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Production of precise and up-to-date susceptibility maps at regional level is essential for
mitigating disasters, selecting new sites for settlements and construction, and planning in
areas prone to various natural hazards. This thesis introduced a novel approach to multi-
hazard susceptibility assessment (MHSA) for evaluating landslide, flood, and earthquake
risks, combining expert opinion with supervised machine learning (ML) techniques. The
methodology was tested in five basins within Elazig and three basins in Adiyaman
Provinces, Tirkiye. The susceptibility maps were produced at basin scale since various
environmental characteristics affecting the hazard conditioning factors are relatively
coherent within them. Regarding landslide susceptibility mapping (LSM), the random
forest (RF) ensemble machine learning algorithm, was utilized. For flood susceptibility
mapping (FSM), a modified analytical hierarchical process (m-AHP) method was

employed using factor scores provided by experts for each site. Seismic hazard



assessment relied on ground motion parameters, specifically Arias intensity values, as
they are considered to be effective especially for landslides. These individual assessments
were then synthesized using a Mamdani fuzzy inference system (FIS), incorporating
expert-defined membership functions. The thesis findings indicated high overall
accuracies (over 90%) can be achieved with the random forest model for the LSM. The
Mamdani fuzzy algorithm is recommended for the MHSA, as it can be adapted to
different regions with its intuitive membership functions. While the thesis provided a
robust framework for multi-hazard susceptibility assessment at the regional scale, fine-

tuning of the algorithms in different geographical areas may require further expert input.

Keywords: Multi-hazard assessment, landslide, flood, earthquake, machine learning,

fuzzy inference.



OZET

HEYELAN, DEPREM VE TASKIN TEHLIKELERININ COKLU DUYARLILIK
DEGERLENDIRMESI iCiN BiR YAKLASIM

Gizem KARAKAS

Doktora, Geomatik Miihendisligi Boliimii

Tez Damismani: Prof. Dr. Sultan KOCAMAN GOKCEOGLU

Mayis 2024, 130 sayfa

Bolgesel diizeyde dogru ve giincel duyarlilik haritalarinin iiretilmesi, cesitli dogal
tehlikelere duyarli bolgelerde afetlerin etkilerini hafifletme, yerlesim alanlar1 ve altyapi
ingaat1 i¢in yeni yerlerin sec¢ilmesi ve planlama amacli olarak olduk¢a 6nemlidir. Bu tez,
heyelan, sel ve deprem risklerini degerlendirmek i¢in uzman goriisii ile denetimli makine
ogrenimi (MO) tekniklerini birlestiren coklu tehlike duyarlilik degerlendirmesine
(CTDD) yeni bir yaklasim getirmistir. Metodoloji, Tiirkiye'nin Elazig ilindeki bes ve
Adiyaman ilindeki ti¢ havzada test edilmistir. Tehlike kosullandirma faktorlerini
etkileyen cesitli gevresel 6zellikler havzalar i¢cinde nispeten tutarli oldugundan, duyarlilik
haritalar1 havza Olgeginde diretilmistir. Heyelan duyarlilik haritalamasinda (HDH),
rastgele orman (RO) topluluk makine Ogrenimi algoritmas: kullanilmistir. Taskin
duyarhilik haritalamasi (TDH) i¢in, her bolge i¢in uzmanlar tarafindan saglanan faktor
puanlart kullanilarak modifiye edilmis analitik hiyerarsik stire¢ (m-AHP) yontemi
uygulanmistir. Deprem tehlike degerlendirmesi, 6zellikle heyelanlar i¢in etkili oldugu

diisiiniilen yer hareketi parametrelerine, Ozellikle de Arias yogunluk degerlerine



dayanmistir. Bu bireysel degerlendirmeler daha sonra uzman tanimli iyelik
fonksiyonlarini igeren bir Mamdani bulanik ¢ikarim sistemi kullanilarak sentezlenmistir.
Tez bulgulari, LSM i¢in rastgele orman modeli ile yiiksek genel dogruluklara (%90'1n
tizerinde) ulasilabilecegini gostermistir. Mamdani bulanik algoritmasi, sezgisel tiyelik
fonksiyonlart ile farkli bolgelere uyarlanabildigi i¢in CTDD igin 6nerilmektedir. Tez,
bolgesel olgekte ¢oklu tehlike duyarlilik degerlendirmesi igin saglam bir ¢ergeve saglamis
olsa da, farkli cografi alanlarda algoritmalarin ince ayarinin yapilmasi daha fazla uzman

girdisi gerektirebilir.

Anahtar Kelimeler: Coklu tehlike degerlendirmesi, heyelan, taskin, deprem, makine

6grenimi, bulanik mantik.
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1. INTRODUCTION

This chapter provides the motivation of the thesis and discusses the problems addressed
here, including natural hazards, their occurrences, and effects. The thesis objectives and

outline are also covered in the following sub-headings.

1.1. Problem Statement/Motivation

Natural hazards are technology and human-induced events that occur at unpredictable
times and have a negative impact on life on Earth, potentially causing injuries or death,
as well as damages to properties, socioeconomic assets, environment, and historical and
cultural heritage [1]. There are several types of natural hazards seen on a global scale.
These include earthquakes, volcanoes, landslides, avalanches, tsunamis, wildfires, debris
flows, and floods. Among them, earthquakes, landslides and floods affect people and the
natural environment more than the others, inducing quite destructive and economic losses

worldwide.

Landslides refer to the movement of a slope, either natural or man-made, in a downhill
and outward direction due to the combined effects of gravity, slope angle, water, and
other external pressures [2]. Floods can be defined as water bodies overflowing their
regular bounds or water accumulations in areas that are typically flooded [3]. An
earthquake is an event in which the energy generated as a result of the fracture of the
earth's crust due to tectonic or volcanic activities spreading in the form of seismic waves

and strongly shakes the earth and the environments they are observed [4].

The frequencies and intensity of natural hazards have significantly increased in Tiirkiye
and worldwide in recent years. Factors such as climate change, rapid urbanization and
environmental factors have caused many complex processes that impacted the frequency

1



and impacts of natural hazards and caused rises. The Disaster and Emergency
Management Presidency of Turkey (AFAD) published that between 1950 and 2022,
roughly 368,477 natural hazards, such as earthquakes, landslides, rockfalls, sinkholes,
floods, and avalanches, occurred in Tiirkiye [5-6], As a global effort, a total of 17
Sustainable Development Goals (SDGs), also known as Agenda 2030, were defined at
the Sustainable Development Summit in 2015 by the United Nations (UN). Within the
framework of these objectives, natural hazards were also mentioned several times. The
SDGs aim to increase catastrophe resilience and decrease vulnerability, among others, to
achieve equality and ending poverty. Particularly, items 1.5, 2.4, 11.5, 11.b and 13.1 of
these targets emphasize the importance of developing the capacity to withstand climate-
related hazards, natural disasters, and other economic, social, and environmental shocks

and disasters [7].

The majority of studies in the literature concentrate on a single hazard type. However, it
is possible that an area is impacted by many natural hazards, which can interact with one
another and potentially lead to cascading catastrophes. Precise prediction of disaster-
related hazards is necessary in these areas to effectively manage the adverse
consequences. Therefore, it is essential to evaluate multiple hazards in a region at the
same time also by analyzing the interactions between them. The importance of multi-
hazard assessments was proven on 24 January 2020 Elazig Earthquake (Mw 6.8) and the
6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) occurred in Tiirkiye.
The term multi-hazard has been adopted in the UN Environment Program [8], which aims
to identify and manage areas prone to natural hazards for a safer world in the 21 century

and to reduce disaster sourced risks.

Different datasets and methods have been used to produce single susceptibility maps in
the literature. While there have been numerous production of susceptibility maps for
single natural hazards, there is still no agreement on the appropriate methodology for
combining them. Thus, this matter remains as an essential research topic that has yet to
be further explored in the international literature on natural hazards. Thus, this thesis
focused on a novel multi-hazard susceptibility assessment (MHSA) method at the

regional scale and applied it, based on the Mamdani fuzzy inference system (FIS), in two
2



areas prone to earthquake, landslide, and flooding. Special attention was also paid to the
production of accurate single hazard maps, suitable input features used for this purpose,
and the spatial sampling strategies especially for the data-driven machine learning (ML)

methods. The objectives and contributions are detailed in the following.

1.2. Thesis Objectives

The literature analysis has shown that further research and novel methods are needed for
the production of accurate multi-hazard susceptibility (MHS) maps. Most MHSA studies
have focused on simple spatial analysis, such as overlay or sum of the individual maps.
This thesis focused on the production of a more advanced methodology with stochastic
input based on expert opinion. In addition, although a mass body of literature exists on
the production of landslide susceptibility maps (LSMs) and a number of flood
susceptibility maps (FSMs), the selection of suitable input features (or conditioning
factors) is still an open question. Thus, considering the selection methods for the
production of the univariate and multi-hazard susceptibility maps based on data
availability, suitability to the target region and prediction performances, this thesis aimed
to develop a novel approach for multi-hazard susceptibility map production. The

following main objectives can be listed as a summary:

e Development of an advanced decision-making approach for MHSA based on
stochastic inputs and expert opinion,

e Joint analysis of geohazards triggering each other such as earthquakes and
landslides, which are caused by geomorphological features, and a climate-related
hazard, i.e. flooding, together for the MHSA;

e Investigating joint use of the ML and expert-based methods for the MHSA,

e Evaluating the results in two different regions delineated based on basin

boundaries.



In order to fullfill the thesis objectives, two different sites, one in Elazig Province and the

other one in Adiyaman Province of Tiirkiye, were selected and the methods and their

parameters, such as input features and the sampling strategies, were evaluated from an

accuracy perspective.

1.3. Contributions

The study outcomes indicated that assessing multi-hazards together for a region allows

for a more accurate understanding of complex natural processes and their impacts on each

other.

Considering multiple natural hazards together encourages disaster risk

management from a more holistic perspective than traditional methods that focus on

single hazards. This expands the scope of risk assessment processes, allowing a

comprehensive investigation of all possible hazards. Thus, the main contributions of this

thesis can be listed as following:

An important contribution to this thesis study is the utilization of the Mamdani
FIS for the MHSA. The study used Mamdani FIS, the first of its kind in the
literature, by creating specific rules for each hazard, and this approach

significantly increased the usability and level of detail of the resulting maps.

