explanations to enhance ML model performance is a

promising avenue for exploration. This may involve constructing new feature sets based

on the explanations provided, thus facilitating a deeper understanding and optimization of

AI-based software systems. In addition, investigating the effectiveness of different XAI

methods in explaining the decisions of LLM-Blackbox models across various tasks and

datasets, evaluating the performance of CodeBERT in sequential modeling tasks such as code

completion, code summarization, or code generation, assessing the feasibility and impact

of integrating XAI methods into ML-Ops processes for model monitoring, debugging, and

maintenance, exploring alternative application domains for vulnerability prediction models,

such as network security, cybersecurity threat intelligence, or software supply chain security

are the future research directions aim to advance our understanding and application of XAI

methods, sequential modeling with CodeBERT, integration of XAI into ML-Ops processes,

and exploration of vulnerability prediction in diverse domains.

The findings from each case study underscore the importance of transparency and

interpretability in ML models for SDP. By synthesizing insights from diverse datasets, ML
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algorithms, and XAI techniques, we have advanced our understanding of SDP methodologies

and paved the way for future research directions.

Moving forward, our research opens avenues for exploring novel XAI methods, integrating

ensemble techniques, and extending our analyses to diverse domains beyond SDP. By

advocating for more transparent and interpretable ML models, we aim to foster trust,

reliability, and effectiveness in software engineering practices, ultimately contributing to the

advancement of the field.
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