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ABSTRACT

GENETIC ALGORITHM AND BINARY MASKS FOR CO-LEARNING
MULTIPLE DATASETS IN DEEP NEURAL NETWORKS

Öznur Turan

Master of Science, Computer Engineering
Supervisor: Prof. Dr. Mehmet Önder EFE

January 2024, 93 pages

This study addresses the challenges of ’catastrophic forgetting’ and ’multi-task learning’

encountered in the field of data classification and analysis, particularly with the use of

Convolutional Neural Networks (CNNs). The aim of the study is to use genetic algorithms

to solve these problems. Methodologically, an optimization strategy has been developed that

employs layer-based binary masks to customize CNNs models for multiple datasets. Genetic

algorithms have been utilized as a heuristic search method to optimize a binary mask for each

dataset. Experiments have been conducted on widely-used dataset such as MNIST, Fashion

MNIST, and KMNIST. The obtained results are notably impressive, with classification

accuracies of 76.25% for MNIST, 76% for Fashion MNIST, and 74.43% for KMNIST. These

findings demonstrate that the proposed approach can create high-performance models not

only for a single task but also for multiple tasks.

Keywords: Convolutional Neural Networks, Catastrophic Forgetting, Multi-Task Learning,

Genetic Algorithms, Binary Masks
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ÖZET

DERİN SİNİR AĞLARINDA ÇOKLU VERİ SETLERİNİN BİRLİKTE
ÖĞRENİLMESİ İÇİN GENETİK ALGORİTMA VE İKİLİ

MASKELER

Öznur Turan

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Mehmet Önder EFE

Ocak 2024, 93 sayfa

Bu çalışma, veri sınıflandırma ve analizi alanında, özellikle Evrişimli Sinir Ağları (CNN’ler)

kullanımında karşılaşılan ’felaket unutma’ ve ’çoklu görev öğrenme’ zorluklarını ele

almaktadır. Çalışmanın amacı, bu sorunları genetik algoritmalar kullanarak çözmektir.

Yöntemsel olarak, birden fazla veri seti için CNN modellerini özelleştirmek için katman

bazlı ikili maskeler kullanan bir optimizasyon stratejisi geliştirilmiştir. Genetik algoritmalar,

her veri seti için ikili bir maske optimize etmek amacıyla sezgisel bir arama yöntemi olarak

kullanılmıştır. MNIST, Fashion MNIST ve KMNIST gibi yaygın kullanılan veri setlerinde

deneyler yapılmıştır. Elde edilen sonuçlar oldukça etkileyicidir; MNIST için %76.25,

Fashion MNIST için %76 ve KMNIST için %74.43 sınıflandırma doğruluğu elde edilmiştir.

Bu bulgular, önerilen yaklaşımın sadece tek bir görev için değil, birden çok görev için de

yüksek performanslı modeller oluşturabileceğini göstermektedir.

Keywords: Evrişimli Sinir Ağları, Yıkıcı Unutma, Çoklu Görev Öğrenme, Genetik

Algoritmalar, İkili Maskeler
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1. INTRODUCTION

In the constantly evolving landscape of machine learning, CNNs have emerged as a

cornerstone technology, revolutionizing applications in data classification and analysis.

Despite their widespread success, CNNs face significant challenges, particularly in areas of

’catastrophic forgetting’ and ’multi-task learning’. Catastrophic forgetting, a phenomenon

where a network loses previously acquired knowledge upon learning new information,

severely limits the adaptability of CNNs in dynamic environments. Similarly, multi-task

learning, which involves simultaneous learning of multiple related tasks, poses a challenge

in efficiently balancing and optimizing performance across different tasks.

The motivation behind this thesis springs from these critical challenges. By integrating

genetic algorithms into the fabric of CNNs, this research aims to address these issues,

proposing a novel approach to enhance the efficiency and adaptability of these networks.

The use of genetic algorithms, known for their robust search capabilities in complex spaces,

provides a promising avenue for optimizing CNNs for specific tasks while retaining learned

knowledge from previous tasks.

This thesis sets forth a comprehensive study of this innovative approach. The scope of this

research encompasses the development of a dynamic learning strategy, an exploration of

layer-based binary masks for CNN customization, and an extensive series of experiments

across widely recognized datasets. Through this exploration, the thesis contributes to the field

of machine learning by offering novel solutions to the persistent problems of catastrophic

forgetting and multi-task learning in CNNs.

The following chapters lay out the foundation and detailed examination of the proposed

approach. Chapter 2 provides an extensive background overview, setting the stage for

understanding the complexities of CNNs and the challenges at hand. Chapter 3 delves

into related work, offering a critical perspective on existing methodologies and their

limitations. Chapter 4 introduces our novel approach, describing the unique application of

genetic algorithms in optimizing CNNs for multi-task learning and mitigating catastrophic
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forgetting. This chapter outlines the methodology, the design of binary masks, and the

specifics of our dynamic learning strategy. Chapter 5 showcases the experimental results,

detailing the performance of the optimized CNNs on datasets like MNIST, Fashion MNIST,

and KMNIST. Chapter 6 concludes the thesis and discussing the implications of this research

in the field of deep learning and suggesting directions for future research.

1.1. Scope Of The Thesis

This thesis primarily focuses on addressing the critical challenges of ’catastrophic forgetting’

and ’multi-task learning’ in the realm of data classification and analysis, with a special

emphasis on CNNs. The overarching objective of this research is to leverage genetic

algorithms as a novel solution to these persistent issues.

Methodologically, this thesis introduces an innovative optimization strategy, employing

layer-based binary masks to tailor CNN models for optimal performance across multiple

datasets. The use of genetic algorithms as a heuristic search method plays a pivotal role in this

process, facilitating the optimization of a binary mask for each dataset under consideration.

A series of comprehensive experiments forms the backbone of this research, utilizing

widely-acknowledged datasets such as MNIST, Fashion MNIST, and KMNIST. These

experiments are meticulously designed to evaluate the success of the proposed method. The

results are significant, showcasing classification accuracies of 76.25% for MNIST, 76% for

Fashion MNIST, and 74.43% for KMNIST.

These findings represent a significant breakthrough in the field and demonstrate that the

proposed approach is capable of developing high-performance models that can successfully

execute not just a single task, but multiple tasks simultaneously. This thesis contributes

to the broader field of machine learning by providing a novel perspective and approach to

overcoming some of the most challenging hurdles in data classification and analysis.
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1.2. Contributions

This research aims to address existing deficiencies in the field of data classification

and analysis, especially in the context of CNNs and their susceptibility to ’catastrophic

forgetting’ and challenges in ’multi-task learning’. The main contributions of this paper

can be summarized as follows:

• Introduction of a Dynamic Learning Strategy: We propose a dynamic learning

approach that adapts to different datasets in real-time. This method enhances the

efficiency of CNNs by allowing them to learn at varying rates depending on the

complexity and nature of the task at hand. This contrasts with traditional static learning

rates, offering a more flexible and responsive learning mechanism.

• A Novel Perspective on Multi-Task Learning: Unlike most of the previous works

which primarily focus on sequential or parallel learning strategies, our approach

integrates these methodologies, enabling simultaneous learning across multiple tasks.

This integration not only improves learning efficiency but also significantly reduces

the occurrence of catastrophic forgetting.

• Pioneering Use of Genetic Algorithms for CNN Optimization: We employ genetic

algorithms in optimizing layer-based binary masks for CNNs. This innovative

application demonstrates a new horizon in the use of evolutionary computation for

neural network optimization, particularly in addressing the nuances of multi-task

learning and memory retention.

• Empirical Evidence Through Simulation Results: Our simulation results show

impressive performance metrics, with notable classification accuracies across different

datasets (76.25% for MNIST, 76% for Fashion MNIST, and 74.43% for KMNIST).

These results validate the effectiveness of the proposed methods.

Overall, these contributions mark significant advancements in machine learning, particularly

in enhancing the capabilities of CNNs in complex data classification and analysis tasks.
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This research opens new pathways for future studies and applications in the domain of deep

learning and neural network optimization.

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents our motivation for addressing the challenges in data classification

and analysis using CNNs, specifically focusing on catastrophic forgetting and

multi-task learning. It outlines the key contributions of this thesis and sets the scope,

detailing the innovative approach employed and the significance of the research in the

broader context of machine learning and neural networks.

• Chapter 2 provides a comprehensive background overview of the fundamental

concepts and theoretical underpinnings relevant to this research. It delves into the

intricacies of CNNs, genetic algorithms, and the prevalent challenges in the field, such

as catastrophic forgetting and multi-task learning. This chapter aims to establish a

solid foundation of understanding for the subsequent chapters.

• Chapter 3 gives a detailed review of the existing literature and previous studies in the

realm of CNNs, catastrophic forgetting, multi-task learning, and genetic algorithm

applications in neural network optimization. This chapter critically analyzes the

strengths and limitations of current methods and identifies gaps that this research aims

to fill.

• Chapter 4 introduces the methodology employed in this thesis. It details the innovative

approach of using genetic algorithms for optimizing layer-based binary masks in CNNs

and the dynamic learning strategy. This chapter elaborates on the theoretical aspects

of the method and its expected advantages over existing techniques.

• Chapter 5 demonstrates the empirical findings of the research. It presents a thorough

analysis of the experiments conducted using datasets like MNIST, Fashion MNIST,
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and KMNIST. The chapter discusses the significance of the results obtained, including

the achieved classification accuracies, and evaluates the effectiveness of the proposed

methods in the context of the objectives set out in this study.

• Chapter 6 states the summary of the thesis and possible future directions.
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2. BACKGROUND OVERVIEW

2.1. Genetic Algorithm

GA are computer science algorithms developed by drawing inspiration from the fundamental

principles of the natural evolutionary process, used for solution searching and optimization

problems. These algorithms mimic the main elements of biological evolution: selection,

crossover, and mutation. GA evolves the solutions of various problems within a population.