The developed methods were adapted to different environmental characteristics
and risk conditions allows for featuring customized solutions that are sensitive to
regional characteristics. This enables the development of strategies for disaster
risk management and planning for different regions that take into account local

conditions.

Various types of spatial datasets with diverse resolutions and data sources were

evaluated and their usability for achieving high performance was assessed.

The preparation of landslide inventories using pre- and post-earthquake

orthophotos and surface models contributed greatly to the production of reliable
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and up-to-date databases for landslide risk management and susceptibility
assessments in Tiirkiye. High prediction performances for the production of high
resolution LSMs could be achived, which proves their usability for urban and rural

planning purposes.

o Different sampling strategies for the LSMs were evaluated with the popular ML
methods such as random forest and multi-layer perceptron, and it was found that
class imbalance between landslide and non-landslide classes must be accounted.
However, the spatial selection of the samples were found to be less important

when high amount of training and test data are available.

1.4. Thesis Outline

This thesis is presented under seven chapters as briefly explained below:

Chapter 1 describes the problem statement/motivation and objectives of the thesis, and

highlights the contributions of the study.

Chapter 2 presents a literature review on the methods used to produce the univariate
(such as landslides, floods and earthquakes) and multi-hazard susceptibility maps, and

the input features derived when producing these maps.

Chapter 3 provides the general and geological characteristics of the study sites, flood
and earthquake events, landslide inventories and the geospatial datasets used in the thesis

study.

Chapter 4 explains in detail the proposed methodological workflow, data pre-processing,

and production of the univariate and multi-hazard susceptibility maps.



Chapter 5 gives detailed quantitative and qualitative results of the method applied to two
different fields.

Chapter 6 discusses the results of the thesis on input features, univariate and multi-hazard

susceptibility maps from various aspects.

Chapter 7 concludes the thesis and provides recommendations for future research.



2. BACKGROUND ON HAZARD SUSCEPTIBILITY MAPPING

In this chapter, a comprehensive review of previous research on natural hazards was
presented. First, studies focusing on the selection of conditioning factors for the
production of univariate susceptibility maps were evaluated. In the literature, most
susceptibility assessment studies have predominantly considered only a single type of
natural hazard. Therefore, susceptibility assessment studies related to landslides, floods,
and earthquakes were presented in different sub-sections. Additionally, studies evaluating

the multi-hazard susceptibility were discussed in the scope of this work.

2.1. Conditioning Factors

Besides data quality, resolution and the applied model, the selection and analysis of
conditioning factors are extremely important in producing landslide and flood
susceptibility maps with high accuracy. The extent, type and importance of these factors,
which are mostly topographical, environmental, geological, hydrological, climatic, vary
according to the geological structure of the study area, regional environmental
characteristics, data availability and the requirements of the model to be used for
susceptibility modeling. Different conditioning factors were utilized in the literature and
there is no standard approach for their selection. In addition, many studies carried out
analyses on factor importance and their prediction abilities to determine the most effective

factors.

Carrara et al. [9] compared five different statistical and physically-based models for the
production of debris-flow susceptibility map. Rainfall, morphology and soil properties
were found to be the main predictors for shallow landslides. Xie et al. [10] selected
seventeen conditioning factors associated with landslide occurrence based on the previous
studies conducted in the study area. Elevation, lithology, settlement density and distance

from fault were found to be the most important features in the study.



Yang et al. [11] categorized the conditioning factors as topographic, geological,
hydrological, geophysical and land use/land cover. Elevation, peak ground accelaration
(PGA) and slope were observed as the most important factors in their study.
Lewandowski et al. [12] emphasized that the most important and critical step in any
prediction model is the selection of the appropriate conditioning factors to obtain high
accuracy. The features were determined based on literature review, expert opinion and
preliminary analyses with statistical methods. Pearson correlation was the most widely

used statistical method and was found suitable for the factor selection.

Meena et al. [13] investigated the importance of factors in predicting landslide
occurrences with statistical and ML methods. The feature importance results obtained
with the statistical model indicated that distance to drainage, topographic position index
(TPI), rainfall, lithology and land cover were the most important features. From the ML
model, distance to road, rainfall, lithology and elevation were found to be the most
important factors. In the study, susceptibility maps were reproduced by removing the least
important conditioning factors. As a result, it was found that the removal of these factors
did not affect the accuracy. It was also emphasized that the a factor might hold greater

significance in one model while being less influential in another.

Bernat Gazibara et al. [14] emphasized that the input layers were selected by an expert
according to the study area conditions, scale, purpose, and data availability. Six
conditioning factors (slope gradient, lithology, proximity to geological contact, land use,
terrain dissection and proximity to drainage network) were selected and implemented in
total. According to the results of the study, it was observed that the slope gradient was the

most important effect on the production of the susceptibility map.

Wang et al. [15] employed thirteen conditioning factors including elevation, slope, aspect,
plan curvature, profile curvature, topographic wetness index (TWI), engineering rock
group, normalized difference vegetation index (NDVI), land cover, distance to faults,
distance to rivers, mean annual rainfall and distance to roads for the LSM production. In
the study, importance of these conditioning factors for different algorithms was also

analyzed. It was observed that the factor importance obtained from different algorithms



was inconsistent. Elevation, slope and rainfall parameters were found to be more
important in three algorithms. Bravo-Lopez et al. [16] emphasized the importance of
selecting relevant conditioning factors to minimize dimensionality and produce a LSM
with suitable quality. The research also highlighted the importance of selecting features
to enhance the accuracy of the resulting LSMs and decrease the computational time

required to produce them.

In this thesis study, parameters, which have been used the most frequently in the literature
between 2017-2023, and the study area characteristics were considered in selecting
conditioning factors for landslide and flood susceptibility assessments. Studies published
between 2017-2023 and having at least fifteen citations were analyzed and the most
frequently used conditioning parameters were determined. Graphical representations of
conditioning factors used in the production of landslide and flood susceptibility maps
obtained from the literature analysis are shown in Figures 2.1(a) and 2.1(b). The
topographical features (slope, aspect, altitude, curvature, TWI, stream power index - SPI),
lithology, distance to river, distance to fault and land use land cover (LULC) were found
to be among the most commonly used factors for the LSM. For flood susceptibility, again

topography, lithology, hydrology and LULC have been used frequently.

Parameters used in landslide susceptibility studies between 2017-2023
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Figure 2.1. The conditioning parameters used for (a) landslide (b) flood susceptibility
assessment studies between 2017 and 2023.

2.2. Landslide Susceptibility Map Production Methods

In recent years, the number of natural hazards occurred in Tiirkiye and in the world has
been increasing. For this reason, it becomes important to automatically identify areas
susceptible to natural hazards. LSM production is one of the popular research subject in
the literature and it aims to spatially identify potential landslide-prone areas. According
to Reichenbach et al. [17], a great deal of literature has been published on landslide
susceptibility since the mid-1970s. A statistical assessment on the landslide literature by
Gokceoglu and Sezer [18] emphasized that there was a sharp increase between 1945 and

2008 and this rise was expected to continue.

Different methods and data sources were used to identify landslide-prone areas. These
methods can be categorized as qualitative (knowledge-driven and inventory based) and
quantitative (data-driven and physically-based) [19-20]. Overviews of the techniques
applicable to the evaluation of landslide susceptibility are provided by Soeters and [21-

24] as illustrated in Figure 2.2.
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Inventory-based Methods:
- Landslide inventory maps and event-based landslide inventory
- Landslide density maps
- Landslide activity maps
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Data-driven Methods:
Knowledge-driven Methods Bivariate Statistics Physically-based Methods
Direct mapping - Weights of evidence Static methods
- Geomorphologic hazard maps - Informain value - Infinite slope-based
Indirect mapping - Frequency ratio etc. - Profile-based
- Boolean logic Multivariate Statistics - 3-D models
- Fuzzy logiz -Logistic regresion Dynamic methods
- Multiclass overlay - Discriminant analysis - Rainfall/slope hydrology
- Spatial multi-criteria evaluation - Cluster analysis - Seismic acceleration
- Artificial neural networks
Qualitative Methods Quantitative Methods

Figure 2.2. Overviews of the methods for landslide susceptibility assessment ([20]).

All methods require inventories, which can also be utilized to validate the final maps [20].
In knowledge-driven approaches, LSMs can be prepared either on-site using expert
information or generated in the office as derivative maps from geomorphological maps.
Direct and indirect applications of knowledge-driven approaches are possible. It can be
used directly as it is the expert's field interpretation based on the observed events and
geological environment. By merging many factor maps that are considered to be
significant in the landslide occurrence, it can also be applied indirectly in a Geographic
Information Sytem (GIS) environment [20]. In knowledge-driven methods, experts

identify and weight landslides and relevant factors.

Physically based methods have been used based on modeling of slope failure processes.
These methods have been applied in large areas where landslide types are simple and
geomorphological/ geological conditions are rather homogeneous. These models are
typically employed to investigate landslides with a depth of less than a few meters, as
they rely on the infinite slope model. In physically based models for shallow landslides,
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various triggers are included. These include the transient groundwater reactivity of slopes
to rainfall and the effect of earthquake excitation [20].

In data-based (or data-driven) LSM production methods, the combinations of factors that
are more closely associated with the spatial distribution of past landslides are statistically
evaluated [25]. Quantitative estimates are made for areas that are not affected by existing
landslides with similar geological, topographic, land cover and hydrological conditions.
The output of a LSM is given in the sense of probability. These methods are called "data-
driven” because data from past landslide occurences are used to obtain information about
factor maps and the relative importance of their classes [20]. There are two main data-
driven methods widely used in the literature: bivariate and multivariate statistical
analysis. In bivariate statistical methods, each factor and landslide distribution are first
combined. The weight value is calculated for each parameter class, taking into account
the landslide intensity. Some statistical methods are used to calculate the weight value.

The frequency ratio (e.g [26-28]), fuzzy logic (e.g., [29-31]), weight of evidence (e.g.,
[32-34]), information value (e.g., [35-36]), Dempster-Shafer method (e.g., [37-39]) are
among the frequently used bivariate methods. It is a preferred learning tool for
determining which factors or combinations of factors play significant roles [20]. Bivariate
statistical methods ignore how different variables are dependent on one another and plays
an important role in getting to know the dataset before using multivariate statistical
methods.

