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Her hastaya en uygun tedavi seçeneğini belirlemek, tıbbın ana hedefidir. Aynı tanıya 

sahip hastalar, genetik heterojenlik nedeniyle uygulanan tedaviye özellikle kanserlerde 

farklı duyarlılık gösterebilir. Bu çalışmada, kanser hücrelerinin ilaç yanıtlarını 

(duyarlılığını) tahmin eden bir makine öğrenmesi tabanlı sistem olan DeepResponse’u 

öneriyoruz. 

DeepResponse, büyük ölçekli tarama projelerinden elde edilen farklı kanser hücre 

hatlarının çoklu-omik profillerini ve ilaçların moleküler özelliklerini giriş seviyesinde 

kullanır ve tümörün çoklu-omik özellikleri ile uygulanan ilaca olan duyarlılığı arasındaki 

ilişkiyi öğrenmek için hibrit konvolüsyonel ve çizge dönüştürücü derin sinir ağları 

aracılığıyla işler.  

DeepResponse, rastgele bölme, hücre tabakalaştırılmış bölme ve ilaç tabakalaştırılmış 

bölme test veri setleri için sırasıyla 1.014 ± 0.001, 1.105 ± 0.013 ve 1.142 ± 0.104 kök 

ortalama kare hatasına ulaşarak ilaç yanıtlarını tahmin etmedeki etkinliğini göstermiştir. 
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Performans sonuçları, DeepResponse’un kanser hücrelerinin ilaç duyarlılığını başarıyla 

tahmin ettiğini ve özellikle çoklu-omik yönünün öğrenme sürecinden faydalandığını ve 

tüm bölümlerde mevcut modellerden daha iyi performansa sahip olduğunu gösterir.  

Her bir omik veri türünün DeepResponse’un performansı üzerindeki etkisini 

değerlendirmek için bir ablasyon çalışması yürütüldü, bu da ilaç yanıtı tahmininde çoklu-

omik entegrasyonun önemini kanıtladı. DeepReponse’un kullanımına örnek olarak, 

Eprinomectin, hepatosellüler karsinoma kanser hücre hatlarına karşı yeniden amaçalanma 

ilaç adayı olarak önerildi ve ıslak laboratuvar deneylerinde doğrulandı. DeepResponse’un 

kod tabanı, veri setleri ve sonuçları https://github.com/HUBioDataLab/DeepResponse 

adresinde paylaşılmıştır. DeepResponse, yeni ilaç adaylarının erken aşama keşfi ve 

dirençli tümörlere karşı mevcut olanların yeniden amaçlanması için kullanılabilir.  

 

 

Anahtar Kelimeler: Biyoenformatik, Çoklu-omik analizler, İlaç yanıtı tahmini, Makine 

öğrenmesi / derin öğrenme, Hibrit mimariler, Çizge dönüştürücüler 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

 

ABSTRACT 

 

 

PREDICTION OF DRUG RESPONSE IN CANCER USING 
HYBRID DEEP NEURAL NETWORKS 

 
 

Burakcan İZMİRLİ 

 

 

Master of Sciences, Department of Computer Engineering 

Supervisor: Prof. Tunca Doğan 

January 2024, 126 Pages 

 
 

Assessing the best treatment option for each patient is the main goal of precision 

medicine. Patients with the same diagnosis may display varying sensitivity to the applied 

treatment due to genetic heterogeneity, especially in cancers. 

Here, we propose DeepResponse, a machine learning-based system that predicts drug 

responses (sensitivity) of cancer cells. DeepResponse employs multi-omics profiles of 

different cancer cell-lines obtained from large-scale screening projects, together with 

drugs’ molecular features at the input level, and processing them via hybrid convolutional 

and graph-transformer deep neural networks to learn the relationship between multi-

omics features of the tumor and its sensitivity to the administered drug.  

DeepResponse has reached a Root Mean Squared Error (RMSE) of 1.014 ± 0.001 in 

random split, 1.105 ± 0.013 in cell stratified split, and 1.142 ± 0.104 in drug stratified 

split test datasets, showcasing its effectiveness in predicting drug responses. Performance 
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results indicated DeepResponse successfully predicts drug sensitivity of cancer cells, and 

especially the multi-omics aspect benefited the learning process and yielded better 

performance compared to the state-of-the-art on all the splits.  

An ablation study was conducted to assess the impact of each omics data type on the 

performance of DeepResponse, providing further insights into the importance of multi-

omics integration in drug response prediction. As a use case analysis, Eprinomectin was 

proposed as a drug repurposing candidate against hepatocellular carcinoma cancer cell 

lines, which was validated in wet lab experiments. The code base, datasets, and results of 

DeepResponse are openly shared at https://github.com/HUBioDataLab/DeepResponse. 

DeepResponse can be used for early-stage discovery of new drug candidates and for 

repurposing the existing ones against resistant tumors.  

 

 

Keywords: Bioinformatics, Multi-omics analysis, Drug response prediction, Machine / 

Deep learning, Hybrid architectures, Graph transformers 
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1. INTRODUCTION 

 
The journey to discover effective cancer drugs is a complex task that involves both 

scientific and economic challenges. Large financial investments are needed to develop 

new treatments. To address these challenges, researchers are exploring new strategies that 

are both scientifically effective and cost-efficient. The rapid progress in technology is 

making biological data more accessible and affordable, which is changing the way we 

use precision medicine to treat complex diseases. 

 
In cancer research, cell lines are often used because they are efficient and cost-effective 

for simulating tumor tissues. Cell lines are the most used models for studying cancer 

biology, validating cancer targets, and for defining drug efficacy. They are collections of 

cells originating from one cell and are typically kept in a growth medium in tubes, flasks, 

or dishes, where they can continue to divide indefinitely [1]. 

 
However, a deeper understanding is achieved through pharmacogenomic panels. 

Pharmacogenomics is a type of genetic testing that looks for small variations within 

genes. These variations may affect whether genes activate or deactivate specific drugs 

[2].  Pharmacogenomic panels are crucial for studying the complex interactions between 

drugs and cell lines. They focus on decoding the specific molecular patterns of these cells, 

which goes beyond what traditional methods can do [2].  

 
This research involves a detailed study of the molecular factors that influence how cancer 

cells respond to drugs. Using computational methods, researchers can understand the 

relationships within large datasets of molecular features. This not only allows them to 

predict how similar cell lines will respond to drugs, but also represents a new approach 

when empirical data is not available. 

 
Looking forward, this research could have a transformative impact. It could lead to more 

personalized treatment options for patients and a more efficient process that saves time 

and money. This research could change the field of cancer therapeutics, moving towards 

a future where treatments are not only more effective, but also tailored to the unique 

molecular characteristics of each patient. 

https://sites.broadinstitute.org/ccle/
https://sites.broadinstitute.org/ccle/
https://www.zotero.org/google-docs/?URLB3D
https://academic.oup.com/gpb/article/18/2/150/7229794
https://www.zotero.org/google-docs/?3k1gtX
https://academic.oup.com/gpb/article/18/2/150/7229794
https://academic.oup.com/gpb/article/18/2/150/7229794
https://www.zotero.org/google-docs/?FFdQa2
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The process of drug development is complex and involves significant costs and time as 

summarized in Figure 1.1. Recent trends indicate a decrease in the approval rates of newly 

developed drugs. The primary challenge is the limitations of current drug response 

prediction methods. These methods struggle to incorporate diverse omics data types and 

to integrate essential drug descriptors effectively. Therefore, it is crucial for researchers 

to develop innovative solutions that can improve the efficiency and success rates of drug 

development. 

 

 

 

Figure 1.1. Diagram of the drug development process [3] 

  

In vitro experiments conducted on cell lines, although informative about potential effects 

in patients, are costly and time-consuming. Therefore, it is not feasible to screen all 

samples taken from all patient and healthy tissues against all drug molecules. For this 

reason, the approach of expressing and statistically predicting drug effects in a 

computational environment is adopted. Various statistical tests and analysis methods are 

used for this purpose. The advantage of such computational analyses is that they can 

produce desired results quickly and cost-effectively. However, the disadvantage is that if 

the modeling process is not planned thoroughly, the reliability of the results may be low. 
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1.1. Unraveling Pharmacogenetics, Pharmacogenomics and Drug Development 
Challenges 
 
The central objective of pharmacogenetics, which is the study of how an individual’s 

genetic variation affects their response to specific drugs, and its intricate interplay with 

drug responses, has seen a transformative evolution from its inception to the present day 

[3]. With the advent of advanced sequencing technologies, the field, focusing particularly 

on pharmacogenomics in this study, has undergone a significant shift. Pharmacogenomics 

examines an individual’s entire genetic makeup to predict their response to drugs across 

multiple therapeutic areas. This shift has moved the field from being merely descriptive 

to embracing a more forward-looking scientific paradigm [4]. Distinguishing between 

pharmacogenetic and pharmacogenomic fields remains challenging, leading this study to 

primarily consider pharmacogenomics. The difference between the two lies in their scope. 

Pharmacogenetics focuses on single gene variations and their impact on the response to 

a particular drug or group of drugs. Pharmacogenomics, however, takes a broader view 

by examining the entire genome or multiple genes to understand how they collectively 

influence drug response. 

 
In the 1990s, groundbreaking studies foresaw a future where patients at the same disease 

level might exhibit diverse responses to treatments due to unique genetic variations [5].  

Despite the proposal of over 150 biomarkers in research articles, the clinical applicability 

of fewer than a hundred has been reported. Many biomarkers, hindered by the challenge 

of phenotype variability, are yet to find practical applications in clinical settings [6]. 

Consequently, efforts have been redirected towards the standardization of consistent 

phenotype and biomarker definitions. This not only promises a reduction in adverse 

reactions but also ensures the safe and precise utilization of standardized biomarkers. [7] 

Moving beyond conventional methods, there is an escalating focus on developing more 

detailed biomarkers, extracting insights from a variety of molecular data. This strategy 

seeks to devise treatment alternatives customized to specific patient or tumor phenotypes, 

promoting more precise drug response predictions [8]. Unraveling the complex 

association between genetic variations and drug molecules emerges as a primary 

objective in the pharmacogenomic field.  

https://www.zotero.org/google-docs/?j54og8
https://www.zotero.org/google-docs/?jDZ0Xm
https://www.zotero.org/google-docs/?zVp4HZ
https://www.zotero.org/google-docs/?yEIRBT
https://www.zotero.org/google-docs/?Jeuor0
https://www.zotero.org/google-docs/?4CZKgH
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Investigations in this area not only simplify the identification of drug effectiveness with 

reduced experimentation and increased precision, but also yield positive impacts on 

patient welfare, workforce productivity, clinical applications, time, and economic factors. 

Given the capacity to tackle a wide range of efficacy and safety concerns in drugs, 

researchers’ interest is progressively attracted to these innovative methods [8].  

 
The incorporation of high-throughput sequencing technologies, combining extensive 

amounts of biological data types, offers potential for accurately characterizing diseases 

in the field of pharmacogenomics. Despite the optimism for precision medicine strategies 

for drug treatments, the recent downturn in the approval rates and pace of new drugs has 

instigated a quest for alternative paths [8]. Translational research, strengthened by 

pharmacogenetic and pharmacogenomic methods, has infused new energy into the field 

of drug discovery. As a result, there is an increasing possibility of formulating methods 

that not only acknowledge patient variations but also design more effective treatments 

customized to individual profiles [8].  

 
Cancer, historically the leading cause of disease-based deaths globally and a significant 

obstacle to increased life expectancy, exhibited a notable decrease in mortality between 

2011 and 2015 [9] . Researchers attribute this positive trend to early diagnosis and more 

effectively applied treatment approaches. In this context, despite computational models 

encountering challenges at the data and algorithmic levels, the significance of predictive 

models in estimating the disease's response to medication is deemed crucial in 

determining the best treatment. Recently developed drug response prediction models 

utilizing advanced algorithm architectures emerge as tools supporting the enhancement 

of patients' chances of survival, ushering in a new era in the pharmacogenomic landscape 

[10]. 

 

1.2. Drug Response 
 
The cultivation of cells in a controlled environment facilitates detailed examination of the 

genetic factors influencing drug metabolism and efficacy. These experiments, often 

conducted using various cell lines that represent different tissues or organs, are crucial 

https://www.zotero.org/google-docs/?LQ97W7
https://www.zotero.org/google-docs/?V513Z6
https://www.zotero.org/google-docs/?YVsqhW
https://www.zotero.org/google-docs/?5kYAfZ
https://www.zotero.org/google-docs/?xFk8hP
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tools for unraveling the intricate molecular mechanisms that underlie individual responses 

to pharmacological interventions [11].  

Furthermore, the incorporation of high-throughput technologies into in vitro studies 

augments their ability to provide a comprehensive view of cellular responses to drugs. 

This all-encompassing approach enables the detection of minor variations that may have 

a significant influence on drug interactions [12]. The collaboration between 

pharmacogenomics and in vitro experimentation equips researchers with a robust method 

to decipher the connections between specific variations and cellular responses, thereby 

aiding in the creation of predictive models for individual drug responses. 

 
To measure drug response, a variety of techniques are employed in these in vitro 

experiments. Cell viability assays, such as the MTT assay or ATP-based assays, assess 

the overall health and viability of cells following drug exposure [13].  Transcriptomic 

analyses, including techniques like microarrays or RNA sequencing, enable the 

measurement of changes in gene expression patterns in response to drug treatment [14].  

Immunoblotting and enzyme activity assays evaluate changes in protein expression levels 

and activity. Metabolomic profiling studies alterations in the metabolite profile of cells 

or tissues in response to drug exposure [15]. Advanced microscopy techniques, flow 

cytometry, and electrophysiological measurements further contribute to a comprehensive 

understanding of drug-induced effects at the cellular level [16]. 

 
Nevertheless, navigating the intricacies of in vitro experiments comes with its challenges. 

Replicating the complexity of the human body within a cell culture setting is inherently 

challenging, and researchers must carefully consider factors such as cellular 

microenvironments, cell types, and experimental conditions to ensure the relevance and 

reliability of their findings. Overcoming these challenges is crucial for the successful 

translation of in vitro insights into clinical applications. 

 
The pIC50, a fundamental pharmacological metric, serves as a convenient means to 

express the potency of a drug in inhibiting a specific biological response [17]. It is derived 

from the IC50, which signifies the concentration of a drug necessary to achieve a 50% 

inhibition of a particular biological activity [18].  

 

https://www.zotero.org/google-docs/?K74K7G
https://www.zotero.org/google-docs/?6eubYW
https://www.zotero.org/google-docs/?jtIkuh
https://www.zotero.org/google-docs/?1qHJcl
https://www.zotero.org/google-docs/?kq67zI
https://www.zotero.org/google-docs/?6YvrCo
https://www.zotero.org/google-docs/?NgZksP
https://www.zotero.org/google-docs/?G45hob
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The transformation to pIC50 is achieved through a simple mathematical formula (1): 

 

#!"50	 = 	−)*+!"(!"50)                                              (1) 

 
This logarithmic transformation simplifies the representation of data and aligns with the 

intuitive understanding of drug potency. The IC50 itself is determined through meticulous 

dose-response experiments, where the concentration of a drug is systematically varied, 

and the resulting biological response is measured. The dose-response curve is then 

analyzed to pinpoint the concentration at which the response is reduced by 50%. 

 
Mathematically, the dose-response curve is often fitted using models such as the 

sigmoidal logistic equation (2): 

 

./0#*10/	 = 	 #$%	'()*+,)(
1	-	10("#$(%&50)	)	"#$(&#*+,*-./-0#*))×	20""	3"#4,		                              (2) 

 
Here, the sigmoidal logistic equation employs the sigmoid function, which is 

characterized by an S-shaped curve. The sigmoid function (3) is defined as: 

 

2(3) 	= 	 1
1	-	()5                                                       (3) 

 
In the logistic equation, this sigmoid function is modulated by parameters such as the 

IC50, concentration, and the Hill slope. The IC50 represents the concentration at which 

the response reaches 50% of the maximum, while the Hill slope determines the steepness 

of the curve as can be seen in Figure 1.2. The resulting curve provides a comprehensive 

representation of the dose-response relationship, enabling the precise determination of 

the IC50 and facilitating a nuanced understanding of a drug's potency [19].   

https://www.zotero.org/google-docs/?qFaqta
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Figure 1.2. Example time-response curves (left), a dose-response curve for a fixed time 

is derived from these time-response curves (right) [20] 

The pIC50 values, derived from this sigmoidal modeling, offer a standardized, 

dimensionless metric for comparing drug potencies across different compounds and 

experimental conditions. This logarithmic compression proves particularly valuable in 

managing the often wide range of IC50 values encountered in pharmacological studies. 

As a result, pIC50 serves as a powerful tool for researchers and practitioners, aiding in 

the quantification and communication of a drug's potency with clarity and precision in 

the context of enzyme inhibition, cellular responses, and other biological activities 

relevant to drug development. 

 

1.2.1. Drug Response in Cancer Cell Lines 
 
Cancer cell line drug response studies are a cornerstone of cancer research, providing 

critical insights into the intricate interplay between therapeutic agents and cancer cells. 

By subjecting diverse cancer cell lines to varying drug concentrations, researchers can 

conduct an in-depth examination of the responses, illuminating the nuances of treatment 

outcomes. These studies delve deeper than mere cytotoxicity evaluations [21], 

investigating the complex dynamics of cell cycle arrest [22], apoptosis [23], and 

alterations in molecular signaling pathways. Each of these processes plays a significant 

role in understanding the behavior of cancer cells and the impact of potential treatments. 