Solutions are modeled as a chromosome sequence that represents an individual and carries

genetic information. The algorithm iteratively develops this solution population, selecting

the most suitable solutions, applying crossover, and performing random mutations in each

iteration. This process continues until a certain fitness criterion or a number of iterations is

reached. GA offers an effective alternative, especially in problems where the search space is

large and complex and where traditional optimization methods fail.

2.1.1. Inspiration from Natural Evolution

2.1.1.1. Biological Analogy

GA draw direct inspiration from theory of natural selection. In nature, organisms evolve

over generations to adapt to their environment. The fittest individuals are more likely to

reproduce, passing on their genes to the next generation. GA use this concept of survival of

the fittest to find optimal solutions to a problem.

2.1.1.2. Chromosomes and Genes

In GA, potential solutions to a problem are encoded as a set of ’chromosomes,’ similar to the

genetic makeup in organisms. Each chromosome is made up of ’genes,’ which are essentially

parameters of the solution.
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2.1.2. The Process of Genetic Algorithm

The process of a genetic algorithm is a complex and adaptable computational method,

capable of tackling a wide range of problems. Its strength lies in mimicking natural

evolutionary strategies, allowing it to explore vast search spaces and converge on optimal

or near-optimal solutions efficiently. The flexibility in its implementation and the ability to

tailor its components to specific problems make it a powerful tool in the area of modern

computational techniques. Figure 2.1 depicts the schematic representation of the process:

Figure 2.1 The General Flowchart of a GA
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2.1.2.1. Initialization

Initialization is the first step in the genetic algorithm (GA) process, where the initial

population of potential solutions is created. This stage is crucial as it lays the foundation for

the evolutionary search process. A well-chosen initial population can significantly enhance

the efficiency and effectiveness of the GA. The details of this stage are as follows:

Population Generation: The initial population, comprising multiple solutions

(chromosomes), is generated randomly or using heuristic information. Each chromosome

represents a potential solution to the problem.

Population Size: The size of the initial population can greatly influence the GA’s

performance. A larger population provides greater genetic diversity, enhancing the

exploration of the solution space. However, a larger population also means more

computational effort per generation. Hence, it’s important to find a balance based on the

problem’s complexity and available computational resources.

Encoding Scheme: The method of representing solutions is crucial. Encoding schemes

depends on the problem’s nature.

• Chromosome Representation: Deciding how to represent potential solutions is a

critical aspect of initialization. Common encoding schemes include binary, integer,

real-valued, or even more complex structures.

• Problem-Specific Design: The encoding scheme should be designed to reflect the

nature of the problem effectively. For instance, binary encoding is common in simple

optimization problems, while permutation encoding is used in routing or scheduling

problems.
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Initialization Methods:

• Random Initialization: The most straightforward method is to generate the initial

population randomly. This ensures a diverse set of starting points for the evolutionary

process. However random initialization, while simple, might not be efficient for all

problems, especially those with a vast search space or specific constraints.

• Heuristic-Based Initialization: Incorporating Problem Knowledge: Using heuristic

methods or domain-specific knowledge to generate the initial population can lead to

a more focused search. For example, in a routing problem, initial routes might be

generated based on the nearest-neighbor heuristic rather than purely randomly. This

can speed up convergence, especially in complex or highly constrained problems.

• Hybrid Initialization: Often, a combination of random and heuristic-based methods

can be used. Part of the population is generated randomly, and the rest is created using

problem-specific heuristics. This approach balances exploration and exploitation from

the onset of the algorithm.

Diversity Considerations:

• Maintaining Diversity: It’s important to ensure that the initial population covers a wide

range of the solution space. Lack of diversity can lead to premature convergence.

• Techniques: Techniques like ensuring a minimum distance between initial solutions or

varying the parameters in heuristic methods can be employed to maintain diversity.

Initialization in genetic algorithms is more than just a random starting point. It is a

critical phase where the foundation for the evolutionary process is laid. The choice of

population size, encoding scheme, and initialization method should be tailored to the

specific characteristics of the problem at hand. A well-considered initialization strategy can

importantly improve the effectiveness of the genetic algorithm, leading to faster convergence

and better solutions.
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2.1.2.2. Fitness Evaluation

Fitness calculation is a pivotal component in GA, serving as the measure for evaluating how

well a given solution (chromosome) solves the problem at hand. The fitness function assigns

a score to each solution, guiding the selection process towards more promising regions of the

solution space. The different aspects and methods of fitness calculation are examined below.

Defining Fitness Function: The fitness function quantitatively evaluates how close a

solution is to meeting the objectives. It varies significantly depending on the specific problem

being solved.

• Alignment with Objectives: The fitness function should be closely aligned with

the problem’s objectives. In optimization problems, it often directly represents the

objective to be maximized or minimized.

• Complexity and Efficiency: While the function needs to be comprehensive enough to

evaluate solutions accurately, it should also be computationally efficient to allow for

quick evaluations.

Types of Fitness Functions:

• Simple Mathematical Functions: For basic optimization problems, the fitness function

might be a simple mathematical equation representing the problem’s objective.

Typically employed in straightforward optimization tasks where the goal is clear and

quantifiable. Examples:

– Maximization/Minimization: Functions like linear equations, quadratic

functions, or more complex algebraic expressions where the objective is to find

the maximum or minimum value.
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– Benchmark Functions: Standard test functions used in optimization literature,

like the Rastrigin, Rosenbrock, or Ackley functions, which are known for specific

challenges they pose (e.g., local minima, steepness).

• Simulation-Based Evaluation: In more complex scenarios, like evolutionary robotics,

fitness might be determined based on the performance of a solution in a simulated

environment. Examples:

– Evolutionary Robotics: Fitness might be determined by how well a robot

navigates a terrain or accomplishes a task in a simulated environment.

– Game Strategies: In designing AI for games, fitness could be based on the AI’s

performance in simulated game scenarios.

• Problem-Specific Functions: In domain-specific problems, fitness functions can

include various parameters and criteria unique to that domain, such as distance in

routing problems or profit in investment strategies. Examples:

– Routing Problems: In problems like the Traveling Salesman Problem, fitness

could be the inverse of the total distance traveled.

– Financial Models: For investment or portfolio optimization, fitness might be

based on the return on investment or risk-adjusted return.

– Machine Learning Models: In evolving neural networks, fitness could be based

on accuracy, precision, recall, or loss functions like mean squared error or

cross-entropy.

• Dynamic Fitness Functions: In dynamic optimization problems, where the objective

changes over time, fitness functions can adapt to these changes, ensuring the GA

remains effective throughout the process. Examples:

– Adaptive Control Systems: Fitness functions that adjust according to varying

control objectives or environmental conditions.
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– Real-time Strategy Games: Where the objectives might shift based on the

evolving state of the game.

– Changing Market Conditions: In financial applications, where the fitness function

adapts to fluctuating market dynamics.

Handling Constraints: In problems with constraints, penalty functions are often used to

reduce the fitness of solutions that violate these constraints.

• Penalty Methods: For problems with constraints, fitness functions often incorporate

penalty terms that decrease the fitness of solutions violating these constraints.

• Feasibility-Based Methods: Another approach is to separate feasible and infeasible

solutions, where only feasible solutions are considered for reproduction.

• Noise and Uncertainty: In real-world problems, fitness evaluations may include noise

or uncertainty. Robustness to these factors is often an important consideration in

designing the fitness function.

Normalization and Scaling:

• Normalization: In multi-objective optimization, different objectives might be scaled to

comparable ranges to prevent any one objective from dominating the fitness evaluation.

• Fitness Scaling: Techniques like rank-based scaling or sigma scaling are used to adjust

fitness values, especially in cases where raw fitness scores vary widely. This helps

maintain a healthy selection pressure.

Fitness calculation in genetic algorithms is a nuanced process that requires careful

consideration and design. The fitness function must accurately reflect the objectives and

constraints of the problem, be computationally efficient, and be capable of guiding the

GA towards optimal or near-optimal solutions. Whether dealing with simple mathematical
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problems, complex simulations, or real-world scenarios with multiple objectives and

constraints, the fitness function plays a crucial role in the success of a genetic algorithm.

The choice of fitness calculation method can importantly impact the performance, making it

a critical area of focus in GA design and implementation.

2.1.2.3. Selection

This process mimics natural selection, where the fittest individuals are selected to form new

individuals. In GA, the fitness of each solution is evaluated based on a predefined criterion,

and the best-performing solutions are selected for the next phase. Solutions with higher

fitness are more likely to be selected for reproduction. Selection in GA is a critical step

that significantly influences the algorithm’s convergence and performance. Various selection

methods exist, like roulette wheel selection, tournament selection, etc. Here, we delve

deeper into various selection methods, each with its unique approach and implications for

the evolutionary process.

Roulette Wheel Selection: This is a method where each slice corresponds to an individual

in the population, like a roulette wheel. The size of each slice is proportional to the

individual’s fitness. Higher fitness equates to a larger slice.

A random number determines which slice the wheel lands on, thus selecting the individual.

This process is repeated to select multiple individuals.

Favors fitter individuals but still gives a chance to less fit ones, maintaining diversity. Can

be problematic if the fitness values vary greatly (fitness scaling may be necessary). It might

also lead to premature convergence if one or a few individuals dominate early.

Tournament Selection: A set number of individuals are chosen randomly from the

population, and a ’tournament’ is held among them.

The individual with the highest fitness in this subset is selected. This process is repeated

multiple times to select the required number of individuals.
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The size of the tournament can be adjusted. Larger tournaments tend to favor fitter

individuals, while smaller ones maintain more diversity.

Less susceptible to the takeover by dominant individuals compared to roulette wheel

selection. Generally computationally efficient more than roulette wheel selection.

Rank-Based Selection: Instead of selecting based on fitness, individuals are ranked

according to their fitness.

The selection probability is then assigned based on this rank. The highest-ranked individual

has the highest chance of being selected, but unlike fitness-proportionate selection, the exact

fitness values are not considered.