Multivariate statistical models explore the relationship between dependent (landslide
occurrence) and a set of independent variables (landslide conditioning factors). Methods
such as logistic regression (LR) (e.g.[40-41]), artificial neural network (ANN) (e.g.[42]),
support vector machine (SVM) (e.g.[43]) and RF (e.g.[44]) have been among the most
frequently used methods. These techniques have become regionally accepted for

assessing landslide susceptibility.
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These methods were also mentioned in bibliometric studies on landslide susceptibility
researches. One of the recent reviews on bibliometric analysis concerns the evaluation of
the period 1999-2021 for landslide susceptibility by Liu et al. [45]. In the bibliometric
study conducted by Lima et al. [46], data-driven methods used for LSM were
investigated. Reichenbach et al. [17] emphasized that only five methods were used for
LSM in studies conducted before 1995. Liu et al. [45] stated that the trends on LSM
methods have changed from traditional methods such as expert-based, statistical to
supervised ML methods in recent years. Today, with the availability of inventory and
geospatial datasets, novel ML methods, and their importance in computational power, the
use of data-driven methods in landslide susceptibility studies has been increasing. Data-
driven algorithms such as LR, ANN, SVM, neuro-fuzzy (NF), decision tree (DT),
gradient boosting machine (GBM) and RF have been frequently used in LSM production
[47-54].

In the production of LSMs, as mentioned above, different data sources have also been
utilized. The data can be obtained by techniques such as photogrammetry and remote
sensing. Satellite and aerial images, synthetic-aperture radar (SAR), light detection and
ranging (LIDAR) are among these data sources as well [55-60]. Data obtained from
different sources (landslide inventory, surface model, etc.) are crucial for the input
parameters and accuracy assessment of the LSM to be produced. In addition, these data

can be obtained from the existing geodatabase.

The methods used for the production of LSMs can also be classified as expert-based ([61],
[29], [62-64]), statistical and probabilistic analysis ([65-67]) and supervised ML ([68],
[48], [50], [51], [46], [45]) in the literature. The quality of the dataset used in the study,
the suitability of the methods, the proper selection of conditioning factors, and the
availability of inventory affect the accuracy of the results. Comparison of different

methods is frequently used in the literature.

In a study by Pourghasemi et al. [29], both analytical hierarchy process (AHP) and fuzzy
logic methods were used. Accuracy obtained from both methods was evaluated with

receiver operating characteristic (ROC) curve and frequency ratio validation. The fuzzy
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logic model showed better prediction accuracy than the AHP method. Pradhan [54]
evaluated the three different approaches (DT, SVM and adaptive neuro-fuzzy inference
system (ANFIS)). In the study, five models were produced using different landslide
conditioning parameters in each model. The reason was to evaluate the effect and
importance of different parameters on the performance of the methods. According to the
results of the study, the DT method provided slightly better estimation performance than
the ANFIS and SVM methods.

Can et al. [69] used the XGBoost method, which is one of the ML algorithms used in the
production of more accurate and up-to-date LSMs in recent years. It was observed that

high classification accuracy can be achieved with this method in large regions.

In a study conducted by Karakas et al. [70], the LSM was produced by comparing the RF
and the multi-layer perceptron (MLP) methods. In the study, accuracy assessment and
validation were conducted in three different approaches. Numerous landslides were
triggered after the 24 January 2020 Elazig earthquake (Mw 6.8). The landslide inventory
was produced using the pre- and post-earthquake aerial photogrammetric datasets by
Karakas et al. [71]. The model training of both methods was carried out using the
inventory obtained from pre-earthquake photogrammetric datasets. Accuracy assessment
was made with the inventory obtained from the post-earthquake photogrammetric
datasets. In addition, the model transferability was evaluated since model training was
carried out only in a part of the study area. In the results, the RF method yielded higher
classification accuracy than the MLP method. However, for some lithological units that

were not used in model training, the MLP method showed better prediction performance.

The earthquakes in Kahramanmaras were notable for the fact that multi-hazards
interacted and afflicted the same area. This was especially observed in Tut and Adiyaman
regions. Karakas et al. [72] evaluated the MHS (landslide, flood and earthquake) of Tut
and its surroundings in their study. The LSM was produced with RF algorithm, and a high
level of accuracy was obtained with an F1 score of 0.93 for landslide pixels. In another
study conducted by Karakas et al. [73], the landslide susceptibility prediction accuracy

was analyzed with the event-based landslide inventory after the Kahramanmaras
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earthquakes. A LSM of the region, which was significantly affected by the
Kahramanmaras earthquakes and covers an area of 38,500 km?, was produced using the
pre-earthquake inventory and the RF algorithm. The susceptibility map produced was
evaluated with the inventory of 2611 co-seismic landslides that were triggered during the
earthquake and and not seen by the model. As a result of this evaluation, the statistics
showed that the OA was 76%. The evaluation of co-seismic landslides using an
independent validation set revealed the importance of considering previously unnoticed

elements, such as uncommon lithological units.

Merghadi et al. [74] implemented different methods in a comparative overview of ML
algorithm performances. The RF provided more robust results in the production of LSMs
compared to other algorithms tested. Wang et al. [75] compared two models (RF and
extreme gradient boosting decision trees) optimized with Bayesian algorithm in their
study. According to the results, it was seen that the RF yielded a higher predictive ability
than the extreme gradient boosting decision trees. In another study [76], the RF and the
ANN methods were compared and the performances of both methods were found to be

acceptable. But, the RF outperformed the ANN in accuracy.

Most studies in the literature utilized the RF method for the production of LSMs in recent
years, since it produces accurate predictions. For this reason, the RF method was preferred

for the production of LSM in this thesis study.

The accuracy assessment methods of the LSMs can be either qualitative, involving expert
inspection, or quantitative, based on multiple measures such as recall, precision, F-1
score, Kappa index, ROC curve, area under curve (AUC) value, overall accuracy (OA),
etc. Alternatively, a combination of both approaches may be employed at the same time.
In a bibliometric analysis study conducted by Lima et al. [46], this issue was mentioned
under the title of performance evaluation. According to the study outcomes, nearly half

of the publications in the literature used the AUC for accuracy assessment.
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2.3. Flood Susceptibility Map Production Methods

Studies on flood susceptibility assessment are less common in the literature than those on
the landslides since they are heavily based on expert opinion and often lack accurate flood
inventories. However, flood susceptibility assessment studies are becoming more and
more popular, much like the landslide susceptibility assessment. Although various
methods have been employed in susceptibility analysis, in practice, a few of them have
been preferred more often than the others. Nevertheless, while there is no consensus
among scientists in this field regarding the superiority of commonly used methods, the
prevalent approaches in evaluating flood susceptibility in the literature include multi-
criteria decision-making (MCDM) methods, physically based hydrological models,
statistical methods, and various soft computing methods [77]. These approaches vary in

their reliance on expert opinion and ease of application.

Flood susceptibility assessment studies have mostly been carried out with the MCDM
methods. Decision-making involves selecting from various options, while MCDM allows
for the evaluation of multiple criteria and the assignment of values to alternatives in
complex scenarios such as disasters. The MCDM methods enable the selection of the best
choice from multiple criteria simultaneously [78]. The MCDM methods, due to their
straightforward structure, have been extensively utilized in flood susceptibility analysis.
Examples of MCDM methods used in this context include the AHP (e.g., [79-82]),
analytical network process (ANP) (e.g., [83-84]), weighted linear combination (WLC)
(e.g., [85-87]) and decision-making trial and evaluation laboratory (DEMATEL) (e.g.,
[88]). However, it is important to note that the MCDM methods heavily rely on expert
opinion and may yield subjective results. At the same time, the strength of these methods
lies in their ability to consider potential effects that may not have emerged until the time

of analysis [77].

Due to the difficulty of accessing flood inventory data, expert-based methods such as
AHP ( [79-81]) and fuzzy inference system ([90-92]) have been used more frequently. It
was also preferred in data-driven approaches such as decision tree ([93-94]), LR ([95-
97]), RF ( [98-99]), SVM ([82]), bivariate and multivariate statistics ([93], [95]). In
addition to these methods, some studies used hybrid techniques ( [93], [100], [101], [90]).
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On the other hand, data-driven methods require high quality and representative
inventories, which are often not available. In addition, satellite-based flood data
compilation methods may either fail at the slopes or not provide timely data. Therefore,
expert-based methods are still preferred for this purpose. As an example, Sozer et al. [102]
used an expert-based method, a modified AHP (m-AHP), for urban areas in Ankara,
Tiirkiye. This method has the capability to correct expert errors to some extent (Yanar et

al., [103]) and was found successful for producing FSMs.

The FSMs have often been analyzed by visual evaluation in expert-based methods. In
data-driven methods, metrics such as the ROC curve, AUC value were also used (e.g.,
see [98], [99]), [82]).

2.4. Seismic Hazard Mapping Methods

Seismic hazard maps have been produced using various methods to assess earthquake risk
in a region and evaluate the seismic resilience of structures. Historical seismicity analysis,
seismotectonic studies, ground motion prediction equations, probabilistic seismic hazard
assessment (PSHA) and deterministic seismic hazard assessment (DSHA) are among
these methods. In historical seismicity analysis, past earthquake records in a region are
investigated and the magnitudes, depths and frequencies of earthquakes occurring in this
region are analyzed. These data help to understand the general seismic activity in a region.
Seismotectonic studies are used to research regional geology and tectonic features to
identify active fault lines, seismic potential zones, and other tectonic characteristics.
These data have been used to understand where seismic activity ground motion prediction
equations are used to predict the motion that an earthquake will create at the surface.
These calculations are generally based on the magnitude, depth, and source-to-ground

distance of the seismic activity.

