
1

A DECISION SUPPORT SYSTEM FOR SOFTWARE
ARCHITECTURE DECISION MAKING

YAZILIM MİMARİSİNE KARAR VERME İÇİN BİR KARAR
DESTEK SİSTEMİ

MERVE ÖZDEŞ DEMİR

ASSOC. PROF. DR. AYÇA KOLUKISA TARHAN

Supervisor

ASSOC. PROF. DR. OUMOUT CHOUSEINOGLOU

2nd Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Doctor of Philosophy

in Computer Engineering

June 2024

ABSTRACT

A DECISION SUPPORT SYSTEM FOR SOFTWARE
ARCHITECTURE DECISION MAKING

Merve Özdeş Demir

Doctor of Philosophy, Computer Engineering
Supervisor: Assoc. Prof. Dr. Ayça Kolukısa Tarhan

2nd Supervisor: Assoc. Prof. Dr. Oumout Chouseinoglou
June 2024, 193 pages

Software architecture forms the overall structure of a software system and defines how

its components work and interact together. It serves as a critical schema that specifies in

detail the structure, elements and communication channels of the system. A well designed

architecture ensures that new functionality is seamlessly integrated, changes are adapted

to, and ongoing efficiency is maintained, making the software scalable, maintainable, and

robust. This is particularly important in large-scale projects to manage complexity and

align the software’s technical specifications with business goals. In the rapidly evolving

world of software engineering, the difficulty of decision-making in the architectural decision

making process is a major challenge and affects the quality, maintainability and scalability

of the system. In response to this challenge, this thesis introduces a tool titled SOFtware

ARchitecture Decision Support System (SOFAR-DSS), specifically designed to support

more structured decision making in the software architecture design process. SOFAR-DSS

is the culmination of an exploratory study and an extensive survey designed to identify

key factors and common challenges within this crucial process. The initial stages of this

thesis involved a meticulous exploration to pinpoint the elements influencing architectural

i

decision-making and to delineate the hurdles typically encountered. This study began

with semi-structured interviews conducted online with nine experts, providing valuable

insights that laid the groundwork for the subsequent survey. The exploratory study,

enriched by feedback from these professionals, set the stage for a comprehensive survey

aimed at a broader audience to scrutinize the architectural decision-making process in

greater detail. The survey reached 101 participants from various countries, encompassing

architects with varying years of experience, thus ensuring a rich diversity of insights and

perspectives. The insights garnered from these preliminary studies have been instrumental

in shaping the development of the decision support system. SOFAR-DSS serves as

a support system that guides decision makers through the complexity of architectural

decisions. While its primary target is software architect, through its intuitive design and

comprehensive guidance, SOFAR-DSS addresses a wider audience of professionals involved

in the software architecture decision process. The primary aim of SOFAR-DSS is to refine

the decision-making process, guaranteeing that architectural decisions enhance the project’s

needs, thus not only improving the efficiency of the decision-making process but also

contributing to the overall quality and uniformity of the software architecture. SOFAR-DSS

is differentiated from other decision support systems through its integration of artificial

intelligence and an interactive interface, providing decision-makers with more efficient,

user-centric, and superior guidance. In order to validate SOFAR-DSS, we employed three

different approaches. First, we tested the system by inputting design pattern definitions

from books and assessing its accuracy and relevance. Second, we benchmarked the system’s

performance by entering real-world questions and answers from Stack Overflow, comparing

the system’s responses to those given by the community. Finally, we conducted hands-on

trials with five experienced experts who thoroughly evaluated the system’s effectiveness in

practical scenarios. The system has successfully generated effective responses for sample

issues tested across a range of scenarios.

Keywords: software architecture, decision support system, ontology, software desing

pattern.

ii

ÖZET

YAZILIM MİMARİSİNE KARAR VERME İÇİN BİR KARAR
DESTEK SİSTEMİ

Merve Özdeş Demir

Doktora, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Ayça Kolukısa Tarhan

Eş Danışman: Doç. Dr. Oumout Chouseinoglou
Haziran 2024, 193 sayfa

Yazılım mimarisi, bir yazılım sisteminin genel yapısını oluşturur ve bileşenlerinin birlikte

nasıl çalıştığını ve etkileşimde bulunduğunu tanımlar. Sistemin yapısını, unsurlarını ve

iletişim kanallarını ayrıntılı olarak belirten kritik bir şema görevi görür. İyi tasarlanmış

bir mimari, yeni işlevlerin sorunsuz bir şekilde entegre edilmesini, değişikliklere uyum

sağlanmasını ve süregelen verimliliğin korunmasını sağlayarak yazılımı ölçeklenebilir,

sürdürülebilir ve sağlam hale getirir. Bu özellikle büyük ölçekli projelerde karmaşıklığı

yönetmek ve yazılımın teknik özelliklerini iş hedefleriyle uyumlu hale getirmek için

önemlidir. Yazılım mühendisliğinin hızla gelişen dünyasında, mimari karar verme sürecinde

karar vermenin zorluğu önemli bir sorundur ve sistemin kalitesini, sürdürülebilirliğini ve

ölçeklenebilirliğini etkiler. Bu tez, bu zorluğa yanıt olarak, yazılım geliştirme sürecinde daha

yapılandırılmış karar vermeyi desteklemek için özel olarak tasarlanmış yazılım mimarisi

karar destek sistemi (SOFAR-DSS) adlı bir aracı tanıtmaktadır. SOFAR-DSS, bu önemli

süreçteki temel faktörleri ve ortak zorlukları belirlemek için tasarlanmış kapsamlı bir

anket çalışmasının ve keşifsel bir çalışmanın sonucudur. Bu tezin ilk aşamaları, mimari

karar verme sürecini etkileyen unsurları belirlemek ve tipik olarak karşılaşılan engelleri

iii

tanımlamak için titiz bir araştırmayı içeriyordu. Bu çalışma, dokuz uzmanla çevrimiçi olarak

gerçekleştirilen yarı yapılandırılmış görüşmelerle başlamış ve sonraki anket için zemin

hazırlayan değerli bilgiler sağlamıştır. Uzmanlardan alınan geri bildirimlerle zenginleştirilen

keşif çalışması, mimari karar verme sürecini daha ayrıntılı bir şekilde incelemek için

daha geniş bir kitleyi hedefleyen kapsamlı bir anket için zemin hazırladı. Anket, çeşitli

ülkelerden, farklı deneyim yıllarına sahip mimarları kapsayan 101 katılımcıya ulaşmış ve

böylece zengin bir içgörü ve bakış açısı çeşitliliği sağlamıştır. Bu ön çalışmalardan elde

edilen içgörüler SOFAR-DSS’nin gelişimini şekillendirmede etkili olmuştur. SOFAR-DSS,

mimari kararların karmaşıklığında karar vericilere rehberlik eden bir destek olarak hizmet

vermektedir. Birincil hedefi yazılım mimarları olsa da, SOFAR-DSS sezgisel tasarımı ve

kapsamlı rehberliği sayesinde yazılım mimarisi karar sürecine dahil olan daha geniş bir

profesyonel kitleye hitap etmektedir. SOFAR-DSS’nin birincil amacı, mimari kararların

projenin ihtiyaçlarını karşılamasını garanti ederek karar verme sürecini iyileştirmek ve

böylece yalnızca karar verme sürecinin verimliliğini artırmak değil, aynı zamanda yazılım

mimarisinin genel kalitesine ve bütünlüğüne katkıda bulunmaktır. SOFAR-DSS, yapay

zeka ve etkileşimli arayüz entegrasyonu sayesinde diğer karar destek sistemlerinden

farklılaşmakta ve karar vericilere daha verimli, kullanıcı merkezli ve üstün bir rehberlik

sağlamaktadır. SOFAR-DSS’yi doğrulamak için üç farklı yaklaşım benimsedik. İlk

olarak, sistemin doğruluğunu ve alaka düzeyini değerlendirerek, kitaplardan alınan tasarım

deseni tanımlarını sisteme girdik. İkinci olarak, Stack Overflow’dan alınan gerçek dünya

soruları ve cevaplarını sisteme girerek, sistemin performansını topluluğun verdiği yanıtlarla

karşılaştırdık. Son olarak, beş deneyimli uzmanın sistemi pratik senaryolarda kapsamlı bir

şekilde değerlendirdiği uygulamalı denemeler gerçekleştirdik. Sistem, çeşitli senaryolarda

test edilen örnek sorunlar için başarılı bir şekilde etkili yanıtlar üretmiştir.

Keywords: yazılım mimarisi, karar destek sistemi, ontoloji, yazılım tasarım örüntüsü.

iv

ACKNOWLEDGEMENTS

I am grateful to my thesis advisor Assoc. Prof. Dr. Ayça Kolukısa Tarhan for her expertise,

knowledge, contributions and support throughout the thesis process. I would also like

to express my sincere gratitude to my thesis co-supervisor Assoc. Prof. Dr. Oumout

Chouseinoglu, whose expertise, understanding, patience and invaluable support contributed

significantly to my PhD experience. His perspective and insights contributed significantly to

the depth of this study.

I would also like to express my sincere thanks to my jury members Prof. Dr. Altan

Koçyiğit and Prof. Dr. Ebru Akçapınar Sezer for their constructive feedback and important

suggestions throughout this thesis process. Their detailed questions and interactions with my

work were instrumental in improving the quality and coherence of my research.

I cannot forget the unwavering support and motivation of Dr. Necva Bölücü, Dr. Nebi

Yılmaz, Dr. Bahar Gezici Geçer, and Burçak Asal, who have been with me through the ups

and downs of this academic journey. Their belief in me and constant encouragement has

been my source of strength and resilience.

Above all, I owe my deepest gratitude to my family and my husband, who have given

me endless love, support and encouragement throughout this process. Their sacrifices,

understanding and belief in my abilities have been the backbone of my perseverance and

success. The journey to complete this thesis was made possible not only by my efforts, but

also by the collective support of these extraordinary individuals.

I am eternally grateful to all of you. Your encouragement and support have profoundly

shaped this academic work and my personal development along the way.

v

CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENTS . v

CONTENTS . vi

TABLES . ix

FIGURES . xi

ABBREVIATIONS. xiii

1. INTRODUCTION . 1

1.1. Problem Statement and Research Questions . 2

1.2. Scope of the Thesis . 4

1.3. Contributions . 5

1.4. Research Design . 8

1.5. Organization . 10

2. BACKGROUND OVERVIEW .. 11

2.1. Software Architecture . 11

2.2. Software Architectural Decision Making. 14

2.3. Design Patterns in Software Architecture . 15

2.4. Decision Support Systems . 17

3. FACTORS AFFECTING ARCHITECTURAL DECISION-MAKING PROCESS

AND CHALLENGES IN SOFTWARE PROJECTS. 18

3.1. Related Work . 19

3.2. Methodology . 21

3.2.1. Semi-structured Exploratory Study . 21

3.2.1.1. Population. 22

3.2.1.2. Data Collection . 24

3.2.1.3. Data Analysis . 25

3.2.1.4. Findings . 25

vi

3.2.2. Survey Study . 34

3.2.2.1. First Phase: Design of Questionnaire . 35

3.2.2.2. Second Phase: Distribution of Questionnaire and Obtaining Responses 46

3.2.2.3. Third Phase: Analysis of Responses. 47

3.3. ANALYSIS OF RESULTS. 49

3.3.1. Participant Demographics . 49

3.3.2. Company and Project Demographics . 50

3.3.3. Results from questions about how architectural decisions are made in

practice and how these decisions are documented in participants’ current

or last company/project . 57

3.3.4. Results from general questions about software architecture 62

3.4. Threats to Validity . 72

3.5. Evaluation and Discussion . 74

3.5.1. Making and Documenting Decisions . 78

3.5.2. Influence and Compelling Factors . 79

3.5.3. Final Decision and Validation . 80

3.5.4. Improvements . 81

4. SOFAR-DSS: An Advanced Decision Support System for Architectural Design

Patterns Using OpenAI and DBpedia . 82

4.1. Related Work . 83

4.2. Methodology . 87

4.2.1. Step 1: Classifier Module . 88

4.2.1.1. Dataset . 89

4.2.1.2. Classification Algorithms and Model Selection. 91

4.2.2. Step 2: Entity Extraction Module . 107

4.2.3. Step 3: Generating Recommendations with QA Model . 108

4.2.4. Step 4: Recommender . 109

4.2.4.1. Validation with External Database DBpedia . 109

4.2.4.2. Enrichment . 112

4.3. USER INTERFACE DEVELOPMENT . 114

vii

4.4. VALIDATION OF SOFAR-DSS. 120

4.4.1. Validation with Stack Overflow Data . 121

4.4.2. Validation with Design Pattern Cases from Book . 121

4.4.3. Expert Validation and Feedback. 125

4.5. Threats to Validity . 130

4.6. Evaluation and Discussion . 131

5. SUMMARY . 134

6. CONCLUSION . 140

6.1. Contributions . 140

6.2. Challenges . 142

6.3. Constraints . 143

6.4. Further Analysis . 144

viii

TABLES

Page

Table 3.1 Participant Demographic Information . 23

Table 3.2 General Information About Participants (P1-P9) . 24

Table 3.3 Responses from participants regarding other questions related to the

decisions made.. 28

Table 3.4 Responses to the question about the types of decisions encountered in

practice. 29

Table 3.5 Responses related to factors influencing architectural decisions 30

Table 3.6 Responses related to the factors influencing architectural decisions in

terms of quality attributes . 31

Table 3.7 Responses to the question about expectations for improving

architectural decision-making . 33

Table 3.8 Survey questions. (OE: open-ended, MA: multiple answer, MC:

multiple-choice, LS: Likert scale, Y/N: yes/no) . 36

Table 3.9 Demographics of participants. 50

Table 3.10 Relationships of technical and social challenges in decision making

for hypothesis group 1 (H1) . 55

Table 3.11 Responses to questions about architectural decisions that are

documented . 58

Table 3.12 Major contents of architectural documents . 59

Table 3.13 Relationships of factors that the participants think they affect

architectural decisions for hypothesis group 2 (H2) . 66

Table 3.14 Correlations between the answers for Q9 (difficulties of making

architectural decisions) and Q22 (factors that affect architectural

decisions) . 70

Table 3.15 Summary of findings . 75

Table 4.1 Best parameters of each algorithm used in classification. 94

ix

Table 4.2 Comparison of Machine Learning Models using TF-IDF and BoW 95

Table 4.3 Performance comparison of LSTM and BERT models 104

Table 4.4 Sample Questions from Stack Overflow and their Accepted Answers

Compared with SOFAR-DSS’s Responses . 122

Table 4.5 Example Cases with Design Pattern and the SOFAR-DSS’s Response . 124

Table 4.6 SOFAR-DSS’s responses according to the issue entered by user 125

Table 4.7 Likert questions for evaluation of system and the Likert scores of the

answers for all experts (E1-E5) . 130

Table 6.1 Design Pattern Recommendations Based on Stack Overflow Queries. . . 161

Table 6.2 Book Cases with Their Design Patterns and the SOFAR-DSS’s

Responses. 166

Table 6.2 Design Pattern Recommendations (continued) . 167

Table 6.2 Design Pattern Recommendations (continued) . 168

Table 6.2 Design Pattern Recommendations (continued) . 169

Table 6.2 Design Pattern Recommendations (continued) . 170

x

FIGURES

Page

Figure 1.1 Graphical representation of the thesis roadmap . 9

Figure 3.1 Positions of participants throughout their careers and current or last

positions of the participants in their companies . 51

Figure 3.2 Types of projects that the participants have most experienced 52

Figure 3.3 Types of architectural patterns that participants have most

experienced . 52

Figure 3.4 Development Lifecycle Models used by companies of the participants 57

Figure 3.5 Frequency of document contents used together . 60

Figure 3.6 Places where architectural decisions are stored. 61

Figure 3.7 (a) Most commonly used process(es) for decision-making, (b)

Number of process(es) chosen/used together . 61

Figure 3.8 Keywords from participants’ definition of software architecture 63

Figure 3.9 Types of architectural decisions that the participants think are more

critical to the project in practice . 64

Figure 3.10 Frequency of quality attributes that the participants think they affect

architectural decisions . 69

Figure 3.11 Areas to be improved for better architectural decisions 72

Figure 4.1 Model Diagram for SOFAR-DSS . 88

Figure 4.2 Rules for manual classification. (Source: Bhat, Manoj and

Shumaiev, Klym et al.,”Automatic extraction of design decisions

from issue management systems: a machine learning based

approach”,ECSA 2017) . 90

Figure 4.3 Text classification pipeline employed in SOFAR-DSS 92

Figure 4.4 ROC Curves for KNN and SVM .. 96

Figure 4.5 ROC Curves for RF and LGBM .. 96

Figure 4.6 ROC Curves for XGBoost and all algorithm comparisons 97

xi

Figure 4.7 ROC Curves for KNN and SVM (BoW) . 98

Figure 4.8 ROC Curves for RF and LGBM (BoW) . 98

Figure 4.9 ROC Curves for XGBoost and all algorithm comparisons (BoW) 99

Figure 4.10 ROC Curves for LSTM and BERT algorithms . 105

Figure 4.11 Home page of user interface . 116

Figure 4.12 Classifier page of user interface . 117

Figure 4.13 JIRA Data Recommendations page of user interface. 117

Figure 4.14 JIRA Data Recommendations page and system responses 118

Figure 4.15 Single Issue Recommendations page of user interface 119

Figure 4.16 Single Issue Recommendations page and system responses 120

Figure 4.17 Local explanation of text classification with LIME on individual

instance for class 1 (related to design) . 128

Figure 4.18 Local explanation of text classification with SHAP on individual

instance for class 1 (related to design) . 129

Figure 6.1 Ethical approval document for semi-structured exploratory study. 172

Figure 6.2 Ethical approval document for survey study . 174

xii

ABBREVIATIONS

ADD : Architectural Design Decision

AHP : Analytical Hierarchy Process

AI : Artificial Intelligence

AK : Architectural Knowledge

ATAM : Architecture Tradeoff Analysis Method

BERT : Bidirectional Encoder Representations from Transformers

BoW : Bag of Words

CBAM : Cost Benefit Analysis Method

DSS : Decision Support System

HAM : Hybrid Assessment Method

IDSS : Intelligent Decision Support System

KNN : K-Nearest Neighbours

LGBM : Light Gradient Boosting Machine

LSTM : Long Short Term Memory

MCDM : Multi Criteria Decision Making

NLP : Natural Language Processing

PoC : Proof of Concept

RF : Random Forest

QA : Question Answering

SDLC : Software Development Life Cycle

SOFAR-DSS : SOFtware ARchitecture Decision Support System

SVM : Support Vector Machines

TF-IDF : Term Frequency-Inverse Document Frequency

XAI : EXplainable Artifical Intelligence

XGBoost : EXtreme Gradient Boosting

xiii

1. INTRODUCTION

The field of software development is constantly evolving, driven by the increasing demand

for robust, scalable, and agile applications and advancements in the field of technology. At

the heart of developing effective and efficient software systems lies the critical process of

making architectural decisions [1]. These decisions significantly influence the system’s

capabilities and adaptability, necessitating a deep understanding of various architectural

patterns and practices tailored to specific project needs [2]. As software systems grow

in size and complexity, managing this complexity and ensuring system integrity becomes

increasingly challenging. This necessitates steering the project in accordance with a specific

software architecture [3]. While there are many interpretations of what software architecture

entails, the definition by Bass et al. [3] is the most widely recognized, describing it as the

system’s essential structures, encompassing software components, their interrelations, and

characteristics.

In software architecture, decision-making involves a complex array of choices, each with

substantial impact on aspects like quality, performance, and maintainability of the software

[1]. This process is full of challenges that require architects to balance technical constraints,

business objectives, scalability, sustainability, and ever-present time and budget constraints

[4]. Software system design is comprised of multiple critical decisions [5]. These

decisions, traditionally seen as significant choices about the system [6], involve evaluating

different alternatives and selecting the most suitable one. The breadth and complexity

of these alternatives can be daunting, yet their understanding is essential for impactful

decision-making that directly influences system quality. Primarily, software architects are

responsible for these architectural decisions [7], [8], but involving various stakeholders can

enable architectural requirements to be addressed from more diverse perspectives.

The complexity of decision-making in software architecture has led to the development

of various methods and procedures designed to assist architects. Notable among these

are the Architecture Tradeoff Analysis Method (ATAM) [9], the Cost-Benefit Analysis

1

Method (CBAM) [10], the Quality-Driven Decision Support Method [11], and ATRIUM

[12]. However, these methods often lack automated tools for analyzing decision models, or

when such tools exist, they rely on predetermined models and equations, focusing more on

decision outcomes rather than the decision-making process itself [13].

The integration of artificial intelligence (AI) technologies across the various stages of

the software engineering lifecycle, particularly in architectural decision-making, represents

a significant evolutionary step in the discipline. This integration extends beyond mere

efficiency improvements, encompassing a transformative effect on the entire process,

from initial project planning to maintenance. As detailed in the study employing a

mixed-method approach, AI applications are critically influencing each phase of software

development, including problem analysis, design, implementation, and testing [14].

Furthermore, case studies such as IBM’s Watson and Google’s AlphaGo highlight AI’s

capability to revolutionize complex problem-solving and decision-making processes in

software engineering, demonstrating the profound impact of AI technologies in enhancing

understanding and optimizing solutions [15]. Additionally, the advancements in machine

learning and deep learning, as evidenced in recent research, illustrate how these technologies

are being harnessed to drive innovation, improve accuracy in decision-making, and foster

development of more intelligent, self-learning systems within the software engineering

realm [16]. Together, these studies underscore the pivotal role AI is playing in reshaping

software engineering, marking a new era of sophistication and capability in architectural

decision-making and the broader field.

1.1. Problem Statement and Research Questions

The architectural decision-making process is a critical aspect of software development,

impacting the overall quality, maintainability, and evolution of the system. Despite its

significance, this process often encounters various challenges, including the complexity

of choices, the need for timely decision-making, and the documentation and justification

of these decisions. Understanding how these decisions are made, the factors influencing

2

them, and the methods employed to document and justify them is essential for improving

architectural practices and outcomes. We identified the following research questions to guide

our study, as stated below.

• RQ.1. How are architectural decisions made in practice, how are these decisions

documented, and how they affect each other?

– RQ.1.1. Is there a certain approach to decision-making and how many people

usually make decisions?

– RQ.1.2. What information is kept for each architectural decision and where are

the decision documents stored?

– RQ.1.3. How to track decisions that affect each other?

• RQ.2. What factors usually influence architectural decisions and what are the

compelling factors faced when making decisions?

– RQ.2.1. Do perceptions regarding challenging situations in architectural

decision-making change with respect to whether these architectural decisions are

documented, the development lifecycle model used, and whether decisions are

made individually or as a group?

– RQ.2.2. Do perceptions regarding the factors that affect the architectural

decisions change with respect to whether these architectural decisions are

documented, the development lifecycle model used, and whether decisions are

made individually or as a group?

• RQ.3. How is the choice made among architectural decision alternatives and how is

the final decision justified?

• RQ.4. What improvements are needed to expedite the architectural decision-making

process and make better architectural decisions?

• RQ.5. Can an AI-supported tool be developed to mitigate the challenges encountered

in the architectural decision-making process?

3

– RQ.5.1. Would decision-makers adopt such a tool in their architectural

decision-making workflow?

The details of the studies conducted to answer the research questions identified above and

the answers found to these research questions are detailed in Sections 3. and 4.