Reduces the problems caused by a few super-fit individuals. It is beneficial in situations

where the fitness scale causes issues in selection. Helps in maintaining diversity over

generations, as the relative difference between individuals is more controlled.

Stochastic Universal Sampling: A variation of roulette wheel selection, designed to

provide more balanced selection pressure.

Multiple pointers are spaced evenly around the wheel, and the wheel is spun once. Each

individual selected by a pointer is chosen for the next generation.

This method reduces the chance fluctuations that can occur in roulette wheel selection,

providing a more representative sample of the population.

Elitism: Sometimes, the best-performing chromosomes are carried over to the next

generation unchanged to ensure that the quality of solutions does not degrade. A certain

number of the fittest individuals from the current generation are guaranteed a place in the

next generation. These individuals are copied directly without undergoing crossover or

mutation. Ensures that the best solutions found so far are not lost, which can accelerate
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the convergence of the GA. It must be used carefully to avoid premature convergence and to

maintain sufficient genetic diversity.

The selection mechanism in genetic algorithms plays a pivotal role in guiding the

evolutionary process. The choice of selection method can significantly impact the balance

between exploration and exploitation within the GA. Each method has its strengths and

weaknesses, and the choice often depends on the specific requirements and characteristics

of the problem at hand. By understanding these nuances, the genetic algorithm can be

effectively tailored to achieve optimal performance.

2.1.2.4. Crossover

Crossover, also known as recombination, is a fundamental genetic operator in GA. It

simulates the biological process of reproduction, where offspring inherit a combination of

genes from their parents. The process enables the GA to explore new regions of the solution

space by combining existing solutions in novel ways. This step involves combining parts

of two or more selected chromosomes to create new offspring. Selected solutions undergo

crossover to produce new offspring is applied to introduce variability. It’s akin to biological

reproduction, where offspring inherit traits from both parents. The hope is that by combining

good traits from different solutions, even better solutions can be created. Here, we delve into

various crossover methods, their mechanisms, and their advantages and disadvantages.

Single-Point Crossover: First, a random crossover point is selected. Segments after

this selected point are exchanged between parent chromosomes to create offspring. It is

advantageous in terms of simplicity and ease of implementation. However, it can lead to

limited exploration of the solution space, as only the genes at the end of the chromosome

have a high chance of being swapped.

Two-Point or Multi-Point Crossover: Similar to single-point crossover, but differs in

having two or more crossover points. The segments between these points are swapped
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between the parents. This allows for more mixing of parental genes, potentially exploring the

solution space more thoroughly. However, there is an increased complexity and a potential

to disrupt important gene combinations (building blocks).

Single-point and multi-point crossover strategies are simple to implement, but they may not

effectively explore the solution space.

Uniform Crossover: Each gene is considered independently. For each gene, a coin is

flipped to decide which parent it will be inherited from. This provides a more uniform

exploration of the solution space and maintains a better balance. It can perform well in

exploration but may disrupt advantageous gene combinations found in parents.

Whole Arithmetic Recombination: Used for real-valued chromosomes. Offspring are

created as a weighted average of the parent chromosomes. Good for problems where a blend

of parent traits is desirable. May converge slowly and is not suitable for problems where

specific gene combinations are crucial.

Order-Based Crossover: Designed for problems like the traveling salesman problem,

where the solution is an ordered list (like a route or schedule). Preserves relative order of

genes, which is essential in order-based problems. More complex and can be less intuitive to

implement.

Partially Mapped Crossover (PMX): Specifically designed for permutation encoding. It

maintains the absolute position of some elements from one parent while preserving the order

of elements from the other parent. Useful in problems where the position of elements is

important. Can be computationally more intensive.

Whole Arithmetic and PMX are beneficial for specific problem types but may lack general

applicability or be computationally intensive.
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Crossover Rate: Not all pairs of chromosomes undergo crossover. This rate determines

how frequently crossover occurs within the population.

Crossover in genetic algorithms is a versatile and powerful tool for generating new solutions

by combining existing ones. The choice of crossover method can significantly impact the

performance of a GA and is highly dependent on the nature of the problem being solved.

While some methods are better for preserving gene combinations, others excel in exploring

the solution space more thoroughly. The key is to select the crossover method that best aligns

with the problem’s requirements and the specific characteristics of the solution space.

2.1.2.5. Mutation

This is a random process where some genes in a chromosome are altered. Mutation

introduces genetic diversity and helps prevent the algorithm from getting stuck in local

optima. Selected solutions undergo mutation is applied to introduce variability.

Types and Methods of Mutation: Mutation in GA is a crucial mechanism that introduces

variability into the population, aiding in the exploration of the search space and preventing

premature convergence. It simulates random genetic mutations seen in natural evolution.

This process involves altering one or more genes in a chromosome (solution) according to a

predefined mutation probability. Here, we explore various aspects and methods of mutation

in GA. Various techniques exist, such as,like bit-flipping in binary encoding or small changes

in real-valued encoding. These techniques are listed below:

• Bit-Flip Mutation: In binary-encoded chromosomes, mutation often involves flipping

bits (changing 0 to 1 or vice versa). A random gene (bit) is selected, and its value is

inverted. This is akin to a point mutation in biological DNA.

• Real-Valued Mutation: For chromosomes represented by real numbers, mutation

involves making small random changes to the numeric value. A gene’s value is
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perturbed by adding a small, random value, which can be drawn from a distribution

like Gaussian or uniform.

• Swapping Mutation: Used mainly in problems like the traveling salesman problem,

where the solution is a permutation of cities. Two genes (cities) are selected randomly,

and their positions are swapped in the chromosome.

• Scramble Mutation: A subset of genes is chosen and their order is shuffled. Useful in

routing or scheduling problems where the sequence of events or locations matters.

Implementation and Control:

• Mutation Rate: One of the most critical parameters in GA. It determines how

frequently mutation occurs. This is typically a small probability, ensuring only a few

genes are mutated to maintain diversity without disrupting the evolutionary process

excessively. Usually set to a low value, as high mutation rates can turn the GA into a

random search.

• Adaptive Mutation: In some advanced GA, the mutation rate is adapted based on

the performance of the population. If the population is converging too quickly, the

mutation rate can be increased to introduce more diversity.

Impact on Chromosome and Population:

• Introduction of New Traits: Mutation can introduce new genetic material into the

population, potentially leading to better solutions.

• Diversity Maintenance: By altering chromosomes, mutation helps maintain genetic

diversity within the population, which is vital for a healthy evolutionary process.

• Avoidance of Local Optima: Mutation helps the algorithm to escape local optima by

providing a mechanism to explore new regions of the search space.
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Mutation in Image-Based Problems:

• Image Optimization: In problems where the solutions are images (like evolving art

or designs), mutation might alter pixel values, color intensities, or geometric shapes

within the image.

• Effect on Output: These changes can lead to significant visual alterations, leading to

diverse and often unexpected designs or patterns.

General Characteristics:

• Balance: The key is to balance the rate and extent of mutation. Too much mutation

can destroy good solutions, while too little can lead to stagnation.

• Context-Dependent: The best approach to mutation often depends on the specific

problem and the representation of solutions.

Mutation is a fundamental aspect of genetic algorithms, serving as a tool for introducing

randomness and variability. It counteracts the homogenizing effect of crossover and

selection, ensuring that the GA does not get trapped in sub-optimal regions of the search

space. To ensure the success of any GA, the mutation method and rate must be chosen

carefully. Understanding and effectively implementing mutation can significantly impact the

performance and efficiency of genetic algorithms in solving complex optimization problems.

2.1.2.6. New Generation

A new population of solutions is formed, usually by replacing the older generation entirely

or by a mixture of old and new solutions.

Replacement Strategies: The new generation of solutions can be formed in various ways,

such as completely replacing the old generation or a mix of old and new.
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Convergence Check: The algorithm checks for convergence, typically a state where

additional iterations do not significantly improve solutions.

2.1.2.7. Termination

This process of selection, crossover, and mutation is repeated over several generations. The

algorithm typically terminates when a satisfactory level of fitness is achieved or after a set

number of generations.

Termination Criteria: Common criteria include the highest number of generations that

can be achieved, a high level of fitness, or a plateau in fitness levels indicating convergence.

Result Selection: The best solution(s) from the final population are chosen as the output

of the algorithm.

2.1.3. Applications and Examples

Genetic algorithms have been successfully applied in various domains such as:

2.1.3.1. Optimization Problems

Finding the best solution from a large set of possibilities, like scheduling, route planning, or

resource allocation.

2.1.3.2. Machine Learning

Feature selection, neural network training, and other areas where traditional methods are

computationally expensive.
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2.1.3.3. Evolutionary Design

In engineering, for designing more efficient structures and systems by simulating

evolutionary processes.

2.1.4. Variations and Advanced Techniques

2.1.4.1. Hybrid Approaches

GA are often combined with other optimization techniques, like local search algorithms, to

refine solutions.

2.1.4.2. Parallel and Distributed GA

Parallel and Distributed GA: These are used to speed up the process and improve solutions

by evolving multiple populations simultaneously.

2.1.4.3. Adaptive GA

Here, parameters like mutation and crossover rates are adapted dynamically based on the

performance of the current population.

2.2. Convolutional Neural Networks

CNNs are a significant model used in the field of artificial intelligence and deep learning.