In particular, probabilistic and deterministic seismic hazard assessments have been

widely used based on its geological and seismological structure of a region. The DSHA
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focuses on evaluating the worst-case scenario that a specific earthquake would create at
a specific location. It estimates the worst-case ground motion at a particular location,
usually using a given earthquake magnitude and location [104]. Within the DSHA
process, seismic hazard is assessed through numerical techniques that do not rely on
probability and incorporate inherent uncertainties. This method considers only the highest
magnitudes of earthquakes and the most direct path between the source and the site,
without taking into consideration the recurrence periods of earthquakes. PSHA is a
method that evaluates the earthquake hazard in a region through probability distributions.
In this method, seismic hazard maps are created based on the probability of occurrence
in a region within a certain period of time, using different earthquake parameters and
probability distributions. All potential earthquake scenarios that may affect the region are

taken into account.

In 1968, Cornell [105] published the first-ever study on seismic hazard assessment,
introducing a model for a probabilistic approach to evaluate seismic hazard. In the study,
he formulated a quantitative method to establish the necessary correlations among ground
motion parameters such as PGA, peak ground velocity, and the average return time
specific to a particular region.

The PGA has been commonly utilized in the probabilistic evaluation of seismic hazards
for site selection and engineering structure design. In 1999, Erdik et al. [106] conducted
a probabilistic assessment of seismic hazard in Turkiye and its neighboring regions. They
generated a map of PGA based on distinct return periods. Alpyiiriir and Lav [104]
appraised seismic hazard in the southwestern region of Turkiye and developed a novel

database for seismic susceptibility.

In another study conducted by Ince and Yilmazoglu [107], aimed to use the probabilistic
seismic hazard method to ascertain the seismic risk in Mugla province and the
surrounding area. In 2022, Gupta and Satyam [108] conducted an extensive probabilistic
seismic hazard assessment focusing on Arias intensity (Al) and the PGA. The research

offered new perspectives on the assessment of seismic hazards.
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2.5. Multi-hazard Susceptibility Map Production Methods

The MHSA is a research discipline that aims to comprehensively determine susceptibility
to various types of natural hazards and includes scientific, technical and social dimensions
in this context. Rather than focusing on a single disaster type, this assessment offers a
more holistic approach by considering the simultaneous impacts of different hazard types
and their potential to create combined risk. This literature review on the MHSA aimed to
explore and discuss the fundamental concepts, methodologies, and application examples
in the field.

A limited number of publications in the literature were dedicated to the MHSA. Most of
them followed a stepwise approach, integrating univariate susceptibility maps through
either weighted overlay analysis or the AHP. Mukhopadhyay et al. [109] used the MCDA
method in generating the multi-hazard (coastal erosion, sea-level rise, storm surge, coastal
flood, tsunami, and earthquake) susceptibility map and the weights were defined by
experts that were essential for achieving high accuracy. Skilodimou et al. [80] proposed
the AHP supported by a GIS to assess hazards from landslides, floods, and earthquakes
in the drainage basin of Peneus (Pinios) River in Western Peloponnesus, Greece. The
researchers combined these assessments into a multi-hazard map to determine the
suitability for urban development in the region. An uncertainty analysis was conducted
on the variables used in the study by adjusting the weighting coefficients to evaluate the
reliability of the model predictions. The study identified high hazard zones mainly in the
western and north-eastern parts of the study area. The comparison between the spatial
arrangement of urban areas and the road network with the suitability map demonstrated

that roughly half of both are situated in areas susceptible to natural hazards.

Askha et al. [110] presented a multi-hazard risk assessment framework using geospatial
and socioeconomic data in Dharan, Nepal, considering landslides, floods, and
earthquakes. By employing statistical methods and the AHP, the study combined a Social
Vulnerability Index (SoVI) with a multi-hazard map to create a total risk map. The results
showed high-risk areas along the Seuti River in eastern Dharan and the left bank of the
Sardu River in southwestern Dharan, while central Dharan and the western hills were

classified as low-risk areas. Yanar et al. [103] created a MHSA model for a specific area
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in Ankara by employing fuzzy logic to integrate a FSM and a Landslide Susceptibility
Map (LSM). Khatakho et al. [111] utilized AHP and GIS to assess floods, landslides,
earthquakes, and urban fire hazards in Kathmandu Valley, Nepal and integrating them
once more through the application of AHP. Based on collective observations, it was
determined that densely populated areas, historical settlements, and the central valley

exhibit a high to very high level of multi-hazard risk.

Rehman et al. [112] utilized field surveys and remote sensing data to develop inventories
of geo-hazards and calculated the subjective and objective weights of causative factors
using geospatial techniques such as the AHP and Frequency Ratio (FR) within a GIS
environment. The results showed that the southern and northwestern parts of the region
are the most suitable areas for future sustainable development and economic activities,
while the eastern and western regions, including Muzaffarabad City, exhibit high to very

high susceptibility.

Moreover, recent research studies conducted in China ([113]), in Iran ([114-117]), and in
Saudi Arabia ([118]), diverse ML approaches were utilized for the MHSA. Pourghasemi
et al. [119] developed a MHS model in Iran, employing a novel ensemble model called
stepwise weight assessment ratio analysis (SWARA). They utilized the adaptive neuro-
fuzzy inference system (ANFIS) and grey wolf optimizer (GWO) for the assessments of
landslide-, flood-, and earthquake-prone areas. In their study, a PGA map was produced
based on PSHA. The accuracies of the FSM and the LSM were evaluated using the ROC

curves.

Ullah et al. [120] proposed a MHSA framework using Convolutional Neural Networks
(CNN) to predict and mitigate the risk of flash floods, debris flows, and landslides. The
proposed CNN method has good performance in predicting the probability of hazards.
The susceptibility maps of the three hazards, generated using CNN, were integrated to
produce a multi-hazard susceptibility map. This map reveals that 62.43% of the research

region exhibited vulnerability to hazards.
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3. STUDY SITES AND GEOSPATIAL DATASETS

The methodology proposed in the thesis was applied to two different study areas with
different characteristics in terms of destructive earthquake and flood events and their
secondary hazards; the data availability, land cover and topography. In this chapter, the
earthquake and flood events, study areas and characteristics, and the geospatial datasets

used in the thesis are explained.

3.1. Elazig Study Site

In this section, the geographical and geological characteristics of the Elazig study site,
the January 24, 2020 Elazig earthquake event, and various previous flood events in the
region were explained. The site was selected because it is susceptible to multi-hazards,
namely landslides, floods and earthquakes.

3.1.1. Location and geological characteristics for Elazig study site

The Elazig study site is located in the southeastern part of Tiirkiye and consists of the
Elazig Province and surrounding basins (Figure 3.1). In the study site covering
approximately 5,150 km?, the altitude values obtained from EUDEM v1.1 of the
Copernicus Land Monitoring Service [121] vary between 524 m and 2592 m. The mean
annual temperature recorded in Elazig Province was 13.2°C, while the average annual
precipitation amounts to 420.2 mm [122]. The environmental conditions were represented
using LULC classes derived from a global land cover map released by the ESA [123].
The Elazig study site predominantly consists of 69% grassland. Subsequently, it
encompasses 9% bare/sparse vegetation, 8% cropland, 6% permanent water bodies, 5%

tree cover, 2% built-up area, and 1% shrubland (Figure 3.2).
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Since the study site is situated along the East Anatolian Fault Zone (EAFZ), it is exposed
to significant seismic activities and ongoing tectonic changes. This also results in a young
and rugged terrain. The geological formations in the region also exhibit limited shear
strength. These conditions make the region prone to landslides [124]. Avci and Sunkar
[125] explored the correlation between lithological units and the proximity to fault lines
concerning landslides in Elazig and its adjacent northern province. Their findings
revealed that the majority of landslides in the area were induced by seismic activity.
Moreover, the area has a long-standing history of experiencing frequent and catastrophic
earthquakes [126-127].

The EAFZ exhibits the characteristics of strike-slip movement triggered by the continent-
to-continent collision of the Arabian-African and Eurasian Plates. The interaction
between the four main tectonic plates of Arabia, Eurasia, India, and Africa with the
relatively smaller tectonic block of Anatolia generates high activity in the region [127].
Due to the active tectonism in the study site, geological formations exhibit diversity. The
youngest and oldest units are of Quaternary and Precambrian ages, respectively. The
geological map for the Elazig study site is provided in the Figure 3.3. A total of 339
geological units in the area were combined based on similar characteristics to obtain 19
units. The unit of gneiss, schist is the most commonly observed within these geological
units. This is followed by units volcanites and sedimentary rocks, clastics and carbonates,
terrigenous clastics, neritic limestone and undifferentiated alluvial, respectively (Table
3.1).
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Table 3.1. Areas of the geological units in the Elazig study site
Unit ID Lithological Units Ai (km?)

1 Undifferentiated Alluvial 208.00
2 Terrigenous clastics 543.89
3 Sheeted dyke complex 89.49
4 Volcanites and sedimentary rocks 916.53
5 Granitoids 50.80
6 Basalt 192.21
7 Clastics and carbonates 637.22
8 Marble 121.89
9 Undifferentiated basic and ultrabasic rocks 273.40
10 Gabbro 93.34
11 Serpentinite 1.44
12 Ophiolitic melange 1.05
13 Diorite, tonalite, monzonite, gabbro etc. 180.78
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14 Pelagic limestone, clastics, radiolarite, chert etc. 80.59

15 Neritic limestone 342.50
16 Schist 66.65
17 Quartzite, quartzschist 13.75
18 Amphibolite 31.03
19 Gneiss, schist 1000.37

3.1.2. The 24 January 2020 Elazig (Turkiye) earthquake event

On January 24, 2020, at local time 20:55, an earthquake with a moment magnitude of
Mw. 6.8 occurred as a result of the rupture of the NE-SW strike-slip fault along the Hazar-
Sincik Segment on the EAFZ [126]. According to the AFAD report (see also Figure 3.1),
the epicenter of the earthquake was 37 km south-southwest of Elazig and 64 km east of
Malatya (N38.359°, E39.063°) and the earthquake's focal depth was 8.06 kilometers. The
effects of the Elazig- Sivrice earthquake were observed in a wide area in the Elazig and
Malatya regions, from Lake Hazar in the east to Malatya city center in the west.
According to the preliminary report of field observations published by MTA, the surface
deformations associated with this earthquake were along a line of about 48 km from Lake
Hazar to Piitiirge (Malatya) [133]. The Anatolian Plate is tectonically active and thus, the
region is frequently exposed to destructive earthquakes. According to AFAD data,
unfortunately 41 people lost their lives and 1607 people were injured in the earthquake.
547 buildings were completely destroyed, 6270 buildings suffered severe damages, 962
buildings suffered moderate damages and 10273 buildings suffered minor damages [133].
In addition, secondary hazards such as lateral spreading, rockfalls, liquefaction and
landslides were observed in the region after the earthquake. In the technical report
published by Gokceoglu et al. [134], these secondary hazards, especially landslides, were

discussed in detail.
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3.1.3. Recent flood events in the Elazig study site

Due to the geographical characteristics and climatic conditions of Elazig and its
surrounding basins, several floods have occurred before. The causes of these floods
include sudden and heavy rains, overflowing of stream beds, disruption of stream flow
regimes and streambed morphology by extracting material from stream beds, and
settlement in stream beds due to unplanned urbanization. Flood events seriously affect
settlements and agricultural areas in the region. The damage to homes and businesses, the
destruction of agricultural produce, and the infrastructure damage have adverse effects
on the local economy and the Iliving standards of the community.
Despite extensive efforts, no comprehensive inventory of flood events could be found to
conduct the study analyses. Yet, based on the news and media reports, some inundated
areas, which were found highly susceptible to flooding, could be found. The locations of

inundated areas are presented in detail in Table 3.2.

