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Advanced deep learning models have greatly improved various natural language 

processing tasks. While they perform best with abundant data, acquiring large datasets 

for each task is not always easy. Therefore, by using data augmentation techniques, 

comprehensive data sets can be obtained by creating synthetic samples from existing data. 

This thesis undertakes an examination of the efficacy of autoencoders as a textual data 

augmentation technique targeted at improving the performance of classification models 

in text classification tasks. The analysis encompasses the comparison of four distinct 

autoencoder types: Traditional Autoencoder (AE), Adversarial Autoencoder (AAE) 

Denoising Adversarial Autoencoder (DAAE) and Variational Autoencoder (VAE). 

Moreover, the study investigates the impact of different word embedding types, 

preprocessing methods, label-based filtering, and the number of epochs for training on 

the performance of autoencoders. Experimental evaluations are conducted using the SST-

2 sentiment classification dataset, consisting of 7791 training instances. For data 

augmentation experiments, subsets of 100, 200, 400, and 1000 randomly selected 
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instances from this dataset were employed. Experimental evaluations involved 

augmenting data at ratios of 1:1, 1:2, 1:4, and 1:8 when working with small datasets. 

Comparative analysis with baseline models demonstrates the superiority of AE-based 

data augmentation methods at a 1:1 augmentation ratio. These findings underscore the 

effectiveness of using autoencoders as data augmentation methods for optimizing text 

classification performance in NLP applications. 

 

 

Keywords: Natural Language Processing, Autoencoders, Data Augmentation, Text 

Classification  



 

 

 

iii 

ÖZET 

 

DOĞAL DİL İŞLEME İÇİN VERİ ARTIRMA 

 

 

Mustafa ÇATALTAŞ 

 

 

Yüksek Lisans, Bilgisayar Mühendisliği  

Danışman: Prof. Dr. İlyas ÇİÇEKLİ 

Eş Danışman: Doç. Dr. Nurdan BAYKAN 

Temmuz 2024, 88 sayfa  

 

 

Gelişmiş derin öğrenme modelleri, çeşitli doğal dil işleme (DDİ) görevlerinin etkinliğini 

büyük ölçüde artırmıştır. Bu modeller genellikle bol miktarda veriyle en iyi performansı 

gösterirken, her görev için büyük veri kümeleri elde etmek her zaman kolay 

olmamaktadır. Bu nedenle, veri artırma teknikleri kullanılarak, mevcut veriden sentetik 

örnekler oluşturarak kapsamlı veri kümelerinin elde edilmesi sağlanabilmektedir. Bu tez, 

metin sınıflandırma görevlerinde sınıflandırma modellerinin performansını artırmayı 

amaçlayan bir metinsel veri artırma tekniği olarak otokodlayıcıların etkililiğini 

incelemektedir. Analiz, Geleneksel Otokodlayıcı (GO), Değişimsel Otokodlayıcı (DO), 

Çekişmeli Otokodlayıcı (ÇO) ve Gürültü Önleyici Çekişmeli Otokodlayıcı (GÖÇO) 

olmak üzere dört farklı otokodlayıcı türünün karşılaştırılmasını kapsamaktadır. Ayrıca 

çalışma; farklı kelime gömme (temsil) türlerinin, ön işleme yöntemlerinin, etiket tabanlı 

filtrelemenin ve eğitme sayılarının otokodlayıcıların performansı üzerindeki etkisini 

araştırmaktadır. Deneysel çalışmalarda 7791 eğitim verisine sahip SST-2 duygu 

sınıflandırma veri seti kullanılmıştır. Veri arttırma çalışmaları için bu veri setinden 

rastgele seçilmiş 100, 200, 400 ve 1000 boyutundaki verilerle çalışılmıştır. Deneysel 

değerlendirmelerde, küçük veri setlerinde çalışırken 1:1, 1:2, 1:4 ve 1:8 oranlarında veri 

arttırma yapılmıştır. Temel modellerle karşılaştırmalı analizler, arttırma oranı 1:1'de GO 

tabanlı veri arttırma yöntemlerinin üstünlüğünü göstermektedir. Bu bulgular, 
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otokodlayıcıların, doğal dil işleme uygulamalarındaki metin sınıflandırma performansını 

optimize etmek için veri arttırma yöntemleri olarak kullanılmasının etkililiğini 

vurgulamaktadır. 

 

 

Anahtar Kelimeler: Doğal Dil İşleme, Otokodlayıcılar, Veri Artırma, Metin 

Sınıflandırma 
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1. INTRODUCTION 

Over the past few decades, there have been a dramatic rise in the use of Deep Learning 

(DL) methodologies within the field of Natural Language Processing (NLP) which caused 

by remarkable efficacy of DL techniques in handling complex linguistic structures [1]. 

Thanks to emergence of advanced DL architectures such as Attention-based models [2] 

and Long Short-Term Memory (LSTM) [3], which have exhibited superior capabilities 

in capturing semantic information and long-range dependencies inherent in natural 

language data [4], significant progress have been achieved in tasks such as text 

classification and language modeling. Moreover, advancements in computational power 

of hardware infrastructures and parallel processing [5] have contributed to larger DL 

models, enabling DL models to capture more linguistic nuances [6]. As a result, most 

NLP applications have utilized DL models to obtain improved performance such as 

question answering, and sentiment analysis [7-11].  

One drawback of DL models is their requirement of large volumes of data which cannot 

be supplied in every scenario [12]. To overcome this problem, different approaches are 

employed, such as transfer learning and data augmentation (DA) [13]. While all of these 

have contributed to tackling the problem, DA is the only solution which can increase the 

volume of the data used without having a change on the DL model.  

DA serves as a pivotal technique in Machine Learning (ML), providing the expansion 

and enrichment of training datasets by introducing diverse variations to existing data 

samples [14]. Widely employed across various ML domains, this method addresses 

limitations posed by limited or imbalanced data, enhancing model performance and 

robustness [15]. Tailored augmentation strategies, such as flipping and rotating for image 

classification or paraphrasing and word dropout for sentiment analysis, underscore its 

adaptability to specific tasks, optimizing model efficacy amidst real-world complexities. 

Particularly in NLP, where the demand for diverse and abundant data is paramount, 

augmentation techniques hold high significance, promoting advancements in model 

generalization and performance through the manipulation of linguistic structures and 

semantics.  

Text classification, a crucial aspect of NLP, involves assigning labels to textual 

documents according to their content, including sentiment analysis, spam detection, and 
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topic categorization [16]. While traditional methods like Naive Bayes and decision trees 

have been effective, they struggle with capturing semantic nuances. Deep learning 

methods, including transformers and LSTMs, have become effective instruments for text 

classification by encoding semantic details with exceptional performance [17]. Similarly, 

sentiment classification, a subtask of text classification, focuses on identifying emotional 

tone in text [18], with deep learning techniques revolutionizing the field by capturing 

contextual information and sentiment nuances effectively. 

This thesis explores the application of autoencoders for textual DA in the context of text 

classification. Various autoencoder architectures and data augmentation strategies were 

examined on the SST-2 dataset. Furthermore, the influence of augmented data on the 

performance and robustness of text classification models is evaluated. By leveraging the 

power of autoencoders for DA, it is aimed to enhance the scalability, efficiency, and 

effectiveness of text classification systems, particularly in situations where obtaining 

labeled data is limited or costly. 

The structure of this thesis is as outlined: an introduction to the primary focus of the thesis 

is given in Section 1. Section 2 gives detailed information on fundamentals of the thesis. 

Section 3 examines existing literature on textual DA methods and AE-based DA methods. 

Section 4 introduces methods used in this thesis. Section 5 presents findings on dataset 

comparisons and method evaluations. Section 6 provides a summary of significant 

discoveries and suggests implications for future research endeavors. 
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2. BACKGROUND OVERVIEW 

 

2.1. Data Augmentation 

Data augmentation (DA) is a commonly employed method in machine learning (ML) to 

augment the size and diversity of a training dataset [15]. General methods for DA making 

changes or adjustments to the existing data, generating new samples that resemble 

original samples but are not exact replicas of the original samples. DA has proven to be 

an effective method for improving the performance and robustness of ML models [19], 

Particularly in scenarios where there is a shortage or imbalance in the training data. 

Different ML tasks require tailored DA techniques to optimize model performance. For 

example, in computer vision tasks like image classification, common augmentations 

include flipping, rotating, and changing colors [20] along with deep learning approaches 

such as Adversarial Training [21] and Neural Style Transfer to create variations in the 

training images [22]. Similarly, in NLP tasks such as topic modelling, paraphrasing and 

word dropout can be used to augment textual data, improving the model's ability to 

understand language nuances. Likewise, in speech recognition tasks, augmentations like 

pitch shifting and introducing noise can enhance the model's robustness against variations 

in speech patterns and background noise [23-25]. Adapting augmentation methods to 

specific tasks is crucial for enhancing model performance and adaptability across 

different real-world scenarios.  

 

2.2. Textual Data Augmentation 

Recent years have seen notable progress in Natural Language Processing (NLP), 

propelled by the adoption of Machine Learning (ML) techniques and increased 

computational capacity. Given the data-intensive nature of these ML approaches, the 

significance of textual Data Augmentation (DA) has grown, as it produces varied and 

high-caliber data samples crucial for training and evaluating ML models. In this section, 

fundamental textual DA techniques that have been effective in improving the 

performance and generalization capabilities of NLP models will be explored.  

By introducing variations in sentence structure, semantics, and syntax, textual DA 

techniques unlock new possibilities for tackling challenges such as data scarcity, domain 
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adaptation, and model robustness. Textual DA methods can be grouped into 3 categories 

based on the underlying techniques as proposed in [26]. These categories are Noising-

based DA, Paraphrasing-based DA and Sampling-based DA. Each technique offers a 

unique approach to augmenting textual data, providing researchers and practitioners with 

valuable tools to tackle real-world language processing tasks.  

Figure 2.1 illustrates the basics of each DA technique. Here, paraphrasing-based DA is 

demonstrated with a substitution with hyponym; noising-based DA is demonstrated with 

random insertion of plural form and random deletion and sampling-based DA is 

demonstrated with a new sentence which created by sampling new attributes obtained 

from the dataset.  

 

 

Figure 2.1. Example of paraphrasing-based, noising-based and sampling-based textual DA 

methods, adapted from [26]. 

 

2.2.1. Noise-Based DA Methods 

Noise-based DA serves as a pivotal technique in NLP, aiming to simulate real-world 

complexities by introducing random variations into the original text [26]. Operating 

across character, sentence, and word levels, this method enriches the dataset, however, it 

does not ensure semantic coherence of the textual data unlike paraphrasing-based or 

sampling-based DA. The idea behind adding noise to textual data is to introduce new 

challenges to the DL models which cannot be found in natural text data.  
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At the character level noise, individual characters are manipulated through processes like 

random insertion [27]. At word level, random swapping, random insertion, random 

substitution, random deletion [28] of words are generally used to introduce noise to text 

by modifying tokens in sentences without affecting the structure of the sentence. Sentence 

level noising focuses on perturbing entire sentences to diversify structures and wording 

like combining [29] or sentence shuffling [30]. By exposing NLP models to diverse 

linguistic expressions encountered in real-world scenarios, noise-based augmentation 

enhances their robustness and generalization capabilities. In Figure 2.2, examples for 

noising-based DA methods are given.  

 

 

Figure 2.2. Example of noising-based DA methods, adapted from [26].  

 

2.2.2. Paraphrasing-Based DA Methods 

Paraphrasing-based DA involves altering the initial sentence to create new sentences 

while preserving the original meaning, despite changes in structure and wording [26]. 

