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ABSTRACT 

 

 

AN APPROACH FOR MULTI-HAZARD SUSCEPTIBILITY ASSESSMENT 

FOR LANDSLIDES, EARTHQUAKES AND FLOODS 

 

 

Gizem KARAKAŞ 

 

 

Doctor of Philosophy, Department of Geomatics Engineering 

Supervisor: Prof. Dr. Sultan KOCAMAN GÖKÇEOĞLU 

 

May 2024, 130 pages 

 

 

Production of precise and up-to-date susceptibility maps at regional level is essential for 

mitigating disasters, selecting new sites for settlements and construction, and planning in 

areas prone to various natural hazards. This thesis introduced a novel approach to multi-

hazard susceptibility assessment (MHSA) for evaluating landslide, flood, and earthquake 

risks, combining expert opinion with supervised machine learning (ML) techniques. The 

methodology was tested in five basins within Elazig and three basins in Adiyaman 

Provinces, Türkiye. The susceptibility maps were produced at basin scale since various 

environmental characteristics affecting the hazard conditioning factors are relatively 

coherent within them. Regarding landslide susceptibility mapping (LSM), the random 

forest (RF) ensemble machine learning algorithm, was utilized. For flood susceptibility 

mapping (FSM), a modified analytical hierarchical process (m-AHP) method was 

employed using factor scores provided by experts for each site. Seismic hazard 
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assessment relied on ground motion parameters, specifically Arias intensity values, as 

they are considered to be effective especially for landslides. These individual assessments 

were then synthesized using a Mamdani fuzzy inference system (FIS), incorporating 

expert-defined membership functions. The thesis findings indicated high overall 

accuracies (over 90%) can be achieved with the random forest model for the LSM. The 

Mamdani fuzzy algorithm is recommended for the MHSA, as it can be adapted to 

different regions with its intuitive membership functions. While the thesis provided a 

robust framework for multi-hazard susceptibility assessment at the regional scale, fine-

tuning of the algorithms in different geographical areas may require further expert input. 

 

Keywords: Multi-hazard assessment, landslide, flood, earthquake, machine learning, 

fuzzy inference. 
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ÖZET 

 

HEYELAN, DEPREM VE TAŞKIN TEHLİKELERİNİN ÇOKLU DUYARLILIK 

DEĞERLENDİRMESİ İÇİN BİR YAKLAŞIM  

 

 

Gizem KARAKAŞ 

 

 

Doktora, Geomatik Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Sultan KOCAMAN GÖKÇEOĞLU 

 

Mayıs 2024, 130 sayfa 

 

Bölgesel düzeyde doğru ve güncel duyarlılık haritalarının üretilmesi, çeşitli doğal 

tehlikelere duyarlı bölgelerde afetlerin etkilerini hafifletme, yerleşim alanları ve altyapı 

inşaatı için yeni yerlerin seçilmesi ve planlama amaçlı olarak oldukça önemlidir. Bu tez, 

heyelan, sel ve deprem risklerini değerlendirmek için uzman görüşü ile denetimli makine 

öğrenimi (MÖ) tekniklerini birleştiren çoklu tehlike duyarlılık değerlendirmesine 

(ÇTDD) yeni bir yaklaşım getirmiştir. Metodoloji, Türkiye'nin Elazığ ilindeki beş ve 

Adıyaman ilindeki üç havzada test edilmiştir. Tehlike koşullandırma faktörlerini 

etkileyen çeşitli çevresel özellikler havzalar içinde nispeten tutarlı olduğundan, duyarlılık 

haritaları havza ölçeğinde üretilmiştir. Heyelan duyarlılık haritalamasında (HDH), 

rastgele orman (RO) topluluk makine öğrenimi algoritması kullanılmıştır. Taşkın 

duyarlılık haritalaması (TDH) için, her bölge için uzmanlar tarafından sağlanan faktör 

puanları kullanılarak modifiye edilmiş analitik hiyerarşik süreç (m-AHP) yöntemi 

uygulanmıştır. Deprem tehlike değerlendirmesi, özellikle heyelanlar için etkili olduğu 

düşünülen yer hareketi parametrelerine, özellikle de Arias yoğunluk değerlerine 
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dayanmıştır. Bu bireysel değerlendirmeler daha sonra uzman tanımlı üyelik 

fonksiyonlarını içeren bir Mamdani bulanık çıkarım sistemi kullanılarak sentezlenmiştir. 

Tez bulguları, LSM için rastgele orman modeli ile yüksek genel doğruluklara (%90'ın 

üzerinde) ulaşılabileceğini göstermiştir. Mamdani bulanık algoritması, sezgisel üyelik 

fonksiyonları ile farklı bölgelere uyarlanabildiği için ÇTDD için önerilmektedir. Tez, 

bölgesel ölçekte çoklu tehlike duyarlılık değerlendirmesi için sağlam bir çerçeve sağlamış 

olsa da, farklı coğrafi alanlarda algoritmaların ince ayarının yapılması daha fazla uzman 

girdisi gerektirebilir. 

 

Anahtar Kelimeler: Çoklu tehlike değerlendirmesi, heyelan, taşkın, deprem, makine 

öğrenimi, bulanık mantık. 
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1. INTRODUCTION 

 

 

This chapter provides the motivation of the thesis and discusses the problems addressed 

here, including natural hazards, their occurrences, and effects. The thesis objectives and 

outline are also covered in the following sub-headings. 

 

1.1. Problem Statement/Motivation 

 

Natural hazards are technology and human-induced events that occur at unpredictable 

times and have a negative impact on life on Earth, potentially causing injuries or death, 

as well as damages to properties, socioeconomic assets, environment, and historical and 

cultural heritage [1]. There are several types of natural hazards seen on a global scale. 

These include earthquakes, volcanoes, landslides, avalanches, tsunamis, wildfires, debris 

flows, and floods. Among them, earthquakes, landslides and floods affect people and the 

natural environment more than the others, inducing quite destructive and economic losses 

worldwide.  

 

Landslides refer to the movement of a slope, either natural or man-made, in a downhill 

and outward direction due to the combined effects of gravity, slope angle, water, and 

other external pressures [2]. Floods can be defined as water bodies overflowing their 

regular bounds or water accumulations in areas that are typically flooded [3]. An 

earthquake is an event in which the energy generated as a result of the fracture of the 

earth's crust due to tectonic or volcanic activities spreading in the form of seismic waves 

and strongly shakes the earth and the environments they are observed [4].  

 

The frequencies and intensity of natural hazards have significantly increased in Türkiye 

and worldwide in recent years. Factors such as climate change, rapid urbanization and 

environmental factors have caused many complex processes that impacted the frequency 
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and impacts of natural hazards and caused rises. The Disaster and Emergency 

Management Presidency of Turkey (AFAD) published that between 1950 and 2022, 

roughly 368,477 natural hazards, such as earthquakes, landslides, rockfalls, sinkholes, 

floods, and avalanches, occurred in Türkiye [5-6], As a global effort, a total of 17 

Sustainable Development Goals (SDGs), also known as Agenda 2030, were defined at 

the Sustainable Development Summit in 2015 by the United Nations (UN). Within the 

framework of these objectives, natural hazards were also mentioned several times. The 

SDGs aim to increase catastrophe resilience and decrease vulnerability, among others, to 

achieve equality and ending poverty. Particularly, items 1.5, 2.4, 11.5, 11.b and 13.1 of 

these targets emphasize the importance of developing the capacity to withstand climate-

related hazards, natural disasters, and other economic, social, and environmental shocks 

and disasters [7].  

 

The majority of studies in the literature concentrate on a single hazard type. However, it 

is possible that an area is impacted by many natural hazards, which can interact with one 

another and potentially lead to cascading catastrophes. Precise prediction of disaster-

related hazards is necessary in these areas to effectively manage the adverse 

consequences. Therefore, it is essential to evaluate multiple hazards in a region at the 

same time also by analyzing the interactions between them. The importance of multi-

hazard assessments was proven on 24 January 2020 Elazig Earthquake (Mw 6.8) and the 

6 February 2023 Kahramanmaras Earthquakes (Mw 7.7 and Mw 7.6) occurred in Türkiye. 

The term multi-hazard has been adopted in the UN Environment Program [8], which aims 

to identify and manage areas prone to natural hazards for a safer world in the 21st  century 

and to reduce disaster sourced risks. 

 

Different datasets and methods have been used to produce single susceptibility maps in 

the literature. While there have been numerous production of susceptibility maps for 

single natural hazards, there is still no agreement on the appropriate methodology for 

combining them. Thus, this matter remains as an essential research topic that has yet to 

be further explored in the international literature on natural hazards. Thus, this thesis 

focused on a novel multi-hazard susceptibility assessment (MHSA) method at the 

regional scale and applied it, based on the Mamdani fuzzy inference system (FIS), in two 
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areas prone to earthquake, landslide, and flooding. Special attention was also paid to the 

production of accurate single hazard maps, suitable input features used for this purpose, 

and the spatial sampling strategies especially for the data-driven machine learning (ML) 

methods. The objectives and contributions are detailed in the following. 

 

1.2. Thesis Objectives 

 

The literature analysis has shown that further research and novel methods are needed for 

the production of accurate multi-hazard susceptibility (MHS) maps. Most MHSA studies 

have focused on simple spatial analysis, such as overlay or sum of the individual maps. 

This thesis focused on the production of a more advanced methodology with stochastic 

input based on expert opinion. In addition, although a mass body of literature exists on 

the production of landslide susceptibility maps (LSMs) and a number of flood 

susceptibility maps (FSMs), the selection of suitable input features (or conditioning 

factors) is still an open question. Thus, considering the selection methods for the 

production of the univariate and multi-hazard susceptibility maps based on data 

availability, suitability to the target region and prediction performances, this thesis aimed 

to develop a novel approach for multi-hazard susceptibility map production. The 

following main objectives can be listed as a summary: 

 

• Development of an advanced decision-making approach for MHSA based on 

stochastic inputs and expert opinion, 

• Joint analysis of geohazards triggering each other such as earthquakes and 

landslides, which are caused by geomorphological features, and a climate-related 

hazard, i.e. flooding, together for the MHSA; 

• Investigating joint use of the ML and expert-based methods for the MHSA; 

• Evaluating the results in two different regions delineated based on basin 

boundaries. 
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In order to fullfill the thesis objectives, two different sites, one in Elazig Province and the 

other one in Adiyaman Province of Türkiye, were selected and the methods and their 

parameters, such as input features and the sampling strategies, were evaluated from an 

accuracy perspective. 

 

1.3. Contributions 

 

The study outcomes indicated that assessing multi-hazards together for a region allows 

for a more accurate understanding of complex natural processes and their impacts on each 

other. Considering multiple natural hazards together encourages disaster risk 

management from a more holistic perspective than traditional methods that focus on 

single hazards. This expands the scope of risk assessment processes, allowing a 

comprehensive investigation of all possible hazards. Thus, the main contributions of this 

thesis can be listed as following: 

 

• An important contribution to this thesis study is the utilization of the Mamdani 

FIS for the MHSA. The study used Mamdani FIS, the first of its kind in the 

literature, by creating specific rules for each hazard, and this approach 

significantly increased the usability and level of detail of the resulting maps. 

  

• The developed methods were adapted to different environmental characteristics 

and risk conditions allows for featuring customized solutions that are sensitive to 

regional characteristics. This enables the development of strategies for disaster 

risk management and planning for different regions that take into account local 

conditions.  

 

• Various types of spatial datasets with diverse resolutions and data sources were 

evaluated and their usability for achieving high performance was assessed. 

 

• The preparation of landslide inventories using pre- and post-earthquake 

orthophotos and surface models contributed greatly to the production of reliable 



 

 

 

5 

and up-to-date databases for landslide risk management and susceptibility 

assessments in Türkiye. High prediction performances for the production of high 

resolution LSMs could be achived, which proves their usability for urban and rural 

planning purposes. 

 

• Different sampling strategies for the LSMs were evaluated with the popular ML 

methods such as random forest and multi-layer perceptron, and it was found that 

class imbalance between landslide and non-landslide classes must be accounted. 

However, the spatial selection of the samples were found to be less important 

when high amount of training and test data are available. 

 

1.4. Thesis Outline 

 

This thesis is presented under seven chapters as briefly explained below: 

 

Chapter 1 describes the problem statement/motivation and objectives of the thesis, and 

highlights the contributions of the study.  

 

Chapter 2 presents a literature review on the methods used to produce the univariate 

(such as landslides, floods and earthquakes) and multi-hazard susceptibility maps, and 

the input features derived when producing these maps. 

 

Chapter 3 provides the general and geological characteristics of the study sites, flood 

and earthquake events, landslide inventories and the geospatial datasets used in the thesis 

study.  

 

Chapter 4 explains in detail the proposed methodological workflow, data pre-processing, 

and production of the univariate and multi-hazard susceptibility maps. 
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Chapter 5 gives detailed quantitative and qualitative results of the method applied to two 

different fields. 

 

Chapter 6 discusses the results of the thesis on input features, univariate and multi-hazard 

susceptibility maps from various aspects. 

 

Chapter 7 concludes the thesis and provides recommendations for future research. 
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2. BACKGROUND ON HAZARD SUSCEPTIBILITY MAPPING  

 

 

In this chapter, a comprehensive review of previous research on natural hazards was 

presented. First, studies focusing on the selection of conditioning factors for the 

production of univariate susceptibility maps were evaluated. In the literature, most 

susceptibility assessment studies have predominantly considered only a single type of 

natural hazard. Therefore, susceptibility assessment studies related to landslides, floods, 

and earthquakes were presented in different sub-sections. Additionally, studies evaluating 

the multi-hazard susceptibility were discussed in the scope of this work. 

 

2.1. Conditioning Factors 

 

Besides data quality, resolution and the applied model, the selection and analysis of 

conditioning factors are extremely important in producing landslide and flood 

susceptibility maps with high accuracy. The extent, type and importance of these factors, 

which are mostly topographical, environmental, geological, hydrological, climatic, vary 

according to the geological structure of the study area, regional environmental 

characteristics, data availability and the requirements of the model to be used for 

susceptibility modeling. Different conditioning factors were utilized in the literature and 

there is no standard approach for their selection. In addition, many studies carried out 

analyses on factor importance and their prediction abilities to determine the most effective 

factors. 

 

Carrara et al. [9] compared five different statistical and physically-based models for the 

production of debris-flow susceptibility map. Rainfall, morphology and soil properties 

were found to be the main predictors for shallow landslides. Xie et al. [10] selected 

seventeen conditioning factors associated with landslide occurrence based on the previous 

studies conducted in the study area. Elevation, lithology, settlement density and distance 

from fault were found to be the most important features in the study.  
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Yang et al. [11] categorized the conditioning factors as topographic, geological, 

hydrological, geophysical and land use/land cover. Elevation, peak ground accelaration 

(PGA) and slope were observed as the most important factors in their study.  

Lewandowski et al. [12] emphasized that the most important and critical step in any 

prediction model is the selection of the appropriate conditioning factors to obtain high 

accuracy. The features were determined based on literature review, expert opinion and 

preliminary analyses with statistical methods. Pearson correlation was the most widely 

used statistical method and was found suitable for the factor selection.  

 

Meena et al. [13] investigated the importance of factors in predicting landslide 

occurrences with statistical and ML methods. The feature importance results obtained 

with the statistical model indicated that distance to drainage, topographic position index 

(TPI), rainfall, lithology and land cover were the most important features. From the ML 

model, distance to road, rainfall, lithology and elevation were found to be the most 

important factors. In the study, susceptibility maps were reproduced by removing the least 

important conditioning factors. As a result, it was found that the removal of these factors 

did not affect the accuracy. It was also emphasized that the a factor might hold greater 

significance in one model while being less influential in another. 

 

Bernat Gazibara et al. [14] emphasized that the input layers were selected by an expert 

according to the study area conditions, scale, purpose, and data availability. Six 

conditioning factors (slope gradient, lithology, proximity to geological contact, land use, 

terrain dissection and proximity to drainage network) were selected and implemented in 

total. According to the results of the study, it was observed that the slope gradient was the 

most important effect on the production of the susceptibility map. 

 

Wang et al. [15] employed thirteen conditioning factors including elevation, slope, aspect, 

plan curvature, profile curvature, topographic wetness index (TWI), engineering rock 

group, normalized difference vegetation index (NDVI), land cover, distance to faults, 

distance to rivers, mean annual rainfall and distance to roads for the LSM production. In 

the study, importance of these conditioning factors for different algorithms was also 

analyzed. It was observed that the factor importance obtained from different algorithms 
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was inconsistent. Elevation, slope and rainfall parameters were found to be more 

important in three algorithms. Bravo-López et al. [16] emphasized the importance of 

selecting relevant conditioning factors to minimize dimensionality and produce a LSM 

with suitable quality. The research also highlighted the importance of selecting features 

to enhance the accuracy of the resulting LSMs and decrease the computational time 

required to produce them.  

 

In this thesis study, parameters, which have been used the most frequently in the literature 

between 2017-2023, and the study area characteristics were considered in selecting 

conditioning factors for landslide and flood susceptibility assessments. Studies published 

between 2017-2023 and having at least fifteen citations were analyzed and the most 

frequently used conditioning parameters were determined. Graphical representations of 

conditioning factors used in the production of landslide and flood susceptibility maps 

obtained from the literature analysis are shown in Figures 2.1(a) and 2.1(b). The 

topographical features (slope, aspect, altitude, curvature, TWI, stream power index - SPI), 

lithology, distance to river, distance to fault and land use land cover (LULC) were found 

to be among the most commonly used factors for the LSM. For flood susceptibility, again 

topography, lithology, hydrology and LULC have been used frequently.  

 

 
(a) 
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(b) 

 

Figure 2.1. The conditioning parameters used for (a) landslide (b) flood susceptibility 

assessment studies between 2017 and 2023. 