Table 3.2. Locations of the inundated areas during the previous events occurred in Elazig

and its surroundings.

Inundated .

Area No Event Date Location
1 15 April 2017 N38.609°, E39.302° [135]
2 20 June 2019 N38.681°, E39.257° [136]
3 20 June 2019 N38.675°, E39.206° [137]
4 4 May 2022 N38.669°, E39.185° [138]
5 4 May 2022 N38.667°, E39.246° [139]
6 13 June 2022 N38.683°, E39.395° [140]
7 13 June 2022 N38.646°, E39.393° [140]
8 15 March 2023 N38.491°, E39.852° [141]
9 16 March 2023 N38.565°, E39.246° [142]
10 6 December 2023 N38.671°, E39.228° [143]
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3.1.4. The landslide inventory for Elazig study site

It is of great importance to have information about both temporal and spatial frequency
of landslides in order to create a map that reliably predicts landslide susceptibility, hazard
and risk in a particular region. Therefore, it is necessary to start by compiling a
comprehensive and complete inventory of landslides for these studies. Landslide
inventories can be provided using various techniques. Image interpretation (stereo aerial
photographs), semi-automated classification based on spectral and altitude characteristics
(high resolution satellite images, aerial photograps, LIDAR shaded relief maps, RADAR
images, INSAR), field investigation methods (field mapping), archive studies (interviews,
newspaper). archives, existing databases), dating methods for landslides (direct and
indirect methods), monitoring networks (electronic distance measurements, GPS, ground-
based INSAR, terrestrial LIDAR) are among these techniques [144]. Some attempts were
made to standardize the landslide inventories obtained by naming classification types ([2,
145]), causes of landslides ([146]), landslide activity ([147]).

For landslides triggered after triggering conditions such as rainfall, earthquake, human
impact, etc., landslide inventory preparation studies must be carried out frequently and

the inventory in existing databases must be updated.

In this thesis study, a multi-temporal landslide inventory was utilized. The landslide
inventory used was categorized into two groups: pre- and post-earthquake landslide
inventories. Detailed information regarding the pre- and post-earthquake inventories in
the Elazig study site is explained below.

3.1.4.1. Pre-earthquake landslide inventory for Elazig study site

The pre-earthquake landslide inventory used in the model training phase of the thesis
study was obtained by visual interpretation of 3D models, orthophotos produced aerial
photographs and from MTA's geosciences WebGIS portal. The “Tiirkiye Landslide
Inventory Project” was initiated regionally by MTA in 1997 for the landslides in the portal
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and was completed on a national scale in 2007 [148]. Existing landslides were identified
and mapped as a result of aerial photo analysis and detailed field studies. The landslides
mapped within the scope of this project were presented to users as an inventory on the
geosciences WebGIS portal. Based on the classification of Varnes (1978) [149] in the
classification of landslides, mass movements were classified as flow, slide and complex
according to the type of movement. Fall and topple-type landslides could not be taken
into consideration due to scale limitations. In addition, landslides were classified
according to their activities, divided into active and inactive [148]. As can be seen in
Figure 3.4, there are a total of 694 pre-earthquake landslides defined as polygons in the
Elazig study site. The areas of these landslides vary from 0.0002 km? to 3.431 km?2.
Additionally, the distribution of area sizes for the landslide inventory before the
earthquake is presented in Table 3.3 and Figure 3.5. Generally, most of these landslides

were observed along active fault segments.

Table 3.3. The distribution of area sizes for the Elazig study site's pre-earthquake

landslide inventory.

Landslide Landslide Percentage
Area (km?) Counts (%)
<0.03 246 35.45
0.03 -0.06 135 19.45
0.06 — 0.09 51 7.35
0.09-0.12 63 9.08
>0.12 199 28.67
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3.1.4.2. Post-earthquake landslides inventory for Elazig study site

The post-earthquake landslide inventory used in this thesis was obtained by visually
interpreting orthophotos and 3D surface models produced from aerial photographs taken
pre and post-earthquake (see Karakas et al. [71] for further details). Aerial photographs
taken in three different years (2017, 2018, 2020) were used for photogrammetric
processing. 142 pre-earthquake images of 2017 (Malatya flight) and 2018 (Elazig flight)
with 80% forward overlap and 60% side overlap with 30 cm GSD were obtained from
the General Directorate of Mapping (GDM). 1410 post-earthquake images were taken by
the GDM on 26 January 2020, 2 days after the Elazig earthquake.

The GDM's photogrammetric data production process comprised steps such as flight
planning, image acquisition, and aerial triangulation. The airplane's inertial navigation
system (INS) and global navigation satellite system (GNSS) receivers were used to
determine the external orientation parameters (EOPs). The interior orientation parameters
(IOPs) of the UltraCam sensors [150] were established through laboratory calibration
conducted by Vexcel Imaging. At the GDM, the photogrammetric bundle block
adjustment method was employed across all datasets to enhance image georeferencing
accuracy. This was achieved by recalculating the image exterior orientation parameters
(EOPs) through a least squares estimation process, utilizing signalized and ground-
surveyed control points as reference points. The digital surface models (DSMs) and
orthophoto mosaics were produced using Agisoft Metashape Professional, developed by
Agisoft LLC in St. Petersburg, Russia. Table 3.4 illustrates the characteristics of stereo

datasets and photogrammetric products.
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Table 3.4. The characteristics of stereo datasets and photogrammetric products.

#of Flight | Raster | Ortho Use
Date Province | Camera photos | altitude | DSM GSD purpose
(m) (cm) | (cm)
2017 Malatya | UltraCam 88 7500 66 30 Pre-
(Summer) Eagle 1 earthquake
2018 Elazig UltraCam 54 6500 68 30 Pre-
(Summer) Eagle 1 earthquake
26 Jan Malatya | UltraCam 1410 6500 82 30 Post-
2020 and Eagle M3 earthquake
Elazig

The area surrounding the segment damaged by the Elazig earthquake was found to have
328 landslides, which were detected and mapped by comparing the surface models and
orthophotos taken pre and post-earthquake. These landslides were divided into four
groups according to the classification proposed by Cruden and Varnes [145]. These
groups were inactive mass movements (75), active mass movements (183), new active
zone developed within the existing mass after 2018 (57), and newly developed after 2018
triggered by the Elazig earthquake (13) [71]. The observed activities within the masses
typically occurred in a retrogressive manner, primarily concentrating on the crown
sections of the landslides, leading to their backward development. Additionally, new
activities were noted in the secondary failures of the large masses, characterized as
sackung-type landslides. Since it was concluded that the 3™ and 4™ group activities were
triggered by the Elazig earthquake, 70 of these 328 landslides were used to test the the
final LSM. Group 1 and 2 activities were included in the pre-earthquake landslide
inventory data and used in model training. The areas of these 70 landslides vary from
0.0001 km? to 3.007 km?. The landslides triggered by Elazig earthquake were mostly
observed along lakeshore, road cuts and river terraces [71]. In Figure 3.6, examples of
landslides triggered in the Elazig earthquake can be seen on orthophotos produced from

aerial photographs pre and post-earthquake.
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Figure 3.6. Examples of landslides triggered in the Elazig earthquake on orthophotos

produced from aerial photographs pre (al, b1) and post-earthquake (a2, b2).

3.2. The Adiyaman Study Site

In this section, the geographical and geological characteristics of the Adiyaman study
site, the February 6, 2023 Kahramanmaras earthquake events, and various previous flood
events in the region was explained. The site was selected due to data availability and also

it is susceptible to multi-hazards, namely landslides, floods and earthquakes.

3.2.1. Location and geological characteristics for Adiyaman study site

Adiyaman and its surroundings, one of the 11 provinces affected by the Kahramanmaras

earthquakes that occurred on February 6, 2023, was selected as the study site. Particularly
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in the Tut region of Adiyaman, many landslides were observed as a secondary hazard
triggered during the earthquakes. Subsequently, a flood event occurred in the region due
to heavy rains. For the purpose and scope of the thesis study, since there are more than
one multi-hazards affecting the same area in Adiyaman Tut region, this region was
selected as an additional study site to test the applicability of the methodology. The model
parameters and predictive variables were tuned for the site. The study area covers an area
of approximately 1600 km? and Figure 3.7 shows the location of the study area together
with the digital elevation model (DEM) obtained from EUDEM v1.1. The altitude of the
site varies between 461 m and 2522 m. The mean annual temperature in Adiyaman
Province is 17.4°C degrees, while the average annual precipitation is 715.1 mm [122].
According to global land cover map released by the ESA, the Adiyaman study site
predominantly consists of 55% grassland. Subsequently, it encompasses 21% cropland,
12% bare/sparse vegetation, 8% tree cover, 3% built-up area, and 1% shrubland (Figure
3.8).
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Figure 3.7. The Adiyaman study site with EUDEM v1.1 data and fault lines.
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Figure 3.8. The LULC map of Adiyaman study site obtained from ESA WorldCover map
[123].