Cytotoxicity refers to a compound’s toxic effects on cells [21] , while cell cycle arrest 

describes a halt in the cell cycle, often due to DNA damage [22].  

https://www.zotero.org/google-docs/?hPtsDM
https://www.zotero.org/google-docs/?rtoDKu
https://www.zotero.org/google-docs/?9ReDpR
https://www.zotero.org/google-docs/?m9yXEZ
https://www.zotero.org/google-docs/?MNzrDK
https://www.zotero.org/google-docs/?NFw30p
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Apoptosis, on the other hand shown in Figure 1.3., is a programmed cell death process 

that is crucial for maintaining cellular balance. Together, these elements contribute to a 

comprehensive understanding of cancer cell behavior in response to therapeutic agents 

[23]. 

 

 

 

Figure 1.3. The process of apoptosis [24] 

 
The utilization of a wide range of cancer cell lines representing various tissue origins and 

genetic backgrounds enables a comprehensive exploration of drug sensitivity and 

resistance patterns across different cancer types. This diversity mirrors the heterogeneity 

observed in human tumors, allowing for a more realistic emulation of clinical scenarios. 

Moreover, incorporating advanced technologies, such as high-throughput genomics and 

multi-omics approaches, facilitates a deeper understanding of the underlying genetic and 

molecular determinants influencing drug responses [25]. Identification of key biomarkers 

associated with favorable or adverse outcomes becomes paramount in guiding the 

development of precision therapies. 

 
These studies also contribute to the ongoing efforts in personalized medicine, aiming to 

tailor treatments based on individual tumor characteristics [26].  

https://www.zotero.org/google-docs/?0sGi4i
https://www.zotero.org/google-docs/?hEMGyy
https://www.zotero.org/google-docs/?ME3vlT
https://www.zotero.org/google-docs/?5jx4OP
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The integration of pharmacogenomic data into cancer cell line studies allows for the 

identification of genetic variants that influence drug metabolism and response.  

This personalized approach holds promise in guiding clinicians toward more effective 

and less toxic therapeutic regimens [26]. 

 
As cancer cell line drug response studies continue to evolve, they not only aid in candidate 

selection for clinical trials but also contribute valuable data to the broader scientific 

community. Collaborative initiatives, such as the Cancer Cell Line Encyclopedia (CCLE) 

[27], the Genomics of Drug Sensitivity in Cancer (GDSC) [28] project, and the NCI-60 

[29], aggregate and disseminate large-scale drug response data, fostering a collaborative 

and open-access environment for researchers worldwide. These resources collectively 

provide information on a large number of cell lines, representing a wide range of tissues 

of origin and disease subtypes. The overlap of cell lines across these databases allows for 

data cross-validation and expansion studies. They provide extensive drug sensitivity data, 

which is crucial for identifying potential anticancer drugs and understanding their 

mechanisms of action. The comprehensive genomic data available in these databases can 

be used to identify cell lines with specific mutations for hypothesis-driven research.  

 
The preparation of these cancer datasets involves several steps: cell line selection, 

genomic characterization, drug sensitivity testing, and data integration [27,28]. 

Ultimately, these studies propel the development of novel anti-cancer therapies, ushering 

in an era where treatment strategies are not only effective but also tailored to the unique 

characteristics of each patient’s cancer. These resources provide a wealth of information 

for researchers and contribute significantly to the advancement of personalized cancer 

therapy. They represent a collaborative effort in the scientific community to share data 

and knowledge, accelerating the pace of cancer research and the development of effective, 

tailored treatment strategies. 

 

1.2.2. Drug Response Prediction with Omic Data 
 
The integration of omic data, including genomic, transcriptomic, proteomic, and 

metabolomic analyses, has revolutionized the study of drug responses [30].  

https://www.zotero.org/google-docs/?30LRkK
https://www.zotero.org/google-docs/?uyXlNi
https://www.zotero.org/google-docs/?eLgvmv
https://www.zotero.org/google-docs/?9uoXRU
https://www.zotero.org/google-docs/?Ef1VKH
https://www.zotero.org/google-docs/?zCEC2O
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These analyses provide a comprehensive view of the genetic basis of drug responses, gene 

expression patterns, functional molecules involved, and cellular physiology [31]. High-

throughput technologies have been pivotal in generating the vast amounts of data needed 

for these analyses [32].  

 
Genomic data, which explores an individual’s DNA sequence, uncovers genetic 

variations that influence drug metabolism, receptor targeting, and specific response [33]. 

Transcriptomic analyses provide insights into dynamic gene expression patterns, which 

are crucial for understanding the body’s molecular responses to drug exposure. 

Metabolomic studies provide a comprehensive view of the end products of cellular 

processes, elucidating metabolic pathways that are modified by drug interventions [34]. 

This integration of various omic layers not only enhances our comprehension of 

molecular complexities but also propels the advancement of personalized therapeutic 

interventions, which are designed based on each patient’s distinct molecular signatures. 

 
The integration of omic data is pivotal in advancing individualized drug treatments in 

modern medicine. Deepening our understanding of drug responses through omics reveals 

molecular details that govern efficacy and adverse effects, thereby unlocking potential for 

innovative strategies in line with precision medicine principles [35]. This shift towards 

personalized therapeutic interventions, tailored to an individual’s unique genetic and 

molecular profile, signifies a new era in patient-centric healthcare. The advent of cost-

effective sequencing technologies has enabled the detection of molecular changes 

associated with diseases, aiding in predicting drug responses in complex diseases like 

cancer [36].  

 
The intricate landscape of cancer biology is influenced by a multitude of genetic 

variations, including mutations in gene expression, changes in methylation, and variations 

in copy number [37]. These variations, which include genetic deletions, insertions, 

translocations, and single nucleotide polymorphisms, contribute to the complex 

architecture of primary tumor structures. Comprehending these variations is essential for 

progress in areas such as cancer development and drug discovery. 

 

https://www.zotero.org/google-docs/?fPlUpu
https://www.zotero.org/google-docs/?WUuvre
https://www.zotero.org/google-docs/?n181p2
https://www.zotero.org/google-docs/?YQCgwv
https://www.zotero.org/google-docs/?V9hN6J
https://www.zotero.org/google-docs/?1aZbY6
https://www.zotero.org/google-docs/?M9ZAjj


 

11 
 

 

Experiments that screen cancer cell lines and integrate various types of omic data 

emphasize the critical role these data play in determining the anticancer effects of drugs 

[38]. The importance of multiple omic data types in characterizing the molecular features 

of cell lines is further underscored by international collaborations and national research 

groups. 

 
Omic data types offer invaluable insights into the complexities of cancer biology and 

guide the selection of therapeutic approaches. The data acquired is not only suitable for 

use in mechanistic models of cells but also instrumental in generating relational and 

correlative predictions based on machine learning. This introductory discussion paves the 

way for a more in-depth exploration of mutations in gene expression, methylation, and 

copy number variations in the context of cancer research, promising to illuminate the 

complex interplay of genetic variations in cancer. 

 

1.2.2.1. Gene Expression 
 
Gene expression, a fundamental biological process, is the mechanism by which 

information from a gene is used to synthesize a functional gene product, typically a 

protein [39]. This process involves two key steps: transcription, where the genetic 

information in DNA is copied into RNA, and translation, where that RNA is used to 

produce proteins as represented in Figure 1. 4. These proteins play diverse roles in cellular 

functions, influencing everything from signaling pathways to structural components [39]. 

 

 

Figure 1.4. Representation of gene expression [40] 

 

https://www.zotero.org/google-docs/?eFbqnr
https://www.zotero.org/google-docs/?qkPQ17
https://www.zotero.org/google-docs/?9z4Vfd
https://www.zotero.org/google-docs/?fVVQ7y
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The role of gene expression in drug response is underscored by its ability to alter the 

activity of drug-metabolizing enzymes, thereby affecting the pharmacokinetics of a drug 

within the body [31]. Moreover, variations in gene expression can influence the 

abundance and functionality of drug target receptors, thereby affecting the efficacy of 

pharmacological interventions. Beyond these immediate effects, changes in gene 

expression can have downstream effects on cellular pathways, influencing cell cycle 

progression, apoptosis, and DNA repair mechanisms, all of which are crucial in 

determining the ultimate outcome of drug treatment. 

 
Technologies such as RNA sequencing provide researchers with the means to examine 

the landscape of gene expression comprehensively [41]. Through large-scale 

transcriptomic analyses, it is possible to identify specific gene signatures associated with 

distinct drug responses. This information facilitates the categorization of individuals into 

responder and non-responder groups, thereby enabling personalized therapeutic 

strategies. 

 
In the context of precision medicine, where the goal is to tailor treatments to individual 

patients, understanding gene expression patterns is of paramount importance. This 

understanding allows clinicians to predict how an individual will metabolize and respond 

to a particular drug, thereby facilitating the selection of the most effective and least toxic 

therapeutic regimens. As a result, studies of gene expression not only contribute to our 

understanding of the molecular basis of drug responses but also have practical 

applications in the clinical setting, bringing us closer to a future where healthcare 

interventions are tailored to the unique genetic makeup of each patient healthcare [42]. 

 

1.2.2.2. Mutation 
 
Mutations refer to changes in the DNA sequence that can be either inherited or acquired. 

These alterations in the genetic code are pivotal determinants in shaping an individual’s 

response to drugs represented in Figure 1.5. They can profoundly influence the efficacy, 

safety, and tolerability of pharmacological interventions [43]. The impact of mutations 

extends across various facets of drug response, including drug metabolism, target 

interactions, and cellular signaling pathways. 

https://www.zotero.org/google-docs/?oPYwJe
https://www.zotero.org/google-docs/?KWlhto
https://www.zotero.org/google-docs/?HTdaYC
https://www.zotero.org/google-docs/?xFkRvn
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In the context of drug metabolism, genetic mutations can modulate the activity of 

enzymes responsible for drug biotransformation, leading to variations in the rates at 

which drugs are processed and eliminated from the body. Mutations in genes encoding 

drug target receptors may alter the binding affinity or downstream signaling events, 

thereby influencing the drug’s effectiveness. Furthermore, mutations in key signaling 

pathways can introduce aberrations in cellular responses to drugs, affecting processes like 

apoptosis, cell cycle regulation, and DNA repair [44]. 

 

 

 

Figure 1.5. Representation of gene mutations [45] 

 
Advanced genomic technologies, such as next-generation sequencing, facilitate the 

comprehensive exploration of the genetic landscape underlying drug response variability. 

Through these approaches, researchers can identify specific mutations associated with 

diverse drug responses [46]. This wealth of genetic information holds promise for the 

development of targeted therapies tailored to individuals with specific mutation profiles. 

In the era of precision medicine, understanding the role of mutations in drug response is 

imperative. This knowledge enables clinicians to predict potential challenges in drug 

metabolism or target interactions based on an individual’s unique mutation profile. 

Consequently, personalized treatment plans can be devised, optimizing therapeutic 

outcomes while minimizing adverse effects.  

 

https://www.zotero.org/google-docs/?a4kwkA
https://www.zotero.org/google-docs/?x5DCt3
https://www.zotero.org/google-docs/?i3t0Je
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Analyses of mutations not only enhance our comprehension of the complex molecular 

mechanisms that dictate drug reactions, but also set the stage for a future where medical 

treatments are precisely adjusted to the genetic alterations unique to each patient. This 

ushers in a new phase in personalized and efficient healthcare. 

 

1.2.2.3. DNA Methylation 
 
DNA Methylation, an epigenetic modification, influences gene expression without 

altering the DNA sequence and is a critical factor in determining an individual's response 

to drugs. This biochemical process involves the addition of a methyl group to DNA as in 

Figure 1.6., thereby impacting the accessibility of genes for transcription [47]. 

Methylation patterns are fundamental in regulating gene expression, influencing various 

cellular functions and pathways involved in drug responses. 

 

 

 

Figure 1.6. Representation of DNA methylation [48] 

 
The significance of methylation in drug response is attributed to its capacity to modulate 

gene expression profiles. Changes in methylation patterns can silence or activate specific 

genes associated with drug metabolism, target receptors, and cellular pathways involved 

in drug action. Alterations in methylation status can affect the expression and 

functionality of drug-metabolizing enzymes, influencing drug pharmacokinetics. 

https://www.zotero.org/google-docs/?Ym0rmh
https://www.zotero.org/google-docs/?L3kmMv
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Moreover, methylation changes in genes encoding drug targets may alter their expression 

levels or structural conformation, influencing drug efficacy [47]. Advanced epigenomic 

technologies, such as bisulfite sequencing, allow for comprehensive mapping and 

analysis of DNA methylation patterns. Deciphering these complex epigenetic signatures 

associated with different drug responses provides insights into individual variations in 

drug efficacy and toxicity. 

 

In the context of personalized medicine, understanding methylation dynamics is essential. 

Methylation patterns can serve as potential biomarkers, providing valuable information 

for predicting an individual's response to specific drugs. This knowledge enables 

clinicians to tailor treatments based on an individual's methylation profile, optimizing 

therapeutic outcomes, and minimizing adverse effects. Therefore, methylation studies 

contribute to our understanding of the epigenetic mechanisms underlying drug responses 

and show promise in guiding the development of interventions tailored to each patient's 

unique epigenetic makeup. This shift towards personalized healthcare strategies 

represents a significant advancement where medical interventions are finely adjusted to 

the epigenetic signatures characterizing individual patients. 

 

1.2.2.4. Copy Number Variation 
 
Copy Number Variation (CNV), a type of structural genomic alteration involving changes 

in the number of copies of specific DNA segments, is a significant factor influencing an 

individual's response to drugs [49]. These variations, which can include duplications, 

deletions, or amplifications of genomic regions, contribute to the genetic diversity within 

populations and can significantly impact drug metabolism, target interactions, and 

cellular signaling pathways. 

 
The influence of CNV on drug response is complex. In drug metabolism, variations in the 

copy number of genes encoding drug-metabolizing enzymes can directly affect enzymatic 

activity, influencing the rate at which drugs are processed and cleared from the body.  

 

https://www.zotero.org/google-docs/?8jK3Wl
https://www.zotero.org/google-docs/?Pymupi
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Similarly, changes in the copy number of genes encoding drug target receptors may alter 

the expression levels or structural integrity of these receptors, ultimately affecting the 

efficacy of pharmacological interventions. Additionally, CNV within key signaling 

pathways can introduce complexities in cellular responses to drugs, affecting critical 

processes such as apoptosis, cell cycle regulation, and DNA repair. 

 
The study of CNV, facilitated by advanced genomic techniques like array comparative 

genomic hybridization (aCGH) and next-generation sequencing, allows for a 

comprehensive investigation of the genomic landscape underlying drug response 

variations [49]. By identifying specific CNVs associated with diverse drug responses, 

researchers can unravel the genetic underpinnings of individual variability in drug 

efficacy and toxicity. 

 
In the context of precision medicine, understanding the role of CNV in drug response is 

essential. This knowledge enables clinicians to anticipate potential challenges in drug 

metabolism or target interactions based on an individual's unique CNV profile. 

Consequently, personalized treatment strategies can be developed, optimizing therapeutic 

outcomes while minimizing adverse effects. CNV analyses not only contribute to our 

understanding of the genetic intricacies governing drug responses but also pave the way 

for a future where healthcare interventions are finely adjusted to the copy number 

variations characterizing each patient. This shift towards personalized healthcare 

strategies represents a significant advancement where medical interventions are finely 

adjusted to the genetic signatures characterizing individual patients. 

 

1.2.2.5. Simplified Molecular-Input Line-Entry System 
 
In the field of computational chemistry and drug discovery, the representation of 

molecular structures plays a pivotal role. One common way to represent molecules is 

through Simplified Molecular-Input Line-Entry System (SMILES) strings [50]. This 

compact notation provides a string representation of a molecule’s structure. SMILES 

strings can be imported by most molecular editors for conversion back into two-

dimensional drawings or three-dimensional models of the molecules.  

https://www.zotero.org/google-docs/?rvC2rd
https://www.zotero.org/google-docs/?or6BWx
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In terms of a graph-based computational procedure, SMILES is a string obtained by 

printing the symbol nodes encountered in a depth-first tree traversal of a chemical graph. 

A representation can be seen in Figure 1.7. The chemical graph is first trimmed to remove 

hydrogen atoms and cycles are broken to turn it into a spanning tree [50].  

 

 

 

Figure 1.7. SMILES representation of melatonin molecule 

 
SMILES has been useful in modeling quantitative structure–property/activity 

relationships (QSPRs/QSARs). It has also been used in diverse problems in science, 

technology, and medicine In conclusion, the SMILES notation system has proven to be a 

valuable tool in the field of computational chemistry and drug discovery, providing a 

compact, efficient, and versatile method for representing molecular structures. 

 

1.3. Problem Definition 
 
The process of discovering effective cancer drugs is a complex task that involves both 

scientific and economic challenges. Large financial investments are required for the 

development of new treatments. The primary issue lies in the limitations of current drug 

response prediction methods, which often struggle to incorporate diverse omics data types 

and effectively integrate essential drug descriptors. 

 
In cancer research, cell lines are frequently used as they provide an efficient and cost-

effective means to simulate tumor tissues. These cell lines serve as vital models for 

studying cancer biology, validating cancer targets, and defining drug efficacy.  

https://www.zotero.org/google-docs/?4ZqkZC
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However, the use of cell lines alone is not sufficient to capture the complexity of drug-

cell interactions. A deeper understanding is achieved through pharmacogenomic panels, 

which focus on decoding the specific molecular patterns of these cells. These panels look 

for small variations within genes that may affect whether genes activate or deactivate 

specific drugs. 