These methods operate across various levels including lexical, phrase, and sentence 

paraphrasing. Thesauruses like WordNet offer a straightforward approach by replacing 

words with synonyms or hypernyms to maintain semantic integrity [28]. 

Semantic embeddings offer an advancement over thesaurus-based methods by using pre-

trained word embeddings to replace words with their closest neighbors in embedding 

space [31]. Language models, particularly pretrained models like BERT, introduce a 

context-aware approach to paraphrasing. The use of conditional BERT for sentence 

augmentation, masking and predicting words based on context is demonstrated in [32].  

Examples
DA Method

AugmentedOriginal

The childrenpark  oyfully in theplayedThe children played  oyfully in the park andom Swapping

There is a tree behind themThere is a tree behind them andom Deletion

Leaves petals are slowly fallingLeaves are slowly falling andom Insertion



 

 6 

Another approach is Backtranslation [33], which employs Sequence-to-Sequence 

(Seq2Seq) language models. This method translates the original sentence into different 

target languages before translating it back to the source language. While the translated 

data may not precisely match the original, it maintains semantic similarity.  

In Figure 2.3, examples from selected paraphrasing-based DA methods are given. Here, 

rule-based method paraphrases the sentence using predefined regular expression [34]. 

Another example given in Figure 2.3 is Backtranslation [33] where paraphrasing is done 

through translation. The last example utilizes word embeddings for paraphrasing [35].  

 

 

Figure 2.3. Example of paraphrasing-based DA methods, adapted from [26]. 

 

2.2.3. Sampling-Based DA Methods 

Sampling-based DA entails the generation of novel instances from an existing corpus 

using various sampling techniques [26]. Unlike methodologies that might focus on 

individual instances during generation, this approach considers the entire corpus as a 

basis. Consequently, the resulting text manifests as a novel variant while upholding 

patterns consistent with the original corpus. Various sampling strategies, such as random 

sampling, stratified sampling, or oversampling of underrepresented classes, can be 

employed in this technique, tailored to the specific needs of the DA task. By leveraging 

sampling-based DA, the augmented dataset encompasses a wider array of variations, 

thereby increasing model robustness and generalization capabilities. Moreover, this 

technique proves particularly advantageous in scenarios characterized by limited original 
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dataset sizes, enabling the creation of additional training instances without necessitating 

manual data collection or annotation efforts. 

 

2.3. Text Classification 

Text classification in the field of NLP pertains to the fundamental task of assigning labels 

to text documents, playing a pivotal role in numerous applications ranging from sentiment 

analysis to document classification [16]. Over time, many methods have been devised to 

tackle the intricacies of text categorization. Traditionally, ML algorithms such as k-

Nearest Neighbors, and decision trees were prominently employed for constructing 

classification models [16], where numerical representation methods were utilized to 

encode textual information. Despite their historical effectiveness, these conventional 

methods exhibit limitations in capturing semantic nuances at both the sentence and 

document levels, rendering them inadequate for addressing more intricate text 

classification tasks such as intent classification and irony detection [17]. Therefore, Deep 

learning models, such as recurrent neural networks (RNNs) and transformers [36-38], 

have emerged as powerful tools for text classification, leveraging their ability to learn 

intricate patterns and capture semantic relationships across large datasets [17]. 

Sentiment classification, a subtask of text classification within NLP, involves the 

automatic identification and categorization of the emotional tone or sentiment expressed 

within textual content [39]. Sentiment classification holds particular significance in 

applications such as customer feedback analysis and social media monitoring. Traditional 

machine learning methods have been widely employed for sentiment classification, often 

utilizing features like word embeddings and lexicon-based approaches [40]. However, 

deep learning techniques have revolutionized sentiment classification in recent years, 

offering enhanced capabilities in capturing contextual information and nuances of 

sentiment expression [18], as explained for text classification.  

 

2.4. Autoencoders 

An autoencoder represents a neural network structure extensively employed in 

unsupervised learning and dimensionality reduction endeavors [41]. Comprising two 

primary components, namely the encoder and decoder, autoencoders are trained to 
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reconstruct input data. The encoder condenses the input into a latent representation, while 

the decoder strives to reconstruct the initial input from this representation. Through the 

process of learning to reconstruct the input, the autoencoder effectively acquires the 

capability to generate a condensed representation of the data [42].  

The autoencoder architecture consists of three primary components: an encoder, a 

bottleneck, and a decoder. Both the encoder and decoder may be constructed with 

multiple layers, such as convolutional layers or LSTM layers. The main goal of training 

an autoencoder is to minimize the reconstruction error, usually assessed through a loss 

function [43]. The autoencoder learns to encapsulate the most significant characteristics 

of the data in the latent representation by reducing the discrepancy between the input and 

output. 

Autoencoders find applications across various domains. They are used for dimensionality 

reduction [44], where they learn condensed representations of data with high dimensions, 

which can be beneficial for tasks like feature extraction and data visualization. 

Additionally, autoencoders are employed in anomaly detection [45], where they learn the 

normal patterns of a dataset to detect anomalies or outliers. Variants of autoencoders [46], 

such as variational autoencoders (VAEs) [47] and generative adversarial networks 

(GANs) [48], are used for generative modeling. In Figure 2.4, a basic representation of 

architecture of a typical autoencoder is shown.  

 

 

Figure 2.4. A basic representation of architecture of a typical autoencoder.  
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3. RELATED WORK ON DATA AUGMENTATION 

As stated in Section 2, textual DA techniques have been categorized into three categories 

which are Noising-based DA, Paraphrasing-based DA and Sampling-based. Thus, 

previous works in literature are analyzed under these categories.  

 

3.1. Noising-based DA Methods 

The approach of noise-induced DA aims to enrich datasets by introducing random 

perturbations into textual data. One prominent application in the realm of textual DA is 

Easy Data Augmentation (EDA) [28] which combined various rule-based transformations 

to enhance the text classification performance of ML models. These methods include both 

noising-based and paraphrasing-based DA methods, so EDA could be considered under 

both categories. DA techniques employed in the study by Wei and Zou [28] unfolds as 

follows: 

• Synonym Replacement: This method involves selecting a specified quantity of 

non-stop words from the sentence and then substituting them with equivalent 

synonyms. 

• Random Insertion: This approach involves randomly selecting a non-stop word 

from the sentence, then inserting a random synonym of that word into a randomly 

chosen position within the sentence. 

• Random Swap: This operation entails randomly selecting two words from the 

sentence and then exchanging their positions. 

• Random Deletion: Words from the sentence are subject to random deletion with 

a certain probability 𝑝.  

In the study conducted by [27], an innovative technique known as An Easier Data 

Augmentation (AEDA) aimed at augmenting textual data solely through the insertion of 

random punctuation marks was introduced. This operation involves determining the 

quantity of punctuation for each sentence, selecting insertion points, and punctuation 

randomly. In comparison with the widely used method of EDA [28], AEDA offers a 

simpler approach and avoids the loss of information associated with random deletion 

operations inherent in EDA. Empirical evaluations indicate that AEDA consistently 

outperforms EDA across various datasets in the context of text classification tasks [27].  
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3.2. Paraphrasing-based DA Methods 

Paraphrasing-based DA methods aim to generate new samples based on original samples, 

while preserving the semantic coherence of original samples. A fine example of 

paraphrasing-based DA is proposed in [49] where the data is augmented via cropping and 

rotating the sentence with the help of dependency parsing [50]. While performing 

rotations and crops on sentences, the dependency parser algorithm determines the 

interrelated words and ensures the connectivity of such words is preserved throughout the 

transformational process. Furthermore, the parser identifies the essential components of 

the sentence and refrains from cropping them out of context. This method requires a 

dependency parser to work with any language. In experiments, this method is applied for 

different low-resource languages such as Lithuanian, Turkish for PoS-tagging task. The 

results showed that both cropping and rotating are valid DA methods that increase the 

accuracy of PoS-taggers. Figure 3.1 shows an example of methods proposed in [49].  

 

 

Figure 3.1. Example crop and rotation transformation proposed in [49]. 

 

Some of the studies in the literature propose precise augmentation techniques for more 

specific tasks to improve the performance gain attained from the augmentation process. 

In [51], a DA pipeline specifically tailored for aspect-based sentiment analysis was 
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proposed. Aspect-based sentiment analysis is used to determine sentiment orientation 

towards an entity or aspect within the text. The research in this area has accelerated since 

the arrival of advanced DL models since DL models can encode aspect-based sentiment 

information without manually extracted features unlike previous ML algorithms. DA 

techniques used in [51] were: 

• Part-of-speech (PoS) wise synonym substitution (PWSS): After PoS-tagging the 

original sentence, synonyms with the same PoS-tags are identified. Then, the 

synonym with the highest semantic similarity score to the original word is selected 

and replaced within the sentence. An example of PWSS is given in Figure 3.2. In 

Figure 3.2, all words except for “quality” are candidates for synonym substitution. 

That is because “quality” is considered as an aspect term for this sentence.  

 

Figure 3.2. PWSS example, adapted from [51].  

 

• Dependency relation-based word swap (DRAWS): A dependency syntax tree, 

representing a sentence's structure with a root and dependency arcs between 

words, is utilized. This tree serves as the basis for a DA method where synonym 

words with the same arc to the root node are exchanged between sentences to 

generate new sentences. An example of this DRAWS is given in Figure 3.3.  
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Figure 3.3. DRAWS example, adapted from [51].  

 

3.3. Sampling-based DA Methods 

Since large language models have been successful at understanding natural language and 

generating text within the boundaries of natural language, they are well-suited for 

generating new data samples upon original data samples. There have been numerous 

works that utilizes LLM's for DA [4]. 

In [52], a novel approach for leveraging prompt-based Large Language Model (LLM) 

architectures for DA was introduced. Prior to this investigation, existing studies utilized 

LLMs fine-tuned solely on text data, demonstrating their effectiveness. However, this 

study extended the scope by incorporating additional contextual information in the form 

of class labels, thereby enhancing the conditionality of the DA process. Specifically, 

employing a structured prompt format comprising text tags, class tags, and corresponding 

class labels for three distinct LLM architectures, namely the Bidirectional Encoder 

Representations from Transformers (BERT) [53], the Generative Pre-trained Transformer 

2 (GPT-2) [54] and the Bidirectional and Auto-Regressive Transformers (BART) [55] 

were fine-tuned for DA. Experimental evaluations conducted for text classification tasks 

revealed superior performance of models trained with datasets tailored for BART. 

Although BERT exhibits comparable results to BART, it was observed that the GPT-2 

model fails to effectively retain the target class information embedded within the text 

prompts, resulting in suboptimal outcomes.  
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In [56], a novel method employing GPT-3 for Data Augmentation (DA) was introduced. 

The authors critiqued the prompt-based approach, highlighting limitations such as the 

constraint on the size of in-context augmentation and challenges posed by real-world 

issues like memory constraints. This study addressed these concerns by fine-tuning GPT-

3 using a structured prompt format, wherein the job description was presented initially, 

followed by the text and target classes. This structured prompt guided GPT-3 to generate 

text in a format that includes both the text itself and its associated probability of belonging 

to a specific class. This inclusion of class probabilities proved advantageous for DA, as 

it enables the filtering of generated data samples that may not confidently belong to a 

particular class based on their probabilities. 

In [57], a pioneering approach to DA for NLP was presented, where a versatile language 

model was trained to satisfy the DA requirements across various NLP tasks, ranging from 

text classification to text generation. This approach introduced the Knowledge Mixture 

Training (KoMT) strategy, designed to train a pre-existing encoder-decoder generative 

language model named KnowDA. The KoMT strategy was structured around four 

fundamental components. Firstly, a diverse collection of datasets spanning a broad 

spectrum of NLP tasks was assembled, facilitating the training of the multi-task DA 

model, KnowDA. Secondly, a standardized format was devised for all tasks, adopting a 

key-value structure that encompasses features, feature descriptions, and actual samples. 