The Adiyaman study site exhibits a complex structure due to its placement within the
EAFZ, characterized by frequent seismic activity. It comprises diverse units consisting of
igneous, metamorphic, and sedimentary rocks spanning from the Precambrian age to the
present geological time periods. The geological map for the Adiyaman study site is
provided in the Figure 3.9. A total of 27 geological units were available in the area. Yet,
they were combined based on similar characteristics to reduce the dimensionality, thus
12 units were obtained. As depicted in Figure 3.9 (please also see Table 3.5), the unit of
neritic limestone is the most commonly observed within these geological units. This is
followed by units pelagic limestone, clastics and carbonates, non-graded terrigenous
clastics, volcanites and sedimentary rocks and terrigenous clastics, respectively. The unit

names are given in Table 3.5.
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Figure 3.9. Geological map in the Adiyaman study site ([151-152]).

Table 3.5. Area sizes of the geological units in the Adiyaman study site.

Unit ID Lithological Units Ai (km?)
1 Undifferentiated Alluvial 74.08
2 Non-graded terrigenous clastics 234.87
3 Basalt 0.68
4 Volcanites and sedimentary rocks 205.84
5 Terrigenous clastics 98.82
6 Ophiolitic melange 28.24
7 Clastics and carbonates 247.58
8 Pelagic limestone 271.16
9 Neritic limestone 301.15
10 Undifferentiated basic and ultrabasic rocks 84.93
11 Peridotite 0.01
12 Marble, schist in places 42.01
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3.2.2. The 6 February 2023 Kahramanmaras (Turkiye) earthquake events

On February 6, 2023, two major devastating earthquakes occurred at local times 04:17
and 13:24, with their epicenters located in the Pazarcik (N37.288, E37.043) and Elbistan
(N38.089°, E37.239°) districts of Kahramanmaras, known as the catastrophic events of
the century. The magnitudes of these earthquakes were Mw. 7.7 and Mw. 7.6,
respectively. According to the AFAD report, the focal depth of the first earthquake,
located in the primary branch of the EAFZ between the Narli segment and the Pazarcik
segment of the Dead Sea Fault Zone, was 8.6 km. The focal depth of the second
earthquake, which caused surface rupture along the Cardak Fault, a part of the northern
branch of the EAFZ, was determined to be 7.0 km. The these seismic events resulted in
catastrophic devastation across 11 provinces situated in the Southeastern and Eastern
Anatolia Region of Tiirkiye. The earthquakes led to immeasurable damages and casualties
numbering in tens of thousands. In addition to the devastating earthquakes, the region
witnessed numerous secondary hazard occurrences, including rockfalls, landslides, rock
avalanches, surface ruptures, liquefaction, and more, all triggered by the seismic activity.
Adiyaman and its surrounding areas are also among the provinces most affected by these
earthquakes and secondary hazards. Furthermore, several parts of the region frequently
experience flooding, a meteorological hazard related to climate conditions, which may
also trigger landslides.

3.2.3. Recent flood events in the Adiyaman study site

On March 15, 2023, approximately one month after the earthquakes in Kahramanmaras
on February 6, 2023, a second disaster occurred in the Tut district of Adiyaman due to
heavy rainfall, namely a flood event. Due to the overflow of the stream passing through
the center, many houses and agricultural areas were damaged, resulting in losses of lives.
Again, as in the Elazig site, no comprehensive flood inventory was obtained despite
extensive efforts. Yet, based on the news and media reports, some inundated areas, which
are highly susceptible to flooding, were identified. These inundated areas are presented
in Table 3.6.
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Table 3.6. The inundated areas that have occurred previously in Adiyaman and its

surroundings.

Inundated Event Date Location

Area No
1 1 May 2022 N37.759°, E38.279° [153]
2 15 March 2023 N37.795°, E37.914° [154]
3 11 April 2023 N37.794°, E38.240° [155]

3.2.4. The landslide inventory for Adiyaman study site

In the Adiyaman study site, a multi-temporal landslide inventory was also used. The
inventory was categorized as pre- and post-earthquake landslide. Detailed information
regarding the pre- and post-earthquake inventories in the Adiyaman study site are given
below.

3.2.4.1. Pre-earthquake landslides inventory for Adiyaman study site

The pre-earthquake landslide inventory used in the model training phase in the Adiyaman
study site was obtained from MTA's geosciences WebGIS portal. Landslide inventories
in this region were also mapped within the scope of the “Tiirkiye Landslide Inventory
Project”, as explained in detail in Section 3.1.4. As seen in Figure 3.10, there were a total
of 217 pre-earthquake landslide inventories in the Adiyaman study site. The smallest and
largest landslide areas in the pre- earthquake landslide inventory varied between 0.0005
km? and 7.970 km?. The distribution of area sizes for the landslide inventory before the

earthquake is presented in Table 3.7 and Figure 3.11.
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Table 3.7. The distribution of area sizes in the Adiyaman study site's pre-earthquake

landslide inventory.

Landslide Landslide Percentage
Area (km?) Counts (%)
<0.02 111 51.15
0.02 -0.04 52 23.96
0.04 - 0.06 9 4.15
0.06 —0.08 8 3.69
>0.08 37 17.05
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Figure 3.10. Pre-earthquake landslide inventory in the Adiyaman study site.
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Figure 3.11. The pre-earthquake landslide size distribution as a percentage chart.

3.2.4.2. Post-earthquake landslides inventory for Adiyaman study site

The landslides in the Adiyaman study site triggered by the Kahramanmaras earthquakes
were determined by comparing the pre-earthquake and post-earthquake orthophotos in
the HGM Kiire application [156], which is a web-based GIS platform offered to the user
by the GDM. These orthophotos were produced by processing the aerial photographs
obtained as a result of the aerial photogrammetric flight mission carried out by GDM in
the earthquake region (see Karakas et al. [73] and Kocaman et al. [157] for further
details). The GDM continued its flight missions for a week, starting from February 7,
2023, one day after the earthquake. Aerial photograps were generally taken from rural
and mountainous areas. All aerial stereo images with an average GSD of 25 cm were
captured with an Ultracam Eagle M3 camera [150]. These images were rapidly processed
and presented to the user in the HGM Kiire application. In these orthophotos presented in
3D, there was only a DEM representing the pre-earthquake situation. The geometric

quality of these orthophotos is suitable for identifying and mapping landslides.

Due to seasonal conditions, it was observed that the images obtained from flights after

the earthquake show dense cloud cover shadows and snow cover. Despite these
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challenging situations, a total of 2611 landslides triggered by Kahramanmaras
earthquakes were mapped in the HGM Kiire application by[72], [73], [157]. In addition,
some of these landslides have been validated with field observations in the earthquake
region. Mass movements such as flow (debris flow), slide (translational and bedrock
rotational), fall (rock fall) and spread were observed in landslide types triggered after the
earthquake.

There were 530 landslides triggered after the earthquake in the Adiyaman study site.
Observations also revealed certain failures in talus materials, identified as debris flows.
Such landslides have been encountered especially in the east of the Tut region. Talus
material originated from limestone formations located at higher elevations of the slope,
gradually accumulating on the lower slopes. The areas of these landslides varied from
0.0001 km? to 2.47 km?. These landslides triggered after the earthquake were not included
in the model training. It was used to validate the LSM produced for the Adiyaman study
site. Examples from the pre- and post-earthquake landslides were illustrated as

perspective images shown on Google Earth platform [158] in Figure 3.12.
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Figure 3.12. The pre (al, a2, a3) and post (b1, b2, b3) 3D image perspective of the
identified post-earthquake landslides on the Google Earth platform.

3.3. Geospatial Datasets

The first stage of obtaining the univariate susceptibility maps used in the thesis study was
the collection of data from which the conditioning factors associated with landslides were
produced. The main data, data sources, resolution/scale and formats used for this thesis

study are presented in Table 3.8.

Table 3.8. The main data, data sources, resolution/scale and format used in the study sites.

Data Data sources Source format | Resolution/Scale
DEM EUDEM v1.1 Grid 25m
Lithology Geological maps from MTA Polygon 1/100.000
Faults MTA Geosciences WebGIS Polyline 1/25.000
portal
Pre-earthquake MTA Geosciences WebGIS Polygon 1/25.000
Landslide Invertories portal
LULC ESA WorldCover Grid 10m
River Vector data TopoVT of HGM Polyline 1/25.000
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Arias Intensity AFAD earthquake database Point -

values

The DEM data, which is one of the main data sources in the study, was extracted from
EUDEM v1.1. The EUDEM v1.1 published by CLMS represents an upgraded version of
EU-DEM v1.0., incorporating improvements such as rectifying geopositioning
discrepancies, minimizing artifacts, and enhancing vertical accuracy by utilizing data
from the Ice, Cloud, and land Elevation Satellite (ICESat) mission operated by NASA.
The product was obtained by combining ASTER GDEM datasets and the Shuttle Radar
Topography Mission (SRTM). It has a spatial resolution of 25 m and a vertical accuracy
of 7 m, and consists of a total of 27 tiles, covering a 1000 km % 1000 km area (CLMS
2022). The study area corresponds to the tile with the ID number E60N20. This tile was
clipped to be used in other processes according to the study area. The EUDEM v1.1 data
was preferred because it has high spatial resolution and high elevation accuracy. The
lithology, pre-earthquake landslide inventory and fault data were obtained from the MTA.
The worldwide land cover mapping published by ESA was used for LULC data. The
river vector data was acquired from the TopoVT geodatabase of the General Directorate
of Mapping and visually detailed drawings of the rivers in the Elazig study site. Arias
intensity values for seismic hazard were downloaded from the AFAD earthquake
database based on records of accelerometric stations in the study sites and its

surroundings.
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4. METHODOLOGY

In this chapter, the methodology proposed in the thesis was explained. The chapter begins

with an overview of the workflow proposed in the thesis. Then, data preprocessing

methods for landslide and flood susceptibility map production were explained. The

explanations for the production methods of each univariate susceptibility map and also

the MHS map are also provided.