They are fundamentally designed for processing and analyzing visual data through their

multi-layered structure. In these artificial neural networks, each layer undertakes different

tasks. The initial layers generally focus on detecting simple features, such as edges or color

transitions. In deeper layers, these simple features are combined to define more complex

characteristics. A CNN typically consists of a series of layers that transform the input image

to produce an output prediction. These layers are: convolution, pooling, fully connected and
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normalization layers. A general CNN model used for the image classification problem is

shown in Figure 2.2

Figure 2.2 An Example CNN for Classifying Images

2.2.1. Convolution Layers

These are the core building blocks of a CNN. They apply a number of filters to the input

image to create a feature map. This process captures the local dependencies in the original

image. These layers perform convolution operations by sliding a filter over the image. As

the filter moves across the image, it multiplies its values with the original pixel values. The

results of these multiplications are summed up to produce a single pixel in the output feature

map. For example, consider a 3x3 filter moving across a 10x10 image. At each position,

the filter overlaps with a 3x3 section of the image. The convolution involves element-wise

multiplication between the filter and the image section and sums up these values to form a

single pixel in the output feature map. This process is illustrated in Figure 2.3.
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Figure 2.3 Representative Illustration of the Convolution Process

2.2.2. Activation Layers

Activation layers in neural networks, especially in CNNs, disrupt the linearity of the model,

allowing it to learn more complex patterns in the data. Their primary roles are their

contributions in whether a neuron is active or not. There are several types of activation

functions, each with its unique characteristics and applications. These functions are

examined below:

2.2.2.1. Rectified Linear Unit (ReLU)

ReLU is defined as:

Orelu(z) = max(0, z) (1)

It outputs the input directly if it is positive; otherwise, it outputs zero. ReLU is widely used

for its simplicity and efficiency. It helps in alleviating the vanishing gradient problem. This

activation is applied pixel-wise to the feature. This process is illustrated in Figure 2.4

Original Feature Map: The first image shows the original feature map with a mix of positive

(red) and negative (blue) values. The color bar indicates the range of values.

Negative Values in Feature Map: The middle image highlights the negative values in the

feature map. Here, negative values are shown in blue, while positive values are made

transparent (NaN) to emphasize areas that will be affected by the ReLU function.
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Figure 2.4 Representative Illustration of the ReLU Activation Process

After ReLU Activation: The final image on the right displays the feature map after applying

the ReLU activation. In this map, all negative values (previously shown in blue) have been

set to zero, as indicated by the dark areas, while the positive values remain unchanged. This

set of images illustrates how ReLU effectively zeroes out negative values in the feature map,

a key aspect of its functionality in neural networks.

2.2.2.2. Leaky ReLU

A variant of ReLU, it is defined as:

Pleaky(y) =


y, if y > 0

βy, otherwise
(2)

where β is a small constant. Leaky ReLU addresses the issue of dying neurons in ReLU

(where some neurons only output zero) by allowing a small gradient when the unit is not

active.
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2.2.2.3. Parametric ReLU (PReLU)

PReLU and Leaky ReLU are almost the same, but the coefficient α is learned during training

rather than being predefined. PReLU is defined as:

PPReLU(y) =


y, if y > 0

βy, otherwise
(3)

where β is a learnable parameter during training rather than being a predefined constant.

PReLU adapts its behavior to the specific task, potentially leading to better performance in

certain scenarios. This learnable parameter α allows the function to be more flexible, as it

can adjust during the training process, potentially improving the learning and performance

of the neural network.

2.2.2.4. Sigmoid Function

The sigmoid function is also called the logistic function and is defined as:

Ssigmoid(z) =
1

1 + e−z
(4)

It outputs a value between zero (0) and one (1), making it useful for models where we need

probabilities. Commonly used in the output layer of binary classification problems, though

less common in hidden layers due to the vanishing gradient problem.

2.2.2.5. Hyperbolic Tangent

The Hyperbolic Tangent (tanh) function and sigmoid function are almost the same, but

outputs values between -1 and 1. The tanh function is defined as:

Ttanh(w) = tanh(w) =
2

1 + e−2w
− 1 (5)
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It is often used in hidden layers of a neural network as it centers the data, making learning

for the next layer easier.

2.2.2.6. Softmax

The Softmax function compresses the outputs of each unit between 0 and 1. In this respect, it

is a generalization of the sigmoid function, and also divides by their sum, effectively giving

the probability distribution over a set of outputs. Primarily used in the output layer for

multi-class classification problems. It is defined as:

Ssoftmax(z)i =
ezi∑n
j=1 e

zj
(6)

for i = 1, . . . , n, where z = [z1, z2, . . . , zn] is the input vector, and n is the number of classes.

It converts the logits (i.e., raw prediction scores) into probabilities by dividing the exponential

of a given score by the sum of exponentials of all scores in the vector. This ensures that the

output probabilities sum to 1, making it a valid probability distribution. It is particularly

useful for cases where classes are mutually exclusive.

2.2.2.7. Swish

Swish is defined as:

Sswish(y) = y · sigmoid(γy) (7)

where γ is a learnable parameter or a fixed value. Swish tends to work better than ReLU on

deeper models across a number of datasets and models.
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2.2.2.8. Exponential Linear Unit

Exponential Linear Unit (ELU) is defined as:

Eelu(z) =


z, if z > 0

δ(ez − 1), otherwise
(8)

where δ is a scaling parameter. ELU aims to combine the benefits of ReLU and its variants

(efficient computation, non-saturating form) and the sigmoid functions (smooth output for

negative inputs).

2.2.3. Pooling Layers

Pooling layers come after convolution layers. By reducing dimensionality, it reduces the

number of parameters in the network. Thus, the computational burden is reduced. This

also helps in making the detection of features invariant to scale and orientation changes.

Pooling can be done in different types. Most commonly used average and maximum pooling

methods. For example, in max pooling, a filter moves across the feature map and takes the

maximum value from the section of the map it covers. If a 2x2 filter is applied to a 4x4

feature map, it will produce a 2x2 output where each pixel represents the maximum value of

a 2x2 area in the input feature map. This process is illustrated in Figure 2.5

Figure 2.5 Representative Illustration of the Pooling Process
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This shows the result of applying a 2x2 max pooling filter to the 4x4 feature map. In max

pooling, the filter moves across the feature map and selects the maximum value from each

2x2 area it covers. The output is a 2x2 matrix where each pixel represents the maximum

value of a 2x2 area in the input feature map.

2.2.3.1. Max Pooling

In max pooling, a filter (usually 2x2 or 3x3 in size) moves across the input feature map. At

each position, the maximum value within the window of the filter is selected and output to

the new, reduced-size feature map.

2.2.3.2. Average Pooling

Similar to max pooling, but instead of taking the maximum value, it computes the average

of the values in the filter window. This results in a pooled feature map where each element

is the average of the corresponding window elements in the input map.

2.2.3.3. Global Pooling

In global pooling, instead of a small window, the entire feature map is considered. The most

common types include global mean and global maximum pooling. They take the maximum

or average of the entire feature map, respectively, reducing each map to a single value. This is

particularly useful for reducing the dimensions of the feature maps before a fully connected

layer.

The primary task of each type of pooling is to reduce the size of feature maps. In this way,

the number of parameters of the network is reduced. Additionally, the computational burden

is reduced. This not only helps in reducing overfitting but also ensures that the network

becomes somewhat invariant to small translations in the input image.
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2.2.4. Fully Connected Layers

After the convolution and pooling layer, there are fully connected layers. The most important

parameters for the decision mechanism are extracted through these layers. There are

connections between all layers. For example, if the previous layer outputs a 5x5x10 feature

map (10 different 5x5 feature maps), this might be flattened into a 250-element vector

(5x5x10) and connected to a fully connected layer with, for instance, 100 neurons. Each

of these neurons will be connected to all 250 elements. This is illustrated in Figure 2.6

Figure 2.6 Representative Illustration of the Fully Connected Process

2.2.5. Normalization Layers

Normalization layers in CNNs play a crucial role in stabilizing and speeding up training.

There are several types of normalization methods, each with its own mechanism and purpose.
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These methods normalize the input layer by adjusting and scaling activations.They improve

the stability and performance of the neural network. Normalization methods are examined

in detail below:

2.2.5.1. Batch Normalization

This method normalizes the inputs of a layer across the batch dimension. It adjusts the

activations of a previous layer by scaling them to have a mean of zero (0) and a standard

deviation of one (1), based on the statistics of the current batch of data. The distribution

of network activations may change during training. Batch normalization helps reduce this

variation. This leads to faster training and reduces the sensitivity to network initialization.

In batch normalization, the activations of a previous layer are normalized so that they have

a mean of zero (0) and a variance of one (1), as shown in Figure 2.7. This is done for each

batch of training data, hence the name ’batch normalization’.

Figure 2.7 Representative Illustration of the Batch Normalization Process

• Original Activations: The histogram on the left shows the distribution of the original

activation values from a batch. These values are randomly generated and resemble a

normal distribution.

• Means of Activations: The bar plot in the middle displays the mean values of

the activations before normalization. Each bar corresponds to one of the 10

features/activations, and you can see that the means are not centered at zero.
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• Normalized Activations: The histogram on the right shows the distribution of

activation values after batch normalization. The normalization process has adjusted

the activations so that they now have a zero (0) and a variance of one (1), which is the

goal of batch normalization.

This process helps the network to be trained in a faster and more stable manner. Specifically,

batch normalization:

• Speeds Up the Learning Process: Allows the network to be trained faster using higher

learning rates.

• Reduces Dependency on Weight Initialization: Decreases the need for selecting a good

initial weight value.

• Creates a Regularization Effect: The normalization over mini-batches creates a

regulatory effect and can help reduce overfitting.

2.2.5.2. Layer Normalization

Unlike batch normalization, layer normalization performs normalization across the features

instead of the batch dimension. Here, the normalization is applied for each data point

separately, and all the features are normalized together. This type of normalization is

particularly effective in recurrent neural networks (RNNs) and is less dependent on batch

size, making it suitable for tasks with a smaller batch size or where batch size can vary.

2.2.5.3. Instance Normalization

Instance normalization normalizes each individual data instance in each channel separately.

It’s similar to layer normalization but normalizes across each channel in each training

example. It has been found particularly useful in style transfer applications in neural

networks.
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2.2.5.4. Group Normalization

This method divides the channels into groups and normalizes the features within each

group. It’s a middle ground between layer normalization and instance normalization. Group

normalization is effective in cases where the batch size is small, making batch normalization

ineffective.

2.2.5.5. Weight Normalization

This involves normalizing the weights of each neuron in a layer, which is different from

normalizing the layer’s activations. It decomposes the weight vector into a parameter

representing its length and a parameter representing its direction. Weight normalization

accelerates convergence of stochastic gradient descent by decoupling the length of the weight

vectors from their direction.