This format ensures uniformity across tasks. Thirdly, the training process involved 

denoising objectives, wherein key-value pairs within each sample were randomly masked 

to enhance the robustness of KnowDA. The primary aim of KnowDA was to predict these 

masked fields, thereby improving its ability to generate coherent outputs. Lastly, to 

address challenges stemming from rare or unseen NLP tasks during training, a 

demonstration component is integrated into the samples. Leveraging its pretraining and 

instruction-following capabilities, KnowDA adapted to previously unseen NLP tasks 

through demonstration exemplars. In Figure 3.4, an example of KoMT is given. 
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Figure 3.4. An example of KoMT method, adapted from [57].  

 

3.4. Autoencoders for Data Augmentation 

Autoencoders are used for data augmentation on a variety of data types such as image, 

text, and tabular data. In [58], Self-Supervised Manifold Based Data Augmentation 

(SSMBA) was introduced which resembles Denoising Autoencoders [59] by corrupting 

the input by a predefined corruption function and then reconstructing the original input 

from corrupted input using a reconstruction function. The motivation behind SSMBA was 

to create a DA model that could work with any supervised NLP task regardless of domain.  

In [60], the effectiveness of sparse, undercomplete, deep, and variational autoencoders 

for augmenting and generating synthetic data, focusing on financial datasets was 

explored. Autoencoder augmentation significantly enhances predictive performance, with 

a notable average model score improvement. Variational autoencoders notably capture 

non-linear correlations more effectively.  

In [61], DA for binary text classification is done through using Variational Autoencoder 

(VAE) as a generative model. In their approach, they train a VAE with original dataset 

and use the decoder of VAE with random sampling on latent vector of VAE. To provide 

conditionality, they trained one VAE per class which makes the output of DA specific to 

each class.  

In [62], Variational Hierarchical Dialog Autoencoder (VHDA), which is tailored to 

capture linguistic features and structured annotations, was introduced. By leveraging 

interconnected latent variables, VHDA produces cohesive purposeful dialogs while 
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addressing training intricacies linked with variational models. Empirical findings across 

various dialog datasets highlight VHDA's effectiveness in enhancing subsequent dialog 

trackers through generative data augmentation. Furthermore, our integrated methodology 

surpasses prior benchmarks in tasks related to dialog response generation and user 

simulation.  
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4. PROPOSED DATA AUGMENTATION METHOD 

This thesis investigates the efficacy of data augmentation techniques for enhancing 

natural language processing tasks. The proposed methods involve a series of steps: initial 

acquisition of a dataset, optional preprocessing of the text, selection of tokenization 

methods including Bag-of-Words or Word2Vec, followed by the training of various 

autoencoder (AE) types such as Traditional AE, Variational AE (VAE), Adversarial AE 

(AAE) and Denoising Adversarial AE (DAAE). All autoencoders utilize LSTM networks 

for both encoder and decoders. Subsequently, synthetic samples are generated by 

reconstructing original samples using the trained AEs, with the flexibility to apply 

different augmentation ratios using the proposed augmentation strategy. Optionally, a 

filtering pipeline may be employed to refine the generated samples. Figure 4.1 shows the 

general overview of the proposed methods in this thesis.  

 

  

Figure 4.1. General overview of the proposed method in this thesis.  
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4.1. Tokenization and Vectorization 

Tokenization is the process of dividing text into its atomic parts, usually words or 

subwords, in order to make textual data processable by machine learning models [63]. 

With the help of tokenization, text data is converted into numerical representations that 

ML algorithms can understand. There are various techniques that involve tokenization, 

such as n-gram tokenization [64] and tokenization using pre-trained transformer models 

[65]. These techniques ensure that textual data is broken down into manageable units, 

enabling the application of further text processing and analysis methods.  

Vectorization refers to the methods that transform tokenized text into numerical vectors, 

which can be used as input features for machine learning models. Common vectorization 

techniques include Bag-of-Words (BoW) [66] and Word2Vec word embeddings [67]. 

Bag-of-Words creates vectors based on word frequencies within a text, while Word2Vec 

generates dense word embeddings that capture semantic relationships between words. In 

this study, both Bag-of-Words and Word2Vec were employed to represent text data, 

allowing for a comprehensive analysis of the textual information. 

 

4.1.1. Bag-of-Words (BoW) 

Bag-of-Words is a fundamental method for vectorization in NLP [68]. In Bag-of-Words, 

sentence level embeddings are created based on frequencies of words. Conceptually, the 

corpus containing all documents is considered as a “bag” where words are kept without 

any word order or grammar rule.  

Bag-of-Words method begins with vocabulary creation from the corpus [68]:  

• Let 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑁} be the corpus which contains 𝑁  documents, where 𝑑 

represents document from the dataset.  

• Create Vocabulary 𝑉 = {𝑤1, 𝑤2, . . . , 𝑤𝑀}  where 𝑀  is the total unique words 

count in the dataset and 𝑤 represents a word from the dataset.  

In the next step where documents are vectorized [68]: 

• Each document 𝑑𝑖 from the dataset is depicted in the form of a one-dimensional 

vector 𝑥𝑖 with 𝑀 elements.  
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• The 𝑗-th element of 𝑥𝑖, which is denoted as 𝑥𝑖𝑗, shows the frequency of the word 

𝑤𝑗  in 𝑑𝑖 . So, 𝑑𝑖  can be expressed as 𝑥𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑀]  where 𝑥𝑖𝑗 =

𝑐𝑜𝑢𝑛𝑡(𝑤𝑗, 𝑑𝑖) which denotes how many occurrences of the word 𝑤𝑗 in 𝑑𝑖. 

An example of the creation of BoW vector representation is shown in Figure 4.2.  

4.1.2. Word2Vec Word Embeddings (w2v) 

Word2Vec is a well-known method when generating vector representations of words, 

developed by Google [69]. Two main algorithms play a role in Word2Vec which are 

Continuous Bag-of-Words (CBOW) and Continuous Skip-Gram.  

CBOW [67] is used to forecast the target word by analyzing its neighboring words. 

Mathematically, 𝑤𝑡 is predicted using the list of its surrounding context words where 𝑘 

is window size. A mathematical representation of this process is given in Eq. 4.1 [67] for 

a vocabulary with size 𝑇.  

 

1

𝑇
 ∑ log𝑃 (𝑤𝑡  | 𝑤𝑡−𝑘 , … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑘)

𝑇−𝑘

𝑡=𝑘+1

 (4.1) 

 

 

Figure 4.2. An example of BoW vector representation.  
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The Skip-Gram Model [70] is employed to forecast the context words provided a target 

word. Consequently, the objective of the Skip-Gram Model is to maximize the log 

probability of the context words given the target word, as illustrated in Eq. 4.2 [70].    

 

1

𝑇
 ∑ ∑ log𝑃(𝑤𝑡+𝑗|𝑤𝑡)

−𝑘≤𝑗≤𝑘,𝑗≠0

𝑇

𝑡=1

 (4.2) 

 

Figure 4.3 shows block diagrams explaining how CBOW and Skip-Gram models work.  

 

 

(a) (b) 

Figure 4.3. Block diagrams for (a) CBOW model and (b) Skip-gram model.  

 

In this thesis, a pretrained Word2Vec model [71] is used by restricting the vocabulary 

size to 100,000 words. Embeddings from Pretrained Language Models like BERT 

Embeddings [53] are not considered, because the proposed method is meant to be less 

dependent on language models. 

4.2. Long Short-Term Memory (LSTM) 

Recurrent Neural Networks (RNNs) [41] are a class of neural networks designed to 

process sequential data by retaining hidden state (ℎ𝑡) information over multiple time 

steps, allowing them to capture temporal dependencies. A graphical representation of 

RNNs is given in Figure 4.4. Nevertheless, classic RNNs face the vanishing gradient 
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problem, causing gradients to decrease exponentially as they move back in time, limiting 

the network's capacity to learn long-term relationships. [72].  

 

 

Figure 4.4. Architecture of an RNN model [73].  

 

To address this limitation, Long Short-Term Memory (LSTM) networks [3] were 

introduced. LSTMs are a specialized form of RNNs that include gated mechanisms to 

control the flow of information through memory cells, effectively mitigating the 

vanishing gradient problem. By using input, forget, and output gates, LSTM networks 

can selectively update and retain relevant information over extended sequences. This 

capability allows LSTM networks to capture long-range dependencies more effectively 

than RNNs. This architectural improvement renders LSTMs particularly effective for 

tasks that involve modeling sequential data with complex temporal dynamics. 

LSTM networks are characterized by their unique architecture, which consists of memory 

cells and gating mechanisms. Figure 4.5 depicts the structure of a single LSTM unit. The 

memory cell is shown as a horizontal line running through the unit, symbolizing the flow 

of information over time.  
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Figure 4.5. Architecture of an LSTM model [73].  

The input gate is responsible for the information entering the memory cell, the forget gate 

is responsible for the information exiting the memory cell, and the output gate manages 

the information remaining within the memory cell. 

The input gate in an LSTM network regulates the flow of new information that is 

incorporated into the memory cell. At each time step, the input gate computes a sigmoid 

activation function over the input 𝑥𝑡 and the previous hidden state ℎ𝑡−1. This activation 

determines which information from the current input and the previous hidden state is 

pertinent for updating the memory cell. The output of the input gate, which is represented 

as 𝑖𝑡, ranges between 0 and 1, with values close to 1 indicating that the corresponding 

input is important for updating the cell state. Mathematically, the operations performed 

by input gate are shown in Eq. 4.3 [74], where 𝑊 represents weights and 𝑏 represents 

biases.  

 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖𝑥𝑡 + 𝑊ℎ𝑖ℎ𝑡−1 + 𝑏𝑖) (4.3) 

 

The forget gate is tasked with deciding which information stored in the memory cell will 

be retained or discarded. Like the input gate, the forget gate computes a sigmoid 

activation function over the input 𝑥𝑡 and the previous hidden state ℎ𝑡−1. The value of 𝑓𝑡 

determines how much of the previous cell state 𝐶𝑡−1is maintained for the current time 

step. Mathematically, the operations performed by forget gate is shown in Eq. 4.4 [74], 

where 𝑊 represents weights and 𝑏 represents biases. 



 

 22 

 

𝑓𝑡 =  𝜎(𝑊𝑥𝑓𝑥𝑡 + 𝑊ℎ𝑓ℎ𝑡−1 + 𝑏𝑓) (4.4) 

 

In an LSTM network, the output gate regulates the passage of information from the 

memory cell to the current hidden state ℎ𝑡, which functions as the output of the LSTM 

unit. The output gate applies a sigmoid activation function to both the input 𝑥𝑡 and the 

previous hidden state ℎ𝑡−1 . Additionally, it calculates a hyperbolic tangent activation 

function over the candidate cell state �̃�𝑡, which contains the information proposed for 

inclusion in the updated cell state 𝐶𝑡. The output gate activation, which is represented as 

𝑜𝑡, decides the extent to which the updated cell state should be revealed to the rest of the 

network. Mathematically, the operations performed by output gate are shown in Eq. 4.5 

[74], where 𝑊  represents weights, 𝑏  represents biases and 𝜎  represents sigmoid 

activation function. 

