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ABSTRACT

USING TASK-BASED VISUAL ATTENTION FOR CONTINUALLY
IMPROVING THE PERFORMANCE OF AUTONOMOUS GAME

AGENTS

EREN ULU

Doctor of Philosophy, Computer Engineering
Supervisor: Prof. Dr. Tunca Doğan

2nd Supervisor: Assoc. Prof. Dr. Ufuk Çelikcan
December 2023, 116 pages

Recent developments in the field of machine learning have led to the widespread acceptance

of Deep Reinforcement Learning (DRL) techniques, which are a subset of machine learning,

in the realm of digital intelligence. DRL allows agents to make sequential decisions and

adapt their behavior through interactions with their environment, making it particularly

suited for tasks that involve decision-making and learning from experience. This increasing

utilization of DRL has opened new avenues for enhancing the capabilities of digital agents,

enabling them to tackle complex challenges such as autonomous game playing, robotic

control, and optimizing resource allocation. These advancements in DRL hold great promise

for revolutionizing the ways in which intelligent agents operate in various domains more

efficiently.”

DRL has been effectively performed in various complex video game environments. In many

game environments, DeepMind’s baseline Deep Q-Network (DQN) game agents performed

at a level comparable to that of humans. However, these DRL models require many
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experience samples to learn and lack the adaptability to changes in the environment and

handling complexity.

This thesis focusses on the specific domain of video game playing agents that have garnered

significant attention due to adaptive decision-making. The study delves into the application

of DRL techniques to develop and enhance game playing agents. In the first part of the

thesis, we proposed Attention-Augmented DQN(AADQN) game agent by incorporating a

combined top-down and bottom-up visual attention mechanism into the DQN game agent

to highlight task-relevant features of input. Our AADQN model uses attention mechanis

that dynamically teaches a DQN game agent how to play a game by focusing on the most

task-related information. In the evaluation of our agent’s performance across eight games

in the Atari 2600 domain, which vary in complexity, we demonstrate that our algorithm

surpasses the baseline DQN agent. Notably, our model can achieve greater flexibility and

higher scores at a reduced number of time steps.

In the second section of this thesis, we address the limitations associated with employing

Auxiliary Functions (AF) in DQN game agents. We investigate uxiliary strategies in some

games in the Atari 2600 domain environments by integration of auxiliary functions and

exploring methods to enabling more efficient and robust learning, ultimately contributing

to the advancement of DQN game agent in complex and dynamic gaming environments

We demonstrate that our methods are effective in addressing the inherent inefficiency and

inflexibility issues that plague the DQN, thereby marking a significant advancement in the

realm of DQN game agents. By investigating the integration auxiliary functions and attention

mechanism with DQN algorithms, this thesis show what can be achieved in performance

improvement in autonomous game playing in Atari game envrionments. The findings

and insights from this thesis are expected to contribute not only to the field of artificial

intelligence but also to the broader community of gamers and developers, offering new

perspectives on the creation of sophisticated and responsive game agents.
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ÖZET

OTONOM OYUN AJANLARININ PERFORMANSINI SÜREKLİ
İYİLEŞTİRMEK İÇİN GÖREV TABANLI GÖRSEL DİKKAT

KULLANIMI

EREN ULU

Doktora, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Tunca Doğan

Eş Danışman: Doç. Dr. Ufuk Çelikcan
Aralık 2023, 116 sayfa

Son zamanlardaki makine öğrenmesi ilerlemeleri, dijital zeka alanında makine öğrenmesinin

bir alt kümesi olan Derin Takviyeli Öğrenme (DTO) tekniklerinin benimsenmesini

beraberinde getirmiştir. DTO, ajanların çevreleriyle etkileşim yoluyla ardışık kararlar

almasını ve davranışlarını uyarlamasını sağlayarak deneyimden öğrenme ve karar verme

gerektiren görevler için özellikle uygundur. DTO’nun bu artan kullanımı, dijital ajanların

yeteneklerini geliştirmek için yeni olanaklar açmış ve otonom oyun oynama, robot kontrolü

ve kaynak tahsisi optimizasyonu gibi karmaşık zorluklarla başa çıkmalarını sağlamıştır.

DTO’daki bu ilerlemeler, akıllı ajanların çeşitli alanlarda daha verimli bir şekilde nasıl

çalıştığına dair yeni bir umut taşımaktadır.

Bu tez, adaptif karar verme nedeniyle önemli ilgi toplayan video oyunu oynama ajanlarının

belirli bir alanına odaklanmaktadır. Çalışma, DTO tekniklerinin oyun oynama ajanlarının

geliştirilmesi ve iyileştirilmesi için uygulanmasını ele almaktadır.
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DTO, çeşitli karmaşık video oyunu ortamlarında etkili bir şekilde gerçekleştirilmiştir.

Birçok oyun ortamında, DeepMind’in temel olarak kullandığı Derin Q-Ağı (DQN) oyun

ajanları, insan seviyesinde bir performans sergilemiştir. Bununla birlikte, bu DTO modelleri

öğrenmek için birçok deneyim örneğine ihtiyaç duymakta ve çevredeki değişikliklere uyum

sağlamada ve karmaşıklığı yönetmede esneklikten yoksundur.

Tezin birinci bölümünde, DQN oyun ajanına hem yukarıdan aşağıya hem de aşağıdan

yukarıya bir görsel dikkat mekanizmasının birleşik olarak entegre edildiği Dikkat-Artırılmış

DQN (DADQN) oyun ajanı önerilmektedir. DADQN modelimiz, girdinin görevle ilgili

özelliklerini vurgulamak için dikkat mekanizmasını kullanmaktadır. Bu sayede DQN oyun

ajanına bir oyunda nasıl oynanacağını dinamik olarak öğretir. Atari 2600 oyun ortamındaki

sekiz oyunun performans değerlendirmesinde, karmaşıklık seviyesi farklı olan oyunlarda,

algoritmamızın temel DQN ajanını geride bıraktığını gösteriyoruz. Özellikle, modelimiz

daha az zaman adımında daha büyük esneklik ve daha yüksek puanlar elde edebilmektedir.

Bu tezin ikinci bölümünde, DQN oyun ajanında Yardımcı Fonksiyonların (YF) kullanımıyla

ilişkili sınırlamalar ele alınmaktadır. Atari 2600 oyun ortamındaki bazı oyunlarda yardımcı

fonksiyonların entegrasyonu ve daha verimli ve sağlam öğrenmeyi mümkün kılan stratejiler

araştırılmaktadır. Bu çalışmalar, karmaşık ve dinamik oyun ortamlarında DQN oyun ajanının

gelişimine katkıda bulunmayı amaçlamaktadır.

Bu yöntemlerimizin, DQN’yi etkileyen içsel verimsizlik ve esneklik sorunlarını ele almada

etkili olduğunu gösteriyoruz, bu da DQN oyun ajanı alanında önemli bir ilerlemeyi

işaret ediyor. Yardımcı fonksiyonların ve dikkat mekanizmasının DQN algoritmalarıyla

entegrasyonu üzerine yapılan araştırmalar, Atari oyun ortamlarında otonom oyun oynama

performansının nasıl iyileştirilebileceğini göstermektedir. Bu tezin bulguları ve içgörüleri,

sadece yapay zeka alanına değil, aynı zamanda geniş bir oyunsever ve geliştirici topluluğuna

da katkı sağlaması beklenmektedir. Sofistike ve tepki veren oyun ajanlarının yaratılmasında

yeni perspektifler sunmaktadır.
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Dikkat

vi



ACKNOWLEDGEMENTS

I am deeply grateful to my advisor, Assoc.Prof.Dr. Ufuk Çelikcan, for his guidance and
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1. INTRODUCTION

Reinforcement Learning (RL) has proven highly successful in addressing numerous tasks,

including Atari games within the Arcade Learning Environment (ALE) [4], where the

sequence of environmental observations serves as the basis for determining decisions [5].

RL algorithms process environmental data to learn a policy that chooses the best action to

maximize cumulative reward [6]. During RL, the agent interacts with its environment to

arrive at different states by performing actions that cause the agent to obtain positive or

negative rewards. Nevertheless, the limited adaptability of RL approaches poses challenges

when dealing with complex tasks. Consequently, developing methods that enable the

application of RL to complex environments is a significant research problem [6]. The goal is

to enhance the capabilities of RL algorithms to effectively handle intricate tasks, allowing for

more robust and efficient learning in complex scenarios. The combination of Deep Neural

Networks (DNNs) and Q-Learning [7] led to the Deep Q-Network (DQN) algorithm [5, 8],

which has been used in various works to develop models for complex tasks. These agents

demonstrate remarkable success, surpassing human-level performance and outperforming

baseline benchmarks [9].

However, the DQN algorithm can suffer inefficiency and inflexibility, which can limit its

performance [9, 10]. It is vulnerable in complex environments regarding data efficiency, as

there is an infinite number of possible experiences in such environments, and there is a need

to process many states, requiring high computational power [11]. The DQN algorithm has

received criticism for its need for more flexibility, specifically when adapting to changes in

the environment or incorporating new tasks. In such cases, the algorithm typically requires a

complete restart of the learning process, which can be time-consuming and inefficient [10]. It

also has certain limitations in terms of generalization compared to regular Neural Networks

(NNs) [12].

Researchers have developed a range of extensions to the original DQN algorithm to address

these issues, such as Double Deep Q-Network (DDQN) [13]. Moreover, various studies
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have suggested employing of Visual Attention Mechanism (VAM) [14–17], which allows

the network to focus on specific regions of an input image rather than processing the entire

image at once [14].

The attention mechanism can be implemented in various ways, like the utilization of

Convolutional Neural Networks (CNNs) for image feature extraction, Recurrent Neural

Networks (RNNs), and Visual Question Answering (VQA) models that process the textual

question input [18–20]. The VQA attention mechanism serves the purpose of selectively

directing attention toward image regions that are crucial for answering a question. The

attention mechanism effectively prioritizes the attended regions by assigning importance

scores or weights to different image regions based on their relevance to the question.

As a result, these regions are granted a higher degree of significance in the overall

analysis [18–23].

In the first part of this thesis, we address the aforementioned limitations of the baseline

DQN agent and propose an Attention-Augmented Deep Q-Network (AADQN) by extending

DQN with a dual attention mechanism to highlight task-relevant features of the input. The

dual attention mechanism unifies bottom-up and top-down visual attention mechanisms

within the AADQN model, as illustrated in Figure 1.1. This way, AADQN allows

the agent to efficiently concentrate on the most relevant parts of the input image. The

Top-Down Attention (TDA) incorporates particle filters, enabling dynamic identification

of task-related features. The integration of particle filters provides a regularization effect,

effectively mitigating overfitting and enhancing generalization. The Bottom-Up Attention

(BUA) comprises two components: a Preliminary Bottom-up Attention (PBA) module and a

Bottom-up Attention Refinement (BAR) module. The PBA extracts the feature importances,

which TDA subsequently utilizes to initialize the particle filters. BAR then refines attention

by considering the saliency value of the features.

AADQN differs from the previous work using visual attention with DQN [14–17] by

refining top-down focus through bottom-up attention. The collaboration of both attention

mechanisms enables more accurate decision-making and improves the model’s robustness
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Figure 1.1 Our proposed Attention-Augmented Deep Q-Network extends DQN with a particle
filter-enhanced dual attention mechanism as follows: The top-down attention (TDA)
mechanism employs particle filters to compute the attention vector. The bottom-up
attention mechanism comprises two components: the preliminary bottom-up attention
(PBA) and the bottom-up attention refinement (BAR). PBA determines the feature
importance for initializing the particle states. BAR enhances focus by considering the
saliency map of the input. Layer-wise Relevance Propagation (LRP) determines the
feature decomposed pixels of the input and freezes the unimportant neurons on CNN.

to variations, reducing its sensitivity to noise. It is also fundamentally different from the

VQA-based RL approaches, which aim to align visual and textual information to make

decisions and are typically applied to tasks where understanding and reasoning about

visual and textual data are essential, such as answering questions about the content of an

image [18–23]. Our dual attention mechanism, enhanced by a particle filter, can be applied

to various tasks without relying on textual information, enabling AADQN to adaptively focus

on different regions of the input.
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1.1. Scope Of The Thesis

We will explore the theoretical underpinnings, implementation strategies, and empirical

results of incorporating Auxiliary Functions (AFs) and attention mechanisms into the DQN

framework. These mechanisms accelerate the convergence of DQN but also significantly

improve its ability to navigate complex environments. Through analytical investigation and

extensive experimentation, this thesis aims to provide a comprehensive assessment of the

potential benefits and trade-offs associated with these enhancements.

1.2. Contributions

In this research, we cover the inefficiency and inflexibility deficiencies of DQN by proposing

a novel, simple, and efficient DRL approach. With the incorporation of auxiliary functions

and attention mechanisms with baseline DQN, this work effectively addressed these inherent

limitations of DQN. Through extensive experimentation proposed methods have proven to

be an effective approach in tackling the efficiency and flexibility challenges of DQN in the

domain of game-playing agents.

Overall, the main contributions of this thesis can be summarized as follows:

• The AADQN introduces a novel particle filter-based attention approach to DQN,

integrating bottom-up and top-down attention mechanisms. This unified approach

handles the complexity of the environment by extracting essential task-related features,

thereby enhancing efficiency and improving overall performance.

• AADQN enhances the flexibility performance of DQN by freezing the unimportant or

irrelevant units of CNN’s inner layers during the decision-making process. These units,

identified by low relevance scores assigned by AADQN, undergo transfer learning to

optimize the model’s robustness and flexibility.

• Offering an auxiliary function mechanism for enhancing the learning efficiency

of DQN. By guiding the agent’s exploration by providing supplementary reward
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feedback, facilitating faster learning, improving exploration, reducing overestimation,

and making DQN more robust and adaptable, ultimately resulting in improved

performance.

1.3. Organization

This thesis is organized as follows: Chapter 1 presents the research introduction and

contributions. Then, the background of reinforcement learning and an overview of the related

work are presented in chapters 2 and 3, respectively. The proposed algorithm and algorithmic

efficiency analysis are presented in Chapter 4. These are followed by the experiment results

and ablation study reported in Chapter 5. Finally, Chapter 6 and 7 discussed the results and

concludes the thesis respectively.

The organization of the thesis is as follows:

• Chapter 1 presents our motivation, contributions, and the scope of the thesis.

• Chapter 2 provides the background of RL, Q-Learning, and Deep Q-Learning

• Chapter 3 gives a literature studies

• Chapter 4 introduces the proposed methods and important components

• Chapter 5 demonstrates experimental results and ablation study

• Chapter 6 provides discussion, insights, and interprets the results

• Chapter 7 states the summary of the thesis, conclusion, limitations, and possible future

directions.
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2. BACKGROUND OVERVIEW

In recent years, machine learning has witnessed remarkable advancements, with notable

progress in both Supervised Learning (SL) and RL techniques. SL algorithms aim to

learn connections between input data and the corresponding labels by leveraging annotated

datasets. This approach has found success in various domains, such as image classification,

Natural Language Processing (NLP), and Automatic Speech Recognition (ASR). On the

other hand, RL focuses on training agents to make consecutive decisions by engaging

with an environment and obtaining feedback in the form of rewards. RL algorithms

learn through trial and error, exploring different actions and optimizing their strategies

to maximize cumulative rewards. The fundamental concept underlying RL is Q-learning,

a popular algorithm that estimates the optimal action-value function, commonly referred

to as the Q-function. Q-learning has proven effective in solving various RL problems.