 
Despite the insights gained from these panels, the process of expressing and statistically 

predicting drug effects in a computational environment presents its own set of challenges. 

While computational analyses can produce results quickly and cost-effectively, the 

reliability of these results may be compromised if the modeling process is not 

meticulously planned. This highlights the need for careful planning and execution in 

computational drug effect prediction to ensure the reliability and validity of the results. 

Moreover, the study of the molecular factors that influence how cancer cells respond to 

drugs involves understanding the relationships within large datasets of molecular 

features. This not only allows for the prediction of how similar cell lines will respond to 

drugs, but also represents a new approach when empirical data is not available. 

 
Looking forward, the development of more personalized treatment options for patients 

and a more efficient process that saves time and money could have a transformative 

impact on the field of cancer therapeutics. However, the path to this future is filled with 

challenges, necessitating innovative solutions that can improve the efficiency and success 

rates of drug development. Therefore, it is crucial to address these challenges to enhance 

the field of cancer therapeutics. 

 

1.4. Aim and Scope 
 
The central assumption of this thesis is that the response of a cell line to a drug is a 

complex interaction of numerous variables, with the molecular characteristics of the cell 

playing a significant role in shaping these responses. This assumption guides the research 

towards a comprehensive approach that incorporates multiple omics data types, each 

contributing to the detailed understanding of cellular characteristics. 
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This thesis proposes an approach that leverages multi-omics cell line data and drug data 

to enhance drug response predictions. The utilization of multi-omics data provides a more 

comprehensive representation of the problem, distinguishing this approach from many 

existing models. The goal extends beyond merely identifying gaps in current knowledge; 

it is a focused effort to improve drug response prediction models to achieve high levels 

of accuracy and reliability. 

 
The focus of this work is on cancer data, given the abundance of available information. 

However, it is recognized that existing models may not be suitable for real-world test 

cases due to various limitations. Therefore, the objective includes a broader perspective. 

The aim is to develop not just a technically robust model, but also one that is 

generalizable, taking into account real-world scenarios and the complexities inherent in 

pharmaceutical research. 

 
By addressing these challenges, this work could contribute significantly to the field of 

cancer therapeutics and the development of more personalized treatment options for 

patients. This signifies a transformative initiative set to advance the field of predictive 

modeling within the dynamic sphere of pharmaceutical research, reflecting a vision of 

setting a new standard, a benchmark for accuracy in drug response predictions. 
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2. RELATED WORK  

 
In the field of drug response prediction, several models have been developed that leverage 

various types of data and methodologies. 

  
In their research, Park, Lee, and Nam  [51] utilized the Elastic Net (ENet) model, a deep 

learning model that leverages gene expression and mutation profiles of cancer cell lines 

to predict drug responses. This model is particularly effective when dealing with datasets 

where predictors are correlated. It combines both L1 and L2 regularization terms to the 

loss function of linear regression. They introduced an approach utilizing in vitro DNA 

and RNA sequencing and drug response data to create Treatment Response Generalized 

Elastic-Net Signatures (TARGETS). They trained TARGETS drug response models 

using Elastic-Net regression in the publicly available Genomics of Drug Sensitivity in 

Cancer (GDSC) database. Figure 2.1. shows the architecture of ElasticNet. Their study 

confirms the applicability of drug response prediction models for individual drugs.  

 

 

Figure 2.1. Architecture of ElasticNet [51] 

 

https://www.zotero.org/google-docs/?ingqr8
https://www.zotero.org/google-docs/?Uogqet
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The authors developed a method called Similarity-Regularized Matrix Factorization 

(SRMF) [52] to predict anticancer drug responses of cell lines using chemical structures 

of drugs and baseline gene expression levels in cell lines. Structure of the SMRF 

represented in Figure 2.2. They incorporated chemical structural similarity of drugs and 

gene expression profile similarity of cell lines as regularization terms into the drug 

response matrix factorization model. The effectiveness of SRMF was demonstrated using 

a set of simulation data and compared with two typical similarity-based methods. 

Furthermore, it was applied to the Genomics of Drug Sensitivity in Cancer (GDSC) and 

Cancer Cell Line Encyclopedia (CCLE) datasets. The authors also used SRMF to estimate 

the missing drug response values in the GDSC dataset. The drug response matrix of 23 

drugs by 491 cell lines has 11,293 entries, out of which 423 (3.75%) are missing and 

10,870 are known. The study concluded that the proposed data integration method 

improves the accuracy of prediction of anticancer drug responses in cell lines. 

 
 

 

 

Figure 2.2. Structure of SMRF [52] 

 
 

 

 

https://www.zotero.org/google-docs/?C3WBHb
https://www.zotero.org/google-docs/?Rs64HV
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DrugCell, a deep learning model developed by Kuenzi BM et al. [53], trained on the 

responses of 1,235 tumor cell lines to 684 drugs, integrates tumor genotypes and drug 

structure to predict therapy response and learn the biological mechanisms underlying the 

drug response. The predictions made by DrugCell were accurate in cell lines and stratified 

clinical outcomes.  

 
Furthermore, DrugCell was instrumental in designing synergistic drug combinations, 

which were validated through combinatorial CRISPR, drug-drug screening in vitro, and 

patient-derived xenografts. This study provides a framework for constructing 

interpretable models for predictive medicine, demonstrating the potential of deep learning 

models in predicting drug responses and understanding the underlying biological 

mechanisms. Architecture of DrugCell represented in Figure 2.3. 

 

 

 

Figure 2.3. Architecture of DrugCell [53] 

 
The paper titled “twin Convolutional Neural Network for drugs in SMILES format 

(tCNNS) for phenotypic screening”  [54] introduces a model for predicting the phenotypic 

drug response on cancer cell lines. Unlike previous research that relied on molecular 

fingerprints or physicochemical features of drugs, this study used the simplified 

molecular input line entry specification (SMILES) format of drugs. The tCNNS model 

uses one convolutional network to extract features for drugs from their SMILES format 

and another convolutional network to extract features for cancer cell lines from the 

genetic feature vectors. A fully connected network is then used to predict the interaction 

between the drugs and the cancer cell lines as can be seen in Figure 2.4.  

https://www.zotero.org/google-docs/?FbI9un
https://www.zotero.org/google-docs/?rOu8zs
https://www.zotero.org/google-docs/?moioDg
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However, the performance of tCNNS decreased significantly when the training and 

testing sets were divided exclusively based on drugs or cell lines. Despite this, the 

approach was able to predict the drug effects on cancer cell lines with high accuracy, and 

its performance remained stable with less but high-quality data, and with fewer features 

for the cancer cell lines. tCNNS also provided insights into phenotypic screening and was 

able to solve the problem of outliers in other feature spaces. However, the performance 

of tCNNS dropped in the blind test.  

 

 

 

Figure 2.4. Architecture of tCNNs [54] 

 
The study titled "DeepCDR: a hybrid graph convolutional network for predicting cancer 

drug response" [55] introduces a model called DeepCDR for predicting cancer drug 

response (CDR). This model integrates multi-omics profiles of cancer cells and explores 

the intrinsic chemical structures of drugs. Specifically, DeepCDR is a hybrid graph 

convolutional network consisting of a uniform graph convolutional network and multiple 

subnetworks. Unlike previous studies that modeled hand-crafted features of drugs, 

DeepCDR automatically learns the latent representation of topological structures among 

atoms and bonds of drugs. The authors also evaluated the contribution of different types 

of omics profiles for assessing drug response. Furthermore, the authors provided an 

exploratory strategy for identifying potential cancer-associated genes concerning specific 

cancer types, architecture can be seen in Figure 2.5.  The results highlighted the predictive 

power of DeepCDR and its potential translational value in guiding disease-specific drug 

design.  

 

https://www.zotero.org/google-docs/?GwsSJ7
https://www.zotero.org/google-docs/?Uf6OPy
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Figure 2.5. Flow of DeepCDR [55] 

 

The paper titled "Graph Convolutional Networks for Drug Response Prediction" [56] 

presents a novel method, GraphDRP, for predicting drug responses. This method is based 

on graph convolutional networks and aims to improve upon existing machine-learning-

based methods, particularly those that use deep learning. In GraphDRP, drugs are 

represented as molecular graphs, which directly capture the bonds among atoms. This is 

a departure from traditional methods that often represent drugs as strings. On the other 

hand, cell lines are depicted as binary vectors of genomic aberrations.The representative 

features of drugs and cell lines are learned by convolution layers, and then combined to 

represent each drug-cell line pair. The response value of each drug-cell line pair is 

predicted by a fully-connected neural network. The study used four variants of graph 

convolutional networks for learning the features of drugs. Through saliency maps of the 

resulting GraphDRP models, they discovered the contribution of the genomic aberrations 

to the responses. The authors concluded that representing drugs as graphs can improve 

the performance of drug response prediction. 

  
The study titled “Dr.VAE: Drug Response Variational Autoencoder” [57] introduces a 

model called Dr.VAE for predicting drug responses. This model integrates binary vectors 

of genomic aberrations of cell lines and explores the intrinsic chemical structures of 

drugs. Specifically, Dr.VAE is a Variational Autoencoder that directly captures the 

underlying gene states before and after drug application.  

https://www.zotero.org/google-docs/?RxC19f
https://www.zotero.org/google-docs/?wQvXfq
https://www.zotero.org/google-docs/?1yMIUq
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Unlike previous studies that often represent drugs as strings, Dr.VAE automatically learns 

the latent representation of topological structures among atoms and bonds of drugs. The 

authors also evaluated the contribution of different types of genomic aberrations for 

assessing drug response. Furthermore, the authors provided an exploratory strategy for 

identifying potential drug-associated genes concerning specific drug-cell line pairs. The 

results highlighted the predictive power of Dr.VAE and its potential translational value 

in guiding disease-specific drug design. Architecture of Dr.VAE can be seen in Figure 

2.6. 

 

 

 

Figure 2.6. Architecture of Dr.VAE [57] 

 

In another study, the authors developed a deep learning model called CDRscan that 

predicts the effectiveness of anticancer drugs based on large-scale drug screening assay 

data. This data encompasses genomic profiles of 787 human cancer cell lines and 

structural profiles of 244 drugs. The model uses a two-step convolution architecture 

where the genomic mutational fingerprints of cell lines and the molecular fingerprints of 

drugs are processed individually.  

https://www.zotero.org/google-docs/?zaSMVc
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These are then merged by ‘virtual docking’, an in silico modeling of drug treatment. This 

research represents the first-time application of a deep learning model in predicting the 

feasibility of drug repurposing as seen in Figure 2.7. The authors suggest that with further 

clinical validation, CDRscan could potentially allow for the selection of the most 

effective anticancer drugs based on the genomic profile of an individual patient [58]. 

 

 

 

Figure 2.7. Flow of CDRscan [58] 

 
The authors propose MOLI [59], a multi-omics late integration method based on deep 

neural networks. MOLI takes somatic mutation, copy number aberration, and gene 

expression data as input, and integrates them for drug response prediction. MOLI uses 

type-specific encoding sub-networks to learn features for each omics type, concatenates 

them into one representation, and optimizes this representation via a combined cost 

function consisting of a triplet loss and a binary cross-entropy loss. The authors validate 

MOLI on in vitro and in vivo datasets for five chemotherapy agents and two targeted 

therapeutics. Compared to state-of-the-art single-omics and early integration multi-omics 

methods, MOLI achieves higher prediction accuracy in external validations.  

https://www.zotero.org/google-docs/?dQJ5Ha
https://www.zotero.org/google-docs/?Ptt2lk
https://www.zotero.org/google-docs/?GyFAPP
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Moreover, a significant improvement in MOLI’s performance is observed for targeted 

drugs when training on a pan-drug input, i.e., using all the drugs with the same target 

compared to training only on drug-specific inputs. Detailed architecture can be seen in 

Figure 2.8. The authors suggest that MOLI's high predictive power may have utility in 

precision oncology, potentially allowing for the selection of the most effective anticancer 

drugs based on the genomic profile of an individual patient. 

 

 

 

Figure 2.8. Architecture of MOLI  [59] 

 
Lastly, the authors propose a novel formulation of multi-task matrix factorization that 

allows selective data integration for predicting drug responses. The method, called 

kernelized Bayesian matrix factorization (KBMF) [60], infers pathway-response 

associations. KBMF uses genomic and other molecular features of samples to predict 

drug responses for a previously unseen sample. This is particularly valuable in oncology, 

where the molecular and genetic heterogeneity of the cells has a major impact on the 

response.  

 

 

https://www.zotero.org/google-docs/?wrB3F7
https://www.zotero.org/google-docs/?VwQgNk
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The authors demonstrate that KBMF quantitatively outperforms the state of the art on 

predicting drug responses in two publicly available cancer datasets as well as on a 

synthetic dataset. Moreover, the authors introduce a way for incorporating prior 

biological knowledge, in the form of pathways, for modeling pathway-drug response 

associations. This opens up the opportunity for elucidating drug action mechanisms and 

has important implications for the field of computational personalized medicine. 
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3. METHOD  

 
3.1. Data 
 
In the context of predicting drug responses in cancer cell lines, this study utilizes a diverse 

range of data sources. These include the GDSC, CCLE, NCI-60, DrugBank, and 

PubChem. Each of these projects provides a wealth of information on drug responses, 

genetic variations, molecular profiles, drug characteristics, and chemical compounds. 

Each project contributes unique and valuable data, enabling a comprehensive analysis of 

drug responses in cancer cells. In the following sections, the specifics of each data source 

will be detailed, and their contributions to the DeepResponse, in predicting drug 

responses in cancer cell lines will be discussed.  

 

3.1.1. GDSC 
 
The GDSC project, a collaborative effort between the Wellcome Trust Sanger Institute 

(WTS) in the UK and the Massachusetts General Hospital (MGH) in the US, emerged as 

a result of this partnership. While initially referred to as the Cancer Genome Project 

(CGP), its name was later changed. The project's data sets are available for download on 

its internet portal [61], and the database allows for query capabilities. The portal is 

designed with a user-friendly graphical interface to aid in interpreting query results. 

 
Studies conducted between 2010 and 2015 are referred to as GDSC1, while more recent 

data sets are termed GDSC2. GDSC1 involved assessing drug response data using 

Resazurin or Syto60 assays, encompassing 987 cell lines and 367 drugs. In contrast, 

GDSC2 utilized the CellTiter Glo assay to analyze drug response, including 809 cell lines 

and 198 drug molecules, resulting in data points [28]. The most recent project version, 

8.3, was released in June 2020. For the preparation of GDSC drug response data used in 

this thesis, the guidelines provided on the project's portal were followed. When both 

GDSC1 and GDSC2 data were available for the same cell line-drug pair, GDSC2 data 

points were preferred due to equipment and procedural enhancements. 

 
 

https://www.zotero.org/google-docs/?znW9RG
https://www.zotero.org/google-docs/?0FXrPD
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Regarding the measurement of drug response in the project, GDSC1's procedures for 

assessing cell viability involved the use of Resazurin, a compound. Enzymatic activity in 

live cells was determined by the color change resulting from the enzymatic reduction of 

intracellular Resazurin. GDSC1 also employed the Syto60 assay, based on nucleic acid 

analysis, which involved a colorimetric approach. Syto60 binds to nucleic acid structures 

in live cells, causing them to turn red. This method aids in quantifying live cells under a 

microscope in relation to the intensity of the color emission [28]. Data points for each cell 

line-drug pair in the project were presented with metrics such as IC50 and the Area Under 

the Curve (AUC). 

 
The GDSC2 method, known as CellTitreGlo, is an ATP-based analysis technique. This 

method for assessing cell viability is based on the phenomenon in which cells, following 

drug treatment, exhibit decreased ATP production as they approach loss of viability. The 

luciferase enzymes used in the analysis generate luminescence in the presence of Mg+2 

(divalent magnesium) and ATP within live cells. The resulting luminescence intensity is 

used to determine the quantity of live cells [61]. 

 

3.1.2. CCLE 
 
The CCLE project is the outcome of a collaborative effort between the Broad Institute 

and Novartis Institutes of Biomedical Research in the United States, dating back to 2006. 

The project's initial phases were conducted in three stages from 2008 to 2017. The first 

data sets were made publicly available on both the project's dedicated internet portal and 

the Cancer Dependency Map (DepMap) database [62]. In the period from 2018 to the 

present day, omics data types within the project have been consistently updated and added 

to the DepMap database, usually on a quarterly basis. The latest version of the project, 

released in the second quarter of 2022, is identified by the code 22Q2. 

 
Although approximately 1000 cell lines had omics data extracted in CCLE, there are a 

total of 504 cell lines for which drug response has been measured. In contrast to other 

panels, CCLE tested a smaller number of drugs and conducted drug response analysis for 

a total of 24 drugs. Similar to GDSC2, CCLE preferred the use of the CellTiter Glo 

method for drug response analysis [27].  

https://www.zotero.org/google-docs/?PsKLtm
https://www.zotero.org/google-docs/?qPuk3X
https://www.zotero.org/google-docs/?BVgbva
https://www.zotero.org/google-docs/?oUx0ic
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Using this method, the drug response values for 504 cell lines were measured with 24 

drugs. IC50 was employed as the metric for the measured drug response values. 