 

2.2. Landslide Susceptibility Map Production Methods 

 

In recent years, the number of natural hazards occurred in Türkiye and in the world has 

been increasing. For this reason, it becomes important to automatically identify areas 

susceptible to natural hazards. LSM production is one of the popular research subject in 

the literature and it aims to spatially identify potential landslide-prone areas. According 

to Reichenbach et al. [17], a great deal of literature has been published on landslide 

susceptibility since the mid-1970s. A statistical assessment on the landslide literature by 

Gokceoglu and Sezer [18] emphasized that there was a sharp increase between 1945 and 

2008 and this rise was expected to continue.  

 

Different methods and data sources were used to identify landslide-prone areas. These 

methods can be categorized as qualitative (knowledge-driven and inventory based) and 

quantitative (data-driven and physically-based) [19-20]. Overviews of the techniques 

applicable to the evaluation of landslide susceptibility are provided by Soeters and [21-

24] as illustrated in Figure 2.2.  
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Figure 2.2. Overviews of the methods for landslide susceptibility assessment ([20]). 

 

All methods require inventories, which can also be utilized to validate the final maps [20]. 

In knowledge-driven approaches, LSMs can be prepared either on-site using expert 

information or generated in the office as derivative maps from geomorphological maps. 

Direct and indirect applications of knowledge-driven approaches are possible. It can be 

used directly as it is the expert's field interpretation based on the observed events and 

geological environment. By merging many factor maps that are considered to be 

significant in the landslide occurrence, it can also be applied indirectly in a Geographic 

Information Sytem (GIS) environment [20]. In knowledge-driven methods, experts 

identify and weight landslides and relevant factors. 

 

Physically based methods have been used based on modeling of slope failure processes. 

These methods have been applied in large areas where landslide types are simple and 

geomorphological/ geological conditions are rather homogeneous. These models are 

typically employed to investigate landslides with a depth of less than a few meters, as 

they rely on the infinite slope model. In physically based models for shallow landslides, 
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various triggers are included. These include the transient groundwater reactivity of slopes 

to rainfall and the effect of earthquake excitation [20]. 

 

In data-based (or data-driven) LSM production methods, the combinations of factors that 

are more closely associated with the spatial distribution of past landslides are statistically 

evaluated [25]. Quantitative estimates are made for areas that are not affected by existing 

landslides with similar geological, topographic, land cover and hydrological conditions. 

The output of a LSM is given in the sense of probability. These methods are called "data-

driven" because data from past landslide occurences are used to obtain information about 

factor maps and the relative importance of their classes [20]. There are two main data-

driven methods widely used in the literature: bivariate and multivariate statistical 

analysis. In bivariate statistical methods, each factor and landslide distribution are first 

combined. The weight value is calculated for each parameter class, taking into account 

the landslide intensity. Some statistical methods are used to calculate the weight value.  

 

The frequency ratio (e.g [26-28]), fuzzy logic (e.g., [29-31]), weight of evidence (e.g., 

[32-34]), information value (e.g., [35-36]), Dempster-Shafer method (e.g., [37-39]) are 

among the frequently used bivariate methods. It is a preferred learning tool for 

determining which factors or combinations of factors play significant roles [20]. Bivariate 

statistical methods ignore how different variables are dependent on one another and plays 

an important role in getting to know the dataset before using multivariate statistical 

methods. 

 

Multivariate statistical models explore the relationship between dependent (landslide 

occurrence) and a set of independent variables (landslide conditioning factors). Methods 

such as logistic regression (LR) (e.g.[40-41]), artificial neural network (ANN) (e.g.[42]), 

support vector machine (SVM) (e.g.[43]) and RF (e.g.[44]) have been among the most 

frequently used methods. These techniques have become regionally accepted for 

assessing landslide susceptibility. 
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These methods were also mentioned in bibliometric studies on landslide susceptibility 

researches. One of the recent reviews on bibliometric analysis concerns the evaluation of 

the period 1999-2021 for landslide susceptibility by Liu et al. [45]. In the bibliometric 

study conducted by Lima et al. [46], data-driven methods used for LSM were 

investigated. Reichenbach et al. [17] emphasized that only five methods were used for 

LSM in studies conducted before 1995. Liu et al. [45] stated that the trends on LSM 

methods have changed from traditional methods such as expert-based, statistical to 

supervised ML methods in recent years. Today, with the availability of inventory and 

geospatial datasets, novel ML methods, and their importance in computational power, the 

use of data-driven methods in landslide susceptibility studies has been increasing. Data-

driven algorithms such as LR, ANN, SVM, neuro-fuzzy (NF), decision tree (DT), 

gradient boosting machine (GBM) and RF have been frequently used in LSM production 

[47-54]. 

 

In the production of LSMs, as mentioned above, different data sources have also been 

utilized. The data can be obtained by techniques such as photogrammetry and remote 

sensing. Satellite and aerial images, synthetic-aperture radar (SAR), light detection and 

ranging (LiDAR) are among these data sources as well [55-60]. Data obtained from 

different sources (landslide inventory, surface model, etc.) are crucial for the input 

parameters and accuracy assessment of the LSM to be produced. In addition, these data 

can be obtained from the existing geodatabase. 

 

The methods used for the production of LSMs can also be classified as expert-based ([61], 

[29], [62-64]), statistical and probabilistic analysis ([65-67]) and supervised ML ([68], 

[48], [50], [51], [46], [45]) in the literature. The quality of the dataset used in the study, 

the suitability of the methods, the proper selection of conditioning factors, and the 

availability of inventory affect the accuracy of the results. Comparison of different 

methods is frequently used in the literature.  

 

In a study by Pourghasemi et al. [29], both analytical hierarchy process (AHP) and fuzzy 

logic methods were used. Accuracy obtained from both methods was evaluated with 

receiver operating characteristic (ROC) curve and frequency ratio validation. The fuzzy 
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logic model showed better prediction accuracy than the AHP method. Pradhan [54] 

evaluated the three different approaches (DT, SVM and adaptive neuro-fuzzy inference 

system (ANFIS)). In the study, five models were produced using different landslide 

conditioning parameters in each model. The reason was to evaluate the effect and 

importance of different parameters on the performance of the methods. According to the 

results of the study, the DT method provided slightly better estimation performance than 

the ANFIS and SVM methods.  

 

Can et al. [69] used the XGBoost method, which is one of the ML algorithms used in the 

production of more accurate and up-to-date LSMs in recent years. It was observed that 

high classification accuracy can be achieved with this method in large regions. 

 

In a study conducted by Karakas et al. [70], the LSM was produced by comparing the RF 

and the multi-layer perceptron (MLP) methods. In the study, accuracy assessment and 

validation were conducted in three different approaches. Numerous landslides were 

triggered after the 24 January 2020 Elazig earthquake (Mw 6.8). The landslide inventory 

was produced using the pre- and post-earthquake aerial photogrammetric datasets by 

Karakas et al. [71]. The model training of both methods was carried out using the 

inventory obtained from pre-earthquake photogrammetric datasets. Accuracy assessment 

was made with the inventory obtained from the post-earthquake photogrammetric 

datasets. In addition, the model transferability was evaluated since model training was 

carried out only in a part of the study area. In the results, the RF method yielded higher 

classification accuracy than the MLP method. However, for some lithological units that 

were not used in model training, the MLP method showed better prediction performance. 

 

The earthquakes in Kahramanmaras were notable for the fact that multi-hazards 

interacted and afflicted the same area. This was especially observed in Tut and Adiyaman 

regions. Karakas et al. [72] evaluated the MHS (landslide, flood and earthquake) of Tut 

and its surroundings in their study. The LSM was produced with RF algorithm, and a high 

level of accuracy was obtained with an F1 score of 0.93 for landslide pixels. In another 

study conducted by Karakas et al. [73], the landslide susceptibility prediction accuracy 

was analyzed with the event-based landslide inventory after the Kahramanmaras 
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earthquakes. A LSM of the region, which was significantly affected by the 

Kahramanmaras earthquakes and covers an area of 38,500 km2, was produced using the 

pre-earthquake inventory and the RF algorithm. The susceptibility map produced was 

evaluated with the inventory of 2611 co-seismic landslides that were triggered during the 

earthquake and and not seen by the model. As a result of this evaluation, the statistics 

showed that the OA was 76%. The evaluation of co-seismic landslides using an 

independent validation set revealed the importance of considering previously unnoticed 

elements, such as uncommon lithological units.  

 

Merghadi et al. [74] implemented different methods in a comparative overview of ML 

algorithm performances. The RF provided more robust results in the production of LSMs 

compared to other algorithms tested. Wang et al. [75] compared two models (RF and 

extreme gradient boosting decision trees) optimized with Bayesian algorithm in their 

study. According to the results, it was seen that the RF yielded a higher predictive ability 

than the extreme gradient boosting decision trees. In another study [76], the RF and the 

ANN methods were compared and the performances of both methods were found to be 

acceptable. But, the RF outperformed the ANN in accuracy.  

 

Most studies in the literature utilized the RF method for the production of LSMs in recent 

years, since it produces accurate predictions. For this reason, the RF method was preferred 

for the production of LSM in this thesis study.  

 

The accuracy assessment methods of the LSMs can be either qualitative, involving expert 

inspection, or quantitative, based on multiple measures such as recall, precision, F-1 

score, Kappa index, ROC curve, area under curve (AUC) value, overall accuracy (OA), 

etc. Alternatively, a combination of both approaches may be employed at the same time. 

In a bibliometric analysis study conducted by Lima et al. [46], this issue was mentioned 

under the title of performance evaluation. According to the study outcomes, nearly half 

of the publications in the literature used the AUC for accuracy assessment. 

 



 

 16 

2.3. Flood Susceptibility Map Production Methods 

 

Studies on flood susceptibility assessment are less common in the literature than those on 

the landslides since they are heavily based on expert opinion and often lack accurate flood 

inventories. However, flood susceptibility assessment studies are becoming more and 

more popular, much like the landslide susceptibility assessment. Although various 

methods have been employed in susceptibility analysis, in practice, a few of them have 

been preferred more often than the others. Nevertheless, while there is no consensus 

among scientists in this field regarding the superiority of commonly used methods, the 

prevalent approaches in evaluating flood susceptibility in the literature include multi-

criteria decision-making (MCDM) methods, physically based hydrological models, 

statistical methods, and various soft computing methods [77].  These approaches vary in 

their reliance on expert opinion and ease of application. 

 

Flood susceptibility assessment studies have mostly been carried out with the MCDM 

methods. Decision-making involves selecting from various options, while MCDM allows 

for the evaluation of multiple criteria and the assignment of values to alternatives in 

complex scenarios such as disasters. The MCDM methods enable the selection of the best 

choice from multiple criteria simultaneously [78]. The MCDM methods, due to their 

straightforward structure, have been extensively utilized in flood susceptibility analysis. 

Examples of MCDM methods used in this context include the AHP (e.g., [79-82]), 

analytical network process (ANP) (e.g., [83-84]), weighted linear combination (WLC) 

(e.g., [85-87]) and decision-making trial and evaluation laboratory (DEMATEL) (e.g., 

[88]). However, it is important to note that the MCDM methods heavily rely on expert 

opinion and may yield subjective results. At the same time, the strength of these methods 

lies in their ability to consider potential effects that may not have emerged until the time 

of analysis [77]. 

Due to the difficulty of accessing flood inventory data, expert-based methods such as 

AHP ( [79-81]) and fuzzy inference system ([90-92]) have been used more frequently.  It 

was also preferred in data-driven approaches such as decision tree ([93-94]), LR ([95-

97]), RF ( [98-99]), SVM ([82]), bivariate and multivariate statistics ([93], [95]).  In 

addition to these methods, some studies used hybrid techniques ( [93], [100], [101], [90]).   
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On the other hand, data-driven methods require high quality and representative 

inventories, which are often not available. In addition, satellite-based flood data 

compilation methods may either fail at the slopes or not provide timely data. Therefore, 

expert-based methods are still preferred for this purpose. As an example, Sozer et al. [102] 

used an expert-based method, a modified AHP (m-AHP), for urban areas in Ankara, 

Türkiye. This method has the capability to correct expert errors to some extent (Yanar et 

al., [103]) and was found successful for producing FSMs.  

 

The FSMs have often been analyzed by visual evaluation in expert-based methods. In 

data-driven methods, metrics such as the ROC curve, AUC value were also used (e.g., 

see [98], [99]), [82]). 

 

2.4. Seismic Hazard Mapping Methods 

 

Seismic hazard maps have been produced using various methods to assess earthquake risk 

in a region and evaluate the seismic resilience of structures. Historical seismicity analysis, 

seismotectonic studies, ground motion prediction equations, probabilistic seismic hazard 

assessment (PSHA) and deterministic seismic hazard assessment (DSHA) are among 

these methods. In historical seismicity analysis, past earthquake records in a region are 

investigated and the magnitudes, depths and frequencies of earthquakes occurring in this 

region are analyzed. These data help to understand the general seismic activity in a region. 

Seismotectonic studies are used to research regional geology and tectonic features to 

identify active fault lines, seismic potential zones, and other tectonic characteristics. 

These data have been used to understand where seismic activity ground motion prediction 

equations are used to predict the motion that an earthquake will create at the surface. 

These calculations are generally based on the magnitude, depth, and source-to-ground 

distance of the seismic activity.  

 

In particular, probabilistic and deterministic seismic hazard assessments have been 

widely used based on its geological and seismological structure of a region. The DSHA 
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focuses on evaluating the worst-case scenario that a specific earthquake would create at 

a specific location. It estimates the worst-case ground motion at a particular location, 

usually using a given earthquake magnitude and location [104]. Within the DSHA 

process, seismic hazard is assessed through numerical techniques that do not rely on 

probability and incorporate inherent uncertainties. This method considers only the highest 

magnitudes of earthquakes and the most direct path between the source and the site, 

without taking into consideration the recurrence periods of earthquakes. PSHA is a 

method that evaluates the earthquake hazard in a region through probability distributions. 

In this method, seismic hazard maps are created based on the probability of occurrence 

in a region within a certain period of time, using different earthquake parameters and 

probability distributions. All potential earthquake scenarios that may affect the region are 

taken into account.  

 

In 1968, Cornell [105] published the first-ever study on seismic hazard assessment, 

introducing a model for a probabilistic approach to evaluate seismic hazard. In the study, 

he formulated a quantitative method to establish the necessary correlations among ground 

motion parameters such as PGA, peak ground velocity, and the average return time 

specific to a particular region.  

 

The PGA has been commonly utilized in the probabilistic evaluation of seismic hazards 

for site selection and engineering structure design. In 1999, Erdik et al. [106] conducted 

a probabilistic assessment of seismic hazard in Turkiye and its neighboring regions. They 

generated a map of PGA based on distinct return periods. Alpyürür and Lav [104] 

appraised seismic hazard in the southwestern region of Turkiye and developed a novel 

database for seismic susceptibility. 

 

In another study conducted by Ince and Yilmazoglu [107], aimed to use the probabilistic 

seismic hazard method to ascertain the seismic risk in Mugla province and the 

surrounding area. In 2022, Gupta and Satyam [108] conducted an extensive probabilistic 

seismic hazard assessment focusing on Arias intensity (AI) and the PGA. The research 

offered new perspectives on the assessment of seismic hazards.   
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2.5. Multi-hazard Susceptibility Map Production Methods 

 

The MHSA is a research discipline that aims to comprehensively determine susceptibility 

to various types of natural hazards and includes scientific, technical and social dimensions 

in this context. Rather than focusing on a single disaster type, this assessment offers a 

more holistic approach by considering the simultaneous impacts of different hazard types 

and their potential to create combined risk. This literature review on the MHSA aimed to 

explore and discuss the fundamental concepts, methodologies, and application examples 

in the field.  

 

A limited number of publications in the literature were dedicated to the MHSA. Most of 

them followed a stepwise approach, integrating univariate susceptibility maps through 

either weighted overlay analysis or the AHP. Mukhopadhyay et al. [109] used the MCDA 

method in generating the multi-hazard (coastal erosion, sea-level rise, storm surge, coastal 

flood, tsunami, and earthquake) susceptibility map and the weights were defined by 

experts that were essential for achieving high accuracy. Skilodimou et al. [80] proposed 

the AHP supported by a GIS to assess hazards from landslides, floods, and earthquakes 

in the drainage basin of Peneus (Pinios) River in Western Peloponnesus, Greece. The 

researchers combined these assessments into a multi-hazard map to determine the 

suitability for urban development in the region. An uncertainty analysis was conducted 

on the variables used in the study by adjusting the weighting coefficients to evaluate the 

reliability of the model predictions. The study identified high hazard zones mainly in the 

western and north-eastern parts of the study area. The comparison between the spatial 

arrangement of urban areas and the road network with the suitability map demonstrated 

that roughly half of both are situated in areas susceptible to natural hazards.  

Askha et al. [110] presented a multi-hazard risk assessment framework using geospatial 

and socioeconomic data in Dharan, Nepal, considering landslides, floods, and 

earthquakes. By employing statistical methods and the AHP, the study combined a Social 

Vulnerability Index (SoVI) with a multi-hazard map to create a total risk map. The results 

showed high-risk areas along the Seuti River in eastern Dharan and the left bank of the 

Sardu River in southwestern Dharan, while central Dharan and the western hills were 

classified as low-risk areas. Yanar et al. [103] created a MHSA model for a specific area 
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in Ankara by employing fuzzy logic to integrate a FSM and a Landslide Susceptibility 

Map (LSM). Khatakho et al. [111] utilized AHP and GIS to assess floods, landslides, 

earthquakes, and urban fire hazards in Kathmandu Valley, Nepal and integrating them 

once more through the application of AHP. Based on collective observations, it was 

determined that densely populated areas, historical settlements, and the central valley 

exhibit a high to very high level of multi-hazard risk. 

 

Rehman et al. [112] utilized field surveys and remote sensing data to develop inventories 

of geo-hazards and calculated the subjective and objective weights of causative factors 

using geospatial techniques such as the AHP and Frequency Ratio (FR) within a GIS 

environment. The results showed that the southern and northwestern parts of the region 

are the most suitable areas for future sustainable development and economic activities, 

while the eastern and western regions, including Muzaffarabad City, exhibit high to very 

high susceptibility.  