However, the applicability of Q-learning to complex, high-dimensional environments has

been limited. To address this challenge, the emergence of Deep Reinforcement Learning

(DRL) has revolutionized the field by combining RL with Deep Neural Networks (DNN).

One prominent example of DRL is the Deep Q-Network (DQN), which utilizes a Deep

Neural Network (DNN) as a function approximator to calculate the Q-value. DQN has

demonstrated remarkable capabilities in learning directly from raw sensory inputs, such as

images, and has achieved significant breakthroughs in challenging tasks, including playing

Atari 2600 games at a human-level performance. In this section, we offer a summary of these

fundamental concepts, including supervised learning, reinforcement learning, Q-learning,

deep reinforcement learning, and the seminal Deep Q-Network algorithm.

2.1. Machine Learning (ML)

Within the realm of machine learning, supervised and unsupervised learning stand as two

fundamental approaches. Supervised learning is a learning paradigm in which an algorithm

learns from labeled examples. In this methodology, a dataset is presented, consisting of

input data matched with corresponding output labels. The goal is to train a model that can
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accurately map new, unseen inputs to the correct output label. The model learns to generalize

patterns from the labeled data, allowing it to generate predictions for unseen instances.

Frequently employed algorithms in supervised learning encompass decision trees, support

vector machines, and neural networks. On the other hand, unsupervised learning involves

learning patterns from unlabeled data. In contrast to supervised learning, unsupervised

learning lacks access to explicit output labels. Instead, the algorithm attempts to discover

clusters within the data. Common unsupervised learning techniques involve clustering

algorithms such as k-means. In recent years, there has been growing interest in combining

supervised and unsupervised learning techniques, such as Semi-Supervised Learning (SSL)

and Generative Adversarial Networks (GANs). These hybrid approaches aim to leverage

the strengths of both paradigms to overcome data labeling challenges and enhance learning

performance.

Machine Learning

ReinforcementUnsupervisedSupervised

Classification Clustering React to an Environment

Figure 2.1 Machine Learning

Another prominent subfield of machine learning is RL which focuses on the concept of

an agent learning how to engage with an environment to accomplish a particular goal.

Unlike supervised and unsupervised learning, RL does not rely on labeled data or predefined

patterns. Instead, the RL agent learns by engaging in trial and error, receiving feedback

in the form of rewards or penalties contingent on its actions. The RL paradigm draws

inspiration from how humans and animals learn by interacting with their surroundings. The

agent explores the environment, takes action, and observes the resulting state changes and

rewards. Through this iterative process, The agent endeavors to learn an optimal policy that

maximizes the cumulative rewards over the long term. The Q-learning algorithm stands out
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as one of the most widely utilized reinforcement learning algorithms, which estimates the

value of state-action pairs and uses an iterative process to optimize the policy.

2.1.1. Reinforcement Learning Applications

Reinforcement Learning (RL) has found diverse applications across a wide range of fields,

showcasing its versatility and potential for solving complex decision-making problems. Here

are some examples of different application areas where RL has been successfully employed:

education

healthcare

Reinforcement
Learning

transportation

energy

business

finance

roboticsgame playing

Figure 2.2 Reinforcement Learning Applications

RL has made significant breakthroughs in game playing, surpassing human performance in

various domains. It has been applied to classic board games like chess and Go, as well as

digital games, enabling agents to learn complex strategies and tactics. RL agents can explore

different moves, and optimize their gameplay through trial and error learning. Through

RL, game playing agents engage in a process of continuous learning and decision-making,

driven by the pursuit of maximizing long-term rewards. These agents explore the game

environment, engaging in actions and obtaining feedback in the form of rewards or penalties,

which guide their learning process. RL algorithm, enable agents to assess the value of

various game states or combinations of states and actions, progressively improving their

decision-making abilities. In the realm of digital games, RL has enabled game playing

agents to conquer complex virtual worlds. From classic arcade games to modern first-person

shooters, RL agents have proven their ability to learn and master diverse game mechanics,

adapt to dynamic environments, and achieve high scores that rival or surpass human players.
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By employing techniques similar to deep neural networks, RL agents can directly learn from

raw pixel inputs. This thesis explores the utilization of Reinforcement Learning (RL) in the

realm of game playing, aiming to investigate the effectiveness and potential of RL algorithms

in mastering complex games. By leveraging RL techniques, we seek to develop intelligent

game playing agents capable of autonomous learning and optimal decision-making. The

objective is to analyze the performance of RL algorithms in different game environments,

assess their ability to adapt to dynamic games. This research contributes to the advancement

of RL in game playing and practical implications of employing RL algorithms to enhance

game playing capabilities. Through empirical evaluations we aim to provide valuable

insights into the application of RL in game playing, laying the groundwork for future

advancements in this exciting field. The impact of RL in game playing extends beyond mere

entertainment. It serves as a testbed for developing and refining RL algorithms, pushing the

boundaries of AI research. The insights gained from RL in game playing have far-reaching

implications, finding applications in other domains such as robotics, and decision-making

systems.

2.2. Reinforcement Learning

In the ever-changing landscape of artificial intelligence and machine learning, reinforcement

learning stands out as a cornerstone of autonomous decision-making and problem-solving.

Based on the wider domain of machine learning, reinforcement learning is a framework that

enables intelligent agents to learn and adapt to complex environments by interactions with

their surroundings. It forms the basis for developing agents capable of making sequential

decisions and enhancing their behavior gradually.

2.2.1. Objective: Maximize the Cumulative Reward

RL draws inspiration from the idea of learning through trial and error, akin to the learning

processes observed in humans and animals acquire new skills and adjust to different

situations. RL uses Markov Decision Processes (MDP) as a foundational model for these
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Figure 2.3 RL scenario

problems. It offers a structured and mathematical framework for creating intelligent agents

that can make informed decisions, learn from their experiences, and maximize their overall

rewards.

Punishment

Cumulative
Reward

Immediate Auxiliary

Sparse

Figure 2.4 Maximize the cumulative reward

RL plays a role in various applications, including autonomous robotics, game-playing,

supply chain optimization, and financial portfolio management. It is also found in practical

applications in real-world situations, such as the ability to make sequential decisions in

dynamic and uncertain environments.
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2.2.2. Variety of Reinforcement Learning Methods

Reinforcement Learning (RL) encompasses a diverse set of algorithms that aim to enable

intelligent decision-making in dynamic environments. Two prominent categories within RL

are model-free and model-based algorithms, each with its own unique approach to learning

and decision-making.

Reinforcement Learning

Model-Free

Policy-Based

Model-Based

Value-Based

Monte Carlo Tree
Search 

Proximal Policy
Optimization

Q-Learning

Figure 2.5 Reinforcement Algorithms

Model-Free RL (MFRL) algorithms learn directly from interacting with the environment,

without explicitly constructing a model or representation of the environmental dynamics.

These algorithms focus on optimizing the decision-making process by iteratively updating

policies or value functions based on observed rewards and states. Model-free methods excel

in scenarios where the environment is complex, uncertain, or difficult to model accurately.

They rely on trial and error learning, exploring the environment to discover the best actions

to take in different states. Model-free algorithms, such as Q-learning, SARSA, and Deep

Q-Networks (DQN), serve as examples in this category.

In contrast, Model-Based RL (MBRL) algorithms explicitly construct a model or

representation of the dynamics within the environment. This model captures the probabilities

of transitioning between states and the anticipated rewards that linked to various actions.
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By learning and utilizing this model, the agent has the capability to simulate or predict

the outcomes of its actions and make decisions accordingly. Model-based methods aim

to achieve more efficient decision-making by planning and optimizing actions using the

learned model. These algorithms can be advantageous in situations where an accurate model

can be learned and where planning can be performed effectively. Model-based algorithms,

exemplified by Monte Carlo Tree Search (MCTS), fall into this category.

Both model-free and model-based RL algorithms have their strengths and weaknesses.

Model-free methods offer simplicity and flexibility, as they do not require an explicit model

and can handle complex environments. However, they may require more exploration and data

collection to discover optimal policies. Model-based methods, on the other hand, enable

more efficient planning and decision-making by utilizing a learned model but rely on the

accuracy of the model and may be computationally demanding.

The selection between model-free and model-based RL approaches is contingent upon the

distinct characteristics of the problem domain, the availability of data or prior knowledge,

and the trade-offs between exploration and exploitation. Researchers and practitioners often

select the most suitable approach based on the nature of the environment and the desired

balance between learning efficiency and decision-making performance.

2.2.3. Model-free: Policy-based and Value-based

In the field of model-free RL, two fundamental categories of algorithms are value-based

and policy-based methods, each with its own distinctive approach to learning and

decision-making.

Value-Based RL (VBRL) algorithms concentrate on estimating the value of various states

or combinations of states and actions. The algorithms aim to learn a value function, such

as the Q-function. This function represents the expected cumulative rewards that an agent

can obtain by following a particular policy. Value-based methods aim to determine the

most favorable values for states or state-action pairs by continuously adjusting the value
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function using observed rewards and states. Through iterative updates, these methods seek to

optimize the estimation of values that represent the expected cumulative rewards associated

with different states or state-action pairs. After the value function has been learned, it can be

employed to derive an optimal policy. This is achieved by selecting actions that maximize

the estimated value associated with each state or state-action pair. By utilizing the learned

value function, the agent can make decisions that are expected to yield the highest cumulative

rewards in a given environment. Prominent examples of value-based algorithms encompass

Q-learning, SARSA, and Deep Q-Networks (DQN). These algorithms are widely recognized

and have contributed significantly to the field of reinforcement learning.

Indeed, Policy-Based Reinforcement Learning (PBRL) algorithms take a different approach

by directly learning a parameterized policy, which serves as a mapping from states to actions.

Rather than estimating the values of states or state-action pairs, PBRL algorithms focus on

optimizing the policy itself. Rather than focusing on determining the values of states or

state-action pairs, these methods aim to find the best policy that maximizes the expected

cumulative rewards. Policy-based methods employ iterative updates to the policy using

observed rewards and states, with the goal of finding the policy that maximizes the expected

cumulative rewards. These algorithms are capable of handling both discrete and continuous

action spaces and have the ability to learn stochastic policies, which assign probabilities to

different actions.

One notable example of a policy-based algorithm is REINFORCE (REward Increment =

Nonnegative Factor × Offset Reinforcement × Characteristic Eligibility). REINFORCE

utilizes the policy gradient method to optimize the policy parameters. By estimating

the gradient of the expected cumulative rewards with respect to the policy parameters,

REINFORCE updates the policy in the direction that maximizes the rewards. This algorithm

is particularly suitable for problems with high-dimensional action spaces and has been

applied successfully in various domains.

Another example is Proximal Policy Optimization (PPO), which is a state-of-the-art policy

optimization algorithm. PPO aims to strike a balance between sample efficiency and stability
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in policy updates. It utilizes a trust region approach to ensure that policy updates do not

deviate too far from the previous policy, preventing abrupt and unstable changes. PPO has

shown strong performance in a wide range of tasks and has become a popular choice for

policy optimization in recent years.

These policy-based algorithms, along with various other approaches like Trust Region Policy

Optimization (TRPO), Actor-Critic methods, and evolutionary algorithms, contribute to the

rich landscape of policy-based reinforcement learning. They offer effective strategies for

directly optimizing policies, enabling agents to learn complex decision-making strategies

and achieve high performance in diverse environments.

Value-based and policy-based methods have distinct characteristics and trade-offs.

Value-based methods often excel in environments with large state or action spaces as they

focus on estimating the value of states or state-action pairs. They are effective in scenarios

where finding an optimal policy is the primary objective. Policy-based methods, conversely,

are suitable for continuous action spaces and can directly learn stochastic policies. They can

handle both exploration and exploitation more naturally and can be effective in scenarios

where finding the optimal policy is challenging.

In practical application, the decision between value-based and policy-based approaches is

influenced by the specific characteristics of the problem domain, the nature of the state and

action spaces, and the desired balance between exploration and exploitation. Researchers

and practitioners often select the most appropriate approach based on the characteristics of

the task and the objectives of the RL problem at hand.

2.3. Q-Learning

Q-learning is a fundamental reinforcement learning algorithm employed to train an agent

in making decisions within an environment with the aim of maximizing its cumulative

long-term rewards. In Q-learning, the agent learns through interactions with the environment

(Figure 2.6). The environment is commonly modeled as a Markov Decision Process (MDP),

comprising a set of states, actions, transition probabilities, and associated rewards. The
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objective of the agent is to acquire an optimal policy, characterized as a mapping from states

to actions that maximizes the expected cumulative reward over time.

Environment

Q-Learning Table

RewardState Action

Figure 2.6 Q-Learning

Central to Q-learning is the Q-value, a measure that signifies the anticipated cumulative

reward for executing a specific action in a given state. The Q-value undergoes iterative

updates influenced by the agent’s experiences in the environment. The agent explores the

environment by taking actions, observes the resultant state and reward, and adjusts the

Q-values accordingly. The agent aims to execute a sequence of actions that ultimately

yields the maximum total reward, often referred to as the Bellman equation, which we will

formalize as part of the learning process: [24]:

Q(s, a) = R(s, a) + γmaxQ(s′, a′) (1)

According to the Bellman equation, Q-learning learns a function that receives the value for

each action by receiving state and action and updates the Q-values. It iteratively updates the

Q-values for state-action pairs based on the immediate reward received and the maximum

Q-value achievable in the next state. As the agent progressively explores and interacts more
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with the environment, the Q-values converge to their optimal values, signifying the best

actions to take in each state.

In the above; the Q-value for a state s when taking action a is calculated as the sum of the

immediate reward R(s, a) and the highest Q-value achievable from the subsequent state s′.

The variable γ, referred to as the discount factor, governs the extent to which future rewards

contribute to this calculation. Q(s′, a) again depends on Q(s”, a) which will then have a

coefficient of gamma squared. Thus, the Q-value is contingent on the Q-values of future

states, as illustrated here:

Q(s, a)← γQ(s′, a) + γ2Q(s”, a)...γnQ(sn, a) (2)

Modifying the value of gamma will decrease or increase the impact of future rewards.

The agent executes sequences of actions that will yield the maximum total reward. With

experience, it will converge to the optimal policy. The Q-value is formalized as follows [24]:

Q(s, a)← Q(s, a) + α
[
R(s, a) + γmaxQ(s′, a′)−Q(s, a)

]
(3)

where α is the learning rate, and
[
R(s, a) + γmaxQ(s′, a′)−Q(s, a)

]
is called the Temporal

Difference (TD) error.

2.3.1. Markov Decision Processes (MDP)

Markov Decision Processes (MDPs) serve as mathematical frameworks utilized to model

sequential decision-making problems within a stochastic environment.

An MDP is defined by a tuple (S, A, P, R, γ), where:

• S represents the range of potential environmental states.
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• A denotes the set of available actions that the agent can take.

• P defines the state transition probabilities. It determines the likelihood of transitioning

between states upon taking a specific action.

• R captures the reward assigned to the agent immediately when moving from one state

to another.

• γ The discount factor (gamma) influences the relative significance of future rewards in

comparison to immediate rewards.

MDPs (Markov Decision Processes) are built on the assumption of the Markov property.