Normalization layers, in general, help in smoothing the optimization landscape and enable

the use of higher learning rates, which can lead to faster convergence of the network.

They also play a role in regularizing the model, which can help reduce overfitting.

Each normalization method has its own advantages and is chosen based on the specific

requirements of the neural network architecture and the nature of the task at hand.

2.2.6. The Image Processing Process in a CNNs

Filters, also known as kernels, are small matrices used to transform an image through

a convolution operation. During convolution, the filter slides over the input image. At

each position, the filter is applied to the corresponding part of the image. This involves

element-wise multiplication between the values in the filter and the pixel values of the image.

These products are then summed up to get a single value, which forms a pixel in the output

feature map. These filters are designed to capture specific types of features from the image,

like edges, textures, or patterns. For instance, certain filters might detect vertical edges, while
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others might be sensitive to horizontal or diagonal edges. The representative illustration can

be found in Figure 2.8

Figure 2.8 Process of Filtering in Convolution Layers

In the image, the original black and white image and the results of three different filters

applied to this image can be seen: edge detection, blurring, and sharpening. Each filter

creates a different effect on the image.

In a trained CNN, the values that the filters can take are learned during the training process.

The network adjusts these values to minimize the difference between the its actual and

predictions data.

In the next step, an activation function (ReLU) and pooling operation are applied to these

convolved images. ReLU transforms negative values to zero while leaving positive values

unchanged. The pooling operation, on the other hand, has reduced the size of the image and

preserved important features. Figure 2.9 shows images where the ReLU activation function

has been applied.

Finally, the pooling operation has been applied. Pooling is used to condense the information

in the image and reduce its size. Here, the most common method, max pooling, has been

used. This step reduces the size of the image by taking the largest value in each small

window, preserving the most important features. Figure 2.10 shows the results of the max

pooling operation.

These figures demonstrate a typical image processing sequence within a CNNs:

• Original Image: A simple black and white image used to start the processing.
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Figure 2.9 Activation Process in Convolved Images

Figure 2.10 Pooling Process in Convolved Images

• Convolution Layers: Various filters are applied to the image to extract different

features.

• ReLU Activation Function: Transforms negative values to zero while leaving positive

values unchanged.

• Max Pooling: Takes the largest value in each window to condense information in the

image and reduce its size.

These steps form the basic building blocks of CNNs and are commonly used in more complex

visual recognition tasks.

The image processing process in CNNs is detailed in Figure 2.11, which includes numerical

values in the images.
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Figure 2.11 The Image Processing Process in a CNNs
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• Original Image and Filters: The first row shows a more complex original image and

three different types of filters (Edge Detection, Blurring, Sharpening). Each filter is

designed to create a different effect on the image.

• Convolution Results: The second row shows the results of applying each filter to the

original image. This reflects the effect of the filter on the image.

• ReLU Activation Results: The third row demonstrates the application of the ReLU

activation function to each matrix obtained after convolution. In this step, negative

values are zeroed out while positive values remain unchanged.

• Pooling Results: The fourth row displays the application of max pooling to each matrix

obtained after the ReLU step. In this step, the size of the image is reduced while

important features are preserved.

These figures present a more detailed view of the numerical effects and outcomes of

convolution, activation, and pooling processes in CNNs. Each process is designed to extract

different types of information from the image and provide necessary features for subsequent

layers.

Each of these layers plays a crucial role in the CNN’s ability to learn from visual data. By

stacking these layers, CNNs can effectively learn hierarchical representations of the input

data, which is essential for complex tasks like image recognition.

CNNs are used effectively in a wide variety of tasks, including image recognition (including

video), image analysis and classification, and even playing board and video games. Their

ability to learn feature representations directly from data, eliminating the need for manual

feature extraction, is one of their most significant advantages.

The advancements in CNNs have largely been driven by increasing computational power,

availability of large-scale image datasets like ImageNet, and improvements in training

algorithms. As research continues, CNNs are becoming more efficient, accurate, and capable

of handling more complex tasks in various domains.
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2.3. Masking Techniques

Masking is a technique used to select and process specific parts of an image (generally used

in image processing and computer vision). This process is typically done using a mask,

which determines the areas of the image to be processed.

The most commonly used type of mask is binary masks. These contain only two values:

usually ’1’ representing the areas to be processed, and ’0’ representing the areas not to be

processed. However, there are also more complex masks like grayscale masks and colored

masks.

Masks are usually created according to a specific criterion or condition. For example,

by setting a threshold value, all pixels above this value can be marked as ’1’, and those

below as ’0’. In artificial intelligence and machine learning applications, masks are often

automatically generated, especially using deep learning models. Once a mask is created, it

is applied to the relevant image. This is usually done through a multiplication operation:

each pixel of the mask and the image is multiplied, so pixels with a ’0’ value in the mask are

ignored in the image, while those with a ’1’ value are preserved.

Masking is used in a variety of image processing tasks such as object detection, segmentation,

image editing, and filtering. For example, in medical imaging, only the area within the mask

may be processed for a specific tissue or abnormality, while the rest is disregarded.

Masking and Data Augmentation: Masking can also be used in data augmentation processes.

For instance, during the training of models, masks can be used to hide or emphasize certain

parts of images to improve the generalization ability of the model.

Masking is a versatile and powerful tool in the fields of computer vision and image

processing. Understanding its fundamental principles and applying them correctly enhances

the effectiveness and efficiency of these techniques. Particularly in AI and machine learning

applications, the proper use of masking is critical for more accurate results and effective

analyses. Various masking techniques are as follows:
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2.3.1. Binary Masks:

The simplest form of masking is binary masks. These masks are used to create sharp

distinctions in images and are commonly used in image segmentation, object detection, and

some types of image filtering.

2.3.2. Grayscale Masks:

A more complex masking technique involves grayscale masks. These masks provide

more detail and intensity level information compared to binary masks, enabling smoother

transitions and more detailed image processing.

2.3.3. Color Masks and Alpha Masks:

Color masks target specific color ranges or color features. Alpha masks contain transparency

information and are often used in visual effects. These masks are used to differentiate specific

color tones or levels of transparency.

2.3.4. Edge Masks:

Edge masks are used to emphasize edges in images. These masks are typically created using

edge detection algorithms and are used to more clearly define the boundaries of objects.

2.3.5. Soft Masks:

Soft masks allow for gradual transitions and provide more natural-looking blends. These

masks are particularly important in image merging and composite creation processes.
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2.3.6. Special Shape and Channel-Based Masks:

Special shape masks target a specific geometric shape or pattern. Channel-based masks focus

on specific color channels of an image and are used for color-based processing.

2.3.7. Adaptive Masks:

In dynamic environments or under changing conditions, adaptive masks are used. These

masks automatically adjust themselves based on the content and conditions of the image.

2.3.8. Artificial Intelligence and Deep Learning Approaches:

With the advancement of AI and deep learning technologies, masking techniques have also

significantly evolved. Particularly, deep learning-based segmentation models can create

much more accurate and detailed masks in complex images.

2.4. Binary Masks

Binary masks, fundamental tools in deep learning, particularly in computer vision and image

processing applications, serve to isolate specific parts of an image. In essence, a binary mask

is a two-dimensional array where each pixel’s value is either 0 or 1. The ’1’ values indicate

the regions of interest, while ’0’ values represent the background or irrelevant parts.

Binary masks are often created using thresholding techniques, where pixel values in an image

that meet certain criteria are marked as 1 (or ’true’), and others as 0 (or ’false’). These criteria

can be based on intensity, color, texture, or other image properties. Once created, these masks

are applied to images through operations like bitwise operations (AND, OR), which combine

the mask and the image to extract or suppress specific regions.
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Binary masks are used in various fields within artificial intelligence (AI) as well as in deep

learning. They offer versatile applications due to their ability to segment and highlight

specific regions in data.

Despite their utility, binary masks have limitations. They are inherently binary, which can

lead to a loss of information, especially in regions with gradual transitions. Also, creating

accurate masks manually or with simple algorithms can be challenging for intricate or noisy

images.

Binary masks are a simple yet powerful tool in image processing, offering a straightforward

approach to isolating and manipulating specific regions within images. Their evolution,

closely tied to advancements in computational techniques, continues to play a critical role

in various applications, from basic image editing to complex tasks in medical imaging and

autonomous vehicle navigation. Some of these applications are examined below.

2.4.1. Usage in Deep Learning

2.4.1.1. Image Segmentation

Perhaps the most common use of binary masks is in image segmentation tasks. In

segmentation, the goal is to classify each pixel of an image into different categories. Binary

masks make this task manageable by allowing algorithms to focus only on relevant parts of

the image. For instance, in medical imaging, binary masks help in isolating tumors from

MRIs or CT scans.

2.4.1.2. Object Detection and Localization

In object detection, binary masks assist in pinpointing the exact location of objects within an

image. This is crucial in applications like autonomous vehicles, where accurately detecting

and localizing obstacles (like pedestrians or other vehicles) is essential for safety.
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2.4.1.3. Data Augmentation

In deep learning, data augmentation is a technique used to increase the diversity of a dataset

without actually collecting new data. Binary masks can be used to blend or superimpose

images, creating new training samples from existing ones.

2.4.1.4. Background Removal

Binary masks are instrumental in applications that require the extraction of foreground

elements from the background. This technique is widely used in video conferencing tools,

where the user’s background is often blurred or replaced.

2.4.1.5. Implementation Techniques

Convolutional Neural Networks: CNNs, especially those designed for segmentation like

U-Net, often output binary masks as part of their architecture. These networks are trained to

understand the spatial hierarchies in images, enabling them to distinguish between relevant

and irrelevant pixels.

Thresholding Techniques: In simpler applications, thresholding can be used to create

binary masks. Here, pixel values above a certain threshold are set to ’1’, and others to

’0’. This method is common in edge detection and basic object recognition tasks.