 

Moreover, recent research studies conducted in China ([113]), in Iran ([114-117]), and in 

Saudi Arabia ([118]), diverse ML approaches were utilized for the MHSA. Pourghasemi 

et al. [119] developed a MHS model in Iran, employing a novel ensemble model called 

stepwise weight assessment ratio analysis (SWARA). They utilized the adaptive neuro-

fuzzy inference system (ANFIS) and grey wolf optimizer (GWO) for the assessments of 

landslide-, flood-, and earthquake-prone areas. In their study, a PGA map was produced 

based on PSHA. The accuracies of the FSM and the LSM were evaluated using the ROC 

curves.  

 

Ullah et al. [120] proposed a MHSA framework using Convolutional Neural Networks 

(CNN) to predict and mitigate the risk of flash floods, debris flows, and landslides. The 

proposed CNN method has good performance in predicting the probability of hazards. 

The susceptibility maps of the three hazards, generated using CNN, were integrated to 

produce a multi-hazard susceptibility map. This map reveals that 62.43% of the research 

region exhibited vulnerability to hazards. 
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3. STUDY SITES AND GEOSPATIAL DATASETS 

 

 

The methodology proposed in the thesis was applied to two different study areas with 

different characteristics in terms of destructive earthquake and flood events and their 

secondary hazards; the data availability, land cover and topography. In this chapter, the 

earthquake and flood events, study areas and characteristics, and the geospatial datasets 

used in the thesis are explained. 

 

3.1. Elazig Study Site  

 

In this section, the geographical and geological characteristics of the Elazig study site, 

the January 24, 2020 Elazig earthquake event, and various previous flood events in the 

region were explained. The site was selected because it is susceptible to multi-hazards, 

namely landslides, floods and earthquakes.  

 

3.1.1. Location and geological characteristics for Elazig study site 

 

The Elazig study site is located in the southeastern part of Türkiye and consists of the 

Elazig Province and surrounding basins (Figure 3.1). In the study site covering 

approximately 5,150 km², the altitude values obtained from EUDEM v1.1 of the 

Copernicus Land Monitoring Service [121] vary between 524 m and 2592 m. The mean 

annual temperature recorded in Elazig Province was 13.2°C, while the average annual 

precipitation amounts to 420.2 mm [122]. The environmental conditions were represented 

using LULC classes derived from a global land cover map released by the ESA [123]. 

The Elazig study site predominantly consists of 69% grassland. Subsequently, it 

encompasses 9% bare/sparse vegetation, 8% cropland, 6% permanent water bodies, 5% 

tree cover, 2% built-up area, and 1% shrubland (Figure 3.2). 
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Figure 3.1. The Elazig study site with EUDEM v1.1 data, the epicenter of Elazig 

earthquake and fault lines 

 

 

Figure 3.2. LULC map for the Elazig site derived from the ESA WorldCover 2021 dataset 

[123]. 
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Since the study site is situated along the East Anatolian Fault Zone (EAFZ), it is exposed 

to significant seismic activities and ongoing tectonic changes. This also results in a young 

and rugged terrain. The geological formations in the region also exhibit limited shear 

strength. These conditions make the region prone to landslides [124]. Avci and Sunkar 

[125] explored the correlation between lithological units and the proximity to fault lines 

concerning landslides in Elazig and its adjacent northern province. Their findings 

revealed that the majority of landslides in the area were induced by seismic activity. 

Moreover, the area has a long-standing history of experiencing frequent and catastrophic 

earthquakes [126-127]. 

 

The EAFZ exhibits the characteristics of strike-slip movement triggered by the continent-

to-continent collision of the Arabian-African and Eurasian Plates. The interaction 

between the four main tectonic plates of Arabia, Eurasia, India, and Africa with the 

relatively smaller tectonic block of Anatolia generates high activity in the region [127]. 

Due to the active tectonism in the study site, geological formations exhibit diversity. The 

youngest and oldest units are of Quaternary and Precambrian ages, respectively. The 

geological map for the Elazig study site is provided in the Figure 3.3. A total of 339 

geological units in the area were combined based on similar characteristics to obtain 19 

units. The unit of gneiss, schist is the most commonly observed within these geological 

units. This is followed by units volcanites and sedimentary rocks, clastics and carbonates, 

terrigenous clastics, neritic limestone and undifferentiated alluvial, respectively (Table 

3.1). 
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Figure 3.3. Geological map in the Elazig study site ([128-132]). 

 

Table 3.1. Areas of the geological units in the Elazig study site 

Unit ID Lithological Units Ai (km²) 

1 Undifferentiated Alluvial 208.00 

2 Terrigenous clastics 543.89 

3 Sheeted dyke complex 89.49 

4 Volcanites and sedimentary rocks 916.53 

5 Granitoids 50.80 

6 Basalt 192.21 

7 Clastics and carbonates 637.22 

8 Marble 121.89 

9 Undifferentiated basic and ultrabasic rocks 273.40 

10 Gabbro 93.34 

11 Serpentinite 1.44 

12 Ophiolitic melange 1.05 

13 Diorite, tonalite, monzonite, gabbro etc. 180.78 
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14 Pelagic limestone, clastics, radiolarite, chert etc. 80.59 

15 Neritic limestone 342.50 

16 Schist 66.65 

17 Quartzite, quartzschist 13.75 

18 Amphibolite 31.03 

19 Gneiss, schist 1000.37 

 

 

3.1.2. The 24 January 2020 Elazig (Turkiye) earthquake event  

 

On January 24, 2020, at local time 20:55, an earthquake with a moment magnitude of 

Mw. 6.8 occurred as a result of the rupture of the NE-SW strike-slip fault along the Hazar-

Sincik Segment on the EAFZ [126]. According to the AFAD report (see also Figure 3.1), 

the epicenter of the earthquake was 37 km south-southwest of Elazig and 64 km east of 

Malatya (N38.359°, E39.063°) and the earthquake's focal depth was 8.06 kilometers. The 

effects of the Elazig- Sivrice earthquake were observed in a wide area in the Elazig and 

Malatya regions, from Lake Hazar in the east to Malatya city center in the west. 

According to the preliminary report of field observations published by MTA, the surface 

deformations associated with this earthquake were along a line of about 48 km from Lake 

Hazar to Pütürge (Malatya) [133]. The Anatolian Plate is tectonically active and thus, the 

region is frequently exposed to destructive earthquakes. According to AFAD data, 

unfortunately 41 people lost their lives and 1607 people were injured in the earthquake. 

547 buildings were completely destroyed, 6270 buildings suffered severe damages, 962 

buildings suffered moderate damages and 10273 buildings suffered minor damages [133]. 

In addition, secondary hazards such as lateral spreading, rockfalls, liquefaction and 

landslides were observed in the region after the earthquake. In the technical report 

published by Gokceoglu et al. [134], these secondary hazards, especially landslides, were 

discussed in detail. 
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3.1.3. Recent flood events in the Elazig study site 

 

Due to the geographical characteristics and climatic conditions of Elazig and its 

surrounding basins, several floods have occurred before. The causes of these floods 

include sudden and heavy rains, overflowing of stream beds, disruption of stream flow 

regimes and streambed morphology by extracting material from stream beds, and 

settlement in stream beds due to unplanned urbanization. Flood events seriously affect 

settlements and agricultural areas in the region. The damage to homes and businesses, the 

destruction of agricultural produce, and the infrastructure damage have adverse effects 

on the local economy and the living standards of the community.  

Despite extensive efforts, no comprehensive inventory of flood events could be found to 

conduct the study analyses. Yet, based on the news and media reports, some inundated 

areas, which were found highly susceptible to flooding, could be found. The locations of 

inundated areas are presented in detail in Table 3.2. 

Table 3.2. Locations of the inundated areas during the previous events occurred in Elazig 

and its surroundings. 

Inundated 

Area No 
Event Date Location 

1 15 April 2017 N38.609°, E39.302°  [135]    

2 20 June 2019 N38.681°, E39.257°  [136] 

3 20 June 2019 N38.675°, E39.206° [137] 

4 4 May 2022 N38.669°, E39.185°  [138] 

5 4 May 2022 N38.667°, E39.246°  [139] 

6 13 June 2022 N38.683°, E39.395°  [140] 

7 13 June 2022 N38.646°, E39.393°  [140] 

8 15 March 2023 N38.491°, E39.852°  [141] 

9 16 March 2023 N38.565°, E39.246°  [142] 

10 6 December 2023 N38.671°, E39.228°  [143] 
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3.1.4. The landslide inventory for Elazig study site 

 

It is of great importance to have information about both temporal and spatial frequency 

of landslides in order to create a map that reliably predicts landslide susceptibility, hazard 

and risk in a particular region. Therefore, it is necessary to start by compiling a 

comprehensive and complete inventory of landslides for these studies. Landslide 

inventories can be provided using various techniques. Image interpretation (stereo aerial 

photographs), semi-automated classification based on spectral and altitude characteristics 

(high resolution satellite images, aerial photograps, LiDAR shaded relief maps, RADAR 

images, InSAR), field investigation methods (field mapping), archive studies (interviews, 

newspaper). archives, existing databases), dating methods for landslides (direct and 

indirect methods), monitoring networks (electronic distance measurements, GPS, ground-

based InSAR, terrestrial LiDAR) are among these techniques [144]. Some attempts were 

made to standardize the landslide inventories obtained by naming classification types ([2, 

145]), causes of landslides ([146]), landslide activity ([147]). 

 

For landslides triggered after triggering conditions such as rainfall, earthquake, human 

impact, etc., landslide inventory preparation studies must be carried out frequently and 

the inventory in existing databases must be updated. 

 

In this thesis study, a multi-temporal landslide inventory was utilized. The landslide 

inventory used was categorized into two groups: pre- and post-earthquake landslide 

inventories. Detailed information regarding the pre- and post-earthquake inventories in 

the Elazig study site is explained below. 

 

3.1.4.1. Pre-earthquake landslide inventory for Elazig study site 

 

The pre-earthquake landslide inventory used in the model training phase of the thesis 

study was obtained by visual interpretation of 3D models, orthophotos produced aerial 

photographs and from MTA's geosciences WebGIS portal. The “Türkiye Landslide 

Inventory Project” was initiated regionally by MTA in 1997 for the landslides in the portal 
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and was completed on a national scale in 2007 [148]. Existing landslides were identified 

and mapped as a result of aerial photo analysis and detailed field studies. The landslides 

mapped within the scope of this project were presented to users as an inventory on the 

geosciences WebGIS portal. Based on the classification of Varnes (1978) [149] in the 

classification of landslides, mass movements were classified as flow, slide and complex 

according to the type of movement. Fall and topple-type landslides could not be taken 

into consideration due to scale limitations. In addition, landslides were classified 

according to their activities, divided into active and inactive [148]. As can be seen in 

Figure 3.4, there are a total of 694 pre-earthquake landslides defined as polygons in the 

Elazig study site. The areas of these landslides vary from 0.0002 km2 to 3.431 km2. 

Additionally, the distribution of area sizes for the landslide inventory before the 

earthquake is presented in Table 3.3 and Figure 3.5. Generally, most of these landslides 

were observed along active fault segments.  

 

Table 3.3. The distribution of area sizes for the Elazig study site's pre-earthquake 

landslide inventory. 

Landslide 

Area (km2) 

Landslide 

Counts 

Percentage 

(%) 

<0.03 246 35.45 

0.03 – 0.06 135 19.45 

0.06 – 0.09 51 7.35 

0.09 – 0.12 63 9.08 

>0.12 199 28.67 
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Figure 3.4. Pre and post-earthquake landslide inventory for Elazig study site. 

 

 

Figure 3.5. The pre-earthquake landslide inventory's size distribution as a percentage 

chart. 
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3.1.4.2. Post-earthquake landslides inventory for Elazig study site 

 

The post-earthquake landslide inventory used in this thesis was obtained by visually 

interpreting orthophotos and 3D surface models produced from aerial photographs taken 

pre and post-earthquake (see Karakas et al. [71] for further details). Aerial photographs 

taken in three different years (2017, 2018, 2020) were used for photogrammetric 

processing. 142 pre-earthquake images of 2017 (Malatya flight) and 2018 (Elazig flight) 

with 80% forward overlap and 60% side overlap with 30 cm GSD were obtained from 

the General Directorate of Mapping (GDM). 1410 post-earthquake images were taken by 

the GDM on 26 January 2020, 2 days after the Elazig earthquake.  

 

The GDM's photogrammetric data production process comprised steps such as flight 

planning, image acquisition, and aerial triangulation. The airplane's inertial navigation 

system (INS) and global navigation satellite system (GNSS) receivers were used to 

determine the external orientation parameters (EOPs). The interior orientation parameters 

(IOPs) of the UltraCam sensors [150] were established through laboratory calibration 

conducted by Vexcel Imaging. At the GDM, the photogrammetric bundle block 

adjustment method was employed across all datasets to enhance image georeferencing 

accuracy. This was achieved by recalculating the image exterior orientation parameters 

(EOPs) through a least squares estimation process, utilizing signalized and ground-

surveyed control points as reference points. The digital surface models (DSMs) and 

orthophoto mosaics were produced using Agisoft Metashape Professional, developed by 

Agisoft LLC in St. Petersburg, Russia. Table 3.4 illustrates the characteristics of stereo 

datasets and photogrammetric products. 
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Table 3.4. The characteristics of stereo datasets and photogrammetric products. 

 

Date 

 

Province 

 

Camera 

#of 

photos 

Flight 

altitude 

(m) 

Raster 

DSM 

(cm) 

Ortho 

GSD 

(cm) 

Use 

purpose 

2017 

(Summer) 

Malatya UltraCam 

Eagle 1 

88 7500 66 30 Pre-

earthquake 

2018 

(Summer) 

Elazig UltraCam 

Eagle 1 

54 6500 68 30 Pre-

earthquake 

26 Jan 

2020 

Malatya 

and 

Elazig 

UltraCam 

Eagle M3 

1410 6500 82 30 Post-

earthquake 

 

 

The area surrounding the segment damaged by the Elazig earthquake was found to have 

328 landslides, which were detected and mapped by comparing the surface models and 

orthophotos taken pre and post-earthquake. These landslides were divided into four 

groups according to the classification proposed by Cruden and Varnes [145]. These 

groups were inactive mass movements (75), active mass movements (183), new active 

zone developed within the existing mass after 2018 (57), and newly developed after 2018 

triggered by the Elazig earthquake (13) [71]. The observed activities within the masses 

typically occurred in a retrogressive manner, primarily concentrating on the crown 

sections of the landslides, leading to their backward development. Additionally, new 

activities were noted in the secondary failures of the large masses, characterized as 

sackung-type landslides. Since it was concluded that the 3rd and 4th group activities were 

triggered by the Elazig earthquake, 70 of these 328 landslides were used to test the the 

final LSM. Group 1 and 2 activities were included in the pre-earthquake landslide 

inventory data and used in model training. The areas of these 70 landslides vary from 

0.0001 km2 to 3.007 km2. The landslides triggered by Elazig earthquake were mostly 

observed along lakeshore, road cuts and river terraces [71]. In Figure 3.6, examples of 

landslides triggered in the Elazig earthquake can be seen on orthophotos produced from 

aerial photographs pre and post-earthquake.  
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(a1) (a2) 

  

(b1) (b2) 

 

Figure 3.6. Examples of landslides triggered in the Elazig earthquake on orthophotos 

produced from aerial photographs pre (a1, b1) and post-earthquake (a2, b2). 

 

3.2. The Adiyaman Study Site 

 

In this section, the geographical and geological characteristics of the Adiyaman study 

site, the February 6, 2023 Kahramanmaras earthquake events, and various previous flood 

events in the region was explained. The site was selected due to data availability and also 

it is susceptible to multi-hazards, namely landslides, floods and earthquakes.  

 

3.2.1. Location and geological characteristics for Adiyaman study site 

 

Adıyaman and its surroundings, one of the 11 provinces affected by the Kahramanmaras 

earthquakes that occurred on February 6, 2023, was selected as the study site. Particularly 
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in the Tut region of Adıyaman, many landslides were observed as a secondary hazard 

triggered during the earthquakes. Subsequently, a flood event occurred in the region due 

to heavy rains. For the purpose and scope of the thesis study, since there are more than 

one multi-hazards affecting the same area in Adıyaman Tut region, this region was 

selected as an additional study site to test the applicability of the methodology. The model 

parameters and predictive variables were tuned for the site. The study area covers an area 

of approximately 1600 km2 and Figure 3.7 shows the location of the study area together 

with the digital elevation model (DEM) obtained from EUDEM v1.1.  The altitude of the 

site varies between 461 m and 2522 m. The mean annual temperature in Adiyaman 

Province is 17.4°C degrees, while the average annual precipitation is 715.1 mm [122]. 

According to global land cover map released by the ESA, the Adiyaman study site 

predominantly consists of 55% grassland. Subsequently, it encompasses 21% cropland, 

12% bare/sparse vegetation, 8% tree cover, 3% built-up area, and 1% shrubland (Figure 

3.8). 

 

 

Figure 3.7. The Adiyaman study site with EUDEM v1.1 data and fault lines. 
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Figure 3.8. The LULC map of Adiyaman study site obtained from ESA WorldCover map 

[123]. 

 

The Adiyaman study site exhibits a complex structure due to its placement within the 

EAFZ, characterized by frequent seismic activity. It comprises diverse units consisting of 

igneous, metamorphic, and sedimentary rocks spanning from the Precambrian age to the 

present geological time periods. The geological map for the Adiyaman study site is 

provided in the Figure 3.9. A total of 27 geological units were available in the area. Yet, 

they were combined based on similar characteristics to reduce the dimensionality, thus 

12 units were obtained. As depicted in Figure 3.9 (please also see Table 3.5), the unit of 

neritic limestone is the most commonly observed within these geological units. This is 

followed by units pelagic limestone, clastics and carbonates, non-graded terrigenous 

clastics, volcanites and sedimentary rocks and terrigenous clastics, respectively. The unit 

names are given in Table 3.5. 
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Figure 3.9. Geological map  in the Adiyaman study site ([151-152]).  

 

Table 3.5. Area sizes of the geological units in the Adiyaman study site. 