 
In CCLE, in addition to drug response data, various omics data types such as gene 

expression, mutation, methylation, and Copy Number Variation (CNV), along with 

whole-genome sequencing, whole exome sequencing, reverse-phase protein analysis, 

metabolomics, chromatin profiling, and gene effect analysis (gene knockout through 

CRISPR), have been integrated into the project. These analysis datasets are publicly 

available and readily accessible  [62]. 

 

3.1.3. NCI-60 
 
The NCI-60 project, initiated in the 1980s, was designed to facilitate drug discovery and 

create a tool that could substitute for animal models. The project's development took place 

in three stages, focusing on the exploration of in vitro drug response analysis methods, 

the development of the panel itself, and the establishment of the information technology 

to be used within the panel [63]. The technologies developed during this project have 

served as examples for other ongoing drug screening projects. Today, the NCI-60 project 

has become a valuable resource for researchers studying the mechanisms of growth 

inhibition in tumor cells. 

 
Within the NCI-60 panel, over 130,000 drug molecules have been tested on 60 human 

cancer cell lines. Approximately 22,000 drug response data points are publicly available. 

For drug response analysis within the panel, the Sulforhodamine B (SRB) colorimetric 

analysis method has been preferred [29]. The amino xanthine dye used in SRB analysis 

binds to basic amino acids in the protein structures of live cells under low acidic 

conditions, emitting a pink color. The intensity of this emission is proportional to the 

quantity of live cells in the analyzed sample. Four different metrics have been used for 

drug response values within the panel, including IC50, GI50, Total Growth Inhibition 

(TGI), and Lethal Concentration 50 (LC50) [63]. 

 
The NCI-60 panel encompasses various omics data types in addition to drug response 

data, including gene expression, mutation, methylation, and Copy Number Variation 

(CNV).  

https://www.zotero.org/google-docs/?RDIamB
https://www.zotero.org/google-docs/?YaYT0K
https://www.zotero.org/google-docs/?Jb6TRo
https://www.zotero.org/google-docs/?boUfRa
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Further, it incorporates data from whole-genome sequencing, whole exome sequencing, 

reverse-phase protein analysis, metabolomics, chromatin profiling, and gene effect 

analysis (gene knockout through CRISPR). These analysis datasets are available to the 

public and readily accessible [63].  

 

3.1.4. DrugBank 
 
The DrugBank project, established in the early 21st century, is a dynamic and 

comprehensive initiative committed to providing crucial information on drugs, 

encompassing their pharmacology, pharmacokinetics, and molecular details [64]. Serving 

as a vital resource for researchers, healthcare professionals, and the pharmaceutical 

industry, DrugBank has grown into a central repository of drug-related data. 

 
With an impressive repository of drug information, DrugBank boasts a total of 

approximately 16,600 drugs, categorized as follows: 12,700 small molecule drugs, 3,900 

biotech drugs, 4,400 approved drugs, including 2,760 approved small molecule drugs, 

140 nutraceutical drugs, 6,720 experimental drugs, 210 illicit drugs, and 320 withdrawn 

drugs [65]. These structured records provide detailed insights into various aspects, 

including drug targets, mechanisms of action, pharmacokinetics, adverse effects, drug-

drug interactions, and related pathways. The data are meticulously curated from diverse 

sources and are easily accessible through the DrugBank website [65]. 

 
In addition to its wealth of data on approved drugs, DrugBank provides valuable insights 

into experimental drugs and drug candidates, fostering research into potential new 

treatments. The platform facilitates exploration into chemical structures, physiological 

effects, and known drug interactions, broadening its utility across a wide spectrum of 

applications. 

 
DrugBank's database is regularly updated to incorporate the latest advancements in 

pharmacology and the development of new drugs. With a substantial number of updates 

per month, this ensures that the information remains current and reflective of the ever-

evolving landscape of drug-related knowledge.  

 

https://www.zotero.org/google-docs/?raX2ys
https://www.zotero.org/google-docs/?UMaAza
https://www.zotero.org/google-docs/?jPkgWm
https://www.zotero.org/google-docs/?1Z0dxF
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Its user-friendly interface, coupled with this commitment to currency, solidifies 

DrugBank as an invaluable tool for researchers and healthcare practitioners seeking up-

to-date drug-related information for various purposes. The project continues to play a 

pivotal role in advancing drug discovery and healthcare practices. 

 

3.1.5. PubChem 
 
PubChem is an extensive resource established to facilitate access to comprehensive 

information about chemical compounds, with a primary focus on their biological 

activities and applications [66]. PubChem has become a pivotal reference tool for 

researchers, chemists, and life scientists. 

 
One of the fundamental aspects of PubChem is its vast collection of chemical data. With 

over 116 million unique chemical structures extracted from contributed PubChem 

Substance records, it serves as a rich source of information for researchers exploring the 

intricacies of chemical compounds. Additionally, PubChem provides information about 

more than 310 million chemical entities, aggregating data from various contributors and 

ensuring accessibility through the PubChem website [66]. 

 
PubChem's database extends beyond chemical structures to encompass a broad spectrum 

of biological data. With 1.6 million biological experiments in the BioAssays collection 

and an impressive 293 million data points on biological activities reported in PubChem 

BioAssays, it proves indispensable forearchers seeking a comprehensive understanding 

of the biological and pharmacological properties of chemical compounds. 

 
The biological landscape covered by PubChem is vast, including 113,000 gene targets, 

186,000 protein targets, and 114,000 organisms tested in PubChem BioAssays and 

involved in PubChem Pathways. Moreover, PubChem provides insights into the 

interactions between chemicals, genes, and proteins through its collection of 241,000 

pathways [67]. 

 
Beyond biological data, PubChem also hosts information about cell lines (2,000 entries) 

and is a valuable repository of scientific knowledge, with links to 39.6 million scientific 

publications and 37.9 million patents [66].  

https://www.zotero.org/google-docs/?v0dfqQ
https://www.zotero.org/google-docs/?PrRKrR
https://www.zotero.org/google-docs/?N2c4t4
https://www.zotero.org/google-docs/?qoAVB1
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The project encompasses 70 data classifications, allowing users to browse the distribution 

of PubChem data among nodes in the hierarchy of interest, and draws from 940 

organizations contributing data to PubChem. 

 
Furthermore, PubChem continually updates its databases, with daily additions and 

revisions to ensure the data remain current and reflective of the latest advancements in 

the field of chemistry and biochemistry. The user-friendly interface and extensive data 

make PubChem an indispensable resource for researchers and professionals in various 

fields, contributing significantly to the advancement of chemical and life sciences. 

The project has established itself as a cornerstone in chemical research and is crucial for 

the discovery of new compounds, the development of pharmaceuticals, and research into 

the biological activities of chemicals. 

 

3.1.6. Overview of the Datasets 
 
The raw data that forms the basis of the analyses in this study was initially collected in 

the context of a separate research project, as referenced in [68].  Additionally, the essential 

operations and preliminary analysis on the data were performed as part of the same 

previous study. This study has adopted the same datasets, using them as basis for further 

exploration and analysis. Table 3.1. provides a comprehensive overview of the datasets 

used in the research, specifically detailing the number of drugs included in each database, 

the type of drug response analysis used, the duration of treatment with the drug, and the 

metrics used to measure drug response. It offers a snapshot of the scope and methodology 

of each database, namely GDSC, CCLE, and NCI-60. 

 

 

 

 

 

 

 

 

https://www.zotero.org/google-docs/?WP07wH
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Metrics / Database GDSC CCLE NCI-60 

Number of Drugs 518 (367 in GDSC1, 
198 in GDSC2) 

24 1054 

Type of Drug Response 
Analysis 

Resazurin or Syto 60 
(GDSC1), CellTiter 

Glo (GDSC2) 
CellTiter Glo SRB 

Treatment Duration 
with Drug 72 hours 72 hours 48 hours 

Metrics of Drug 
Response 

IC50, AUC IC50, AUC 
IC50, GI50, 
TGI, LC50 

 

Table 3.1. Data Sources and Features 

 
Table 3.2. presents the types of data and features available in each database, specifically 

focusing on gene expression, mutation, methylation, and copy number variation. It 

outlines the number of cell lines and genes included under each data type for each 

database. This table provides a detailed view of the genetic information available in each 

database, which is crucial for understanding drug sensitivity in cancer research. 
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Omic / Database GDSC CCLE NCI-60 

Gene Expression 
Number of Cell Lines 1018 1088 60 

Number of Genes 17737 19851 23059 

Mutation 
Number of Cell Lines 1032 1570 60 

Number of Genes 21972 19286 443 

Methylation 
Number of Cell Lines 1080 1089 60 

Number of Genes 19864 19880 17553 

Copy Number 
Variation 

Number of Cell Lines 986 1754 60 

Number of Genes 24502 25368 19951 

 

Table 3.2. Number of cell lines and genes in each database 

 
The tables highlight the distinct characteristics and strengths of the GDSC, CCLE, and 

NCI-60 databases in cancer research. GDSC, with its extensive collection of cell lines 

and drugs, appears to be a comprehensive resource for studying a wide range of cellular 

responses to various drugs. Its two versions, GDSC1 and GDSC2, further add to its 

versatility. On the other hand, CCLE, despite having fewer drugs, provides a rich source 

of genetic information across a substantial number of cell lines. This makes it a valuable 

database for studying the genetic basis of drug responses.NCI-60, while having the least 

number of cell lines, stands out for its vast array of drugs tested. This, coupled with a 

unique set of drug response metrics, makes NCI-60 a potent tool for high-throughput 

screening of drug responses. In terms of genetic data, the tables underscore the depth of 

information available across different ‘omics’ categories in each database. The variation 

in the number of genes studied under each category across the databases indicates the 

diverse focus areas of each resource. Overall, these databases collectively offer a wealth 

of information, each with its unique strengths, catering to various facets of cancer 

research. The choice of database would thus depend on the specific requirements of the 

research question at hand. 
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3.2. Data Imputation 
 
Data imputation is a crucial step in data preprocessing, especially when the quantity of 

data is limited. Each piece of data holds potential value for the research, and losing any 

part of it could lead to a significant loss of information. The imputation process is guided 

by an examination of the column-wise and row-wise proportions. These proportions 

represent the ratios of missing values in each column and row, respectively.  

 
Based on these analyses, different imputation approaches are implemented. These 

approaches are tailored to the specific characteristics of the data and are designed to 

preserve the underlying data distribution and relationships. The implementation of these 

approaches is summarized in Figure 3.1, which provides a pseudocode representation of 

the imputation process. 

 

!4	5*)671	890/:		#;*#*;<9*1	 < 0.1	?1:	;*8	890/:	#;*#*;<9*1	 < 0.5	@ABC 

							4D.	/?5ℎ	<E#/	*F	*7950	GD 

											!4	<E#/	90	′H/1/	B3#;/009*1′	D.	′I/<ℎE)?<9*1′	@ABC 

															49))	790091+	J?)6/0	89<ℎ	<ℎ/	7/?1	*F	<ℎ/	:?<? 

											BK2B	!4	<E#/	90	′I6<?<9*1′	@ABC 

															49))	790091+	J?)6/0	89<ℎ	L/;* 

											BK2B	!4	<E#/	90	′"*#E	C67M/;	N?;9?<9*1′	@ABC 

															49))	790091+	J?)6/0	89<ℎ	<ℎ/	7/:9?1	*F	<ℎ/	:?<? 

										BCG	!4 

							BCG	4D. 

				BCG	!4 

 
Figure 3.1. Pseudocode of data imputation  

 

For Gene Expression data, the chosen imputation approach involved filling missing 

values with the mean of the available data. This method seeks to maintain the statistical 

properties of the dataset while compensating for incomplete information. Gene 

expression profiles are highly dynamic, making the mean a suitable proxy for the missing 

values. 
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In the context of Mutation data, a different strategy was deployed, wherein missing values 

were replaced with zero, symbolizing the absence of any mutation. This approach is 

grounded in the understanding that a lack of mutation data signifies a non-altered state, 

which is adequately represented by a value of zero. Methylation data, like Gene 

Expression, underwent imputation through the utilization of mean values. Here, missing 

values were filled with the mean of the available data points, a method well-suited to 

preserving the underlying patterns in methylation levels. The Copy Number Variation 

data, on the other hand, was imputed using the median of the available data. This choice 

is informed by the nature of copy number variations, which often exhibit skewed 

distributions. The median, being a robust measure of central tendency, provides a 

balanced representation of the data in the presence of potential outliers. 

 

3.3. Data Manipulation 
 
In data analysis, especially when working with data from multiple sources, data 

manipulation is considered a crucial step. This process ensures the reliability, consistency, 

and suitability of the final dataset for further analysis. In this study, the foundation of the 

dataset was based on data collected from various sources. This data was organized into 

three main columns: cell line name, drug name, and pIC50 values. 

 
The initial step in the data manipulation process involved standardizing the data. This was 

essential to achieve uniformity across the dataset. Variations in data entries, such as the 

use of lowercase/uppercase or the inclusion of special characters like dashes, underscores 

between cell line names, were identified. A common format was applied to all data entries 

to make the data consistent. Following standardization, the data from different sources 

was merged. This was performed by using common identifiers present in the various data 

sources. The outcome was a comprehensive dataset that served as the raw version of our 

dataset. After the raw dataset was created, the next step was to integrate features from 

both the drugs and cell lines. For the drugs, the Simplified Molecular Input Line Entry 

System (SMILES) was used as a representation. The SMILES data, which was collected 

from another source, was then merged with the raw dataset using the drug names as a 

reference.  
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Regarding the cell line features, each cell line was associated with multiple genes, which 

required the application of a nested structure. Each cell line was represented by a 

dataframe of either (16501,4) or (897,4), depending on the selected gene subset. 16501, 

897 is the number of genes in the selected cell line and 4 represents multi omics (Gene 

Expression, Mutation, Methylation, Copy Number Variation) respectively. This data, also 

collected externally, was subsequently merged into the raw dataset. The resulting 

comprehensive dataset, enriched with drug and cell line features can be seen in Table 3.3. 
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Drug Name SMILES Cell Line Name Cell Line Features pIC50 

Rapamycin CC1CCC2 .. OC MHH-ES-1 
[[4.188, 0.0, 0.0, 4.0], 

… 
 [5.45, 0.0, 0.0, 4.0]] 

6.966429 

FH535 CC1=C(C .. Cl RERF-LC-Sq1 
[[10.05, 0.0, 0.0, 4.0], 

… 
 [7.89, 0.0, 0.0, 3.0]] 

3.806829 

Enzastaurin CN1C=C .. N7 JHU-011 
[[10.08, 0.0, 0.0, 4.0], 

… 
 [8.03, 0.0, 0.0, 3.0]] 

5.150244 

Refametinib COC1=CC .. )F NEC8 
[[8.27, 0.0, 0.0, 3.0], 

… 
[8.98, 0.0, 0.0, 2.0]] 

5.291252 

Pazopanib CC1=C(C .. )N NCI-H1869 
[[8.89, 0.0, 0.0, 3.0], 

… 
[9.81, 0.0, 0.0, 2.0]] 

3.936815 

TWS119 C1=CC( .. 4)O BPH-1 
[[8.625, 0.0, 0.0, 4.0], 

… 
[10.29, 0.0, 0.0, 4.0]] 

5.625702 

Venotoclax CC1(CCC .. )C SK-HEP-1 
[[9.18, 0.0, 0.0, 3.0], 

… 
[9.664, 0.0, 0.0, 2.0]] 

5.654595 

Trichostatin A CC(C=C .. )C SK-PN-DW 
[[9.29, 0.0, 0.0, 1.0], 

… 
 [8.586, 0.0, 0.0, 2.0]] 

7.019587 

AZD8186 CC(C1 .. )F KARPAS-1106P 
[[8.83, 0.0, 0.0, 2.0], 

… 
[10.375, 0.0, 0.0, 2.0]] 

5.244440 

YK-4-279 COC1=C .. l)O FADU 
[[8.625, 0.0, 0.0, 4.0], 

… 
[8.97, 0.0, 0.0, 3.0]] 

5.236225 

Table 3.3. The first ten rows in the dataset 
 

3.4. Gene Set Organisation 
 
Different data types were required to perform different tests and compare the model to 

existing ones. Data types can be differentiated by the combinations of data source, gene 

types, pathway knowledge and tissue type. 
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The L1000 technology is a cost-effective, high-throughput transcriptomics technology. It 

has been used to profile a collection of human cell lines for their gene expression response 

to more than 30,000 chemical and genetic perturbations [69]. In total, there are currently 

over 3 million available L1000 profiles. The L1000 assay measures the mRNA expression 

of 978 landmark genes, while 11,350 additional genes are computationally inferred [69].  

Therefore, the ‘L1000’ dataset is created by filtering out only the L1000 gene names from 

the ‘Normal’ dataset. By focusing on these key genes, the ‘L1000’ dataset allows for 

efficient data handling while still maintaining a high level of precision in model testing 

and comparison. 

 
Pathway knowledge refers to the understanding of how genes interact in biological 

pathways. These pathways provide common conceptual models which explain groups of 

chemical reactions within their biological context [70]. Visual representations of the 

reactions in biological pathway diagrams provide intuitive ways to study the complex 

metabolic processes. In order to link (clinical) data to these pathways, they have to be 

understood by computers. Understanding how to move from a regular pathway drawing 

to its machine-readable counterpart is pertinent for creating proper models. This is 

followed by three examples of bioinformatics applications including a pathway 

enrichment analysis, a biological network extension, and a final example that integrates 

pathways with clinical biomarker data.  