This property asserts that the future state and reward solely rely on the present state and

action, irrespective of the past sequence of states and actions. This property simplifies the

modeling process and allows for efficient algorithms to be developed. The primary goal is to

discover an optimal policy that maximizes the expected cumulative rewards over time. The

objective is to identify the policy that guides the agent’s actions in a way that leads to the

highest possible total reward as it interacts with the environment over multiple time steps. By

finding the optimal policy, the agent can make informed decisions to maximize its long-term

rewards and achieve its objectives in the given MDP.

Q-learning is indeed a value-based reinforcement learning (RL) algorithm that is commonly

employed to learn an optimal policy within Markov Decision Processes (MDPs). Q-learning

seeks to approximate the value of state-action pairs through the use of the Q-function. This

function estimates the anticipated cumulative rewards that an agent can achieve by selecting

a particular action within a given state. During the exploration of the environment, the

algorithm faces a trade-off between exploration and exploitation. It selects actions based

on this trade-off, gradually updating the Q-values towards their optimal values. Through

an iterative process, Q-learning converges to these optimal Q-values, enabling the agent to

choose actions that maximize the expected cumulative rewards.

The relationship between MDPs and Q-learning is that Q-learning is a specific algorithm

designed to solve MDPs. MDPs provide the formal framework for modeling sequential
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decision-making problems, while Q-learning is an algorithmic approach to learn an optimal

policy within the MDP framework. By leveraging the Q-function, Q-learning provides a

means to approximate the potential value associated with taking specific actions in particular

states, enabling the agent to make informed decisions based on these value estimates.

In summary, Markov Decision Processes (MDPs) serve as a mathematical framework for

modeling sequential decision-making problems. Within this framework, Q-learning is

a specific value-based reinforcement learning algorithm used to learn an optimal policy.

Q-learning achieves this by estimating the Q-values, which represent the expected cumulative

rewards for state-action pairs. The algorithm iteratively updates the Q-values based on

observed rewards and state transitions, enabling the agent to gradually converge towards

an optimal policy for solving MDPs.
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2.4. Deep Q-Learning

Reinforcement learning has showcased notable success across diverse domains,

encompassing robotics, game playing, and autonomous vehicles. It has been used to train

agents that can defeat world champions in board games like chess and Go, master complex

video games, and even control real-world robotic systems.

Despite its successes, RL faces challenges such as sample inefficiency,

exploration-exploitation trade-offs, and generalization to new tasks. Researchers continue

to explore advancements in RL algorithms, including deep reinforcement learning and

combining RL with deep neural networks to overcome these challenges and push the

boundaries of what RL can achieve.

Deep Q-Learning merges traditional Q-Learning with deep neural networks in reinforcement

learning. Its objective is to empower agents to discover the best actions in intricate tasks.

Utilizing a neural network to estimate the Q-function, which predicts the anticipated total

reward for each action in a specific state, allows Deep Q-Learning to effectively navigate

environments with extensive state spaces.

In Q-Learning, the agent is familiar with the anticipated reward for each action in every step.

This is akin to equipping the agent with a practical reference table, enabling it to determine

precisely which action to undertake. (Figure 2.6). According to this table, the agent executes

a series of actions designed to yield the maximum total reward over time. However, if this

reference guide becomes excessively long, it transforms into a table with millions of cells,

leading to a loss of control. This presents challenges related to both memory requirements

and feasibility. The memory needed to store and update the table would grow with the

expanding number of states and the time required to explore each state for constructing

the table would become impractical. Thus, the methodology revolves around estimating

Q-values through machine learning models, particularly employing a neural network (Figure

2.6). This conceptualization paved the way for the creation of DeepMind’s advanced deep

Q-network (DQN) algorithm.
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Figure 2.7 Deep Q-Learning

In response to the limitations of fundamental Q-learning, such as slow convergence and the

need for manual feature engineering, Mnih et al. proposed a DQN [5] to utilize deep neural

networks to approximate the learning function, allowing for more complex and efficient

learning directly from raw sensory inputs. The DQN architecture (Figure 2.10) uses a

CNN to process the input image representing the game state and produces Q-values for all

available actions. The CNN’s convolutional layers extract important features, generating a

feature map. This feature map is subsequently flattened and inputted into a Fully Connected

Network (FCN), responsible for computing the Q-values for the actions in the current state.
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2.5. Target/Predict Network

In supervised neural networks, the learning process involves a fixed target at each step,

in which the network’s parameters are updated contingent on the disparity between the

predictions and the ground truth labels. However, in Reinforcement Learning (RL), the

learning paradigm differs significantly. In RL, there is no predetermined fixed target that

the agent aims to match. Instead, the target itself is estimated, and this estimation is subject

to change during the learning process.

The absence of a fixed target in RL is a fundamental characteristic that sets it apart from

supervised learning. In reinforcement learning, the agent engages with an environment

by taking actions and receiving feedback in the form of rewards (Figure 2.8). The

agent’s objective is to maximize its cumulative rewards over time. To achieve this, RL

algorithms employ a trial-and-error approach, exploring different actions and learning from

the subsequent consequences.

supervised
learning

reinforcement
learning

training info:
Target Ouput

training info:
Rewards

input output input actions

Figure 2.8 Target in Reinforcement Learning

However, changing the target during the training process leads to unstable learning. To

resolve this issue, DQN uses a dual neural network architecture, referred to as the prediction

and target network, in which there are two Q-networks with identical structures but different

parameters (Figure 2.9). Learning is mainly achieved by updating the prediction network

at each step to minimize the loss between its current Q-values and the target Q-values. The

target network is created as a replica of the prediction network, but with less frequent updates.

Typically, the weights of the prediction network are copied to the target network every n

steps. This way, the target network serves to maintain stability and to prevent the prediction

network from overfitting to the current data by keeping the target values fixed for a window

of n time steps.
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Figure 2.9 Prediction and Target Network

Target Network (TN) keeps the values of weight coefficients constant during training, and

at the end of each n step, all the weight coefficients related to the Prediction Network (PN)

are copied to this network. In other words, all target network parameters are fixed within n

time intervals. The loss function is the difference between the predicted value and the target

value. The max value for the next state is received from the target network.

2.6. Architecture of DQN:

In this work, the image of the game screen is the state of the environment. Therefore, we

only feed the image of the game screen as an input to the DQN. As shown in Figure 2.10,

DQN includes a convolutional neural network, which uses this input image (game state) as

an input, and outputs the Q value of all the actions in the game state. The convolutional layers

extract features from the image and produce a feature map. Next, the algorithm flattens the

feature map and feeds this flattened feature map as an input to the fully connected network.

The fully connected network takes this feature map as an input and returns the Q value of all

the actions in the state (Figure 2.10).
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Figure 2.10 DQN Architecture

2.7. Auxiliary Rewards (AR):

In RL, the main focus is on maximizing rewards. However, in many fascinating scenarios,

these rewards are rarely received, which creates challenges in terms of what and how to

learn when they are not available. Auxiliary Rewards (AR) refers to an additional objective

that is incorporated into the learning process to assist the main RL task. The purpose of

an auxiliary reward is to provide supplementary information or guide the learning process to

improve performance or accelerate convergence. The Auxiliary Reward (AR) can manifest in

various forms, contingent on the specific reinforcement learning problem. It can be designed

to capture additional information about the environment, provide extra supervision signals,

or guide the agent’s exploration and decision-making. In reinforcement learning, the reward

signal plays a pivotal role in steering the agent’s behavior. By designing an auxiliary reward,

additional rewards can be provided to steer the agent towards desired behaviors. This can

help in shaping the agent’s policy and accelerating the learning process. Another application

of auxiliary reward is in the context of multi-task learning. When dealing with multiple

related tasks, auxiliary rewards can be used to learn features that are beneficial for all tasks.

By jointly optimizing the main task and auxiliary tasks, the agent can improve performance

across all tasks. Auxiliary rewards can also be employed as regularization or exploration

mechanisms. For instance, in exploration, An auxiliary reward can direct the agent to explore

unvisited states or take actions that provide informative insights for learning. This can help

in discovering new strategies and improving sample efficiency.
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2.8. Particle Filter (PF):

Particle filter [25, 26] is a technique used to represent the probability distribution of the

state using a collection of particles. The algorithm is based on randomly generated particles;

and at every time step, the particles are moved through the state model, and new particles

are generated. The weights of the particles are updated, and the distribution of the state is

estimated using a set of weighted samples.

The steps of the Particle Filter Algorithm include the following: [1]:

1. Randomly generate particles, each of which is a binary vector that represents the

combination of feature maps.

2. Predict the next state of the particles: Move the particles to a new state based on reward

feedback.

3. Update the weighting of the particles with normalization.

4. Get rid of very unlikely particles and put in more copies of the likely ones. Figure 4.1

demonstrates the process of re-sampling.
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3. RELATED WORK

Reinforcement learning algorithms, such as DQN [5], have shown remarkable success in

learning to play Atari 2600 games directly from raw pixel inputs. While DQN [5] can learn

to play games effectively, it can suffer from instability and inefficiency in learning [9, 10].To

address these shortcomings, several modifications have been proposed to the original

DQN algorithm [9, 11, 13, 27, 28]. These modifications aim to improve the learning

stability and efficiency of DQN by introducing various enhancements, such as prioritized

experience replay, dueling network architectures, asynchronous updates, and distributional

value estimation. In this section, we review and analyze these related works to provide a

comprehensive understanding of the advancements made in addressing the instability and

inefficiency issues of the DQN algorithm.

3.1. Prioritized Experience Replay (PER):

The Prioritized Experience Replay (PER) method, proposed by Schaul et al. [27], prioritizes

experience replay based on the importance of the sample, so that it replays critical transitions

more frequently, leading to more efficient learning. The PER method is an enhancement

to the standard Experience Replay (ER) mechanism used in RL algorithms, particularly in

the context of deep Q-networks (DQNs). ER is a technique commonly employed in RL,

where the agent’s experiences, consisting of observed states, actions, rewards, and next

states, are stored in a replay buffer. During training, the agent selects a batch of experiences

from this buffer to update its Q-network. This technique helps to eliminate the temporal

correlation between consecutive experiences, reducing the bias introduced by sequential

data. In PER, the replay buffer is augmented with a priority value associated with each

experience. The priority reflects the importance of the experience in terms of its potential

impact on learning. The higher the priority, the more likely an experience will be sampled

during training. The priority of an experience is typically calculated based on the Temporal

Difference (TD) error. This error indicates the disparity between the anticipated Q-value

and the target Q-value. This prioritization mechanism enables the agent to concentrate on
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learning from experiences that contribute to improving its performance. During the training

process, experiences are selected from the replay buffer based on their priorities. However,

to balance the exploration-exploitation trade-off, a stochastic element is introduced. Instead

of always selecting the experiences with the highest priorities, experiences are sampled

probabilistically, giving lower-priority experiences a chance to be selected as well.

The use of PER has been shown to enhance the learning efficiency and effectiveness of

DQN [27]. By prioritizing experiences that lead to significant learning progress and focusing

on important transitions, the agent can converge faster and achieve better performance.It’s

worth noting that there are different variations and implementations of prioritized experience

replay, with different ways to calculate and update priorities. Overall, PER is a technique that

improves the sample efficiency and learning effectiveness of RL algorithms by selectively

prioritizing experiences with higher learning potential during the training process.

3.2. Dueling Neural Network Architecture (DNNA):

A Dueling Neural Network Architecture (DNNA), which is introduced by Wang et al. [13],

separates the state value function and the action function, resulting in more stable learning

and better performance than the state of the art on the Atari 2600 domain.

The DNNA is a variation of Deep Neural Networks (DNNs) commonly used in RL,

particularly in the context of value-based methods such as Deep Q-Networks (DQNs). It

aims to improve the efficiency and stability of learning by explicitly separating the estimation

of the value and action functions of states. In value-based methods, such as Q-learning, the

Q-function is employed to estimate the value of taking a particular action in a given state.

The Q-function directly combines the state value and action information into a single output.

However, this can make it challenging to accurately estimate the value and action separately,

especially when they have different dynamic ranges. The dueling architecture addresses this

challenge by decoupling the estimation of the value and action functions and estimates these

functions independently. Value function focuses on estimating the state value, representing

how advantageous it is to be in a particular state irrespective of the action taken. The other
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action function estimates the advantages of different actions in a given state. The key idea

behind the dueling architecture is that by estimating the value and action separately, the

network can learn more efficiently and generalize better across different actions and states.

Overall, the dueling neural network architecture is a technique in RL that improves learning

efficiency and stability by decoupling the estimation of value and action functions. This

architecture has found successful applications across various domains and has contributed to

advancements in the DQN algorithm.

3.3. Distributed Deep Reinforcement Architecture (DDRA):

Several works have presented a distributed architecture for DRL [11, 28, 29]. Such

architectures distribute the learning process across multiple parallel agents, which enables

more efficient exploration of the state space and faster convergence [11]. As the complexity

of tasks and the size of the neural networks increase, training on a single machine may

become time-consuming. Distributed architectures address these challenges by distributing

the workload across multiple machines or processors, allowing for efficient resource

utilization. Multiple instances of the environment are created, each running on a separate

machine or processor. These instances interact with the agent generating more diverse

experiences and increasing the overall data throughput. Overall, DDRA shows the training

acceleration and sample efficiency improvement on the DQN algorithm [11, 28].

These modifications collectively form the foundation for advanced algorithms which

combines several of these enhancements to achieve performance enhancements over DQN

[9].

3.4. Auxiliary Functions (AF):

Another group of work has aimed to learn additional Auxiliary Functions (AFs) with denser

training rewards to improve the sample efficiency problem [30]. In RL, AFs are often used

to provide additional learning signals to the agent during training. These signals are not

the primary reward but are designed to help the agent learn more effectively. One common
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approach is to introduce auxiliary tasks or auxiliary losses in combination with the DQN

architecture [31]. Auxiliary tasks or auxiliary losses, are additional learning objectives

incorporated into a RL model to improve its performance. These auxiliary functions are

designed to provide additional supervision or regularization signals to guide the training of

the main task. By providing additional supervisory signals, they guide the model to focus on

specific aspects of the input data. While the primary reward signal can be sparse and delayed

(only received at the end of the game), the auxiliary function provides a task-based auxiliary

reward signal that can be more frequent (e.g., received after every time step). Auxiliary

rewards help the DQN agent learn more efficiently, improve its exploration strategy, and

potentially achieve better overall performance.

3.5. Attention Mechanisms (AM):

Several studies have used attentional mechanisms to improve the performance of their

models [15, 16, 32–34]. Some of these use bottom-up attention, allowing the agent to

selectively focus on different segments of the input, regardless of the agent’s task. Others

have applied attention to DRL problems in the Atari game domain [14, 15, 35]. Additionally,

several others have explored attention by incorporating a saliency map [36] as an extra

layer [37] that modifies the weights of CNN features.

Studies that use the basic bottom-up saliency map [36] as an attention mechanism in RL have

used many hand-crafted features as inputs [38]. Yet, these models show an inability to attend

to multiple input information with sufficient importance simultaneously. Top-down attention

mechanisms can also be used to improve the performance of DQNs by allowing the agent to

selectively attend to relevant parts of the input based on its current tasks [39].