 

𝑜𝑡 =  𝜎(𝑊𝑥𝑜𝑥𝑡 + 𝑊ℎ𝑜ℎ𝑡−1 + 𝑏𝑜) (4.5) 

 

The cell state is the core component of an LSTM unit, responsible for retaining and 

updating information over time. At each time step, the cell state is updated based on the 

inputs from the input and forget gates. The updated cell state, indicated as 𝐶𝑡, results from 

a fusion of the previous cell state 𝐶𝑡−1  and the new information suggested by the input 

gate. It acts as a long-term memory storage unit, enabling the LSTM network to capture 

dependencies across extended sequences of data. Mathematically, the operations 

performed to update cell state is shown in Eq. 4.6 and Eq. 4.7 [74], where 𝑊 represents 

weights, 𝑏 represents biases and 𝑡𝑎𝑛ℎ represents hyperbolic tangent activation function. 

In Eq 4.7, ⊙ represents element-wise multiplication.  

 

�̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑥𝑐𝑥𝑡 + 𝑊ℎ𝑐ℎ𝑡−1 + 𝑏𝑐) (4.6) 

𝐶𝑡 = 𝑓𝑡 ⊙𝐶𝑡−1 + 𝑖𝑡 ⊙ �̃�𝑡 (4.7) 
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The hidden state within an LSTM network embodies the network's memory at a specific 

time step, containing the information distilled from the input sequence up to that point. It 

serves as the LSTM unit's output and acts as a condensed representation of the input 

sequence. The formula to calculate the hidden state ℎ𝑡  at time step 𝑡  is represented 

mathematically in Equation 4.8 [74].  

 

ℎ𝑡 = 𝑜𝑡 ⊙ tanh (𝐶𝑡) (4.8) 

 

The hidden state captures dependencies for short-term as well as long-term in the input 

sequence, allowing the network to make predictions or perform tasks based on the context 

accumulated over multiple time steps. The hidden state is frequently employed as the 

input to subsequent layers in the neural network or as the final output for various tasks 

such as sequence prediction, classification, or generation. By updating the hidden state 

iteratively across time steps, an LSTM network can effectively capture complex patterns 

and relationships in sequential data.  

In this thesis, LSTM networks serve as pivotal components within the autoencoder 

models, facilitating the learning and preservation of linguistic patterns inherent in the 

dataset which is a fundamental aspect of data augmentation tasks. By employing LSTM 

networks with 1024 hidden layer units for both encoders and decoders, the models are 

equipped to comprehend and encode intricate linguistic structures. The chosen sequence 

lengths of 512 for the encoder's LSTM and 128 for the decoder's LSTM are tailored to 

enhance the networks' capability to accurately capture and replicate these patterns. This 

strategic integration of LSTM networks underscores their crucial role in enabling the 

autoencoder models to effectively learn and replicate linguistic nuances, thereby 

enhancing the richness and diversity of the augmented dataset.  
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4.3. Autoencoders 

An autoencoder is a class of unsupervised neural network which is designed primarily to 

replicate the input as accurately as possible [75]. In the middle of an autoencoder, there 

is a unique architectural feature known as the bottleneck layer. Contrary to conventional 

network architectures, where the number of neurons typically increases through 

successive layers, the bottleneck layer imposes a restriction by decreasing the 

dimensionality of the input data. This reduction creates a compression effect, compelling 

the model to capture the most useful features while discarding redundant or less 

informative aspects of the input. 

Autoencoders comprise two components: the encoder and decoder. In the flow of an 

autoencoder, first, a representation of input data in a lower-dimensional vector space is 

created by the encoder block. The resulting vector is called the latent vector, which 

encapsulates the crucial features of the data. After creating this vector, the vector is taken 

by the decoder block and used to reconstruct the input given to the encoder. Formally, let 

𝑥  denote the input data, 𝑧  represent the latent vector, and 𝑥  denote the reconstructed 

output. The encoder 𝑓𝑒𝑛𝑐  maps the input 𝑥 to the latent vector 𝑧, and the decoder 𝑓𝑑𝑒𝑐 

attempts to reconstruct the original data from 𝑧. Mathematically, this process can be 

expressed as in Eq. 4.9 and Eq. 4.10: 

 

𝑧 =  𝑓𝑒𝑛𝑐(𝑥) (4.9) 

𝑥 = 𝑓𝑑𝑒𝑐(𝑧) (4.10) 

 

A schematic diagram of the autoencoder used in this thesis is shown in Figure 4.6.  
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Figure 4.6. A diagram of autoencoder used in this thesis.  

 

4.3.1. Variational Autoencoders (VAE) 

Variational Autoencoders (VAEs) [47] represent a sophisticated advancement of 

conventional autoencoders, leveraging a probabilistic framework to enhance their DA 

capabilities. VAEs depart from deterministic representations by encoding input data into 

probability distributions within the latent space. Mathematically, given an input 𝑥, a VAE 

encoder 𝑞(𝑧|𝑥) approximates the posterior distribution 𝑝(𝑧|𝑥) over latent variables 𝑧, 

which captures the underlying structure of the data. This probabilistic perspective enables 

VAEs to model the inherent uncertainty in the data, offering a more nuanced and 

adaptable representation.  

The training of VAEs revolves around optimizing two key objectives: (1) a reconstruction 

loss, 𝐿𝑟𝑒𝑐 , which ensures fidelity to the input data, and (2) a Kullback-Leibler (KL) 

divergence term, 𝐿𝐾𝐿 , that regularizes the latent space distribution. The overall loss 

function is thus formulated as in Eq. 4.11 [76]: 

 

𝐿𝑉𝐴𝐸  =  𝐿𝑟𝑒𝑐  +  𝛽. 𝐿𝐾𝐿   (4.11) 

 

where 𝛽 corresponds to a hyperparameter governing the balance between reconstruction 

accuracy and regularization of the latent space. This dual objective empowers VAEs to 
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not only produce faithful reconstructions but also to generate a variety of samples by 

sampling from the learned latent space distributions. Such stochasticity introduces 

controlled variability, rendering VAEs particularly effective for tasks requiring the 

generation of novel and diverse instances, such as DA. The inherent probabilistic nature 

of VAEs renders them a robust choice for learning rich representations and generating 

augmented data with meaningful diversity, thereby contributing to improved performance 

in downstream tasks.  

In VAE, the encoder maps the input 𝑥 to the parameter of a variational posterior 𝑞(𝑧|𝑥), 

which is typically a gaussian distribution of mean vector 𝜇(𝑧|𝑥) and a standard deviation 

vector σ(𝑧|𝑥).  

Figure 4.7 shows the VAE architecture used in this thesis. Here, σ represents standard 

deviation vector and 𝜇 represents mean vector. 

 

 

Figure 4.7. Variational Autoencoder model used in the experiments.  

 

4.3.2. Adversarial Autoencoder (AAE) 

Adversarial Autoencoders (AAEs) [77] integrate the fundamental concepts of 

autoencoders with the adversarial framework of generative adversarial networks (GANs). 

In contrast to traditional autoencoders, which solely focus on minimizing reconstruction 

loss, AAEs incorporate a discriminator network alongside the encoder-decoder 

architecture. This discriminator operates in tandem with the autoencoder, distinguishing 

between the encoded latent representations and a predefined prior distribution. This prior 

distribution is typically a normal distribution 𝑁, defined in Eq. 4.12 [77] : 
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𝑧 ∼ 𝑁(𝜇, 𝜎2𝐼) (4.12) 

 

where 𝜇 = 0 is the mean vector and 𝜎2𝐼 is the covariance matrix with 𝜎 = 1, making the 

covariance matrix 𝐼 the identity matrix. The adversarial training mechanism prompts the 

encoder to generate latent representations that align with this normal distribution, thereby 

improving the diversity and semantic meaningfulness of the representations. 

Mathematically, the objective function of AAEs combines the reconstruction loss term 

(𝐿𝑟𝑒𝑐) with the adversarial loss term (𝐿𝑎𝑑𝑣), defined as in Eq. 4.13 [77]:  

 

𝐿𝐴𝐴𝐸 = 𝐿𝑟𝑒𝑐 +  𝜆 . 𝐿𝑎𝑑𝑣 (4.13) 

 

where λ controls the balance between reconstruction fidelity and adversarial training. 

This adversarial component facilitates the discovery of more diverse and semantically 

meaningful latent representations, thereby enhancing both data generation and 

representation learning capabilities of AAEs.  

The motivation for using AAEs in data augmentation stems from the need to address the 

lack of variability and overfitting observed with traditional autoencoders. By leveraging 

the adversarial framework, AAEs achieve more diverse and robust augmented data 

through a unique combination of reconstruction loss and adversarial training. The 

adversarial component ensures that the latent representations generated by the encoder 

align with a predefined normal distribution, promoting diversity and preventing 

overfitting. This alignment forces the model to explore a broader range of semantic 

variations, resulting in more varied and meaningful augmented data. Consequently, this 

enhanced diversity in the latent space translates to more effective data augmentation, 

significantly improving the generalization performance of text classification models. 

Figure 4.8 shows the AAE architecture used in this thesis.  
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Figure 4.8. Adversarial Autoencoder model used in the experiments.  

 

4.3.3. Denoising Adversarial Autoencoders (DAAE) 

Denoising Adversarial Autoencoders (DAAEs) [78] amalgamate the denoising 

mechanism inherent in Denoising Autoencoders (DAEs) [59] with the adversarial training 

paradigm of Adversarial Autoencoders (AAEs). The integration of these components 

equips DAAEs with the ability to reconstruct original sentences from perturbed versions, 

thereby enhancing the robustness of the learned latent representations. This denoising 

process serves to refine the geometry of the latent space, ensuring that semantically 

similar texts correspond to proximate latent representations. Mathematically, the 

objective function of DAAEs combines the reconstruction loss 𝐿𝑟𝑒𝑐 with adversarial loss 

𝐿𝑎𝑑𝑣 as shown in Eq. 4.12. Figure 4.9 shows DAAE architecture used in this thesis. 
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Figure 4.9. Denoising Adversarial Autoencoder model used in the experiments.  

 

4.3.4. Autoencoder’s Utilization for DA 

In this thesis, AEs are employed as an approach for data augmentation for textual data. 

The primary ob ective is to explore capabilities AE’s in generating synthetic textual data 

based on only original data samples without using any other resource. By generating such 

synthetic data, it is aimed to enhance robustness and generalization of text classification 

models.  

The autoencoder architecture comprised an encoder and a decoder, each made up of 

LSTM networks with 1024 hidden layer units. The encoder's role was to acquire a 

condensed representation of the input text data, while the decoder's objective was to 

reconstruct the original input from this latent space. However, by restricting the 

dimension of latent space to 128, autoencoders are aimed to have some losses during 

reconstruction process, leading to new data samples that resemble original samples.  

In this study, four types of autoencoders (AEs) are employed to explore their performance 

and efficacy in text data augmentation. The three main variants utilized are Variational 

Autoencoder (VAE) [47], Adversarial Autoencoder (AAE) [77] and Denoising 

Adversarial Autoencoder (DAAE) [78]  along with traditional AE. Each variant of AE 
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offers unique advantages. VAE incorporates probabilistic modeling, enabling the 

generation of diverse and semantically meaningful variations of input data by sampling 

from a learned latent space. This makes it particularly well-suited for generating novel 

text samples and enhancing the diversity of augmented datasets. On the other hand, AAE 

incorporates an adversarial component, leveraging a discriminator network to encourage 

the learned latent space to match a specified prior distribution Finally, DAAE is chosen 

for its simplicity and effectiveness in reconstructing clean input from noisy data, making 

it suitable for tasks where robustness to input perturbations is crucial. Within the scope 

of the thesis, it is aimed to gain insights into their respective strengths and limitations by 

comparing the performance of these different AE variants, ultimately informing the 

selection of the most suitable model for text data augmentation tasks. 