 
In the pathway-sorted datasets, genes that belong to the same pathway are arranged 

consecutively. This arrangement is particularly beneficial when using Convolutional 

Neural Networks (CNNs) [71] for analysis. The CNN can take advantage of this ordering 

to extract features by looking at a larger window of consecutive genes. This allows the 

CNN to capture the relationships and patterns within the same pathway, potentially 

leading to more accurate and insightful model predictions. 

 
The last type of dataset is referred to as the ‘Digestive System’ dataset. This dataset is 

derived by filtering the ‘Normal’ dataset based on tissue types, specifically focusing on 

tissues from the digestive system. This allows for a more focused study on the genes of 

digestive system cell lines and their corresponding drugs.  

https://www.zotero.org/google-docs/?GxvdKv
https://www.zotero.org/google-docs/?mi7SqW
https://www.zotero.org/google-docs/?9FNtOW
https://www.zotero.org/google-docs/?5yz7vv
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This targeted approach facilitates more precise analysis and model testing within the 

specific context of the digestive system. All the dataset and corresponding info was 

summarized in Table 3.4. 

 

Dataset Type Available Sources Features 

Normal GDSC, CCLE, NCI-60 
All the genes of all the cell lines and 

corresponding drugs. 

L1000 GDSC, CCLE, NCI-60 
Only L1000 genes of all the cell lines 

and corresponding drugs. 

Pathway GDSC 
All the genes of all the cell lines 

ordered by pathway and corresponding 
drugs. 

Pathway 
Reduced 

GDSC 
Only L1000 genes of all the cell lines 

ordered by pathway and corresponding 
drugs. 

Digestive 
System 

GDSC 
All the genes of digestive system cell 

lines and corresponding drugs. 

 

Table 3.4. Data types and features 

 
3.5. Model Construction 
 
3.5.1. Convolutional Neural Network 
 
Convolutional Neural Networks (CNNs) [71] are a type of Artificial Neural Network 

(ANN) that is particularly suited for spatial data. CNNs are inspired by the biological 

processes of the visual cortex of living beings. They are composed of multiple layers, 

including convolutional layers, non-linearity layers, pooling layers, and fully-connected 

layers as in Figure 3.2. The convolutional and fully-connected layers have parameters, 

while the pooling and non-linearity layers do not.  

 

https://www.zotero.org/google-docs/?GfzBgU
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Figure 3.2. Representation of a convolutional layer [72] 

 
The Convolutional Neural Network (CNN) is one of the sub deep learning components 

of DeepResponse, designed to analyze multi-dimensional cell line data effectively. Given 

the diverse nature of multi-omics and pathway-ordered data for cell lines, the CNN 

processes gene expression, mutation, methylation, and copy number variation features. 

Each gene in the cell line is analyzed by the CNN, which uses a series of 2D convolutional 

layers to extract hierarchical features and patterns within the molecular structures with 

the help of max pooling layers as can be seen in the (4). 

 

O..0 = 7?31.,{Q1.,}                                                      (4) 

 

!6.8: #$%&'	)*	+ℎ'	)&+-&+	*'$+&.'	/$-	$+	-)01+1)2(1, 5)(1, 5)	
79.:: #$%&'	)*	+ℎ'	12-&+	*'$+&.'	/$-	$+	-)01+1)2(/, 2)		
/$89.::9$81/&/	:$%&'	):'.	$%%	+ℎ'	-)01+1)20	/	$2;	2	<1+ℎ12	+ℎ'	-))%12=	<12;)<	
 
The strength of CNNs in analyzing cell line data is not only due to their ability to discern 

complex patterns within the molecular structures, but also their effective use of batch 

normalization layers. These layers, strategically placed within the network, normalize, 

and stabilize the activations from the convolutional layers.  

https://www.zotero.org/google-docs/?wsbFJ0
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This ensures a more reliable and consistent learning process, even when dealing with the 

diverse nature of multi-omics and pathway-ordered data for cell lines. 

 
Equation (5) calculates the mean value S of the batch, where 3. are the individual 

elements of the batch and 7 is the batch size. 

 

T2 =
!
1∑ 3.1

.3!                                                     (5) 

                   

Then it computes as in equation (6) the variance V4 of the batch, which measures how far 

each number in the set is from the mean V. 

 

																																																								W54 =
!
1∑ (1

.3! 3. − T5)4						 																																					 				(6) 

 

Equation (7) normalizes each element 3. 	 of the batch by subtracting the mean V and 

dividing by the square root of the variance V4 plus a small constant Y to prevent division 

by zero. 

 

																																																																		36Z = 	
%078;
9:;<-;

																																																																		 (7)  

 
Last step is scaling and shifting the normalized value (36Z ) using learnable parameters γ 

(scale) and β (shift) to produce the final output yiof the batch normalization process. 

 

																																																																				E. = \36Z + S																																																												 	(8) 
 

In the context of analyzing multi-dimensional cell line data, one distinctive architectural 

decision in the CNN component of DeepResponse is the utilization of 2D global average 

pooling in the final layer. This approach goes beyond conventional flattening layers, 

reflecting a nuanced understanding of the challenges posed by molecular data. Global 

average pooling not only helps prevent overfitting but also serves as a powerful 

mechanism for distilling essential information from the diverse nature of multi-omics and 

pathway-ordered data for cell lines.  
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By taking the average of each feature map, global average pooling retains critical 

information while significantly reducing the dimensionality of the data. This contributes 

to the model’s interpretability and generalization capabilities, enhancing its effectiveness 

in analyzing cell line data. 

 

3.5.2. Graph-Transformer Based Neural Network 
 
Graph-Transformer Based Neural Networks (GTNNs) [73] are a novel approach to 

representation learning on graphs. GTNNs are capable of generating new graph 

structures, identifying useful connections between unconnected nodes on the original 

graph, and learning effective node representation on the new graphs in an end-to-end 

fashion. This approach allows GTNNs to learn new graph structures based on data and 

tasks without domain knowledge. 

 
A generalization of transformer neural network architecture for arbitrary graphs has been 

proposed, which operates on fully connected graphs representing all connections between 

the words in a sequence [74]. This architecture leverages the graph connectivity inductive 

bias and can perform well when the graph topology is important and has not been encoded 

into the node features. 

 
The Graph-Transformer Neural Network (GTNN) within DeepResponse represents an 

innovative integration of two significant paradigms in deep learning: message passing 

neural networks and transformer encoders. This integration is not just a combination of 

methodologies, but a strategic fusion that results in a model capable of understanding the 

complex structural details inherent in drug molecules. The operation of the GTNN is 

characterized by a two-step process, each step playing a crucial role in comprehending 

molecular relationships. The difference between them was represented in Figure 3.3. 

 

https://www.zotero.org/google-docs/?6c4gX8
https://www.zotero.org/google-docs/?MiXf5x
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Figure 3.3. Comparison between Graph Neural Networks (GNN) and Graph 

Transformer Neural Networks (GTNN) [75] 

 
In the first step of the GTNN operation, dynamic message passing layers are employed 

(9). These layers construct a graph from the drug molecule data, creating sub-edge 

networks that aggregate information from neighboring atoms. This process allows the 

GTNN to adapt to the inherent complexities of molecular structures. The subsequent use 

of gate recurrent unit layers further enhances the model’s ability to capture the dynamic 

nature of molecular interactions. This ensures that the GTNN is not merely a static model, 

but a responsive and adaptive tool in the field of molecular property prediction, capable 

of comprehending the intricate structural details inherent in drug molecules. 

 

																														ℎ.
(=-1) = W_`(=)ℎ.

(=) + a I(=)(ℎ.
(=), ℎ0

(=))
0	?	@0

	d																																								(9) 

 

Here, ℎ.
(=) represents the feature vector of node 9 at layer ), C. is the set of neighboring 

nodes of node  9, `(=) and I(=) are learnable parameters, and σ is a non-linear activation 

function. 

 
In the second step of the GTNN operation, transformer encoder layers are incorporated, 

representing a significant advancement in the GTNN’s architecture (10). These layers 

build upon the foundation established by the dynamic message passing layers, enhancing 

the model’s ability to understand intricate dependencies and long-range interactions 

within drug molecules.  

https://www.zotero.org/google-docs/?UmJtVA
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The transformer architecture, well-known for its effectiveness in natural language 

processing tasks, is applied to the molecular domain, where it serves as a key component 

in the model’s operation. Each transformer encoder layer contributes to a hierarchical 

abstraction, enabling the GTNN to capture complex relationships and dependencies in a 

way that surpasses conventional neural network architectures. 

 

																																											f<</1<9*1(g, h, N) 	= 	0*F<7?3 i
ghA

j:B
kN																												(10)	

 
Here, g,h, and N are the query, key, and value matrices respectively, and :B is the 

dimension of the key. 

 

3.5.3. Multi-Layer Perceptron 
 
Multi-Layer Perceptrons (MLPs) are a class of artificial neural networks that have gained 

significant attention in the field of machine learning [75]. MLPs consist of multiple layers 

of nodes in a directed graph, with each layer fully connected to the next one. The nodes, 

or “neurons”, in these layers apply a set of weights to the inputs and pass them through a 

non-linear activation function (11,12). 

 

																																																													LB = ∑ 8.B × 3. + M0,
.3! 																																													(11)                                        

																																																																										EB 	= 	F(LB)																																																						(12)                                                             
 

>=:	?&/	)*	<'1=ℎ+';	12-&+0	$2;	@1$0	+)	+ℎ'	2'&.)2	A	 
2:	B'&.)2	C)&2+	)*	+ℎ'	-.':1)&0	%$D'.  

<6=:	E'1=ℎ+	)*	+ℎ'	C)22'C+1)2	@'+<''2	2'&.)2	1	$2;	A 

86:	F&+-&+	)*	2'&.)2	1	+ℎ$+	<1%%	@'	12-&+	+)	2'&.)2	A 

D=:	F&+-&+	)*	2'&.)2	A 

*:	GC+1:$+1)2	*&2C+1)2 

 
MLPs are known for their ability to solve problems that are not linearly separable, and 

they are widely used in applications such as image recognition, speech recognition, and 

machine translation.  

https://www.zotero.org/google-docs/?FlcjUZ
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The backpropagation algorithm is commonly used for training MLPs, adjusting the 

weights of the neurons by minimizing the error between the predicted and actual outputs, 

and MLP was illustrated in Figure 3.4. 

 
The Multi-Layer Perceptron (MLP) is the last but not least sub deep learning algorithm 

in DeepResponse. Following the Convolutional Neural Network (CNN) and the Graph-

Transformer Neural Network (GTNN), the MLP is responsible for synthesizing and 

consolidating the information processed by the preceding stages. The Multi-Layer 

Perceptron (MLP) in DeepResponse utilizes a combination of hidden layers, dropout 

mechanisms, and selected activation functions. This allows the MLP to process the 

information from the molecular landscape.  

 

 

 

Figure 3.4. An illustration of Multi-Layer Perceptron [76]  

 
The Multi-Layer Perceptron (MLP) in DeepResponse employs hidden layers to process 

the complex patterns within the molecular data. Each hidden layer uses Rectified Linear 

Unit (ReLU) activation functions (13), introducing non-linearity into the model. This 

allows the MLP to capture intricate relationships and nonlinear dependencies, enabling it 

to effectively process the information from the molecular landscape. 

 
F(3) 	= 	7?3(0, 3)                                                      (13) 

 

https://www.zotero.org/google-docs/?nFToNl
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In addition to hidden layers, the MLP incorporates dropout mechanisms to prevent 

overfitting. These mechanisms randomly deactivate a fraction of neurons during training, 

introducing an element of robustness into the model. This prevents the MLP from relying 

too heavily on specific neurons, enhancing its ability to generalize.  

 

3.5.4. Architecture of the DeepResponse 
 
The development of a generic and well-performing algorithm for predicting drug 

responses presents a significant challenge. The ideal model should possess a high degree 

of complexity while also maintaining the ability to generalize across real-life scenarios. 

Shallow machine learning models fall short in meeting these requirements due to their 

limited capacity for complexity. Hence, a complex hybrid deep learning architecture has 

been proposed. This architecture leverages the capabilities of deep learning to provide the 

necessary complexity and generalization for effective drug response prediction. The 

reason behind designing a complex architecture is to effectively utilize unique strengths 

of the different deep learning models. Therefore, these strengths have been combined to 

construct a comprehensive model, aiming to provide an optimal solution for the problem 

at hand. 

 
In the proposed approach, Convolutional Neural Networks (CNNs) [71] are employed to 

process cell line data. This is achieved by convolving a filter over the cell line matrix, a 

process that allows for the extraction of relevant features. This method takes advantage 

of the spatial relationships in the data, capturing local patterns that can be crucial for 

understanding the cell lines. 

 
On the drug side, Graph Transformer Neural Networks (GTNNs) are utilized. These 

networks are particularly suited for representing drug molecules accurately using a graph 

representation. The GTNNs are capable of capturing the complex, non-Euclidean 

structure of the molecules, which allows for a more detailed comprehension of their 

properties. 

 
 

 

https://www.zotero.org/google-docs/?dwcdls
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The outputs from both the CNN and GTNN models are then concatenated. This combined 

output represents a fusion of information from both the cell line and the drug molecule. 

It encapsulates the intricate relationships and patterns that the individual models have 

captured. 

 
This combined output is subsequently fed into a Multi-Layer Perceptron (MLP) for the 

prediction of pIC50 values. The MLP acts as the concluding stage, processing the 

combined information from the CNN and GTNN to generate the final pIC50 prediction 

as can be seen in Figure 3.5. 

 

 

 

Figure 3.5. Architecture of DeepReponse 

 
3.6. Training the Model 
 
3.6.1. Creating Tensorflow Dataset 
 
In the field of machine learning, particularly when dealing with complex data such as 

molecular structures and cell line features, the preparation and organization of data is a 

crucial step. This process begins with the initialization of our data, which includes both 

independent and dependent variables.  
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The batch size is also specified at this stage, which determines the number of samples 

that will be propagated through the network at once. This is a key parameter that can 

significantly impact the learning process and the resulting model performance. 

 
Two specific datasets are also introduced, one related to molecular properties and another 

related to convolutional features. These datasets are constructed to capture the essential 

characteristics of the molecules and cell lines we are studying. The independent variables, 

which could be a wide range of molecular or cellular properties, are converted into a 

structured format. This structured data is then combined with the two specific datasets, 

effectively integrating the diverse types of information into a unified data structure. 

 
One of the unique aspects of this process is the conversion of molecular properties into a 

graph representation. This transformation allows us to capture the structural information 

of the molecules, which is often critical for understanding their behaviors and 

interactions. This graph-based dataset provides a rich source of information for the 

machine learning model to learn from. 

 
In parallel, the features related to cell lines are processed into a dataset suitable for 

convolutional operations. Convolutional neural networks have proven to be highly 

effective for tasks involving spatially structured data, and by preparing our cell line data 

in this way, we are able to leverage these powerful models for our task. Once these 

datasets are prepared, they are combined into a TensorFlow dataset. This dataset is then 

organized into batches, a process that involves grouping the data into subsets of the 

specified batch size. Batching the data is a common practice in machine learning that can 

help to make the training process more efficient and stable as illustrated in Figure 3.6. 

 
To further enhance the efficiency of our model training, the dataset is also prefetched. 

Prefetching is a technique where the data needed for future steps is prepared while the 

current step is still being processed. This can significantly reduce the idle time of the 

computational resources, leading to faster training times. 



 

52 
 

 

 

 

Figure 3.6. Utilization of computational resources by time with TensorFlow operations 

[77] 

 
The function returns several pieces of information, including the dimensions of the 

molecular features, the shape of the convolutional dataset, and the batched and prefetched 

TensorFlow dataset. These outputs not only provide useful information about the 

prepared data, but also serve as a confirmation that the data has been correctly processed 

and is ready for model training. 

 
In conclusion, this method of data preparation ensures that our data is appropriately 

preprocessed, integrated, batched, and prefetched, setting the stage for effective and 

efficient training of our machine learning model. This meticulous preparation of data is a 

testament to the importance of data management in machine learning and serves as a solid 

foundation for the subsequent steps of model training and evaluation. 

 

3.6.1.1. Preparing Cell Line Data 
 
In the process of preparing data for machine learning models, a crucial step involves 

optimizing the format of a specific dataset. This dataset could be in any format and may 

contain a variety of features related to cell lines. 

https://www.zotero.org/google-docs/?rWTjua
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The process begins by initializing an empty list, which will be used to store the processed 

data. It then iterates over each row in the input dataset. For each row, the function simply 

appends it to the list. This step might seem trivial, but it is actually a key part of the 

conversion process. By iterating over the data in this way, the process ensures that the 

data is in a consistent and ordered format, which is important for the subsequent steps of 

the machine learning pipeline. 

 
Once all the data has been processed and appended to the list, the function converts the 

list into a NumPy array. NumPy arrays are a popular data structure in the field of data 

science and machine learning, known for their efficiency and versatility. By converting 

the data into this format, the process ensures that the dataset is optimized for the 

computational operations that will be performed on it during the model training process. 

 
In conclusion, this process plays a vital role in the data preprocessing pipeline, 

transforming the raw dataset into an optimized format that is ready for model training. 

This exemplifies the importance of proper data management in machine learning, 

ensuring that the data is in the right format and structure for the subsequent steps of the 

pipeline. 