Unit ID Lithological Units Ai (km²) 

1 Undifferentiated Alluvial 74.08 

2 Non-graded terrigenous clastics 234.87 

3 Basalt 0.68 

4 Volcanites and sedimentary rocks 205.84 

5 Terrigenous clastics 98.82 

6 Ophiolitic melange 28.24 

7 Clastics and carbonates 247.58 

8 Pelagic limestone 271.16 

9 Neritic limestone 301.15 

10 Undifferentiated basic and ultrabasic rocks 84.93 

11 Peridotite 0.01 

12 Marble, schist in places 42.01 
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3.2.2. The 6 February 2023 Kahramanmaras (Turkiye) earthquake events  

 

On February 6, 2023, two major devastating earthquakes occurred at local times 04:17 

and 13:24, with their epicenters located in the Pazarcik (N37.288, E37.043) and Elbistan 

(N38.089°, E37.239°) districts of Kahramanmaras, known as the catastrophic events of 

the century. The magnitudes of these earthquakes were Mw. 7.7 and Mw. 7.6, 

respectively. According to the AFAD report, the focal depth of the first earthquake, 

located in the primary branch of the EAFZ between the Narlı segment and the Pazarcık 

segment of the Dead Sea Fault Zone, was 8.6 km. The focal depth of the second 

earthquake, which caused surface rupture along the Cardak Fault, a part of the northern 

branch of the EAFZ, was determined to be 7.0 km. The these seismic events resulted in 

catastrophic devastation across 11 provinces situated in the Southeastern and Eastern 

Anatolia Region of Türkiye. The earthquakes led to immeasurable damages and casualties 

numbering in tens of thousands. In addition to the devastating earthquakes, the region 

witnessed numerous secondary hazard occurrences, including rockfalls, landslides, rock 

avalanches, surface ruptures, liquefaction, and more, all triggered by the seismic activity.  

Adiyaman and its surrounding areas are also among the provinces most affected by these 

earthquakes and secondary hazards. Furthermore, several parts of the region frequently 

experience flooding, a meteorological hazard related to climate conditions, which may 

also trigger landslides.  

 

3.2.3. Recent flood events in the Adiyaman study site 

 

On March 15, 2023, approximately one month after the earthquakes in Kahramanmaraş 

on February 6, 2023, a second disaster occurred in the Tut district of Adıyaman due to 

heavy rainfall, namely a flood event. Due to the overflow of the stream passing through 

the center, many houses and agricultural areas were damaged, resulting in losses of lives. 

Again, as in the Elazig site, no comprehensive flood inventory was obtained despite 

extensive efforts. Yet, based on the news and media reports, some inundated areas, which 

are highly susceptible to flooding, were identified. These inundated areas are presented 

in Table 3.6. 
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Table 3.6. The inundated areas that have occurred previously in Adiyaman and its 

surroundings. 

Inundated 

Area No 

Event Date Location 

1 1 May 2022 N37.759°, E38.279°  [153] 

2 15 March 2023 N37.795°, E37.914°  [154] 

3 11 April 2023 N37.794°, E38.240°  [155] 

 

 

3.2.4. The landslide inventory for Adiyaman study site 

 

In the Adiyaman study site, a multi-temporal landslide inventory was also used. The 

inventory was categorized as pre- and post-earthquake landslide. Detailed information 

regarding the pre- and post-earthquake inventories in the Adiyaman study site are given 

below. 

 

3.2.4.1. Pre-earthquake landslides inventory for Adiyaman study site 

 

The pre-earthquake landslide inventory used in the model training phase in the Adiyaman 

study site was obtained from MTA's geosciences WebGIS portal. Landslide inventories 

in this region were also mapped within the scope of the “Türkiye Landslide Inventory 

Project”, as explained in detail in Section 3.1.4. As seen in Figure 3.10, there were a total 

of 217 pre-earthquake landslide inventories in the Adıyaman study site. The smallest and 

largest landslide areas in the pre- earthquake landslide inventory varied between 0.0005 

km2 and 7.970 km2. The distribution of area sizes for the landslide inventory before the 

earthquake is presented in Table 3.7 and Figure 3.11.  
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Table 3.7. The distribution of area sizes in the Adiyaman study site's pre-earthquake 

landslide inventory. 

Landslide 

Area (km2) 

Landslide 

Counts 

Percentage 

(%) 

<0.02 111 51.15 

0.02 – 0.04 52 23.96 

0.04 – 0.06 9 4.15 

0.06 – 0.08 8 3.69 

>0.08 37 17.05 

 

 

Figure 3.10. Pre-earthquake landslide inventory in the Adiyaman study site. 
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Figure 3.11. The pre-earthquake landslide size distribution as a percentage chart. 

 

3.2.4.2. Post-earthquake landslides inventory for Adiyaman study site 

 

The landslides in the Adiyaman study site triggered by the Kahramanmaraş earthquakes 

were determined by comparing the pre-earthquake and post-earthquake orthophotos in 

the HGM Küre application [156], which is a web-based GIS platform offered to the user 

by the GDM. These orthophotos were produced by processing the aerial photographs 

obtained as a result of the aerial photogrammetric flight mission carried out by GDM in 

the earthquake region (see Karakas et al. [73] and Kocaman et al. [157] for further 

details). The GDM continued its flight missions for a week, starting from February 7, 

2023, one day after the earthquake. Aerial photograps were generally taken from rural 

and mountainous areas. All aerial stereo images with an average GSD of 25 cm were 

captured with an Ultracam Eagle M3 camera [150]. These images were rapidly processed 

and presented to the user in the HGM Küre application. In these orthophotos presented in 

3D, there was only a DEM representing the pre-earthquake situation. The geometric 

quality of these orthophotos is suitable for identifying and mapping landslides.  

 

Due to seasonal conditions, it was observed that the images obtained from flights after 

the earthquake show dense cloud cover shadows and snow cover. Despite these 
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challenging situations, a total of 2611 landslides triggered by Kahramanmaraş 

earthquakes were mapped in the HGM Küre application by[72], [73], [157]. In addition, 

some of these landslides have been validated with field observations in the earthquake 

region. Mass movements such as flow (debris flow), slide (translational and bedrock 

rotational), fall (rock fall) and spread were observed in landslide types triggered after the 

earthquake. 

 

There were 530 landslides triggered after the earthquake in the Adıyaman study site. 

Observations also revealed certain failures in talus materials, identified as debris flows. 

Such landslides have been encountered especially in the east of the Tut region. Talus 

material originated from limestone formations located at higher elevations of the slope, 

gradually accumulating on the lower slopes. The areas of these landslides varied from 

0.0001 km2 to 2.47 km2. These landslides triggered after the earthquake were not included 

in the model training. It was used to validate the LSM produced for the Adıyaman study 

site. Examples from the pre- and post-earthquake landslides were illustrated as 

perspective images shown on Google Earth platform [158] in Figure 3.12. 

 

  

(a1) (b1) 

  

(a2) (b2) 
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(a3) (b3) 

 

Figure 3.12. The pre (a1, a2, a3) and post (b1, b2, b3) 3D image perspective of the 

identified post-earthquake landslides on the Google Earth platform. 

 

3.3. Geospatial Datasets  

 

The first stage of obtaining the univariate susceptibility maps used in the thesis study was 

the collection of data from which the conditioning factors associated with landslides were 

produced. The main data, data sources, resolution/scale and formats used for this thesis 

study are presented in Table 3.8.  

 

Table 3.8. The main data, data sources, resolution/scale and format used in the study sites. 

Data Data sources Source format Resolution/Scale 

DEM EUDEM v1.1 Grid 25 m 

Lithology Geological maps from MTA Polygon 1/100.000 

Faults MTA Geosciences WebGIS 

portal  

Polyline 1/25.000 

Pre-earthquake 

Landslide Invertories 

MTA Geosciences WebGIS 

portal  

Polygon 1/25.000 

LULC ESA WorldCover Grid 10 m 

River Vector data TopoVT of HGM Polyline 1/25.000 
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Arias Intensity 

values 

AFAD earthquake database Point - 

 

The DEM data, which is one of the main data sources in the study, was extracted from 

EUDEM v1.1.  The EUDEM v1.1 published by CLMS represents an upgraded version of 

EU-DEM v1.0., incorporating improvements such as rectifying geopositioning 

discrepancies, minimizing artifacts, and enhancing vertical accuracy by utilizing data 

from the Ice, Cloud, and land Elevation Satellite (ICESat) mission operated by NASA.   

The product was obtained by combining ASTER GDEM datasets and the Shuttle Radar 

Topography Mission (SRTM). It has a spatial resolution of 25 m and a vertical accuracy 

of 7 m, and consists of a total of 27 tiles, covering a 1000 km × 1000 km area (CLMS 

2022). The study area corresponds to the tile with the ID number E60N20. This tile was 

clipped to be used in other processes according to the study area. The EUDEM v1.1 data 

was preferred because it has high spatial resolution and high elevation accuracy. The 

lithology, pre-earthquake landslide inventory and fault data were obtained from the MTA.  

The worldwide land cover mapping published by ESA was used for LULC data.  The 

river vector data was acquired from the TopoVT geodatabase of the General Directorate 

of Mapping and visually detailed drawings of the rivers in the Elazig study site.  Arias 

intensity values for seismic hazard were downloaded from the AFAD earthquake 

database based on records of accelerometric stations in the study sites and its 

surroundings.
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4. METHODOLOGY 

 

 

In this chapter, the methodology proposed in the thesis was explained. The chapter begins 

with an overview of the workflow proposed in the thesis. Then, data preprocessing 

methods for landslide and flood susceptibility map production were explained. The 

explanations for the production methods of each univariate susceptibility map and also 

the MHS map are also provided. 

 

4.1. Overview of the Proposed Workflow  

 

In this section, the overall workflow proposed for the thesis study is explained. The 

proposed methodology for the MHS map production consists of three basic stages: (i) a-

data pre-processing, (ii) the production of univariate susceptibility maps, and (iii) the 

MHS map production, as shown in Figure 4.1.  

 

 

Figure 4.1. The overall workflow proposed for the thesis study 
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In the first stage, the main data used in the study were obtained from various sources. 

These data were pre-processed and features representing the conditioning factors were 

derived to produce the univariate susceptibility maps. At the second stage, the univariate 

susceptibility maps for natural hazards such as landslides, floods and earthquakes were 

produced using different methods depending on the data availability. The RF algorithm 

was used for the LSM production due to its ability to handle complex interactions between 

terrain features. The flood susceptibility was evaluated with the m-AHP method, which 

takes various factors into account, such as slope, land use, distance to drainage network 

etc. The seismic hazard map was created based on Arias intensity values using Inverse 

Distance Weighted (IDW) technique to interpolate the spatial variations. At the third 

stage, a MHS map was produced using the Mamdani FIS method. These stages are 

explained in detail in the following sections. The effectiveness and accuracy of the 

proposed methodology was analyzed by applying it in two different study areas selected 

after the Elazig and Kahramanmaras earthquakes. 

 

4.2. Data Pre-processing for the Univariate Susceptibility Map Production 

 

The main data sources used in the study were DEM, lithology, LULC, pre-earthquake 

landslide inventory, faults, rivers (as vector data) and Arias Intensity values. During the 

data preprocessing stage, features used to produce each univariate susceptibility map were 

extracted by applying geometric preprocessing & rasterization, and feature extraction 

steps for topographical parameters to this main data.  

 

A geological map is a type of thematic map that shows the types, compositions, structures, 

and the other characteristics of the exposed rocks in a region. Lithology plays a crucial 

role in evaluating the risks of landslides, floods, and earthquakes. Lithological properties 

have an impact on rock type, permeability, and surface runoff  [159]. Lithology is one of 

the factors that has a direct effect on the landslide potential. Because different geological 

units have different characteristics, which affect the possibility of landslide occurrence, 

movement and propagation. Properties of geological units such as water permeability and 

water holding capacity affect the rate of penetration of precipitation into the soil and the 

surface flow of water. 
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The geological formations in the study sites were acquired by digitizing the geological 

formation map published on the Geosciences WebGIS portal of MTA, which had a scale 

of 1/100,000. The vector polygons were combined to form a single geometry of 

geological units with similar characteristics. Before the rasterization process, each 

geological unit was assigned an ID ranging from 1 to the number of units in the study 

sites as a preparation step for method application. According to these ID values, a 

rasterized geology map was obtained and stored in GeoTIFF format.  

 

The different LULC types within a region display various influences in natural hazard 

events. For this reason, it is necessary to use up-to-date LULC data. The global 

WorldCover product [123] with a resolution of 10 m provided by ESA was used in the 

thesis study. This LULC map was resampled to the 25 m grid size used in the study and 

clipped according to study sites.  

 

Due to the study site locations within the EAFZ that are prone to landslides induced by 

seismic activity, the distance to faults factor was incorporated. This distance is used to 

determine the proximity of a point or an area to an active fault line. The faults used in the 

study were digitized from the MTA geosciences WebGIS portal. These distances to faults 

were calculated based on Euclidean.  

 

Distance to river beds plays an important role in flood events. Water overflowing from 

river beds can cause serious damage to environment. The distances to permanent rivers 

and dry drainage channels were considered for susceptibility, as nearby places are more 

susceptible to flooding. Permanent and dry river datasets from the GDM TopoVT 

database were used to calculate these distances. Additional updates were carried out 

through manual delineations based on recent orthoimages. Multiple buffers were created 

at certain distances around the permanent rivers and dry drainage vector dataset to have 

discrete values in modeling (not continuous or gradually increasing). These distances 

were classified into six groups.  The first five groups have equal intervals of 20 m, while 

the last group included area with a distance greater than 120 m.  
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The pre- and post-earthquake landslide inventory, which was in vector format, was 

converted to raster format to be used in model training, testing and validation. For this 

process, a value of 1 was assigned to the pre and post-earthquake landslide inventory and 

a value of 0 was assigned to non-landslide areas.  

 

The topographic features mentioned in Figure 4.1 were derived from the EUDEM v1.1 

data used as DEM data. Among those, slope refers to the degree of steepness or gradient 

of a terrain. It has a critical role in the LSM and the FSM production. In areas with steep 

slopes, the risk of soil erosion and landslides is higher. As the slope increases, downward 

forces that can cause water to flow more rapidly across the surface and trigger soil erosion 

also increase. Moreover, in steeply sloped areas, fast-flowing water increases the 

likelihood of forming water puddles. This may increase the risk of floods and cause 

puddles to form in low-lying areas. Areas with lower slopes and flat terrain are at higher 

risk of flooding due to the potential for increased surface inundation levels in these 

regions [102], [124]. 

 

Aspect feature describes the direction a surface faces downhill and is expressed in degrees 

clockwise from north. The duration of sunlight exposure and cycles of freezing and 

thawing, which impact the breakdown and erosion of slope materials facing various 

directions, may be associated with the aspect [102]. For instance, northern slopes tend to 

be more humid and shaded, whereas southern slopes can be warmer and drier. This 

condition affects soil moisture and vegetation, potentially resulting in different landslide 

hazards. 

 

Surface curvature, the second derivative of a DEM, can be split as plan and profile 

curvatures. While plan curvature refers to the horizontal curvature of the surface (in two 

directions such as left and right, or X and Y curvatures), profile curvature refers to the 

vertical curvature of the surface (upward and downward curvature). The direction of the 

highest slope is perpendicular to the plan curvature. The direction of the highest slope is 

where profile curvature is found.  In profile curvature, a negative value signifies upward 

convexity at the cell, resulting in flow deceleration. A positive profile indicates upward 

concavity at the cell, leading to flow acceleration. A value of zero indicates a linear 
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surface. In plan curvature, a positive value indicates lateral convexity at the cell, while a 

negative value indicates lateral concavity. A linear surface is indicated by a value of zero. 

Areas with steep curvature often indicate elevation changes at the surface and can affect 

the flow of water. Regarding the FSA, plan curvature illustrates the acceleration of flow 

and the rate of erosion/deposition, whereas profile curvature indicates variations in flow 

velocity [159].   

 

Drainage density is a measure of the proportion between the total length of all streams 

and rivers and the overall area of the catchment. A high drainage density indicates that a 

region has a dense river and stream network. This suggests that the area is subject to 

intensive erosion and shaping processes, potentially leading to soil erosion. Therefore, a 

high drainage density may indicate that an area may be susceptible to erosion and runoff.  

 

The Stream Power Index (SPI) quantifies the erosive capacity of water in motion. The 

SPI is calculated using the gradient and catchment area as its foundation. With increasing 

catchment area and slope gradient, the volume of water originating from upslope areas 

and the speed of water flow both increases. Consequently, stream power index and the 

risk of erosion rise.  

 

Topographic wetness index (TWI) is widely used to express locations and sizes of water-

saturated areas in a topographic sense. High TWI values indicate areas where water tends 

to accumulate and drainage systems have developed. Low TWI values indicate drier areas 

where water flows away quickly and less puddles occur. Regions with high TWI values 

indicate areas where rainfall causes water accumulation and stream flow is intense. This 

is useful for identifying areas at high risk of flooding. The SPI and TWI were calculated 

using Equation 4.1 [160].  

 

SPI = 𝐴𝑠 ∗ tan 𝛽       𝑇𝑊𝐼 = ln(
𝐴𝑠

tan 𝛽
)                                                                   (4.1) 

where As refers to the specific catchment area and  is the slope gradient. 
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All topogtaphic features were derived from EU-DEM v1.1 using open source SAGA GIS 

software and ArcGIS software from ESRI [161-162]. 

 

4.3. The univariate Susceptibility Maps Production 

 

In this section, the univariate susceptibility maps produced for landslide, flood and 

earthquake are explained together with the respective methods. 

 

4.3.1. Landslide Susceptibility Map Production with Random Forest Method 

 

As mentioned in Chapter 2 of this thesis, diverse methods have been used for the LSM 

production in the literature. In recent years, with the advancement of technology and 

availability of accurate inventories, there has been an increase in the use of data-driven 

methods. Especially, the RF algorithm is among the most commonly used methods based 

on the literature review. Thus, the RF was preferred to produce the LSMs.  