 

4.4. DistilBERT 

Text classification models are computational algorithms that are designed to categorize 

text data into predefined classes based on the content of data [79]. These models 

traditionally range from rule-based models to statistical approaches like Naïve Bayes or 

ML approaches like Support Vector Machines (SVM) [79]. Modern text classification 

often utilizes deep learning, particularly with neural network architectures like LSTMs 

and transformers such as BERT [53].  

BERT is a transformative model that is designed to grasp the contextual meaning of words 

within a sentence, taking into account both preceding and subsequent contexts, thus 

making it bidirectional [53]. his is achieved through a transformer architecture utilizing 

self-attention mechanisms [80]. Unlike previous models that read text sequentially, BERT 

processes text in both directions simultaneously, capturing richer contextual information. 

Having been pre-trained on extensive volumes of text data, BERT can be further refined 

for particular tasks, such as text classification.  

When evaluating DA methods, it is essential to use an unbiased classifier model. 

Throughout this thesis, all experiments utilize DistilBERT (a distilled version of BERT) 

[81]. DistilBERT leverages knowledge distillation [82], where it learns from a larger 

'teacher' model, which is BERT [53] for DistilBERT, to replicate its behavior, retaining 

around 97% of BERT's language understanding while being 40% smaller and 60% faster 

[81]. This model is particularly beneficial in real-time applications or environments with 
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constrained computational resources. Like BERT, DistilBERT is pretrained on extensive 

text data, enabling it to deliver strong performance even when fine-tuned on smaller 

datasets. Figure 4.10 shows the knowledge distillation process of DistilBERT. 

 

 

Figure 4.10. Knowledge distillation on BERT and DistilBERT.  

 

4.5. Data Augmentation Pipeline 

In typical applications, autoencoders are principally employed to accurately reconstruct 

input data while simultaneously reducing the dimensionality of the input space, making 

them suitable for compression tasks. However, in this study, autoencoders are repurposed 

for DA purposes where their primary objective shifts from precise input reconstruction to 

the generation of comparable versions of the input data. Achieving this entails a 

divergence from the autoencoder's conventional goal. This modification can be facilitated 

by constraining the dimensionality of the latent representation vector, thereby compelling 

the autoencoder to prioritize the generation of synthetic data that closely resembles the 

original input.  
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The methodology employed in this thesis is delineated in Figure 4.11. The initial phase 

of this process involves training an autoencoder (AE) with the original dataset, 

constituting the most resource-intensive aspect of the pipeline. During this phase, the AE 

tries to learn the intricacies of reconstructing the input data. Subsequently, the second 

phase entails employing the trained AE to reconstruct the input data, thereby generating 

an augmentation ratio of 1:1 relative to the original dataset. To achieve higher 

augmentation ratios, such as 1:2 or 1:4, successive iterations of reconstruction are 

performed. Specifically, to generate a 1:2 augmentation ratio, the output of the AE from 

the 1:1 augmentation ratio is reconstructed once more. Similarly, to attain a 1:4 

augmentation ratio, the output from the 1:2 augmentation ratio is subjected to further 

reconstruction.  

An iteration of reconstruction involves passing the output data from the previous iteration 

through the AE again. Each iteration effectively doubles the number of augmented 

samples. For example: 

• Iteration 1 (1:1 augmentation ratio): The AE takes the original dataset as input and 

reconstructs each sample, resulting in twice the number of samples as the original 

dataset, including original samples. 

• Iteration 2 (1:2 augmentation ratio): The AE takes the 1:1 augmented dataset as 

input and reconstructs each sample, resulting in three times the number of samples 

as the original dataset, including original samples. 

• Iteration 3 (1:4 augmentation ratio): The AE takes the 1:2 augmented dataset as 

input and reconstructs each sample, resulting in five times the number of samples 

as the original dataset, including original samples. 

This strategy yields promising outcomes in scenarios characterized by limited dataset 

sizes. However, this reconstruction pipeline may lack diversity due to the intrinsic nature 

of autoencoders, which primarily aim to accurately reproduce the input data without 

introducing substantial variations. Data augmentation examples are detailed in Appendix 

A.  
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Figure 4.11. Augmentation by reconstruction pipeline 

  

4.6. Data Augmentation with Filtering 

As the outputs of autoencoders do not always perfectly replicate the original text, they 

can introduce variations in the information they encapsulate. This may result in 

reconstructed samples exhibiting characteristics reminiscent of other classes in the 

dataset, potentially harming classifier performance. Hence, there arises a need for a 

method to weed out falsely labeled reconstructed samples. One approach involves 

training a classifier solely on the original data and then employing it to classify 

reconstructed samples. If the classifier's prediction contradicts the label of the original 

sample, the reconstructed sample is discarded. This strategy ensures the reliability of the 
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reconstructed data. Figure 4.12 illustrates this process in a schematic diagram. The 

filtering mechanism with using a classifier trained with original data is adapted from [83]. 

 

 

Figure 4.12. Filtering pipeline for augmentation with reconstruction 
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5. EXPERIMENTAL RESULTS 

5.1. Dataset 

The Stanford Sentiment Treebank (SST-2) dataset [84] is a common dataset which is used 

as a baseline for sentiment analysis tasks in NLP. It comprises movie reviews labeled 

with either positive or negative sentiments. The SST-2 dataset provides a valuable 

benchmark for evaluating the performance of sentiment classification models. Table 5.1 

gives the numbers of positive-negative samples in the training, validation, and test sets of 

SST-2 dataset.  

 

Table 5.1. Number of samples in each class of SST-2 dataset. 

Class 

Number of Samples 

Training Set Validation Set Test Set 

Positive 4054 900 909 

Negative 3737 900 912 

Total 7791 1800 1821 

  

5.2. General Parameters for Data Augmentation 

To evaluate the effectiveness of Data Augmentation (DA) methods across different 

scenarios, two parameters are chosen: 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 and 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒.  

• 𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜: This parameter refers to the ratio of synthetic sentences 

generated for each original sentence in the training set. 

• 𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 : This parameter indicates the size of the training dataset. The 

original training dataset is divided into smaller portions to evaluate DA methods' 

performance in scenarios with limited data. 

For each experiment, the final training set size (#𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎) is determined using Eq. 

5.1.  

#𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑑𝑎𝑡𝑎𝑡
= (𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑖𝑜 ×  𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒)  +  𝑑𝑎𝑡𝑎𝑠𝑒𝑡 𝑠𝑖𝑧𝑒 (5.1) 
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5.3. Classifier 

Throughout this thesis, all experiments utilize DistilBERT [81] which is explained in 

Section 4.4. The parameters employed in training DistilBERT across all experiments are 

outlined in Table 5.2.  

 

Table 5.2. Parameters used for DistilBERT model. 

Parameter Value 

Optimizer AdamW [85] 

Training Epochs 2 

Batch Size 8 

Learning Rate 5e-5 

Activation Function Gaussian Error Linear Units (GELUs) 

Pretrain checkpoint distilbert-base-uncased 

Dropout 0.2 

Loss Function Cross entropy 

 

5.4. Evaluation Metrics 

When assessing machine learning models in supervised learning scenarios, commonly 

utilized evaluation metrics include accuracy, precision and recall [86]. However, due to 

the balanced nature of the SST-2 dataset, as observed from Table 5.1, the sole evaluation 

metric employed to gauge the model's performance in classification tasks is accuracy 

[86]. Accuracy is a metric that quantifies the proportion of correct classifications relative 

to the total number of classifications made. It is often favored for classification 

evaluations as it offers a straightforward and intuitive measure of a model's overall 

capability to classify instances accurately. Eq. 5.2 illustrates the calculation of accuracy. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 (5.2) 
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5.5. Number of Training Epochs Comparison for Autoencoders 

In this study, the influence of the number of training epochs on the efficacy of 

autoencoder-based textual DA is investigated. By selecting the duration of training 

epochs as 50 or 100, it is aimed to understand how the autoencoder's ability to reconstruct 

input texts evolves over time and its consequent impact on the quality and diversity of 

augmented data. Through qualitative and quantitative evaluations, it is analyzed how 

different numbers of epochs affect the model's capacity to capture underlying textual 

patterns and generate meaningful augmentations. In Figure 5.1, it is observed that when 

the number of epochs for autoencoders is 100, the classifier performs significantly better 

in dataset size 100. However, as the dataset size grows, this effect diminishes.  

 

 

Figure 5.1. Average accuracies of DistilBERT classifier when the training epochs of autoencoders 

is 50 and 100, considering different dataset sizes and augmentation ratios. 

 

Figure 5.2 presents 4 different line graphs illustrating the impact of the training epochs 

on different AEs’ performance. For dataset sizes of 200, 500, 1000 and 7791, no notable 

effect is observed on any type of AE. For dataset size of 100, all AE types are boosted 

with increasing training epochs to 100. While the other three AE types boosted 

significantly, the impact of increasing training epochs on DAAE is relatively low.  
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(a) 

, 

(b) 

 

(c) 

 

(d) 

Figure 5.2. Average accuracies of DistilBERT classifier when the training epochs of 

autoencoders is 50 and 100, for (a) AAE, (b) AE, (c) DAAE and (d) VAE.  
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5.6. Effect of Filtering Pipeline 

As outlined in Section 4.5, applying a filter on reconstructed samples could be useful. To 

gauge the efficacy of our filtering pipeline, a comparative analysis is conducted between 

the filtered and unfiltered pipelines, focusing on the average accuracies attained by 

classifiers trained on datasets augmented by each respective method, which is shown in 

Figure 5.3. The results of this comparison underscore a significant impact of the filtering 

process, particularly pronounced in datasets of smaller sizes, where the filtering 

mechanism yields discernible improvements in classification accuracy. However, as 

dataset size increases, the influence of filtering diminishes. 

 

 

Figure 5.3. Average performances filtered pipeline and unfiltered pipeline of AE’s for different 

dataset sizes and augmentation ratios.  

 

Figure 5.4 presents 4 different line graphs illustrating the impact of filtering pipeline on 

different AEs’ performance. For dataset sizes of 500, 1000 and 7791, no notable effect of 

filtering pipeline is observed on any type of AE. For dataset size of 100, all AE types are 

boosted with filtering pipeline, except traditional AE when augmentation ratio is 1:1 and 

AAE when augmentation ratio is 1:2.  For the dataset size of 200, traditional AE and VAE 

boosted with filtering pipeline when augmentation ratio is 1:1.  
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(a) 

, 

(b) 

 

(c) 

 

(d) 

Figure 5.4. Average performances filtered pipeline and unfiltered pipeline of AE’s for different 

dataset sizes and augmentation ratios, considering different dataset sizes and augmentation 

ratios for (a) AAE, (b) AE, (c) DAAE and (d) VAE. 
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5.7. Comparison of Different Autoencoders in Data Augmentation 

The line chart depicted in Figure 5.5 presents the average accuracies of classifiers trained 

on datasets augmented with four distinct types of AEs. Observing Figure 5.5, it becomes 

evident that across dataset sizes of 200, 500, 1000, and 7791, classifiers exhibit similar 

performances when the augmentation ratio is 1:1. However, with an increase in the 

augmentation ratio within these dataset sizes, a notable decline in classifier accuracy is 

observed for AAE and VAE, whereas the drop is comparatively less pronounced for 

traditional AEs and DAAE. Notably, in the case of a dataset size of 100, DAAEs 

demonstrate poor performance across all augmentation ratios, with traditional AEs 

surpassing other AE types except at a 1:1 augmentation ratio. Moreover, in the dataset 

size of 100, both traditional AEs and VAEs exhibit a positive impact stemming from an 

increase in the augmentation ratio.  

 

 

Figure 5.5. Average performances different types of AE’s for different dataset sizes and 

augmentation ratios.  