1.2. Scope of the Thesis

With the advancement of AI, its application in the field of software development has become

increasingly prominent. AI technologies are now frequently integrated into various aspects

of software engineering [17]. In the context of software architecture, AI aids in navigating

the complexities of decision-making. Traditionally, software architecture decisions involve

considering various factors like system quality, e.g., performance, and maintainability. These

decisions require balancing technical constraints, business objectives, quality attributes,

and budgetary limitations. AI’s role in this process is transformative, providing tools and

methodologies to simplify and improve decision accuracy.

This thesis aims to design, develop, implement and validate a Software Architecture Decision

Support System (SOFAR-DSS), an AI-driven tool to assist software architects in making

informed and efficient decisions. The primary goal of this thesis is to develop a tool that

significantly simplifies the architectural decision-making process in software engineering.

This involves automating the analysis of complex decision matrices and providing intelligent,

data-driven insights to reduce the cognitive burden on architects. The development of

SOFAR-DSS involves the creation of advanced machine learning models, integration of XAI

for transparency, and application of user experience design for ease of use.

To the best of our knowledge, there has been no prior research that specifically explores the

use of a tool like SOFAR-DSS, which integrates artificial intelligence into the architectural

decision-making processes within software engineering. This thesis, therefore, fills a

significant gap in the existing literature by developing, implementing, and validating an

AI-driven decision support system that addresses the complexities and nuances of software

4

architecture design process. Our research not only contributes a novel tool to the field

but also provides valuable insights into the practical application of AI in enhancing the

decision-making process in software engineering, particularly in architectural design.

1.3. Contributions

In this thesis, we introduce an innovative AI-based tool, SOFAR-DSS, designed to ease the

decision-making process. SOFAR-DSS automates complex decision matrix analysis and

provides intelligent insights, thereby reducing the cognitive load on architects and decision

makers. This allows them to focus more on the design aspects of software development

without being overwhelmed by technical choices. The system’s recommendations are

validated using the DBpedia ontology [18], [19].

SOFAR-DSS stands out for its ability to analyze architectural decisions within the context

of specific projects. Unlike traditional methods, it dynamically adapts to each project’s

unique constraints and requirements, offering a more tailored and context-aware approach. It

leverages advanced machine learning algorithms to process diverse data, including historical

project outcomes, market trends, and technological developments. This capability enables

the system to provide proactive predictions and recommendations.

Furthermore, SOFAR-DSS incorporates explainable artificial intelligence (XAI) [20],

enhancing transparency in the decision-making process and allowing architects to understand

and trust the system’s logic. This cross-disciplinary approach, merging software engineering,

data science, and cognitive computing, significantly improves architectural decision-making.

The system’s combination of AI-driven insights with an interactive framework empowers

architects to make more informed, efficient, and strategic decisions.

In this thesis, we delve into the prevalent gaps in the architectural decision-making domain

and introduce a pioneering approach that stands out for its simplicity, efficiency, and

innovative edge. The primary contributions of our thesis are delineated below, each building

on the premise of enhancing the current standards and practices in software architecture:

5

• Extensive Analysis Through a Comprehensive Survey: We embarked on

an exhaustive exploration of the architectural decision-making landscape by

administering an in-depth survey. This survey, unparalleled in its scope within the

current literature, engaged 101 professionals, encompassing a wide array of expertise

in the software architecture realm. The meticulously designed questions ensured a

holistic examination of the decision-making process, covering every stage from the

initial conceptualization to the finalization of architectural decisions. The richness of

the data gathered provides unprecedented insights, offering a granular understanding

of the intricacies involved in making architectural choices.

• Identification of Key Challenges and Influencing Factors: Our research

meticulously examines every segment of the architectural decision-making journey,

unlike previous studies that focused on just a single aspect, thereby conducting detailed

investigations across all phases of the process. This comprehensive research has

enabled us to identify the key challenges and factors that critically shape the trajectory

of architectural decisions. The findings illuminate the multifaceted nature of decision

making in software architecture and shed light on areas previously unexplored or

inadequately addressed in existing academic studies.

• Development of SOFAR-DSS: Based on insights from our extensive research, we

designed and developed the SOFAR-DSS tool, an innovative solution aimed at

reducing the decision-making burden of architects in the architectural decision-making

process. This tool enables the integration of artificial intelligence in the architectural

decision-making domain, specifically by utilizing widely adopted question answering

AI models to generate logical and relevant recommendations.

By synergizing AI with the comprehensive DBpedia ontology, we have not only

improved our recommendations but also achieved a form of validation that ensures

they are both robust and relevant. This integration enables SOFAR-DSS to provide

recommendations that are not only contextually aware but also deeply rooted

in software architecture best practices, ensuring that it is well aligned with the

complexities and evolving dynamics of contemporary software projects.

6

Furthermore, to emphasize the transparency of our system’s inner workings and

increase user trust, we have included explainable artificial intelligence (XAI)

functionalities. This feature explains the logic behind AI-driven recommendations,

giving users a clear understanding of why certain recommendations are made. This

transparency is crucial to foster a sense of trustworthiness and enable users to make

informed decisions based on AI insights.

The development of SOFAR-DSS represents a significant leap forward, combining

the precision of AI with the strategic depth of architectural decision-making. This

tool not only anticipates the needs of modern software projects, but also intelligently

adapts to them, providing recommendations that are both actionable and insightful.

With SOFAR-DSS, we provide a sophisticated, AI-enhanced tool that addresses

the complexities and challenges inherent in the architectural decision-making

environment.

The development and validation of SOFAR-DSS included a comprehensive process

with experts from five different companies. We conducted a survey to evaluate

the system’s usability and areas for improvement, and the feedback was highly

positive. Experts praised the system’s user-friendliness and expressed their intention

to recommend it for use in their projects. This expert validation confirms the system’s

practical applicability and potential impact in real-world scenarios.

• Bridging AI and Decision-Making in Software Architecture: SOFAR-DSS

represents a significant stride in combining AI with decision-making processes in

software engineering, addressing a notable deficiency in current academic discourse.

The introduction of SOFAR-DSS marks a significant advance in the integration of AI

into the strategic processes of software architecture. This integration will transform

how decisions are made in software engineering and fill an important gap in how AI

is used in this field. Our tool simplifies and improves the decision-making process

and lays the groundwork for future innovations where AI can further enhance the

capabilities of software engineering professionals.

7

Each of these contributions collectively underscores the novelty and the potential impact of

our research, setting a new benchmark for future explorations and practical applications in

the realm of software architecture and decision-making. Additionally, our work has resulted

in two journal articles [21, 22], further disseminating our findings and providing a foundation

for continued advancements in this field.

1.4. Research Design

This section describes the methodological framework that underpins our thesis and provides

a comprehensive roadmap of the research followed throughout the thesis. The journey of

this research began with the rigorous formulation of research questions designed to link

the study to key research themes and guide the subsequent methodological steps. A visual

representation summarizing the process from the first to the last step of this thesis and the

outputs achieved at each stage is provided in Figure 1.1.

In the first phase of the research, a semi-structured questionnaire survey was conducted. This

methodological choice allowed for an in-depth exploration of the different perspectives and

experiences of professionals in the field, thus generating rich qualitative and quantitative data

that informed the initial stages of the research. The insights gained from this semi-structured

exploratory study led to the preparation and presentation of a paper to be presented at a

national conference.

Building on the baseline information generated through the semi-structured questionnaire

and an extensive review of relevant literature, the survey questions were refined and

expanded. This resulted in a comprehensive online survey that successfully engaged 101

participants. The data collected from this extended survey provided deep insights into

the research questions, resulting in a journal article articulating the key findings and their

implications for the field.

Leveraging the knowledge gained from both the semi-structured interviews and the

online survey, SOFAR-DSS, an Intelligent Decision Support System (IDSS) specifically

designed to improve decision-making processes in software architecture, was designed and

8

developed. The development and outcomes of SOFAR-DSS are comprehensively detailed

in a subsequent journal article. This publication marks a significant advancement in our

research and contributes a novel tool to the software engineering domain.

The research design of this thesis is therefore characterized by a phased approach, from initial

question formulation to data collection and development of a practical tool. Each stage of

the research was carefully planned to build on the previous one, thus ensuring a cumulative

knowledge building process. The details of the survey study and the developed DSS are

given in sections 3. and 4., respectively.

Figure 1.1 Graphical representation of the thesis roadmap

9

1.5. Organization

The organization of the thesis is as follows:

• Chapter 1 gives a brief introduction to the problem, presents our motivation, the scope

of the thesis, contributions, and methodological framework.

• Chapter 2 provides background on relevant topics, including softare architecture,

design patterns.

• Chapter 3 describes the methodological framework and provides a comprehensive

roadmap of the research followed.

• Chapter 4 details the survey study conducted to identify the challenges faced in the

architectural decision-making process and the factors that influence this process.

• Chapter 5 introduces the intelligent decision support system that will facilitate the

architectural decision making process.

• Chapter 6 states the summary of the thesis and possible future directions.

• Chapter 7 gives the results of the studies carried out.

10

2. BACKGROUND OVERVIEW

2.1. Software Architecture

Software architecture plays an indispensable role in the realm of software engineering,

serving as the cornerstone for crafting efficient and effective software systems. With the

increasing size and complexity of these systems, the imperative to manage this complexity

and ensure the system’s integrity becomes paramount. The adoption of a well-defined

architectural framework is not merely beneficial but essential for the successful navigation

and guidance of a project towards its completion [3]. This structured approach empowers

software engineers to adeptly manage the intricacies inherent in the structures they devise,

facilitating a more manageable development process.

The concept of ”software architecture” lacks a single, universally accepted definition,

which is reflective of its broad applicability and the diversity of thought within the field.

Instead, it has been the subject of various interpretations by scholars and practitioners alike,

each bringing their perspective to bear on the understanding of what constitutes software

architecture [23]. Among the many definitions, the one proposed by Bass et al. stands

out for its clarity and wide acceptance within the community. According to them, ”the

software architecture of a program or computing system is the structure or structures of

the system, which comprise software elements, the externally visible properties of those

elements, and the relationships among them. Architecture is concerned with the public

side of interfaces; private details of elements—details having to do solely with internal

implementation—are not architectural.”[3]. This definition underscores the multifaceted

nature of software architecture, highlighting its role in facilitating the conceptualization and

visualization of a system’s organization, behavior, and key attributes.

Furthermore, software architecture acts as a blueprint for both the system and the project,

guiding the development process and providing a frame of reference for understanding

the system’s organization and expected behavior. It assists in identifying potential design

issues early in the development lifecycle, thereby mitigating risks and reducing the

11

likelihood of costly rework. Moreover, it supports scalability, performance optimization,

and the achievement of other quality attributes by defining clear interaction patterns among

components and specifying the architectural styles and patterns to be employed.

In essence, software architecture embodies the strategic choices that shape the technical

foundation of a software system. These choices have far-reaching implications for a project’s

overall direction, affecting aspects such as system scalability, maintainability, and the ability

to meet user requirements and adapt to changing technologies. As such, the development of

a software architecture requires careful consideration, foresight, and a deep understanding

of both the problem domain and the technological landscape. By laying the groundwork for

all subsequent design and implementation decisions, software architecture remains a critical,

guiding force in the creation of successful software systems.

Expanding further, the concept of software architecture can also be viewed through the lens

of architectural styles or patterns, each offering a different method for structuring software

systems. Notable examples include the layered architecture, event-driven architecture,

microservices architecture, and service-oriented architecture, among others. These styles

provide templates that help in addressing specific system requirements and often embody

best practices that have evolved within the field of software engineering [24]. Shaw and

Garlan’s definition emphasizes architecture as the highest level of abstraction in a system,

beyond the algorithms and data structures of the computation design. They argue that

architecture is about the overall structure of software and the principled way of designing the

system, which includes choices about the organization, security, performance, and reliability

of the software application [24].

Kruchten further elaborates on the practicality of software architecture, introducing the

concept of the ”4+1” view model of architecture. This model provides a framework for

describing the architecture of software-intensive systems, based on the use of multiple,

concurrent views. The views address separate concerns of various stakeholders of the system

and include scenarios to illustrate how the architecture responds to external stimuli [25].

12

Additionally, Clements et al. contribute to the understanding by asserting that software

architecture necessitates a series of decisions based on quality attributes. These

decisions ultimately influence the system’s non-functional characteristics, such as security,

modifiability, and performance, ensuring that the architectural framework aligns with both

functional and non-functional requirements [26].

Richards et al. define software architecture in four dimensions: the structure of the system

(refers to the type of architecture style(s) such as microservices, layered, or microkernel),

combined with architecture characteristics (“-ilities”, success criteria of a system) the

system must support, architecture decisions (define the rules for how a system should be

constructed), and finally, design principles (differs from an architecture decision in that a

design principle is a guideline rather than a hard-and-fast rule).

Incorporating this comprehensive perspective enriches the understanding of software

architecture’s role in system development. The four dimensions outlined by Richards et

al. offer a holistic view of what software architecture entails, providing a multifaceted

framework that supports the systematic development of software systems. This framework

not only guides the architectural design but also integrates it with the operational and strategic

goals of the system, ensuring that the architectural solutions devised are robust, scalable,

and in alignment with the stakeholders’ expectations. By considering these dimensions,

architects can create systems that are not only technically sound but also adaptable to

changing requirements and capable of delivering sustained value over time [27].

Thus, the inclusion of these four dimensions into the conceptualization of software

architecture allows for a richer, more nuanced understanding of its importance. It

highlights how a well-thought-out architectural framework can influence the success

of a system, facilitating the achievement of both functional and quality requirements.

This multi-dimensional approach underscores the complexity and strategic significance of

software architecture, illustrating how it underpins the entire software development process

and contributes to the realization of a coherent, well-functioning software system.

13

In summary, software architecture remains a crucial element in software engineering,

providing a strategic framework that shapes the development and integrity of software

systems, especially as they increase in size and complexity. It encompasses a set of

fundamental structures (components, their interactions and properties) that guide the design

of the system and underlie the conceptualization of its organization and behavior. While

its definitions vary to reflect the breadth and depth of the field, common themes include

its role as a blueprint that determines the structure, behavior and quality attributes of the

system and facilitates early identification of potential design challenges. Definitions by Bass

et al. and Richards et al. emphasize its multifaceted nature, including elements such as

architectural styles, decision-making criteria and guiding principles. This holistic perspective

underscores the critical role of software architecture in ensuring that software systems are

efficient, reliable and capable of meeting evolving technological and user requirements, thus

confirming its fundamental importance in the successful engineering of complex software

solutions.

2.2. Software Architectural Decision Making

Making decisions in software architecture involves considering a multitude of factors,

with each decision having a significant impact on the software’s quality, performance,

maintainability, and overall success [1]. The architecture of a system is shaped by numerous

decisions [5], and this decision-making process is fraught with uncertainties, such as

conflicting stakeholder objectives, unpredictable project estimates, uncertain availability of

resources, and the unknown effects of decisions on stakeholder goals, making it a complex

and challenging task [28]. Traditionally, decision-making in this context is about making

choices that significantly influence the entire software system [6]. This process entails

identifying various alternatives and selecting one as the final decision. Understanding these

alternatives is crucial for effective decision-making, which in turn directly influences the

quality of the system [29].

14

Software architecture also serves as a vital communication tool, articulating the design

decisions and their outcomes to stakeholders [30]. However, it’s important to recognize

that the knowledge and information about these design decisions are often implicitly

embedded within the architecture, making it challenging to explicitly extract them, which

can lead to loss of knowledge [26]. Architectural documentation is essential in facilitating

communication among stakeholders, especially when there are multiple people on a

development team, when the implementer and the architect are different individuals, or when

the team is geographically dispersed [26, 31, 32]. Such documentation, which includes

architectural decisions and their justifications, system components and their relationships,

and chosen design patterns, significantly impacts the development and maintenance phases

[33]. Jansen et al. [31] have noted several benefits of architectural documentation,

such as enabling asynchronous communication among stakeholders, mitigating the loss of

architectural knowledge [34], constraining implementation, shaping organizational structure,

promoting reuse of architectural knowledge, and aiding in training new project members.

Architectural documentation sets out the rules for achieving correct system behavior [35] and

is a key factor in sharing and reusing architectural knowledge [31]. Recently, the importance

of thoroughly documenting architectural decisions in software projects has been increasingly

emphasized [36–38]. However, this documentation is often neglected, as Jansen et al. [34]

noted, with architectural knowledge being documented “after the fact.” This is partly because

documenting architectural design decisions is time-consuming and effort-intensive [39], and

many developers are unsure about what to document, leading to only a few teams taking the

time to record their decisions [26, 40, 41].

2.3. Design Patterns in Software Architecture

Design patterns in software architecture represent a set of best practices that have been

developed and refined to address recurrent design problems in software development. They

provide a template or blueprint that can be applied to a design problem within a given context,

facilitating the creation of software architectures that are both robust and maintainable [42].

Design patterns encapsulate the expertise of seasoned software developers and architects,

15

offering proven solutions that can expedite the development process and enhance the quality

of software systems.

Incorporating design patterns into the architectural decision-making process is beneficial

for several reasons. First, they promote design reuse, which can lead to a more efficient

development cycle by reducing the time and cost associated with the invention of new

solutions [35]. Second, patterns can increase the understandability of the architecture by

providing a common language for developers and stakeholders [26]. This shared vocabulary

facilitates clearer communication and helps in aligning the team’s understanding of the

system’s design [43]. Furthermore, design patterns can also contribute to the system’s

scalability and flexibility by ensuring that the architecture is composed of well-defined,

interchangeable components [44].

Each design pattern typically addresses a specific aspect of software architecture, such

as structural organization, communication between objects, or the behavior encapsulation

within a system [45]. Patterns are often categorized into three main types: creational,

structural, and behavioral patterns [42]. Creational patterns deal with object creation

mechanisms, structural patterns address the composition of classes or objects, and

behavioral patterns characterize the ways in which classes or objects interact and distribute

responsibility [46].

Applying design patterns in the early stages of architectural design can prevent issues that

might arise later in the development lifecycle. It can also assist in identifying potential

risks and trade-offs associated with each pattern, allowing architects to make more informed

decisions [6]. In practice, the selection and implementation of design patterns must be done

judiciously, as each pattern comes with its own set of consequences and implications for

system performance, maintainability, and future adaptability [47]. As such, a thorough

understanding of both the problem space and the available design patterns is critical for

architects aiming to leverage these constructs effectively within their software architecture.

16

2.4. Decision Support Systems

Decision Support Systems (DSS) are acknowledged as computer-aided tools intended to

support administrative decision-makers in addressing non-structural problems [48]. Over

the past four decades, DSS have undergone a significant evolution, transitioning from

theoretical frameworks to practical, computerized applications in various fields, including

software engineering. The architecture of a modern DSS is fundamentally built on

three core components: a knowledge base, a computerized model, and a user interface

[49]. The knowledge base serves as a repository of accumulated information and data,

crucial for informed decision-making processes. This component is especially relevant in

software engineering, where evolving best practices and historical data play a key role

in project planning and execution. The computerized model, another critical element of

DSS architecture, facilitates the analysis and simulation of various scenarios. In software

engineering, these models can represent systems in development, helping in predicting

outcomes of different methodologies or strategies before their actual implementation. They

are particularly useful in choosing appropriate Software Development Life Cycle (SDLC)

models and managing risks and changes in software projects. Lastly, the user interface in a

DSS is designed to be intuitive, enabling easy navigation and manipulation of data.

Integrating AI methodologies like expert systems, data mining, and machine learning, DSS

simulate the cognitive decision-making functions of humans [50]. This allows for advanced

decision support functions, enhancing the efficiency and effectiveness of decision-making in

software engineering. IDSS, a subset of DSS, utilize AI to analyze large data sets, identifying

trends and patterns that aid in making more informed decisions. Thus, the evolution of

DSS over the years has led to the development of sophisticated tools that significantly aid

in decision-making processes in software engineering, aligning with the industry’s need for

data-driven and intelligent solutions.

17

3. FACTORS AFFECTING ARCHITECTURAL

DECISION-MAKING PROCESS AND

CHALLENGES IN SOFTWARE PROJECTS

Decision making in software architecture goes beyond the simple application of predefined

methods; it involves human participants, each with their own unique approach to decision

making [51]. To understand the practical aspects of this process, we carried out a survey to

investigate the methods of decision-making, how these decisions are recorded, the storage

and management of decision documents, the technical and social obstacles encountered,

areas needing improvement, and the requirements for better decision-making. This approach

is akin to Weinreich et al.’s [52] expert survey, which also examined the types, influencing

factors, and documentation of design decisions in the field. Our goal is to pinpoint changes

and influences in architectural decision-making and propose ways to make documentation

more organized and effective. Our study differs from Weinreich et al.’s [52] in that

we delve deeper into every phase of the architectural decision-making process, looking

at the entire process from decision-making to documentation and verification. Like all

organizational decision-making processes, architectural decision-making involves preceding

and subsequent activities that impact and are influenced by the decisions. Previous studies

(e.g., [40, 52, 53]) have concentrated on specific aspects of the decision-making process,

often neglecting the preceding and following activities. Our study seeks to bridge this gap by

systematically examining each stage of the decision-making process, including previously

unexplored phases like identifying architectural requirements and verifying decisions. We

believe our study is the first to comprehensively survey and understand the architectural

decision-making process in its entirety, considering the influencing factors, challenges, and

the subsequent implementation and documentation. Furthermore, our study aims to uncover

potential research areas illuminated by our findings. Ultimately, our motivation is to generate

new, actionable insights based on the results of our research.

18

3.1. Related Work

In the field of literature, numerous studies have focused on understanding the methodologies

employed in the decision-making process for software architecture and design. These studies

have explored the nature of decisions made, their documentation methods, influencing

factors, and the challenges faced during the process.

Dasanayake et al. [40] conducted a case study to explore the decision-making approaches

of professional software architects in the industry. Their objective was to identify the

various approaches to architectural decision-making, the reasoning behind these approaches,

associated challenges, and potential enhancements for better decision-making in architecture.

Their findings revealed insights into the decision-making practices in software architecture

across three small to medium-sized enterprises. The study found that software architects

often rely on informal, yet structured methods at the team level, while individual

decision-making is largely influenced by personal traits like intuition and experience. Factors

such as budget, time constraints, and organizational practices were identified as hindrances

to comprehensive analysis prior to decision-making.

Miesbauer and Weinreich [54] carried out an expert survey to investigate the types,

influencing factors, and sources of design decisions, along with their documentation in

practice. The survey, involving software architects, team leaders, and senior developers from

six Austrian companies with an average of over 10 years in software development, aimed

to understand decision-making and documentation processes in practice, types of decisions

documented, and the driving forces behind these decisions. The study highlighted that

architects and designers mainly focus on technological and structural decisions influenced

by constraints and user requirements, and these decisions are typically well documented.

Building on their 2013 work [54], Weinreich et al. [52] conducted another expert survey to

delve deeper into the types, influencing factors, and sources for software design decisions,

and their practical documentation. This survey included 25 participants from 22 companies

across 10 countries, all with over 13 years of experience in software development. The

19

findings validated their earlier work on design decision classification and influencing factors,

while also uncovering additional decision types and influences not previously identified. The

study provided insights into the relative importance of various decisions and their influences,

and potential sources for decision recovery, revealing a preference against formalized

documentation methods due to time and cost constraints.

Tofan et al. [4] analyzed the characteristics and contributing factors of 86 real-world

architectural decisions based on a survey of 43 industry architects. The study compared

decisions made by junior and senior architects, revealing that architectural decisions

typically take eight working days, with junior architects spending a quarter of their time

on decision-making. Good architectural decisions were found to involve more alternatives

than bad ones, and 86% of these decisions were made collaboratively.