 

A number of statistical analyses were performed on the features selected for the LSM 

before the modeling phase. For this purpose, variance inflation factor (VIF), tolerance 

(TOL), and Pearson coefficients were computed to determine the multicollinearity among 

input features. The correlation levels between parameters were analyzed. In addition, the 

Information Gain Rate (IGR) method, which has been frequently used in the literature, 

was applied to analyze the importance of features, measure predictive abilities and 

determine the most effective ones. 

 

The term multicollinearity in landslide research describes the non-independence among 

features within datasets, which arises from their high correlation. This condition can lead 

to inaccuracies in system analysis [163].  Minimizing the correlation between factors can 

be crucial for enhancing the precision of landslide prediction. Various methods have been 

suggested to assess multicollinearity, including Pearson’s correlation coefficients [164], 

conditional index [165], variance decomposition proportion [166] and metrics like 
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variance inflation factor (VIF), and tolerance [167-168]. However, novel ML methods 

have the potential to reduce or avoid the adverse effects of the multicollinearity as well. 

 

The VIF and tolerance values of an independent variable can be used to identify and 

assess the magnitude of the relationship between variance of a variable and the other 

independent variables. High VIF values indicate a high probability of multicollinearity.  

VIF and tolerance are inversely related to each other. A high tolerance value indicates the 

absence of multicollinearity, whereas a low tolerance value may indicate the presence of 

multicollinearity. If a VIF value is greater than 10 or the tolerance is less than 0.1, it 

suggests a potential multicollinearity issue in the dataset. If the VIF values are high, this 

may negatively affect the accuracy and reliability of the model. Therefore, it is important 

to check the VIF values and take appropriate measures to eliminate the multicollinearity 

problem when necessary. The formula used to compute the VIF is as follows: 

 

𝑉𝐼𝐹𝑖 =
1

𝑇𝑂𝐿
=

1

1−𝑅𝑖
2                                                                                                      (4.2) 

 

where the VIFi represents the VIF value of the ith independent variable, and 𝑅𝑖
2denotes 

the percentage of variance explained by regressing the i-th independent variable 

against the other independent variables.  

 

In the LSM production, the correlation coefficient of two features can also be evaluated 

using the Pearson coefficient method. The linear relationship between two features is 

measured. Pearson's coefficient values vary between -1 and 1. A linear relationship is 

positive when it is closer to 1; negative when it's closer to -1; and nonexistent when it is 

closer to 0. As shown in Equation 4.3, the covariance of two features is divided by the 

product of their standard deviations to obtain the result. Pearson’s correlation values 

above 0.7 indicate high collinearity.  

 

𝑟𝑋𝑌 =
∑ (𝑋𝑎−𝑋̅)(𝑌𝑎−𝑌̅)𝑛

𝑎=1

√∑ (𝑋𝑎−𝑋̅)2𝑛
𝑎=1   √∑ (𝑌𝑎−𝑌̅)2𝑛

𝑎=1

                                                                                  (4.3) 
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where X and Y denote two features related to landslides, 𝑟𝑋𝑌 represents the correlation 

coefficient between factor X and factor Y, n signifies the count of input training data, 

while 𝑋𝑎 and 𝑌𝑎  stand for the values of the a-th training data in 𝑋𝑎  and 𝑌𝑎 , 

respectively and 𝑋̅  and 𝑌̅  represent the mean values of the variables 𝑋̅  and 𝑌̅ , 

respectively. 

 

In addition to defining multicollinearity, the features in the initial set may not have similar 

predictive ability. There are some techniques such as Relief [169], Fuzzy-Rough sets 

[170], Information Gain [171] and Information Gain Ratio (IGR) [172] to measure the 

predictive abilities between features and to determine the most effective ones.  Among 

these techniques, the IGR technique was used in this thesis study. The IGR represents an 

enhancement over the conventional information gain approach. The information gain 

measures the ability of an attribute to partition a dataset. The IGR, on the other hand, 

considers how information gain relates to the diversity of the dataset, that is, the 

homogeneity of an attribute in dividing the dataset. The IGR value serves as an indicator 

of a feature's significance: the greater the IGR value, the more crucial the information 

provided by the feature for predicting landslide susceptibility. 

 

After the statistical analyses of the features selected for landslide susceptibility map 

production, the model training phase was started. The RF algorithm, as proposed by 

Breiman (2001) [173], is commonly employed for both regression and classification 

tasks, and it was utilized for the LSM production in the thesis study. The RF consists of 

multiple Decision Trees (DTs) built on different subsamples of the data, ensuring 

robustness against outliers and noise. To get the RF output, it uses a voting system that 

takes into account the outcomes of multiple DTs [52]. A random selection of 

characteristics and a subset of the training dataset are used to build each DT in the RF, 

resulting in variability among the trees. 

 

The RF algorithm utilizes the bagging (or Bootstrap Aggregating) technique to generate 

these varied subsets. Throughout the training stage, each tree is constructed through 

iterative partitioning of the data according to the features. At each division, the algorithm 
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chooses the most suitable feature from the random subset, aiming to optimize information 

gain or Gini impurity. This procedure persists until a predefined stopping condition is 

fulfilled, such as reaching a maximum depth or achieving a minimum number of samples 

within each leaf node. After training, the random forest can make predictions by having 

each tree vote for a class, and the class with the highest number of votes is designated as 

the predicted class for the input data. Figure 4.2 illustrates a generalized structure for the 

RF. Figure 4.3 shows the workflows for the LSM approach, which was developed in a 

Python programming environment.  

 

 

Figure 4.2. A generalized structure for the RF algorithm [174]. 
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Figure 4.3. The workflow implemented for the landslide susceptibility map production. 

 

As can be seen in Figure 4.3, a total of 10 input features were used for the LSM 

production. These features were selected based on previous LSA studies conducted in the 

area and expert opinions. Before applying the RF model, the VIF, the TOL, Pearson's 

coefficient and the IGR were used to identify the relationship between features. To 

achieve reliable and accurate results, choosing suitable parameters within the model is 

crucial. For optimizing the model parameters, this study employed a random search 

approach, which was considered to be more efficient than grid search due to the large data 

volumes [175-176]. The random search algorithm randomly selects various combinations 

of parameters from predefined ranges or values, then assesses the model performances 

using cross-validation (as shown in Table 4.1) and appropriate metrics such as accuracy, 

precision, recall, or F1 score and the AUC values.  
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Table 4.1. Parameter optimization values 

 

Model 

 

Parameter 

Value 

Elazig Study Site Adiyaman Study 

Site 

 

 

Random Forest 

n_estimators 426 344 

criterion ‘entropy’ ‘entropy’ 

max_depth 16 16 

min_samples_split 2 2 

min_samples_leaf 1 2 

max_features ‘auto’ ‘auto’ 

 

The precision parameter quantifies how many predicted positive instances are truly 

positive, gauging the classifier's skill in avoiding misclassifying negative samples as 

positive. Recall, on the other hand, exhibits the classifier's efficacy in capturing all 

positive instances. The F1 Score, as the harmonic mean of precision and recall, provides 

a well-balanced evaluation of both criteria. Support denotes the frequency of each class 

within the ground truth values. It shows that optimizing parameters has a notable effect 

on the performance of the RF algorithm. By fine-tuning parameters such as the number 

of trees, maximum tree depth, and the number of features considered in each split, the 

aim is to increase prediction accuracy while reducing overfitting. Furthermore, the 

SHapley Additive exPlanations (SHAP) methodology was used to evaluate the 

relationships of the input features with the model predictions and the most effective 

parameters in model prediction were determined [177].  

 

The pre-earthquake landslide inventory was used in model training. For the Elazig site, 

landslide samples used for training were selected from pixels within the inventory, with 

175,219 landslide and 262,829 non-landslide pixels, totaling 4,380,480 pixels across all 

features. In the training data set within the Adiyaman study site, there were 188,619 pixels 

identified as landslide and 282,929 pixels categorized as non-landslide. As can be seen 

from the pixel counts, the training data from non-landslide areas were randomly selected 
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outside landslide polygons with a ratio of 1:1.5. The distribution and balance of landslide 

and non-landslide samples are important to ensure fair and accurate model performance. 

There are some studies in the literature on the determination of the sample ratio between 

landslide and non-landslide data. In these studies, experiments with different sample size 

ratios were performed and discussed (e.g. [178-179]). In the comparisons, it was stated 

that the selection ratio of landslide and non-landslide areas affected the model accuracy 

(specificity, sensitivity). In general, it has been found that the use of 1:1.5 and 1:2 ratios 

is suitable for the accuracy of susceptibility map production. Therefore, based on the 

studies in the literature and previous experience (e.g.[69], [124]), it was preferred to 

employ a ratio of 1:1.5 in this study. In addition, an 80/20 split ratio was applied to divide 

the training and test samples.  

 

The LSMs produced in this thesis study were validated with landslides triggered during 

the Elazig and Kahramanmaraş earthquakes. Most studies in the literature have been 

validated with the test data separated from learning data due to the absence of multi-

temporal landslide inventory. Considering that earthquakes trigger many landslides in this 

study, there is an opportunity for a study to evaluate the performance limits of LSMs. In 

this study, post-earthquake landslide inventories were used only for validation purposes 

rather than model training. Class values of pixels in the intersection areas of the 

susceptibility maps and post-earthquake landslide inventories were compared using 

statistical metrics and visual interpretation for expert-based validation.  

 

4.3.2. Flood Susceptibility Map Production with m-AHP 

 

The FSM of the study sites was produced with the M-AHP method, which is an expert-

based method. The reason for using this method was the lack of learning data. Figure 4.4 

shows the workflows for the FSM approach, which was developed in a Python 

programming environment.  
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Figure 4.4. The workflow implemented for the flood susceptibility map production. 

 

A modified form of the conventional AHP approach, called M-AHP, was proposed by 

Nefeslioglu et al. [63]. This method has been modified to eliminate expert subjectivity in 

pairwise comparison. In the M-AHP method, each classified conditioning factor in the 

system is weighted according to expert opinion. These weights are given according to 

factor importance. Expert knowledge and experience are important in assigning weights. 

This knowledge and experience helps them accurately determine the importance of 

factors. Experts weight factors using evidence based on available scientific data, study 

site characteristics, and past events. Weight values of each parameter class used in this 

study are given in Appendix A. A normalised factor score difference matrix is created for 

each factor, based on the highest weight assigned to each factor. A factor comparison 

matrix is then created, taking into account the modified importance value chart. Factor 

comparison consistency is measured. Finally, the percentage importance distributions of 

the factors at the decision points are found. For this, each factor is normalised according 

to its maximum score. The linear distances between the normalised factor score and the 

decision points are measured. At this stage, the modified importance value chart is again 

taken into account. Finally, the percentage importance distributions of the factors at the 

determined decision point are found. Since a different weight vector is calculated for each 
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grid cell in the M-AHP method, it is not ignored that the weight vector will not be constant 

in that grid cell. A total of 7 features (see Figure 4.4 above) were used as input features 

in the FSM production based on literature analysis and expert opinion. An expert (Dr. 

Candan Gokceoglu), who has long term experience in the region, provided support to 

define the class weights for the study sites. 

 

4.3.3. Seismic Hazard Map Production with Inverse Distance Weighting 

 

Assessing earthquake effects and classifying regions in terms of earthquake risk is a 

critical issue in earthquake engineering. Various parameters and criteria are used for this 

purpose. However, visualizing earthquake effects on a single map and thus preparing 

regional MHS maps still remains a challenging problem. Since local ground conditions 

significantly impact earthquake shaking, Kotha et al. [180] explained that the current 

seismic code provisions consider this effect by defining appropriate elastic design spectra 

based on different site categories. In this context, the main recommended parameter for 

soil classification is Vs30 [181]. However, there is no unanimous agreement on whether 

Vs30 is a valid criterion for earthquake amplification [182]. At the same time, However, 

it is emphasized that the basic characteristics of earthquake shaking cannot be fully 

expressed with a single parameter [183].  Therefore, it has been suggested to use several 

engineering parameters simultaneously to obtain more accurate results in terms of 

earthquake engineering. However, it should be noted that standard methods cannot 

accurately assess the amount of peak horizontal acceleration amplification expected for 

site classification [184].  

 

Another parameter utilized in ground motion prediction equations is the horizontal 

component of cumulative absolute velocity. This parameter has been used as an indicator 

to indicate the possible onset of structural damage and liquefaction of saturated soils 

[185].  

 

Arias intensity represents the release of energy, encompassing both the duration of 

earthquake shaking and the time-varying changes in frequency content [186]. The 
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intensity of the shaking is calculated by quantifying the acceleration of transient seismic 

waves. It was proposed by Arturo Arias in 1970 [187]. As shown in Equation 4.4, it is the 

sum of the horizontal and vertical components of the acceleration record.  

 

𝐼𝐴 =  𝐼𝑥𝑥 + 𝐼𝑦𝑦 =
𝜋

2𝑔
∫ 𝑎𝑥

2(𝑡)𝑑𝑡 +
𝜋

2𝑔
∫ 𝑎𝑦

2(𝑡)𝑑𝑡
𝑡𝑑

0

𝑡𝑑

0
                                                  (4.4) 

 

where g denotes the acceleration of gravity, t represents time, and td stands for the 

total recording length.  

 

Studies have indicated that among the parameters measuring ground shaking, the Arias 

Intensity is closely associated with the distribution and density of landslides [188-190]. 

It is a reliable parameter used to describe the earthquake shaking required to trigger 

landslides. 

 

The Arias Intensity is widely used as a parameter to determine earthquake effects. The 

Arias Intensity and cumulative absolute velocity are successfully used in earthquake 

engineering problems because they reflect many characteristics of ground motion [191]. 

These parameters enable the relative determination of earthquake effects and are thus 

used in the production of multi-MHS maps. For this reason, because reliable data is 

accessible, the thesis study utilized Arias Intensity to comparatively classify the study site 

regarding earthquake effects. In other words, the Arias Intensity map categorized the area 

in relation to earthquake impact. This classification does not indicate the absolute effect 

of a potential earthquake but rather illustrates the relative influence within the study sites. 

Hence, the Arias Intensity utilized to depict earthquake effects in the production of MHS 

map is represented by the susceptibility map. Figure 4.5 shows the workflow for the 

seismic hazard map production. 
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Figure 4.5. The workflow implemented for seismic hazard map production 

 

In this thesis, the Arias Intensity values of accelerometric station records of the study site 

and its surroundings were obtained from the AFAD earthquake database [192]. The unit 

of arias intensity values is cm/s. The Arias Intensity values from twenty-five 

accelerometric station records were utilized for the Elazig study site, while fourty-six 

accelerometric stations were employed for the Adiyaman study site to determine the Arias 

Intensity values. Accelerometric stations obtained from AFAD earthquake database in 

Elazig (left) and Adiyaman (right) study sites are given in Figure 4.6. After obtaining the 

Arias Intensity values, the seismic hazard map was produced using the IDW interpolation. 

Kriging interpolation method, one of the other interpolation types, was also tested for the 

study areas. Since similar results were obtained and IDW interpolation method is 

preferred more frequently in such studies in the literature, it was decided that it would be 

appropriate to use the IDW interpolation method. 

 

  

Figure 4.6. Accelerometric stations obtained from AFAD earthquake database in Elazig 

(left) and Adiyaman (right) study sites. 
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4.4. Multi-Hazard Susceptibility Map Production with Fuzzy Inference System 

 

The fuzzy inference involves interpreting the values within an input vector and assigning 

values to the output vector, guided by specific rules. In fuzzy logic, the validity of a 

statement is determined by a degree of truth rather than being strictly binary [193]. Fuzzy 

inference entails using fuzzy logic to establish the relationship between a given input and 

an output. This process encompasses all the components, including membership 

functions, fuzzy logic operators, and if-then rules. The FIS have the ability to mitigate 

uncertainties encountered in tackling complex problems. 

 

One of the three basic types of FIS, the Mamdani FIS [194] is a method of creating a 

control system using linguistic control rule sets based on the opinion of experienced 

experts. This method has more intuitive and easy to understand rules for solving complex 

and nonlinear problems. In this study, the univariate susceptibility maps (landslide, flood, 

seismic) were synthesized for a MHS map production using the Mamdani FIS. When the 

literature was analyzed, it was observed that various studies employed the Mamdani FIS 

for landslide susceptibility mapping, rock mechanics and engineering geology [195], 

[196], [197], [49]. Matlab Fuzzy Logic Toolbox was used in the MHS assessment to 

combine the univariate susceptibility maps [198].  

 

A Mamdani FIS comprises four main steps: fuzzification, rule assessment, aggregation, 

and defuzzification. The output of each rule is a fuzzy set. In the fuzzification part, crisp 

inputs are determined by the experts. The selection of crisp inputs in multi-hazard 

assessments requires consideration of more than one hazard (e.g. landslide, flood, 

earthquake). In such assessments, experts select crisp inputs by considering various 

factors. Hazards that have occurred frequently in the study area before and have a negative 

impact on people and the environment are identified. For this, the knowledge of 

experienced and seasoned experts is very important. In addition, past events in the area 

and literature studies reveal which hazards need to be assessed. In the thesis study, the 

LSM, the FSM and the seismic hazard map were used as inputs. Each input has three 

membership functions (low, moderate, high). Membership boundaries were determined 

by giving different weights to these membership functions for each input. The reason for 
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this was that the damaging effect of each of the natural hazards were not the same in the 

study sites. Considering the statistics in AFAD reports and earthquake catalogue, Table 

4.2 shows the number of occurrences of landslide, flood and earthquake hazards in the 

study sites during the specified years. For landslide and flood hazard, AFAD reports 

between 1950 and 2019 were evaluated. For earthquake hazard, the number of 

earthquakes between Mw. 5.0 and Mw. 8.0 in 1950 and 2024 was included. Although the 

number of earthquake hazards is low, the type of disaster that caused the most loss of life 

and property in the study area was earthquake. It was followed by landslides and floods 

[5]. In addition, the histograms of the univariate susceptibility maps were analyzed for 

probability distribution and the ranges of the membership functions were determined. 