 

  



 

 42 

5.8. Embedding Comparison 

In experiments, the effect of integrating pre-trained Word2Vec embeddings into the 

embedding layer of AEs is analyzed. Word2Vec enriches vocabulary variability and 

provides a contextually richer representation which comes with an increase in parameters 

and training time. The comparison is done between Word2Vec and bag-of-words (BoW) 

tokenization which simplifies text representation by counting word frequencies. Figure 

5.6 shows the average accuracies of the classifier that uses data augmented with 

Word2Vec embedding layered AEs and BoW embedding layered AEs while Figure 5.7 

shows the same analysis for each AE type.  

As seen from Figure 5.6, using pretrained Word2Vec as embedding layer of AE’s does 

not make much difference on dataset sizes of 200, 500, 1000 and 7791. Furthermore, it 

even decreases the performance of the classifier on augmentation ratios 1:2 and 1:8 of 

dataset size of 100. When the cost of using Word2Vec embeddings is considered, it 

becomes an irrelevant choice.  

 
Figure 5.6. Average performances of different types of embedding layers of AE’s for different 

dataset sizes and augmentation ratios.  

Figure 5.7 presents 4 different line graphs illustrating the impact of different embedding 

layers on different AEs performance. For dataset sizes of 200, 500, 1000 and 7791, no 

notable effect of using w2v as embedding layer is observed on any type of AE. For dataset 

size of 100, AAE and DAAE are affected adversely from using w2v as embedding layer 

for all augmentation ratios, while traditional AE and VAE’s performances are relatively 

higher with w2v embeddings.  
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.7. Average performances of different types of embedding layers of AE’s, considering 

different dataset sizes and augmentation ratios for (a) AAE, (b) AE, (c) DAAE and (d) VAE.  
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5.9. Effect of Preprocessing on AE Input 

Textual datasets are prone to being noisy which might cause ambiguity and confusion to 

AE models. Thus, a series of preprocessing steps is applied to the dataset used in this 

thesis. These preprocessing steps involve lowercasing, removal of non-alphanumeric 

characters and extra spaces and changing numeric characters with the tag < 𝑛𝑢𝑚𝑏𝑒𝑟 >.  

Figure 5.8 and Figure 5.9 present line graphs illustrating the impact of preprocessing on 

AE performance. As depicted in Figure 5.8, which displays the average accuracies for all 

AEs, significant enhancements are observed in smaller dataset sizes with preprocessing, 

resulting in approximately a 5% increase in accuracy for a dataset size of 100 and 

approximately a 2% increase in accuracy for a dataset size of 200.  

 

 
Figure 5.8. Average performances of AE’s when preprocessing applied or not applied for 

different dataset sizes and augmentation ratios.  

 

Figure 5.9 presents 4 different line graphs illustrating the impact of preprocessing on 

different AEs performance. For dataset sizes of 500, 1000 and 7791, no notable effect of 

applying preprocessing is observed on any type of AE. For dataset size of 100, only AAE 

and VAE are affected adversely from preprocessing when augmentation ratio is 1:1, while 

traditional AE’s performance increased significantly. For other augmentation ratios of 

dataset size of 100, preprocessing boosted all AE’s performance.  
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(a) 

,  

(b) 

 

(c) 

 

(d) 

Figure 5.9. Average performances when preprocessing applied or not applied, considering 

different dataset sizes and augmentation ratios for (a) AAE, (b) AE, (c) DAAE and (d) VAE.  
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5.10. Comparison of Results with Baseline Methods 

In the exploration of autoencoder-based text DA method, a thorough examination of 

numerous parameters was conducted to optimize its performance. These parameters 

included the type of AE, ranging from traditional AE to advanced variations which are 

AAE, VAE, and DAAE. Additionally, consideration was given to the preprocessing of 

data, whether specific preprocessing techniques were applied or not. Furthermore, 

different embedding layer types, including Word2Vec (w2v) and token embeddings, were 

investigated to evaluate their impact on augmentation quality. The number of training 

epochs for the autoencoders selected as 50 or 100 epochs, and the effectiveness of 

applying filtering techniques during augmentation was also explored. In total, these 

parameter permutations yielded 32 distinct variations of autoencoders.  

The naming convention for the AE-based DA methods consists of abbreviations 

representing key parameters. These include the type of autoencoder (“ae” for traditional 

AE, "aae" for AAE, “vae” for VAE, “daae” for DAAE), the type of embeddings used 

("token" for Bag-of-Words or "w2v" for Word2Vec), data preprocessing ("clean" or 

"raw"), the training epochs (50 or 100 epochs), and whether filtering techniques were 

applied during augmentation ("Filter" or "NoFilter"). As an example, “aae-token-clean-

100-Filter” refers to AAE-based DA method with Bag-of-Words tokenization, 

preprocessing applied, trained for 100 epochs and filtering pipeline applied. This naming 

system enables straightforward identification and comparison of different DA methods 

based on their key characteristics.  

To facilitate comparison with existing literature, two variants from each autoencoder type 

were selected for detailed analysis in this section. When selecting these variants, the 

parameters considered were their overall performance on all dataset sizes and 

augmentation ratios and their performances on each dataset size separately. Figure 5.10 

shows the average accuracies of each AE type’s all variants. The selected variants are 

highlighted with green. As can be seen from Figure 5.10, most selected variants are 

selected because they have the best average performance on all dataset sizes and 

augmentation ratios. There are a few exceptions that do not follow this rule such as “daae-

w2v-clean-50-Filter”. The reason for such selections is that these variants perform better 

on most dataset sizes compared to the others from the same AE type, but their average 

accuracy is affected adversely due to these variants’ poor performance on particular 

dataset size. 
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(a) AAE (b) AE 

  

(c) DAAE (d) VAE 

Figure 5.10. Average of accuracies for each variant of (a) AAE, (b) AE, (c) DAAE, and (d) 

VAE.  
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The selected baseline models from literature include An Easier Data Augmentation 

(AEDA) [27] as noising-based DA method, Easy Data Augmentation (EDA) [28] as  

paraphrasing-based DA method, and Language Model Based Data Augmentation 

(LAMBADA) [83] as sampling-based DA method. These models were chosen to provide 

a comparison across diverse data augmentation strategies. EDA is a popular DA method 

commonly used as a baseline, providing a benchmark for evaluating other data 

augmentation techniques. AEDA is a completely noise-based and simple method, which 

helps to understand the impact of random noise on data augmentation. LAMBADA is the 

best-performing model among the baselines and is powered by a pretrained large 

language model, demonstrating the effectiveness of leveraging advanced pretrained 

models for data augmentation. However, the augmentation strategy proposed in this 

thesis, based on autoencoders, is distinct in that it does not depend on any other pretrained 

models. By comparing our autoencoder-based augmentation strategy with these well-

established techniques, it is aimed to highlight its strengths and potential advantages, as 

well as identify areas for further improvement. 

Tables 5.2 through 5.6 present the effect of each DA method on accuracy of DistilBERT 

classifier for various augmentation ratios corresponding to dataset sizes of 100, 200, 500, 

1000, and 7791 (Full set), respectively.  

Table 5.3 presents the accuracy results of DistilBERT on datasets augmented using 

various DA methods, with a dataset size of 100. Initially, without any augmentation, the 

DistilBERT classifier achieves an accuracy of 49.9%, resembling the performance of a 

random classifier for a two-class dataset. When DA methods are applied with a 1:1 

augmentation ratio, all methods exhibit significant performance improvements, ranging 

from a gain of 19.6% to 33.9%, except for daae-w2v-clean-50-NoFilter, which struggles 

to effectively generate textual data with this dataset size. For augmentation ratios of 1:2, 

1:4, and 1:8, LAMBADA consistently outperforms other DA methods, as expected due 

to its sampling-based approach powered by a pretrained LLM. AE-based DA methods 

yield the best results for a 1:1 augmentation ratio. Although performance seems to 

decrease as the augmentation ratio increases, the results achieved in data augmentation 

using AE are higher than those achieved without DA. This shows that AE-based DA can 

be used on low data set sizes. 
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Table 5.3. Comparison of the selected AE-based DA methods with baseline models from 

the literature for the dataset size of 100 on SST-2 dataset.  

Dataset Size = 100 

Accuracy 

No 

Aug. 

Aug. ratio 

1:1 

Aug. ratio 

1:2 

Aug. ratio 

1:4 

Aug. ratio 

1:8 

 No Augmentation 0.499 - - - - 

DA 

methods 

LAMBADA (GPT-2) - 0.836 0.839 0.839 0.844 

EDA - 0.793 0.817 0.755 0.768 

AEDA - 0.799 0.806 0.772 0.757 

aae-token-clean-100-Filter - 0.835 0.821 0.76 0.745 

aae-w2v-raw-100-Filter - 0.711 0.822 0.704 0.762 

ae-token-clean-100-NoFilter - 0.833 0.796 0.795 0.771 

ae-w2v-clean-100-NoFilter - 0.831 0.8 0.813 0.76 

daae-token-clean-100-Filter - 0.695 0.74 0.798 0.812 

daae-w2v-clean-50-NoFilter - 0.508 0.499 0.499 0.499 

vae-token-clean-100-Filter - 0.787 0.821 0.818 0.792 

vae-w2v-raw-100-Filter - 0.838 0.822 0.814 0.722 

 

 

Table 5.4 displays the accuracy results of DistilBERT on datasets augmented using 

various DA methods, with a dataset size of 200. Initially, without any augmentation, the 

DistilBERT classifier achieves an accuracy of 82.8%, a significant improvement 

compared to the dataset size of 100. When applying DA methods with a 1:1 augmentation 

ratio, EDA, AEDA, and two AE-based methods show a slight decrease in classifier 

performance, approximately 1%. Conversely, VAE-based DA methods and LAMBADA 

exhibit an increase of approximately 2% in classifier performance. For augmentation 

ratios of 1:2 and 1:4, LAMBADA consistently outperforms other DA methods, like the 

dataset size of 100. Additionally, AE-based DA methods demonstrate the best results for 

augmentation ratio 1:1. Although the performance seems to decrease compared to that of 

augmentation ratio 1:1, the results obtained in higher augmentation ratios are at a level 

that can compete with the methods from the literature.  
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Table 5.4. Comparison of the selected AE-based DA methods with baseline models from 

the literature for the dataset size of 200 on SST-2 dataset.  

Dataset Size = 200 

Accuracy 

No 

Aug. 

Aug. ratio 

1:1 

Aug. ratio 

1:2 

Aug. ratio 

1:4 

 No Augmentation 0.828 - - - 

DA 

methods 

LAMBADA (GPT-2) - 0.844 0.845 0.853 

EDA - 0.812 0.824 0.813 

AEDA - 0.818 0.796 0.805 

aae-token-clean-100-Filter - 0.834 0.806 0.824 

aae-w2v-raw-100-Filter - 0.824 0.825 0.807 

ae-token-clean-100-NoFilter - 0.841 0.828 0.812 

ae-w2v-clean-100-NoFilter - 0.824 0.834 0.802 

daae-token-clean-100-Filter - 0.815 0.807 0.811 

daae-w2v-clean-50-NoFilter - 0.839 0.831 0.829 

vae-token-clean-100-Filter - 0.844 0.823 0.802 

vae-w2v-raw-100-Filter - 0.846 0.83 0.796 

 

 

Table 5.5 presents the accuracy results of DistilBERT on datasets augmented using 

various DA methods, with a dataset size of 500. Initially, without any augmentation, the 

DistilBERT classifier achieves an accuracy of 85%, indicating a 2.2% increase compared 

to the dataset size of 200, as expected. When DA methods are applied with augmentation 

ratio 1:1, all methods show an improvement in classifier performance. Like other dataset 

sizes, the VAE-based DA method demonstrates the highest increase, approximately 2.3%. 