Region-Based Methods: Techniques like Region-based CNN and its variants use binary

masks for more precise object detection and segmentation.

By isolating the regions of interest, binary masks reduce computational complexity, allowing

deep learning models to focus only on important parts of the image. In tasks like medical

image analysis, the precise delineation of areas (like tumors) can significantly impact

diagnosis and treatment plans, making accuracy crucial. Binary masks are adaptable
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to various applications, from simple background removal to complex medical image

segmentation, demonstrating their versatility.

In conclusion, binary masks are vital in the realm of deep learning for image processing.

Their ability to isolate and highlight specific regions of an image makes them indispensable

tools in enhancing the accuracy and efficiency of various applications, ranging from

autonomous vehicles to medical diagnostics.

2.4.2. Usage in Traditional Machine Learning

2.4.2.1. Feature Engineering

In traditional machine learning, binary masks can be used for feature selection or extraction.

By masking certain features in a dataset, algorithms can focus on the most relevant attributes,

improving model performance and reducing overfitting.

2.4.2.2. Preprocessing in Image Analysis

Prior to the advent of deep learning, binary masks were used in image analysis tasks like

edge detection, object recognition, and morphological operations in computer vision, using

techniques like thresholding and contour detection.

2.4.3. Usage in Natural Language Processing

2.4.3.1. Text Segmentation

Similar to image segmentation, binary masks in Natural Language Processing (NLP) can be

used for tasks like sentence splitting or identifying specific parts of texts (like keywords or

phrases).
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2.4.3.2. Attention Mechanisms

In more advanced NLP systems, binary masks can facilitate attention mechanisms by

masking out irrelevant parts of the input data, thereby allowing models to focus on the

important segments of text for tasks like machine translation or summarization.

2.4.4. Usage in Robotics

2.4.4.1. Environmental Interaction

In robotics, binary masks can assist in environmental understanding, like distinguishing

between navigable areas and obstacles in a robot’s path planning algorithms.

2.4.4.2. Object Manipulation

Binary masks help in object recognition and manipulation tasks, enabling robots to identify

and interact with specific objects in their environment.

2.4.5. Usage in Augmented and Virtual Reality

2.4.5.1. Image Composition

In Augmented and Virtual Reality (AR/VR), binary masks are used for blending real and

virtual elements seamlessly. They help in isolating objects from the background, which can

then be superimposed onto virtual environments.

2.4.5.2. Interaction Mechanics

Binary masks aid in detecting user interaction areas, such as hand gestures or eye movements,

to enhance the interaction experience with virtual elements.
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2.4.6. Usage in Data Visualization and Analysis

2.4.6.1. Masking Sensitive Information

In data analysis, binary masks can be employed to anonymize or hide sensitive information

in datasets, ensuring privacy and compliance with data protection regulations.

2.4.6.2. Highlighting Key Data Points

They are also useful in visual analytics to highlight or filter specific data points or trends

within large datasets, enhancing the interpretability of the visualized information.

Across these diverse AI applications, the primary purpose of binary masks remains

consistent: to isolate and emphasize specific regions or features within a dataset, whether it’s

an image, text, or any other form of data. This isolation aids in reducing noise and focusing

the AI system’s processing on the most pertinent information, thereby improving efficiency,

accuracy, and performance of the system. In tasks like robotics and AR/VR, binary masks

play a crucial role in ensuring smooth interaction between the AI system and its environment

or users, demonstrating their wide-ranging applicability and importance in the field of AI.
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3. RELATED WORK

The deep learning has achieved extraordinary successes in a wide range of fields [1].

Moreover, in the area of image classification, deep learning models like CNNs have been

groundbreaking, outperforming all other methods [2]. However, along with the power of

these models come some challenges. One of the most important issues with deep learning

models is the ”catastrophic forgetting problem” [3].

The catastrophic forgetting problem refers to the situation where a model forgets what it

has learned in previous tasks as it learns a next task. This is particularly problematic in

the context of multi-task learning. Multi-task learning contains training a single model

to learn multiple tasks simultaneously and holds great potential for improving a model’s

generalization ability [4]. However, the forgetting problem can make it challenging to fully

realize this potential.

In the literature, there are three main approaches to tackling catastrophic forgetting:

regularization-based approaches, replay approaches using memory, and architectural

approaches [5–7], [8–12], [13–27]. Each has its own advantages and disadvantages, but

in many cases, a combination of methods is used to produce more effective solutions.

Regularization-based approaches generally aim to preserve the impact of old data and

constrain parameter changes based on this data [5-7]. For example, [5] penalize the alteration

of important parameters, while [7] preserve the activations of the network trained for the old

task during training with new data.

Replay approaches facilitate learning by using a replay memory [8]. In addition to this,

Maximally Interfering Retrieval (MIR) selects examples with high forgetfulness, while

Gradient-based Memory Editing (GMED) makes them more forgettable [9, 10]. Hindsight

Anchor Learning (HAL) gives higher priority to forgettable examples [11].
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Architectural approaches attempt to solve the problem by altering or customizing the

structural features of the network [13-27]. For example, PackNet uses weight-based pruning

techniques [19], while [27] use genetic algorithms to find the task-specific optimal path.

In recent years, metaheuristic algorithms, especially genetic algorithms, have been widely

used in artificial neural network optimization [28–39]. [29] have stated that optimization

results obtained with genetic algorithms are better than those obtained with gradient descent

algorithms. [32] used genetic algorithms in conjunction with backpropagation algorithms to

improve the architecture and weights of a deep neural network. [36] use both neuroevolution

and backpropagation together, while [35] have employed evolutionary algorithms to reduce

computational cost. [37] used genetic algorithms in difficult reinforcement learning

problems, and [38] used them to explore convolutional network architectures for the MNIST

dataset.

Overall, many approaches have been suggested to solve continuous learning and catastrophic

forgetting problems, and the integration of genetic and evolutionary algorithms with neural

networks and deep learning is considered one of the promising methods in this field. The

key emphasis is on the potential of these algorithms to overcome limitations encountered

by traditional methods (e.g., backpropagation) particularly in areas like network architecture

selection, hyperparameter optimization, and difficult optimization problems.

In this study, we propose to mitigate the catastrophic forgetting problem and enhance the

multi-task learning capability of deep learning models by using genetic algorithms and binary

masks. Binary masks allow us to selectively regulate the model parameters, thus enabling us

to manage the information transfer between different tasks in the model. Various studies also

exist where genetic algorithms have been used for the optimization of binary masks [40, 41].
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4. PROPOSED METHOD

4.1. Model Initialization and Binary Mask Generation

4.1.1. Model Initialization

CNN model is initialized with a predefined architecture tailored for image classification

tasks. The CNN model used in this study consists of 4 convolution layers and 2 fully

connected layers. After each convolution layer, there is a ReLU activation function, a max

pooling layer, and a batch normalization layer. The convolution layer is represented by

equation (9).

Oconv(i, j) =

k
2∑

m=− k
2

k
2∑

n=− k
2

[
W (m,n)×X(i−m, j − n) + b

]
(9)

In this formula, Oconv represents the output of the convolutional layer, X represents the input

image, W represents the weights of the convolution kernel, b is the bias term, and k represents

the size of the kernel. For each position (i, j) on the input image, a multiplication operation

is performed between the kernel weights and the relevant region of the image and the output

value is obtained through a summation operation.

The ReLU activation function is a function that increases the learning capacity of the model

by turning negative values present in the output of the convolution layer to zero. The ReLU

is defined by equation (10).

Orelu(x) = max(0, x) (10)

This function involves comparing the input value x with 0 and selecting the larger value.
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The max pooling layer is a layer used to reduce the size of the feature map obtained from

the output of the convolution layer. This process is illustrated with the following by equation

(11).

Opool(i, j) = max
(
Orelu(is : is+ k, js : js+ k)

)
(11)

In this formula, Opool designates the output of the max pooling layer, Orelu stands for the input

image, s defines the stride size, and k delineates the size of the pooling kernel. It generates

the output map by taking the maximum value within a specific window in the input image.

The batch normalization layer is a technique that accelerates the training process of the

model and facilitates a more stable learning dynamic. This layer carries out normalization

operations at the mini-batch level and is formalized by equation (12).

Obn(x) = γ

(
x− µ√
σ2 + ϵ

)
+ β (12)

Here, Obn represents the output of the batch normalization layer, x denotes the input, µ and
√
σ2 represent the mean and variance of the mini-batch respectively, γ and β are tunable

parameters, and ϵ is the stabilizing term.

Finally, the fully connected layer is the layer that performs a task such as classification or

regression using the local features learned earlier. The functioning of this layer is shown by

the following by equation (13).

Ofc = ObnW + b (13)

In this formula, Ofc specifies the output of the fully connected layer, Obn represents the input,

W is the weight matrix, and b designates the bias vector.

48



4.1.2. Binary Mask Generation

Binary masking in neural networks is a technique used for feature selection, regularization,

and adaptability [22, 26, 42, 43]. Binary masking is the process of selectively ”disabling”

specific nodes. This is achieved by performing an element-wise multiplication between the

input data and the mask. The mask is a matrix consisting of zeros and ones. When an input

feature is multiplied by ”1,” that feature becomes ”active” and is considered by the model.

When a feature is multiplied by ”0,” it becomes ”inactive” and is ignored by the model [44].

Binary masks can be learned in various ways. In this study, the mask is learned during model

training using GA. The mask is a part of the model and is trained along with the other parts

of the model. Such masks are commonly referred to as ”learned masks.” Learned masks

[45–47] allow the deep learning model to assign different weights to different parts of the

model, thereby potentially improving the model’s performance and generalization ability.

In our study, the binary mask is used to enable the model to learn from different datasets. A

mask optimized for a specific dataset allow us to use different weights in the model

4.1.3. GA For Model And Binary Mask Optimization

In this study, GA is used to optimize the parameters and binary mask of our deep learning

model. The mask regulates the transfer of information between different tasks. GA ensures

that the mask is adjusted appropriately, allowing the model to balance information transfer

across various tasks and enabling it to train on multiple tasks without encountering the

catastrophic forgetting problem.