Various membership functions exist in the literature, including triangular, sigmoidal, 

trapezoidal, bell-shaped, pi-shaped, and Gaussian combination functions. Triangle style 

membership functions are used for each membership (see Figure 4.7). Triangular shape 

is a simple and common type of membership function used to transform the values of a 

given variable into fuzzy sets. Triangular membership functions are frequently preferred 

in natural hazard studies due to their simplicity, computational efficiency and openness 

to direct interpretation. The x - y axes in the membership function graphs indicate the 

susceptibility level ranges and membership degrees, respectively. Figure 4.7 illustrates a 

susceptibility level represented by a probability ranging from 0 to 1 (normalized), which 

falls within two membership classes. For instance, a value of 0.6 in the landslide 

membership function corresponds to moderate and high susceptibility levels to varying 

degrees. 

 

Table 4.2. The number of occurrences of landslide, flood and earthquake hazards in the 

study sites 

 

Study Sites 

The number of occurrences of natural hazards 

Landslide Flood Earthquake 

Elazig 988 123 38 

Adiyaman 478 96 92 
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Figure 4.7. The Mamdani FIS’s membership functions and boundaries. 

 

Linguistic if-then rules, rule evaluation part, is one of the most important stages for 

Mamdani FIS. These rules, which were created based on the knowledge of experienced 

experts, were prepared again with the support of Dr. Gokceoglu due to his experience in 

the region. In the Mamdani Fuzzy Inference System, when there are three inputs and three 

membership functions for each input, the total number of possible rules depends on the 

number of all possible combinations of these membership functions. If there are 𝑛 inputs 

and each input has 𝑚 membership functions, the number of possible rules is calculated 

by the formula in Equation 4.5: 

 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑟𝑢𝑙𝑒𝑠 = 𝑚𝑛                                                    (4.5) 

 

Here, m indicates number of membership functions for each input and n is number of 

inputs in the system. Since there are three inputs, each of which consists of three 

membership functions, a total of twenty-seven rules have been created. Experts define 

rules based on their knowledge and experience to determine the appropriate output for 

each possible combination. These rules are given in Table 4.3.  
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Table 4.3. Mamdani FIS’s if-then rules (Rule evaluation part) 

 

 

In the aggregation part, the fuzzy output of the model was obtained by collecting all the 

results in the rule evaluation section. The max operator was used for this aggregation 

[197]. The output was classified in five membership functions (very low, low, moderate, 

high, very high). In the last part, the defuzzification part, the result produced in the 

aggregation part was converted to crisp output with the fuzzy output centroid technique. 

The geocoding process was applied to the crisp outputs for MHS map production.  

 

The method proposed in this thesis was first applied to the Elazig study site. In Mamdani 

FIS, the input data used, membership functions, appropriate rules, and the weight of each 

membership function were adjusted primarily by considering the Elazig study site. The 

applicability of the proposed model was tested for the Adiyaman study site, which was 

exposed to multi-hazards after the Kahramanmaras Earthquakes. The input data used, 
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membership functions, rules and membership function weights were considered similar 

due to the close proximity of natural hazard types and areas.   
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5. RESULTS 

 

 

In this chapter, the qualitative and quantitative assessment results of the univariate 

susceptibility and MHS assessments of the two study sites (Elazig site and Adiyaman 

site) are presented. 

 

5.1. Results from Elazig Study Site 

 

This section presents the results maps produced for the Elazig study site in detail. In the 

next subheading, the features map used to produce univariate sensitivity maps and 

multicollinearity among features results are given. The univariate susceptibility maps 

produced for each hazard are given in Section 5.1.2, and MHS map results are given in 

Section 5.1.3. 

 

5.1.1. Input Feature Maps Produced for Elazig Study Site 

 

The input feature map results used in the production of landslide and flood susceptibility 

maps for the Elazig study area are given in Figure 5.1. For landslide susceptibility, 10 

features (see Figure 4.4) were utilized, whereas for flood susceptibility, 7 features (see 

Figure 4.5) were employed. The statistical analysis results for the features are given in 

Table 5.1. Additionally, Tables 5.2 and 5.3 present statistical summary of the input 

features contained within the pre and post-earthquake landslide inventory, respectively. 

Visual and statistical analyses play crucial roles in understanding the characteristics of 

the study area and assessing the outputs of the model.  
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Figure 5.1. The feature map results for landslide and flood susceptibility assessment in 

the Elazig site: (a) Altitude, (b) Slope, (c) Aspect, (d) Plan curvature, (e) Profile curvature, 

(f) Drainage density, (g) SPI, (h) TWI, (i) Distance to faults, (j) Distance to premanent 

rivers, (k) Distance to dry rivers 

 

Table 5.1. Statistical summary of all the input features for Elazig study site. 

Features Min Max Mean Std. Dev. Median 

Altitude (m) 524.341 2592.429 1288.098 346.726 1263.897 

Slope (°) 0 77.398 13.242 9.436 12.115 

Aspect (°) 0 360.00 171.458 110.295 167.106 

Distance to faults 

(m) 

0 18842.946 2718.551 2891.037 1811.249 

Drainage Density 0 10.375 1.270 1.506 0.765 

Plan Curvature -0.033 0.019 6.096 0.001 1.95*10-7 

Profile Curvature -0.048 0.033 -6.753 0.001 -6.166 

SPI 0 6.016*106 4546.271 31147.524 330.348 
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TWI 2.164 25.349 7.845 3.023 6.883 

 

Table 5.2. Statistical summary of the input features inside pre-earthquake landslide 

inventory for Elazig study site. 

Features Min Max Mean Std. Dev. Median 

Altitude (m) 524.341 2309.859 1211.941 340.611 1178.391 

Slope (°) 0 56.556 17.601 8.164 16.889 

Aspect (°) 0 360.00 167.881 98.035 156.075 

Distance to faults 

(m) 

0 8902.598 1497.741 1544.953 989.002 

Drainage Density 0 8.012 1.146 1.510 0.447 

Plan Curvature -0.014 0.008 -0.001 0.001 -0.001 

Profile Curvature -0.014 0.010 -0.001 0.001 -0.001 

SPI 0 2.242*106 9781.630 52329.520 589.148 

TWI 3.154 25.073 7.565 2.019 7.213 

 

Table 5.3. Statistical summary of the input features inside post-earthquake landslide 

inventory for Elazig study site. 

Features Min Max Mean Std. Dev. Median 

Altitude (m) 680.691 1721.290 1167.282 231.791 1191.918 

Slope (°) 2.117 54.119 23.084 6.688 22.746 

Aspect (°) 5.077 333.271 165.207 27.986 164.644 

Distance to faults 

(m) 

0 4119.617 817.667 794.929 575.00 

Drainage Density 0 6.847 1.307 1.316 1.154 

Plan Curvature -0.010 0.005 4.276 0.001 8.904 

Profile Curvature -0.009 0.006 -0.001 0.001 -7.462 

SPI 0 3.997*106 13828.59 85209.558 771.859 
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TWI 3.895 21.190 7.091 1.404 6.856 

 

Additionally, this study identified multicollinearity among the input features by 

employing VIF and TOL (see Table 5.4), as well as Pearson's correlation coefficient (see 

Figure 5.2). For the dataset to be considered acceptable, the VIF value should be below 

10, and the TOL value should exceed 0.1. As can be seen in Table 5.4, the VIF values of 

all input features, except altitude, are less than 10 and the TOL values are greater than 

0.1. Altitude exhibits the highest VIF, suggesting significant multicollinearity. However, 

since altitude is an important feature in model training and DT-based methods are 

relatively immune to the multicollinearity problem, all input features were used in model 

training [199], [124], [69]. The final analysis results will be unbiased, with no collinearity 

effects of the feature maps influencing landslide occurrence. The IGR results applied to 

analyze the importance of features are given in Table 5.4. The results show that lithology 

has the greatest importance (0.192), followed by distance to faults (0.080), altitude 

(0.045) and slope (0.032). Since the IGR value of these features is greater than the other 

features, the information they provide for estimating landslide susceptibility is considered 

to be more important than the other features.  

 

Table 5.4. Collinearity analysis results between the input features for Elazig study site. 

 

No 

 

Input Features 

Collinearity Statistics  

IGR VIF TOL 

1 Altitude 13.238 0.075 0.045 

2 Slope 4.053 0.246 0.032 

3 Aspect 5.291 0.189 0.004 

4 Lithology 1.662 0.601 0.192 

5 Plan Curvature 1.281 0.780 0.010 

6 Profile Curvature 1.189 0.841 0.006 

7 SPI 1.075 0.930 0.020 

8 TWI 9.311 0.107 0.021 
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9 Distance to Faults 1.940 0.515 0.080 

10 Drainage Density 2.205 0.453 0.011 

 

Pearson coefficient results are given in Figure 5.2. The highest absolute correlation 

coefficient is observed between TWI and slope features with a value of 0.53. Here, it 

indicates a moderate inverse relationship between two variables. That is, one variable 

tends to increase while the other tends to decrease. Slope indicates how step the land is, 

generally water flow is faster on steep terrain, leading to lower TWI values because TWI 

is a measurement of how long water stays in the soil. The rapid flow of water on steep 

terrain results in less water interacting with the soil and therefore lower wetness values. 

If the coefficient value is greater than 0.7, it indicates that there is a strong correlation 

between the two factors. All values in the Pearson coefficient matrix are less than 0.7, 

indicating that the collinearity between features is negligible.  

 

 

Figure 5.2. Pearson’s coefficient results between the input features for Elazig study site. 

 

 



 

 70 

5.1.2. The Univariate Susceptibility Maps for Elazig Study Site 

 

The univariate susceptibility maps are presented in Figure 5.3. The predicted 

susceptibility values of the LSM produced using the RF algorithm were classified into 

five classes with the natural breaks classification (Jenks) [200].  

Furthermore, Table 5.5 presents the sizes and probability percentages associated with 

these classes. The table shows that 36.4% of the Elazig study site demonstrates 

susceptibility to landslides at very high, high, and moderate classes. The results for 

landslide susceptibility showed that mountainous regions often have a high probability of 

landslides. In addition, the surroundings of Karakaya and Kralkızı dams are areas highly 

susceptible to landslides.  

 

  

 

 

Figure 5.3. The univariate susceptibility result maps for Elazig site  

 

Table 5.5. The landslide probability, size and their percentages predicted by the RF 

algorithm 
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Class Probability (%) Size (km2) Percentage (%) 

Very Low 0 - 11 1900.88 39.28 

Low 11 - 26 1176.03 24.30 

Moderate 26 - 44 877.29 18.13 

High 44 - 66 574.76 11.87 

Very High 66 - 100 309.66 6.40 

 

 

Table 5.6 summarizes the statistical performance measures produced by the RF algorithm 

using the test dataset, which was split and not used for model training. The table also 

includes the number of test pixels (support). Figure 5.4 shows the ROC curve. The AUC 

value derived from the RF is 0.96, indicating a high level of classification accuracy, which 

is further supported by the overall accuracy (90.0%) and F-1 score (0.88). 

 

Table 5.6. Statistical performance measures of the RF algorithm for Elazig site 

Classes Precision Recall F1-score Support 

Non-landslide (0) 0.95 0.87 0.91 52362 

Landslide (1) 0.83 0.93 0.88 35248 

 

 

Figure 5.4. The ROC curve evaluation with AUC value of the RF algorithm 
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Figure 5.5 shows the SHAP value plot and the feature importance plot. In the SHAP value 

plot, which shows the relationship between the model prediction and the input features, 

the x-axis shows the effect of the value that causes the higher or lower prediction, while 

the y-axis indicates which input feature defines. The color indicates whether the input 

feature is high or low in that row of the dataset. Input features are ranked according to 

their importance. When the plot is analyzed, it shows that slope, distance to faults and 

lithology have larger influence among other features, respectively. It was observed that 

low distances to faults have a positive contribution to the model output. The closer a point 

to the faults, the more positively correlated it with landslide occurrence. As can be seen 

in the plot, the impacts of various lithological units, indicated by their ID numbers, were 

varied and mixed. Additionally, higher slope values positively increase the model output. 

SHAP values are a powerful tool for understanding a model's predictions and explaining 

the decision process of the model. These values provide a detailed visualization of the 

contribution of each feature to the output. 

 

 

(a) 
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(b) 

Figure 5.5 Summary (a) and feature importance (b) plots of SHAP values. 

 

In this thesis, the validation of the LSM produced for the Elazig study site was evaluated 

with earthquake-triggered landslides. The analysis yielded an overall accuracy of 85%, 

with additional measures detailed in Table 5.7. The evaluations were specifically 

conducted on landslide pixels categorized as having moderate, high, and very high 

probability values. According to the F1 score, the accuracy obtained for the Elazig study 

area is high. Although the LSM was produced using EUDEM v.1.1 with 25 m resolution, 

the landslides triggered after the earthquake were detected with higher accuracy because 

the size of the landslides triggered after the earthquake was larger in this study area.  

 

Table 5.7. Statistical performance measures for the external validation using the post-

earthquake landslide inventory in Elazig study site. 

Classes Precision Recall F1-score Support 

Non-landslide (0) 0.99 0.70 0.82 12,909 

Landslide (1) 0.77 1.00 0.87 12,909 

 

Figure 5.6 shows sub-areas of the LSM with the post-earthquake landslides to facilitate 

visual evaluation. It is important to highlight that the resolution of the DEM (25 m) 

utilized for LSM production differs from the DSM depicted in the figure. The EU-DEM 

has proved to be well-suited for the production of regional LSMs.  
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(a1) (a2) (b1) (b2) 

    

(c1) (c2) (d1) (d2) 

    

(e1) (e2) (f1) (f2) 

    

(g1) (g2) (h1) (h2) 

 

Figure 5.6. The LSM result with the post-earthquake landslides shown in sub-areas (a1, 

b1, c1, d1, e1, f1, g1, h1) and post-earthquake orthophotos (a2, b2, c2, d2, e2, f2, g2, h2) 
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Flood size and probability percentages for each class regarding the flood susceptibility 

result map seen in Figure 5.1 (b) are given in Table 5.8. According to the table, 69.9% of 

the Elazig study site exhibits susceptibility to flood across the very high, high, and 

moderate susceptibility classes. The flood susceptibility map indicates that Elazig city 

center and airport areas are more prone to floods. The dams in the Elazig study site have 

flood susceptibility as well. In addition, a preliminary assessment after the flood event 

occurred in the region on different dates (see Section 3.1.3) indicated that the map 

accurately illustrate the flood-prone areas. 

 

Table 5.8. The flood probability, size and their percentages produced by the m-AHP 

method 

Class Probability (%) Size (km2) Percentage (%) 

Very Low 0 - 25 1124.59 21.88 

Low 25 - 48 420.36 8.17 

Moderate 48 - 66 2041.75 39.72 

High 66 - 82 1061.80 20.65 

Very High 82 - 100 491.95 9.57 

 

When the seismic hazard map (Figure 5.1c) was analyzed, it was observed that the Elazig 

study site generally showed high-intensity values, especially in Sivrice district and its 

surroundings. Values exceeding the shaking threshold established by Keefer and Wilson 

[201] indicate susceptibility to seismically triggered landslides and lateral flows. High 

arias intensity values in the Elazig study site are above this threshold value.  

 

5.1.3. The Multi-hazard Susceptibility Map for Elazig Study Site 

 

The multi-hazard susceptibility map produced with Mamdani FIS in the Elazig study site 

is presented in Figure 5.7. Table 5.9 shows the multi-hazard probability, size and their 

percentages for the multi-hazard susceptibility map produced by Mamdani FIS. 

According to the MHS map, the southern parts of the study area show very high 
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susceptibility classes due to the higher AI and landslide susceptibility values. The 

settlements of Sivrice, Cungus, Alacakaya, Doganyol, and Puturge were found to be 

extremely prone areas according to the results of the MHS analysis.   

 

 

Figure 5.7. The MHS map of the Elazig study site. 

 

Table 5.9. The multi-hazard probability, size and their percentages produced by the 

Mamdani FIS. 

Class Probability (%) Size (km2) Percentage (%) 

Very Low 0 - 27 439.22 9.08 

Low 27 - 42 1368.38 28.29 

Moderate 42 - 55 1010.05 20.88 

High 55 - 68 1250.51 25.85 

Very High 68 - 100 769.09 15.89 
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5.2. Results from Adiyaman Study Site 

 

This section provides a detailed overview of the results maps generated for Adiyaman 

study site. In the subsequent subheading, emphasis is placed on the feature maps utilized 

for producing the univariate susceptibility maps and analyzing multicollinearity among 

features. The univariate susceptibility maps produced for each hazard are delineated in 

Section 5.2.2, while the result of multi-hazard susceptibility mapping is elaborated upon 

in Section 5.2.3. 

 

5.2.1. Input Feature Maps Produced for Adiyaman Study Site 

 

In the context of the Elazig study area, Figure 5.8 illustrates the input feature maps utilized 

in the production of landslide and flood susceptibility maps. For landslide susceptibility 

assessment, a set of 10 features as depicted in Figure 4.4 was employed, while flood 

susceptibility mapping utilized 6 features. Since the process of applicability of the method 

proposed in the thesis study in Adiyaman study site was carried out quickly after the 

Kahramanmaras earthquakes, permanent and dry river datasets could not be obtained 

immediately from HGM's TopoVT database. Only the distance to drainage network 

feature was produced in this site. Therefore, 6 features were used to produce flood 

susceptibility in Adiyaman study site. Detailed statistical analyses of these features are 

provided in Table 5.10. Furthermore, Tables 5.11 and 5.12 present statistical summaries 

of input features in both pre and post-earthquake landslide inventory polygons.  
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Figure 5.8. The feature map results for landslide and flood susceptibility assessment in 

Adiyaman site: (a) Altitude, (b) Slope, (c) Aspect, (d) Plan curvature, (e) Profile 

curvature, (f) Drainage density, (g) SPI, (h) TWI, (i) Distance to faults, (j) Distance to 

rivers 
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Table 5.10. Statistical summary of all the input features for Adiyaman study site. 