For augmentation ratio of 1:2, the "aae-w2v-raw-100-Filter" DA method outperforms 

other methods, unlike any other AE-based DA method. For a 1:4 augmentation ratio, 

LAMBADA outperforms other methods, consistent with dataset sizes of 100 and 200 In 

addition, for dataset sizes of 100 and 200, the performance of AE-based DA methods does 

not decrease as the augmentation ratio increases. In fact, in some cases, it increases for a 

1:2 augmentation ratio.  

 

 



 

 51 

Table 5.5. Comparison of the selected AE-based DA methods with baseline models from 

the literature for the dataset size of 500 on SST-2 dataset.  

Dataset Size = 500 

Accuracy 

No 

Aug. 

Aug. ratio 

1:1 

Aug. ratio 

1:2 

Aug. ratio 

1:4 

 No Augmentation 0.850 - - - 

DA 

methods 

LAMBADA (GPT-2) - 0.858 0.864 0.87 

EDA - 0.853 0.863 0.838 

AEDA - 0.855 0.85 0.85 

aae-token-clean-100-Filter - 0.866 0.865 0.863 

aae-w2v-raw-100-Filter - 0.866 0.877 0.85 

ae-token-clean-100-NoFilter - 0.856 0.857 0.849 

ae-w2v-clean-100-NoFilter - 0.872 0.863 0.853 

daae-token-clean-100-Filter - 0.863 0.866 0.861 

daae-w2v-clean-50-NoFilter - 0.866 0.864 0.855 

vae-token-clean-100-Filter - 0.873 0.868 0.864 

vae-w2v-raw-100-Filter - 0.867 0.863 0.865 

 

 

Table 5.6 displays the accuracy results of DistilBERT when applied to datasets 

augmented using different DA methods, each with a dataset size of 1000. Initially, 

without any augmentation, the DistilBERT classifier achieves an accuracy of 87.5%, 

marking a 2.5% increase compared to the dataset size of 500. When DA methods are 

employed with a 1:1 augmentation ratio, none of them manage to surpass the result 

without augmentation, with some experiencing a decrease in the classifier’s performance 

of up to 1.9%. Notably, DAAE-based DA methods exhibit improved performance as the 

dataset size increases, being the only method capable of achieving the same accuracy as 

the scenario with no augmentation. For a 1:2 augmentation ratio, EDA emerges as the top 

performer, matching the accuracy of the scenario without augmentation, while most AE-

based DA methods and LAMBADA show similar performance. Conversely, with a 1:4 

augmentation ratio, LAMBADA exhibits the highest performance, while the accuracy of 

other DA methods remained the same.  
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Table 5.6. Comparison of the selected AE-based DA methods with baseline models from 

the literature for the dataset size of 1000 on SST-2 dataset.  

Dataset Size = 1000 

Accuracy 

No 

Aug. 

Aug. ratio 

1:1 

Aug. ratio 

1:2 

Aug. ratio 

1:4 

 No Augmentation 0.875 - - - 

DA 

methods 

LAMBADA (GPT-2) - 0.874 0.866 0.879 

EDA - 0.86 0.875 0.853 

AEDA - 0.874 0.872 0.859 

aae-token-clean-100-Filter - 0.863 0.862 0.83 

aae-w2v-raw-100-Filter - 0.87 0.86 0.861 

ae-token-clean-100-NoFilter - 0.874 0.859 0.856 

ae-w2v-clean-100-NoFilter - 0.856 0.846 0.855 

daae-token-clean-100-Filter - 0.875 0.85 0.862 

daae-w2v-clean-50-NoFilter - 0.87 0.858 0.854 

vae-token-clean-100-Filter - 0.866 0.864 0.863 

vae-w2v-raw-100-Filter - 0.862 0.872 0.854 

 

 

Table 5.7 presents the accuracy outcomes of DistilBERT applied to datasets augmented 

using various DA methods, each with a dataset size of 7791, which constitutes the full set 

size. Without any augmentation, the DistilBERT classifier achieves an accuracy of 

90.3%, indicating a 2.8% increase compared to the dataset size of 1000. Upon analyzing 

the results of the DA methods, it is observed that none of them significantly enhance the 

performance of DistilBERT. On the other hand, there is no DA method that affects the 

results too adversely unlike other dataset sizes. Table 5.7 excludes results for an 

augmentation ratio of 1:4 due to resource limitations. Although the success rate without 

DA is 90.3%, it is seen that DA achieves the same success in all other methods. 
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Table 5.7. Comparison of the selected AE-based DA methods with baseline models from 

the literature for the dataset size of 7791 (Full Set) on SST-2 dataset.  

Dataset Size = 7791 (Full Set) 
Accuracy 

No Aug. Aug. ratio 1:1 Aug. ratio 1:2 

 No Augmentation 0.903 - - 

DA methods 

LAMBADA (GPT-2) - 0.909 0.902 

EDA - 0.90 0.906 

AEDA - 0.906 0.906 

aae-token-clean-100-Filter - 0.901 0.907 

aae-w2v-raw-100-Filter - 0.909 0.905 

ae-token-clean-100-NoFilter - 0.907 0.906 

ae-w2v-clean-100-NoFilter - 0.907 0.912 

daae-token-clean-100-Filter - 0.901 0.903 

daae-w2v-clean-50-NoFilter - 0.904 0.909 

vae-token-clean-100-Filter - 0.907 0.900 

vae-w2v-raw-100-Filter - 0.906 0.902 

* No results available for augmentation ratio 1:4  

 

5.11. Interpretation of Generation of Synthetic Samples from An Original Sample 

In this section, reconstructions of autoencoders on various aspects are interpreted through 

example outputs provided in Appendix A. When outputs in Appendix A are analyzed, the 

observations on different aspects of this thesis are as follows: 

• Preprocessing: For dataset sizes of 100, 200, 500, and 1000; the methods where 

preprocessing applied generally produce sentences that closely resemble the 

original sentence, demonstrating limited variability. In contrast, methods where 

preprocessing is not applied, particularly those using Word2Vec, introduce more 

variation but often include <unk> tokens.  

• Embedding Types: Token-based methods tend to maintain the original sentence 

structure more faithfully with small changes in the sentences, while Word2Vec 

methods introduce more semantic diversity.  

• Different AE Types: At small dataset sizes, Traditional AEs and AAE can 

generate synthetic sentences that are more consistent with the original sentence 

compared to DAAE and VAE. On the other hand, for higher dataset sizes, 
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Traditional AE and AAE are not able to generate different variations, mostly 

reconstructing the original sentence, while DAAE and VAE is more successful at 

generating sentences that varies from the original sentence.  

As observed from some outputs from Appendix A (Table A.3-ae-token-clean-100 or 

Table A.4- aae-token-clean-100), some AEs learn to replicate the original sentences 

without introducing sufficient diversity. This replication leads to multiple entries of the 

same sample in the augmented dataset. This lack of variability in augmented text data can 

affect adversely text classification models, especially with higher augmentation ratios. 

Because, when generated sentences are too similar to the original, the model may fail to 

learn robust, generalized features, leading to overfitting—where the model performs well 

on training data but poorly on unseen data. This issue is worsened at higher augmentation 

ratios, where increased data quantity lacks diversity, causing the model to memorize 

rather than generalize. An example of this situation is seen on Figure 5.11 where the 

validation and training losses of two DistilBERT models are compared, one trained with 

data augmented by “aae-token-clean-100-NoFilter” with augmentation ratio 1:1 and the 

other with augmentation ratio 1:8. “aae-token-clean-100-NoFilter” fails to generate new 

variations of original text as can be seen in Appendix A. This situation resulted in a 

decrease on training loss while an increase on validation loss which implies overfitting 

for the model trained with data with augmentation ratio 1:8, which is not observed for the 

model trained with data with augmentation ratio 1:8 in Figure 5.11. 

 

  

(a) aae-token-clean-100-NoFilter with 

augmentation ratio 1:1 

(b) aae-token-clean-100-NoFilter with 

augmentation ratio 1:8 

Figure 5.11. Training and validation losses for two DistilBERT classifier: (a) trained with aae-

token-clean-100-NoFilter with augmentation ratio 1:1 dataset and (b) aae-token-clean-100-

NoFilter with augmentation ratio 1:8.  
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6. CONCLUSION 

In recent years, the emergence of Deep Learning (DL) techniques has transformed the 

field of Natural Language Processing (NLP), facilitating significant progress in various 

tasks such as named entity recognition, language modeling, and question answering. 

However, the success of DL models largely depends on the availability and quality of the 

training data. Given the complex and diverse nature of natural language, acquiring a 

sufficiently large and diverse dataset can be challenging. This situation creates the need 

for data augmentation (DA). DA techniques seek to artificially increase the size and 

diversity of the training data by applying various transformations. In the context of NLP, 

where annotated datasets are often limited and expensive to obtain, data augmentation 

emerges as a crucial tool for enhancing model performance and generalization.  

This thesis focuses on exploring the effect of leveraging the reconstruction capabilities of 

autoencoders as data augmentation method for enhancing performance of text 

classification tasks. In the scope of the work, four distinct types of autoencoders are 

investigated, namely traditional Autoencoders (AE), Variational Autoencoders (VAE), 

Denoising Adversarial Autoencoders (DAAE), and Adversarial Autoencoders (AAE). 

Two primary embedding types, Bag-of-Words and Word2Vec, are considered for 

representing textual data, and their effect on the performance of autoencoders are 

analyzed. Additionally, the impact of preprocessing methods is examined. Furthermore, 

the training duration, represented by the number of epochs, selected from 50 or 100 

epochs to assess its influence on model performance. Finally, the effectiveness of 

applying a specific filtering technique, determining whether to retain or discard 

augmented samples based on its consistency with the prediction of a classifier is 

evaluated. 

To assess the effectiveness of leveraging autoencoders for data augmentation in text 

classification tasks, experiments were conducted using the SST-2 dataset and accuracy as 

the evaluation metric. The performance in different data availability scenarios was 

evaluated by changing the size of the dataset partitions as 100, 200, 500, 1000 randomly 

selected data from this dataset, including the full dataset containing 7791 samples. 

Additionally, augmentation ratios indicating the ratio of augmented samples to original 

samples ranging as 1:1, 1:2, 1:4 and 1:8 were experimented. The performance of 

autoencoder-based data augmentation methods was compared with three baseline models 
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which are Easy Data Augmentation (EDA), An Easy Data Augmentation (AEDA), and 

Language Model Based Data Augmentation (LAMBADA). These baseline models were 

compared with two selected variants from each AE type.  

The contributions of the thesis are as follows:  

• Autoencoder-based data augmentation methods for enhancing text classification 

performance were investigated. 

• Four distinct types of autoencoders (AE, VAE, DAAE, AAE) in the context of 

data augmentation for text classification task were evaluated. 

• The impact of embedding types (Bag-of-Words, Word2Vec) on the performance 

of autoencoder-based data augmentation was analyzed. 

• Preprocessing’s influence on model performance was examined. 

• The effect of training epochs (50 vs. 100) on the efficacy of autoencoder-based 

data augmentation was evaluated. 

• Augmentation ratios (1:1, 1:2, 1:4, 1:8) were analyzed to determine optimal 

augmentation strategies. 

• The effectiveness of filtering pipeline in improving the quality of augmented data 

was evaluated. 

• Varying dataset partition sizes to assess model performance under different data 

availability scenarios were analyzed. 