 

3.6.1.2. Preparing Drug Data 
 
In the field of computational chemistry and drug discovery, the representation of 

molecular structures plays a pivotal role. One common way to represent molecules is 

through Simplified Molecular-Input Line-Entry System (SMILES) strings, a compact 

notation that provides a string representation of a molecule's structure. 

 
To address this, a critical step in the data preprocessing pipeline involves converting these 

SMILES strings into graph representations. This conversion allows the machine learning 

model to better understand and learn from the structural information of the molecules. 

The graph representation captures the atoms as nodes and the bonds between them as 

edges, effectively transforming the complex 3D structure of a molecule into a simplified 

2D graph. 
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The process begins by iterating over a list of SMILES strings. Each string is processed 

individually to generate the components of a molecule graph. This processing involves 

several steps, starting with the conversion of the SMILES string into a molecule object. 

This conversion is performed using a specialized function that interprets the SMILES 

notation and constructs a corresponding molecule object. 

 
Once the molecule object is created, the next step is to extract features from the atoms 

and bonds in the molecule. These features could include various properties such as the 

atom type, the bond type, the number of connected atoms, and so on. The extraction of 

these features is performed using specific encoding functions, which transform the 

properties of the atoms and bonds into numerical representations. These numerical 

features capture the essential characteristics of the atoms and bonds, providing valuable 

information for the machine learning model. 

 
In addition to the atom and bond features, the process also constructs pair indices that 

represent the connections between atoms. These pair indices are crucial for understanding 

the structure of the molecule, as they indicate which atoms are bonded together. To ensure 

that every atom is considered during the learning process, self-loops are also added to the 

graph, which involve connections of an atom to itself. 

 
Once all the components of the molecule graph are generated, they are organized into 

arrays. These arrays are then combined into a tuple, which includes ragged tensors for 

atom features, bond features, and pair indices. The use of ragged tensors is particularly 

suitable for this task, as they can efficiently handle data with varying lengths, which is 

often the case with molecular structures. 

 
In conclusion, this process transforms the raw SMILES strings into a structured graph 

representation that captures the structural information of the molecules. This graph-based 

representation is highly suitable for machine learning models, allowing them to 

effectively learn from the structural information of the molecules. This meticulous 

preparation of data is a testament to the importance of data management in machine 

learning and serves as a solid foundation for the subsequent steps of model training and 

evaluation.  
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By ensuring that the data is in the right format and structure, we can facilitate the learning 

process and potentially improve the performance of our machine learning models as 

represented in Figure 3.7. 

 

 

 

Figure 3.7. Representation of data processing 

 

3.6.2. Data Split Strategies 
 
3.6.2.1. Random Split Strategy 
 
The Random Split Strategy is the most basic and straightforward approach to dividing the 

dataset. It randomly assigns each data point to the training, validation, or testing set. This 

randomness ensures a diverse range of data in each set, which can help the model learn a 

broad set of features during training and then test those features on a wide variety of data. 

However, this strategy does not take into account the specific characteristics of the data, 

such as the type of cell line or drug. Therefore, while it provides a good baseline for model 

performance, it may not fully reflect the model’s ability to generalize to unseen cell lines 

or drugs. Despite its simplicity, the Random Split Strategy is a powerful tool in the 

machine learning toolbox, providing a straightforward and effective means of evaluating 

a model’s performance. It is often the first strategy used when training a new model, 

providing a baseline against which more complex strategies can be compared. 
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3.6.2.2. Cell Stratified Split 
 
The Cell Stratified Strategy takes the biological aspect of the data into account by 

grouping the data based on cell line. Each unique cell line is used as a test set exactly 

once, while the remaining data is used for training. This strategy is particularly useful for 

assessing how well the model can generalize to new cell lines. By ensuring that the model 

is tested on every unique cell line, we can gain a better understanding of its performance 

across different cell types. This strategy is especially relevant in the field of precision 

medicine, where treatments are often tailored to the specific characteristics of a patient’s 

cells. By stratifying the data by cell line, we can ensure that our model is capable of 

handling the wide variety of cell types that it may encounter in a real-world setting. This 

strategy also allows us to identify any cell lines that the model struggles with, which can 

provide valuable insights for further model development and improvement. 

 

3.6.2.3. Drug Stratified Split 
 
The Drug Stratified Strategy is similar to the Cell Stratified Strategy, but it groups the 

data based on drug instead of cell line. Each unique drug is used as a test set exactly once. 

This strategy provides a rigorous test of the model’s ability to generalize to new drugs. It 

is particularly useful in the field of precision medicine, where the ability to predict the 

response of a specific drug is crucial. By testing the model on every unique drug, we can 

gain a better understanding of its ability to predict drug responses accurately and reliably. 

This strategy is especially important in the context of drug discovery and development, 

where the ability to predict a drug’s efficacy and safety profile is of paramount 

importance. It allows us to identify any drugs that the model struggles with, providing 

valuable insights for further model development and improvement. 

 

3.6.2.4. Drug-Cell Stratified Split 
 
The Drug-Cell Stratified Strategy is the most challenging and realistic test scenario. In 

this strategy, the model is tasked with predicting drug-cell pairs that it has not seen before. 

This is akin to the real-world situation where we often need to predict the response of a 

specific cell line to a specific drug, both of which the model may not have encountered 

during training.  
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This strategy provides the most accurate measure of how well the model will perform in 

practice. It is a stringent test of the model’s ability to generalize and is particularly 

relevant in the context of personalized medicine, where treatments are often tailored to 

the specific characteristics of a patient’s cells and the specific drugs being used. This 

strategy also allows us to identify any drug-cell pairs that the model struggles with, 

providing valuable insights for further model development and improvement. Figure 3.8. 

shows the different split strategies. 

 

 

 

Figure 3.8. Comparison of different split strategies 
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3.6.2.5. Cross Domain Strategy 
 
The Cross-Domain Strategy involves training the model on one database and evaluating 

it on another. For example, the model could be trained on the GDSC database and tested 

on the CCLE database. This strategy tests the model’s ability to generalize across 

different domains, which is crucial in a field like precision medicine where new data is 

constantly being generated. By evaluating the model on a separate database, we can gain 

a better understanding of its performance on data that is fundamentally different from the 

data it was trained on. This strategy is particularly relevant in the context of large-scale 

biomedical research, where data is often collected from multiple sources, and it is 

important to ensure that the model can handle the variability and complexity of these 

different data sources. This strategy also allows us to identify any domains that the model 

struggles with, providing valuable insights for further model development and 

improvement. 

 

3.6.3. Loss Function and Optimizer 
 
In this research, the Huber loss is employed as the loss function (14). Huber loss is often 

used in robust regression scenarios, presenting a combination of the mean squared error 

and mean absolute error loss functions. It is particularly effective in mitigating the impact 

of outliers on the model’s performance. For errors smaller than a certain threshold, it 

behaves quadratically like the mean squared error, but for larger errors, it behaves linearly 

like the mean absolute error. This dual behavior makes Huber loss a more robust choice 

for many machine learning tasks, as it can handle outliers without being overly sensitive 

to them. The threshold at which the loss function changes from quadratic to linear is a 

tunable parameter, offering flexibility in controlling the robustness of the model. 
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The optimizer used is Adam, an algorithm for first-order gradient-based optimization of 

stochastic objective functions. The Adam optimizer uses an algorithm for first-order 

gradient-based optimization of stochastic objective functions. It maintains an exponential 

moving average of the gradient and the squared gradient, and the parameters 	S! and 	S4 

control the decay rates of these moving averages. 

 
The first moment estimate is updated as in (15): 

 

																																																					7D =	S17D71 	+ (1	 − 	S1)+D																																												(15)                                            
 

And the second moment estimate is updated as in (16): 

 

     																																														JD =	S2JD71 	+ (1	 − 	S2)+D2																																														(16)                                            
 

These estimates are biased towards zero, especially during the initial time steps, and this 

bias is corrected as follows (17,18): 

 

																																																																						7Dt = 1-
1721-

																																																														(17)                                                         

																																																																							JDZ = E-
1722-

																																																														(18)                                                         

 
The learning rate, a critical hyperparameter of the Adam optimizer, determines the step 

size at each iteration while moving toward a minimum of the loss function. This learning 

rate is carefully chosen to ensure that the model converges to a solution efficiently without 

overshooting the minimum. The updated parameters are computed as in (19): 

 

																																																																	uD = uD71 −
F
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The model is then trained on the training dataset for a specified number of epochs. An 

epoch is one complete pass through the entire training dataset. During each epoch, the 

model learns to adjust its weights and biases to minimize the loss function. The validation 

dataset is used to evaluate the model’s performance at the end of each epoch, providing a 

check on overfitting. 

 

3.7. Evaluating the Model 
 
The model’s performance is evaluated on the test dataset. This evaluation is crucial as it 

provides an unbiased estimate of the model’s performance on new, unseen data. The 

evaluation metrics used include MSE, Root Mean Squared Error (RMSE), Mean Absolute 

Error (MAE). These metrics provide different perspectives on the model’s performance. 

For instance, RMSE can be interpreted in the same units as the response variable, making 

it more interpretable. In the context of drug response prediction, these metrics have 

specific interpretations.  

 
A lower MSE, MAE and RMSE indicates that the model’s predicted pIC50 values are 

closer to the actual values, suggesting better model performance. However, it’s important 

to remember that these metrics should not be viewed in isolation. They should be 

considered in conjunction with the biological and clinical significance of the predictions. 

A small error in the predicted pIC50 value might lead to a significant difference in the 

interpretation of a compound’s potency. Therefore, the choice and interpretation of these 

metrics should also consider the practical implications in the field of drug discovery. This 

rigorous training and evaluation process ensures the robustness and reliability of the 

machine learning model, making it a valuable tool in the drug discovery process. 

 

3.7.1. Performance Metrics 
 
In the context of predicting drug response as pIC50 values, the performance of the 

machine learning model is evaluated using a variety of metrics, each providing a unique 

perspective on the model’s performance. 
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● Mean Squared Error (MSE): This metric quantifies the average squared 

difference between the predicted and actual pIC50 values. It is particularly useful 

as it penalizes larger errors more due to the squaring operation. In the context of 

drug response prediction, a lower MSE indicates (20) that the model’s predicted 

pIC50 values are closer to the actual values, suggesting better model performance. 

 

I2B	 = 	 1,∑ (O. − Ov.)4																																													(20),
.31                                           
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● Root Mean Squared Error (RMSE): This is the square root of the MSE (21) 

and can be interpreted in the same units as the response variable, making it more 

interpretable. A lower RMSE indicates a better fit of the model. 

 

.I2B	 = 	w1,∑ (O. − Ov.)4,
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● Mean Absolute Error (MAE): This measures the average magnitude of the 

errors in a set of predictions (22), without considering their direction. It is less 

sensitive to outliers compared to MSE and RMSE. 
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In addition to these regression metrics, several classification metrics are calculated after 

binarizing the data based on a specified threshold. These include: 

 
● Accuracy: This measures the proportion of true results (both true positives and 

true negatives) among the total number of cases examined (23). 

 

f556;?5E	 = 	 AL	-	A@
AL	-	A@	-	ML	-	M@ 																																							(23)                                       

 
● Precision: This quantifies the number of true positive predictions divided by the 

total number of positive predictions. It is a measure of a classifier’s exactness (24). 

 

y;/5909*1	 = 	 AL
AL	-	ML 																																																			(24)                                             

 
● Recall: Also known as sensitivity, this measures the proportion of actual positives 

that are correctly identified. It is a measure of a classifier’s completeness (25). 

 

./5?))	 = 	 AL
AL	-	M@ 																																																						(25)                                                

 
● F1 Score: This provides a balance between precision and recall. It is the harmonic 

mean of precision and recall and gives equal weight to both metrics (26). 

 

41	 = 	 2	×	LO(P.).+,	×	'(P$==LO(P.).+,	-	'(P$== 																																														(26)                                           

 

● Matthew’s Correlation Coefficient (MCC): This is a measure of the quality of 

binary classifications. It takes into account true and false positives and negatives 

and is generally regarded as a balanced measure which can be used even if the 

classes are of very different sizes (27). 
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These metrics collectively provide a comprehensive evaluation of the model’s 

performance, allowing for the identification of areas of strength and potential 

improvement. It’s important to note that these metrics should be interpreted in the context 

of the specific task of predicting pIC50 values, and in conjunction with the biological and 

clinical significance of the predictions. This rigorous evaluation process ensures the 

robustness and reliability of the machine learning model, making it a valuable tool in the 

field of drug discovery. 
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4. RESULTS 

 
4.1. Prediction Performance of the Model 
 
The model’s predictive performance, particularly in predicting pIC50 values for drug 

response, is a crucial aspect of its evaluation. Metrics such as Huber Loss, Mean Squared 

Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) are 

employed to assess the closeness between the predicted drug response and the true drug 

response. 

 
In addition to these, classification metrics like accuracy, precision, recall, and the F1 score 

are used to determine the effectiveness of the drugs on the cancer cell line. These metrics 

provide the binary perspective, categorizing the drugs as effective or not based on a 

certain threshold. 

 
The model’s performance was evaluated under a variety of conditions, each representing 

a unique method of data splitting. These data splits are not arbitrary; they are designed to 

mimic real-world scenarios and challenges in predicting drug responses. For instance, 

they may represent different patient groups, various types of cancer, or a range of drug 

compounds. This rigorous evaluation process, therefore, not only tests the model’s 

robustness and reliability across different data splits but also its potential effectiveness in 

real-world applications. By succeeding under these diverse conditions, the model 

demonstrates its readiness to handle the complexity and variability inherent in cancer 

treatment. 

 

4.1.1. Random Split 
In the random split scenario, the dataset was divided into training, validation, and test sets 

without considering any structure in the data. This provides a baseline performance metric 

for the model as summarized in Table 4.1. 
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 Data Source 

Performance Metrics GDSC CCLE NCI-60 

Mean Squared Error 1.028 1.182 1.213 

Root Mean Squared Error 1.014 1.166 1.186 

Mean Absolute Error 0.812 0.933 0.966 

Accuracy 0.852 0.721 0.682 

Precision 0.838 0.711 0.712 

Recall 0.821 0.697 0.673 

F1 Score 0.825 0.701 0.684 

 

Table 4.1. Performance metrics on random split on test dataset. Best scores are shown in 

bold font. 

 
The performance metrics indicate that the model’s predictions are generally close to the 

actual values, suggesting its capability to accurately predict drug responses when the data 

is split randomly. The model also demonstrates high accuracy, precision, recall, and F1 

score, particularly for the GDSC data source. This implies that the model is correctly 

classifying a high percentage of the drugs while maintaining a balanced ratio of precision 

and recall, which is crucial in real-world settings. 

 
However, the performance metrics for the CCLE data source are slightly lower than those 

for the GDSC. This could be attributed to the fact that the CCLE dataset is smaller than 

the GDSC dataset, which might affect the model’s learning and prediction capabilities. It 

underscores the importance of using diverse and sufficiently large datasets for training 

and evaluating the model to ensure its robustness and generalizability. 

 
In conclusion, the random split evaluation provides a solid baseline for the model’s 

performance. It demonstrates the model’s capability to handle randomness in data splits, 

a common scenario in real-world applications.  
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However, it also highlights the need for further evaluations under different data split 

scenarios to fully assess the model’s robustness and reliability. 

 

4.1.2. Cell Stratified Split 
 
In this scenario, the dataset was divided in such a way that the model is tested on unseen 

cell lines. This means that all instances of a particular cell line are either in the training 

set or in the validation/test sets, but not both. This approach is designed to ensure that the 

model is evaluated on a diverse set of cell lines, testing its ability to generalize across 

different cell types as summarized in Table 4.2. 

 

 Data Source 

Performance Metrics GDSC CCLE NCI-60 

Mean Squared Error 1.300 1.447 1.534 

Root Mean Squared Error 1.105 1.257 1.326 

Mean Absolute Error 1.026 1.166 1.200 

Accuracy 0.648 0.432 0.518 

Precision 0.639 0.568 0.543 

Recall 0.627 0.557 0.514 

F1 Score 0.631 0.562 0.523 

 

Table 4.2. Performance metrics on cell stratified split on test dataset. Best scores are 

shown in bold font. 

 
This approach is designed to test the model’s ability to generalize across different cell 

types. The performance metrics in this scenario were lower than those in the random split 

scenario. This indicates that maintaining the same distribution of cell lines in the splits is 

a more challenging task for the model. It suggests that the model may be overfitting to 

specific cell lines in the training data and struggling to generalize to new cell lines in the 

validation and test sets.  
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This scenario highlights the importance of considering the structure of the data when 

splitting it for model training and evaluation. It shows that while a model may perform 

well under random splits, it may struggle when the data is split in a way that reflects the 

real-world complexity and variability of the data. 

  
In conclusion, the cell stratified split scenario provides valuable insights into the model’s 

ability to generalize across different cell types. It highlights the need for models that can 

handle the inherent variability in the data and underscores the importance of rigorous 

model evaluation under different data split scenarios.  

 

4.1.3. Drug Stratified Split 
 
This method tests the model’s adaptability to new drugs. The dataset is arranged so that 

the model does not see certain drugs during training, and then it is evaluated on how well 

it predicts the responses to these unseen drugs in the validation/test sets as summarized 

in Table 4.3. 