Most of the previous DRL studies that use attention mechanisms are generally based on

back-propagation learning [16, 34], which is actually not ideal to be used by DRL [32, 37] as

it can lead to inflexibility [40]. Few other works have proposed to learn attention without

back-propagation [32, 37]. Yuezhang et al. infer that attention from optical flow only

applies to issues involving visual movement [37]. The Mousavi attention mechanism uses a
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bottom-up approach, which is directed by the inherent characteristics of the input information

regardless of the reward [32]. In the first part of this thesis, we incorporate a unified

bottom-up and top-down visual attention mechanism into the DQN model to improve the

game agent’s training stability and efficiency. In the second part, we help the DQN agent

learn faster to play the game by providing additional task-based feedback to the agent using

auxiliary rewards.
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4. PROPOSED METHOD

In this section, we present a novel proposed method that addresses the inefficiency issues

of the DQN algorithm by incorporating attention mechanisms and auxiliary functions. The

first part of our proposed method focuses on leveraging attention mechanisms to enhance the

performance of DQN. Attention mechanisms allow the agent to selectively attend to relevant

features or regions of the input, enabling more efficient exploration and utilization of the

available samples. By incorporating attention into the DQN framework, our objective is to

enhance the agent’s capacity to concentrate on the most informative states and actions, thus

mitigating the sample inefficiency problem.

In the second part of our proposed method, we introduce auxiliary functions to further

enhance the inefficiency of DQN. Auxiliary functions provide additional learning objectives

that guide the agent’s to prioritize and promote the learning of more informative actions. By

incorporating auxiliary functions into the DQN architecture, we aim to encourage the agent

to learn more task related meaningful representations, leading to improved sample efficiency.

Through a series of experiments and comparisons with the standard DQN algorithm, we

demonstrate the efficacy of our proposed method in addressing the inefficiency challenges.

The integration of attention mechanisms and auxiliary functions enhances DQN sample

efficiency, enabling more effective and rapid learning and finally improves the performance

of DQN.

4.1. Attention-Augmented DQN Algorithm (AADQN)

Our proposed AADQN approach enhances the DQN architecture by incorporating bottom-up

and top-down attention mechanisms. This integration empowers the game agent to

selectively attend to task-relevant features while disregarding irrelevant features, thereby

reducing the complexity of the task at hand.
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As illustrated in Figure 1.1, the CNN part of the model takes the present state of the game as

input I and extracts the set of feature maps F = {Fj : 1 ≤ j ≤ D}. Using F , PBA defines

the feature importance vector V = [V1, V2, . . . , VD]. The TDA mechanism then generates

particle vectors ωi : 1 ≤ i ≤ m, each with D dimensions representing the D feature maps,

and converts them to the attention vector A = [A1, A2, . . . , AD]. Next, the BAR mechanism

refines attention vector (A) by considering the saliency map H .

After calculating the CNN mid-layer relevance scores by LRP rules, AADQN freezes the

irrelevant units on the mid-layers. Freezing the irrelevant neurons on the mid-layers improves

the model’s robustness and flexibility in complex environments.

The overall flow of AADQN is given in Algorithm 1. In the following, we break down this

process and describe the AADQN modules in detail.
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Algorithm 1: Attention-Augmented DQN (AADQN)

1 Initialize DQN network;

2 Initialize particles: ωi : 1 ≤ i ≤ m;

3 while stopping criterion not met do

4 get input frame: I(x, y);

5 extract CNN feature maps;

6 calculate features’ importance value: Vj =
1
2
(F̂j + Êj)/χ

2
j ;

7 calculate the prior probability of each particle:

8 pj =
Vj−min(V1,V2,...,VD)

max((V1,V2,...,VD))−min(V1,V2,...,VD)
;

9 update all particle states based on prior probability;

10 particle state normalization: ω̂j
i =

ωj
i∑D

j=1 ω
j
i

;

11 get reward Rt from DQN;

12 calculate state value of particles: Q(st, ω̂i) ;

13 calculate likelihood probability of particles:

P (Rt|ωi) ∝ exp (−(ϵi −min (Q(st, ω̂i))));

14 likelihood normalization: p(ωi) =
P (Rt|ωi)∑m
i=1 P (Rt|ωi)

;

15 attention update: Aj =
1
m

∑m
i=1 ω

j
i /
∑D

j=1
1
m

∑m
i=1 ω

j
i ;

16 saliency map (H) extracted from input and normalized in [0, 1]: ;

17 calculate relevance score of neurons:
∑

i ϕ
i←j
l = ϕj

l+1;

18 extract features FDP information: Pj = I(x, y) s.t. ϕj(x, y) > ϕ̄j;

19 calculate feature saliency value: Hj =
1
|Pj |

∑
x,y∈Pj

H(x, y);

20 extract the refinement vector: Wj;

21 refine feature maps: F ′
= F⊙(W⊙A)⇑;

22 if Aj > θ then

23 freeze irrelevant neurons corresponding to the j-th feature map;

24 end

25 end
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4.1.1. Preliminary Bottom-Up Attention (PBA)

PBA determines the feature importance vector V of the set of feature maps F , which is then

utilized by the TDA mechanism to initialize the particles’ states.

To generate feature importance V , we first compute the normalized mean activation value

F̂j of each feature map Fj in F , where 1 ≤ j ≤ D. The mean activation value of a feature

map gives a measure of the activity within a CNN, s.t., it serves to assess the level of activity

in a feature map.

To select the most informative features, we calculate the entropy of each feature map Fj

using the Shannon entropy formula [41] given by

Ej = −
B∑
i=1

bi log2 bi (4)

where B is the number of feature value ranges, and bi is the probability of observing a feature

value in the ith range [41].

The entropy Ej is then also normalized:

Êj =
Ej∑D
i=1 Ei

(5)

Features with uniform distribution are not desired in CNNs, as they do not provide the

network with the ability to learn complex patterns and features in the input data. To this

end, the chi-square (χ2) Test [42] given by

χ2
j =

K2∑
i=1

(Oi − µi)
2

µi

(6)

is used to improve the feature selection, where the χ2 metric is used to assess the uniformity

of the activation values. Here, Oi represents the activation values of the feature maps, while
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µi corresponds to the activation values that are uniformly distributed. A higher value of χ2

indicates the lower importance of the feature in determining the output.

The evaluation of feature importance typically relies on activation values [43, 44] or, in

certain cases, the entropy of feature maps [45, 46]. We use both metrics to achieve better

performance across diverse environments and enhance the assessment of feature importance,

as in

Vj =
1
2
(F̂j + Êj)

χ2
j

(7)

Vj makes up the feature importance vector V , which is used in TDA to initialize the particle

states.

4.1.2. Top-Down Attention (TDA)

The TDA mechanism helps the agent focus on task-specific information by assigning weights

to feature maps through the attention vector A = [A1, A2, . . . , AD], where Aj represents the

attention weight of the feature map Fj . This mechanism uses a particle filter that generates

a set of particles Ω = {ωi : 1 ≤ i ≤ m} to estimate the distribution of the attention vector

for the present task. Each particle is a D-dimensional binary vector ω that estimates the

probability distribution of the feature maps with respect to importance. In a particle vector

ωi, the jth element ωj
i corresponds to the feature map Fj and indicates whether that feature

is useful (‘1’) or not (‘0’) for the task at hand.

This binary representation provides a selection of essential features [1, 25, 26, 47].

The algorithm iteratively updates the particles using the reward feedback. Then, re-samples

the particles (Figure 4.1) and generates a new sample set. Finally, the distribution of the

feature maps is estimated.

Combining gradient descent and particle filter provides the following advantages:
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• Tracing the local gradient within the particle filter makes it easier to find minimum

points while using a reduced number of particles. [48].

• Improving the gradient descent method by introducing multiple hypotheses helps

prevent getting stuck in local minimum points [49].

Similar to DQN [5], we apply D = 64 feature maps in its final CNN layer. To estimate

the distribution of these feature maps, the number of particles required depends on the

distribution complexity. Increasing the number of particles generally enhances the accuracy

of distribution estimation. However, there is no universally optimal number of particles that

applies to all scenarios. It is common to employ a sufficiently large number of particles to

ensure reliable estimates [1, 47]. In our case, m = 250 particles are utilized to process the

set of 64 feature maps.

X

X

X

X

X

X

Figure 4.1 The size of each particle corresponds to its weight. In the re-sampling process, some
particles are selected multiple times, while others are not chosen, as indicated by the ‘x’
symbol. Re-sampling removes particles with very low probabilities (white particles) and
replaces them with particles that have higher probabilities. A distinct color is assigned to
each particle and its corresponding resampled particles [1]
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In order to generate the particle set Ω that TDA uses to compute the attention vector A,

we first normalize the importance value Vj of features Fj across all feature maps and then

convert to the probability. By implementing this approach, it guarantees that the most active

feature will possess a certain probability equal to 1 as follows:

p(Vj) =
Vj −min(V )

max(V )−min(V )
(8)

Then, the binary ωj
i are generated randomly using a Bernoulli distribution, i.e., p(ωj

i ) has a

probability of p(Vj) for ωj
i ← 1 and a probability of 1 − p(Vj) for ωj

i ← 0. In this way,

TDA initializes the particles by focusing on the most informative features with regard to the

feature importance Vj , so that the features with higher Vj are more likely to be attended to

than those with lower Vj .

To calculate the particles’ Rt likelihood, i.e., the immediate reward that is output from DQN’s

given state, first, the initialized particle state ωi is normalized as follows:

ω̂j
i =

ωj
i∑D

j=1 ω
j
i

(9)

After updating the state of each particle as described above, we calculate the error between

the predicted particle state Q-value (Q(st, ω̂i)) and the Rt, which is returned from DQN as

follows:

ϵi = (Rt −Q(st, ω̂i))
2 (10)

where ω̂i is the normalized particle.

In the TDA process, rewards are determined based on normalized particles. A good particle

state has a stronger predictive ability Q(st, ω̂i) for the target reward Rt. The main objective in

this context is to identify the particle state that achieves the highest accuracy among a given

set of particles, with the aim of minimizing the error in (Equation (10)). By minimizing the

36



squared error, the algorithm seeks to find the particle state that closely aligns with the desired

target reward, which is used in the next time step.

Particles are updated based on the likelihood of the immediate reward Rt, which is

proportional to the following error value, s.t.,

P (Rt|ωi) = exp(−(ϵi −min (ϵ1, ϵ2, ..., ϵm))) (11)

Once the likelihoods are calculated, p(ωi) are found as follows:

p(ωi) =
P (Rt|ωi)∑m
i=1 P (Rt|ωi)

(12)

After that using p(ωi), the particles are randomly selected again with replacement, and the

distribution is adjusted for the next step.

Finally, the attention vector A is reset with the normalized mean of the particle states as in

Aj =
ω̄j∑D
j=1 ω̄

j
(13)

where ω̄j is given by

ω̄j =
1

m

m∑
i=1

ωj
i (14)

4.1.3. Bottom-Up Attention Refinement (BAR)

BAR enhances the focus by considering the saliency values of the essential features. It aims

to improve agent performance by increasing the attention weights of the essential features

(Aj >= θ) (Equation (17)) with lower saliency values Hj . While bottom-up methods can be

useful in identifying salient features, they are not solely effective in identifying task-related

features since they can miss much crucial task-related information due to noise or complexity.
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As a result, our approach improves the learning ability of the agent while considering this

attention refinement, allowing for improved capture of task-related information.

Traditional saliency prediction methods rely on low-level features like color, contrast, and

texture [50, 51], but they struggle to capture the full range of factors influencing visual

saliency maps [52]. BAR utilizes the Saliency Attentive Model (SAM) by Cornia et

al. [52], which uses a convolutional long short-term memory to enhance saliency predictions

iteratively.

We quantify the relevance score of Feature Decomposed Pixels (FDPs) with respect to

specific features within the CNN using LRP [3]. These relevance scores are used to select the

specific feature map-related pixels. These pixels are determined by whose relevance scores

are greater than the average value of the corresponding pixels’ relevance scores.

BAR obtains the saliency value H(x, y) corresponding to a specific pixel (x, y) from the

saliency map (H) that is generated by the SAM model [52].

To calculate the specific feature saliency value Hj according to the pixel information using

the saliency map (H), we first normalize the saliency map within the range of [0, 1]. Then,

BAR calculates the saliency value of a specific feature map denoted as j by considering only

pixels with average relevance scores higher than the average relevance of the corresponding

feature map.

Pj = I(x, y) s.t. ϕj(x, y) > ϕ̄j (15)

Here, P corresponds to the pixels that have a higher relevance score than the average

relevance value (ϕ̄) of that specific feature map:

Hj =
1

|Pj|
∑

x,y∈Pj

H(x, y) (16)
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The refinement vector W is obtained by considering the feature saliency value Hj using

Wj =


1 + e−αHj if Aj >= θ

1 if Aj < θ

(17)

where θ threshold is defined as the average value of the attention vector A.

The attention vector A is refined by multiplying element-wise with the refinement vector W

as (W⊙A). Then, each refined element is replicated to align with the dimensions of a feature

map, ensuring that the same attentional value is applied uniformly across all spatial locations

in the feature map (W⊙A)⇑. Finally, this process re-weights the feature maps, amplifying

feature maps with attentional weights as (Equation (18)):

F
′
= F⊙(W⊙A)⇑ (18)

Here⊙ corresponds to the Hadamard product, and ⇑ shows the upscaling the refined attention

vector by replication

4.1.4. Layer-Wise Relevance Propagation (LRP) -Based Transfer Learning:

AADQN employs a transfer learning scheme to enhance the agent’s flexibility by reducing

features and improving adaptation to noise and complexity. This scheme is based on LRP by

Saraee et al. [3].

LRP propagates the output of the network backward through its CNN layers, assigning

relevance scores to each neuron in each layer based on its contribution to the output, as

illustrated in Figure 4.2, according to the LRP rule as in [2], which satisfies

∑
i

ϕi←j
l = ϕj

l+1 (19)
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where ϕi
l is the relevance of neuron i at layer l, and ϕj

l+1 is the relevance of neuron j at

the next layer l + 1. According to the LRP method, the relevance value of the feature map

is redistributed in the lower layers, and ϕi←j
l is defined as the share of ϕj

l+1 to neuron i in

the lower layer l. Back-propagation continues until relevance scores are extracted for all

neurons, including the input layer.

Forward Propagation

Layer-wise Relevance Propagation

ϕj

ϕ i    j

layer: l+1layer: l

Input

layer: l−1

Figure 4.2 The backward process of the LRP in the propagation of features’ importance relevance
value across the middle layers. ϕj is the relevance value of neuron (j) at the layer
(l + 1). According to the LRP method, the relevance value of the feature map is
redistributed in the lower layers, and ϕi←j is defined as the share of ϕj to neuron i in
the lower layer l [2, 3].

As described in Section 4.1.3. above, the relevance scores for the input layer are then used in

BAR to highlight the FDP information in the input data that leads to the output of the feature

maps.
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When computing the final layer feature maps of the CNN, multiple internal CNN layers are

employed. The vast number of parameters within the mid-layers of the network enables

the capture of intermediate features at various levels of abstraction [53]. By harnessing

these intermediate features, especially through dual attention mechanisms, the models’

generalization capabilities can be enhanced [18]. To avoid unrecoverable information

loss [54], AADQN freezes the unimportant neurons of the inner layers [54, 55], which

improves the model computing efficiency. Moreover, the model becomes most robust to

noise and can improve flexibility in complex environments.