The experiments conducted across varying dataset sizes revealed intriguing insights into 

the performance of AE-based DA methods for text classification tasks. Notably, for 

dataset sizes of 100 and 200, Traditional AE and VAE demonstrated superior 

performance compared to other AE types, highlighting their effectiveness in augmenting 

small datasets. Moreover, preprocessing had a considerable impact on performance for 

smaller dataset sizes, whereas its influence diminished for larger dataset sizes. 

Interestingly, the choice of embedding type did not significantly affect performance, with 

w2v offering no considerable advantage over BoW despite its higher computational cost. 

However, increasing the number of training epochs from 50 to 100 and implementing a 

filtering pipeline proved beneficial, particularly for poorly performing AEs on smaller 

dataset sizes. When compared with baseline models, AE-based DA methods exhibited 
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superior performance on augmentation ratio of 1:1. However, for higher augmentation 

ratios, LAMBADA, which requires a pretrained LLM, outperformed other DA methods. 

These findings highlight the importance of choosing augmentation strategies based on 

dataset size, preprocessing methods, and augmentation ratio to maximize performance 

gains in text classification tasks. 

While this thesis primarily focuses on leveraging the reconstruction capabilities of 

autoencoders for data augmentation in text classification tasks, there exist promising 

avenues for further exploration in this domain. One potential direction is to explore 

alternative ways of utilizing autoencoders beyond direct reconstruction of input text. For 

instance, instead of generating augmented samples by reconstructing input data, 

autoencoders could be utilized to sample from the latent space or generate synthetic 

samples solely from the decoder component. This approach could offer greater flexibility 

in generating diverse and realistic augmented data. Moreover, considering the potential 

computational complexity of training autoencoders on large datasets, in future research, 

strategies for training autoencoders on a partition of the dataset and then utilizing the 

trained autoencoder to reconstruct unseen data samples could be investigated. 

Additionally, exploring novel architectures or variations of autoencoders tailored 

specifically for text data could lead to more effective data augmentation methods. 

Furthermore, integrating autoencoder-based data augmentation techniques with other 

augmentation strategies or ensemble methods could be explored to further enhance model 

robustness and generalization across diverse datasets and tasks. 
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APPENDIX A. EXAMPLE RECONSTRUCTIONS 

 

Table A.1. Example sentence and its cleaned version.  

Variant Sentence 
Predicted 

Label 

Original Sentence 
“this bond film goes off the beaten path , not necessarily for the 

better .” 
0 

Clean Sentence 
“this bond film goes off the beaten path not necessarily for the 

better” 
0 

 

Note: In the subsequent tables (Table A.2, Table A.3, Table A.4, and Table A.5), the 

following conventions apply for the synthetic sample compositions based on 

augmentation ratios: 

• The first element of each bullet list represents synthetic samples for an 

augmentation ratio of 1:1. 

• The first two elements of each bullet list collectively represent synthetic samples 

for an augmentation ratio of 1:2. 

• All four elements of each bullet list together represent synthetic samples for an 

augmentation ratio of 1:4. 
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Table A.2. Reconstructions from the selected DA methods, for example sentence in Table 

A.1 for dataset size of 100.  

 Variant Sentence 

Dataset 

Size 

100 

 
 

aae-token-clean-

100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

aae-w2v-raw-100 

• "it treats <unk> <unk> journey with honesty that is tragically rare in the 

depiction <unk> young women in film <unk>" 

• "<unk> be more he can cross swords with the best <unk> them <unk> helm 

<unk> more traditionally plotted popcorn thriller while surrendering little <unk> 
his intellectual rigor or creative composure <unk>" 

• "it treats <unk> <unk> journey with honesty that is tragically rare in the 

depiction <unk> young women in film <unk>" 

• "<unk> be more he can cross swords with the best <unk> them <unk> helm 

<unk> more traditionally plotted popcorn thriller while surrendering little <unk> 

his intellectual rigor or creative composure <unk>" 

ae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

ae-w2v-clean-100 

• "i solemn pretension prevents off from beaten path not in the the the" 

• "i solemn pretension prevents us from sharing the awe awe which which holds" 

• "i solemn pretension prevents us from sharing the awe awe which which holds" 

• "i solemn pretension prevents us from sharing the awe awe which which holds 

holds" 

daae-token-clean-

100 

• "a fascinating curiosity piece fascinating that is for about ten minutes" 

• "a strong first act and absolutely inescapably gorgeous motion deliver the 

amazing" 

• "a strong first act and absolutely inescapably gorgeous motion deliver the 

amazing" 

• "this is a gorgeous film vivid that color music and life and again" 

daae-w2v-clean-50 

• "<unk> proves <unk> lousy <unk> <unk> pic <unk> <unk> <unk><unk> have 

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like" 

• "<unk> <unk> excels <unk> lousy <unk> <unk> pic <unk> <unk> <unk> have 

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like" 

• "<unk> <unk> excels <unk> lousy <unk> <unk> pic <unk> <unk> <unk> have 

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like" 

• "<unk> <unk> excels <unk> lousy <unk> <unk> pic <unk> <unk> <unk> have 

<unk> <unk> have dramatized the <unk> <unk> novel which itself felt like" 

vae-token-clean-

100 

• "the bond film goes off the beaten path not necessarily for the better" 

• "the filmmakers know how to please the eye but not not not not the best the best 

the best" 

• "the filmmakers know how to please the eye but not not not not the best the best 

the best" 

• "the filmmakers know how to please the eye but not not not not the prettiest 

pictures that best the best" 

vae-w2v-raw-100 

• "<unk> proves film goes off the beaten path <unk> not necessarily for the better 

<unk>" 

• "<unk> <unk> measured <unk> <unk> gently tedious in its comedy <unk> 

secret ballot is <unk> purposefully <unk> movie <unk> which may be why it 
<unk> so successful at lodging itself in the brain <unk>" 

• "<unk> <unk> measured <unk> <unk> gently tedious in its comedy <unk> 

secret ballot is <unk> purposefully <unk> movie <unk> which may be why it 
<unk> so successful at lodging itself in the brain <unk>" 

• "<unk> <unk> measured <unk> <unk> gently tedious in its comedy <unk> 

secret ballot is <unk> purposefully <unk> movie <unk> which may be why it 

<unk> so successful at lodging itself in the brain <unk>" 
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Table A.3. Reconstructions from the selected DA methods, for example sentence in Table 

A.1 for dataset size of 200.  

 Variant Sentence 

Dataset 

Size 

200 

 
 

aae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

aae-w2v-raw-100 

• "contradicts everything we they come <unk>" 

• "<unk> bond film goes off the beaten path <unk> not necessarily for the 

better <unk>" 

• "the pedestrian as they come <unk>" 

• "<unk> bond film goes off the beaten path <unk> not necessarily for the 

better <unk>" 

ae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

ae-w2v-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

daae-token-clean-100 

• "playing only film goes off the beaten path not necessarily for the 

better" 

• "not only does deliver but i suspect it might deliver again and again" 

• "not only does deliver but i suspect it might deliver again and again" 

• "not only does deliver but i suspect it might deliver again and again" 

daae-w2v-clean-50 

• "the <unk> never <unk> almost directly influenced this love story but 

<unk> <unk> <unk> making his directorial feature debut does strong 
measured work" 

• "the <unk> seems <unk> have directly influenced this love story but 

even more reassuring <unk> the" 

• "the <unk> seems <unk> have directly influenced this love story but 

even more reassuring <unk> the" 

• "the <unk> never <unk> have directly influenced this love story but 

even more reassuring <unk> can" 

vae-token-clean-100 

• "the bond film goes off the beaten path not necessarily for the better" 

• "the bond film goes off the beaten path not necessarily for the better" 

• "the bond film goes off the beaten path not necessarily for the better" 

• "the bond film goes off the beaten path not necessarily for the better" 

vae-w2v-raw-100 

• "contradicts everything best sports the best little ever <unk>" 

• "<unk> be more genial than ingenious <unk> but it gets the job done 

<unk>" 

• "the pathetic junk is movie best little ever seen <unk>" 

• "<unk> be more genial than ingenious <unk> but it gets the job done 

<unk>" 
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Table A.4. Reconstructions from the selected DA methods, for example sentence in Table 

A.1 for dataset size of 500.  

 Variant Sentence 

Dataset 

Size 

500 

 
 

aae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

aae-w2v-raw-100 

• "the bond film goes off the beaten path <unk> not necessarily for the 

better <unk>" 

• "the bond film goes off the beaten path <unk> not necessarily for the 

better <unk>" 

• "the bond film goes off the beaten path <unk> not necessarily for the 

better <unk>" 

• "the bond film goes off the beaten path <unk> not necessarily for the 

better <unk>" 

ae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

ae-w2v-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

daae-token-clean-100 

• "this charming but slight tale has warmth wit and interesting 

characters compassionately portrayed" 

• "this charming but slight tale has warmth wit and interesting 

characters compassionately portrayed" 

• "this charming but slight tale has warmth wit and interesting 

characters compassionately portrayed" 

• "this charming but slight tale has warmth wit and interesting 

characters compassionately portrayed" 

daae-w2v-clean-50 

• "the film <unk> pace is actually one <unk> its strengths" 

• "the <unk> the <unk> dynamite sticks built only controversy would 

recognize" 

• "the <unk> the <unk> dynamite sticks built only controversy would 

recognize" 

• "the <unk> the <unk> dynamite sticks built only controversy would 

recognize" 

vae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

vae-w2v-raw-100 

• "the bodily function shines on all beaten path <unk> not necessarily 

for the better <unk>" 

• "the film brilliantly shines on all beaten path <unk> not necessarily 

for the better <unk>" 

• "the film brilliantly shines on all beaten path <unk> not necessarily 

for the better <unk>" 

• "the film brilliantly shines on all beaten characters <unk> as the for 

the better <unk>" 
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Table A.5. Reconstructions from the selected DA methods, for example sentence in Table 

A.1 for dataset size of 1000.  

 Variant Sentence 

Dataset 

Size 

1000 

 
 

aae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

aae-w2v-raw-100 

• "the movie is about the worst thing <unk> has done in the united 

states <unk>" 

• "<unk> has no affect the the their flaws <unk> <unk> heaven is one 

such beast <unk>" 

• "the result your sat scores are below slightly <unk> kids would 

quickly change the channel <unk>" 

• "<unk> has no affect the the energy <unk> <unk> but is one such 

beast <unk>" 

ae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

ae-w2v-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

daae-token-clean-100 

• "the film is impressive for the sights and sounds of the wondrous beats 

the world has to offer" 

• "the film is impressive for the sights and sounds of the wondrous beats 

the world has to offer" 

• "the film is impressive for the sights and sounds of the wondrous beats 

the world has to offer" 

• "the film is impressive for the sights and sounds of the wondrous beats 

the world has to offer" 

daae-w2v-clean-50 

• the <unk> <unk> <unk> fault <unk> flashy <unk> is <unk> <unk> 

relaxed <unk> displays" 

• "<unk> <unk> <unk> <unk> <unk> <unk> dim echo <unk> <unk> 

<unk>" 

• "<unk> <unk> <unk> <unk> <unk> <unk> dim echo <unk> <unk> 

<unk>  

• "<unk> <unk> <unk> make the oddest <unk> couples <unk> in this 

sense the movie <unk> <unk> <unk>  

vae-token-clean-100 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

• "this bond film goes off the beaten path not necessarily for the better" 

vae-w2v-raw-100 

• "the film is about the worst thing <unk> has done in the united states 

<unk>" 

• "<unk> film is not be by the flaws <unk> <unk> heaven is one such 

beast <unk>" 

• "the film is about the worst thing <unk> has done in the united states 

<unk>" 

• "<unk> film is not be by the flaws <unk> <unk> heaven is one such 

beast <unk>" 

 
 