 
 

 Data Source 

Performance Metrics GDSC CCLE NCI-60 

Mean Squared Error 1.241 1.359 1.526 

Root Mean Squared Error 1.142 1.221 1.370 

Mean Absolute Error 0.979 1.072 1.185 

Accuracy 0.684 0.612 0.527 

Precision 0.675 0.603 0.526 

Recall 0.662 0.595 0.530 

F1 Score 0.665 0.595 0.545 

 

Table 4.3. Performance metrics on drug stratified split on test dataset. Best scores are 

shown in bold font. 
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The performance metrics for this scenario were a bit better than the cell stratified split but 

not as high as the random split, indicating that predicting responses to new drugs is a 

complex task for the model. This suggests that the model might be learning too much 

from the specific drugs in the training data, which hampers its ability to predict responses 

to new drugs. This scenario emphasizes the need to consider the real-world complexity 

and variability of the data when preparing it for model training and evaluation. It shows 

that a model’s performance can vary significantly depending on how the data is split. 

 

4.1.4. Drug-Cell Stratified Split 
 
This scenario is arguably the most rigorous test of the model's predictive capabilities. It 

involves splitting the dataset in a way that the model is evaluated on unseen drug-cell 

combinations, which is a significant challenge. This approach mirrors real-world 

situations where a model has to predict responses for new drug-cell pairs that it has not 

encountered during training. These results in Table 4.4. underscore the complexity of 

predicting drug responses for new drug-cell combinations. It highlights the need for 

models that can effectively handle the variability and complexity inherent in the data. 

Despite the lower performance in this scenario, it provides valuable insights into the 

model's robustness and its ability to generalize to new, unseen data. This scenario serves 

as a reminder of the challenges involved in drug response prediction and underscores the 

importance of using rigorous evaluation methods to fully assess a model's performance.  
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 Data Source 

Performance Metrics GDSC CCLE NCI-60 

Mean Squared Error 2.968 3.412 3.769 

Root Mean Squared Error 1.723 1.981 2.154 

Mean Absolute Error 1.378 1.585 1.696 

Accuracy 0.759 0.645 0.554 

Precision 0.731 0.621 0.548 

Recall 0.715 0.607 0.558 

F1 Score 0.726 0.617 0.559 

 

Table 4.4. Performance metrics on drug-cell stratified split on test dataset. Best scores 

are shown in bold font. 

 
While the model shows promising results in less challenging scenarios, its performance 

in the drug-cell stratified split scenario indicates that there is room for improvement. 

Future work could focus on improving the model's ability to generalize to new drug-cell 

combinations, which is crucial for its applicability in real-world settings. This could 

involve exploring different model architectures, incorporating more diverse data, or using 

advanced training techniques to better capture the complex relationships in the data. 

 
4.1.5. Cross Domain Split 
 
This scenario pushes the boundaries of the model’s adaptability. It involves training the 

model on one domain (e.g., GDSC) and then assessing its performance on a different 

domain (e.g., CCLE). This is a tough test as it requires the model to apply its learning 

from one domain to another, which can be quite challenging due to potential differences 

in the underlying data distributions and characteristics between domains. 
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Results in Table 4.5. suggest that the model’s performance varies significantly depending 

on the training and testing domains. The model performs reasonably well when trained 

on GDSC and tested on CCLE, but its performance decreases when the training and 

testing domains are reversed. This could be due to the model being too closely fitted to 

the specific characteristics of the training domain, thereby limiting its ability to generalize 

to the test domain. This scenario emphasizes the need for models that can effectively 

transfer their learning from one domain to another, a critical requirement for real-world 

applications.  

 

 Data Source 

Performance Metrics GDSC/CCLE CCLE/GDSC 

Mean Squared Error 1.212 1.551 

Root Mean Squared Error 1.101 1.398 

Mean Absolute Error 0.865 1.089 

Accuracy 0.859 0.618 

Precision 0.833 0.641 

Recall 0.769 0.607 

F1 Score 0.800 0.592 

 

Table 4.5. Performance results of the cross-domain analysis. Best scores are shown in 

bold font. 

 
Despite the challenges and lower performance in this scenario, it provides valuable 

insights into the model’s robustness and adaptability, underscoring the importance of 

rigorous evaluation methods to fully assess a model’s performance. Future work could 

focus on improving the model’s cross-domain generalization capabilities, potentially 

through techniques such as domain adaptation or transfer learning. All the results are 

summarized in Figure 4.1. 
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Figure 4.1. Comparison of performance metrics by split strategy for each dataset on test 

dataset 

 

4.2. Comparison of Prediction Performance with State-of-the-Art 
 
In the field of drug response prediction, a variety of models have been developed, each 

with its unique approach and different data sources and types as discussed in detail in the 

related work section. Despite their differences, all models share a common goal: to predict 

drug responses that are as close as possible to the actual values. A universally accepted 

performance metric for these models is the Root Mean Square Error (RMSE). RMSE 

provides a quantifiable measure of how much the predictions deviate from the actual 

values. The lower the RMSE, the closer the predicted responses are to the actual values, 

indicating a better performing model.  
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In the following section, an in-depth comparison of these models can be found, 

specifically focusing on their performance on the GDSC dataset. The performance is 

measured using RMSE values, and to ensure the robustness of these measures, a 10-fold 

cross-validation method is employed. This method enhances the reliability of the 

performance estimates by averaging the results over multiple testing rounds. 

 
Among the models evaluated, DeepResponse stands out for its superior performance. It 

consistently achieves lower RMSE values across all splits, indicating its predictions are 

closer to the actual values compared to other models. This superior performance of 

DeepResponse is not a one-off occurrence but is consistent across all test splits. This 

consistent performance of DeepResponse highlights its potential as a powerful tool in the 

field of drug response prediction. By providing more precise predictions, it can contribute 

to the development of more effective therapeutic strategies. This could potentially lead to 

better patient outcomes, making DeepResponse a valuable addition to the toolkit of 

researchers and clinicians alike. 

 
4.2.1. Comparison of Model Performances on Random Split 
 
The Table 4.6. presents the RMSE values of various models when applied to the GDSC 

dataset using a random split. DeepResponse outperforms all other models, achieving the 

lowest RMSE value of 1.014 ± 0.001. This indicates that DeepResponse’s predictions are 

closer to the actual values compared to other models. The low standard deviation of 

DeepResponse further highlights its strong generalization capacity, regardless of the 

randomness of the dataset. 
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Model RMSE 

ENET 2.368 

MOLI 2.282 

DrugCell 1.998 

CDRScan 1.982 

tCNNs 1.782 

SRMF 1.731 

KBMF 1.590 

GraphDRP 1.111 

DualGCN 1.079 

DeepCDR 1.058 

DeepResponse 1.014 ± 0.001 

 

Table 4.6. Model performance comparison in terms of RMSE on random split. Best 

score is shown in bold font. 

 
4.2.2. Comparison of Model Performances on Cell Stratified Split 
 
The performance of various models on cell stratified splits of the dataset was examined 

as in Table 4.7. Again, DeepResponse stands out with the lowest RMSE value of 1.105 ± 

0.013, indicating its superior precision in predicting drug responses. The relatively low 

standard deviation of DeepResponse underscores its strong generalization capacity across 

different cell stratified splits. This consistent performance of DeepResponse, regardless 

of how the data is split, validates its effectiveness in drug response prediction tasks. 
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Model RMSE 

DrugCell 2.392 

ENET 2.216 

SRMF 1.865 

GraphDRP 1.561 

tCNNs 1.519 

VAE+MLP 1.406 

DeepCDR 1.127 

DeepResponse 1.105 ± 0.013 

 

Table 4.7. Model performance comparison matrix on cell stratified split. Best score is 

shown in bold font. 

 
4.2.3. Comparison of Model Performances on Drug Stratified Split 
 
This section presents the performance of various models on drug stratified splits of the 

dataset. As with the previous splits, DeepResponse outperforms all other models, 

achieving the lowest RMSE value of 1.142 ± 0.104. This demonstrates that 

DeepResponse’s superior precision in predicting drug responses is maintained even when 

the data is split based on drug stratification. 

 
The standard deviation of DeepResponse, although slightly higher in this case, still 

indicates a strong generalization capacity across different drug stratified splits. This 

consistent performance of DeepResponse across all types of data splits underscores its 

effectiveness and reliability in drug response prediction tasks as summarized in Table 4.8 
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Model RMSE 

GraphDRP 2.894 

tCNNs 2.393 

DrugCell 2.388 

VAE+MLP 2.369 

DeepCDR 1.999 

SRMF 1.828 

DeepResponse 1.142 ± 0.104 

 

Table 4.8. Model performance comparison matrix on drug stratified split. Best score is 

shown in bold font. 

 
The results demonstrate that the complexity of test scenarios has a negligible impact on 

the performance of DeepResponse. This is noteworthy as it suggests that DeepResponse’s 

performance remains consistent regardless of the test scenario’s difficulty. Conversely, 

other models exhibit a decline in performance as the complexity of the test scenarios 

increases. All the comparison results were illustrated in Figure 4.2. 

 
DeepResponse’s adaptability to real-world test cases is a key attribute. It is engineered to 

handle a diverse range of situations, which enhances its utility in testing. While certain 

models exhibit satisfactory performance in less complex test cases, their performance 

deteriorates in more intricate scenarios. 

 
DeepResponse, on the other hand, maintains a consistent performance level even under 

challenging conditions. This underscores the model’s robustness and versatility, and 

highlights its superior performance across a broad spectrum of test conditions. The ability 

of DeepResponse to deliver reliable results in both controlled and complex real-world 

scenarios distinguishes it from other models.  
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Figure 4.2. Comparison of prediction performance with state-of-the-art  

 
4.3. Ablation Study 
 
An ablation study is a systematic approach used in machine learning research to 

understand the contribution of different components of a model towards its overall 

performance. This method involves selectively removing or “ablating” individual 

components, and observing the effect on the model’s performance. The aim is to identify 

which components are crucial for the model’s performance and which ones have minimal 

or no impact. 
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An ablation study was conducted using cell line omic features to understand the individual 

contributions of each feature to the overall performance of the model. In the initial trial, 

the gene expression feature was removed, and the impact on the model’s performance 

was observed. This approach allowed for an assessment of the importance of gene 

expression in the model. In subsequent trials, other features such as mutation, 

methylation, and copy number variation were individually removed. By systematically 

removing these features, the individual significance of each feature in the model’s 

predictive capabilities was discerned. This comprehensive ablation study yielded valuable 

insights into the role of each omic feature in the performance of the model. All the 

ablation study results were shown in Table 4.9. 

 

 Omitted Omic 

Performance 
Metrics None Gene 

Expression Mutation Methylation 
Copy 

Number 
Variation 

MSE 1.028 1.069 1.040 1.049 1.059 

RMSE 1.014 1.055 1.025 1.034 1.045 

MAE 0.812 0.844 0.820 0.829 0.835 

Accuracy 0.852 0.818 0.840 0.826 0.820 

Precision 0.838 0.804 0.825 0.812 0.805 

Recall 0.821 0.788 0.810 0.796 0.790 

F1 Score 0.825 0.792 0.815 0.800 0.795 

 

Table 4.9. Performance metrics for ablation study by omitting single omic. Best scores 

are shown in bold font.  

 
The ablation study provides valuable insights into the role of each omic feature in the 

performance of the model. When the gene expression feature was removed, there was a 

noticeable decrease in all performance metrics, indicating that gene expression plays a 

significant role in the model’s predictive capabilities.  
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Similarly, the removal of mutation, methylation, and copy number variation also resulted 

in a decrease in performance metrics, albeit to a lesser extent than gene expression. This 

suggests that while these features contribute to the model’s performance, their individual 

impact is less than that of gene expression. All the performance metrics were represented 

in Figure 4.3. 

 

 

 

Figure 4.3. Comparison of the performance by single omitted omics 

 
Another iteration of ablation study, as detailed in Tables 4.10 and 4.11, was conducted 

by removing combinations of two omic features at a time to understand their collective 

contributions to the overall performance of the model.  
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The removal of both gene expression and mutation features resulted in a more pronounced 

decrease in all performance metrics than when these features were removed individually, 

indicating that the combination of gene expression and mutation plays a significant role 

in the model’s predictive capabilities. 

 

 Omitted Omic 

Performance 
Metrics None 

Gene 
Expression - 

Mutation 
Methylation - 

Mutation 

Copy Number 
Variation - 
Mutation 

MSE 1.028 1.143 1.101 1.185 

RMSE 1.014 1.149 1.065 1.129 

MAE 0.812 0.895 0.878 0.919 

Accuracy 0.852 0.753 0.793 0.721 

Precision 0.838 0.748 0.772 0.732 

Recall 0.821 0.717 0.748 0.703 

F1 Score 0.825 0.744 0.776 0.729 

 

Table 4.10. Performance metrics for ablation study by omitting double omic in 

combination with mutation. Best scores are shown in bold font.  

 

Similarly, the removal of methylation and mutation, as well as copy number variation and 

mutation, also resulted in a decrease in performance metrics. This suggests that while 

these features contribute to the model’s performance, their combined impact is less than 

that of gene expression and mutation. 

 
When both gene expression and methylation were removed, there was a substantial 

decrease in all performance metrics, suggesting that these two features collectively play 

a crucial role in the model’s predictive capabilities. The removal of copy number variation 

and methylation, as well as gene expression and copy number variation, resulted in even 

more significant decreases in performance metrics.  
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This indicates that these combinations of features are vital for the model’s performance, 

with the combination of gene expression and copy number variation having the most 

significant impact. 

 

 Omitted Omic 

Performance 
Metrics None 

Gene 
Expression - 
Methylation 

Copy Number 
Variation - 

Methylation 

Gene 
Expression - 

Copy Number 
Variation 

MSE 1.028 1.283 1.536 1.853 

RMSE 1.014 1.213 1.409 1.723 

MAE 0.812 0.996 1.253 1.503 

Accuracy 0.852 0.678 0.574 0.246 

Precision 0.838 0.651 0.523 0.201 

Recall 0.821 0.662 0.435 0.277 

F1 Score 0.825 0.650 0.477 0.318 

 

Table 4.11. Performance metrics for ablation study by omitting double omic in 

combination without mutation. Best scores are shown in bold font. 

 
These comprehensive ablation studies provide valuable insights into the role of each omic 

feature and their combinations in the performance of the model. They highlight the 

importance of considering the collective impact of multiple features in the model’s 

predictive capabilities. 

 
The results as summarized in Figure 4.4. suggest that the model is not overly reliant on 

any single feature or pair of features, but rather, it benefits from the synergistic effect of 

multiple features. This underscores the complexity of biological systems and the need for 

multi-omic approaches in predictive modeling. It also points to the potential for further 

optimization, perhaps by identifying and incorporating additional relevant features or by 

refining the model architecture to better capture the interactions between features. 
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Ultimately, these findings contribute to our understanding of the model’s workings and 

guide future efforts to improve its performance. 

 

 

 

Figure 4.4. Comparison of the performance by multi omitted omics 

 
4.4. Use Case Analysis 
 
In the process of conducting the use case analysis, the deep response model was initially 

applied to various tissue data. Among all the tissues examined, the model exhibited the 

most optimal performance on the digestive system. This can be attributed to the unique 

patterns inherent in each type of tissue data. By training and testing on these specific 

tissues, the model was able to adapt and thus, perform more effectively.  
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The following are some of the predictions and actual values of drug response, which 

further illustrate the model’s performance in Table 4.12. It is important to note that these 

results underscore the potential of using tissue-specific models in predicting drug 

responses, thereby paving the way for more personalized and effective therapeutic 

strategies. 

 

Cell Line Drug Name True pIC50 Value Predicted pIC50 
Value 

CAMA-1 Camptothecin 6.274 6.027 

CAMA-1 Cisplatin 4.385 4.924 

HCT-116 Cisplatin 5.222 5.483 

HCT-116 Dactolisib 6.813 6.512 

HCT-116 Fludarabine 3.952 3.541 

 

Table 4.12. Comparison of true value and predicted value in selected cell lines 

 
In the quest for effective anti-cancer drugs, the DeepResponse model was employed to 

evaluate a multitude of drug candidates for repurposing against hepatocellular carcinoma 

(HCC), the second deadliest cancer globally. The model was able to predict the activity 

of several inhibitors across various HCC cell lines, including Huh7, Hep3B, SNU 

387/423/475. A diverse array of drug candidates was considered in this process, each with 

its unique properties and mechanisms of action. However, amidst this vast pool of 

potential therapeutics, Eprinomectin emerged as a particularly promising candidate. 

Eprinomectin, an approved avermectin currently used as a veterinary topical endectocide, 

demonstrated high predicted activity across all tested HCC cell lines. 

 
This high activity can be seen in Table 4.13, coupled with the fact that absence of previous 

studies investigating its repurposing against HCC, made Eprinomectin an intriguing 

choice for further experimental analysis.  
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The cytotoxicity of Eprinomectin was evaluated using the SRB assay and real-time 

monitoring of HCC cells. These wet lab experiments were conducted by the Cancer 

Systems Laboratory at Middle East Technical University.  

 
Additional analyses were conducted to understand the mechanisms involved in its 

cytotoxicity against HCC cells, including cell cycle, apoptosis, and western blot analyses. 

The results indicated that Eprinomectin has a comparable, if not superior, inhibitory 

potential to the approved HCC drug Sorafenib. Eprinomectin was found to induce G1 

arrest and apoptosis in HCC cell lines. At the protein level, the apoptotic marker cleaved-

PARP increased upon treatment with Eprinomectin in Huh7 and Mahlavu cells. 