4.2. Auxiliary Distance Function (ADF):

In DQN, the agent typically receives observations, in the form of images or frames, as input.

Our ADF aims to encourage the DQN agent to focus on changes occurring in consecutive

frames and learn to exploit these changes for decision-making. The key idea behind the ADF

is to compute the pixel-wise difference between consecutive frames and use it to calculate a

separate learning signal to mitigate the main reward sparsity. By incorporating this additional

signal, the DQN agent can learn to recognize and exploit changes in the environment,

which can be valuable for tasks that require tracking moving objects, detecting dynamics,

or understanding temporal patterns.

The ADF finds the frame difference of two consecutive frames by subtracting the pixel

values of one frame from the other. This subtraction operation results in an image that

highlights regions where changes have occurred. Then, update the auxiliary reward based on

Distance Mean Absolute Error (DMAE) that finds the absolute distances of the agent with

changes area by comparing the previous frame distance value. ADF updates the auxiliary

distance reward if the current distance is less than the agent’s previous distance value. In

such cases, the auxiliary distance reward is increment by a constant value of 0.1, and in the

vice versa case, it is reduced by the same value. The relative importance or weighting of

the auxiliary reward compared to the primary task is a crucial consideration. To combine

the auxiliary distance reward with the DQN main reward to provide contributions during
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training, the auxiliary distance reward added to the main task reward corresponds to the

DQN agent action. By jointly optimizing the main task reward by auxiliary distance reward,

the agent is encouraged to pay attention to changes in the environment and learn to exploit

them effectively.
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5. EXPERIMENTAL RESULTS

In our work, we focus on DRL game agent’s inefficiency and inflexibility problems. In

this context, we investigate the importance of applying a visual attention mechanism to the

performance of the game agent. To assess the performance of our model, we address the

following questions:

• How does AADQN’s game-play average score compare with DQN?

• How is AADQN’s learning stability in comparison to DQN?

To compare the two algorithms, we have implemented our approach on the Atari 2600

environment in the OpenAI Gym environment [4]. From Atari 2600, we selected eight games

(Pong, Wizard of Wor, SpaceInvaders, Breakout, Asterix, Seaquest, Beam Rider, Qbert)

(Figure 5.1) with varying complexities and difficulty levels.
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Pong Wizard of Wor SpaceInvaders Breakout

Asterix Seaquest BeamRider Qbert

Figure 5.1 Pong, Wizard of Wor, SpaceInvaders, Breakout, Asterix, Seaquest, Beam Rider, Qbert.

It’s challenging to precisely categorize the complexity of different OpenAI Gym Arcade

Learning Environments, as complexity can be subjective and depends on various factors such

as game dynamics and objectives. We try to categorize these environments based on basic

features. Certainly, the complexity of solving these games using DRL can be influenced by

the dynamics of the game and the state space complexity. The following table 5.1 provides a

general attempt to categorize these environments based on their complexity for solving with

DQN. We consider factors such as the complexity of the state space and the difficulty of

learning effective strategic decision-making policies through DRL methods like DQN:
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Game Type Game Dynamics Objective Environment Complexity Visual Style

PONG

table tennis sports game

where players control paddles to

hit a ball back and forth

paddle and ball with

two-player interaction

Score points by hitting the ball

past the opponent’s paddle

simple with

two paddles and a ball

Simple 2D graphics with

paddles and a ball

Breakout

brick-breaking game where

the player controls a paddle to

bounce a ball, breaking bricks at

the top of the screen.

Paddle and ball dynamics with

a focus on breaking bricks.

Break as many bricks as possible,

aiming for a high score

relatively simple complexity with

brick patterns and ball physics

2D graphics with

bricks, paddles, and

a ball.

Spaceinvaders

shooting game where

the player controls a spaceship to

defend against descending alien invaders.

Shooting aliens descending from

the top of the screen.

Defend against and

defeat descending alien invaders

Moderate complexity with

descending alien formations

2D graphics with

spaceships and aliens

Q-bert

puzzle game where

the player controls a character that

hops between cubes,

changing their colors.

involving hopping on cubes to

change their colors

Change the colors of cubes

while avoiding enemies

Moderate complexity with

cube-hopping and

enemy avoidance

2D isometric graphics with

cubes and characters

Asterix

Guide character Asterix to

avoid lyres while

collecting other objects

horizontal movement and

vertical movement provide.

lyres and other useful objects

Score points by

collecting useful objects

Collect as many useful

objects as possible

Moderate complexity introducing

challenges in navigation and

decision-making

2D graphics with involves guiding

the character to collect useful objects

while avoiding lyres

Wizardofwor

maze-based shooting game where

players navigate through a dungeon,

shooting monsters

Maze navigation and

shooting monsters

Navigate the maze,

shoot monsters, and

achieve a high score

Moderate complexity with

maze navigation and

shooting

2D graphics with maze walls,

monsters, and shooting

Seaquest

involves underwater exploration where

the player controls a submarine,

rescues divers, and

avoids or attacks sea creatures.

Underwater navigation,

diver rescue,

and enemy avoidance dynamics

Rescue divers,

avoid enemies, and

achieve a high score

Moderate complexity with

underwater navigation and

enemy interactions.

2D underwater graphics with

submarines and sea creatures

Beamrider

space-themed shooting game where

the player controls a spaceship

moving forward on a grid.

Space-themed shooting and

dodging dynamics

Shoot enemies and

navigate through space

Moderate to high complexity with

space-themed shooting and dodging

2D space-themed graphics with

spaceships and enemies

Table 5.1 Experiment environments basic features

45



These features provide a starting point for categorizing and understanding the characteristics

of each game in the OpenAI Gym Arcade Learning Environments. Each task is explained

in the appendix section with more details. All experiments were run on a workstation

with an Intel i7-8700 CPU and an Nvidia GTX-1080Ti GPU. The source code for the

AADQN algorithm is available at the paper’s GitHub page, https://github.com/

celikcan-cglab/AADQN, accessed on 20 October 2023.

46

https://github.com/celikcan-cglab/AADQN
https://github.com/celikcan-cglab/AADQN


5.1. Comparison with Baseline DQN

In this section, we offer a comparative analysis with respect to DQN in the context of the

game average score and time step. The time-step analysis includes the number of steps

needed to attain a specific average score performance threshold. Table 5.2 provides the

comparison of training the AADQN and DQN benchmark agents in average scores achieved

on the eight tasks at the same final time spent for each task, and Figure 5.2 illustrates the

progress of the two agents in terms of achieved scores until the final time step. In this plot,

the y-axis reflects the average score, and the x-axis corresponds to the time steps. Given the

extensive training process with over a million time steps for each environment, attempting to

show every individual time step on the plot would be impractical. To address this challenge,

the plot is generated by dividing the entire training duration into 10 equal ranges. Within

each range, an average of 50k samples is taken for eight games, providing a simplified yet

meaningful representation of performance trends.

In two relatively simpler games, Pong and Breakout, we have observed an increasing average

score for both algorithms with increasing time steps. Furthermore, AADQN outperformed

the DQN algorithm throughout the entire process. Until 25×105 time steps, both algorithms

performed similarly, but after this point, AADQN started to outperform DQN. This is likely

due to the fact that in simple environments, learning is easier for both networks, and the

game’s high-level task is easier to learn due to the simplicity of these game environments.
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Game
DQN

Avg. Score

AADQN

Avg. Score

Improvement

by AADQN (%)

Time

Step

Pong 18.88 20.64 9.32% 1× 10e7

Wizard of Wor 791.51 5004.19 532.23% 2× 10e8

SpaceInvaders 1299.33 2999.47 130.84% 3× 10e7

Breakout 192.13 299.85 56.06% 2× 10e6

Asterix 5021.27 11999.97 138.98% 5× 10e7

Seaquest 6001.04 15000.1 149.95% 3× 10e7

Beamrider 7503.97 12999.49 73.23% 3× 10e8

Qbert 3997.46 9999.47 150.14% 5× 10e7

average 3103.19 7290.39 134.93% 8× 10e7

Table 5.2 Average score and improvement comparison

In the other more complex games, we have observed a better game score performance of

AADQN after a certain point of game experience. The difference between AADQN and

DQN grows with increasing time steps of learning. For example, in the Wizard of Wor

game environment, DQN shows a better performance than our approach until 30 × 106

time steps. This is because particles in the AADQN algorithm in the initial steps were not

yet different from random states. However, after (30 × 106) steps, AADQN has a better

performance than the DQN method throughout the entire experiment. This clearly shows

that when the particles are close to the desired state, which represents a target configuration

of the features map, AADQN reaches the optimal policy earlier than DQN. We have observed

similar behavior in other complex game environments (SpaceInvaders, Seaquest, Beamrider,

and Qbert).

The decrease in score performance of the baseline DQN method during learning is also

noteworthy in these complex environments, whereas the AADQN score has an increasing
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trend throughout the experiment. For example, in the Wizard of Wor game, at different

learning steps (e.g., 30 and 100 × 106), DQN’s score actually decreased. These complex

environments, including Wizard of Wor, can be exhibit non-stationary behavior, implying

that the most effective strategy could vary as time progresses. DQN assumes a stationary

environment, and if this assumption is violated, the algorithm may struggle to adapt, leading

to a decrease in performance. Moreover, DQN faces a challenge in exploration-exploitation

trade-offs. In some stages of training, the agent may prioritize exploration and try different

actions to learn about the environment. This exploration can lead to a decrease in the average

score. If the exploration strategy is not well-tuned, the agent may not explore enough to

discover optimal policies.

Overall, these findings provide empirical evidence supporting the claim of faster learning in

AADQN with respect to DQN.
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Figure 5.2 AADQN and DQN data efficiency comparison on eight Atari games. The x-axis shows
the total number of training time steps. The y-axis shows the average score.
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5.2. Comparison with other algorithms

In this section, we extend the performance comparison of AADQN to other state-of-the-art

algorithms in addition to DQN. The results are given in Table 5.3, where we provide the final

state of each analyzed algorithm for the eight games under consideration at the same specific

time step to ensure an equitable comparison.

We extend and improve the performance comparison of AADQN by including other

state-of-the-art RL algorithms, in addition to DQN (Deep Q-Network). We expand our

analysis by incorporating a value-based Dueling DQN algorithm and a policy-based A3C

(Asynchronous Advantage Actor-Critic) algorithm. By comparing the performance of

these algorithms, we gain a more comprehensive understanding strengths and weaknesses

of AADQN in game playing scenarios. To ensure a fair and equitable comparison,

we present the results by providing the final state of each analyzed algorithm for the

eight games considered at the same specific time step. By including the value-based

Dueling DQN algorithm, we explore the potential benefits of its architecture, which

separates estimating the values of states and the advantages of actions, it possible to

achieve more precise approximation values. This comparison helps us evaluate whether

the AADQN algorithm, which incorporates attention mechanisms and action conditioning,

outperforms or is comparable to the most advanced or cutting-edge value-based DQN

approach. Additionally, by incorporating the policy-based A3C algorithm, we investigate

the effectiveness of policy gradient methods in game playing. This algorithm utilizes

asynchronous training and parallelism to improve exploration and exploit the advantages of

policy optimization. Comparing AADQN with A3C provides insights into the performance

differences between these two distinct RL paradigms and their suitability for various game

scenarios. By expanding the performance comparison to include these additional algorithms,

we aim to provide a more comprehensive evaluation of AADQN’s capabilities and its relative

performance against other state-of-the-art RL approaches. The outcomes derived from this

analysis will contribute to our understanding of the strengths, limitations, and potential
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applications of AADQN and guide future research in game playing and RL algorithm

development.

The results reveal that there are specific environments where AADQN falls slightly behind

the other most advanced or state-of-the-art methods or techniques. For instance, the

asynchronous actor-learner architecture (A3C) of A3C [28], which utilizes parallel agents,

achieves a higher average score in the Wizard of Wor game. A3C is recognized for its

ability to efficiently explore diverse actions and policies in intricate environments, making it

valuable in the “Wizard of Wor” game. Similarly, the dueling network architecture (Dueling

DQN) by Wang et al. [13], which separates value and advantage function estimation for

Q-value computation, exhibits better performance in the Qbert game. This separation allows

Dueling DQN to excel in situations where distinguishing between the value and advantage of

different actions is critical, such as in the Qbert game. Nonetheless, in other games, AADQN

outperforms these methods. Overall, we can conclude that AADQN exhibits relatively better

performance in complex game environments.
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Game

Random

Play [5]

Avg.

Score

A3C [28]

Avg.

Score

Dueling

DQN [13]

Avg.

Score

DQN

Avg.

Score

AADQN

Avg.

Score

Improvement

by

AADQN

(%)

Time

Step

Pong -20.7 -15 14.5 18.88 20.64 9.32% 1× 107

Wizardofwor563.5 6000 5666 791.51 5004.19 −16.59% 2× 108

SpaceInvaders148 480 864 1299.33 2999.47 130.84% 3× 107

Breakout 1.7 30.0 164.5 192.13 299.85 56.06% 2× 107

Asterix 210 2224 2857 5021.27 11999.97 138.98% 5× 107

Seaquest 68.4 850 9000 6001.04 15000.1 66.66% 3× 107

BeamRiders 363.9 7600 15112 7503.97 12999.49 −13.97% 3× 108

Qbert 163.9 8668 15714 3997.46 9999.47 −36.36% 5× 107

average 187 3, 230 6, 174 3, 103 7, 290 41.86% 3× 107

Table 5.3 Average scores comparison across eight games.

5.3. General Comparison with Fairness-Aware Constraints

In this section, we’re taking a comprehensive comparison with other studies in the literature,

to understand how our AADQN model’s performance aligns with that of relevant studies.

We’re comparing normalized results, checking out how our scores compare to those in similar

studies.

It’s important to mention that we’re aware of the time step constraints in our comparison. In

this section the other studies that we’re looking at didn’t report info about the time steps when

they hit their highest scores. And we had to stop our model before reaching the maximum

score due to hardware constraints. So we have a limitation in our study which it had to be

halted before reaching the maximum and we’re being upfront about this aspect. Hence, to
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provide relatively fair comparison, we’re specifically focusing on normalized results. Our

goal is to give a fair assessment of our AADQN model, comparing it to a bunch of other

studies. We want to be honest about a limitation: we had to stop training our model before

it could reach the maximum score for each task because of some hardware limits. Even

with this challenge, we’re excited to share insights into how well our model is doing and

contribute to the ongoing discussions in the research community.