Muccini et al. [53] examined industrial practices in group decision-making for software

architecture with 35 global participants. Using both qualitative and quantitative methods,

they discovered a preference for unstructured, discussion-based decision-making approaches

in software architecture groups, differing from those documented in literature due to budget,

time, and resource constraints, leading to various group conflicts. The creation of prototypes

was identified as a crucial step in group decision-making.

Hofmeister et al. [55] highlighted three key architectural activities where critical decisions

are made: architectural analysis, synthesis, and evaluation. Architectural analysis involves

filtering concerns and context to establish architecturally significant requirements, synthesis

proposes solutions to these requirements, and evaluation ensures the appropriateness of the

decisions made.

These studies collectively examined Hofmeister et al.’s [55] three decision-making activities

from various angles, including decision-making practices [40], challenges encountered [4],

decision classification [54], factors affecting and documenting decisions [52], and group

decision-making [53]. Notably, most studies focus on specific aspects of the decision-making

process or have a limited participant pool. Our study stands out by engaging a larger and

more diverse group of software architecture experts, offering a detailed evaluation of the

20

decision-making process from various perspectives. We conducted an in-depth analysis of

each stage of the decision-making process. We aimed to understand the content, accessibility,

and traceability of decision documents in practice to lay the groundwork for future research

aimed at systematizing decision documentation.

3.2. Methodology

We conducted two studies to identify the factors affecting the architectural decision-making

process and the challenges encountered in this process. The first was a semi-structured

exploratory study [21] with nine experts to delve into their practical experiences in

architectural decision-making and the overall process, and the other was an online study

[56] with 101 experts. Ethical approval has been obtained from the Hacettepe University

Ethics Committee for the conducted both semi-structured exploratory study and survey study.

Ethical approvals for both studies can be found in Appendix C (Figure 6.1) and Appendix D

(Figure 6.2).

3.2.1. Semi-structured Exploratory Study

This study was conducted as an exploratory qualitative research. Qualitative research

is suitable for the objectives of our study as it focuses on examining subjects in their

natural settings, exploring the reasons indicated by respondents, and understanding their

perspectives regarding the issue [57–60]. It employs qualitative data collection methods

such as observation, interviews, and document analysis to perceive solutions to a problem,

allowing for the recognition of previously known or unnoticed issues and addressing

the natural phenomena related to the problem through a subjective-interpretative process

[61]. This method aims not only to understand what people think but also why they

think that way. It involves considering subjective data such as individuals’ opinions,

experiences, perceptions, and emotions. The data collection method used in this study

involves semi-structured interviews with open-ended questions. The interview questions

were structured around four main topics: general information about the expert, details

21

related to architectural decision-making, techniques and tools used in decision-making,

and expectations regarding the improvement of the decision-making process. During the

interviews, questions related to these planned topics were advanced in a flexible manner,

adapting to the flow of the conversation without strict adherence to a predetermined order,

facilitating a dynamic question-and-answer exchange.

This exploratory study provided detailed insights into the practical process of architectural

decision-making among architects and developers, interpreting the results obtained from

expert consultations. The recordings made during the interviews were analyzed,

categorized according to the questions, and key contents were identified. The analyzed

results highlighted how architectural decisions are made, the influential factors during

decision-making, and the technical and social challenges encountered in this process.

The findings of this study aim to identify different software architectural decision-making

practices followed by software teams, determine the influential factors and associated

challenges, and suggest potential improvements for making sound architectural decisions

from the perspective of software architects.

The objective of this research is to gain a comprehensive understanding of how each

stage of the architectural decision-making process is conducted in practice, including

making, documenting, and operationalizing decisions, identifying factors influencing the

decision-making task, and pinpointing the technical and social obstacles that complicate

decision-making. As part of this goal, we primarily sought to learn how architectural

decisions are realistically made and documented.

3.2.1.1. Population

In this study, we targeted software engineers, team leaders, and software architects from

various companies in Turkey, specifically those with more than three years of professional

experience in software architecture and development. Consequently, we conducted

interviews with nine experts from nine different companies, all of whom possess expertise

in industrial and corporate software system development. Among the participants, eight

22

were male and one was female. These individuals have gained experience in more than

three companies in the field of software development and have an average of ten years of

experience, with a minimum of three years in each of these companies. The demographic

characteristics of the interviewees are presented in Table 3.1 below. Table 3.2 provides

detailed information for each participant, including gender, title, total years of experience,

number of companies worked for, number of different titles held, the number of software

engineers/developers in their current company, the number of employees in the current

project, the number of developers in the largest project they have been involved in date, the

city they are currently working in, and the duration of the interview. In this study, participants

responded to all questions considering their past experiences, which also influence their

responses, especially the size of the projects they have been involved in the past. According

to the information in Table 3.2, considering the projects the participants have been involved

in date, the number of developers in the largest project they have worked on ranges from 10

to over 100.

Table 3.1 Participant Demographic Information

Gender Count

Female 1

Male 8

Title

Software Architect 5

Team Leader 4

Experience

0-9 years 1

10-19 years 5

20 years and above 3

23

Table 3.2 General Information About Participants (P1-P9)
Pa

rt
ic

ip
an

ts

G
en

de
r

C
ur

re
nt

Ti
tle

To
ta

lE
xp

er
ie

nc
e

(Y
ea

rs
)

N
um

be
ro

fC
om

pa
ni

es

D
iff

er
en

tT
itl

es
H

el
d

N
um

be
ro

fE
ng

in
ee

rs
/D

ev
el

op
er

s

C
ur

re
nt

Pr
oj

ec
tS

iz
e

L
ar

ge
st

Pr
oj

ec
tS

iz
e

C
ur

re
nt

C
ity

In
te

rv
ie

w
D

ur
at

io
n

P1 Male Software Architect 27 7 6 20 20 20 Ankara 90min

P2 Male Software Architect 25 6 6 240 10 45 Ankara 45min

P3 Male Team Leader 14 7 4 500 10 50 Istanbul 41min

P4 Male Team Leader 20 4 5 2 3 12 Ankara 77min

P5 Male Team Leader 12 6 4 20 12 100+ Ankara 45min

P6 Female Software Architect 7 2 4 50 34 50 Istanbul 60min

P7 Male Software Architect 17 2 4 40 12 50 Ankara 67min

P8 Male Software Architect 14 6 4 180 18 10 Ankara 40min

P9 Male Team Leader 18 5 4 12 16 70 Ankara 50min

3.2.1.2. Data Collection

During the interviews, open-ended questions were asked to gather information about the

experts’ professional experience, previous projects and teams, and the approaches they use

in architectural decision-making. At the same time, it was ensured that they could answer

more comfortably and sincerely by asking the questions in an impromptu manner without

observing a specific order for the questions. The questions were addressed under four

different topics. These are: questions about the expert, questions about the decision-making

process, questions about the techniques and tools used in decision-making, and questions

about experts’ expectations about their decision-making approach. The first part (two

24

questions) aims to learn more about the experts and their background. The second part

(eight questions) aims to identify the decision-making and documentation process, the factors

influencing this process and the technical/social problems encountered in this process. It

aims to collect examples of architectural decisions and architectural decision categories. The

third section (six questions) focuses on the techniques and tools used in the decision-making

process. The last part (one question) aims to find out the expectations for the improvement of

the areas discussed during the interview. The interviews with the participants were conducted

online and each expert interview lasted on average of 57 minutes. Prior to the interview, the

participants’ permission was obtained and the interviews were recorded. The questions asked

to the participants are given in Table 3.8 as source [21].

3.2.1.3. Data Analysis

For the confidentiality of participants’ personal information, each participant was assigned

a different code (e.g. P1). In order to prepare all interview recordings for analysis, the

recordings were transferred to a fixed form and transcribed, and then the transcripts were

grouped by question. According to this grouping and data content, themes called ”key

content” were created. The frequency and percentage values of these key contents were

calculated according to the person and question-based groupings.

3.2.1.4. Findings

This qualitative study was carried out with participants from nine different companies in

Turkey, targeting software engineers, team leaders, and specifically those with over three

years of professional experience in software architecture and development. As a result,

interviews were conducted with nine experts—five software architects and four software

team leaders—each with a minimum of ten years of professional experience, barring one

participant. During our study, we gathered information on how decisions are currently

made and captured in practice, the types of decisions made and documented, where

25

they are stored, the techniques and tools used in the decision-making process, and the

factors influencing architectural decisions. Our research was organized under four different

headings: general information about the expert, decision-making, techniques, and tools used

in decision-making, and expectations for improving the decision-making process.

Questions About the Expert

At the beginning of the interviews, information was obtained about the participants’ previous

experiences, the roles they were assigned, and their years of experience. The research has

been conducted with participants having various years of experience, as shown in Table 3.1.

The total years of experience among the participants are at least 7 years. All participants have

held roles as software architects or team leaders for at least 2 years. In their past experiences,

they have worked in various roles such as research associate, team leader, software architect,

front-end developer, manager, and consultant. The projects they were involved in, in terms

of the size of the developer team, ranged from 5 to 150 developers.

Questions Related to Decision-Making

In this category, questions were asked specifically for RQ1 and RQ2 to gather

information. Participants were asked various questions regarding decision-making within

the scope of the study. To gain insights into how architectural decisions in the

software architecture decision-making process are made, who makes these decisions,

which decisions are documented, where the documented decisions are stored, the factors

influencing decision-making, and the technical and social difficulties that complicate the

decision-making process, questions were posed to the participants in this context. The

questions asked in this scope and the participants’ responses are provided below.

What do you think software architecture is? Participants provided various answers to the

definition of software architecture. However, at the core of all responses was the definition of

software architecture presented by Bass et al. [3], which states: ”The software architecture of

a system is the set of structures needed to reason about the system, which comprises software

elements, relations among them, and properties of both” [3]. Essentially, all participants

26

defined the software architecture of a program or a system as the structure or structures

consisting of software components designed to meet specific needs and the relationships

between these components. Some of the responses provided by the participants are as

follows:

• ”A set of high-cost decisions” (P1)

• ”Software architecture is a design, but not every design is a software architecture. It

is the design you create to be able to construct a system and to continue maintaining

it easily and efficiently, to be expandable. It is the design that clearly outlines the

components that make up the system and the relationships between these components.”

(P4)

• ”The backbone that the software can operate on and how the parts on that backbone

can understandably communicate with each other.” (P7)

Which decisions are documented? Five participants mentioned that they document all

decisions, two stated that the documentation of decisions is partial, and only two participants

indicated that they do not formally document decisions but rather evaluate and experiment

with suitable alternatives according to the project’s requirements and specifications. Some

of the responses from the participants are as follows:

• ”We do not document all architectural decisions, only some are documented as

evidence.” (P4)

• ”Decisions are made within the scope of the technical specification. All derived

designs are documented and recorded.” (P6)

When are these documented decisions recorded, and where are they stored? Most

participants noted that the decision-making process is more intense in the initial stages of the

project life cycle, with subsequent stages primarily involving modifications to the decisions

already made. Some responses regarding where the documented decisions are stored are as

follows, with other participants providing largely similar responses:

27

• ”I create and store them in collaborative environments like Confluence or Google

Drive.” (P1)

• ”We have implemented Architectural Decision Records (ADR) documents. When a

team chooses something, it states why it chose it, the implications of this choice, and

the pros and cons in the ADR documents.” (P3)

The responses given by the participants to questions related to the decisions made are

presented in Table 3.3. According to the data in the table, there is either full or partial

access by all developers to the decisions made, and there are no decisions that have not

been consciously documented. These decisions are made through consultation by competent

individuals coming together, depending on the company hierarchy. Generally, if the projects

are similar, the participants’ responses were inclined towards using previously made and

successful decisions in different projects. Many participants indicated that the content of the

project and the success of the decision are decisive in such a scenario.

Table 3.3 Responses from participants regarding other questions related to the decisions made.

Question Answers Count

1. Can all developers access these decisions? Yes 6

No 0

Partially 3

2. Are there any decisions that are deliberately not

documented in your projects or company?

Yes 0

No 9

3. Who usually makes the decisions? Only one person 0

By a team 9

4. Do you reuse decisions made in various projects? Yes 9

No 0

What types of architectural decisions are typically made in practice? In response to this

question, participants were presented with certain categories based on the classification

28

in the study by Weinreich and colleagues [54], and were asked to think about the

decisions they encounter in practice and to indicate which category these decisions belonged

to. All participants noted that they normally do not use a specific classification when

making decisions in practice; however, they stated that they would mark according to the

classification they considered upon reflection of their past decisions during the interview.

One participant (P3) did not answer this question because they do not employ any

classification in practice. These responses are shown in Table 3.4.

Table 3.4 Responses to the question about the types of decisions encountered in practice

What type of decisions do you encounter? Participants

P1 P2 P3 P4 P5 P6 P7 P8 P9

Structural and behavioral decisions x x x x x x x x

Tools, technology, process, organization x x x x x x x

Guidelines, design rules, desires x x x x x

What factors usually influence architectural decisions? Participants were asked to rate the

factors that influence their decision-making process during the architectural decision-making

stage on a scale of 5 (very influential), 4 (influential), 3 (neutral), 2 (not so much influential),),

1 (not influential at all). This question was also inspired by the study by Miesbauer et al. [54].

Accordingly, participants evaluated the factors presented to them based on our given scale.

As seen in Table 3.5, the responses generally ranged between neutral and very influential.

In the responses to the factors affecting architectural decisions, only P3 marked the value 1

(not influential at all). When considering the mode and median values, the factors that most

influence architectural decisions were most often rated 4 and 5 by the users. As seen in Table

3.5, while user requirements were selected as the factor that most influenced architectural

decisions, management preferences were chosen as the least influencing factor.

29

Table 3.5 Responses related to factors influencing architectural decisions

Factors Influencing Architectural Decisions P1 P2 P3 P4 P5 P6 P7 P8 P9 Average Mode Median

1 Management Preferences 3 4 2 3 4 3 4 4 4 3.5 4 4

2 Tool and Technology Availability 3 5 4 2 5 5 4 4 4 4.1 5 4

3 Risk 5 4 5 5 4 4 5 5 5 4.5 5 5

4 Time 4 4 3 4 4 5 5 5 5 4.2 4 4

5 Quality Attributes 5 5 4 4 4 4 4 3 3 4.1 4 4

6 User Requirements 4 5 5 4 5 5 4 4 5 4.6 5 5

7 Maintenance / Product Life Cycle 5 4 3 4 4 4 4 3 3 4.0 4 4

8 Personal Experience / Preferences 4 5 1 3 3 4 4 4 4 3.6 4 4

9 Business Goals and Strategies 5 5 3 2 3 4 4 4 4 3.8 5 4

10 Previous Successful / Unsuccessful Decisions 4 5 5 5 3 4 4 3 4 4.2 5 4

11 Restrictions 5 4 1 3 4 4 3 4 4 3.6 4 4

12 Cost 5 5 1 4 5 5 4 5 5 4.3 5 5

Note: In this table, each factor is rated on a scale from 1 to 5, where 1 represents ”not influential at
all” and 5 represents ”very influential”.

What are the factors that influence your architectural decision in terms of quality

characteristics? Can you name the three most important quality factors? One of the

participants (P6) did not answer this question and one participant (P5) listed only two quality

factors. According to the answers of the other participants, scalability and performance

are the most important quality factors when making architectural decisions. Testability,

modularity, understandability, and maintainability were mentioned by only one participant

each. The answers and frequencies of the participants are given in Table 3.6.

30

Table 3.6 Responses related to the factors influencing architectural decisions in terms of quality
attributes

Quality Factors
Participants

Frequency
P1 P2 P3 P4 P5 P6 P7 P8 P9

Scalability x x x x 4

Performance x x x x 4

Extensibility x x x 3

Reliability x x 2

Robustness x x 2

Safety x x 2

Availability x x 2

Testability x 1

Modularity x 1

Understandability x 1

Maintainability x 1

In the light of your experience in making architectural decisions in past projects, could you

evaluate the influence of the following difficulties as 5 (very influential), 4 (influential), 3

(neutral), 2 (not so much influential), 1 (not influential at all), NE (Never Experiences)?

What are your decision-making challenges? Thinking about the decisions you have made

in previous projects, could you rate the following examples on a scale of 1-5. (1) strongly

disagree, ... , (5) strongly agree. Participants were given the possible difficulties they faced

in their past projects as shown as Q9 of Table 3.8 in Section 3.2.2.1.. Each participant

evaluated the situations they faced in their past projects in terms of challenges considering

the situations given as Q9 of Table 3.8 in Section 3.2.2.1.. The participants were asked to

compare the given situations with the challenges they had faced in the past and if the given

situation was very challenging, they were asked to strongly agree. agree (5), and not at all

if the situation did not cause any difficulties in the past. We asked them to mark the option

of disagree (1). As a result of the evaluations, F22 was selected as the most challenging

31

situation for making architectural decisions. F1 and F9 were selected as the least challenging

situation.

What is Your Typical Process for Making Architectural Decisions? For this question,

the participants stated that they do not use a specific approach and technique for the

decision-making process. In general terms, considering the answers given to this question,

the decision-making process takes place as follows: Get together, consult, identify

alternatives, leave to work if needed, then get together again and make a decision.

Questions on Techniques and Tools Used in Decision Making

In this section, different questions were asked to the participants regarding the techniques

and tools used in the decision-making process. According to the answers given by

the participants, there were similar answers from the participants in determining the

architecturally important requirements. Generally, important requirements are determined

with what-if questions. When asked whether you look for alternative solutions to your needs

even if you already have a solution in mind when making decisions, all participants, except

for three participants, stated that they always look for alternative solutions. Three participants

stated that they make a choice based on their past experiences and therefore do not always

look for alternatives. Although there were different answers to the question of how do you

choose between alternative solutions, basically most participants stated that the final decision

is made by a team of experienced people. When asked whether they verify their final solution,

some said that they use the ATAM method and do this when the system is commissioned,

while others said that they do not use any verification method.

Questions on Prospects for Improving the Decision Making Process

In this section, participants were asked about areas that could be improved in order to make

better decisions. A few different areas are given in the question as an example. Only one

to participant (P7) did not answer this question. Effective information sharing among other

participants except for the participants who did not select the field, all participants marked

32

the first field effective information sharing. As can be seen from Table 3.7, the frequency is

the highest area is effective information sharing.

Table 3.7 Responses to the question about expectations for improving architectural decision-making

Which of the following

areas could be enhanced

to make better

architectural decisions?

Participants Frequency

P1 P2 P3 P4 P5 P6 P7 P8 P9

Effective information

sharing

x x x x x x x 7

Keeping track of decisions

and rationale

x x x x x x 6

Improved documentation x x x x x 5

Lightweight technique or

tool to guide them

x x x 3

Making decision-making

more agile

x x x 3

To summarize, the findings of our study indicate that although the software architecture

decision-making process varies among companies, the underlying methodology is

fundamentally similar. No specific approach or technique is consistently used for

decision-making. It has been found that many companies tend to document the decisions

made in the decision-making process. However, it has been expressed by the participants

that stating the reasons explicitly in the documentation process is not preferred, as detailed

documentation is often avoided by developers for being burdensome, and documenting

simple and significant points would be sufficient. According to the responses given by the

participants, the main factors affecting architectural decisions are user requirements, risk,

and cost. However, participants have also emphasized the importance of personal experience

and preferences. In terms of quality attributes, scalability, performance, and extensibility

33

have been seen as factors affecting architectural decisions. Participants have stated that

the impact of these quality factors varies from project to project. For instance, scalability

is not very effective for small projects but is significant for large-scale projects. They

have also mentioned the technical and social challenges encountered in the decision-making

process. The coercive effects of situations faced in each project differ, but the need for

information to resolve uncertainty is usually a challenging situation in decision-making.

Other challenging situations include the insufficiency of time to make decisions. The lack

of alternatives for a decision and receiving conflicting recommendations from different

sources have not been seen as having a challenging effect on the decision-making process.

According to the responses given to the questions about the techniques and tools used in

decision-making, the majority of the participants in the study have not validated their final

solutions with methods like ATAM or CBAM, applying similar approaches when selecting

among alternatives. The responses to improving the decision-making process are also of

similar nature. All participants except one have stated that effective information sharing

would contribute greatly to improving the decision-making process and leading to better

decisions, along with following the design decisions and logic. In general, according to the

results of the study, how the software architecture decision-making process is carried out, the

factors influencing this process, the importance of documentation for architectural decisions,

important areas for improving the architectural decision process, and the expectations of

developers and architects have been revealed. During the interviews with the participants,

they provided feedback considering the companies they have worked with so far. Based

on this feedback and the answers to the survey questions, we can generalize that there is

no systematic way for the software architecture decision-making process, documentation is

mostly done more detailed and properly in military projects, and no method is used to verify

the decision made.

3.2.2. Survey Study

Following the research questions outlined in Section 1.1., an questionnaire was crafted and

disseminated online. In the development of the survey, we incorporated findings from

34

our preliminary study on the subject. Additionally, we referenced multiple studies for

crafting questions related to decision-making influences, decision types [52], challenges

within the decision-making framework [4], decision-making strategies, and the identification

of stakeholders in the decision process [53]. The sources for the formulated questions,

derived from various references, are noted in the reference section of Table 3.8. These

questions were either adopted as is or slightly modified. The analysis of the survey responses

was conducted on a question-by-question basis, employing both quantitative and qualitative

approaches to address the research questions [59, 62]. Upon establishing the research

questions, the investigation proceeded in three phases. In the initial phase, a questionnaire

was developed, drawing upon both existing scholarly works and original questions aligned

with the research questions identified. In the subsequent phase, this questionnaire was

distributed to individuals actively engaged in the software architecture decision-making

process, as well as to researchers possessing pertinent industry experience and insight. In

the final phase, the gathered responses were methodically analyzed, both qualitatively and

quantitatively, to draw conclusions. Each of these stages is elaborated upon further below.

3.2.2.1. First Phase: Design of Questionnaire

The survey’s design was developed to delve into the complexities of the architectural

decision-making process in software projects. Its main goal was to reveal the diverse factors

that influence these decisions, the obstacles faced by practitioners, and the common methods

for recording and rationalizing decisions. To accomplish this, we leveraged insights from

our initial study [21] and combined them with extensive reviews of relevant literature. This

method allowed us to devise a questionnaire that not only reflects the complex nature of

architectural decision-making but also meets our research goals of pinpointing areas for

improvement and understanding the effects of these decisions on software quality and team

interactions.

To ensure the validity and reliability of the questionnaire, several methodological steps were

undertaken. Initially, the survey questions were developed through a collaborative process

35

involving both academic researchers and industry experts, ensuring that they accurately

reflect the real-world complexities of architectural decision making. Additionally, the

reliability of the questionnaire was evaluated using Cronbach’s Alpha, and the findings

indicated satisfactory internal consistency across the various sections of the questionnaire.

This thorough method in the design and evaluation of the questionnaire underpins the

strength of our findings.

Our questionnaire is structured into four distinct sections, encompassing a total of 28 varied

questions. Each section targets specific areas of interest. The initial segment gathers

demographic data about the respondents. In the next section, the companies the participants

were previously associated with and the projects they participated in are questioned. The

third segment probes into the methods employed for making and documenting architectural

decisions within the participants’ most recent or current company/project. The final

segment aims to capture the respondents’ overall perspectives and understanding of software

architecture, encouraging answers based on their comprehensive architectural knowledge

and experiences. Further details on these sections and the specific questions they include are

provided below, with the questions listed in Table 3.8, including the type of each question.

Additionally, the table’s rightmost column maps the survey questions to the corresponding

research questions. The questionnaire, along with the anonymized responses, is available for

online access 1.