4.1. Overview of the Proposed Workflow

In this section, the overall workflow proposed for the thesis study is explained. The

proposed methodology for the MHS map production consists of three basic stages: (i) a-

data pre-processing, (ii) the production of univariate susceptibility maps, and (iii) the

MHS map production, as shown in Figure 4.1.
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Figure 4.1. The overall workflow proposed for the thesis study
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In the first stage, the main data used in the study were obtained from various sources.
These data were pre-processed and features representing the conditioning factors were
derived to produce the univariate susceptibility maps. At the second stage, the univariate
susceptibility maps for natural hazards such as landslides, floods and earthquakes were
produced using different methods depending on the data availability. The RF algorithm
was used for the LSM production due to its ability to handle complex interactions between
terrain features. The flood susceptibility was evaluated with the m-AHP method, which
takes various factors into account, such as slope, land use, distance to drainage network
etc. The seismic hazard map was created based on Arias intensity values using Inverse
Distance Weighted (IDW) technique to interpolate the spatial variations. At the third
stage, a MHS map was produced using the Mamdani FIS method. These stages are
explained in detail in the following sections. The effectiveness and accuracy of the
proposed methodology was analyzed by applying it in two different study areas selected
after the Elazig and Kahramanmaras earthquakes.

4.2. Data Pre-processing for the Univariate Susceptibility Map Production

The main data sources used in the study were DEM, lithology, LULC, pre-earthquake
landslide inventory, faults, rivers (as vector data) and Arias Intensity values. During the
data preprocessing stage, features used to produce each univariate susceptibility map were
extracted by applying geometric preprocessing & rasterization, and feature extraction

steps for topographical parameters to this main data.

A geological map is a type of thematic map that shows the types, compositions, structures,
and the other characteristics of the exposed rocks in a region. Lithology plays a crucial
role in evaluating the risks of landslides, floods, and earthquakes. Lithological properties
have an impact on rock type, permeability, and surface runoff [159]. Lithology is one of
the factors that has a direct effect on the landslide potential. Because different geological
units have different characteristics, which affect the possibility of landslide occurrence,
movement and propagation. Properties of geological units such as water permeability and
water holding capacity affect the rate of penetration of precipitation into the soil and the

surface flow of water.
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The geological formations in the study sites were acquired by digitizing the geological
formation map published on the Geosciences WebGIS portal of MTA, which had a scale
of 1/100,000. The vector polygons were combined to form a single geometry of
geological units with similar characteristics. Before the rasterization process, each
geological unit was assigned an ID ranging from 1 to the number of units in the study
sites as a preparation step for method application. According to these ID values, a

rasterized geology map was obtained and stored in GeoTIFF format.

The different LULC types within a region display various influences in natural hazard
events. For this reason, it is necessary to use up-to-date LULC data. The global
WorldCover product [123] with a resolution of 10 m provided by ESA was used in the
thesis study. This LULC map was resampled to the 25 m grid size used in the study and

clipped according to study sites.

Due to the study site locations within the EAFZ that are prone to landslides induced by
seismic activity, the distance to faults factor was incorporated. This distance is used to
determine the proximity of a point or an area to an active fault line. The faults used in the
study were digitized from the MTA geosciences WebGIS portal. These distances to faults

were calculated based on Euclidean.

Distance to river beds plays an important role in flood events. Water overflowing from
river beds can cause serious damage to environment. The distances to permanent rivers
and dry drainage channels were considered for susceptibility, as nearby places are more
susceptible to flooding. Permanent and dry river datasets from the GDM TopoVT
database were used to calculate these distances. Additional updates were carried out
through manual delineations based on recent orthoimages. Multiple buffers were created
at certain distances around the permanent rivers and dry drainage vector dataset to have
discrete values in modeling (not continuous or gradually increasing). These distances
were classified into six groups. The first five groups have equal intervals of 20 m, while

the last group included area with a distance greater than 120 m.
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The pre- and post-earthquake landslide inventory, which was in vector format, was
converted to raster format to be used in model training, testing and validation. For this
process, a value of 1 was assigned to the pre and post-earthquake landslide inventory and

a value of 0 was assigned to non-landslide areas.

The topographic features mentioned in Figure 4.1 were derived from the EUDEM v1.1
data used as DEM data. Among those, slope refers to the degree of steepness or gradient
of a terrain. It has a critical role in the LSM and the FSM production. In areas with steep
slopes, the risk of soil erosion and landslides is higher. As the slope increases, downward
forces that can cause water to flow more rapidly across the surface and trigger soil erosion
also increase. Moreover, in steeply sloped areas, fast-flowing water increases the
likelihood of forming water puddles. This may increase the risk of floods and cause
puddles to form in low-lying areas. Areas with lower slopes and flat terrain are at higher
risk of flooding due to the potential for increased surface inundation levels in these
regions [102], [124].

Aspect feature describes the direction a surface faces downbhill and is expressed in degrees
clockwise from north. The duration of sunlight exposure and cycles of freezing and
thawing, which impact the breakdown and erosion of slope materials facing various
directions, may be associated with the aspect [102]. For instance, northern slopes tend to
be more humid and shaded, whereas southern slopes can be warmer and drier. This
condition affects soil moisture and vegetation, potentially resulting in different landslide

hazards.

Surface curvature, the second derivative of a DEM, can be split as plan and profile
curvatures. While plan curvature refers to the horizontal curvature of the surface (in two
directions such as left and right, or X and Y curvatures), profile curvature refers to the
vertical curvature of the surface (upward and downward curvature). The direction of the
highest slope is perpendicular to the plan curvature. The direction of the highest slope is
where profile curvature is found. In profile curvature, a negative value signifies upward
convexity at the cell, resulting in flow deceleration. A positive profile indicates upward

concavity at the cell, leading to flow acceleration. A value of zero indicates a linear
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surface. In plan curvature, a positive value indicates lateral convexity at the cell, while a
negative value indicates lateral concavity. A linear surface is indicated by a value of zero.
Areas with steep curvature often indicate elevation changes at the surface and can affect
the flow of water. Regarding the FSA, plan curvature illustrates the acceleration of flow
and the rate of erosion/deposition, whereas profile curvature indicates variations in flow
velocity [159].

Drainage density is a measure of the proportion between the total length of all streams
and rivers and the overall area of the catchment. A high drainage density indicates that a
region has a dense river and stream network. This suggests that the area is subject to
intensive erosion and shaping processes, potentially leading to soil erosion. Therefore, a

high drainage density may indicate that an area may be susceptible to erosion and runoff.

The Stream Power Index (SPI) quantifies the erosive capacity of water in motion. The
SPI is calculated using the gradient and catchment area as its foundation. With increasing
catchment area and slope gradient, the volume of water originating from upslope areas
and the speed of water flow both increases. Consequently, stream power index and the

risk of erosion rise.

Topographic wetness index (TWI) is widely used to express locations and sizes of water-
saturated areas in a topographic sense. High TW1 values indicate areas where water tends
to accumulate and drainage systems have developed. Low TWI values indicate drier areas
where water flows away quickly and less puddles occur. Regions with high TWI values
indicate areas where rainfall causes water accumulation and stream flow is intense. This
is useful for identifying areas at high risk of flooding. The SPI and TWI were calculated
using Equation 4.1 [160].

AS
tan g

SPI = A xtan 8 TWI = In( ) (4.1)

where As refers to the specific catchment area and  is the slope gradient.
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All topogtaphic features were derived from EU-DEM v1.1 using open source SAGA GIS
software and ArcGIS software from ESRI [161-162].

4.3. The univariate Susceptibility Maps Production

In this section, the univariate susceptibility maps produced for landslide, flood and

earthquake are explained together with the respective methods.

4.3.1. Landslide Susceptibility Map Production with Random Forest Method

As mentioned in Chapter 2 of this thesis, diverse methods have been used for the LSM
production in the literature. In recent years, with the advancement of technology and
availability of accurate inventories, there has been an increase in the use of data-driven
methods. Especially, the RF algorithm is among the most commonly used methods based

on the literature review. Thus, the RF was preferred to produce the LSMs.

A number of statistical analyses were performed on the features selected for the LSM
before the modeling phase. For this purpose, variance inflation factor (VIF), tolerance
(TOL), and Pearson coefficients were computed to determine the multicollinearity among
input features. The correlation levels between parameters were analyzed. In addition, the
Information Gain Rate (IGR) method, which has been frequently used in the literature,
was applied to analyze the importance of features, measure predictive abilities and

determine the most effective ones.

The term multicollinearity in landslide research describes the non-independence among
features within datasets, which arises from their high correlation. This condition can lead
to inaccuracies in system analysis [163]. Minimizing the correlation between factors can
be crucial for enhancing the precision of landslide prediction. VVarious methods have been
suggested to assess multicollinearity, including Pearson’s correlation coefficients [164],

conditional index [165], variance decomposition proportion [166] and metrics like
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variance inflation factor (VIF), and tolerance [167-168]. However, novel ML methods
have the potential to reduce or avoid the adverse effects of the multicollinearity as well.

The VIF and tolerance values of an independent variable can be used to identify and
assess the magnitude of the relationship between variance of a variable and the other
independent variables. High VIF values indicate a high probability of multicollinearity.
VIF and tolerance are inversely related to each other. A high tolerance value indicates the
absence of multicollinearity, whereas a low tolerance value may indicate the presence of
multicollinearity. If a VIF value is greater than 10 or the tolerance is less than 0.1, it
suggests a potential multicollinearity issue in the dataset. If the VIF values are high, this
may negatively affect the accuracy and reliability of the model. Therefore, it is important
to check the VIF values and take appropriate measures to eliminate the multicollinearity

problem when necessary. The formula used to compute the VIF is as follows:

VIF; = T = (4.2)

where the VIF; represents the VIF value of the i independent variable, and R?denotes
the percentage of variance explained by regressing the i-th independent variable
against the other independent variables.

In the LSM production, the correlation coefficient of two features can also be evaluated
using the Pearson coefficient method. The linear relationship between two features is
measured. Pearson's coefficient values vary between -1 and 1. A linear relationship is
positive when it is closer to 1; negative when it's closer to -1; and nonexistent when it is
closer to 0. As shown in Equation 4.3, the covariance of two features is divided by the
product of their standard deviations to obtain the result. Pearson’s correlation values

above 0.7 indicate high collinearity.

2a=1Xa=X)(Ya=7)
= as1- — 4.3
rXY \/ZZ-:l(XCl_X)Z \/22=1(Ya_y)2 ( )
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where X and Y denote two features related to landslides, ryy represents the correlation
coefficient between factor X and factor Y, n signifies the count of input training data,
while X, and Y, stand for the values of the a-th training data in X, and Y, ,
respectively and X and Y represent the mean values of the variables X and Y,

respectively.