Features Min Max Mean Std. Dev. Median 

Altitude (m) 461.964 2522.258 1030.864 397.404 936.908 

Slope (°) 0 62.514 11.917 8.836 9.992 

Aspect (°) 0 360.00 176.177 94.609 176.514 

Distance to faults 

(m) 

0 27561.125 8817.079 6524.592 7148.864 

Drainage Density 0 15.438 0.817 1.882 0 

Plan Curvature -0.013 0.012 5.667 0.001 2.18*10-5 

Profile Curvature -0.013 0.015 -6.526 0.001 -3.62.166 

SPI 0 2.705*106 3769.335 24685.334 303.572 

TWI 2.890 24.151 7.519 2.196 7.052 

 

 

Table 5.11. Statistical summary of the input features inside pre-earthquake landslide 

inventory for Adiyaman study site. 

Features Min Max Mean Std. Dev. Median 

Altitude (m) 489.403 2519.906 1298.595 386.149 1278.98 

Slope (°) 0 60.749 14.272 8.399 11.974 

Aspect (°) 0 360.00 161.039 104.768 156.616 

Distance to faults 

(m) 

0 22894.664 6140.725 3847.446 5905.929 

Drainage Density 0 11.173 0.315 1.133 0 

Plan Curvature -0.011 0.009 -3.882 0.001 -5.28*10-5 

Profile Curvature -0.008 0.011 -9.399 0.001 -9.63*10-5 

SPI 0.378 1.533*106 6322.083 32803.556 429.032 

TWI 3.442 23.150 7.563 1.711 7.322 
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Table 5.12. Statistical summary of the input features inside post-earthquake landslide 

inventory for Adiyaman study site 

Features Min Max Mean Std. Dev. Median 

Altitude (m) 534.677 1536.470 962.225 221.939 931.439 

Slope (°) 0 62.514 27.866 10.212 27.965 

Aspect (°) 0 360.00 140.028 114.025 130.099 

Distance to faults 

(m) 

0 16957.373 6421.754 2855.204 6283.709 

Drainage Density 0 10.604 1.404 2.228 0 

Plan Curvature -0.011 0.010 -0.0003 0.002 -0.0004 

Profile Curvature -0.013 0.008 -0.0005 0.002 -0.0006 

SPI 1.412 6.79*105 7559.072 26913.197 1001.404 

TWI 3.058 23.037 6.505 1.847 6.171 

 

 

Furthermore, the multicollinearity analyses for the 10 LSM features were performed 

using VIF, TOL and Pearson's coefficient, and the results are presented in Table 5.13. 

The analyses indicated that among the landslide input features, altitude has the lowest 

tolerance value at 0.085, while SPI has the highest tolerance value at 0.930. The 

maximum VIF value observed was 11.763, while the minimum VIF value recorded was 

1.075 (Table 5.13). Nevertheless, the tolerance values for the landslide conditioning 

factors exceed 0.1, and the VIF values fall below 10, indicating the absence of collinearity 

issues among these factors. This condition is met except for the altitude feature. Altitude 

was used in the model training as it is one of the important features for the LSM 

production.  According to the IGR results in Table 5.13, distance to faults has the most 

significant influence on the predictive performance of the model (0.126), followed by 

altitude (0.106) and lithology (0.086). 
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Table 5.13. Collinearity analysis results between the input features for Adiyaman study 

site 

 

No 

 

Input Features 

Collinearity Statistics  

IGR VIF TOL 

1 Altitude 11.763 0.085 0.106 

2 Slope 4.267 0.234 0.042 

3 Aspect 6.957 0.144 0.014 

4 Lithology 2.598 0.384 0.086 

5 Plan Curvature 1.266 0.789 0.007 

6 Profile Curvature 1.199 0.834 0.003 

7 SPI 1.075 0.930 0.024 

8 TWI 9.800 0.102 0.009 

9 Distance to Faults 3.685 0.271 0.126 

10 Drainage Density 1.384 0.722 0.017 

 

 

Figure 5.9 shows Pearson’s coefficient results for Adiyaman study site. A Pearson 

correlation coefficient below 0.7 suggests a weak or nearly no correlation. The highest 

absolute correlation coefficient among the factors is between distance to faults and 

altitude (-0.6). When the results were analyzed, it was determined that the correlation 

coefficients between the features were lower than 0.7. This indicates that there is not a 

strong relationship between the factors used. These results support the suitability of the 

factors used in the production of the LSM in terms of ensuring diversity and 

independence. 
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Figure 5.9. Pearson’s coefficient results between the input features for Adiyaman study 

site. 

 

5.2.2. The Univariate Susceptibility Maps for Adiyaman Study Site 

 

The univariate susceptibility maps produced from Adiyaman study site are presented in 

Figure 5.10. The size and probability percentages of the predicted susceptibility values 

for each class in the landslide susceptibility map are given in Table 5.14. According to 

the table, 22.8% of Adiyaman study site exhibits susceptibility to landslides across very 

high, high, and moderate classes. During the assessment of landslide susceptibility 

results, it became apparent that the probability of landslides is notably high in the 

mountainous regions to the north of Tut town and the south of Golbasi town. Visual 

similarity was noted between steeper slopes (see Figure 5.8 (b)) and increased values of 

landslide susceptibility (Figure 5.10 (a)) across Adiyaman study site.  
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Figure 5.10. The univariate susceptibility result maps for Adiyaman site 

 

Table 5.14. The landslide probability, size and their percentages predicted by the RF 

algorithm 

Class Probability (%) Size (km2) Percentage (%) 

Very Low 0 - 9 975.13 60.89 

Low 9 - 26 261.22 16.31 

Moderate 26 - 50 125.65 7.85 

High 50 - 76 100.21 6.26 

Very High 76 - 100 139.06 8.68 

 

Table 5.15 provides a statistical summary of the precision, recall, and F1-score 

performance measures generated by the RF algorithm using the test dataset. The model 

achieved an overall accuracy of 94%. As anticipated, the performance metrics for the 

non-landslide class outperformed those for the landslide class. Additionally, Figure 5.11 

illustrates ROC, revealing a notably high AUC (=0.98). 
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Table 5.15. Statistical performance measures of the RF algorithm for Adiyaman study 

site 

Classes Precision Recall F1-score Support 

Non-landslide (0) 0.98 0.91 0.94 56448 

Landslide (1) 0.88 0.97 0.92 37862 

 

 

Figure 5.11. The ROC curve evaluation with AUC value of the RF algorithm 

 

Feature importance results for the Adiyaman study site are shown in Figure 5.12. In the 

feature importance analysis evaluated using SHAP, the summary plot shows the 

correlation and contribution of feature values to the model prediction. From the summary 

plot, it can be concluded that higher values of distance to faults direct model predictions 

towards the non-landslide class. Low values of distance to faults contribute positively to 

landslide prediction. High altitude values are positively related to landslide occurrence. 

In the feature importance plot, the most predictive features were identified as altitude, 

distance to faults and lithology.  
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(a) 

 

(b)  

Figure 5.12. Summary (a) and feature importance (b) plots of SHAP values 

 

Statistical results of the LSM validated with the post-earthquake landslide inventory in 

Adiyaman study site are given in Table 5.16. The analysis resulted in an OA rate of 72%. 

The lower F1-scores observed in comparison to those in Table 5.15 may be attributed to 

the severity of the event, indicating the need for further research to understand landslide 

dynamics fully. Moreover, while the post-earthquake landslides were delineated using 

aerial photogrammetric DSMs with sub-meter resolution and high accuracy, the LSM was 

developed using the EU-DEM with a resolution of 25 meters. Since the post-earthquake 

landslides defined for this region are smaller in size, this accuracy is acceptable 

considering the DEM resolution (25 m). As mentioned in the study by Karakas et al. 

[202], the detectability of landslide sizes within LSMs is associated with the quality of 

DEMs, specifically their density and distribution. Additionally, Figure 5.13 shows the 

post-earthquake inventory and LSM results in the sub-areas of the Adiyaman study site. 
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Table 5.16. Statistical performance measures for the external validation using the post-

earthquake landslide inventory in Elazig study site. 

Classes Precision Recall F1-score Support 

Non-landslide (0) 0.70 0.79 0.74 16628 

Landslide (1) 0.76 0.66 0.70 16628 

 

 

    

(a1) (a2) (b1) (b2) 

    

(c1) (c2) (d1) (d2) 

 

Figure 5.13 The LSM result with the post-earthquake landslides shown in sub-areas (a1, 

b1, c1, d1) and post-earthquake orthophotos (a2, b2, c2, d2). 

 

Table 5.17 presents flood size and probability percentages for each class based on the 

flood susceptibility result map depicted in Figure 5.10 (b). As seen from the table, 25.6% 

of Adiyaman study site demonstrates susceptibility to floods across the very high, high, 

and moderate susceptibility classes. The flood susceptibility map suggests that regions 

surrounding Tut and Golbasi towns, as well as the central area of Adiyaman Province, are 
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highly prone to floods. An initial evaluation following a flood event in the region on 

March 15, 2023, indicated that the map accurately depicts areas susceptible to flooding. 

 

Table 5.17. The flood probability, size and their percentages produced by the m-AHP 

method 

Class Probability (%) Size (km2) Percentage (%) 

Very Low 0 - 17 270.55 16.95 

Low 17 - 40 916.06 57.40 

Moderate 40 - 57 300.50 18.83 

High 57 - 74 87.80 5.50 

Very High 74 - 100 20.84 1.31 

 

Upon analysis of the seismic hazard map, Adiyaman study site exhibited predominantly 

high-intensity values, with particularly high values observed in the northern and southern 

regions. The impact of the Kahramanmaras earthquakes in this region also confirms this 

situation.  

 

5.2.3. The Multi-hazard Susceptibility Map for Adiyaman Study Site 

 

The MHS map generated from the Mamdani FIS revealed significantly high susceptibility 

levels in both the southern and northern regions of the study area (Figure 5.14). The MHS 

assessment identified several highly hazard-prone areas, including the settlements of 

Karabahsili, Cankara, Uzunkoy, Orenli, Beskoz, Kuzevleri, Cilbogaz, and Borkenek. 

Moreover, the northern parts of Tut town and the southern parts of Golbasi town were 

identified as susceptible areas to multi-hazard. Table 5.18 presents the probabilities, sizes, 

and their respective percentages for the MHS map in Adiyaman site. 
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Figure 5.14. The multi-hazard susceptibility map for Adiyaman study site. 

 

Table 5.18.The multi-hazard probability, size and their percentages produced by the 

Mamdani FIS 

Class Probability (%) Size (km2) Percentage (%) 

Very Low 0 - 21 324.48 20.33 

Low 21 - 34 496.89 31.14 

Moderate 34 - 49 330.06 20.68 

High 49 - 69 301.97 18.92 

Very High 69 - 100 142.37 8.92 

 

 

  



 

 89 

6. DISCUSSIONS 

 

 

In this chapter, the results produced from the thesis are discussed from different 

perspectives, such as the selection and use of input features, the suitability and importance 

of the methods used to produce the univarite and multi-hazard susceptibility maps.  

 

The aim of this thesis was to develop a novel approach for conducting multi-hazard 

assessments at a regional scale by integrating landslide, flood, and earthquake hazards 

using a combination of machine learning and expert-based methods. The results and 

recommendations of this study aim to contribute to the literature and future research. To 

achieve this objective, multi-hazard susceptibility assessment was applied to two study 

sites. One of these study sites was determined as a result of the observation of landslides 

triggered after 24 January 2020 Elazig earthquake (Mw=6.8) and the region's frequent 

exposure to flood events. The other study area was selected to evaluate the impact of the 

6 February 2023 Kahramanmaras earthquakes (Mw=7.7 and Mw=7.6), the largest 

disaster our country has ever seen, and to test the applicability of the proposed 

methodology. In the thesis study, the results obtained using datasets obtained from 

different sources were evaluated with both qualitative and quantitative analyses. 

 

6.1. Input Features and Landslide Susceptibility Map Production 

 

The input features (also known as conditioning factors) used in the production of the 

LSMs are important factors that influence and determine the occurrence of potential 

landslides. These include various factors such as geological, topographic, hydrological, 

environmental and anthropogenic factors that play a role in the occurrence of landslides. 

There is no standardized selection of these factors in the literature, which differ in each 

study. Accurate identification and evaluation of the conditioning factors is important for 

predicting the possible locations of landslides and producing more accurate susceptibility 

maps. The selection of influential factors relies heavily on the specific geoenvironmental 
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conditions. The selection of input features for the LSM was determined following a 

review of studies conducted between 2017 and 2023, taking into account the specific 

characteristics of the study sites. For the Elazig study site, slope, distance to faults, and 

lithology characteristics were identified as the most significant features. In the case of the 

Adıyaman study site, altitude, distance to faults, and lithological features were found to 

be important. The selected factors were considered suitable considering the availability 

of high-quality maps for LSM. On the other hand, According to the multicollinearity 

results tested among the features, although the VIF value of the altitude feature was high, 

this feature was not eliminated due to its importance. It was emphasized by Piramithu 

[199] that DT based algorithms are known to be immune to multicollinearity. 

Additionally, Piramithu [199] mentioned that eliminating parameters due to 

multicollinearity issues might decrease classification accuracy in DTs. 

 

The preparation of a reliable and comprehensive landslide inventory is another important 

consideration in the production of landslide susceptibility maps. The landslide inventory 

used in model training in the thesis was obtained from the MTA geo-sciences portal. The 

landslide data in the portal (as stated in sub-section 3.1.4.1) were produced within the 

“Turkey Landslide Inventory Project” of the MTA, which was completed in 2007. 

Landslides triggered during Elazig and Kahramanmaras earthquakes were used to 

validate the LSMs produced for the study sites. A post-earthquake landslide inventory 

was compiled by interpreting orthophotos and 3D surface models produced from aerial 

photographs taken pre- and post-earthquake. A comprehensive inventory of landslides 

triggered by the Elazig earthquake was compiled using aerial photogrammetric datasets. 

The study conducted by Karakas et al. [71] presented the first comprehensive inventory 

of earthquake-triggered landslides in Türkiye. The landslides triggered by the 

Kahramanmaras earthquake were also mapped [73] by comparing the pre- and post-

earthquake orthophotos published on the HGM Küre platform. Detailed information 

about these landslides was given by Kocaman et al. [157]. Additionally, Gorum et al. 

[203] also conducted a study on the preliminary documentation of landslides triggered by 

the Kahramanmaras earthquakes. New data to be obtained from Türkiye is important for 

international landslide literature. Complete landslide inventories can contribute greatly to 

the production of more accurate and up-to-date LSMs. In addition, Compiling the 
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inventory of landslides induced by the Elazig and Kahramanmaras earthquakes on a 

regional scale helped address the deficiency in landslide inventory. 

 

Several classification algorithms have been used in the literature to produce the LSMs. 

There is no widely accepted algorithm to use for this purpose. However, recent research 

indicated a prevailing tendency to employ different ML algorithms to generate precise 

and up-to-date susceptibility maps. One of the most commonly utilized algorithms among 

these is the RF [45], [46], [48], [204], [50]. The RF has features such as high accuracy, 

ability to work effectively with large data sets, ability to handle interactions between 

features, and reducing overfitting. Consequently, although both the RF and MLP 

algorithms were employed during the thesis study to produce LSMs in Elazig site, only 

the RF was applied to Adiyaman site and presented here as it ensures high accuracy and 

efficiency.  

 

The evaluation of the model quality for the produced LSM was conducted using ROC 

curves and statistical measures consistent with common practice in many studies. As 

expected, the RF method exhibited strong performance in Elazig (90% OA) and 

Adiyaman (94% OA) study sites for the landslide susceptibility assessment. When the 

visual and statistical results were evaluated together, the RF algorithm has been proven 

to be successful. 

 

One of the important issues in LSMs produced by RF and different methods is the 

collection of training and test samples. It was observed that different sampling strategies 

are used in the literature. These strategies determine the selection and distribution of data 

samples used in the training and testing phase of the model, which may affect its 

performance and the accuracy of the resulting map. Aktas and San [205] proposed two-

level random sampling to select train and test samples strategy. In their study, Aktas and 

San [205] stated that if the training datasets randomly selected samples happen to fall 

within the same seed cell as the landslide, then both training and testing should identify 

the same landslide. They emphasized that the sampling strategy is important to produce 

a realistic LSM. In this thesis study, automatic random sampling algorithm was presented, 

as in most studies in the literature. However, the performance and accuracy of the models 
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were also analyzed using different sampling strategies during the thesis work and 

published in different platforms. As stated by Karakas et al. [50], in the study area 

covering Ikizce and Caybası districts of Ordu Province, landslide samples were randomly 

selected from only a part of the area and model training was carried out. The model, which 

was trained in approximately 1/3rd of the study region, was then applied to the entire field 

(also unseen regions). In the resulting susceptibility map, it was observed that landslides 

in the southern parts of the study area, which were not included in the model training, 

were correctly detected. In another study conducted by Karakas et al. [70], the study area 

was split into two parts containing the boundaries of Malatya and Elazig Provinces. In 

the study, the model was trained with landslide samples selected from the Malatya part, 

and used directly in the Elazig part. The resulting maps were evaluated with different 

methods and landslides that the model did not see in Elazig part were predicted. In 

addition, this demonstrates the ability of RF model parameters to be transferred to similar 

regions. It can be concluded that in this thesis and other studies, when the amount of data 

is large, the sampling strategy does not affect the prediction results, which proves again 

the importance of high quality and complete inventories.  

 

An important contribution of this study was that it was based on the use of earthquake-

triggered landslide inventory in the testing phase. Although the susceptibility map was 

produced using the pre-earthquake landslide inventory, the post-earthquake landslide 

inventory was utilized, which was not incorporated into the model during the testing 

phase. Incorporating external data for validating the result susceptibility map in such 

studies can provide more realistic and accurate insights [73]. As a result of validating the 

LSMs produced for the Elazig and Adiyaman study sites with the post-earthquake 

inventory, the OA was found to be 85% and 72%, respectively. It can be interpreted that 

the reason for higher accuracy with external data in the Elazig study site is that the 

landslide sizes triggered here are larger than those in the Adiyaman site.  