Table 3.8 Survey questions. (OE: open-ended, MA: multiple answer, MC: multiple-choice, LS:
Likert scale, Y/N: yes/no)

ID Question Type Source Condition RQ

Questions about participants’ profile

Q1 Name- Surname OE

Q2 E-Mail OE

Continued on next page

1https://doi.org/10.5281/zenodo.7515757

36

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

Q3 What is the highest academic degree you

have obtained? -Undergraduate -Graduate

-Doctorate

MA

Q4 What roles have you worked in software

development projects throughout your

career?

MC

Questions about the companies and projects

Q5 When you consider all the projects you have

worked on until today, what is the maximum

number of software engineers/software

developers in the project with the most

employees?

OE [21]

Q6 Which of the following software architectural

patterns did you use in the past or current

projects?

MA

Q7 Which of the software architectural patterns

you have chosen above do you have the most

experience with?

MC

Q8 Which types of software projects do you

predominantly experience?

MA

Continued on next page

37

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

Q9 In the light of your experience in making

architectural decisions in past projects,

could you evaluate the influence of the

following difficulties as 5 (very influential),

4 (influential), 3 (neutral), 2 (not so much

influential), 1 (not influential at all), NE

(Never Experiences)?

F1-You received conflicting

recommendations from various sources

about which decision alternative to choose

F2-There were no previous similar decisions

to compare this decision against

F3-It was hard to identify a superior decision

alternative from the alternatives under

consideration

F4-The decision required a lot of thinking

from you

F5-It was hard to convince stakeholders to

accept a certain decision alternative

F6-Stakeholders had strongly diverging

perspectives about the decision

F7-You needed to influence some

stakeholders without having formal authority

over them

F8-The decision had too many alternatives

LS [4] RQ2,

RQ2.1

Continued on next page

38

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

Q9 F9-The decision had too few alternatives

F10-Analyzing alternatives for this decision

took a lot of effort

F11-Some quality attributes were considered

too late in the decision-making process

F12-Too many people were involved in

making the decision

F13-Dependencies with other decisions had

to be taken into account

F14-The decision had a major business

impact F15-You had to respect existing

architectural principles

F16-Too little time was available to make the

decision

F17-You had a lot of peer pressure F18-There

were many tradeoffs between quality

attributes

F19-You lacked experience as an architect

F20-You lacked domain-specific knowledge

(e.g. new customer)

F21-More information was needed to reduce

uncertainty when making the decision

LS [4] RQ2,

RQ2.1

Questions about the companies they have worked with and the projects they have been

involved in now and in the past (These questions collect information about company

structures and the role of participants in their current or past company)

Q10 Are you currently working in a company

actively?

Y/N

Continued on next page

39

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

Q11 What is your role in the company you work

for?

OE Displayed only

if Q10 is “Yes”

Q12 How long have you been working in your

company?

OE Displayed only

if Q10 is “Yes”

Q13 How long have you been in your current role

in your company?

OE Displayed only

if Q10 is “Yes”

Q14 Approximately how many software

engineers/software developers work in

your company?

OE [21] Displayed only

if Q10 is “Yes”

Q15 What is the number of employees in the

project you take part in (If you are involved

in more than one project, answer based on the

project largest in size)?

OE [21] Displayed only

if Q10 is “Yes”

Q16 How many people are involved in the role of

”software architect” in the project you take

part in (If you are involved in more than one

project, answer based on the project largest in

size)?

OE Displayed only

if Q10 is “Yes”

Q17 What is the software development lifecycle

model used in your company (if more than

one model is used, write them all)?

OE Displayed only

if Q10 is “Yes”

RQ2.1,

RQ2.2

Questions about how architectural decisions are made in practice and how they are

documented in participants’ current or last company/project (These questions collect

information regarding decision-making activities and architectural decision documentation)

Q18

Are all or some of the architectural decisions

in the company documented?

Y/N [21] RQ1,

RQ2.1,

RQ2.2

Continued on next page

40

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

a. Which architectural decisions are

documented?

OE [21] Displayed only

if Q18 is “Yes”

RQ1

b. Where are these documented architectural

decisions stored?

OE [21] Displayed only

if Q18 is “Yes”

RQ1,

RQ1.2

c. Which information is kept for each

architectural decision? Please list down the

major contents of the document.

OE Displayed only

if Q18 is “Yes”

RQ1,

RQ1.2

d. Are the documented and stored

architectural decisions accessible to all

developers? -Yes -No -Partially –Other

MC [21] Displayed only

if Q18 is “Yes”

RQ1

e. Do you have an architectural decision

in your project or company that have

any decisions been left undocumented

intentionally?

Y/N [21] RQ1

f. Do you follow the architectural decisions

that affect each other in your project or

company?

Y/N RQ1

RQ1.3

Q19

Who usually makes the architectural

decisions at your current or last company?

-Decisions are made by only one person

-Decisions are made by a team of more than

one person

MC [21] RQ1,

RQ2.1,

RQ2.2

Continued on next page

41

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

a. How many people usually participate in

team decision-making to create the software

architecture?

OE Displayed

only if Q19

is “Decisions

are made by

a team of

more than one

person”

RQ1,

RQ1.1

b. What process(es) do you use most

frequently for decision-making?

- Brainstorming

- Voting

- Delphi

- Consensus

- Analytical Hierarchy Process (AHP)

MA [53] Displayed

only if Q19

is “Decisions

are made by

a team of

more than one

person”

RQ1,

RQ1.1

c. Briefly describe the general structure and

stakeholders of the team involved in your

architectural decision-making process (e.g.

architects, customers, business people, etc.).

OE [53] Displayed

only if Q19

is “Decisions

are made by

a team of

more than one

person”

RQ1

General views and information about software architecture: These questions try to capture

the general description of software architecture from practitioners’ perspectives and to

determine areas that need improvements

Q20 How would you define the concept of

”software architecture”?

OE [21]

Continued on next page

42

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

Q21 What types of architectural decisions do you

think are typically more critical to the project

in practice?

-Tool

-Technology

-Process (Development process-

Methodology)

-Organization (Business Environment)

-Property Decisions (state the central

qualities of a system and include design rules

and guidelines, as well as constraints on a

system)

-Structural Decisions (lead to the creation of

subsystems)

-Behavioral Decisions (more related to how

elements interact to address some functional

or non-functional requirement.)

-Other

Continued on next page

43

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

Q22 What factors do you think generally affect

architectural decisions? Can you evaluate

the following factors by scoring 5 (very

effective), 4 (effective), 3 (neutral), 2 (less

effective), 1 (ineffective)?

-Management preferences

-Tool and technology availability

-Risk

-Time

-Quality attributes

-User requirements

-Maintenance / Product life cycle

-Personal experiences/preferences

-Business goals and strategies

-Previous decisions (successful and

unsuccessful)

-Constraints

-Costs

LS [52] RQ2

Q23 What are the factors that affect your

architectural decision in terms of quality

features? Among them, could you list the

three most important quality factors?

OE [21] RQ2

Q24 How do you identify architecturally

important requirements in the architectural

decision-making process?

OE [21] RQ1

Q25 Even if you already have a solution in mind

while making a decision, are you looking for

alternative solutions to your needs?

Y/N [21] RQ3

Continued on next page

44

Table 3.8 – continued from previous page

ID Question Type Source Condition RQ

Q26 How do you choose among alternative

solutions?

OE [21] RQ3

Q27 How do you choose among alternative

solutions?

OE [21] RQ3

Q28 Which of the following areas could be

improved to make better architectural

decisions? Do you have any additional areas

to recommend?

-Lightweight technique or tool to guide them

-Improved documentation

-Efficient information sharing

-Keeping track of decisions and rationale

-Making the decision-making more agile

-The dependence of the decisions on each

other and their traceability

-Other

MA [40] RQ4

At the start of the questionnaire, we shared the goals of the survey, the intended audience,

and the research questions with the participants. An overview of software architecture was

also provided, as detailed below:

“The process of developing a Software Architecture requires extensive decision-making and

the involvement of many stakeholders. To better control the software development process,

the software project is guided by a software architecture selected from different architectural

candidates. Software architecture is an architectural pattern that is constantly evolving as a

result of a series of technical decisions. Based on the architectural candidates, the software

architecture is shaped by the decisions taken to determine the most appropriate solution to

meet the needs of the project. Accordingly, software architecture is an architectural model

that constantly evolves as a result of a series of technical decisions.”

45

After providing the introductory information, a short message was included to reassure

participants about the confidentiality of their responses, guaranteeing that their personal

information would remain private. Participants were then presented with a consent form,

affirming their voluntary involvement in the study and their comprehension of its objectives.

3.2.2.2. Second Phase: Distribution of Questionnaire and Obtaining Responses

In the early stages of designing the survey, identifying respondents was our most important

task. The distribution phase of our survey was strategically organized to target a broad

and representative group of people interested in software architecture, both practitioners

and researchers. We used multiple avenues to distribute the survey, including professional

networks, social media channels and direct emails to industry experts. We motivated

respondents to circulate the survey among their professional networks to increase the

response rate and ensure a broad reach.

Our focus was on two key demographics: software practitioners actively engaged in or

previously involved in the architectural decision-making process, and researchers possessing

pertinent expertise and experience in the industry. Consequently, we distributed survey

invitations to individuals involved in software architecture decision-making, including

members of software architecture-related email lists and social media platforms (such

as LinkedIn and Facebook), authors of scholarly articles on software architecture, and

professionals labeled as ”software architects” on LinkedIn. For selecting paper authors, we

specifically targeted those with contributions to journals or conferences focusing on software

architecture. On LinkedIn, we reached out to individuals identified through searches for

the term ”software architect”. The announcement requesting the participation of software

architects in our study was posted in the following groups.

• Software Architecture 2

• Software Architecture and Design 3

2https://www.linkedin.com/groups/2967358/
3https://www.linkedin.com/groups/3740067/

46

• Software Architecture Architecting for Architects 4

• Software Architects Discussions 5

We dispatched over 1000 emails, LinkedIn, and Facebook messages directly to professionals

and scholars in the field, and also reached out indirectly to many through announcements in

groups, as well as posts on forums and social media platforms. Additionally, we encouraged

practitioners to share the survey email with colleagues they knew who might be interested

in participating. This approach led to a total of 101 individuals completing the survey. The

survey was hosted online using JotForm and remained accessible from April 2021 through

July 2021.

3.2.2.3. Third Phase: Analysis of Responses

In this part, we describe the methods used for collecting, organizing, and analyzing the

survey responses. After concluding the survey, we applied both quantitative and qualitative

techniques to process the responses. For quantitative analysis, we used statistical methods

including frequency distribution, mean, and mode calculations. For qualitative responses,

we conducted content analysis to identify thematic patterns and insights. Utilizing these

combined approaches allowed us to derive thorough conclusions from the data, ensuring high

validity and reliability in addressing our research questions. The survey was deployed online,

with participant data compiled into a spreadsheet format. In this spreadsheet, questions were

listed horizontally while participant responses were aligned vertically. We counted responses

for binary (Yes/No), Multiple Choice, and Multiple Answer formats, excluding Likert Scale

questions for which we calculated mode, median, and mean statistics.

The survey included two subsections aimed at evaluating the challenges in architecture

and the factors influencing architectural decisions. The consistency of these subsections

was verified using Cronbach’s Alpha [63], with the architectural challenges subsection

4https://www.linkedin.com/groups/3767172/
5https://www.facebook.com/groups/127639125043271/

47

comprising 21 items (α = .724), the decision-influencing factors subsection containing 12

items (α = .764), and the combined subsections including 33 items (α = .773). With all

three Cronbach’s Alpha values falling between 0.7 and 0.8, the subsections and the survey

as a whole were deemed reliable for internal consistency as per the criteria of George and

Mallery [64].

Qualitative research methodologies seek to understand individuals’ behaviors, beliefs,

experiences, and attitudes [62], analyzing non-numeric data like text, video, and audio to

extract and assess concepts or experiences. These methods aim to grasp the essence of

research questions from a humanistic or idealistic standpoint, typically yielding qualitative

data. Among these methods, content analysis systematically categorizes, quantifies, and

interprets messages within qualitative data (e.g., text) both objectively and systematically,

based on meaning and/or grammar [65]. Michael describes content analysis as a process

of qualitative data reduction and interpretation aimed at identifying significant patterns

and meanings [59]. In our study, we employed content analysis for the open-ended

questions, segmenting the collected data into meaningful units to conceptually understand

each segment. This process involved open coding to compare, contrast, and identify patterns

within the data, thereby categorizing common themes [66] [67]. Subsequently, quantitative

analysis was applied to these codes to identify recurring patterns and establish categories.

These categories were then synthesized into broader themes, encapsulating generalized

category insights. The codes and categories are available online 6. Furthermore, we

utilized the Mann-Whitney U test [68], a nonparametric test serving as an alternative to the

two-sample t-test, to assess statistically significant differences between two distinct groups

by analyzing their mean ranks.

6https://doi.org/10.5281/zenodo.7515757

48

3.3. ANALYSIS OF RESULTS

3.3.1. Participant Demographics

Table 3.9 displays the demographic information of the survey participants. All 101

respondents are currently employed in the industry or have previously been involved in

making decisions related to software architecture in their professional lives. The participants

in this study come from companies located in 27 different countries, with many based in

Turkey, the United States, Canada, India, and others. A large portion of the respondents

hold a master’s degree (63%), followed by 19% with doctoral degrees, and 18% with

undergraduate degrees. Over their careers, these individuals have held a variety of roles,

including software architect, team leader, software developer, software tester, and project

manager (Table 3.9).

Figure 3.1 illustrates the various roles held by survey participants over their careers and

the breakdown of their current or most recent professional titles. Participants’ roles were

initially provided in an open-ended format, which we then categorized as shown in the

figure. The data reveal that a significant majority have experience working as software

architects, software developers, and team leaders. When looking at their most recent or

current roles, software architects form the largest group, with 32 participants identifying with

this position. We also inquired about the participants’ current employment status, finding

that 93 of them are actively employed in a company, while the remaining eight have had

experience with software architecture decision-making in the past. Additionally, when asked

about the presence of software architects in the projects they were involved in, only five

participants reported the absence of a software architect role in their projects. In contrast,

28 indicated there was one software architect, and the majority (67) stated that their projects

included two or more individuals in the software architect role.

49

Table 3.9 Demographics of participants

Unique respondents (N = 101)

Gender

n %

Female 7 6.9
Male 94 93.1

Country

n %

Turkey 48 47.5
United States 11 10.9
Canada 3 3.0
India 3 3.0
Other 36 35.6

Education

n %

BSc 18 17.8
MSc 63 63.4
PhD 19 18.8

Work Experience on Current Position

n %

Less than a year 13 14.0
1 - 5 years 62 66.7
6 - 10 years 13 14.0
11 - 20 years 4 4.3
More than 20 years 1 1.1

3.3.2. Company and Project Demographics

In this part of the survey, we asked participants regarding their previous project involvement,

including the type of these projects, the software patterns they are most familiar with, and

the challenges encountered during the architectural decision-making stages of these projects.

Based on responses to questions about the types of projects they most commonly worked on,

it was discovered that a significant portion of the participants had extensive experience in

50

Figure 3.1 Positions of participants throughout their careers and current or last positions of the
participants in their companies

developing business application software (32%) and web applications (31%), as depicted in

Figure 3.2.

Participants were asked about the architectural patterns they employed in previous projects.

A range of architectural patterns was provided for selection, and participants had the option

to specify any design patterns not listed. The occurrence of each pattern chosen was

tallied and is displayed in Figure 3.3, revealing that service-based architecture (chosen by

92 participants) and layered architecture (chosen by 91 participants) emerged as the top

preferences. Additionally, respondents indicated that they possess the most experience with

layered architecture among the architectural patterns.

Participants were asked to assess and rank the scenarios listed in the first column of Table

3.10, based on the challenges they have previously encountered. They were to choose “I

51

Figure 3.2 Types of projects that the participants have most experienced

Figure 3.3 Types of architectural patterns that participants have most experienced

completely agree” (5) if a particular situation presented significant difficulty, and “I do not

agree at all” (1) if the situation had not been challenging in the past. For scenarios they

had never encountered, they selected the ”never experienced” option. The mode, median,

and mean values for the responses to these questions are provided in the table, excluding the

”never experienced” responses from these calculations.

52

To address research question RQ2.1, we conducted a Mann-Whitney U test [69], a

non-parametric test that serves as an alternative to the two-sample t-test. The responses

to question Q9 were categorized based on:

• whether architectural decisions are documented (N: 79) or not (N: 22),

• whether the development life-cycle model used is Agile (N: 72) or not (N: 29),

• whether decisions are made individually with a single decision-maker (N: 9) or as a

group (N: 91),

• whether architectural decisions are verified (N:28) or not (N:40),

• whether the participants are experienced with Business Application Software (N:75)

or not (N:26),

• whether the participants are experienced with Web Applications (N:72) or not (N:29),

• whether the participants are experienced with Layered Architecture (N:49) or not

(N:51),

• whether the participants are experienced with Service-based Architecture (N:25) or not

(N:75),

• whether the participants are experienced with Microservices Architecture (N:23) or

not (N:77).

We raised the following hypotheses with respect to the groups above:

• H1 1: Technical and social challenges on decision-making (Q9) are related to whether

architectural decisions are documented (N: 79) or not (N: 22),

• H1 2: Technical and social challenges on decision-making (Q9) are related to the

development lifecycle model used is Agile (N: 72) or not (N: 29),

53

• H1 3: Technical and social challenges on decision-making (Q9) are related to whether

decisions are made individually with a single decision-maker (N: 9) or as a group (N:

91),

• H1 4: Technical and social challenges on decision-making (Q9) are related to whether

architectural decisions are verified (N:28) or not (N:40),

• H1 5: Technical and social challenges on decision-making (Q9) are related to whether

the participants are experienced with Business Application Software (N:75) or not

(N:26),

• H1 6: Technical and social challenges on decision-making (Q9) are related to whether

the participants are experienced with Web Applications (N:72) or not (N:29),

• H1 7: Technical and social challenges on decision-making (Q9) are related to whether

the participants are experienced with Layered Architecture (N:49) or not (N:51),

• H1 8: Technical and social challenges on decision-making (Q9) are related to whether

the participants are experienced with Service-based Architecture (N:25) or not (N:75),

• H1 9: Technical and social challenges on decision-making (Q9) are related to whether

the participants are experienced with Microservices Architecture (N:23) or not (N:77).

From the analysis, the most daunting challenge in the architectural decision-making process

was identified as F14 – ”The decision had a significant impact on the business,” which scored

a mode of 5, a median of 4, and an average score of 4.19. On the other hand, F9 – ”The

decision had too few alternatives” emerged as the least problematic. These findings are in

line with those from the research conducted by Tofan et al. [4]. For each identified challenge,

the number of participants who indicated they had ”never experienced” the situation is listed

in the ”NE” column of Table 3.10. A high-resolution version of Table 3.10 is made available

for detailed examination 7. p values obtained with the Mann-Whitney U test. p values less

than the 0.1 significance level and Values less than 0.05 are shown in bold.

7https://doi.org/10.5281/zenodo.7519857

54

Ta
bl

e
3.

10
R

el
at

io
ns

hi
ps

of
te

ch
ni

ca
la

nd
so

ci
al

ch
al

le
ng

es
in

de
ci

si
on

m
ak

in
g

fo
rh

yp
ot

he
si

s
gr

ou
p

1
(H

1)

Sc
or

es
p

va
lu

es
(M

an
n-

W
hi

tn
ey

U
)

Fa
ct

or
s

A
ve

ra
ge

M
od

e
M

ed
ia

n
N

E
H

1
1

H
1

2
H

1
3

H
1

4
H

1
5

H
1

6
H

1
7

H
1

8

F1
4

–
T

he
de

ci
si

on
ha

d
a

m
aj

or
bu

si
ne

ss
im

pa
ct

4.
19

5
4

0
0.

61
0

0.
47

7
0.

90
2

0.
89

2
0.

08
7

0.
36

3
0.

21
7

0.
67

1
F1

3
–

D
ep

en
de

nc
ie

s
w

ith
ot

he
rd

ec
is

io
ns

4.
06

4
4

0
0.

15
1

0.
88

1
0.

09
0

0.
20

9
0.

41
1

0.
79

3
0.

64
6

0.
86

1
F2

1
–

M
or

e
in

fo
rm

at
io

n
w

as
ne

ed
ed

3.
80

4
4

1
0.

66
4

0.
32

4
0.

10
1

0.
26

5
0.

08
1

0.
58

7
0.

10
4

0.
18

9
F1

5
–

R
es

pe
ct

fo
re

xi
st

in
g

ar
ch

ite
ct

ur
al

pr
in

ci
pl

es
3.

75
4

4
1

0.
93

0
0.

64
1

0.
30

7
0.

58
8

0.
11

4
0.

65
0

0.
50

6
0.

82
1

F4
–

T
he

de
ci

si
on

re
qu

ir
ed

a
lo

to
ft

hi
nk

in
g

fr
om

yo
u

3.
71

4
4

1
0.

92
7

0.
22

5
0.

95
9

0.
78

4
0.

44
7

0.
07

2
0.

92
7

0.
59

7
F7

–
Y

ou
ne

ed
ed

to
in

flu
en

ce
so

m
e

st
ak

eh
ol

de
rs

w
ith

ou
th

av
in

g
fo

rm
al

au
th

or
ity

ov
er

th
em

3.
67

4
4

0
0.

04
3

0.
26

6
0.

13
5

0.
85

9
0.

65
1

0.
24

6
0.

97
1

0.
79

0
F6

–
St

ak
eh

ol
de

rs
ha

d
st

ro
ng

ly
di

ve
rg

ed
pe

rs
pe

ct
iv

es
ab

ou
tt

he
de

ci
si

on
3.

58
4

4
2

0.
11

1
0.

71
6

0.
31

9
0.

81
8

0.
48

4
0.

22
8

0.
86

5
0.

19
4

F1
6

–
To

o
lit

tle
tim

e
w

as
av

ai
la

bl
e

to
m

ak
e

th
e

de
ci

si
on

3.
52

4
4

0
0.

80
0

0.
76

3
0.

40
6

0.
42

3
0.

79
5

0.
15

6
0.

00
7

0.
00

4
F1

8
–

T
he

re
w

er
e

m
an

y
tr

ad
eo

ff
s

be
tw

ee
n

qu
al

ity
at

tr
ib

ut
es

3.
52

4
4

1
0.

87
2

0.
91

9
0.

37
1

0.
51

2
0.

04
9

0.
80

4
0.

43
8

0.
07

8
F5

–
It

w
as

ha
rd

to
co

nv
in

ce
st

ak
eh

ol
de

rs
to

ac
ce

pt
a

ce
rt

ai
n

de
ci

si
on

al
te

rn
at

iv
e

3.
47

4
4

1
0.

10
4

0.
93

1
0.

00
5

0.
08

5
0.

97
1

0.
81

5
0.

95
3

0.
41

0
F1

–
Y

ou
re

ce
iv

ed
co

nfl
ic

tin
g

re
co

m
m

en
da

tio
ns

fr
om

va
ri

ou
s

so
ur

ce
s

ab
ou

tw
hi

ch
de

ci
si

on
al

te
rn

at
iv

e
to

ch
oo

se
3.

45
4

4
2

0.
09

1
0.

80
4

0.
00

7
0.

12
3

0.
71

9
0.

36
3

0.
84

1
0.