In addition to defining multicollinearity, the features in the initial set may not have similar
predictive ability. There are some techniques such as Relief [169], Fuzzy-Rough sets
[170], Information Gain [171] and Information Gain Ratio (IGR) [172] to measure the
predictive abilities between features and to determine the most effective ones. Among
these techniques, the IGR technique was used in this thesis study. The IGR represents an
enhancement over the conventional information gain approach. The information gain
measures the ability of an attribute to partition a dataset. The IGR, on the other hand,
considers how information gain relates to the diversity of the dataset, that is, the
homogeneity of an attribute in dividing the dataset. The IGR value serves as an indicator
of a feature's significance: the greater the IGR value, the more crucial the information
provided by the feature for predicting landslide susceptibility.

After the statistical analyses of the features selected for landslide susceptibility map
production, the model training phase was started. The RF algorithm, as proposed by
Breiman (2001) [173], is commonly employed for both regression and classification
tasks, and it was utilized for the LSM production in the thesis study. The RF consists of
multiple Decision Trees (DTs) built on different subsamples of the data, ensuring
robustness against outliers and noise. To get the RF output, it uses a voting system that
takes into account the outcomes of multiple DTs [52]. A random selection of
characteristics and a subset of the training dataset are used to build each DT in the RF,

resulting in variability among the trees.

The RF algorithm utilizes the bagging (or Bootstrap Aggregating) technique to generate
these varied subsets. Throughout the training stage, each tree is constructed through

iterative partitioning of the data according to the features. At each division, the algorithm
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chooses the most suitable feature from the random subset, aiming to optimize information
gain or Gini impurity. This procedure persists until a predefined stopping condition is
fulfilled, such as reaching a maximum depth or achieving a minimum number of samples
within each leaf node. After training, the random forest can make predictions by having
each tree vote for a class, and the class with the highest number of votes is designated as
the predicted class for the input data. Figure 4.2 illustrates a generalized structure for the
RF. Figure 4.3 shows the workflows for the LSM approach, which was developed in a

Python programming environment.

DATASET

A AN

7N

W OooOooo U
/\ 5& /\ /NN
_
DT-1 DT-2 DT-N
v v v
Result-1 Result-2 Result-N
L |
Majority voting / Averaging
v
Final Result

Figure 4.2. A generalized structure for the RF algorithm [174].
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Figure 4.3. The workflow implemented for the landslide susceptibility map production.

As can be seen in Figure 4.3, a total of 10 input features were used for the LSM
production. These features were selected based on previous LSA studies conducted in the
area and expert opinions. Before applying the RF model, the VIF, the TOL, Pearson's
coefficient and the IGR were used to identify the relationship between features. To
achieve reliable and accurate results, choosing suitable parameters within the model is
crucial. For optimizing the model parameters, this study employed a random search
approach, which was considered to be more efficient than grid search due to the large data
volumes [175-176]. The random search algorithm randomly selects various combinations
of parameters from predefined ranges or values, then assesses the model performances
using cross-validation (as shown in Table 4.1) and appropriate metrics such as accuracy,

precision, recall, or F1 score and the AUC values.
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Table 4.1. Parameter optimization values

Value
Model Parameter Elazig Study Site | Adiyaman Study
Site
n_estimators 426 344
criterion ‘entropy’ ‘entropy’

Random Forest max_depth 16 16
min_samples_split 2 2
min_samples_leaf 1 2

max_features ‘auto’ ‘auto’

The precision parameter quantifies how many predicted positive instances are truly
positive, gauging the classifier's skill in avoiding misclassifying negative samples as
positive. Recall, on the other hand, exhibits the classifier's efficacy in capturing all
positive instances. The F1 Score, as the harmonic mean of precision and recall, provides
a well-balanced evaluation of both criteria. Support denotes the frequency of each class
within the ground truth values. It shows that optimizing parameters has a notable effect
on the performance of the RF algorithm. By fine-tuning parameters such as the number
of trees, maximum tree depth, and the number of features considered in each split, the

aim is to increase prediction accuracy while reducing overfitting. Furthermore, the
SHapley Additive exPlanations (SHAP) methodology was used to evaluate the

relationships of the input features with the model predictions and the most effective

parameters in model prediction were determined [177].

The pre-earthquake landslide inventory was used in model training. For the Elazig site,
landslide samples used for training were selected from pixels within the inventory, with
175,219 landslide and 262,829 non-landslide pixels, totaling 4,380,480 pixels across all
features. In the training data set within the Adiyaman study site, there were 188,619 pixels
identified as landslide and 282,929 pixels categorized as non-landslide. As can be seen

from the pixel counts, the training data from non-landslide areas were randomly selected
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outside landslide polygons with a ratio of 1:1.5. The distribution and balance of landslide
and non-landslide samples are important to ensure fair and accurate model performance.
There are some studies in the literature on the determination of the sample ratio between
landslide and non-landslide data. In these studies, experiments with different sample size
ratios were performed and discussed (e.g. [178-179]). In the comparisons, it was stated
that the selection ratio of landslide and non-landslide areas affected the model accuracy
(specificity, sensitivity). In general, it has been found that the use of 1:1.5 and 1:2 ratios
is suitable for the accuracy of susceptibility map production. Therefore, based on the
studies in the literature and previous experience (e.g.[69], [124]), it was preferred to
employ aratio of 1:1.5 in this study. In addition, an 80/20 split ratio was applied to divide

the training and test samples.

The LSMs produced in this thesis study were validated with landslides triggered during
the Elazig and Kahramanmaras earthquakes. Most studies in the literature have been
validated with the test data separated from learning data due to the absence of multi-
temporal landslide inventory. Considering that earthquakes trigger many landslides in this
study, there is an opportunity for a study to evaluate the performance limits of LSMs. In
this study, post-earthquake landslide inventories were used only for validation purposes
rather than model training. Class values of pixels in the intersection areas of the
susceptibility maps and post-earthquake landslide inventories were compared using

statistical metrics and visual interpretation for expert-based validation.

4.3.2. Flood Susceptibility Map Production with m-AHP

The FSM of the study sites was produced with the M-AHP method, which is an expert-
based method. The reason for using this method was the lack of learning data. Figure 4.4
shows the workflows for the FSM approach, which was developed in a Python

programming environment.
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Figure 4.4. The workflow implemented for the flood susceptibility map production.

A modified form of the conventional AHP approach, called M-AHP, was proposed by
Nefeslioglu et al. [63]. This method has been modified to eliminate expert subjectivity in
pairwise comparison. In the M-AHP method, each classified conditioning factor in the
system is weighted according to expert opinion. These weights are given according to
factor importance. Expert knowledge and experience are important in assigning weights.
This knowledge and experience helps them accurately determine the importance of
factors. Experts weight factors using evidence based on available scientific data, study
site characteristics, and past events. Weight values of each parameter class used in this
study are given in Appendix A. A normalised factor score difference matrix is created for
each factor, based on the highest weight assigned to each factor. A factor comparison
matrix is then created, taking into account the modified importance value chart. Factor
comparison consistency is measured. Finally, the percentage importance distributions of
the factors at the decision points are found. For this, each factor is normalised according
to its maximum score. The linear distances between the normalised factor score and the
decision points are measured. At this stage, the modified importance value chart is again
taken into account. Finally, the percentage importance distributions of the factors at the

determined decision point are found. Since a different weight vector is calculated for each
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grid cell in the M-AHP method, it is not ignored that the weight vector will not be constant
in that grid cell. A total of 7 features (see Figure 4.4 above) were used as input features
in the FSM production based on literature analysis and expert opinion. An expert (Dr.
Candan Gokceoglu), who has long term experience in the region, provided support to

define the class weights for the study sites.

4.3.3. Seismic Hazard Map Production with Inverse Distance Weighting

Assessing earthquake effects and classifying regions in terms of earthquake risk is a
critical issue in earthquake engineering. Various parameters and criteria are used for this
purpose. However, visualizing earthquake effects on a single map and thus preparing
regional MHS maps still remains a challenging problem. Since local ground conditions
significantly impact earthquake shaking, Kotha et al. [180] explained that the current
seismic code provisions consider this effect by defining appropriate elastic design spectra
based on different site categories. In this context, the main recommended parameter for
soil classification is VVs30 [181]. However, there is no unanimous agreement on whether
Vs30 is a valid criterion for earthquake amplification [182]. At the same time, However,
it is emphasized that the basic characteristics of earthquake shaking cannot be fully
expressed with a single parameter [183]. Therefore, it has been suggested to use several
engineering parameters simultaneously to obtain more accurate results in terms of
earthquake engineering. However, it should be noted that standard methods cannot
accurately assess the amount of peak horizontal acceleration amplification expected for

site classification [184].

Another parameter utilized in ground motion prediction equations is the horizontal
component of cumulative absolute velocity. This parameter has been used as an indicator
to indicate the possible onset of structural damage and liquefaction of saturated soils
[185].

Arias intensity represents the release of energy, encompassing both the duration of

earthquake shaking and the time-varying changes in frequency content [186]. The
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intensity of the shaking is calculated by quantifying the acceleration of transient seismic
waves. It was proposed by Arturo Arias in 1970 [187]. As shown in Equation 4.4, it is the

sum of the horizontal and vertical components of the acceleration record.

Vs

td m rtd
Iy= Ly +1,, = Zfo az(t)dt + gfo a; (t)dt (4.4)

where g denotes the acceleration of gravity, t represents time, and td stands for the

total recording length.

Studies have indicated that among the parameters measuring ground shaking, the Arias
Intensity is closely associated with the distribution and density of landslides [188-190].
It is a reliable parameter used to describe the earthquake shaking required to trigger
landslides.

The Arias Intensity is widely used as a parameter to determine earthquake effects. The
Arias Intensity and cumulative absolute velocity are successfully used in earthquake
engineering problems because they reflect many characteristics of ground motion [191].
These parameters enable the relative determination of earthquake effects and are thus
used in the production of multi-MHS maps. For this reason, because reliable data is
accessible, the thesis study utilized Arias Intensity to comparatively classify the study site
regarding earthquake effects. In other words, the Arias Intensity map categorized the area
in relation to earthquake impact. This classifica