GA operates on a population of model-mask pairs, providing a potential solution for our

optimization problems. The mask is optimized separately for each dataset and is applied

during the training of the model. The model is trained on each dataset, and the fitness of the

masks is evaluated based on the performance of the model on each dataset. The algorithm

49



continues until a specific stopping criterion is satisfied. The ability of masks to turn the

parameters of the network on and off according to the datasets is shown in the Figure 4.1.

Figure 4.1 Using the Model by Applying Binary Masks to Different Datasets

We create binary masks of the same dimensions as well as the parameters of the model.

Masks were initially created randomly for each dataset. To distinguish which mask belongs

to which dataset, each mask is assigned a unique index. This index serves as an identifier

linking each mask to its corresponding dataset.

4.2. Individual And Population Structure

Each individual in the population consists of a single CNN model and binary masks

separately created for each dataset. Only weight values of the model have been masked.
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The optimization process has been performed only on the weights of the convolution and

dense layers. Figure 4.2 shows the population and individual structure.

Figure 4.2 The Population and Individual Structure
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4.3. Genetic Optimization Process

The best individuals in the population are selected from those with the highest accuracy

values. The highest accuracy values are calculated by evaluating the model with the mask

corresponding to each dataset. The average of the obtained accuracy values is taken. The

performance of the individual is determined based on the average value. The elitism and

tournament selection strategies are implemented. In parent selection, individuals other than

the elite ones are selected according to tournament selection. A crossover strategy is applied

to the selected individuals. Mutation is applied to the individuals other than the elite ones

according to the mutation rate, and a new generation is formed. This process is shown in

Figure 4.3.

Figure 4.3 Genetic Optimization Process
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4.3.1. Crossover

During the crossover process, both the models and masks of the individuals are subjected to

processing. Different strategies are applied in the convolution and dense layers of the model

[48].

Crossover for Conv2D Layers and Masks: If the layer is of Conv2D type, a random choice

is made, and either the first or second chromosome’s layer is added to the child model.

Crossover for Dense Layers: For dense layers, weights from chromosomes are taken and

randomly merged. These new weights are assigned to the corresponding dense layer in the

child model. The crossover strategy for dense layers is a random point crossover method,

where each weight value (gene) is randomly selected column-wise and exchanged between

two parents.

Other Layers: Layers that are neither Conv2D nor Dense are directly added to the child

model. The process is explained in Figure 4.4.

4.3.2. Mutation

The body The mutation strategy applies mutations to randomly selected weights based on a

certain probability and to randomly selected points in all masks. In the model, new weights

are created by adding a randomly generated value with a normal distribution to the existing

weights. In the masks, the value at the selected point is converted from 1 to 0 or from 0 to 1.

The process is explained in Figure 4.5.

4.3.3. Binary Masking

When evaluating an individual, each dataset is element-wise multiplied with its own binary

mask. This process deactivates some of the model’s weights. Each dataset uses some weights

commonly, while some are unique to itself. The model is evaluated based on the average of
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Figure 4.4 Genetic Crossover Process

Figure 4.5 Genetic Mutation Process

the evaluation results, considering its average performance. The process is explained in

Figure 4.6.
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Figure 4.6 Binary Masking Process

The algorithm proposed in this work is given 4.7.

55



Figure 4.7 Optimization of Multiple Datasets in a CNN Model Using Binary Masks Through GA
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5. EXPERIMENTAL RESULTS

5.1. Application

Our CNN model was implemented in Python and consists of four convolutional layers

followed by two fully connected layers. The model’s weights were initialized with the default

starting values determined by Keras. Experimental computations have been performed on an

NVIDIA A100 GPU provided by the Google Colab. The model used in the study is shown

in table 5.1

Layers Output Shape Number of Parameters

Conv2D (None, 28, 28, 32) 128

MaxPooling2D (None, 14, 14, 32) 0

BatchNormalization (None, 14, 14, 32) 64

Conv2D (None, 14, 14, 32) 1024

MaxPooling2D (None, 7, 7, 32) 0

BatchNormalization (None, 7, 7, 32) 64

Conv2D (None, 7, 7, 32) 1024

MaxPooling2D (None, 3, 3, 32) 0

BatchNormalization (None, 3, 3, 32) 64

Conv2D (None, 3, 3, 16) 512

MaxPooling2D (None, 3, 3, 16) 32

Flatten (None, 144) 0

Dense (None, 32) 4.608

Dense (None, 10) 320

Total parameters 7.840

Table 5.1 Network Architecture Used for Three Datasets
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5.2. Dataset Description

In this study, we use three widely-used datasets to test our deep learning model’s ability to

learn multiple tasks and overcome the catastrophic forgetting problem using GA and binary

masks: MNIST, Fashion MNIST, and KMNIST. Each of these datasets has been chosen to

test different aspects of our model’s multi-task learning capability and its ability to address

the catastrophic forgetting problem.

5.2.1. MNIST

The MNIST is a collection of handwritten digits. The MNIST consists of 60,000 training

images and 10,000 test images. Each image is a 28x28 pixel grayscale image. Each image

represents a single digit ranging from 0 to 9. In this study, we use the MNIST to test our

model’s ability to accurately classify digits. An example from the MNIST is shown in Figure

5.1.

Figure 5.1 MNIST-Handwritten Digits

58



5.2.2. Fashion MNIST

Fashion MNIST is an alternative to the standard MNIST. The Fashion MNIST includes

60,000 training samples and 10,000 test samples. Each sample is a 28x28 grayscale image

representing an article of clothing. There are 10 classes in the dataset (such as sweater,

ankle boots, t-shirt, trousers, shirt, dress, bag, coat, sandals, sneakers). An example from the

FMNIST is shown in Figure 5.2.

Figure 5.2 FMNIST-Articles of Clothing

5.2.3. KMNIST

The KMNIST is a collection of characters derived from ancient Japanese texts. The KMNIST

consists of 60,000 training images and 10,000 test images. Each image is a 28x28 pixel

grayscale image. In this dataset, each image represents a character from the classical

Hiragana script of the Japanese language. In this study, we utilize the KMNIST to test our

model’s ability to accurately classify ancient Japanese script characters. An example from

the KMNIST is shown in Figure 5.3.
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Figure 5.3 KMNIST-Collection of Characters Derived from Ancient Japanese Texts

5.3. Evaluation Metrics

In the field of artificial intelligence, evaluation metrics are used to measure the performance

of algorithms. These metrics help us understand the success of the algorithm and its

suitability for the application area. Some of the most commonly used metrics and their

formulas are listed below.

5.3.1. Accuracy:

Measures the overall performance of a classification model on both positive and negative

classes. The accuracy is represented by equation (14).

Accuracy =
True Positive + True Negative

Total Predictions
(14)
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5.3.2. Precision:

Indicates how many of the items classified as positive are actually positive. The precision is

represented by equation (15).

Precision =
True Positive

True Positive + False Positive
(15)

5.3.3. Recall (Sensitivity):

Measures how much of the positive class is correctly identified. The recall is represented by

equation (16).

Recall =
True Positive

True Positive + False Negative
(16)

5.3.4. F1 Score:

The harmonic mean of precision and recall, providing a balanced measurement. The F1

Score is represented by equation (17).

F1 = 2× Precision × Recall
Precision + Recall

(17)

5.3.5. ROC Curve and AUC:

Receiver Operating Characteristic (ROC) Curve is evaluates the performance of a

classification model at various threshold levels. Area Under the Curve (AUC) is the area

under the ROC curve quantitatively represents the classification performance of the model.

Horizontal Axis (False Positive Rate - FPR) measures how many of the actual negative

61



instances are incorrectly classified as positive. Vertical Axis (True Positive Rate - TPR or

Sensitivity) measures how many of the actual positive instances are correctly identified.

FPR =
False Positive

False Positive + True Negative
(18)

TPR =
True Positive

True Positive + False Negative
(19)

5.3.6. Mean Absolute Error (MAE):

In regression models, measures the average absolute difference between the predictions and

the actual values. The MAE is represented by equation (20).

MAE =

∑
|yi − ŷi|
n

(20)

5.3.7. Root Mean Squared Error (RMSE):

The square root of the average of the squared differences between the actual and predictions

values. It is represented by equation (21).

RMSE =

√∑
(yi − ŷi)2

n
(21)

These metrics are used to evaluate different types of AI models, and each highlights a

different aspect of the model’s performance. Accuracy, precision, recall, and F1 score

are commonly used for classification problems, while MAE and RMSE are often used for

regression problems.

In our research, the primary evaluation metric employed is classification accuracy. Accuracy

was chosen due to its interpretability and because it is a standard metric for classification
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problems. Moreover, in the optimization process using GA, accuracy was utilized as the

fitness function. This approach enabled iterative improvements focused on accuracy to

maximize the model’s performance.

5.4. Experimental Results and Performance Evaluation

For optimization, the population size was set to 20. The models optimized with the genetic

algorithm were trained and tested on each dataset for 2000 iterations. The best model

achieved the performance shown in in table 5.2

Dataset Test Accuracy (%) Test Loss

MNIST 76,25 0.6927

Fashion MNIST 76,00 0.6912

KMNIST 74,43 0.7891

Table 5.2 Test Accuracy and Loss Values for Various Datasets Trained with the GA

Figure 5.4 and 5.5 shows the accuracy and loss values achieved by the best individual in the

population at each iteration for three different datasets (MNIST, FMNIST, and KMNIST), as

well as the changes in average accuracy and loss values for these dataset over the iterations.

As seen in figure 5.4 and 5.5, the performance of the MNIST is better compared to the

other two datasets. There can be several reasons for this; MNIST is containing handwritten

digits and involves relatively simpler and easier-to-separate examples. Therefore, it is an

expected result for the model to achieve higher accuracy on this dataset. FMNIST and

KMNIST are more complex datasets and hence have lower accuracy values. FMNIST

includes items of clothing and KMNIST contains Japanese handwritten characters; both

present more challenging recognition problems compared to MNIST.