35
6

F1
1

–
So

m
e

qu
al

ity
at

tr
ib

ut
es

w
er

e
co

ns
id

er
ed

to
o

la
te

in
th

e
de

ci
si

on
-m

ak
in

g
pr

oc
es

s
3.

40
4

4
0

0.
15

1
0.

58
0

0.
12

7
0.

99
0

0.
40

8
0.

67
1

0.
03

7
0.

00
9

F1
0

–
A

na
ly

zi
ng

al
te

rn
at

iv
es

fo
rt

hi
s

de
ci

si
on

to
ok

a
lo

to
fe

ff
or

t
3.

35
4

4
0

0.
05

5
0.

69
7

0.
86

0
0.

04
8

0.
93

5
0.

65
6

0.
43

9
0.

97
3

F2
–

T
he

re
w

er
e

no
pr

ev
io

us
si

m
ila

rd
ec

is
io

ns
to

co
m

pa
re

th
is

de
ci

si
on

ag
ai

ns
t

3.
33

4
3

0
0.

76
9

0.
92

8
0.

41
5

0.
49

8
0.

81
0

0.
55

5
0.

34
0

0.
78

3
F1

2
–

To
o

m
an

y
pe

op
le

w
er

e
in

vo
lv

ed
in

m
ak

in
g

th
e

de
ci

si
on

3.
26

4
3

0
0.

00
9

0.
32

0
0.

06
5

0.
93

9
0.

26
2

0.
30

4
0.

76
6

0.
58

2
F3

–
It

w
as

ha
rd

to
id

en
tif

y
a

su
pe

ri
or

de
ci

si
on

al
te

rn
at

iv
e

fr
om

th
e

al
te

rn
at

iv
es

un
de

rc
on

si
de

ra
tio

n
3.

22
4

3
1

0.
14

5
0.

77
8

0.
35

6
0.

14
3

0.
73

0
0.

56
5

0.
25

8
0.

10
F2

0
–

Y
ou

la
ck

ed
do

m
ai

n-
sp

ec
ifi

c
kn

ow
le

dg
e

(e
.g

.,
ne

w
cu

st
om

er
)

3.
02

4
3

4
0.

67
9

0.
33

4
0.

85
6

0.
36

5
0.

14
6

0.
77

4
0.

51
5

0.
16

9
F8

–
T

he
de

ci
si

on
ha

d
to

o
m

an
y

al
te

rn
at

iv
es

3.
00

4
3

2
0.

53
0

0.
24

9
0.

68
2

0.
55

8
0.

56
8

0.
54

6
0.

43
2

0.
78

6
F1

7
–

Y
ou

ha
d

a
lo

to
fp

ee
rp

re
ss

ur
e

2.
92

2
3

3
0.

43
0

0.
00

8
0.

07
8

0.
23

8
0.

20
3

0.
03

4
0.

00
1

0.
03

4
F1

9
–

Y
ou

la
ck

ed
ex

pe
ri

en
ce

as
an

ar
ch

ite
ct

2.
66

2
3

2
0.

79
1

0.
83

6
0.

92
9

0.
67

4
0.

10
8

0.
23

6
0.

26
4

0.
44

9
F9

–
T

he
de

ci
si

on
ha

d
to

o
fe

w
al

te
rn

at
iv

es
2.

54
2

2
3

0.
23

1
0.

98
7

0.
59

7
0.

76
1

0.
33

5
0.

82
7

0.
35

1
0.

33
8

55

The p-values were calculated for each group, with the significance threshold set at 0.10.

Although the p-value criterion for significance was 0.10, the table highlights p-values

smaller than 0.05 in a deeper shade of gray. The data indicate that for the hypothesis

H1 9, concerning the challenges faced during the architectural decision-making process,

no statistically significant findings were observed, and thus these results were not included

in Table 3.10. When examining the various hypotheses connected with different groups

against the backdrop of social and technical challenges, a substantial number of hypotheses,

particularly those related to F17 (including H1 1, H1 2, H1 3, H1 6, H1 7, and H1 8), were

corroborated. This means there’s a statistically noticeable disparity between the mentioned

group pairs and how they perceive these challenges, with different perceptions based on

the challenge level. Table 3.10 displays that for factors like F1 and F12, a statistically

significant variation exists for both the documentation of architecture decisions and the size

of the decision-making group. Responses for F13, F5, F1, F12, and F17 showed a significant

difference between decisions made by an individual and those made by a collective. These

difficult scenarios are commonly associated with stakeholder involvement, and the distinct

perceptions between group and individual decision-makers underscore this point.

Concerning the software lifecycle methods applied within their organizations, participants

were prompted with an open-ended question. They were advised to list all methods if

multiple were in use. Three individuals did not respond to this inquiry, and one provided

an irrelevant response. The contributions from the remaining 97 participants are visualized

in Figure 3.4. Some participants referenced a broad category like ”agile,” while others

named specific models such as ”scrum.” In the analysis, each distinct method was treated

as a separate category. Methods delineated with commas or dashes, like ”Agile, Waterfall”

or ”Agile-Waterfall,” were regarded as separate methodologies. The Agile approach was

mentioned by a total of 90 respondents. While 44 mentioned ”agile” in a general sense, the

rest specified particular agile frameworks they employ, including Scrum (35), Kanban (7),

and Safe Agile (4).

56

Figure 3.4 Development Lifecycle Models used by companies of the participants

3.3.3. Results from questions about how architectural decisions are made in practice

and how these decisions are documented in participants’ current or last

company/project

In this segment, inquiries focused on the procedural aspects of making architectural

decisions, the documentation of these decisions, the specifics contained within these

documents, their storage locations, and the composition of the teams making these decisions.

Regarding the question, ”Are the company’s architectural decisions documented in any

form?”, 79 respondents affirmed while 22 negated. Those confirming were further

questioned about the nature of decisions documented, the storage locations of these

documents, their contents, and their accessibility to all developers. When asked if all

developers could access the architectural decision documentation, 61 indicated ”yes”, 16

said ”partially”, one responded ”no”, and one did not provide an answer. The respondents

who noted that decisions were documented were also asked about the types of decisions

documented. The documented architectural decision types are listed in Table 3.11. A

majority mentioned documenting all decisions made. Based on other responses, decisions

frequently documented encompassed ”services, tools, and technologies” such as the choice

57

of software languages for the project, application server requirements, database selections,

and ”system-level decisions” covering the system’s architecture, the identification of

architectural components, and their interrelations. Among these responses, one participant’s

answer was incomplete and incorrect, and 23 respondents opted not to answer, with these

responses being omitted from the analysis and not categorized.

Table 3.11 Responses to questions about architectural decisions that are documented

Q18. A. Which architectural decisions are documented?

Responses Frequency Percentage

All Decisions 17 16.3%
Services, tools, and technologies 14 13.5%
System level decisions 12 11.5%
Architectural components 9 8.7%
High-level design decisions 8 7.7%
Significant evolution or change of architecture 6 5.8%
Key / Main decisions 5 4.8%
Principles 4 3.8%
Diagrams 4 3.8%
Infrastructural decisions 4 3.8%
Processes 4 3.8%
Selected design patterns 4 3.8%
Solution level decisions 3 2.9%
Strategies 2 1.9%
Policy on what to document is unclear 2 1.9%
Requirements 2 1.9%
Other 4 3.8%

We asked about the specific content maintained within decision documents. Table 3.12 lists

the responses and their occurrence. The most frequently mentioned elements in decision

documentation include options, trade-offs, and visual diagrams. Figure 3.5 illustrates the

most prevalent types of content documented. The analysis indicates that there’s a notable

frequency in documenting both alternatives and trade-offs.

Typically, decision documentation is housed in collaborative tools like Confluence, Wiki,

GitHub, and JIRA, which facilitate team cooperation and information sharing. In the

realm of software development, file-based documentation is a common method for capturing

architectural knowledge [70], as reflected in the participant responses presented in Figure 3.6.

58

We queried participants on whether they track interrelated architectural decisions within their

projects or organizations. Of the respondents, 78 indicated they do monitor such decisions,

while 24 said they do not. Those who do track interdependent decisions reported they usually

do so through regular documentation reviews and meetings.

Table 3.12 Major contents of architectural documents

Q18. C. Which information is kept for each architectural decision? Please list down the
major contents of the document.

Responses Frequency Percentage

Alternatives 19 10.2%
Tradeoffs 18 9.7%
Diagrams 16 8.6%
Context (Discussions) and problem statements 15 8.1%
Rationale of decisions 14 7.5%
Effects 10 5.4%
Decision 9 4.8%
Consequences 9 4.8%
Requirements 9 4.8%
Meeting notes 6 3.2%
Related decisions 5 2.7%
Design principles 5 2.7%
Date 4 2.2%
Decision drivers 4 2.2%
Costs 4 2.2%
Decision maker 4 2.2%
Status 3 1.6%
Domain 3 1.6%
Current Situation 3 1.6%
Title 2 1.1%
Constraints 2 1.1%
Risks 2 1.1%
Other 20 10.8%

Regarding the query ”What process(es) do you use most frequently for decision-making?”

89 participants reported that architectural decisions are typically made collaboratively by a

team comprising multiple individuals. On average, these decision-making teams consist of

five members. Conversely, the remainder of the survey participants noted that decisions are

made by a sole individual. We introduced several group decision-making procedures to those

59

Figure 3.5 Frequency of document contents used together

who identified with the multi-person team approach, prompting them to select their most

frequently employed method(s) through multiple-choice questions. In evaluating the survey

data, we tallied the number of times each method was mentioned (such as Brainstorming,

Consensus, AHP, Voting, Delphi, No formal method, and Other), and these tallies are

depicted in Figure 3.7 (a). The results demonstrate a preference for brainstorming and

consensus as the predominant decision-making techniques. Participants described a process

of discussing and weighing different options to achieve a mutual agreement, a finding that

aligns with observations made by Groher et al. [71]. Moreover, as depicted in Figure 3.7

(b), 22% of respondents adhere to a singular decision-making process (%23 Brainstorming,

%15 Consensus, %2 No formal method). Among those who apply multiple strategies,

a combination of brainstorming and consensus was the most frequently selected. Teams

engaging in collective decision-making, as per the responses, can vary in size up to 20

members. Analysis of responses to an open-ended question about the general composition

of the team and its stakeholders involved in decision-making suggests that such groups are

predominantly made up of software architects and developers.

60

Figure 3.6 Places where architectural decisions are stored

Figure 3.7 (a) Most commonly used process(es) for decision-making, (b) Number of process(es)
chosen/used together

61

3.3.4. Results from general questions about software architecture

There is no unanimously accepted definition of software architecture either in the literature

or among architects. Often, the terms software architecture and software design are observed

to be used somewhat synonymously. Consequently, we asked participants to articulate their

definitions of software architecture through written descriptions. Varied definitions were

provided by the respondents. Exemplary responses are shared below. Common to most

participant definitions is the conceptual framework for software architecture as delineated by

Bass et al. [3], which is articulated in the introductory segment. Participants consistently

characterized software architecture as the components of a program or system that satisfy

requirements, along with the configuration of these components and the relationships among

them. In Figure 3.8, we highlight the key terms and phrases extracted from the participants’

definitions of software architecture. Additionally, here are some representative answers

provided by the participants:

• P10: “Organization of responsibility in order to convey the system’s purpose and

capability.”

• P15: “The set of rules and recommended patterns that govern the growth of a piece of

software.”

• P34: “A living cell organism influencing every part of the system to work efficiently.”

• P95: “Everything in Software Architecture is a tradeoff.”

We offered the participants a selection of architectural decision categories and requested

them to identify the ones they consider most crucial in practice. The distribution of

choices among these decision categories is depicted in Figure 3.9. Based on the feedback,

a significant number of participants view decisions concerning architecture structure,

technology-related decisions, process-oriented decisions, decisions about properties, and

decisions influencing behavior as particularly vital for project success in a practical setting.

62

Figure 3.8 Keywords from participants’ definition of software architecture

There can be many factors that affect architectural decisions in the architectural

decision-making process [52]. We asked participants to evaluate a subset of these elements,

including management preferences, the availability of tools and technologies, risks, time

constraints, and quality attributes, rating their impact on a scale from 1 (ineffective) to

5 (very effective). As detailed in Table 3.13, ”costs” emerged as the most impactful

element, garnering an average score of 4.26. Beyond these specified factors, participants

also highlighted the skills of the team, organizational policies, and the socio-cultural context

as influential determinants.

To address research question RQ2.2, we conducted a Mann-Whitney U test [69] analyzing

the data collected from the responses to question Q22. The data was categorized as follows:

• whether architectural decisions are documented (N: 79) or not (N: 22),

• the development lifecycle model used is Agile (N: 72) or not (N: 29),

63

Figure 3.9 Types of architectural decisions that the participants think are more critical to the project
in practice

• whether decisions are made individually with a single decision-maker (N: 9) or as a

group (N: 91),

• whether architectural decisions are verified (N:28) or not (N:40),

• whether the participants are experienced with Business Application Software (N:75)

or not (N:26),

• whether the participants are experienced with Web Applications (N:72) or not (N:29),

• whether the participants are experienced with Layered Architecture (N:49) or not

(N:51),

• whether the participants are experienced with Service-based Architecture (N:25) or not

(N:75),

• whether the participants are experienced with Microservices Architecture (N:23) or

not (N:77).

64

We raised the following hypotheses with respect to the groups above:

• H2 1: Factors that affect architectural decisions (Q22) are related to whether

architectural decisions are documented (N: 79) or not (N: 22),

• H2 2: Factors that affect architectural decisions (Q22) are related to whether the

development lifecycle model used is Agile (N: 72) or not (N: 29),

• H2 3: Factors that affect architectural decisions (Q22) are related to whether decisions

are made individually with a single decision-maker (N: 9) or as a group (N: 91),

• H2 4: Factors that affect architectural decisions (Q22) are related to whether

architectural decisions are verified (N:28) or not (N:40),

• H2 5: Factors that affect architectural decisions (Q22) are related to whether the

participants are experienced with Business Application Software (N:75) or not (N:26),

• H2 6: Factors that affect architectural decisions (Q22) are related to whether the

participants are experienced with Web Applications (N:72) or not (N:29),

• H2 7: Factors that affect architectural decisions (Q22) are related to whether the

participants are experienced with Layered Architecture (N:49) or not (N:51),

• H2 8: Factors that affect architectural decisions (Q22) are related to whether the

participants are experienced with Service-based Architecture (N:25) or not (N:75),

• H2 9: Factors that affect architectural decisions (Q22) are related to whether the

participants are experienced with Microservices Architecture (N:23) or not (N:77).

For each specified group, we derived p-values based on responses concerning factors

influencing architectural decisions, the presence of documentation for these decisions, the

developmental lifecycle models applied, and the decision-making team sizes. Shifts in the

perception of architectural decision influencers (Question 22) were noted according to the

documentation status of these decisions, the development models employed, and the mode

65

Table 3.13 Relationships of factors that the participants think they affect architectural decisions for
hypothesis group 2 (H2)

What factors do you think generally affect architectural decisions? Can you evaluate the
following factors by scoring 5 (very effective), 4 (effective), 3 (neutral), 2 (less effective), 1
(ineffective)?

Factors Avg. Mode Median H2 2 H2 4 H2 5 H2 6 H2 7 H2 9

Costs 4.26 4 4 0.317 0.824 0.636 0.143 0.197 0.409
Quality attributes 4.25 4 4 0.662 0.146 0.329 0.280 0.857 0.703
User requirements 4.18 5 4 0.740 0.465 0.795 0.536 0.538 0.545
Constraints 4.17 4 4 0.237 0.852 0.643 0.780 0.588 0.944
Time 4.16 5 4 0.097 0.784 0.691 0.065 0.336 0.384
Business goals and strategies 4.16 5 4 0.131 0.008 0.026 0.994 0.278 0.561
Risk 4.11 4 4 0.527 0.176 0.037 0.624 0.585 0.893
Previous decisions (successful and unsuccessful) 4.08 4 4 0.819 0.347 0.947 0.737 0.614 0.353
Tool and technology availability 3.87 4 4 0.934 0.377 0.563 0.844 0.797 0.233
Maintenance / Product lifecycle 3.85 4 4 0.587 0.931 0.784 0.440 0.245 0.257
Personal experiences/preferences 3.52 4 4 0.625 0.646 0.395 0.130 0.826 0.819
Management preferences 3.32 4 3 0.109 0.574 0.111 0.850 0.032 0.016
Note: p values obtained with the Mann-Whitney U test. p values less than the 0.10
significance level are shaded. Values less than 0.05 are also shown in bold.

of decision-making (individual vs. group). In this analysis, the threshold for statistical

significance was set at 0.10, with evaluations made accordingly; however, instances with

p-values under 0.05 were distinctly highlighted in darker gray within Table 6. The analysis

revealed no significant outcomes for hypotheses H2 1, H2 3, and H2 8, which relate to

the impact on architectural decisions, thus these findings were omitted from Table 3.13.

Furthermore, p-values were computed across groups differentiated by the verification of

architectural decisions (verified: N=29; not verified: N=36), software project types (Business

Application Software: N=75; other software projects: N=26; Web Applications: N=72;

other types: N=29), and architectural patterns (Layered Architecture: N=91; others: N=10;

Service-based Architecture: N=92; others: N=9; Microservices Architecture: N=68; others:

N=33), with these results presented in Table 3.13. From this table, it was discerned that

hypothesis H2 5, which concerns business goals, strategies, and risk, was substantiated,

indicating a statistical discrepancy in decision-making factors between users of business

application software versus other software types. The study found no hypothesis support

for the influence of tools and technology availability, time constraints, quality attributes, user

needs, maintenance or product lifecycle considerations, personal preferences or experiences,

previous decisions, limitations, or costs on architectural decision-making.

66

Additionally, we explored the presence of any statistically meaningful connections between

the groups detailed in Tables 3.10 and 3.13, as well as their internal correlations. The

Spearman’s rank-order correlation method was applied to assess these relationships. The

outcomes are displayed in a matrix format within Table 3.14, showcasing repeated

correlations and focusing solely on results derived from significant p-values. The assessment

criterion was set at a p-value threshold of 0.05, indicating a statistically significant

correlation for p-values below this threshold, and a lack of significant correlation otherwise.

These findings are represented through p-values, with cells highlighted in green denoting

significance for easier interpretation. According to Table 3.14, notable correlations are

observed between Q9 and Q22, as well as within Q9 and Q22 themselves. Analysis

of inter-correlations among responses to question 9, a Likert scale query, reveals that

items F1, F17, and F21, each associated with ten distinct challenges, exhibit the most

significant correlations. In the case of Q22, risk, time, quality attributes, user requirements,

maintenance, business goals, and costs are identified as having a higher incidence of

significant correlations compared to other factors. Specifically, the analysis between Q9

and Q22 indicates that F5 and F17 show statistically significant correlations with numerous

factors outlined in Q22. Furthermore, considering the factor ”Time” within Q22, it

significantly correlates with a range of challenging situations outlined in Q9, encompassing

eight distinct difficulties. An in-depth review of both Q9 alone and its comparative analysis

with Q22 reveals that F17 demonstrates a statistically significant variance with the highest

number of significant correlations (15) as noted in the ”F17” row. Similarly, the ”Time” row,

with twelve significant correlations, indicates that the ”Time” factor significantly differs from

many other factors in terms of statistical significance.

In any given system, decision-makers are tasked with considering and fulfilling quality

attributes through deliberate choices, such as selecting the optimal combination of options

[55, 72]. The significance of software quality in the realm of software architecture

decision-making has been underscored by Haoues and colleagues [73]. Quality attributes

are pivotal in driving the design process towards the realization of high-quality systems,

thereby necessitating their incorporation into decision-making and documentation processes

67

[74]. The critical nature of quality attributes was further highlighted by responses to question

Q22, where participants were queried about the impact of quality metrics on architectural

decisions, prompting them to identify up to three key metrics. Responses varied, with

some participants mentioning only one metric, while others cited more than three. Analysis

of these responses led to the categorization based on the ISO/IEC 25010 product quality

model [75], with non-standard metrics classified as “other” and non-applicable responses

as “unrelated responses”, following expert review. Responses also included specific

sub-attributes, which align with the eight quality characteristics defined in ISO/IEC 25010.

Figure 3.10 reveals that maintainability and related sub-attributes were most frequently

mentioned by 43 respondents, followed by performance and reliability, cited by 34 and 23

participants respectively. Metrics outside the ISO/IEC 25010 scope, like extensibility and

scalability, were categorized as “other”. Additionally, 27 participants provided responses

deemed irrelevant to the query. While the findings from the quality metrics question may

not be universally applicable across domains, the study by Bi et al. [76], which explored

the connection between architectural patterns and quality metrics through an analysis of

Stack Overflow discussions, suggests a correlation between quality metrics and architectural

patterns. This study, similar to Bi et al.’s findings, indicates a discernible link between

architectural patterns and quality metrics, with maintainability, performance, and security

emerging as the most frequently mentioned metrics. Layered and service-based architectures

were identified as the predominant architectural patterns, mirroring Bi et al.’s observation

that performance and security, alongside performance and maintainability, are crucial quality

metrics in discussions surrounding these architectural styles.

Based on the responses to the inquiry regarding the identification of key architectural

requirements, it was not possible to define a distinct category. However, from the feedback

collected, it was evident that experience plays a significant role in pinpointing these essential

requirements. Alongside experience, engaging with stakeholders and conducting risk

assessments were also cited as critical methods for recognizing architecturally significant

requirements. Selected responses are summarized as follows:

68

• P4: “We have no formal method other than experience.”

• P29: The review of new system requirements and respective solutions that have:

Impacts on the integrity of the architecture and opportunities to enhance the

architecture”

• P50: “By starting at “what the software is supposed to do” and then drilling down.”

• P67: “We do not use a methodology. By reviewing known patterns, architectural

decisions of similar applications or technical reports, we base common solutions to

meet general requirements and customize them if necessary.”

Figure 3.10 Frequency of quality attributes that the participants think they affect architectural
decisions

We asked the participants if they seek out alternative options for their requirements, even

when they already have a potential solution in mind during decision-making. Two individuals

69

Ta
bl

e
3.

14
C

or
re

la
tio

ns
be

tw
ee

n
th

e
an

sw
er

s
fo

rQ
9

(d
iffi

cu
lti

es
of

m
ak

in
g

ar
ch

ite
ct

ur
al

de
ci

si
on

s)
an

d
Q

22
(f

ac
to

rs
th

at
af

fe
ct

ar
ch

ite
ct

ur
al

de
ci

si
on

s)

Factors

F1

F2

F3

F4

F5

F6

F7

F8

F9

F10

F11

F12

F13

F14

F15

F16

F17

F18

F19

F20

F21

Managementpreferences

Tooltechnology

Risk

Time

Qualityattributes

Userrequirements

Maintenance

Personalexperiences

Businessgoals

Previousdecisions

Constraints

F2
0.

51
3

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
F3

0.
53

0
0.

01
3

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F4
0.

00
3

0.
86

7
0.

03
9

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
F5

0.
01

5
0.

03
8

0.
00

4
0.

35
9

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F6
0.

00
1

0.
21

2
0.

21
6

0.
08

4
0.

00
0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
F7

0.
00

2
0.

62
2

0.
81

6
0.

19
5

0.
00

0
0.

00
0

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F8
0.

01
5

0.
66

1
0.

61
8

0.
00

6
0.

07
3

0.
00

1
0.

18
5

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
F9

0.
55

7
0.

74
0

0.
69

6
0.

16
9

0.
24

5
0.

13
1

0.
45

3
0.

37
8

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
0

0.
10

8
0.

37
3

0.
11

3
0.

00
3

0.
95

7
0.