To obtain summary of the results across games, we normalize the score for each game as

follows:

NormalizedScore =
MaximumRawScore−RandomPlayScore

|HumanPlayScore−RandomPlayScore|
× 100 (20)

In our comprehensive performance comparison of agents, we employed the

human-normalized score as a benchmark. The human and random scores align with

those defined by Wang, providing a baseline for our evaluation. The agent’s score

determined by considering its maximum raw score. To assess the overall performance of the

agent, we employed both the mean and median calculations of the normalized score across

the eight games. This approach capturing both the average and central tendency of the

agent’s normalized performance and ensuring a robust assessment across the eight diverse

gaming scenarios. Overall, this normalization process involves accounting for variations in

the scoring systems of individual games, ensuring a fair and standardized representation of

performance. By applying this normalization technique, we aim to derive comprehensive

insights that facilitate a more understanding of our model’s performance across gaming

scenarios. We provide a comprehensive overview of results reported in various studies in

table 5.4, drawing upon relevant references.
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PONG Breakout Spaceinvaders Q-bert Asterix Wizardofwor Seaquest Beamrider
Random
[29] -20.7 1.7 148 163.9 210 563.5 68.4 363.9

Human
[29] 14.6 30.5 1,668.7 13455 8503 4757 42,054.7 16,926.5

DQN
[5] 20.2 428.1 2,869 13,890 7756 5,412 6,596 8,465

AADQN 20.64 299.85 2999.47 9999.47 11,999.97 5004.19 15000.1 12,999.49
DDQN
[29] 20.9 418.5 2,525.5 15,088.5 17,356.5 7,492.0 16,452.7 13,772.8

Tuned-DDQN
[27] 19.1 371.6 9063.0 11277.0 31907.5 7451.0 39096.7 31181.3

Prior-DDQN
[9] 20.7 381.5 7,696.9 18,802.8 41,268.0 10,373.0 44,417.4 22,430.7

DUEL-DQN
[9] 21.0 345.3 6,427.3 19,220.3 28,188.0 98,209.5 50,254.2 12,164.0

Distrib-DQN
[9] 18.9 548.7 6,368.6 15,035.9 395,599.5 11,824.5 3,275.4 15,002.4

Rainbow
[9] 19.0 379.5 12,629.0 18,397.6 280,114.0 14,631.5 19,176.0 21,768.5

PRIOR. DUEL
[29] 20.9 366.0 15,311.5 18,760.3 375,080.0 12,352.0 931.6 30,276.5

PRIOR.
[28] 18.9 371.6 9063.0 11277.0 31907.5 7451.0 39096.7 26172.7

A3C
[28] 11.4 766.8 23846.0 21307.5 22140.5 18082.0 2355.4 24622.2

C51
[29] 20.9 748 5,747 23,784 406,211 949,604 266,434 14,074

Gorila
[11] 18.30 402.20 1883.41 7089.83 6433.33 13731.33 13169.06 3822.07

NoisyNet-A3C
[56] 21 401 1,280 19,418 35,045 16,143 984 12,819

NoisyNet-Dueling
[56] 21 283 7,227 27,543 28,957 9,790 23,373 19,163

Table 5.4 Maximum Raw scores across eight games for each algorithm that obtained the highest
score during training. We report the published scores for AADQN, and the results for
other studies reported from given references.
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PONG
(%)

Breakout
(%)

Spaceinvaders
(%)

Q-bert
(%)

Asterix
(%)

Wizardofwor
(%)

Seaquest
(%)

Beamrider
(%)

DQN 115 1480 178 103 90 115 15 48
AADQN 117 1035 187 74 142 105 35 76
DDQN 117 1447 156 112 206 165 39 80

Tuned-DDQN 112 1284 586 83 382 164 92 186
Prior- DDQN 117 1354 496 140 495 233 105 133
DUEL- DQN 118 1226 413 143 337 2328 119 71
Distrib-DQN 111 1896 409 111 4767 268 7 88

Rainbow 111 1310 821 137 3375 335 45 129
PRIOR- DUEL 117 1264 997 139 4520 281 2 180

PRIOR. 111 1295 586 83 382 164 92 155
A3C 90 2653 1559 159 264 417 5 146
C51 117 2591 368 177 4895 22633 63 82

Gorila 109 1389 114 52 75 314 31 20
NoisyNet A3C 117 1386 74 144 420 371 2 75

NoisyNet-Dueling 117 976 465 206 346 220 55 113

Table 5.5 Normalized score for eight games.

Through the normalization of results presented in the table 5.5, we establish a standardized

basis for evaluating the results. To facilitate a comprehensive assessment, we augment the

presentation by including both the mean and median normalized scores across a diverse set

of eight games in the table 5.6. This enhances the robustness of our evaluation process and

provides a clearer understanding of the performance of algorithms across varied eight gaming

scenarios

The evaluation of overall agent performance is presented through the mean and median of the

normalized scores across eight games. The comparison between algorithms is outlined in the

following table 5.6, featuring both median and mean scores. The percentage improvement,

relative to the DQN baseline in terms of median score, is reported in the last column. Notably,

all agents demonstrate an enhancement in both mean and median normalized scores. In

each game, the score is determined by selecting the maximum performance, and AADQN

consistently outperforms the DQN baseline across all eight games. This superiority is

evident in both the normalized results in the table 5.5 and the mean/median scores in the

table 5.6. The improved performance of AADQN is also noticeable when compared to its

corresponding DQN baseline in all eight environments, as well as in the case of Gorilla.

Throughout these comparisons, it’s important to acknowledge that all AADQN scores are

values attained before reaching the maximum score for each game. This limitation arose due

to the necessity of early termination of AADQN runs owing to hardware constraints. We
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Mean

(%)

Median

(%)

Improvement

On

Median

(%)
DQN 268 109 -

AADQN 221 129 18
DDQN 290 136 24

Tuned-DDQN 361 175 60
Prior- DDQN 384 186 70
DUEL- DQN 594 240 120
Distrib-DQN 957 189 73

Rainbow 782 236 116
PRIOR- DUEL 937 230 111

PRIOR. 358 159 45
A3C 661 211 93
C51 3865 272 149

Gorila 263 92 -15
NoisyNet A3C 323 130 19

NoisyNet-Dueling 312 213 95

Table 5.6 Mean and median normalized scores.

believe that if we could have trained AADQN for the same number of timesteps required

to reach the maximum score, our results would have shown further improvement. The

assumption is that additional training time could have enhanced the performance of our

algorithm, leading to even better outcomes Furthermore, it’s worth noting that information

regarding the time step at which the maximum score was achieved in other studies is not

reported.

57



5.4. Comparison of Learning Stability

Figures 5.3 and 5.4 demonstrates the fluctuation rate in the average game scores of the

agent during the start-up and convergence phases for the eight games under consideration.

For the sake of a clear comparison between DQN and AADQN, the two plots are overlaid in

each sub-figure so that they are shown with the same scale but different ranges (e.g., in the

Asterix game, the AADQN scores are in the range [1550–1610], whereas DQN is the range

[1150–1210]).

It is seen that the AADQN and DQN methods have different start-up and convergence phase

fluctuation behaviors. Significant fluctuations in the start-up phase for both algorithms

indicate instability or inconsistent learning. In the convergence phase, AADQN’s average

score stabilizes and mitigates the fluctuation compared to the DQN algorithm. This point

indicates that the agent has converged to a relatively optimal policy and is consistently

performing well. As shown in Figure 5.2, in the Pong game, AADQN becomes stabilized

sooner than the baseline DQN. Similar stability behavior in the start-up and convergence

phases are observed in all games, regardless of game complexity.
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Figure 5.3 Comparison of the start-up (left) and convergence (right) phases between AADQN and
DQN.
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Figure 5.4 Comparison of the start-up (left) and convergence (right) phases between AADQN and
DQN.
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5.5. Algorithmic Efficiency

The time required for training DQN can vary significantly depending on the hardware. So, in

this section, we explain the computational efficiency of AADQN in terms of total time steps

to ensure a fair and equitable comparison with the baseline. Our framework is based on DQN

together with particle-filter-based top-down and saliency-based bottom-up attention. So, the

computation overhead on top of DQN comes from these attention mechanisms. The particles

can be sampled in parallel, which adds a single particle computation to the system. However,

the attention mechanism decreases the total time steps required to obtain the same average

score with a focus on significant feature maps. Similarly, the saliency maps can be extracted

parallel to the DQN forward pass. LRP relevance scores can be calculated parallel to the

DQN backward pass, which requires no additional time steps. In Figure 5.2, the time-step

comparisons of DQN and AADQN are given.

5.6. Ablation Study

In order to delve deeper into the intricate workings of our proposed model and elucidate

the pivotal components contributing to its performance, we conduct an ablation study.

This examination involves the selective removal of specific components from our model

architecture, allowing us to discern their impact on the overall efficacy of the system. By

systematically removing and evaluating each constituent part, the ablation study provides

a comprehensive understanding of the model’s robustness and sheds light on the key

factors driving its success. The insights gained from this analysis not only contribute to

the refinement of our current model but also offer valuable guidance for the design and

optimization of future iterations. In the subsequent sections, we present the findings of

this ablation study, dissecting the contributions of various components and elucidating their

influence on the model’s overall performance.
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5.6.1. Attention Mechanism Ablation

Within the intricate architecture of our AADQN model, a synergy of innovation is achieved

by combining the foundational framework of the baseline DQN with a novel attention

component. This attention component, a fusion of bottom-up and top-down attention

mechanisms, plays a pivotal role in enhancing the model’s adaptability and performance.

Here, we analyze the contribution of this attention-based component to our AADQN model

performance by selectively removing its constituent parts. Through this examination, we

aim to unravel the specific impact of the attention mechanism components on the AADQN

model’s learning capabilities and overall efficacy. This exploration not only deepens our

understanding of the intricate interplay between attention mechanisms and traditional DQN

components but also sheds light on the necessity and significance of these components in the

pursuit of optimal performance. The following sections present the outcomes of our ablation

study on the important components, providing invaluable insights for the refinement of our

AADQN model.

5.6.2. Bottom-up and top-down Components

In our AADQN model, we have taken an approach to integrate both bottom-up and top-down

attention mechanisms, with the objective of capturing task-specific information that may

elude the bottom-up attention component during training. Previous studies have shed light

on the limitations of bottom-up saliency-based methods, emphasizing their tendency to

overlook critical task-related details. To address this concern, we have designed the top-down

attention component in our AADQN model to play a central role in focusing on task-specific

details that may have been disregarded or received insufficient attention by the bottom-up

component.

The top-down attention component assigns attention weights to task-specific details. Our

hypothesis posits that the attention mechanism aims to uncover task-based information that

could be overlooked by the bottom-up attention but holds significance when attended by the
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top-down attention component. The overarching goal of this attention mechanism is to refine

and optimize its performance by adjusting the attention weights assigned to these crucial

details.

To summarize, if the top-down attention component assigns attention weights higher than

the mean attention value to any task-specific details that were disregarded by the bottom-up

module, the attention mechanism endeavors to highlight these details through the refinement

of attention weights.

Through the intricate interplay of bottom-up and top-down attention, our AADQN model

strives to enhance its ability to prioritize task-relevant information, resulting in an overall

improvement in the performance of the attention mechanism. This integration of bottom-up

and top-down attention mechanisms in our AADQN model provides a robust framework for

capturing task-specific details that may be missed by bottom-up saliency-based methods,

thereby contributing to a more effective and comprehensive attention mechanism.

In this section of the thesis, our focus was on conducting an ablation study analysis of

the bottom-up and top-down components. The purpose of this analysis was to gain an

understanding of the individual contributions and effectiveness of these components within

the overall AADQN framework.

By removing or disabling each attention component independently, we aimed to assess their

impact on the performance and functionality of the model. This approach allowed us to

evaluate the specific roles played by the bottom-up and top-down components in capturing

and attending to relevant information. When we remove the top-down attention, it’s crucial to

also remove the bottom-up component because the bottom-up module refines the top-down

results. Without the top-down module, we can’t make use of the bottom-up component. As

a result, if we remove both the top-down and bottom-up components, our model essentially

goes back to the DQN baseline. This means we don’t have any ablation analysis for removing

top-down attention.
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5.6.3. Ablation Studies Experiments

As shown in Figure 5.5, we specifically selected the Pong game as the evaluation

environment for our ablation study analysis. Due to the hardware constraints, our ablation

study was limited to the simplest task among the eight games. And our analysis is constrained

to the Pong game environment. The limitations in computational resources have led us

to focus exclusively on the Pong game. It enables us to identify the effectiveness of the

bottom-up and LRP components.
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Figure 5.5 Buttom-up and LRP components ablation analysis

5.6.4. Bottom-Up Attention Ablation Analysis Results

This section, delve into the outcomes of the ablation study focused on the bottom-up attention

mechanism. We specifically look at the impact of removing the bottom-up attention from the

attention mechanism, highlighting any observed changes in the model’s performance. The

Figure 5.6, illustrates the results of the model performance in this case, and represents how

these changes affect the overall performance of the model.

We observed that when removing the bottom-up (BU) component, the model’s performance

remained nearly same with very slight decrease in performance. This outcome was

particularly evident in a straightforward game like Pong, where the game play involves just

one ball without any complexity. In such uncomplicated environments, it seems that the
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Figure 5.6 Buttom-up(BU) Ablation Analysis

feature importance value alone is adequate for justifying the bottom-up attention mechanism

role. As depicted in the figure, the absence of bottom-up attention refinement component did

not result in any significant alteration in the model’s performance.

5.6.5. LRP-Based Transfer Learning Ablation Analysis Results

This section explores the findings from the ablation study concentrating on the using

Layer-wise Relevance Propagation (LRP) to freeze irrelevant CNN neurons in a DQN

architecture during training. LRP is a technique commonly employed for interpreting

the decisions made by neural networks, particularly in understanding the importance of

individual neurons. We use LRP to select which neurons contribute more significantly to

the decision-making process. Freezing irrelevant neurons improves the stability of the model

and lead to a more efficient use of computational resources.
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The Figure 5.7 focus on the results of the LRP freezing mechanism, investigating the impact

of removing the freezing and shedding light on how these changes affect the model’s behavior

and overall performance.
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Figure 5.7 LRP Freezing Ablation Analysis

We notice that, after removing the LRP freezing, there is an increase in fluctuations.

Additionally, shows a slight decrease compared to the AADQN performance throughout

the training process. Hence, LRP-based freezing for irrelevant neurons in DQN providing

slightly efficiency and stability advantages.
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6. DISCUSSION

This study explores the field of Deep Reinforcement Learning (DRL), focusing on advancing

video game-playing agents. DRL encompasses the process of training agents to engage with

and navigate an environment and make sequential decisions without labeled data, primarily

using the Q-learning concept. The integration of Reinforcement Learning with Deep Neural

Networks, known as Deep Q-network (DQN), addresses challenges in dealing with complex

environments, including the application of convolutional neural networks to process raw

inputs like images. Despite DRL’s success in various domains, it faces limitations, such as

sample inefficiency and challenges adapting to complex tasks.

To improve the Deep Q-Network (DQN) algorithm’s stability and efficiency, previous studies

introduces several advancements, including Prioritized Experience Replay (PER), Dueling

Neural Network Architecture (DNNA), Distributed Deep Reinforcement Architecture

(DDRA), Auxiliary Functions (AF), and Attention Mechanisms (AM). PER prioritizes

critical experiences for replay based on their importance, DNNA separates the estimation

of value and action functions for stability, and DDRA distributes the learning process across

multiple parallel agents. AFs provide denser training rewards, and attention mechanisms

enhance model performance in various contexts.

This thesis introduces a unified bottom-up and top-down visual attention mechanism to

address inefficiency issues in the DQN algorithm. Bottom-up attention allows agents to

selectively focus on distinct regions or components of the input, while top-down attention

provides task-based reward feedback to accelerate the learning process. Additionally, the

thesis introduces an Auxiliary Distance Function (ADF) to enhance DQN’s efficiency by

addressing sparsity in main rewards feedback. ADF guides the DQN agent to focus on

changes between consecutive frames, combining auxiliary distance rewards with the main

reward during training to alleviate sparsity.