 

Mountainous areas that experience strong and destructive earthquakes tend to have a 

greater probability of landslides occurrence when compared to the state before the 

earthquake. The phenomenon is known as the earthquake legacy effect, and a thorough 

understanding of it is necessary to evaluate post-seismic landslide hazards precisely 
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[206]. The evaluation of the earthquake legacy effect mostly involves the continuous 

monitoring of either sudden landslide events or gradual landslides over a period of time 

[206]. Especially after the Kahramanmaras Earthquakes, comprehensive research is 

needed to understand the earthquake legacy effect, which plays an important role in 

assessing the long-term impacts in the region. These effects can be evaluated for the 

Adiyaman study site, where many landslides were triggered after the earthquake. This 

study site allows for the long-term investigation of how hillslopes respond to earthquakes. 

 

In the study conducted by Karakas et al. [202], it was observed how DEM quality and 

resolution affected the results both qualitatively and quantitatively. In the study, 

susceptibility maps were produced using high-resolution DEM data produced from aerial 

photographs and the EU-DEM. In the resulting maps presenting similar spatial patterns, 

larger landslide areas were successfully detected. It can be said that smaller activities are 

better detected using the DEM produced with aerial photographs. Nevertheless, the EU-

DEM was considered suitable for producing regional LSMs, as higher-resolution DEMs 

would bring about computational complexities for such an extensive area. For this reason, 

in this study, considering both the model performance results and the validation results 

obtained using external data, it was decided that the use of EUDEM data was appropriate.  

 

6.2. Flood Susceptibility Map Production and Seismic Hazard Map 

 

There are fewer studies in the literature on flood susceptibility assessment than landslide 

susceptibility assessment studies. However, flood events in recent years have increased 

the trend in this direction. As stated in Section 2.3, different methods and datasets are 

used in flood susceptibility assessment. Due to the general lack of complete flood 

inventories, the use of MCDM methods is common. Especially the AHP method has been 

frequently used [79], [80], [89]. In this thesis, it was found appropriate to use the M-AHP 

method recommended by Nefeslioglu et al.  [63], which provided more accurate results 

than AHP because it eliminates expert subjectivity and creates a weight matrix for each 

pixel. The usability of the method was also confirmed through expert validation of the 

FSM produced with the M-AHP. This observation was consistent with the research 
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conducted by Sozer et al. [207] (2018), which utilized the M-AHP methodology for FSM 

development on a regional scale in Ankara, Türkiye. 

 

With their knowledge and experience, experts can better understand the factors affecting 

flood risk and determine the importance of these factors. Therefore, weighting and 

evaluation processes created with the participation of experts can provide more accurate 

results. Additionally, an expert-based method can better take into account local conditions 

and environmental factors. Experts can gain in-depth knowledge of site-specific 

topographical, hydrological and geological features and integrate this knowledge into the 

modeling process. However, there is a risk of subjectivity in an expert-based method. 

Therefore, along with the use of expert-based methods, it is important that validation 

processes are carried out meticulously and the results are carefully evaluated.  

 

When a flood susceptibility map is produced, it is aimed to identify areas with high flood 

risk based on various conditioning factors specific to the study area. In other words, areas 

susceptible to flood risk are identified. According to the flood susceptibility map 

produced, areas close to rivers, lakes, dams in the study areas, or other water bodies 

appear to be at high risk. Additionally, low-elevation areas and floodplains are also at 

high risk of flooding. Areas with poor drainage systems may also be at risk of flooding. 

Moderate risk zones can be characterized by moderately sloping terrain that might lead 

to the formation of puddles, as well as areas with a moderate amount of vegetation cover. 

Low-risk areas will be areas with high elevations or steep slopes where it is difficult for 

water to accumulate. These areas generally have well-established drainage systems and 

infrastructure. These maps, produced for the Elazig and Adiyaman study sites, provide 

important information for risk assessment and management by identifying flood-prone 

areas and infrastructure. It can also provide the basis for urban planning, development 

studies and implementation of flood prevention measures. It helps to develop strategies 

to minimize the impacts of potential flood events. 

 

In this study, inundation areaswith high flood risk were determined in the Elazig and 

Adiyaman study sites using the information obtained from the news and media reports. 

These inundation areas were given with their locations in Table 3.2 and Table 3.6. 
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Additionally, the locations of these areas are shown in Figures 6.1 and 6.2 along with the 

sub-areas of the susceptibility maps produced. In the preliminary evaluation made after 

previous flood events in the study sites, it was revealed that the flood susceptibility maps 

produced accurately showed the areas that would be exposed to flood. This proves the 

applicability of this expert-based method. 

 

 

Figure 6.1. Inundated areas determined with the flood susceptibility map produced for 

the Elazig study site 
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Figure 6.2. Inundated areas determined with the flood susceptibility map produced for 

the Adiyaman study site 

 

In recent years, the Arias Intensity has become a popular choice for seismic hazard 

assessment studies, frequently used in producing seismic hazard maps [208], [80], [108]. 

As the parameter employed to evaluate the degree of earthquake shaking for landslide 

initiation, it is extensively utilized in the literature and was chosen for this thesis study.  

 

In addition, in this thesis study, the study area was selected by delineating the basin 

boundaries. The univariate and multi-hazard susceptibility maps were produced and 

modeling was according to the basin boundaries. Modeling at the basin scale provides a 

holistic perspective necessary to fully understand flood and landslide risks and develop 

effective management strategies. Delineating the boundaries of the basin is important to 

understand how water is collected in this area and how it is drained. This helps determine 

water flow paths and flood risks. Additionally, it provides an understanding of geological 

features and formations as a whole.  

 

6.3. Multi-hazard Susceptibility Map Production  

 

In recent years, there has been a growing recognition of the significance of multi-hazard 

assessments in understanding natural hazards. This highlights the necessity for a more 
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inclusive approach [209], [110], [120]. Although there is a growing interest in the MHS 

modeling, communities concerned with the topic still perform independent assessments. 

Various methodologies have been employed to study multi-hazards globally in order to 

accomplish this [116]. Within the framework of this thesis, an approach that will facilitate 

the identification of regions that are under threat of more than one hazard (such as 

landslides, floods, and earthquakes) at the same time is proposed. This goal has been 

achieved by integrating machine learning and expert-based approach.  

 

The utilization of the Mamdani FIS for the MHS assessment constituted a significant 

contribution to this thesis study. Producing a MHS map remains a very difficult task 

because of the complicated nature of different regions and the absence of ground truth 

data, which hinders the application of data-driven ML techniques. Typically, raster 

arithmetic operations or fundamental spatial analysis approaches, including accumulating 

the individual hazard levels per pixel, have been used to integrate univariate susceptibility 

maps in the literature [119], [114], [117], [120]. Ullah et al. [120] combined flash flood, 

landslide and debris flow hazard maps using addition arithmetic to produce MHS map. 

In each hazard map, low and moderate classes were reclassified by assigning 0 (low 

hazard) conditions and high and very high classes were assigned 1 (high hazard) 

conditions, and then combined. Pourghasemi et al. [119] and Bordbar et al. [1] also 

combined three hazard maps in the ArcGIS environment in their study.  

 

In the thesis study, the utilization of Mamdani FIS through the establishment of rules for 

each specific hazard has significantly enhanced the sophistication level and usability of 

the resulting maps. However, the implementation of this methodology is not possible in 

just any desktop GIS program. It necessitates the use of specialized software and a certain 

level of expertise.  Furthermore, as there are no generally acknowledged processes or 

standards, the rules and membership functions need to be defined by an expert with 

knowledge in the field. Additional applications and case studies would contribute to the 

expansion of knowledge, maybe resulting in the establishment of a standardized method. 

The resulting maps in Figures 5 and 14 demonstrate that a significant percentage of the 

study sites are prone to landslides, floods, and earthquakes. According to the MHS maps, 

no hazard affects around 37.77% and 51.47% of the Elazig and Adiyaman study sites, 
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respectively. The remaining 62.63% and 48.53% of the Elazig and Adiyaman study sites 

are susceptible to all three hazards, as shown in Tables 5.8 and 5.16.  

 

Furthermore, a MHS model can provide greater utility compared to the univariate 

susceptibility maps when it comes to selecting sites for roadways, trains, settlements, and 

similar purposes. It provides authorities and policymakers with estimates of where to 

concentrate their efforts and respond after disasters, enabling them to have a more 

comprehensive understanding of how many hazards are likely to happen [210]. 

Additionally, the acquired MHS map can enhance the effectiveness of emergency 

response agencies in both the pre and post-disaster stages. The intuitive structure of the 

Mamdani FIS has emerged as an advantage in this study for MHS assessments. The 

system processes uncertain and variable natural disaster data, providing robust and 

comprehensible outputs under complex real-world conditions. However, the subjective 

decisions in system design and the computational intensity may impose limitations on the 

model's applicability. Therefore, in the application of Mamdani FIS, additional work is 

required to optimize the accuracy and performance of the model. The accuracy of the 

Mamdani fuzzy logic system is determined by the rule set's comprehensiveness and 

precision. Reviewing existing rules and extending them with new rules as needed can 

help to produce more accurate and precise results. To make the system more applicable 

to real-world situations, it is recommended to reevaluate and update the current set of 

rules based on expert feedback. The accuracy of the system's outputs is influenced by the 

configuration and characteristics of the membership functions. Optimizing these 

functions can improve the accuracy of the model. Experimental analysis can be performed 

to determine the most appropriate membership functions for each natural hazard and the 

shape of these functions can be optimized. 
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7. CONCLUSIONS AND FUTURE WORKS 

 

 

This chapter, which is divided into two parts, includes the main findings of the thesis and 

comments on the limitations in the first section. In the second section, suggestions for 

future studies are given. 

 

7.1. Conclusions 

 

In recent years, the increasing frequency of natural hazards and the expectation of their 

continuation in the future emphasizes the critical importance of natural hazard research. 

Considering the devastating effects of landslides, floods and earthquakes, it can be seen 

that the damage caused by these hazards triggering each other is greater than the damage 

they cause alone. As such, assessing these hazards separately could not fairly depict the 

possible risks. It is essential and suitable to use a holistic and comprehensive approach 

that uses a multi-hazard assessment framework to investigate these interrelated hazards. 

This necessity forms the basis for the methodological approach and analyses conducted 

in this thesis, aiming to contribute effectively to disaster risk reduction strategies.  

 

Considering the recent natural disasters in Türkiye, especially the devastating earthquakes 

in Kahramanmaraş occurred on 6 February 2023, the importance of assessing earthquake, 

flood and landslide hazards together becomes even more urgent. Turkiye has complex 

tectonic dynamics and geological structure due to its location on many active fault lines, 

especially the North and East Anatolian Fault Zone. This makes our country extremely 

vulnerable to earthquakes. Moreover, variable topography and climate conditions 

throughout the country cause frequent and severe floods and landslides, especially in 

regions with steep slopes and high rainfall intensity. As demonstrated by previous 

occurrences where earthquakes caused landslides and changed riverbeds, resulting in 

floods, these interrelated dangers can intensify one another. Therefore, it is of great 
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importance to integrate and evaluate these hazards by taking into account Türkiye’s 

complex geological and hydrological dynamics. 

 

In this thesis, a new approach that combines and evaluates these hazards in an area 

susceptible to landslide, flood and earthquake hazards was proposed. In selecting the 

study site, it was taken into consideration that it is susceptible to multi-hazards that trigger 

each other and is tectonically activated. The methodology proposed in the thesis was first 

applied to the Elazig study site due to the landslides triggered after the Elazig earthquake 

on January 24, 2020 and the frequent flooding in the region. Then, many provinces were 

affected by the February 6, 2023 Kahramanmaras earthquakes and numerous landslides 

were triggered. Due to the flood event that occurred as a result of heavy rainfalls in 

Adiyaman and Tut regions approximately one month after the earthquakes, the 

methodology proposed in the thesis was performed in the Adiyaman study site and the 

applicability of the method was proved.  

 

The RF is a powerful algorithm for accurate and up-to-date LSM production. This 

algorithm has been proven to be effective, as a result of LSM production with 90% and 

94% overall acuracy in the Elazig and Adiyaman study sites. The FSM was obtained by 

the M-AHP method since there was no suitable flood inventory. For the FSMs produced, 

a preliminary evaluation was made with the flood points that previously occurred in the 

study sites and it was determined that the FSMs were suitable. In addition, seismic hazard 

assessment of the study sites was obtained with maps produced using Arias Intensity 

values.  

 

The univariate susceptibility maps were integrated using the Mamdani FIS to produce the 

MHSM, marking a novel instance in the literature. The FSM and MHSM were visually 

evaluated by the expert. The results showed that the suggested approach for the MHSA 

performed well, and it is recommended for use in future studies of a similar nature. The 

produced maps can be utilized by local authorities to identify regions susceptible to multi-

hazards, strategize sustainable land utilization, choose suitable locations for engineering 

structures, and implement effective disaster management. In addition, this approach not 

only reflects a more comprehensive understanding of the risk landscape, but also 
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increases the effectiveness of disaster preparedness and mitigation strategies that are vital 

to protecting lives and infrastructure. 

 

However, regional MHSA remains an extremely challenging problem, and data-driven 

techniques are nearly always ineffective in solving it. Therefore, a FIS based on expert 

knowledge was chosen. While the present study achieved good and promising results, 

there is still a considerable and challenging path ahead in producing MHS maps. It is 

necessary to conduct MHS assessment studies in various regions using diverse 

approaches in order to enhance the accuracy and dependability of these evaluations. 

 

7.2. Future Works 

 

Based on the results of the detailed literature review and the proposed multi-hazard 

assessment methodology within the scope of this thesis study, recommendations for 

future works are listed below. 

 

• It could be recommended to track the long-term performance of the approach 

created in this study for MHS evaluation. This is essential to assess the efficacy 

of the methodology and adaptability over time. The monitoring and assessment 

process gives rise to a foundation for recognizing possible problems the 

methodology might run into over time and coming up with proactive remedies. 

Furthermore, scaling and generalization of the methodology allow it to be 

appropriate for wider applications and other geographies, therefore raising the 

total effectiveness of disaster risk management.  

 

• It has been observed that there are some limitations in the use of data in such 

natural hazard assessment studies, and it is important to evaluate the existing data 

and their properties appropriately. It is recommended to use expert-based 

methods, especially in the production of flood susceptibility maps, due to the lack 

of inventory. Experts' field experience is important in increasing the realism and 

accuracy of the model. As experts may not always be available, flood areas can 
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be determined using pre-event and post-event satellite optical and radar data and 

a flood inventory can be created. Thus, flood susceptibility maps can be produced 

with data-driven methods. However, timeliness of the maps would be important. 

In addition, such inventories would be insufficient in areas with rugged 

topography as the drainage channels would not have any inundation. 

 

• In future research, it is advisable to perform studies on natural hazard assessments 

with the aim of not only identifying the hazards themselves, but also assessing the 

specific elements at risk that are exposed to these hazards. Additionally, it would 

be beneficial to produce multi-hazard risk maps for a more comprehensive 

understanding. Understanding where and when risks might occur, as well as who 

or what structures might be impacted by them and how much of an impact, is part 

of such an evaluation. Consideration of elements at risk is especially important 

for risk mitigation strategies and emergency management planning. In disaster 

risk management, more comprehensive and informed decisions can be made, thus 

achieving more effective results in both protecting human life and minimizing 

economic losses. Future works may aim to develop methodologies and tools to 

analyze these at-risk elements in more detail and develop strategies accordingly. 

 

• To enhance the effectiveness of this methodology, it is recommended to 

incorporate an early warning system in future works. Data from existing 

susceptibility models should be integrated with real-time observation data. The 

early warning system will contribute to reducing the damages before and during 

the disaster by providing early detection of hazards and rapid intervention. 

 

• The results obtained from the thesis can be converted into regional base maps and 

made available to users. Such data can be quickly integrated into various analysis 

and processing techniques, saving time and resources and allowing users to work 

with the data more effectively. Such base maps can support fast and effective 

decision-making in disaster management and planning processes. 
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APPENDIX 

 
 

Table A.1 Parameter weights used in M-AHP for producing the FSMs.   

Parameters  

Land Use Land Cover 

Class 

 

Weight 

Tree cover 4 

Shrubland 4 

Grassland 4 

Cropland 4 

Built-up 12 

Bare/sparse vegetation 10 

Permanent water bodies 12 

Lithology 

Class 

 

Weight 

Elazig site                                              Adiyaman Site      

Undifferentiated Alluvial 

Terrigenous clastics 

Sheeted dyke complex 

Volcanites and sedimentary rocks 

Granitoids 

Basalt 

Clastics and carbonates 

Marble 

Undifferentiated basic - ultrabasic rocks 

Gabbro 

Serpentinite 

Ophiolitic melange 

Diorite, tonalite, monzonite, gabbro etc. 

Pelagic limestone, clastics, radiolarite, 

chert etc. 

Neritic limestone 

Schist 

Quartzite, quartzschist 

Amphibolite 

Gneiss, schist 

Undifferentiated Alluvial 

Non-graded terrigenous clastics 

Basalt 

Volcanites and sedimentary 

rocks 

Terrigenous clastics 

Ophiolitic melange 

Clastics and carbonates 

Pelagic limestone 

Neritic limestone 

Undifferentiated basic-

ultrabasic rocks 

Peridotite 

Marble, schist in places 

4 

8 

11 

11 

12 

11 

8 

12 

11 

12 

4 

12 

12 

8 

 

8 

12 

6 

11 

12 

 

4 

6 

11 

11 

 

6 

12 

8 

8 

8 

11 

 

12 

12 

TWI 

Class 

 

Weight 

<5 2 

5 – 10 4 

10 – 15  6 

15 – 20 10 
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>20 12 

Slope 

Class 

 

Weight 

<3 7 

3 – 5  6 

5 – 7 5 

7 – 9 4 

9 – 11 3 

11 – 13 2 

>13 1 

Altitude 

Class 

 

Weight 

<1000 6 

1000 – 1200 5 

1200 – 1400 4 

1400 – 1600 3 

1600 – 1800 2 

1800 – 2000 1 

>2000 1 

Distance to Permanent Rivers 

Class 

 

Weight 

<20 6 

20 – 40  5 

40 – 60 4 

60 – 80 3 

80 – 100 2 

>100 1 

Distance to Dry Rivers 

Class 

 

Weight 

<20 6 

20 – 40  5 

40 – 60 4 

60 – 80 3 

80 – 100 2 

>100 1 
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