13
2

0.
07

6
0.

00
2

0.
00

2
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
1

0.
09

0
0.

30
3

0.
00

1
0.

15
9

0.
02

1
0.

10
4

0.
19

2
0.

18
2

0.
29

5
0.

00
7

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
2

0.
00

7
0.

74
1

0.
37

3
0.

30
5

0.
00

9
0.

00
0

0.
00

1
0.

02
3

0.
59

2
0.

93
4

0.
04

4
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
3

0.
48

5
0.

90
8

0.
40

1
0.

24
4

0.
98

5
0.

87
3

0.
47

1
0.

69
8

0.
04

4
0.

02
9

0.
09

5
0.

17
6

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
4

0.
08

8
0.

27
7

0.
39

6
0.

21
6

0.
51

4
0.

03
6

0.
70

7
0.

30
4

0.
21

7
0.

00
6

0.
00

3
0.

26
9

0.
00

0
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
5

0.
50

7
0.

27
0

0.
89

2
0.

14
4

0.
54

0
0.

33
8

0.
32

9
0.

88
9

0.
34

0
0.

71
1

0.
38

4
0.

61
8

0.
00

0
0.

32
7

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
6

0.
03

7
0.

00
7

0.
12

0
0.

37
7

0.
53

5
0.

14
3

0.
03

4
0.

78
7

0.
09

0
0.

97
4

0.
00

2
0.

82
8

0.
39

1
0.

23
3

0.
06

9
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
7

0.
00

2
0.

00
9

0.
01

2
0.

52
0

0.
00

1
0.

00
7

0.
01

5
0.

23
7

0.
02

2
0.

10
5

0.
07

9
0.

26
5

0.
34

4
0.

09
2

0.
60

8
0.

00
1

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
8

0.
16

7
0.

04
3

0.
17

8
0.

10
6

0.
71

2
0.

06
4

0.
92

3
0.

52
5

0.
97

7
0.

07
5

0.
32

1
0.

72
0

0.
06

0
0.

00
3

0.
06

9
0.

08
9

0.
53

3
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F1
9

0.
28

0
0.

17
9

0.
05

1
0.

53
8

0.
18

3
0.

61
3

0.
56

9
0.

35
9

0.
59

3
0.

66
1

0.
67

0
0.

08
2

0.
15

1
0.

37
9

0.
73

6
0.

33
5

0.
46

8
0.

09
2

...
...

...
...

...
...

...
...

...
...

...
...

...
...

F2
0

0.
73

8
0.

56
2

0.
06

7
0.

38
0

0.
42

7
0.

88
6

0.
46

6
0.

39
3

0.
65

8
0.

89
7

0.
82

8
0.

50
6

0.
11

7
0.

37
8

0.
89

8
0.

03
9

0.
61

8
0.

43
7

0.
00

0
...

...
...

...
...

...
...

...
...

...
...

...
...

F2
1

0.
00

5
0.

25
4

0.
07

8
0.

13
1

0.
86

6
0.

10
4

0.
29

8
0.

96
6

0.
04

7
0.

01
2

0.
00

0
0.

44
3

0.
16

7
0.

03
8

0.
27

0
0.

00
0

0.
00

8
0.

00
9

0.
29

5
0.

01
8

...
...

...
...

...
...

...
...

...
...

...
...

M
an

ag
em

en
tp

re
fe

re
nc

es
0.

44
6

0.
82

8
0.

26
0

0.
72

5
0.

01
2

0.
53

5
0.

00
4

0.
83

5
0.

05
5

0.
27

6
0.

14
6

0.
62

1
0.

03
6

0.
19

3
0.

08
9

0.
29

2
0.

01
2

0.
45

6
0.

24
0

0.
84

8
0.

12
8

...
...

...
...

...
...

...
...

...
...

...
To

ol
te

ch
no

lo
gy

0.
45

6
0.

80
0

0.
12

4
0.

11
9

0.
96

7
0.

78
9

0.
57

9
0.

83
2

0.
31

1
0.

03
3

0.
10

0
0.

28
5

0.
22

9
0.

03
9

0.
72

5
0.

58
6

0.
43

2
0.

88
8

0.
27

9
0.

31
1

0.
35

5
0.

17
5

...
...

...
...

...
...

...
...

...
...

R
is

k
0.

22
8

0.
16

7
0.

08
4

0.
77

1
0.

62
8

0.
03

3
0.

96
8

0.
57

3
0.

12
6

0.
81

6
0.

80
0

0.
92

8
0.

73
4

0.
53

2
0.

92
1

0.
22

7
0.

64
6

0.
01

2
0.

14
6

0.
01

4
0.

66
4

0.
72

4
0.

76
3

...
...

...
...

...
...

...
...

...
Ti

m
e

0.
20

5
0.

01
8

0.
14

9
0.

15
1

0.
02

1
0.

04
6

0.
01

1
0.

13
0

0.
81

0
0.

23
2

0.
42

0
0.

58
9

0.
89

6
0.

10
6

0.
03

2
0.

00
2

0.
01

9
0.

00
8

0.
94

3
0.

51
5

0.
76

4
0.

02
2

0.
62

3
0.

00
5

...
...

...
...

...
...

...
...

Q
ua

lit
y

at
tr

ib
ut

es
0.

52
6

0.
30

6
0.

24
3

0.
35

2
0.

97
0

0.
18

7
0.

82
6

0.
86

7
0.

12
9

0.
71

2
0.

66
3

0.
01

5
0.

73
8

0.
48

6
0.

94
4

0.
70

4
0.

12
7

0.
79

3
0.

23
1

0.
27

7
0.

80
5

0.
14

2
0.

19
3

0.
00

0
0.

58
0

...
...

...
...

...
...

...
U

se
rr

eq
ui

re
m

en
ts

0.
31

9
0.

21
0

0.
09

6
0.

59
6

0.
02

7
0.

02
2

0.
57

8
0.

79
1

0.
23

1
0.

98
1

0.
27

4
0.

58
9

0.
55

6
0.

30
8

0.
33

4
0.

61
8

0.
32

8
0.

39
6

0.
41

5
0.

49
4

0.
34

0
0.

55
2

0.
34

3
0.

24
3

0.
36

8
0.

00
3

...
...

...
...

...
...

M
ai

nt
en

an
ce

0.
47

8
0.

33
3

0.
09

0
0.

25
7

0.
82

6
0.

92
9

0.
43

4
0.

87
5

0.
90

1
0.

20
9

0.
43

5
0.

50
4

0.
26

8
0.

32
1

0.
47

3
0.

51
4

0.
21

9
0.

46
5

0.
09

7
0.

03
1

0.
75

9
0.

99
5

0.
62

0
0.

12
4

0.
11

3
0.

00
1

0.
00

1
...

...
...

...
...

Pe
rs

on
al

ex
pe

ri
en

ce
s

0.
24

7
0.

91
6

0.
01

0
0.

49
1

0.
42

7
0.

02
9

0.
86

6
0.

09
0

0.
83

8
0.

05
0

0.
88

1
0.

20
7

0.
14

9
0.

93
1

0.
78

5
0.

08
6

0.
03

3
0.

10
4

0.
44

5
0.

48
6

0.
80

2
0.

69
4

0.
28

8
0.

68
9

0.
74

6
0.

05
8

0.
52

1
0.

20
1

...
...

...
...

B
us

in
es

s
go

al
s

0.
16

1
0.

83
3

0.
95

2
0.

97
9

0.
58

5
0.

34
4

0.
09

4
0.

18
7

0.
65

4
0.

56
5

0.
25

4
0.

20
2

0.
53

0
0.

70
8

0.
12

4
0.

11
1

0.
94

4
0.

81
4

0.
22

8
0.

22
3

0.
86

2
0.

13
3

0.
42

2
0.

01
1

0.
95

1
0.

06
2

0.
00

9
0.

00
2

0.
79

1
...

...
...

Pr
ev

io
us

de
ci

si
on

s
0.

03
0

0.
19

4
0.

78
4

0.
05

4
0.

42
8

0.
70

1
0.

07
8

0.
56

5
0.

23
2

0.
98

0
0.

59
1

0.
74

3
0.

01
3

0.
05

6
0.

21
1

0.
88

4
0.

14
0

0.
02

5
0.

60
3

0.
34

5
0.

43
9

0.
79

1
0.

00
5

0.
65

5
0.

91
9

0.
37

2
0.

63
5

0.
20

2
0.

44
8

0.
74

9
...

...
C

on
st

ra
in

ts
0.

14
2

0.
07

9
0.

50
3

0.
20

4
0.

01
7

0.
05

8
0.

18
6

0.
43

9
0.

74
6

0.
55

8
0.

70
5

0.
31

5
0.

16
7

0.
18

0
0.

83
4

0.
09

6
0.

02
3

0.
36

4
0.

36
7

0.
35

2
0.

13
3

0.
61

5
0.

18
1

0.
89

9
0.

07
2

0.
62

1
0.

26
9

0.
96

9
0.

28
6

0.
22

1
0.

00
4

...
C

os
ts

0.
84

0
0.

07
0

0.
66

6
0.

97
4

0.
00

1
0.

05
3

0.
00

1
0.

86
0

0.
62

1
0.

72
4

0.
24

8
0.

38
4

0.
62

6
0.

08
9

0.
05

0
0.

08
2

0.
00

2
0.

51
4

0.
62

6
0.

54
7

0.
35

1
0.

00
5

0.
20

5
0.

63
0

0.
00

0
0.

92
9

0.
95

9
0.

29
7

0.
38

2
0.

46
2

0.
76

1
0.

00
0

N
ot

e:
p

va
lu

es
ob

ta
in

ed
w

ith
th

e
Sp

ea
rm

an
’s

ra
nk

-o
rd

er
co

rr
el

at
io

n.
p

va
lu

es
le

ss
th

an
th

e
0.

1,
0.

05
an

d
0.

01
si

gn
ifi

ca
nc

e
le

ve
la

re
sh

ow
n

in
bo

ld
.

70

did not respond to this query. Of the 99 respondents, the majority, 90 individuals, confirmed

they do look for alternatives, while 7 indicated they do not. One person noted they do so ”in

some cases, we implement the predicted architecture based on experience”. A considerable

number of respondents revealed that their selection from among the alternatives is typically

influenced by their past experiences. Other prevalent methods mentioned include conducting

a tradeoff analysis, engaging in discussions with stakeholders, and evaluating the advantages

and disadvantages. A selection of the responses provided by the participants is as follows.

• P17: “It evolves through our straw-man/brainstorming process with stakeholders.”

• P39: “Based on the information available and the experience of the group of

decision-makers.”

• P54: “Tradeoff between the alternatives. Chose the one that meets the business need

for the least cost and risk.”

• P89: “By considering cost, complexity and the popularity of the architecture.”

We asked the participants on the validation of their architectural decisions and the

methodologies they employ for such verification. Out of 65 of the participants who

responded, 26 indicated they do not confirm their architectural decisions, and 8 mentioned

the absence of a formal method for verification. From the remaining 31 respondents, varied

methods were cited including ATAM (N:15) [77], CBAM (N:3) [78], Proof of Concept (PoC)

(N:4) [79], alongside Review and Discussions with stakeholders. ATAM was noted as the

most frequently used method among the mentioned techniques.

Building on the findings of Razavian et al. [80], which highlighted the need

for improvements in software architecture decision-making, we formulated a question

specifically related to this area. Examples of these deficiencies include the need for

lightweight techniques or tools to guide decision-making, making the decision-making more

agile and more efficient information sharing.Participants were presented with certain areas

highlighted in boxes in Figure 11 and were asked to identify which they believed required

71

changes. The counts of the participants’ choices for these areas are displayed at the base of

each box in Figure 3.11. The responses revealed a consensus over half of the participants

pointing out the need for better information sharing and tracking of decisions and their

underpinnings as crucial for improving decision-making.

Figure 3.11 Areas to be improved for better architectural decisions

3.4. Threats to Validity

In our investigation, we aimed to gather data on prevalent methods in the practice of

architectural decision-making, including the technical and societal obstacles encountered

and the various factors influencing these decisions. We disseminated a survey among a

broad group of 101 software architects from 27 different countries, striving to garner a

representative set of responses. Despite our efforts, there are potential limitations and validity

risks that we intend to discuss.

Construct validity: pertains to the degree to which a tool accurately measures what it’s

supposed to [81]. We solicited and incorporated input from domain experts to align our

survey with established theoretical frameworks, selecting these experts from participants in

a prior exploratory study. Based on their insights, we refined and expanded our questions,

72

particularly about quality aspects. We designed conditional questions to precisely reflect our

research aims, such as only showing certain questions based on previous answers, thereby

enhancing the survey’s clarity and relevance. These adjustments, guided by expert feedback,

were aimed at reducing any threats to our survey’s construct validity, including refining the

questions to eliminate any ambiguities and clearly define our measurement goals. Although

we grounded our survey in solid, tested concepts, the potential reluctance of participants to

share candid views about their workplaces was identified as a risk, which we mitigated by

ensuring anonymity and confidentiality. Additionally, our method of transforming textual

responses into categorized data was carefully managed to prevent loss of detail.

Internal validity: focuses on the relationship between independent and dependent variables

and the correctness of the inferred causal links [81]. We corroborated our findings

with existing literature to diminish the threat to internal validity and applied a logical

cause-and-effect analysis where it was appropriate. The diversity of our participants,

spanning 27 countries, posed a potential for cultural or regional bias, which we aimed to

mitigate through random selection.

In order to strengthen internal consistency and ensure the reliability of the instrument used

in our study, we conducted an assessment using Cronbach’s Alpha, as detailed in Section

3.2.2.3.. The analysis revealed results indicating satisfactory internal consistency between

the various sections of our questionnaire and underlined the methodological rigor used in the

development and validation of the questionnaire. Such a systematic approach to assessing

and confirming the reliability of the questionnaire significantly supports the integrity of our

research findings.

External validity: examines the extendibility of the study’s results to other contexts,

populations, or conditions [81]. We endeavored to enhance the representativeness of our

findings by enlarging our sample size, thereby attempting to ensure the findings’ broader

applicability. Our sample included diverse participants, varying in their organizational roles,

levels of hierarchy, geographical locations, and project scopes, which we believed would

support the generalizability of our conclusions.

73

A significant constraint of our research was the predominance of respondents with

limited experience in the field, which could introduce a bias. We addressed this by

including questions that less experienced respondents could also answer. The demographic

homogeneity of the respondents, particularly in terms of nationality and gender, was noted

but not expected to affect the overall applicability of our findings, based on prior interviews.

3.5. Evaluation and Discussion

In this section, we focused on the results of our study to identify the challenges

encountered in the architectural decision-making process, factors affecting the architectural

decision-making process, and possible improvements that can be made in the architectural

decision-making process. The objective of our research was to delve deeply into the

prevailing practices of decision-making concerning software architecture within the industry.

Following a detailed analysis based on individual questions, we’ve extracted responses to

our research queries. A summary of the key insights, in relation to the research questions

specified in Section 3.2., is presented in Table 3.15. This table highlights the new discoveries

of our research in bold font, while at the same time listing the results that support the findings

from previous studies in the far right column.

74

Table 3.15 Summary of findings

RQs Main Findings Similar

Findings

RQ.1.,

RQ.1.1,

RQ.1.2,

RQ.1.3

From the responses, we understood that unstructured approaches

are preferred in the architectural decision-making process. Decisions

are made by teams of about two or three people, usually through

discussion-based approaches, such as brainstorming and consensus.

Preferring unstructured approaches that do not require systematic

participation may result in biased information shared within the group.

Documenting decisions is a way to reduce biases. While there is no specific

format for decision documents, alternatives and tradeoffs are the most

common areas used for documentation. Generally, decision documents

are stored in web-based collaboration software such as Confluence. To track

decisions that affect each other, document reviewing is a commonly used

approach.

[53]

RQ.2. We observed that costs, quality attributes, and user requirements are the

most influential factors for architectural decisions. When the ISO/IEC

25010 quality factors are considered, maintainability, performance, and

reliability are found to be the most influential factors in decision making.

The challenging situations with the highest average agreement among

participants are large business impact (F14), and dependencies with

other decisions (F13).

[4],

[52],

[82]

Continued on next page

75

Table 3.15 – continued from previous page

RQs Main Findings Similar

Findings

RQ.2.1 A Mann-Whitney U test was conducted to test the hypotheses under this

RQ. The findings show us that there is a difference between those who

make the decisions by one person and those who make the decisions

with more than one person in terms of the F1, F5, F12, F13, and F17

situations. These situations are related to stakeholders, which supports

the conclusion. F1, and F12 are significant for both architecture decision

documentation and the group size of the decision-making group.

RQ.2.2. A Mann-Whitney U test was conducted to test the hypotheses under this

RQ. Our results show that there was no significant effect for any of

the factors examined with respect to the number of decision-makers,

whether decisions are documented or not and whether agile lifecycle is

used or not.

RQ.3. We understood that the architectural decision among different

alternatives is usually made intuitively and based on experience. This

may not be a problem when the decision-maker has years of experience in

a particular problem domain. Otherwise, this may lead to poor decisions.

According to responses, final decisions are generally not verified by any

formal method.

RQ.4. We noticed during the study that information sharing is mentioned many

times by participants in different questions. This shows that information

sharing has an important role in the decision-making process. According

to the results, efficient information sharing is also mentioned as an area

that needs improvement. Brainstorming sessions, informal discussions,

and meetings are some of the activities that contribute to information

sharing at different levels.

76

The feedback from our study’s participants, based on their professional experiences,

indicates that information sharing plays a crucial role throughout various phases of the

architectural decision-making process. Yet, there lacks a uniform system for architectural

documentation to facilitate this communication effectively. This gap often leads those

involved in decision-making to rely on their intuition rather than a defined methodology.

Our research reveals that both the dissemination of information and the maintenance and

monitoring of made decisions tend to be unstructured. Typically, due to the high level of

effort required, tracking decisions becomes challenging, especially when relying on meeting

minutes rather than thorough documentation. This situation underscores the necessity

for further research into developing documentation practices that can efficiently transmit

information with minimal effort. Existing templates for recording architectural decisions

do exist, such as the Tyree/Akerman template [37], the principal decisions template from

Bredemeyer Consulting [83], and M. Nygard’s architectural decision records (ADR) [84] in

his blog post. It is advisable for companies to adopt such standardized templates to streamline

their decision-making processes.

The ambiguous connection between requirements and the documentation of software

architecture often leads to a lack of traceability within practical applications. Traceability of

architectural decisions within the software development lifecycle offers numerous benefits.

It enhances the comprehensibility of software, aids in analyzing the impact of changes, and

assists in the assessment of design [31]. Given that many architectural decisions recur

across projects, the accumulated knowledge from prior decisions, successful or otherwise,

can become invaluable, especially if it’s organized systematically. We inquired with our

participants if they monitor interrelated architectural decisions within their projects or

organizations. A majority, 78 respondents, confirmed they do track these decisions, typically

through reviews of documentation and meetings. Conversely, 24 participants acknowledged

they do not track decisions. Those who do follow the decisions noted the process is

manually intensive and lacks efficiency. This highlights a gap and suggests a demand for

methodologies or tools that would allow architects to perform follow-ups with less effort and

in a structured manner.

77

The survey data makes it clear that numerous elements influence the decision-making

process. Architects are required to weigh a multitude of factors simultaneously, balance

the potential gains and losses, and then make informed decisions. This complexity runs

the risk of certain factors being neglected or incorrect decisions being made. The situation

underscores a pressing need for methodologies or instruments that can aid architects in

making decisions more efficiently and methodically. In this vein, the development of varied

approaches and tools could provide significant support to architects in their decision-making

endeavors.

3.5.1. Making and Documenting Decisions

Drawing from participant feedback, it became evident that a substantial number of them

favor recording at least some architectural decisions and storing such records on web-based

platforms like Confluence [85]. This underscores the significance of documentation within

project development.

These records are generally accessible to all developers involved in a project, facilitating

more straightforward and efficient information exchange among stakeholders. The

predominant method for tracking interrelated decisions, as revealed by responses to the query

“how the decisions that affect each other are tracked?”, is through document reviews. This

preference for document reviews underscores the value placed on documentation.

From the insights gathered on “which decisions are documented?”, it’s clear that decisions

concerning ”services, tools and technologies” and those at the ”system-level” are typically

documented, aside from those respondents who indicate that they document all types of

decisions. Responses to question 21, “What types of architectural decisions do you think

are typically more critical to the project in practice?”, highlighted that decisions shaping

subsystems, components, layers, and those pertaining to technology are deemed critical

for practical projects. Furthermore, documented decisions are also considered pivotal in

practice, as per the responses to question 21.

78

The content within decision documents is varied, as indicated by the responses. While

some documents may not be comprehensive, others include extensive details like the

decision-maker, decision drivers, and associated risks. Analysis revealed that alternatives,

tradeoffs, and diagrams are the most commonly included elements in decision documents.

Responses also indicated that decision-making is typically a team effort, with teams

averaging about five members. Our findings suggest that team-based decision-making is

advantageous for a deeper understanding of issues. Decisions made unilaterally may not be

fully grasped by those not involved in the decision-making process, leaving them unaware

of the decision’s rationale, importance, or relevance. However, when decisions are made

collectively, all members gain a thorough understanding of the issues and the reasoning

behind the decisions.

Various methods are employed in group decision-making. Reviewing the selection frequency

of each group decision-making approach offered to participants, brainstorming emerged as

the most favored method. Additionally, multiple methods were often cited in responses. The

joint application of brainstorming and consensus was noted 35% of the time, illustrating their

common usage. These approaches encourage open-mindedness and free expression of ideas

without the fear of judgment, signifying that diverse perspectives from all project developers

are valued.

The importance of differing viewpoints and the sharing of knowledge is further emphasized

in the responses to question 28 (“Which of the following areas could be improved to make

better architectural decisions? Do you have any additional areas to recommend?”). This

highlights the collective consensus on the value of varied insights in the decision-making

process.

3.5.2. Influence and Compelling Factors

The answers to the 9th question (“In the light of your experience in making architectural

decisions in past projects, could you evaluate the influence of the following difficulties as 5

79

(very influential), 4 (influential), 3 (neutral), 2 (not so much influential), 1 (not influential at

all)?”) shed light on the hurdles encountered by participants in decision-making. When faced

with making decisions, participants identified ”The decision had a major business impact”

as the most formidable challenge, in contrast, ”The decision had too few alternatives” was

considered the least challenging. This contrasts with our prior exploratory study [21], where

“F14 - The decision had a major business impact” ranked as the third most challenging, and

“F9 - The decision had too few alternatives” remained the least challenging. Over half of the

respondents viewed all types of architectural decisions as critical, with the exception of those

related to organization and tools. These findings suggest a multitude of factors are influential

and crucial in decision-making processes. Participants predominantly recognized costs as

significantly influential, followed by quality attributes, user needs, and limitations. The

prominence given to cost and constraints resonates with Tang et. al.’s [82] research on design

rationale. However, the impact of management preferences was not deemed as prominent.

This is consistent with findings from Miesbauer et. al. [54]—a semi-structured exploratory

study involving 9 experts across 6 companies—which revealed that the impact of previous

decisions was perceived as substantial. Regarding quality aspects affecting architectural

decisions, performance was indicated as most impactful, with maintainability and security

trailing closely. From these insights, it can be inferred that striking a careful balance between

performance and cost is pivotal in architectural decision-making. Respondents emphasized

that while performance is critical for quality attributes, the cost is a major driver in shaping

architectural decisions.

3.5.3. Final Decision and Validation

Decision-making often involves a large number of alternatives, and the act of selecting

from these alternatives constitutes a significant segment of the decision-making process.