The effectiveness of the proposed method is showcased through experimental evaluations

and comparisons with standard DQN and other algorithms. The integration of attention
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mechanisms and auxiliary functions successfully enhances DQN sample efficiency,

facilitating more effective and rapid learning. The evaluation considers average game scores,

learning stability, and algorithmic efficiency to showcase the overall improvement of the

proposed method on the DQN algorithm.

6.1. Advancements in Deep Reinforcement Learning for Video Game

Agents

This thesis makes a contribution to the field of Deep Reinforcement Learning (DRL) by

introducing the Particle Filter-based Attention-Augmented Deep Q-Network (AADQN), a

novel attention mechanism aimed at enhancing efficiency in learning tasks. A unique feature

of the AADQN model is its incorporation of Particle Filters, a method that represents the

probability distribution of the state using randomly generated particles. In the AADQN

framework, Particle Filters are employed to capture the distribution of pertinent features,

providing an innovative approach to attention mechanisms. Additionally, the AADQN stands

out by combining top-down and bottom-up attention mechanisms, further enhancing its

capabilities in efficient processing and leveraging relevant information for decision-making.

The incorporation of distance auxiliary functions serves as an enhancement to the Deep

Q-Network (DQN), resulting in improvements in learning efficiency.

6.2. Effectiveness of Attention Mechanism

The introduction offers a comprehensive summary of the present state of Reinforcement

Learning (RL), acknowledging its initial achievements in tasks such as Atari games.

However, it emphasizes that RL still faces significant hurdles when it comes to tackling

complex tasks and adapting to new environments. While the Deep Q-Network (DQN)

algorithm has shown success, it suffers from inefficiency and inflexibility problems. These

inefficiency and inflexibility issues, necessitate the introduction of innovative methods like

the proposed Attention-Augmented DQN (AADQN).
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The AADQN is a game agent designed to overcome these limitations. AADQN incorporates

a dual visual attention mechanism, encompassing both top-down and bottom-up attention,

to enhance the recognition of task-related features. Extensive evaluations across eight

Atari 2600 games reveal that AADQN outperforms the baseline DQN agent, demonstrating

heightened flexibility and achieving improved scores within a reduced time-step.

6.3. Comprehensive Insights from AADQN vs. DQN:

AADQN consistently outperforms DQN in terms of performance across a range of game

environments, including both simpler games like Pong and Breakout, as well as more

complex ones like Wizard of Wor, SpaceInvaders, Seaquest, Beamrider, and Qbert. While

both algorithms initially perform similarly in simpler games, AADQN exhibits a noticeable

improvement in performance beyond a certain point. In complex games, AADQN outshines

DQN by approaching the optimal policy at a faster rate.

One of the key advantages of AADQN over DQN lies in its ability to handle non-stationary

environments more effectively. DQN struggles with maintaining optimal performance in

such dynamic settings, resulting in a decline in its scores over time. In contrast, AADQN

excels by consistently delivering increasing scores as it adapts to the changing dynamics of

the environment.

The empirical results clearly demonstrate that AADQN surpasses DQN in terms of both

initial and performance over extended periods or in the long run across a diverse set of

games. This highlights the effectiveness of incorporating attention mechanisms into the DQN

framework, enabling AADQN to better capture and leverage important information during

the learning process. These findings indicate the potential of AADQN as a robust and flexible

algorithm for reinforcement learning tasks, particularly in dynamic game environments.
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6.3.1. Enhancing Computational Performance

The computational efficiency of AADQN in this thesis is evaluated regarding the overall

duration or total time steps. The incorporation of attention mechanisms into DQN serves

a crucial role in optimizing the learning process, contributing to a more efficient training

paradigm. A notable element in assessing computational efficiency is the reduction in total

time steps achieved through the use of attention mechanisms. The attention mechanisms,

including both top-down and bottom-up attention components, work together to refine the

agent’s focus on relevant information within the environment. These mechanisms effectively

filter out less critical details, allowing the agent to focus on the most informative aspects

of the input data. The impact of attentional mechanisms on computational efficiency is

profound. Rather than relying on exhaustive exploration or processing of the entire input

space, AADQN uses attention to selectively attend to salient features. This selective

attention significantly speeds up the decision-making process, allowing the agent to reach

optimal actions more quickly. We do not consider the additional computational overhead

from attention mechanisms. Becuase, the parallelizability of the attention mechanisms

components enhances efficiency without adding extra burden. For example, particle filters,

a crucial element in top-down attention, can be sampled in parallel, without imposing

additional computational load. This parallel processing helps in decreasing the overall

computational cost compared to the baseline DQN. As a result, the computational efficiency

of AADQN is a synergistic result of components within its architecture. The decrease in

the total number of time steps highlights how the attention mechanisms contribute to more

efficient learning, ultimately improving the overall effectiveness of the training process.

This efficiency not only speeds up how quickly the agent learns but also makes AADQN

a more practical and adaptable solution for addressing challenges in complex and dynamic

environments in reinforcement learning scenarios.
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6.3.2. Stability and Robustness Analysis of AADQN

The decline in the average score performance of the DQN algorithm, particularly in

environments like Space Invaders, Seaquest, or Beamrider at specific training intervals, can

be attributed to two primary factors: sparse rewards and non-stationarity. In environments

with sparse rewards, the agent receives infrequent or delayed positive feedback, posing a

challenge for the DQN agent to associate its actions with favorable outcomes. If the agent

encounters a prolonged lack of positive reinforcement, it may struggle to effectively update

its policy, leading to a temporary dip in performance.

Environments like Space Invaders and Seaquest exhibit non-stationarity, indicating that

the optimal policy can change over time. DQN, however, operates under the assumption

of a stationary environment. When this assumption is violated, the algorithm encounters

difficulties in adapting to the evolving optimal policy, resulting in fluctuations in the agent’s

performance.

In the context of reinforcement learning, non-stationarity refers to scenarios where the

optimal policy— the most effective set of actions for an agent—shifts over time. This shift

is not indicative of the environment itself undergoing changes but rather suggests that the

optimal strategy for the agent may vary due to factors like the evolution of enemy behavior

or dynamic elements within the environment. For instance, in games like Space Invaders,

the behavior of enemies may undergo alterations as the game progresses, with adversaries

becoming more aggressive, faster, or employing different attack patterns. This changing

behavior necessitates adaptation in the learned policy to effectively navigate the evolving

challenges presented by the non-stationary environment.

AADQN can help address these challenges in non-stationary environments, such as those

seen in games like SpaceInvaders. By incorporating a novel attention mechanism, combining

both top-down and bottom-up attention, this dual attention allows the agent to selectively

focus on relevant features or dynamics in the environment. By emphasizing dynamic

areas where changes occur, AADQN can adapt more quickly to evolving dynamics in
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non-stationary environments. Moreover, AADQN employs Particle Filters to represent the

probability distribution of the state that can enhance attention mechanisms by capturing the

distribution of relevant features. This helps the agent effectively respond to changes in the

environment, promoting adaptability in non-stationary scenarios.

The reduced fluctuation observed in the start-up and convergence phases of AADQN

compared to DQN can be attributed to the mechanisms integrated into DQN. AADQN

demonstrates more stable learning during convergence, indicating consistent performance

once converged. Significant fluctuations in DQN’s start-up phase suggest instability or

inconsistent learning. Here are potential reasons for the lower fluctuation: AADQN employs

a dual attention mechanism, combining both top-down and bottom-up attention. This

selective attention allows the agent to concentrate on pertinent features and ignore less critical

or less significant information during the initial phases of learning. The attention mechanisms

guide the agent in making more informed decisions, reducing the early-stage randomness in

actions and, consequently, fluctuation. Also, leveraging particle filters, AADQN can reduce

uncertainty after the start-up phase, leading to a more stable learning process.

In summary, AADQN’s attention mechanisms, particle filter-based top-down attention, and

integration with bottom-up provide a learning process that is more adaptable and stable. This

allows the agent to navigate non-stationary environments more effectively by focusing on

relevant changes, improving learning efficiency, and efficiently learning during the start-up

and convergence phases, resulting in reduced fluctuation.

6.4. Comparative Evaluation of AADQN in the Literature

In our comparative evaluation of AADQN with other prominent studies such as A3C and

Dueling DQN, we observed varying performance in different video game environments. In

particular, AADQN showed superior overall performance in complex game environments,

highlighting its effectiveness in tackling challenging tasks.

Looking at specific games, we found that A3C and Dueling DQN performed exceptionally

well in Wizard of Wor, highlighting their efficiency in exploring different actions. These
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algorithms demonstrated the ability to navigate through complex game scenarios and make

informed decisions. On the other hand, Dueling DQN outperformed in Qbert due to

its separation of value and benefit functions. This separation enabled Dueling DQN to

better estimate the values of different actions, leading to more effective decision making

and ultimately higher performance in the Qbert game. The comparative evaluation not

only highlights the strengths and weaknesses of each algorithm, but also underscores the

significance of taking into account the unique attributes or characteristics of the game

environment when choosing a suitable deep reinforcement learning approach. AADQN’s

robust performance on a variety of complex games suggests its potential as a versatile

and effective algorithm in a wide range of video game scenarios. To summarize, these

findings enhance our comprehension of the strengths and limitations of different deep

reinforcement learning algorithms in video game environments. They also offer valuable

insights into the appropriateness or suitability of AADQN for improving the performance

of video game agents, particularly in complex and dynamic environments. Further research

and experimentation can build on these findings to advance the domain or application of

deep reinforcement learning in video game agents, leading to improvements in gameplay

performance and intelligent decision-making.

6.5. Effectiveness of Auxiliary Distance Function Integration

In the second phase of this thesis, the investigation shifts towards the integration of the

Auxiliary Distance Function (ADF) into DQN gaming agents, with the goal of promoting

more efficient and robust learning in gaming environments. By incorporating the ADF

into the DQN framework, we aim to address the inefficiency challenges associated with

traditional DQN algorithms and improve the performance of autonomous game agents. To

evaluate the impact of ADF on the early-stage learning of DQN, we introduce the Auxiliary

Distance Reward augmented DQN (ADFDQN). ADFDQN shows mixed results in different

game environments. In some simple dynamic tasks, ADFDQN shows improved learning

efficiency compared to baseline DQN. The inclusion of ADF allows the agent to better

understand and exploit the distances between objects or relevant features in the environment,
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facilitating more effective decision making. However, in the early stages of complex

environments such as Wizard of Wor, the performance of ADFDQN is not as effective as

desired. The complexity and dynamism of these environments can make it difficult for

ADFDQN to capture and use distance information optimally. As a result, its performance in

these particular scenarios falls short of the baseline DQN. Interestingly, in environments

without significant dynamics, such as Qbert, the performance of ADFDQN is exhibits

inferior performance compared to the baseline DQN. This result suggests that the inclusion

of ADF may not be beneficial in environments where dynamics play a minor role and other

factors, such as pattern recognition or strategic decision making, take precedence. Overall,

the integration of ADF into the DQN framework represents an approach to improving

learning efficiency in certain dynamic gaming environments. However, its effectiveness

is context dependent, with performance outcomes varying across tasks and environments.

These findings shed light on the interplay between distance-based auxiliary functions and the

complexity of game environments, yielding valuable insights that can guide future research

endeavors in the field of autonomous gaming. By extending the capabilities of DQN and

exploring the integration of auxiliary distance reward in initial stage of the DQN, this thesis

contributes to the understanding of DQN techniques deeply in autonomous gaming. These

findings form the basis for further research in DRL and refinement of algorithms to improve

the efficiency, adaptability and robustness of game-playing agents.
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7. CONCLUSION

The DQN algorithm has made significant contributions to the field of DRL by demonstrating

its capability to learn directly from high-dimensional raw sensory inputs. However, the DQN

algorithm exhibits certain inefficiencies that limit its performance and hinder its applicability

in complex and challenging environments primarily stem from the lack of sample efficiency.

In response to the inefficiency problems of the DQN algorithm, this thesis has proposed

a novel method that addresses these limitations and significantly enhances the overall

performance and sample efficiency of DQN. By incorporating a combination of techniques,

including bottom-up and top-down visual attention mechanism, the proposed method tackles

the challenges of inefficient learning of DQN in open-ai gym environments. Through

experimentation and evaluation on various game environments, the findings illustrate the

effectiveness of the proposed method compared to the standard DQN algorithm.

7.1. Key Findings of Attention-Augmented Deep Q-Network (AADQN)

Motivated by the lack of efficiency and flexibility of standard DQN, this thesis proposed a

new attention-augmented DQN model (AADQN), which integrates bottom-up and top-down

attention mechanisms, surpasses DQN performance in shorter steps, and demonstrates

adaptability in intricate environments.

While the bottom-up method identifies basic lower-level features, it may miss task-related

information due to noise or complexity by itself. The particle-filter-based top-down attention

mechanism addressed this limitation and enhanced DQN’s performance. Additionally, by

utilizing LRP, unimportant neurons on CNN were identified and frozen, improving DQN

robustness.

Leveraging a combination of particle filter and gradient descent impacts the determination of

gradient direction in a way that causes time-step basis acceleration during the training process

and improves the average score by about 134.93% across the eight game environments. The

particle-filter-based attention reduces fluctuation and provides more reliable convergence,
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together with alleviating the necessity for extensive training data that are typically required

by baseline DQN.

When comparing with other studies, it is worth noting that in certain complex games like

‘Wizard of Wor’ and ‘Qbert’, AADQN was outperformed by Asynchronous Advantage Actor

Critic (A3C) and Dueling DQN algorithms, respectively. However, if we exclude these two

games from our analysis, we can generally observe that AADQN performs relatively well in

complex game environments.

In future research, it would be valuable to conduct more extensive comparisons with other

methods, such as Gorila and Double DQN, and provide a more comprehensive analysis

involving other game environments in varying complexity. Furthermore, future research in

this field could explore the impact of clustering the extracted feature map of a CNN to reduce

the dimensionality of the attention vector. This clustering technique may have the potential

to enable game agents to attend to multiple areas simultaneously, thereby enhancing their

ability to focus on multiple regions of interest at once. Furthermore, inhibitory/negative

signals of LRP can also be taken into account, which might further enhance its contribution

by refining its functionality.