Furthermore, cell cycle proteins such as CDK2 and CDK4 decreased, further supporting 

Eprinomectin’s effect on cell cycle progression. The experimental validation results 

(pIC50) of Eprinomectin on HCC cells is shown in Table 4.13. 

 
These findings highlight the potential of Eprinomectin as a treatment for HCC. However, 

further analysis is required to better assess the effects of this drug on both cancerous and 

healthy human cells. This study demonstrates the utility of the DeepResponse model in 

identifying promising candidates for drug repurposing in the treatment of cancer. 

 

Cell Line Drug Name Predicted pIC50 
Value 

Experimental 
Validation Results 

(pIC50) 

Hep3B2-1-7 Eprinomectin 6.425 5.377 ± 0.40 

HuH-7 Eprinomectin 6.757 5.443 ± 0.23 

SNU-387 Eprinomectin 6.924 4.936 ± 0.16 

SNU-423 Eprinomectin 6.329 4.978 ± 0.16 

SNU-475 Eprinomectin 6.112 5.136 ± 0.52 

 

Table 4.13. Predictions and experimental validation results on HCC cell lines 
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4.5. Model Implementation 
 
The code base, datasets, and results of DeepResponse are openly shared at 

https://github.com/HUBioDataLab/DeepResponse, reflecting a commitment to open 

science and collaboration in the pursuit of advancing personalized medicine. 

The implementation of DeepResponse adheres to several best practices in computer 

science, ensuring the development of a reliable and error-free project. 

 
● Modularity: The code is organized into distinct modules or classes, each with a 

specific role. This separation of concerns makes the code easier to understand, 

test, and maintain. 

 
● Use of Abstract Classes and Strategy Pattern: Abstract classes define a 

common interface for various strategies, including strategies for using Comet, 

handling datasets, and training the model. The strategy pattern allows the 

algorithm to select the appropriate strategy at runtime, providing flexibility and 

making it easy to introduce new strategies in the future. 

 
● Parameterization: The algorithm can take various parameters while running on 

the terminal, enhancing the flexibility of the code. These parameters include 

whether to use Comet, the data source, the evaluation source, the data type, the 

split type, the random state, the batch size, the number of epochs, and the learning 

rate. 

 
● Error Handling and Logging: Proper error handling mechanisms are in place to 

ensure the robustness of the code. Logging is used extensively to track the flow 

of execution, making it easier to diagnose and fix issues. 

 
● Reproducibility: The use of a random seed ensures that the results of the model 

are reproducible. This is particularly important in machine learning projects, 

where the randomness in splitting the dataset and initializing the model can lead 

to variations in the results. 
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● Code Readability and Documentation: The code is written in a clear and 

concise manner, making it easy to read and understand. Each method and class is 

documented with comments, providing valuable context and explanation for the 

code. 

 
In summary, the implementation of DeepResponse demonstrates a commitment to 

reliability and adherence to best practices in computer science. By focusing on these 

principles, the project ensures the development of a robust, reliable, and efficient machine 

learning model for drug response prediction. 

 
The DeepResponse project is designed for ease of use. It utilizes a Conda environment, 

which can be effortlessly set up with the provided environment files. All necessary codes 

and datasets are openly shared, enabling replication or extension of the work. The model 

can be run directly from the terminal with various customizable parameters, allowing 

control over aspects like data source, evaluation source, and more. Additionally, the 

project includes support for Comet, a platform for tracking machine learning experiments, 

further enhancing its usability and functionality. The code can be runned via terminal 

with the following statement: 

python3 -m deep_response [--use_comet --data_source --evaluation_source --data_type --

split_type --random_state --batch_size --epoch --learning_rate] 
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5. DISCUSSION 

 
It has been observed that the Genomics of Drug Sensitivity in Cancer (GDSC) dataset 

outperformed the Cancer Cell Line Encyclopedia (CCLE) and National Cancer Institute 

(NCI) datasets across all splits. This superior performance could be primarily attributed 

to the larger size of the GDSC dataset, which encompasses approximately 339,000 rows, 

compared to the CCLE and NCI datasets, which contain around 13,000 and 11,000 rows 

respectively. However, it’s important to note that the size of the dataset may not be the 

sole determinant of performance. It is plausible that the GDSC dataset provides a more 

comprehensive and diverse representation of cell lines and pIC50 values, which could 

contribute to its enhanced performance. This hypothesis is further supported by the 

observation that despite having similar row sizes, the CCLE and NCI datasets exhibit 

different performances. This suggests that factors other than size, such as the diversity 

and representativeness of the data, could play a significant role in determining the 

performance of these datasets. 

 
Given the nature of biological data, it is also crucial to consider the impact of the source 

of the data on the experimental outcomes. Biological experiments are inherently complex 

and can yield varying outcomes based on a multitude of factors, including the 

experimental conditions, the techniques used, and the source of the biological samples. 

Therefore, it is possible that the disparate results observed across the GDSC, CCLE, and 

NCI datasets could be due to differences in the experimental data from different sources. 

Therefore, while the larger size of the GDSC dataset likely contributes to its superior 

performance, other factors such as the quality and diversity of its experimental data could 

also play a significant role. This underscores the importance of considering multiple 

factors when evaluating the performance of datasets in the context of biological research. 

It also highlights the need for careful and thorough experimental design and data 

collection to ensure the reliability and validity of the results. 

 
Shallow machine learning models, despite their simplicity, have shown comparable 

results in less complex test scenarios, such as random splits. This is likely because in a 

random split, the data is divided arbitrarily, allowing the model to converge more easily 

due to the lack of inherent structure or stratification in the split.  
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This randomness in data division reduces the complexity of the learning task, making it 

more manageable for shallow models. On the other hand, deep learning architectures, like 

the DeepResponse, are typically more advantageous in complex test scenarios, such as 

stratified splits. These architectures have the ability to learn more abstract representations 

and generalize the problem better, making them more suited for handling the complexity 

introduced by stratification. 

 
However, the performance of the proposed deep learning models in stratified splits and 

cross-domain analysis was not as robust as random split. While these models are 

inherently capable of handling complex scenarios, the increased complexity introduced 

by stratified splits and cross-domain analyses posed significant challenges. The 

performance in these scenarios was not solely a reflection of the model’s capabilities but 

also indicative of other factors such as data quality and the representations used. Stratified 

splits, by their nature, are more challenging than random splits due to the structured 

division of data. This structure introduces an additional layer of complexity that the model 

needs to navigate. Similarly, cross-domain analyses involve dealing with data from 

different domains, each with its unique characteristics and complexities. These scenarios 

demand not just a robust model, but also high-quality data and effective representations. 

In the context of DeepResponse, a hybrid model that requires multi-input drug and cell 

line data, it was observed that learning primarily stems from the drug side. This could be 

attributed to the fact that Graph Transformer Neural Networks (GTNNs), used for the 

drug data, might be a better choice for representing the data and learning capacity 

compared to Convolutional Neural Networks (CNNs) used for cell line data. GTNNs are 

particularly adept at handling graph-structured data, which is often the case with drug 

data. Drugs can be represented as molecular graphs, where atoms are nodes and bonds 

are edges. This representation allows GTNNs to capture the intricate relationships and 

properties of drugs, such as their 3D conformation, chemical properties, and potential 

interactions with other molecules. On the other hand, CNNs, traditionally used for 

images, might not be as effective in capturing and representing cell line data, which may 

not have some of these properties.  
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Furthermore, this discussion underscores the importance of not only focusing on 

prediction performance but also understanding the underlying learning process. It 

highlights the need for continuous investigation into model interpretability, which can 

lead to more robust and trustworthy models. As machine learning models become more 

complex and are used in more critical applications, the need for interpretability becomes 

even more important. By continuously investigating model interpretability, it can be 

ensured that the models are not only high-performing but also transparent, and reliable.  

In the context of the ablation study conducted, the systematic removal of individual omic 

features from the model provided valuable insights into their individual contributions to 

the model's overall performance. The gene expression feature emerged as a significant 

contributor, as evidenced by the noticeable decrease in all performance metrics when it 

was removed. This suggests that gene expression data, likely due to its higher variance, 

provides a more informative dataset for the model to learn from. In contrast, mutation 

data, which is predominantly zero, offers limited information gain due to its low variance. 

However, when mutation data was combined with other omic features such as gene 

expression, methylation, and copy number variation, and then removed, the performance 

metrics decreased even further. This indicates that while mutation data may have a lesser 

impact on its own, its combination with other omic features can significantly influence 

the model's predictive capabilities. 

 
Similarly, the removal of methylation and copy number variation also resulted in a 

decrease in performance metrics, albeit to a lesser extent than gene expression. This 

underscores the significance of gene expression data in the model and highlights the 

potential benefits of incorporating diverse data types with higher variance. The results 

from the ablation study underscore the importance of understanding the role of each omic 

feature in the performance of the model. It also highlights the need for continuous 

investigation into model interpretability, which can lead to the development of more 

robust models capable of capturing the complex interplay of factors that influence drug 

response, ultimately enhancing the accuracy and utility of our predictions. In conclusion, 

the ablation study provides a deeper understanding of the individual and combined effects 

of different omic features on the model's performance.  
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It emphasizes the importance of gene expression data and the potential benefits of 

incorporating diverse data types with higher variance. This expanded approach could lead 

to the development of more robust models, capable of capturing the complex interplay of 

factors that influence drug response, ultimately enhancing the accuracy and utility of our 

predictions. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

90 
 

 

6. CONCLUSION 

 
This research introduces DeepResponse, a deep learning-based system designed to 

predict drug responses in cancer cell lines, paving the way for personalized treatment 

strategies in oncology. 

 
This research utilized three databases, GDSC, CCLE, and NCI-60, each with unique 

strengths in drug response analysis, genetic information, and drug variety. The data was 

meticulously processed, with missing values imputed based on the type of data and the 

proportions of missing values. The data manipulation process involved standardizing the 

data, merging data from different sources, and integrating features from both drugs and 

cell lines. The final dataset, organized into cell line name, drug name, and pIC50 values, 

was enriched with drug and cell line features, including gene expression, mutation, 

methylation, and copy number variation data. 

 
The DeepResponse model, a complex hybrid deep learning architecture, was developed 

to predict drug responses in cancer cell lines. It leverages the strengths of Convolutional 

Neural Networks (CNNs) and Graph Transformer Neural Networks (GTNNs) to process 

cell line data and drug molecule data respectively. The CNNs capture local patterns in the 

cell line data, while the GTNNs comprehend the complex structures of drug molecules. 

The outputs from both models are then fused and fed into a Multi-Layer Perceptron 

(MLP) which generates the final pIC50 prediction. This architecture effectively combines 

the unique strengths of different deep learning models, providing an optimal solution for 

drug response prediction. The model training process involved meticulous data 

preparation and organization. The cell line data was processed into a format suitable for 

Convolutional Neural Networks (CNNs), while the drug data, represented as SMILES 

strings, was converted into graph representations for the Graph Transformer Neural 

Networks (GTNNs). This data was then combined into a TensorFlow dataset, batched, 

and prefetched to enhance the efficiency of model training. The Multi-Layer Perceptron 

(MLP) synthesized and consolidated the information processed by the CNNs and GTNNs 

to generate the final pIC50 prediction. This comprehensive approach to data management 

and model training sets the stage for effective and efficient prediction of drug responses 

in cancer cell lines. 
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The model’s performance was evaluated using a variety of metrics. The Huber loss 

function was used for its robustness in handling outliers. Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) were used to 

quantify the difference between the predicted and actual pIC50 values. In addition to these 

regression metrics, several classification metrics were calculated after binarizing the data. 

These included Accuracy, Precision, Recall, F1 Score, and Matthew’s Correlation 

Coefficient (MCC). Each of these metrics provided a unique perspective on the model’s 

performance, contributing to a comprehensive evaluation of its ability to predict drug 

responses. 

 
The comprehensive evaluation of the predictive model across various data split scenarios 

provided significant insights into its performance. The model demonstrated robust 

performance in the Random Split scenario, where the data was divided without 

considering any structure. This suggests that the model can accurately predict drug 

responses when the data is split randomly, providing a strong baseline for its performance. 

However, when the model was evaluated under more challenging scenarios, such as the 

Cell Stratified and Drug Stratified splits, its performance metrics were lower. These 

scenarios tested the model’s ability to generalize across different cell types and to new 

drugs, respectively. The lower performance in these scenarios indicates that predicting 

responses to new cell types or drugs is a complex task for the model, suggesting that the 

model might be learning too much from the specific characteristics in the training data, 

thereby limiting its ability to generalize to new instances. The Drug-Cell Stratified Split 

scenario, which involved evaluating the model on unseen drug-cell combinations, 

presented an even more rigorous test of the model’s predictive capabilities. The lower 

performance in this scenario underscores the complexity of predicting drug responses for 

new drug-cell combinations. It suggests that the model may be overfitting to specific 

drug-cell combinations in the training data and struggling to generalize to new 

combinations in the validation and test sets. Finally, the Cross Domain Split scenario 

tested the model’s adaptability to new domains. The model’s performance varied 

significantly depending on the training and testing domains, emphasizing the need for 

models that can effectively transfer their learning from one domain to another.  
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This scenario underscores the importance of considering the real-world complexity and 

variability of the data when preparing it for model training and evaluation. These findings 

highlight the importance of rigorous evaluation methods to fully assess a model’s 

performance, ensuring its robustness and reliability. They also underscore the complexity 

and variability inherent in predicting drug responses, emphasizing the need for models 

that can effectively handle these challenges. Despite the lower performance in more 

complex scenarios, the model’s promising results in less challenging scenarios 

demonstrate its potential for accurately predicting drug responses. 

 
DeepResponse has demonstrated superior performance compared to existing models in 

the field of drug response prediction. Across all data split scenarios, including Random 

Split, Cell Stratified Split, Drug Stratified Split, and Cross Domain Split, DeepResponse 

consistently achieved the lowest RMSE values. This indicates that DeepResponse’s 

predictions are consistently closer to the actual drug responses compared to other models. 

Furthermore, the relatively low standard deviation of DeepResponse in all scenarios 

underscores its robustness and strong generalization capacity, regardless of the 

randomness or complexity of the data splits. This consistent performance of 

DeepResponse, regardless of how the data is split, validates its effectiveness in drug 

response prediction tasks. Therefore, DeepResponse not only outperforms other models 

across a broad spectrum of test conditions but also delivers reliable results in both 

controlled and complex real-world scenarios. This distinguishes DeepResponse from 

other models and highlights its potential as a powerful tool in the field of drug response 

prediction. 

 
In the use case analysis, the DeepResponse model was applied to various tissue data and 

exhibited optimal performance on the digestive system. This suggests the potential of 

using tissue-specific models in predicting drug responses. The model was then used to 

evaluate drug candidates for repurposing against hepatocellular carcinoma (HCC). 

Among the evaluated drugs, Eprinomectin, an approved avermectin, demonstrated high 

predicted activity across all tested HCC cell lines. Subsequent wet lab experiments 

confirmed the cytotoxicity of Eprinomectin against HCC cells, indicating its potential as 

a treatment for HCC. The results showed that Eprinomectin induced G1 arrest and 

apoptosis in HCC cell lines and affected the levels of certain cell cycle proteins.  
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These findings highlight the potential of Eprinomectin as a treatment for HCC and 

demonstrate the utility of the DeepResponse model in identifying promising candidates 

for drug repurposing in cancer treatment. However, further analysis is required to better 

assess the effects of Eprinomectin on both cancerous and healthy human cells. 

 
In conclusion, the DeepResponse model offers a promising approach for predicting drug 

sensitivity of cancer cells, with potential applications in the early-stage discovery of new 

drug candidates and the repurposing of existing ones against resistant tumors. The project 

demonstrates the power of combining artificial learning techniques with multi-omics data 

in the field of drug response prediction. 

 
However, the project also highlighted several areas for future research. One such area is 

the exploration of other machine learning models. The current project utilizes a Graph 

Transformer Neural Network for learning from drug data and a Convolutional Neural 

Network for cell line data. However, the potential for improved performance could be 

offered by other machine learning models and architectures. For instance, recurrent neural 

networks (RNNs) or long short-term memory networks (LSTMs) could be explored for 

their ability to capture sequential information in the data. 

 
Another area of interest is the incorporation of additional data types. The project currently 

uses drug descriptors and cell line data, but the model’s predictive power could be 

enhanced, and a more comprehensive understanding of drug response could be provided 

by including additional types of data, such as genetic data, clinical data, or real-world 

patient data. The development of an interactive tool or platform is also a promising 

direction. Such a tool could allow researchers to utilize the model for predicting drug 

response and could include features for uploading custom data, adjusting model 

parameters, and visualizing the results, thereby making the model more accessible for 

practical use. 

 
While the focus of the current project is on prediction performance, the interpretability of 

machine learning models is another important aspect. Future work could investigate why 

the model makes certain predictions, which can provide valuable insights and lead to 

more trust in the model’s predictions.  
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The current project focuses on hepatocellular carcinoma, but the approach could be 

extended to other types of cancer or even other diseases. This would involve adjusting 

the model to handle the specific characteristics of these other conditions, potentially 

broadening the impact of the work.  

 
Finally, a longitudinal study could be conducted to validate the model’s predictions over 

time. This would involve using the model to make predictions, conducting experiments 

to test these predictions, and then refining the model based on the results. This could 

provide a robust validation of the model’s predictive power. These areas of future 

research highlight the potential for further development and refinement of the current 

model.  
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