Responses gathered from our survey indicate that a large number of participants actively

seek out alternative solutions, even when a potential solution is already conceived. While

relying on their experience is commonly cited when navigating among alternatives, the

process of evaluating which alternatives best fulfill their needs and making an informed

80

choice by weighing the tradeoffs was also mentioned as a prevalent practice. In addition, 34

respondents disclosed that they do not employ any formal method to validate their ultimate

decision. Among those who do perform verifications, the ATAM [77] and PoC [79] methods

are the favored techniques.

3.5.4. Improvements

In pursuit of addressing our fourth research question, we posed the question to our

participants: “which areas need improvement in the decision-making process so that better

decisions can be made?”. The majority highlighted the need for enhancements in the domains

of information dissemination and the documentation of decisions and their underlying

justifications. As previously noted, information exchange plays a pivotal role at every phase

of decision-making. It was observed that architects frequently cited various communication

methods like discussions, meetings, and emails when responding to inquiries about their

architectural decision-making practices. Consequently, it is unsurprising that effective

information sharing was the most recurrent theme in response to question 28 (“Which of

the following areas could be improved to make better architectural decisions? Do you

have any additional areas to recommend?”), posed in the concluding part of our survey.

Gaps in information and suboptimal sharing practices can introduce uncertainties in the

decision-making process [86]. Such challenges could be mitigated by fostering the exchange

of diverse viewpoints and knowledge among those making the decisions, thereby diminishing

uncertainty levels.

81

4. SOFAR-DSS: An Advanced Decision Support System

for Architectural Design Patterns Using OpenAI and

DBpedia

Software architecture serves as the basic blueprint of a software system by shaping the

interaction and functionality of its components. It is crucial in defining the quality

characteristics of the system, such as performance and reliability, and ensuring that the

software remains adaptable and efficient in the dynamic environment of technology. It is

crucial to address the intricacies of architectural decision making because these decisions

carry significant weight in the software lifecycle. During the decision-making process,

decision-makers encounter a variety of challenges. These can stem from an abundance of

alternatives, a lack of necessary information, or prevalent uncertainties. Such challenges can

obscure the path to optimal decisions, making it difficult to evaluate the trade-offs associated

with each option. In light of these complexities, there is a clear need for a tool that simplifies

the decision-making process. This tool would ideally aid in distilling the array of choices,

illuminate areas obscured by insufficient data, and provide clarity amid the often-ambiguous

nature of technological evolution, thereby guiding architects toward decisions that align with

both current requirements and future adaptability. We have developed a tool that addresses

RQ.5. stated in Section 1.1. SOFAR-DSS, a sophisticated tool designed to streamline

the decision-making process for software architects, is an AI-powered tool that simplifies

complex decision-making processes by appealing not only to experienced architects but also

to a wider audience involved in the architectural design process [22]. It provides ease of use

with a user-friendly interface. SOFAR-DSS is notable for its AI algorithms and interactive

design, which provide accurate, user-centered guidance. This helps reduce the cognitive load

on users and enhances the quality of architectural decisions.

In this section, we examine the journey from the development to the application of

SOFAR-DSS, showcasing its capabilities and functionalities as a marker of innovation in

the field of software architecture. We examine its intelligent query processing mechanism,

82

its integration with DBpedia’s rich repository, and the practical advantages these features

bring to the architectural process. We will also present the results of rigorous evaluations

with expert software architects, highlighting the practical effectiveness of the system and its

potential to revolutionize architectural decision-making in software engineering. Through

this discussion, we aim to underline the transformative impact of SOFAR-DSS on the field

and lay the groundwork for a deeper analysis of its role in shaping the future of software

architecture.

4.1. Related Work

In this section, we aim to review and critically evaluate the work and methods prevalent in

this area, specifically examining the role of Decision Support Systems (DSS) in facilitating

the complex process of making architectural decisions in software engineering. Existing

work has largely focused on two major methodologies for architecture evaluation: ATAM

[77] and CBAM [10]. These methodologies have been fundamental in informing and

shaping existing approaches to software architecture decision making. ATAM emphasizes

the evaluation of various software quality attributes, such as reliability and performance,

and provides a systematic way to guide trade-offs and improve communication between

stakeholders. It reveals the impact of different architectural decisions on software quality

attributes and promotes clearer communication between stakeholders, including maintainers,

users, customers and developers, by refining and refactoring requirements. Furthermore,

ATAM lends itself to continuous design and analysis efforts. Despite these strengths,

ATAM has shortcomings, particularly in the management of uncertainties and comprehensive

analysis of quantifiable quality metrics such as response time and latency. Limitations

in methodological support tools also create difficulties in its practical implementation. In

contrast, CBAM builds on the principles of ATAM by integrating economic considerations

by evaluating the cost-effectiveness of various architectural options. It supports decision

making by quantifying the economic trade-offs of different architectural options in light of

system quality objectives such as performance, availability and security. Using scenarios

based on quality attribute responses, CBAM quantifies the value of different architectural

83

solutions. However, CBAM’s primary focus on cost-benefit analysis may not fully capture

all stakeholder objectives, especially with respect to certain software quality attributes such

as response time and latency. CBAM uses specific formulas and assigned benefit points

to determine the utility of an architecture, which can sometimes reduce the complexity of

the interaction between scenarios to an oversimplified quantitative measure that abstractly

assesses importance and likelihood.

Farshidi and colleagues [87] developed a DSS explicitly targeting Pattern-Driven

Architecture, designed to simplify the process for software architects when selecting the

most appropriate architectural patterns. This system processes the functional and quality

requirements entered by architects and suggests a set of patterns that are closely aligned

with these needs. Architects have the option to modify the initial requirements to fine-tune

the system’s recommendations to determine the most appropriate patterns for their specific

project. This DSS is based on fundamental software engineering approaches, including

ISO/IEC software quality models and the MoSCoW prioritization method. Architects can

identify their main needs, such as high availability or accessibility for an application, which

the system uses to drive the pattern selection process.

Within the realm of aiding software engineers in decision-making, delving into multi-criteria

decision-making (MCDM) methods appears to be a fruitful direction [88]. Svahnberg

et al. [11] introduce a quantitative approach that simplifies the comparison of possible

architectures via the Analytical Hierarchy Process (AHP) [89]. This method systematically

collects stakeholder preferences for particular quality attributes and lends a hand in forming

a quantifiable perspective on the pros and cons of various architectural alternatives. It

establishes a framework underpinned by a multi-criteria decision method, which allows

for the juxtaposition of different software architecture candidates against distinct quality

attributes. However, this method might not scale well for extensive, complex projects

where a multitude of interconnected design decisions are at play. Advancing the work of

Svahnberg et al. [11], Rita et al. [90] have enhanced the field of MCDM methods with their

Hybrid Assessment Method (HAM). Acknowledging the shortcomings of AHP, such as its

semi-linear scale and the extensive need for pairwise comparisons, HAM was designed to

84

be a simpler yet more effective method in aiding software development decisions. It aims

to assess the impact of various decisions on software projects, striking a balance between

criteria weights that are compensatory, thereby sidestepping some of the known limitations

related to scaling and ranking methods.

Over a four-year span, Capilla and associates [91–96],have developed a web-based system

for managing Architectural Design Decisions (ADDs). This platform offers capabilities for

documenting, exploring, and visualizing ADDs, and it enables the collaborative management

of these decisions. The ADDs platform is noted for its ability to trace and depict the evolution

of architectural knowledge (AK) through an iterative process, mirroring the way software

architects gradually refine architectures. It accommodates assigning statuses and categories

to decisions aligned with different phases of the software lifecycle, like development and

maintenance, thereby enriching the relevance of the decision’s context.

A range of tools for handling architectural knowledge, like ADDS, are available. The

Archium tool, brought forth by Jansen and Bosch in 2005 [2], ensures continuity of

knowledge across a spectrum of concepts from inception through a system’s entire lifecycle.

Archium is known for its encompassing approach, dealing with everything from initial

requirements to final implementation details. Another tool, AREL, by Tang and colleagues

[97], aids architects in formulating and documenting architectural design, placing a strong

emphasis on the rationale behind architectural decisions and outcomes. It meticulously

documents various aspects of architectural knowledge, including concerns, decisions, and

outcomes. The Knowledge Architect suite, developed by Jansen and others [98] in 2008,

is an extensive set of tools dedicated to the capture, management, and dissemination

of architectural knowledge, featuring a repository and server that store a wide array of

knowledge entities and several clients for handling this knowledge in various forms and

contexts.

Question Answering (QA) is a defined linguistic task designed to sift through vast data to

deliver precise information in response to user queries [99]. In software engineering, QA

models serve multiple roles. The MSRbot by Abdellatif and team [100], for example,

85

leverages data from sources like Git and Jira to address software project inquiries in

plain language. Calle Gallego and others [101] devised QUare, a QA model specifically

for eliciting requirements, which includes a meta-ontology to aid in question generation

and initial structuring for software domains. Additionally, Lian and colleagues [102]

created an ontology realignment to organize and store abstracted requirements, enabling

the identification of potential requirement statements by matching document passages with

domain-specific ontological queries.

Yet, our research indicates a shortfall in the application of QA models in software architecture

decision-making. To bridge this gap, SOFAR-DSS integrates a QA model into this process,

marking a departure from models that are typically focused on requirements elicitation

or broad query resolution. Our system, customized for the specific demands of software

architecture, employs advanced AI and semantic analysis to propose architectural pattern

recommendations that are pertinent to the given context. This distinctive feature accentuates

the innovative nature of our approach, imbuing the software architecture decision-making

process with AI-powered insights. SOFAR-DSS thus becomes a crucial tool for architects

and decision-makers by providing custom recommendations that consider specific project

needs and the context at hand.

In contrast to previously mentioned methodologies and tools that concentrate on managing

and evaluating architectural knowledge, SOFAR-DSS adopts an active stance, interpreting

user inputs and recommending design patterns using AI and the semantic web, such as

DBpedia. This unique feature of SOFAR-DSS is its interactive QA model that engages with

users to grasp their specific requirements and context, differing from traditional, more static

methods dependent on preset criteria and documentation. This dynamic characteristic of

SOFAR-DSS allows for instantaneous pattern recommendations, adapting to the fluctuating

demands of software projects, which represents a notable advancement from established

methods like ATAM and CBAM, or the repository-centric approaches like Archium and

Knowledge Architect. Ultimately, SOFAR-DSS stands out for its interactive, AI-assisted

approach to architectural decision-making, remedying the shortcomings of existing systems

by adapting to the diverse and immediate needs of software development.

86

4.2. Methodology

In this section, we unveil SOFAR-DSS, a cutting-edge tool that integrates a QA model

with the DBpedia ontology to propose specific design patterns for software architecture.

The primary aim of this innovative tool is to offer custom design pattern recommendations

that address the unique issues identified by software architects or decision makers. This

innovative process capitalizes on the QA model’s advanced ability to process and understand

detailed architectural inquiries and utilizes the extensive, organized knowledge base provided

by the DBpedia ontology. The functionality of the proposed system starts with the

analysis of architects’ queries through the QA model, aligns these queries with the detailed

semantic framework of the DBpedia ontology and accordingly identifies appropriate software

architecture design patterns. The goal is to provide recommendations that are not only

technically precise and context-sensitive, but also adaptive to the dynamic environment of

software architecture.

Positioned at the intersection of natural language processing (NLP), knowledge

representation techniques and software engineering principles, this methodology aims to

simplify complex decision-making processes in software architecture. It provides an

intelligent system that can comprehend a wide range of architectural requirements and

propose feasible, informed solutions. Our goal is to streamline the decision-making process,

alleviate the cognitive burden on architects or decision makers, and promote the selection of

optimal architectural designs informed by the latest, comprehensive industry insights.

Our approach incorporates the analytical strengths of OpenAI’s gpt-3.5-turbo-instruct

[103] engine for generating initial recommendations, which are further validated through

DBpedia’s extensive database. This dual strategy ensures that our suggestions are

both innovative, leveraging state-of-the-art AI technology, and credible, underpinned

by DBpedia’s semantic depth. The combination of AI-driven creativity with semantic

web-based validation forms a solid foundation for informed, effective decision-making in

software design. The operations are performed sequentially from left to right, as illustrated

in Figure 4.1, our methodology’s workflow is detailed, beginning with data extraction

87

from the organization’s JIRA system, a leading platform for project management and issue

tracking. Through the JIRA REST API, our system programmatically gathers issue data,

facilitated by a Python interface that connects with the JIRA API, allowing the DSS to

access up-to-the-minute project information and user-reported problems. In this context,

Atlassian JIRA Software Cloud [104]is exemplified as a model for incorporating project

management and issue tracking systems within our DSS framework, although other systems

can be similarly integrated. The data collected from JIRA undergoes analysis to determine its

relevance to design, with design-related issue entities being identified via DBpedia Spotlight.

Subsequent steps involve generating recommendations through the QA model and enriching

these recommendations with DBpedia, offering users a comprehensive set of suggestions.

Figure 4.1 Model Diagram for SOFAR-DSS

4.2.1. Step 1: Classifier Module

This section delves into the specifics of the dataset employed within the classification

module, elaborating on the various classification methodologies implemented, the details

88

of these approaches, and the outcomes derived from their application.

4.2.1.1. Dataset

For the classification module, which serves as the initial phase of our proposed model, we

utilized a dataset created by Bhat et al. [28]. This dataset derives from two prominent

open-source software (OSS) projects: Apache Spark and Apache Hadoop. The study

involved extracting issues related to these projects from JIRA. Two software architects, each

with over five years of experience, independently analyzed the issues. They classified these

issues as either pertaining to design decisions or not related to design decisions. In total,

2,139 issues were examined for decision detection, with 781 issues identified as design

decisions and 1,358 categorized as unrelated to design decisions. The architects manually

segmented the dataset into two distinct classes: ”Design Decision” and ”Not a Design

Decision,” employing specific criteria outlined in Figure 4.2 below. Following the established

guidelines, the architects conducted a manual review of the text within the summary and

description fields of all extracted issues. Issues lacking a description or whose purpose could

not be deduced from the text provided were designated as deleted. Those issues that fit into

a specific decision-making category were appropriately labeled and identified as a Design

Decision. Conversely, issues that did not align with any decision-making categories were

classified as Not A Design Decision.

Following the data extraction and manual labeling steps conducted by Bhat and colleagues,

we further analyzed the dataset with our specific needs in mind. During this reevaluation, we

identified and removed issues that contained insufficient information. As a result, our refined

dataset consists of 1,519 issues, of which 728 are classified as not related to design, and 791

are deemed related to design.

Figure 4.3 illustrates the comprehensive workflow of our text classification pipeline, detailing

a methodical process for analyzing and categorizing textual information. The initial phase,

’Data Preprocessing,’ involves refining the raw text data by removing any extraneous

elements and standardizing its format. This step includes breaking down the text into

89

Figure 4.2 Rules for manual classification. (Source: Bhat, Manoj and Shumaiev, Klym et
al.,”Automatic extraction of design decisions from issue management systems: a machine
learning based approach”,ECSA 2017)

manageable pieces (tokenization) and normalizing these elements to maintain consistency

across the dataset. Next, the ’Feature Extraction’ phase uses as feature extraction techniques

the Term Frequency-Inverse Document Frequency (TF-IDF) and Bag of Words (BoW).

TF-IDF assess the significance of each word within a document relative to a collection of

documents, serving as a crucial factor in understanding text relevance [105]. The BoW

90

model It helps to go from text to numbers by counting the occurrence of words within a

document, and machine learning algorithms work with this numerical data. [106].

To ensure the classification model’s effectiveness and generality, we implement a k-fold

cross-validation technique, setting k to 10. This method divides the dataset into k subsets,

using each in turn for validation while the remainder serves as training data. This cycle

helps in evaluating the model’s stability and accuracy across different segments of the data,

offering a comprehensive understanding of its predictive capabilities. This method provided

a multi-faceted validation, mitigating the risk of overfitting and allowing for a comprehensive

assessment of the models’ generalization capabilities.

In the ’Model Training’ stage, we select and refine a machine learning algorithm tailored to

the specific characteristics of our text data and the classification objectives. During training,

the algorithm adjusts its internal parameters to align with the patterns derived from the

TF-IDF and BoW features and their corresponding labels, learning to predict accurately.

Following training, the ’Model Testing’ phase critically assesses the trained model using a

separate set of data not seen during training. This evaluation is essential for verifying the

model’s ability to generalize its predictions to new, unseen data, ensuring its applicability

and reliability in practical settings.

Finally, the ’Results’ section presents a detailed analysis of the classification results,

including metrics such as accuracy, precision, recall, and others. These indicators provide

insights into the model’s performance, highlighting its strengths and areas for improvement

in text classification tasks. Each stage of the pipeline plays a crucial role in achieving a

refined, effective classification process that accurately interprets and categorizes textual data,

aiming for optimal performance in real-world applications.

4.2.1.2. Classification Algorithms and Model Selection

In the classification section of our study, we employed a comprehensive approach to

text classification by utilizing both traditional machine learning algorithms and advanced

91

Figure 4.3 Text classification pipeline employed in SOFAR-DSS

deep learning techniques, specifically BERT (Bidirectional Encoder Representations from

Transformers) [107] and LSTM (Long Short-Term Memory) [108]. To ensure the robustness

and reliability of our classification models, we adopted the k-fold cross-validation method

throughout our experiments. This section details the performance outcomes of each

algorithm, reflecting their effectiveness in the context of our text classification objectives.

Traditional Machine Learning Algorithms

We began our analysis with a selection of traditional machine learning algorithms, known for

their efficacy in handling structured data and offering interpretable results. The algorithms

tested include Random Forest (RF) [109], Support Vector Machine (SVM) [110], k-Nearest

Neighbors (kNN) [111], Extreme Gradient Boosting (XGBoost) [112] and Light Gradient

Boosting Machine (LGBM) [113]. Each algorithm was subjected to k-fold cross-validation,

with k set to 10, to mitigate any bias or variance in the model’s performance and ensure a

comprehensive evaluation across different data segments.

In our comprehensive analysis, we explored two prominent techniques for text vectorization:

TF-IDF and BoW. These methods serve as critical preprocessing steps, transforming raw text

into structured, numerical formats that machine learning algorithms can process effectively.

TF-IDF emphasizes the importance of terms based on their frequency across documents,

92

distinguishing them by their uniqueness. In contrast, the BoW approach simplifies text

representation, focusing solely on the occurrence of words within a document, disregarding

grammar and word order but capturing the essence of the text’s vocabulary. By applying

both TF-IDF and BoW methodologies, we aimed to capture a broad spectrum of features

from the text data, assessing how each vectorization strategy influences the performance of

the selected machine learning models in our text classification tasks. This dual approach

allowed us to draw more nuanced conclusions about the effectiveness of each algorithm

under different data representation schemes, enriching our understanding of their practical

applications in text analysis.

In our study, meticulous optimization of hyperparameters was essential to ascertain the

most effective settings for the algorithms deployed. The objective was to enhance each

model’s accuracy and its capability to generalize across various datasets. For the purpose

of fine-tuning these hyperparameters, we employed the GridSearchCV technique, a robust

tool provided by the Scikit-Learn [114] library in Python, renowned for its efficiency

in machine learning tasks. This technique exhaustively explores a myriad of parameter

combinations outlined in a predefined grid, evaluating each to pinpoint the configuration that

delivers the optimal performance based on a predetermined evaluation criterion. Leveraging

the insights garnered from GridSearchCV, we meticulously trained our models with these

optimally identified parameters. The specifics of these parameters, which were instrumental

in achieving superior model performance, are detailed in Table 4.1, illustrating the rigorous

approach adopted to ensure the models’ effectiveness and reliability in prediction tasks.

93

Table 4.1 Best parameters of each algorithm used in classification

Algorithm Best parameters

LGBM "colsample bytree": 1, "learning rate": 0.02,

"n estimators": 400

RF "n estimators": 150, "min samples split": 20,

"min samples leaf": 4,

"max features": "sqrt", "max depth": 80,

"bootstrap": False

XGBoost "learning rate": 0.1,

’max depth’: 8,

"n estimators": 200

KNN "knn leaf size": 2, "knn n neighbors": 42,

"knn weights": "distance"

SVM "SvmVM gamma": 60, "pca n components": 4

A comprehensive evaluation was conducted on the performance of these machine learning

algorithms applied to text classification tasks. The models were rigorously assessed based

on their accuracy, recall, precision, and F1-score metrics for both training and testing

datasets, ensuring a thorough examination of their predictive capabilities. The results of

each algorithm is given in 4.2.

94

Table 4.2 Comparison of Machine Learning Models using TF-IDF and BoW

Accuracy Recall Precision F1

Train Test Train Test Train Test Train Test

TF-IDF

KNN 0.768 0.734 0.764 0.737 0.772 0.738 0.765 0.730

SVM 0.985 0.847 0.985 0.847 0.985 0.847 0.985 0.846

RF 0.890 0.817 0.891 0.819 0.891 0.820 0.890 0.817

LGBM 0.929 0.807 0.929 0.806 0.929 0.807 0.928 0.804

XGBoost 0.911 0.798 0.908 0.798 0.912 0.799 0.911 0.796

BoW

KNN 0.682 0.63 0.671 0.621 0.756 0.699 0.648 0.584

SVM 0.933 0.833 0.934 0.832 0.933 0.834 0.933 0.832

RF 0.872 0.823 0.873 0.825 0.874 0.825 0.872 0.822

LGBM 0.908 0.809 0.907 0.808 0.908 0.809 0.907 0.807

XGBoost 0.909 0.801 0.909 0.801 0.909 0.802 0.909 0.798

Each algorithm’s performance was further scrutinized through Receiver Operating

Characteristic (ROC) curves, with the Area Under the Curve (AUC) serving as a critical

indicator of their classification efficacy. The ROC AUC graphs offer a visual and quantitative

understanding of each model’s true positive rate versus false positive rate, providing an

intuitive comparison of their performance. The results, presented in tabulated form for

clarity, are complemented by these graphical representations to deliver a holistic view of

the models’ operational effectiveness in handling text-based data, thereby framing a solid

foundation for the subsequent discussions and conclusions drawn in this study. The ROC

95

curves for each algorithm are given in the graphs below. Figure 4.4, Figure 4.5, and Figure

4.6 for the cases where TF-IDF vectorization is used. Figure Figure 4.7, Figure 4.8, and

Figure 4.9 are the plots when BoW is used.

(a) ROC Curve for KNN (b) ROC Curve for SVM

Figure 4.4 ROC Curves for KNN and SVM

(a) ROC Curve for RF (b) ROC Curve for LGBM

Figure 4.5 ROC Curves for RF and LGBM

96

(a) ROC Curve for XGBoost (b) ROC Curve for all algorithms

Figure 4.6 ROC Curves for XGBoost and all algorithm comparisons

In our analysis, focusing on ROC AUC graphs generated post-classification with Term

Frequency-Inverse Document Frequency (TF-IDF) vectorization, its evident that all models

exceed the performance of random prediction, as delineated by the ’Chance’ line. Overall,

examining all graphs, while all models outperform random prediction (as indicated by the

’Chance’ line), SVM stands out with the highest AUC, followed closely by RF, LGBM and

XGBoost, with KNN lagging slightly behind. This comparative result is also shown in Figure

4.6(b). These differences in AUC reflect the different degrees of trade-offs that each model

makes between sensitivity (true positive rate) and specificity (1 - false positive rate). The

more closely the curve follows the left boundary and then the upper boundary of the ROC

space, the more accurate the test. Conversely, the closer the curve follows the 45-degree

diagonal of the ROC space, the less accurate the test.