7.2. Key Findings of Auxiliary Distance Function Augmented DQN

(ADFDQN)

The findings of this research provide valuable insights into mitigating the inefficiency issues

of DQN and pave the way for more efficient DQN algorithms. This section summarizes

and highlights the importance of auxiliary functions in addressing the inefficiency limitation

of the baseline DQN. After successfully implementing ADF-augmented DQN across eight

different environments, we have concluded that ADF improves the learning efficiency of

the DQN during the early stages of specific tasks. However, notable challenges arose

in complex tasks, such as ’Wizardofwar,’ where the DQN agent confronted numerous

dynamics, some of which were not directly relevant to the task at hand. Consequently, this

complexity led to potential misdirection of the DQN agent in the early phases of training.
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Furthermore, in environments devoid of dynamics like Qbert, we observed that the results

were even worse than the baseline DQN, highlighting a potential limitation of the ADF

approach in static environments. This section compared the average score performance of

the early-stage performance of the Auxiliary Distance Function Augmented DQN algorithm

with the standard DQN algorithm. Keep in mind that the relative performance may vary

depending on the specific task and the choice of auxiliary tasks used. Additionally, note that

comparing early-stage performance may not necessarily reflect the long-term performance

of the algorithms, as their learning dynamics might differ over time. Therefore, it’s crucial to

consider the long-term performance as well if you want to make a comprehensive assessment

of the algorithms.
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7.3. Limitations of the Study

We introduced AADQN, an attention-augmented Deep Q-Network that integrates both

bottom-up and top-down attention mechanisms into the DQN baseline architecture. This

innovative approach yields improvements over traditional DQN baseline methods when

applied to video games in the OpenAI Gym environments. Our method achieves two

significant breakthroughs. Firstly, AADQN mitigates the exponential increase in the need

for high samples when tackling complex tasks. Secondly, it partially addresses the stability

limitations inherent in DQN, providing a more stable behavior with reduced fluctuations and

minimizing the risk of losing learned policies during training. Despite these advancements,

AADQN does have limitations. Looking ahead, our future plans involve expanding the

applicability of our algorithm to more intricate settings, such as its integration into real-world

systems. Additionally, while this study focused on evaluating AADQN across eight arcade

environments out of nearly 60 tasks, there is room for extending the evaluation to other

game environments in future research. In each game, AADQN consistently outperforms

the DQN baseline by selecting the maximum performance. Notably, all AADQN scores

represent values achieved before reaching the maximum score for each game due to the early

termination of AADQN runs caused by hardware constraints. We believe that if we had

been able to train AADQN for the same number of timesteps required to reach the maximum

score, our results would have demonstrated even further improvement.

It’s important to emphasize that, in this study, our examination of auxiliary comparison

is limited to the initial stages due to hardware constraints, and we are unable to present

the long-term average scores until the completion of training. Exploration of both early

and long-term performance could significantly contribute to a deeper understanding of the

algorithm’s capabilities and its effectiveness over extended training periods.
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7.4. Future Research Recommendations

Looking ahead, an exciting avenue for future research AADQN model proposes exploring

the idea of training the AADQN model on a specific eight OpenAI Gym games, like

Breakout, using the same architecture. This could potentially enable fine-tuning the model

for another environments. The concept here is to utilize the knowledge acquired from

training on one game and apply them to improve the performance and adaptability of the

model when transitioning to a different gaming environment. Investigating the potential of

transfer learning in this context not only expands the usability of the AADQN model but

also contributes to a more in-depth understanding of how well it can adapt and perform

efficiently across a variety of gaming scenarios. This recommendation encourages further

exploration into the details of transfer learning within the AADQN framework, paving the

way for advancements in its ability to generalize and its potential deployment in diverse

environments.

In future research, it would be valuable to expand the scope of comparisons by including

a broader range of methods, such as General Reinforcement Learning Architecture such

as Gorila. These algorithms have demonstrated promising results in various RL domains

and could provide insightful benchmarks for evaluating the performance of the proposed

approach. A more comprehensive analysis involving additional game environments with

varying levels of complexity would also contribute to a better understanding of the

algorithm’s generalizability and scalability across different problem domains.

Moreover, future research in this field could explore the potential impact of clustering

techniques applied to the extracted feature map of a Convolutional Neural Network (CNN).

By clustering the feature map, it might be possible to reduce the dimensionality of the

attention vector, potentially enhancing the game agent’s ability to attend to multiple areas

simultaneously. This approach could offer a more efficient and effective way for agents to

allocate attention across different regions of interest, leading to improved decision-making

and performance in complex game environments with diverse visual stimuli.
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Additionally, investigating the integration of negative signals within the Layer-wise

Relevance Propagation (LRP) framework could be a promising avenue for future research.

By incorporating these signals into the LRP process, it may be possible to refine the

functionality and contribution of LRP, potentially leading to improved interpretability and

understanding of the model’s decision-making process. This could provide valuable insights

into the inner workings of the RL agent and enhance its ability to explain its actions and

decisions in a more transparent and interpretable manner.

Irrelevant neurons might become noticeable or apparent only in certain or specific situations.

Neurons that were irrelevant in one phase of training might become important in other phases,

and freezing them could impede the model’s ability to adapt. Moreover, the freezing of

neurons might affect the generalization ability of the model. Future research can be consider

a freezing strategy, rather than freezing of all irrelevant neurons, identify and freeze those that

consistently demonstrate low relevance across a range of various different environments.

Exploring the performance of the Auxiliary Distance Function Augmented DQN algorithm

in comparison to the standard DQN algorithm, both in the early learning phases and during

convergence, holds potential for shedding light on learning dynamics and the benefits of

integrating auxiliary tasks. As we delve into future research, a comprehensive exploration

of both early and long-term performance could further enhance our understanding of the

algorithm’s capabilities.

By addressing these avenues for future research, we can further advance the field of RL in

game playing and deepen our understanding of the capabilities and limitations of different

algorithms. These endeavors have the potential to drive innovation, foster new insights, and

pave the way for the development of more robust and intelligent game playing agents.

7.5. Future Avenues for Enhanced Ablation Studies

It’s important to note that limitation in ablation study emphasizing the non-complex task

training. Moreover, Conducting the ablation study on the simplest task within the constrained

scenario serves as a necessary starting point for future research. We acknowledge the
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importance of evaluating the model ablation analysis across a broader range of environments.

This baseline analysis serves as a guiding reference for subsequent studies aiming to expand

the ablation study to encompass more diverse environments, enabling a comprehensive

evaluation of the model’s capabilities.

Despite the hardware limitations that confined our ablation study, we offer recommendations

for extending ablation studies in the future. By addressing these limitations, future research

endeavors can build upon our findings, contributing to a deeper understanding of the intricate

relationships within attention components.

7.6. Auxiliary Distance Function (ADF)

Due to the limitations imposed by our hardware, we were unable to thoroughly explore

auxiliary functions throughout the entire training process. This constraint forced us to focus

solely on the early stages of model training. However, in the interest of transparency and

providing comprehensive information, we have included this constrained experiment in the

recommendations section of the thesis.

Comparing the performance of the Auxiliary Distance Function Augmented DQN algorithm

with the standard DQN algorithm in the early stages of training can provide insights into the

initial learning dynamics and potential benefits of incorporating auxiliary tasks.

The choice and design of an auxiliary function depend on the RL problem and the desired

learning goals and can take different forms depending on the specific problem. It requires

careful consideration and experimentation to determine the most effective auxiliary function

that complements the main RL task and enhances learning performance. The objective of

this section is to evaluate the efficacy or effectiveness of incorporating the ADF in enhancing

the performance of the DQN during the initial phases of the training process across eight

experimental environments. By introducing the ADF as an additional component to the DQN

algorithm, we seek to evaluate its impact on the agent’s learning capabilities in the early

stage of these diverse environments. Our agent tries to maximize ADF feedback rewards
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simultaneously by DQN reward. Experiment results, show how the inclusion of the ADF

influences the DQN agent’s performance during its early stages.

We conduct a comparative analysis concerning DQN in terms of the game average scores

in the early stages of each task. The average score analysis includes the number of steps

required to achieve a certain average score in the initial phase of the learning journey. Table

7.1 provides the comparison of training the ADF augmented DQN (ADFDQN) and DQN

baseline agent based on average scores achieved on the eight tasks at the early stages for

each task. We do not show the progress of the two agents in long-term average scores until

the end of the training. At the defined evaluation intervals, record the average score for both

algorithms. Execute the training process for the same number of time steps, ensuring that

both algorithms are trained for an equal duration. Table 7.1 just demonstrates the average

score of the initial stages performance comparison between both algorithms. Experiment

results in Table 7.1 show that ADFDQN is not effective in the early stage of complex

environments like Wizardofwor. But improves the learning efficiency of the DQN during

the early stages of some simple dynamic tasks. Furthermore, in environments with a lack of

dynamics like Qbert, the performance is worse than the baseline DQN,
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DQN

Baseline

DQN

Augmented ADF

Game TimeSteps Avg.Score T imeSteps Avg.Score

Pong ≈1 ×106 -16.7 ≈7 ×105 -13.9

Wizard of Wor ≈5 ×106 50 ≈5 ×106 31

SpaceInvaders ≈1 ×106 33 ≈1 ×106 26

Breakout ≈1 ×106 5.5 ≈6 ×105 6.5

Asterix ≈3 ×106 300 ≈2 ×106 320

Seaquest ≈1 ×106 40 ≈8 ×105 55

Beamrider ≈5 ×106 25 ≈3 ×106 28

Qbert ≈1 ×106 45 ≈1 ×106 17

Table 7.1 DQN vs. ADFDQN Average score comparison

Although our exploration was limited to the initial training phases, we still obtained valuable

insights from this analysis. These insights lay the groundwork for future investigations and

highlight the importance of expanding these experiments beyond the early training stages. In

this section of the thesis, we discuss the implications of this limitation and propose directions

for future research. By extending the analysis to encompass later stages of training, can gain

a more comprehensive understanding of the dynamics and impact of auxiliary functions.

In summary, due to hardware constraints, our exploration of auxiliary functions was confined

to the early stages of training. Despite this limitation, the insights gained from this analysis

are valuable and provide a starting point for further research. We emphasize the need to

extend these experiments beyond the initial training stages to gain a more comprehensive

understanding of how auxiliary functions influence the model.
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Appendices

Appendix 1: Experiment Environments

The OpenAI Gym Atari environment is a widely used benchmark for evaluating

reinforcement learning algorithms in the domain of video games. This appendix offers a

comprehensive depiction of the Atari environment and its specific games that were utilized in

this thesis. Using the OpenAI Gym Atari environment in this thesis allowed the algorithm to

receive observations (game frames) as input and select actions to interact with environment.

The environment also provided rewards and termination signals to evaluate the algorithm’s

performance. The Atari environment consists of a collection of classic Atari 2600 games,

such as Pong, Breakout, Space Invaders, and many more. These games are ideal for

evaluating reinforcement learning algorithms due to their rich and diverse dynamics, complex

visual inputs, and challenging gameplay. Each game is treated as a separate task, requiring

the agent to learn appropriate actions to maximize its rewards.

In this thesis, a subset of Atari games (Pong, Breakout, SpaceInvaders, Asterix, Seaquest,

Beamrider, Qbert, Wizarofwar) was selected to investigate the performance of proposed

algorithm. The chosen games were carefully chosen to represent a range of complexities.

These games include both simple and visually intricate environments, enabling a thorough

analysis of the algorithm under various conditions. To conduct experiments, the OpenAI

Gym Atari environment provided a standardized interface for interacting with the games.

This interface allowed the algorithm to receive observations (game frames) as input and

select actions to be executed within the games. The environment also provided rewards and

termination signals to evaluate the agent’s performance.

Detailed information about the Atari games used, including their specific features can be

found in the following sections of this thesis appendix.
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1.Pong

Figure 7.1 Pong Atari environment

Pong is a two-player table game where the objective is to score points by hitting a ball back

and forth between two paddles. The game is played on a rectangular grid, with each player

controlling a paddle that can move up and down along the side of the screen. The ball moves

horizontally across the screen, bouncing off the paddles and the walls at the top and bottom.

By using the Pong environment, this thesis aimed to investigate how the reinforcement

learning algorithm could learn effective strategies to play simple games without complexity.

2.Breakout

Figure 7.2 Breakout Atari environment
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The Breakout game is a single-player game where the player maneuvers or controls a paddle

positioned at the lower section of the screen, bouncing a ball off the paddle to break a wall

of bricks located at the upper part of the screen. The goal is to eliminate or remove all the

bricks while preventing the ball from falling below the paddle. The player earns points for

each brick destroyed, and the game becomes progressively more challenging as the number

of bricks decreases.By utilizing the Breakout environment, this thesis aimed to investigate

how the proposed algorithm could learn effective strategies to clear the bricks, anticipate the

ball’s trajectory, and make precise paddle movements.

3.Qbert

Figure 7.3 Qbert Atari environment

The Qbert game is a single-player game where the player controls a character named Qbert,

who must hop on a pyramid of cubes to change their colors. The objective is to change

the color of all the cubes while avoiding various enemies that roam the pyramid. Qbert

must strategically navigate the pyramid, avoiding hazards and enemies. By utilizing the

Qbert, this thesis aimed to investigate how the proposed algorithm could effectively navigate

the pyramid, change cube colors, and avoid enemies in order to maximize its score. The

algorithm’s ability to learn optimal strategies, adapt to changing enemy behavior, and make

strategic decisions in the dynamic and challenging world of Qbert was examined.
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4.Seaquest

Figure 7.4 Seaquest Atari Environment

The Seaquest game is an underwater rescue mission game where the player controls a

submarine navigating the depths of the ocean. The objective is to save divers stranded at

various depths while battling against hostile sea creatures while avoiding collisions with

obstacles and enemies. In this thesis, the Seaquest environment was utilized to assess the

performance of the suggested algorithm when compared with some more complexity. We

aimed to investigate the algorithm’s ability to learn long-term planning, adapt to changing

situations, and optimize its actions in the dynamic and challenging world of Seaquest.

5.Asterix

Figure 7.5 Asterix Atari Environment
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The Asterix is a classic video game that player controls Asterix, the main character, and help

Asterix to navigate and collect treasures while avoiding obstacles and enemies. Asterix can

defeat enemies by jumping on their heads or by using a limited supply of magic potions.

The game features different types of enemies. In the context of our thesis, we are using the

Asterix game to provide a description of the proposed methods performance about enemy

behaviors.

6.Beamrider

Figure 7.6 Beamrider Atari Environment

The Beamrider game is a single-player space shooter game where the player controls a

spaceship that moves horizontally at the bottom of the screen. The objective is to destroy

enemy ships and other obstacles while navigating through a series of space lanes. The

player must avoid colliding with enemy projectiles and obstacles while aiming to achieve

high scores. By utilizing the Beamrider environment, this thesis aimed to investigate how

proposed algorithm could learn effective strategies to destroy enemy ships and navigate

through the challenging space lanes to maximize its score. The algorithm’s ability to adapt

to changing enemy formations, make strategic decisions, and optimize its actions in dynamic

gameplay of Beamrider was examined.

7.Wizard of Wor
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Figure 7.7 Wizard of Wor Atari Environment

The Wizard of Wor game is a classic maze-based shooter game that offers both single-player

and two-player cooperative gameplay. In the Wizard of Wor game, players control characters

who navigate through maze. The objective is to eliminate enemy creatures while avoiding

their attacks. The game provide challenging layout of mazes and enemy configurations.

Players can shoot to defeat the enemy, but they must be careful to avoid being hit by

enemy fire. In the context of this thesis, investigate the proposed method performance by

considering gameplay strategy about enemy behavior, evaluating its ability to navigate the

complex maze and timing to defeat.

8.SpaceInvaders

Figure 7.8 SpaceInvaders Atari Environment
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In Space Invaders, the player controls a spaceship positioned at the bottom of the screen,

moving horizontally to dodge enemy projectiles and firing back at rows of descending alien

invaders. The objective is to eliminate all the aliens before they reach the bottom of the

screen. The aliens gradually advance and increase their speed. The player can take cover

behind destructible barriers to shield themselves from enemy fire, but the barriers also

gradually deteriorate and can be destroyed by both the player and the aliens. This thesis

discusses the performance of the suggested algorithm engaging in SpaceInvaders, evaluating

its ability to dodge enemy projectiles, strategically eliminate aliens, and potentially optimize

its gameplay strategy.
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