As the iterations increase, accuracy values for all datasets have generally improved,

indicating the effectiveness of GA in optimizing the weights. The average accuracy value
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reflects the model’s overall performance across different datasets and shows a measure of

consistent improvement.

To address the catastrophic forgetting problem, binary masking methods used (sharing

weights) have helped in transferring knowledge across various datasets, enabling the

model to learn more general features and thus mitigating the catastrophic forgetting issue.

Optimizing weights through genetic algorithm and using a separate mask for each dataset

has helped in preserving dataset-specific weights. This method has been effective in reducing

the catastrophic forgetting problem as it prevents overwriting weights that are important for

each dataset.

Since all dataset are similar in size and structure, the model has been able to apply low-level

features (like edges and corners) learned from the first dataset to the others. This has helped

the model adapt quickly and achieve a better starting point. On the other hand, due to the

different visual contents represented by the datasets, it is more challenging for the model to

transfer high-level features between these datasets.

Starting the training with MNIST and then moving to FMNIST and KMNIST has enabled

the model to embark on a learning journey from simpler to more complex. This has helped

in enhancing the overall modeling capability, as the model first learns less complex features

and then generalizes these features to more complex dataset.

These results demonstrate a significant improvement in classification accuracy in addressing

the catastrophic forgetting problem when using GA-based mask optimization, thereby

validating our methodology and approach.
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Figure 5.4 The Accuracy Values for the Best Individual in the Population at Each Iteration for Three
Datasets

Figure 5.5 The Loss Values for the Best Individual in the Population at Each Iteration for Three
Datasets

For comparison, the model was trained limited to 100 iterations without mask optimization
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using traditional derivative-based methods (such as ADAM). The performance of the model

on different dataset is shown in table 5.3

Dataset Test Accuracy (%) Test Loss

MNIST 74,02 0.7707

Fashion MNIST 73,37 0.7051

KMNIST 10,00 2.3026

Table 5.3 Test Accuracy and Loss Values for Various Datasets Trained with the ADAM Optimizer

Figure 5.6 and 5.7 illustrates the learning process conducted on three different datasets

(MNIST, FMNIST, and KMNIST) using the widely preferred ADAM optimizer, which

offers adaptive learning rates. The accuracy (figure 5.6) and loss (figure 5.7) values, as

well as the changes in average accuracy and loss values for these datasets, are displayed

for comparison, limited to 100 iterations. Experimental computations are conducted on

Google Colab environment using NVIDIA A100 GPU. In GA optimization, an iteration

with a population size of 20 takes approximately 10 minutes on average. To ensure a proper

comparison with ADAM optimization, the population size of 20 is maintained. Under these

conditions, one iteration takes an average of 4 minutes in the ADAM optimization.

Thanks to the adaptive learning capabilities of the ADAM optimizer, it has been observed

that the model quickly achieved high accuracy rates in the training process for the MNIST

and FMNIST. In the early stages of the training process, a rapid increase in accuracy rates

was observed for MNIST and FMNIST, after which these values settled at a stable level.

However, for the KMNIST, it was observed that the model did not show any improvement

over the initial low accuracy rates. This indicates that the model was insufficient in learning

the complexity of this particular dataset. Additionally, the absence of mask optimization has

negatively affected the model’s generalization performance.
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Figure 5.6 The Accuracy Values for Three Datasets Trained with the ADAM Optimizer

Figure 5.7 The Loss Values for Three Datasets Trained with the ADAM Optimizer

Figure 5.8 and 5.9 shows the accuracy and loss values for the first 100 iterations of GA

optimization, for comparison purposes.

67



The optimization conducted with GA appears to be more successful compared to the ADAM

optimizer, especially in terms of the results on the KMNIST. KMNIST is consisting of

Japanese characters and is more complex than MNIST. When using the ADAM optimizer,

no improvement was observed on the KMNIST, whereas some improvement in accuracy was

noted when using GA. This suggests that GA, by optimizing the model’s weights and masks

simultaneously, can enhance the extraction of more complex features and generalization on

specific dataset.

GA reduces the risk of getting stuck in local minima by creating a broad search space

for masks and weights. This has allowed the model to better generalize on more

challenging dataset like KMNIST. The ADAM optimizer tends to get stuck in local minima,

especially when suitable steps are not taken during weight updates. On the other hand, the

diversification of different individuals through genetic operations in GA has helped the model

avoid local minima, thereby improving overall performance.

These results indicate that GA could be an approach capable of enhancing the performance

of models, especially on complex and more challenging dataset, even in situations

where traditional optimizers fail. However, GA also has disadvantages, such as higher

computational cost, and may not be ideal for every use case.

Additionally, the success level of GA can vary depending on the type of genetic operations

chosen, the crossover rate, mutation rate, and population size, and thus it should be carefully

adjusted.
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Figure 5.8 The Accuracy Values for Three Datasets Trained with the GA

Figure 5.9 The Loss Values for Three Datasets Trained with the GA
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6. CONCLUSION

This study presents a novel approach aimed at simultaneously learning multiple datasets

with a deep learning model. The proposed method has been tested on widely used datasets

and has achieved successful results. The approach’s ability to generalize and its capacity

for concurrent learning are promising. However, tuning of the method’s parameters and

more extensive experiments are required. This study offers a pathway to accelerate the

learning process and improve generalization ability by combining deep learning and genetic

algorithms. The results indicate significant strides in enabling deep learning models to learn

multiple tasks at the same time. However, there are limitations to the method, such as the

need for parameter tuning and computational intensity.

This study presents a new approach to the catastrophic forgetting problem. Future work

should examine the scaling potential on larger datasets and complex tasks. Additionally, the

applicability to different deep learning models should also be investigated.

70



REFERENCES

[1] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444,

2015.

[2] A. Krizhevsky, I. Sutskever, and G.E. Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in Neural Information Processing

Systems, volume 25. 2012.

[3] M. McCloskey and N.J. Cohen. Catastrophic interference in connectionist

networks: The sequential learning problem. In Psychology of Learning and

Motivation, volume 24, pages 109–165. Academic Press, 1989.

[4] R. Caruana. Multitask learning. Machine Learning, 28:41–75, 1997.

[5] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A.A. Rusu,

et al. Overcoming catastrophic forgetting in neural networks. Proceedings of the

National Academy of Sciences, 114(13):3521–3526, 2017.

[6] F. Zenke, B. Poole, and S. Ganguli. Continual learning through synaptic

intelligence. In International Conference on Machine Learning, pages

3987–3995. PMLR, 2017.

[7] Z. Li and D. Hoiem. Learning without forgetting. In European Conference on

Computer Vision. ECCV, 2016.

[8] J.S. Vitter. Random sampling with a reservoir. ACM Transactions on

Mathematical Software, 11(1):37–57, 1985.

[9] Rahaf Aljundi, Lucas Caccia, Eugene Belilovsky, Massimo Caccia, Min Lin,

Laurent Charlin, and Tinne Tuytelaars. Online continual learning with maximally

interfered retrieval. In NeurIPS. 2019.

71



[10] X. Jin, A. Sadhu, J. Du, and X. Ren. Gradient-based editing of memory examples

for online task-free continual learning. In Advances in Neural Information

Processing Systems, volume 34, pages 29193–29205. 2021.

[11] A. Chaudhry, A. Gordo, P. Dokania, P. Torr, and D. Lopez-Paz. Using hindsight

to anchor past knowledge in continual learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 35, pages 6993–7001. 2021.

[12] D. Lopez-Paz and M.A. Ranzato. Gradient episodic memory for continual

learning. Advances in Neural Information Processing Systems, 30, 2017.

[13] B. Cheung, A. Terekhov, Y. Chen, P. Agrawal, and B. Olshausen. Superposition

of many models into one. Advances in Neural Information Processing Systems,

32, 2019.

[14] M. Wortsman, V. Ramanujan, R. Liu, A. Kembhavi, M. Rastegari, J. Yosinski,

and A. Farhadi. Supermasks in superposition. Advances in Neural Information

Processing Systems, 33:15173–15184, 2020.

[15] D. Abati, J. Tomczak, T. Blankevoort, S. Calderara, R. Cucchiara, and B.E.

Bejnordi. Conditional channel gated networks for task-aware continual learning.

In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 3931–3940. 2020.

[16] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing lottery tickets: Zeros,

signs, and the supermask. In NeurIPS. 2019.

[17] A.A. Rusu, N.C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick,

K. Kavukcuoglu, and R. Hadsell. Progressive neural networks. arXiv preprint

arXiv:1606.04671, 2016.

[18] A.V. Terekhov, G. Montone, and J.K. O’Regan. Knowledge transfer in deep

block-modular neural networks. In Conference on Biomimetic and Biohybrid

Systems, pages 268–279. Springer, Cham, 2015.

72



[19] A. Mallya and S. Lazebnik. Packnet: Adding multiple tasks to a single network

by iterative pruning. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 7765–7773. 2018.

[20] S. Han, J. Pool, J. Tran, and W. Dally. Learning both weights and connections for

efficient neural network. In NIPS. 2015.

[21] S. Han, J. Pool, S. Narang, H. Mao, E. Gong, S. Tang, E. Elsen, P. Vajda,

M. Paluri, J. Tran, et al. Dsd: Densesparse-dense training for deep neural

networks. In ICLR. 2017.

[22] A. Mallya, D. Davis, and S. Lazebnik. Piggyback: Adapting a single network

to multiple tasks by learning to mask weights. In European Conference on

Computer Vision. ECCV, 2018.

[23] J. Serra, D. Suris, M. Miron, and A. Karatzoglou. Overcoming catastrophic

forgetting with hard attention to the task. In International Conference on Machine

Learning, pages 4548–4557. PMLR, 2018.

[24] S. Golkar, M. Kagan, and K. Cho. Continual learning via neural pruning. ArXiv,

abs/1903.04476, 2019.

[25] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly

learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.
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