97

(a) ROC Curve for KNN (b) ROC Curve for SVM

Figure 4.7 ROC Curves for KNN and SVM (BoW)

(a) ROC Curve for RF (b) ROC Curve for LGBM

Figure 4.8 ROC Curves for RF and LGBM (BoW)

98

(a) ROC Curve for XGBoost (b) ROC Curve for all algorithms

Figure 4.9 ROC Curves for XGBoost and all algorithm comparisons (BoW)

The ROC curves also displayed above provide a visual comparison of the performance

of various classification algorithms when applied to a dataset processed using the BoW

technique. The curve for SVM, with an Area Under Curve (AUC) of 0.91, suggests a high

level of distinguishability, indicating that this model has a strong capability to differentiate

between classes. The RF and LGBM models show comparable performance with an AUC

of 0.90, which implies that they are also highly effective, though slightly less so than SVM.

The XGBoost model exhibits an AUC of 0.90 as well, suggesting a robust performance.

Meanwhile, the KNN model, with an AUC of 0.72, demonstrates a fair classification

capability, but it lags behind the other models.

The ’Chance’ line, depicted by the dashed diagonal line, represents a random guess scenario.

All models clearly outperform this baseline, with the SVM model’s curve hugging the top

left corner the most, reflecting its superior accuracy. The consistent positioning of the curves

above the ’Chance’ line across all algorithms corroborates their effectiveness when utilizing

the BoW approach for data representation in the classification task.

Deep Learning Techniques

To leverage the capabilities of deep learning in understanding the nuances of natural

language, we further explored text classification using BERT and LSTM models. These

99

models excel in capturing the contextual relationships within text data, making them

particularly suited for tasks requiring a nuanced understanding of language.

Similar to the traditional algorithms, we applied k-fold cross-validation for these deep

learning models. This process was crucial in assessing the models’ generalization

capabilities across unseen data and ensuring that our findings were robust against overfitting.

The performance of BERT and LSTM models is also reported using accuracy, precision,

recall, and F1-score. Given the complexity of these models and their sensitivity to training

data, these metrics are instrumental in understanding how well the models can predict the

correct classes while accounting for the intricacies of language.

BERT: Text classification, a pivotal task in natural language processing (NLP), involves

assigning predefined categories to text. The emergence of Bidirectional Encoder

Representations from Transformers (BERT), developed by Devlin et al. [107], has

significantly advanced the state-of-the-art in this domain. BERT’s architecture, leveraging

the transformer model introduced by Vaswani et al. [115], employs a novel pre-training

and fine-tuning methodology that has shown remarkable performance across a wide range of

NLP tasks, including text classification.

BERT’s innovation lies in its ability to understand the context of a word in a sentence more

effectively than prior models. It does this by pre-training on a large corpus of text with

two objectives: masked language modeling and next sentence prediction. This pre-training

enables the model to grasp a deep understanding of language nuances and structures. For

text classification specifically, BERT considers the entire context of a sentence or a sequence,

allowing it to capture subtler meanings and relationships between words.

To apply BERT for text classification, the model is first pre-trained on a large text corpus,

such as Wikipedia or the BooksCorpus ([116]), enabling it to learn a broad understanding

of language. It is then fine-tuned on a specific text classification task with a smaller dataset.

During fine-tuning, the final layer of BERT is adapted to the specific classification task, and

the model learns task-specific nuances, significantly improving its predictive performance.

100

A substantial benefit of BERT is its transfer learning capability. Once pre-trained, BERT

can be fine-tuned with relatively small datasets and still achieve high accuracy, making it

highly efficient for tasks where labeled data is scarce. This has been demonstrated in various

studies, such as Sun et al. [117], where BERT achieved state-of-the-art results on multiple

text classification benchmarks with minimal task-specific adjustments.

However, the implementation of BERT is not without challenges. Its complexity and size

demand considerable computational resources, particularly for training. This has led to

the development of optimized versions like DistilBERT [118] and ALBERT [119], which

maintain comparable performance while being more efficient.

BERT represents a significant leap forward in text classification, offering unparalleled

accuracy by understanding the context of words more effectively. Its impact is evident

across a range of applications, from sentiment analysis to topic classification, showcasing

its versatility and power in harnessing the subtleties of language for NLP tasks.

In our thesis, we used the BERT (Bidirectional Encoder Representations from Transformers)

model for text classification tasks. Leveraging the transformers library by Hugging Face, we

establish a workflow for processing textual data, fine-tuning the BERT model, and assessing

its efficacy on a dataset presumed to consist of issue texts with classification labels.

Our methodology begins with importing the dataset from a CSV file and preparing the textual

and label data for processing. We employed the BertTokenizer from the ’bert-base-uncased’

pretrained model to tokenize the texts, adapting them into a format the model can understand.

This step includes appending special tokens, implementing padding, and generating attention

masks to help the model differentiate between actual content and padding.

Following tokenization, we convert the processed texts into a TensorDataset, which

simplifies data manipulation and batching during the training phase. We use Stratified K

Fold cross-validation for dividing the dataset into training and testing subsets.

For each fold, we establish DataLoader instances for both the training and testing datasets,

facilitating batch processing and shuffling of the training data to enhance the model’s

101

generalization capabilities. We fine-tune a BERT model, configured similarly to the

’bert-base-uncased’ pretrained model but adapted for binary classification (num labels=2),

with the AdamW optimizer and a linear rate scheduler for learning. The training process

involves forward and backward propagation, where the model learns from the provided

batches of input ids, attention masks, and labels. The best parameters identified for BERT in

our tasks include a batch size of 32, a learning rate of 2e-5, and training over 4 epochs.

Upon completing the training, we evaluate the model’s performance on both the training

and testing sets, calculating metrics such as accuracy, precision, recall, and F1 score. These

metrics quantitatively assess the model’s ability to accurately classify new, unseen texts.

LSTM: Long Short-Term Memory (LSTM) networks, a special kind of Recurrent Neural

Networks (RNNs), are designed to overcome the limitations of traditional RNNs in capturing

long-term dependencies in sequence data. Introduced by Hochreiter and Schmidhuber in

1997 [108], LSTMs have been pivotal in advancing the field of natural language processing

(NLP), particularly in tasks requiring the understanding of context over long sequences, such

as text classification.

The key innovation of LSTMs lies in their architecture, which includes memory cells that

store information for long periods and gates that regulate the flow of information into and

out of these cells. This design allows LSTMs to remember and forget information selectively,

making them highly effective for processing and making predictions based on long sequences

of data, such as sentences or documents in text classification tasks.

In text classification, LSTMs analyze the input text sequentially, preserving information from

earlier in the sequence to influence the understanding and classification of the content that

comes later. This capability is crucial for accurately capturing the meaning of a text, as

the context provided by preceding words can significantly influence the interpretation of the

subsequent ones. For instance, LSTMs have been applied successfully in sentiment analysis,

where the sentiment conveyed by a sentence can depend heavily on the sequence in which

the words appear.

102

Several studies have demonstrated the effectiveness of LSTMs in text classification. For

example, Sutskever et al. [120] showed that LSTMs could generate coherent text sequences

and perform well in language modeling tasks. Similarly, Tang et al. [121] utilized LSTMs for

sentiment analysis and opinion mining, achieving state-of-the-art results on multiple datasets.

These successes underscore the model’s proficiency in handling the nuances of language,

making it a popular choice for various NLP applications.

Despite their strengths, LSTMs also come with challenges. They are computationally

intensive and can be slow to train, especially on large datasets. Additionally, designing and

tuning LSTM networks to achieve optimal performance can require significant expertise and

experimentation. To address these issues, researchers have proposed various optimizations

and alternatives, such as Gated Recurrent Units (GRUs) and attention mechanisms, which

can offer similar benefits with less complexity.

LSTMs represent a significant advancement in the ability to process sequential data,

particularly text. Their design enables them to capture long-term dependencies that are

crucial for understanding and classifying text. As research in the field continues, the

methodologies around LSTMs and their applications in text classification are expected to

evolve, further enhancing their utility and effectiveness.

We also used Long Short-Term Memory (LSTM) network for text classification tasks,

leveraging the PyTorch framework for deep learning. Initially, the dataset is loaded and

preprocessed, involving the removal of missing values, extraction of texts and labels, and

conversion of labels to numerical format. The texts are then tokenized using BERT’s

tokenizer, padded to uniform length, and encoded into tensors alongside attention masks,

preparing the data for the LSTM model. The defined LSTM classifier includes an embedding

layer for text representation, a dropout layer to mitigate overfitting, and a fully connected

layer for classification output. Training and evaluation functions facilitate the model’s

learning through cross-entropy loss optimization and performance assessment via accuracy,

precision, recall, and F1 score metrics. Stratified K-Fold Cross-Validation is applied to

ensure comprehensive model evaluation across diverse dataset subsets. The model undergoes

103

multiple training epochs, adjusting its parameters to improve text classification accuracy.

The model uses the Adam optimizer and includes a dropout of 0.3 to prevent overfitting.

The optimal training parameters are a batch size of 32, a learning rate of 0.001, and a longer

training period of 15 epochs.

For each algorithm, we present the following metrics: accuracy, precision, recall, and

F1-score. These metrics provide a multi-faceted view of each model’s performance, allowing

us to assess not only its overall correctness but also its ability to balance false positives and

negatives effectively.

Table 4.3 Performance comparison of LSTM and BERT models

Model Accuracy Precision Recall F1
Train Test Train Test Train Test Train Test

LSTM 0.89 0.86 0.89 0.86 0.89 0.86 0.89 0.86
BERT 0.9 0.84 0.9 0.84 0.9 0.84 0.9 0.84

The ROC curves also displayed in Figure 4.9(a) and Figure 4.9(b) for LSTM and bert

algorithm respectively to provide a visual comparison of the performance of algorithms.

The first graph shows the ROC curve for an LSTM model. The area under this ROC curve

(AUC) is 0.94, indicating a very high level of diagnostic ability. The closer the AUC is to 1,

the better the model is at distinguishing between the positive class and the negative class. An

AUC of 0.94 suggests that the LSTM model has a strong ability to discriminate between the

classes with a high true positive rate even as the false positive rate remains relatively low.

The second graph represents the ROC curve for a BERT model. Similar to the LSTM graph,

it shows the model’s True Positive Rate (TPR) versus False Positive Rate (FPR). The AUC

for the BERT model is 0.92, which is slightly lower than the LSTM’s but still indicates a

high diagnostic ability. Both models exhibit excellent performance, but the LSTM model

has a slight edge over the BERT model in this specific case.

104

(a) ROC Curve for LSTM (b) ROC Curve for BERT

Figure 4.10 ROC Curves for LSTM and BERT algorithms

Upon establishing the superior performance of a specific classification algorithm over

others through comparative analysis, our next step was to delve into the intricacies of the

classification mechanism. This was achieved by integrating explainable artificial intelligence

(XAI) techniques, specifically LIME (Local Interpretable Model-agnostic Explanations)

[122] and SHAP (SHapley Additive exPlanations) [123], into our study. The application

of these XAI methods aimed to shed light on the decision-making process of the chosen

algorithm, thereby increasing the transparency and comprehensibility of its classification

actions. LIME and SHAP stand out in the realm of machine learning for their ability

to clarify the operations of otherwise opaque models [124], effectively addressing the

often encountered trade-off between model performance and its interpretability. This is

particularly relevant when dealing with ’black-box’ approaches, such as those found in

deep learning [125] and various ensemble techniques [126–128], where understanding the

model’s reasoning process is challenging. Our analysis focused on deconstructing the

model’s decision-making for individual instances, offering a detailed exposition on how

each classification was derived. This granular examination is thoroughly documented and

discussed in Section 4.4.3., presenting an in-depth exploration of the model’s interpretative

processes and the implications of its decisions on a case-by-case basis.

105

Comparative Analysis

Following the individual performance evaluation of various machine learning algorithms in

our text classification framework, we performed a comparative analysis including traditional

algorithms as well as advanced deep learning techniques such as BERT and LSTM.

This comprehensive comparison identifies the strengths and weaknesses of each approach,

providing a nuanced understanding of their applicability in our text classification context.

Our empirical results reveal that while traditional machine learning models such as Naive

Bayes, SVM and Random Forests provide a strong foundation for performance, more

sophisticated deep learning models generally perform better. In particular, the LSTM model

performed best in our evaluations, demonstrating its ability to capture temporal dependencies

and nuances in language that are often missed by more traditional models. This advantage is

attributed to the architectural design of the LSTM, which enables it to effectively learn from

the sequential nature of text data, thus improving its prediction capabilities.

Our findings also show that the BERT model provides a robust framework for text

classification tasks. However, the LSTM model in particular has been successful in our

case, probably due to its recurrent structure, which is well suited for the type of text data

we analyze. LSTM’s ability to model long-range dependencies within text sequences has

been an important factor contributing to its strong performance, outperforming traditional

algorithms.

In conclusion, while BERT and other deep learning models offer state-of-the-art capabilities,

the choice of model should depend on the specific requirements of the task at hand. Factors

such as the availability of computational resources, the need for interpretability and the

complexity of the text data should be carefully considered. In cases where the capture

of temporal linguistic features is crucial, LSTM models are particularly effective and can

provide the best performance, as evidenced in our analysis.

106

4.2.2. Step 2: Entity Extraction Module

In the identification of design-centric issues, our methodology emphasizes the critical

extraction of essential entities, terms, and concepts. These elements are integral to our

analytical process as they form the basis for constructing precise queries. These queries

are subsequently processed by our advanced QA model, which delves into the architectural

nuances and context of the issues.

The extraction of entities is a pivotal procedure within our strategy, as it establishes the

foundation for accurately recommending software architectural patterns. To carry out this

extraction effectively, we leverage the sophisticated tool DBpedia Spotlight [129]. DBpedia

Spotlight excels in its ability to annotate and recognize entities automatically, linking

textual content to corresponding DBpedia resources. This tool enables us to forge a deeper

connection between the issues extracted from our dataset and the vast, structured knowledge

encapsulated within the DBpedia knowledge base. In order to entity extraction by dbpedia

spotlight, we used Spacy DBpedia Spotlight package [130] in python. This toolkit functions

as an Entity Recognizer and Linker through the utilization of DBpedia Spotlight. It is capable

of being integrated into an existing spaCy Language object, or alternatively, it can establish a

new one from a blank pipeline. This module connects SpaCy to DBpedia Spotlight, allowing

for the seamless retrieval of DBpedia entities within your documents, whether by tapping

into the public web service or by leveraging your private instance of DBpedia Spotlight.

The document entities, or doc.ents, are enriched with comprehensive details of the entities

including their URI, type, and more.

In our process, each issue text from our dataset is fed into DBpedia Spotlight, which

meticulously identifies and associates key terms and phrases with their corresponding entities

in DBpedia. To optimize the entity recognition process, we have set the tool’s confidence

parameter to 0.75, ensuring a judicious equilibrium between precision and comprehensive

recall. This calibration helps in mitigating the potential for overlooking relevant entities

while maintaining a high level of accuracy in entity recognition.

107

The integration of DBpedia Spotlight in our entity extraction phase allows us to establish

a detailed and contextually relevant understanding of each design issue’s architectural

significance. These extracted entities are then utilized to formulate structured queries,

which are adeptly evaluated by our QA model. This approach not only enriches our

recommendations for software architecture patterns but also enhances the specificity and

applicability of our suggestions, catering to the unique needs and contexts presented by each

design issue.

4.2.3. Step 3: Generating Recommendations with QA Model

Our approach initiates with the careful construction of queries, which are subsequently

inputted into a QA model adept in deciphering and scrutinizing architectural concepts and

terminology. This model meticulously processes the queries, engaging with the DBpedia

ontology—a comprehensive repository of diverse software architecture patterns. Through

this engagement, the model aligns the recognized entities and their correlated issues with the

relevant patterns within the knowledge base.

At the outset of our methodological process, we employ the sophisticated capabilities of

OpenAI’s gpt-3.5-turbo-instruct engine [38], which is tasked with generating design pattern

recommendations in response to user-submitted issues. The interaction with the OpenAI

model unfolds in a series of meticulously orchestrated steps:

• OpenAI API Key Configuration: We commence by integrating the OpenAI API key

into our system, facilitating a secure and seamless interface with the OpenAI services.

• Prompt Creation: We meticulously craft a prompt for each user-reported issue,

encapsulating the essence of the problem and soliciting the AI model for suitable

design pattern recommendations. An example generated prompt: “Considering the

issue of {issue} and its related entities identified by DBpedia Spotlight: entities,

what are the most appropriate design patterns to address this issue?” {issue} will

be replaced by the issue entered by the decision maker using the system.

108

• Engagement with OpenAI’s Engine: The artfully formulated prompt is dispatched to

the gpt-3.5-turbo-instruct engine using OpenAI’s ‘Completion.create’ API method.

This step activates the AI’s analytical faculties to interpret the prompt and proffer

suggestions, with the output tailored to deliver focused recommendations by curtailing

the extent of token generation.

• Recommendation Extraction: OpenAI’s response encompasses a spectrum of possible

design patterns, from which we distill the most relevant pattern that aptly addresses the

issue at hand.

In this process, the interplay between our query formulation, the QA model’s

analysis, and the interaction with OpenAI’s sophisticated AI engine forms a robust

foundation for delivering targeted and contextually appropriate software architecture pattern

recommendations.

4.2.4. Step 4: Recommender

The method for improving suggestions made by a QA model consists of two main actions:

validation and enrichment. These steps can be greatly strengthened by incorporating searches

within an external database like DBpedia.

4.2.4.1. Validation with External Database DBpedia

Upon receiving suggestions from a QA model, its important to assess their accuracy and

relevance. This assessment can be conducted through DBpedia searches. Such searches

would confirm the presence of the suggested entities within the DBpedia repository and

retrieve extra information. This supplementary information could encompass detailed

explanations, pertinent links, and classification information that fits the context of the

suggestion. This dual approach of utilizing recommendations from a QA model and

corroborating them via DBpedia presents a comprehensive strategy for confirming the

correctness, relevance, and thoroughness of the provided data.

109

• SPARQL Query Construction: We construct SPARQL queries that correspond with

the patterns suggested by the OpenAI model, with the intent of locating these patterns

within the DBpedia ontology.

• Executing Queries on DBpedia: We perform these queries at the DBpedia SPARQL

endpoint, obtaining comprehensive entries that include abstracts and categorizations

related to the proposed design patterns. Verification through DBpedia ensures that the

suggestions are rooted in recognized principles of software design.

• Synthesis of Results: We analyzed the outcomes from the DBpedia queries to

confirm the consistency between the AI-provided suggestions and the verified entries

in DBpedia. This integrative process leads to the provision of recommendations that

are informed by AI and corroborated by an authoritative knowledge base. To further

tailor the relevance and accuracy of these recommendations, we apply specific filters.

Results are refined based on designated ‘dcterms:subject’ categories found within

DBpedia. This refinement guarantees that the final recommendations align with the

query not only contextually or functionally but also fit within the targeted conceptual

or thematic realms, such as particular architectural models, software development

methodologies, or the broader spectrum of software architecture. The Sparql query

we utilized is given below:

PREFIX dbc: <http://dbpedia.org/resource/Category:>

PREFIX dct: <http://purl.org/dc/terms/>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT DISTINCT ?pattern ?description ?label WHERE {{

?pattern dbo:abstract ?description ;

dct:subject ?subject.

?pattern rdfs:label ?label.

110

FILTER (

(CONTAINS(LCASE(?label), "{pattern}")) &&

(

?subject = dbc:Software_architecture ||

?subject = dbc:Architectural_pattern_\(computer_science\) ||

?subject = dbc:Software_design_patterns

)

)

FILTER (LANG(?description) = ’en’ && LANG(?label) = ’en’)

}}

LIMIT 10

This SPARQL query is adapted to search DBpedia for detailed information about software

design patterns specifically suggested by a question and answer (QA) system. The Pattern

placeholder is dynamically modified by the QA system’s suggestion, so that the query is

directly related to the user’s query or the architectural problem at hand. The query aims

to retrieve patterns related to the fields of Software Architecture, Architectural Patterns in

Software Engineering and Software Design Patterns. Thus, it is queried whether the patterns

suggested by the QA model are present in verified databases such as dbpedia. How the query

components are compatible with this goal is described below:

PREFIX: This section defines abbreviations for the URIs used in the query to simplify its

syntax. For example, dbc: is set as a shorthand for http://dbpedia.org/resource/Category:,

which is the base URI for DBpedia categories.

SELECT DISTINCT: This statement specifies that the query will return unique results

based on the variables listed (?pattern, ?description, ?label). It aims to avoid duplicate entries

in the output.

WHERE: This clause defines the pattern that DBpedia resources (?pattern) need to match to

be included in the results. It specifies that the resources must have an abstract (?description)

111

and belong to one of the specified categories (?subject). Additionally, these resources must

have a label (?label), which is the name or title of the design pattern.

FILTER: The FILTER functions are used to refine the search criteria:

• The first FILTER ensures that the label of the pattern (converted to lowercase using

LCASE()) contains the search keyword specified by pattern. This makes the search

case-insensitive and more flexible. Also it checks that the subject of the pattern falls

under one of the three specified categories related to software design and architecture.

• The last FILTER condition ensures that both the description and the label of the

patterns are in English (’en’), providing consistency in the language of the results.

LIMIT: This limits the number of results returned by the query to 10, making the output

more manageable and focused on the most relevant entries.

Overall, this SPARQL query is crafted to explore DBpedia for specific software design

patterns that match a given keyword, ensuring that the results are relevant to software

architecture and design principles and are presented in English.

4.2.4.2. Enrichment

We enhanced the suggestions provided by SOFAR-DSS by verifying additional design

patterns on DBpedia. To achieve this, we utilized entities identified through DBpedia

Spotlight to formulate a SPARQL query. This query was executed to retrieve alternative

design patterns from DBpedia’s ontology, which were subsequently incorporated into the

list of recommendations. The query is given below. The first part is of this query is prefix

declarations that are shortcuts for the namespaces used in the query. The rest part of the

query is as shown below:

SELECT DISTINCT ?pattern: This line is asking the database to return unique

(DISTINCT) results for the variable ?pattern, which will represent design patterns.

112

WHERE Clause: This is where the criteria for selecting the data is specified.

• ?pattern rdf:type dbo:DesignPattern . is looking for resources that are of the type

”DesignPattern” according to the DBpedia Ontology.

• ?pattern rdfs:label ?label . selects the human-readable label of the design pattern.

• ?pattern dbo:abstract ?abstract . selects the abstract (a summary or description) of the

design pattern.

• The next three lines with dct:subject filter patterns that are categorized under “Software

Architecture,” “Architectural Pattern (Computer Science),” and “Software Design

Pattern,” ensuring that only resources associated with these categories are considered.

FILTER: This function restricts the results based on the given

conditions. CONTAINS(LCASE(?label), LCASE(“${entityToQuery}”))

||CONTAINS(LCASE(?abstract), LCASE(“${entityToQuery}”)) is checking if the

search term entityToQuery (which you should replace with your actual term) appears in

either the label or the abstract of the design patterns. The LCASE function is used to convert

both the label/abstract and the search term to lowercase, making the search case-insensitive.

LIMIT: This limits the number of results returned to a maximum of 10.

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX dbc: <http://dbpedia.org/resource/Category:>

SELECT DISTINCT ?pattern WHERE {

?pattern rdf:type dbo:DesignPattern .

?pattern rdfs:label ?label .

?pattern dbo:abstract ?abstract .

?pattern dct:subject dbc:Software_architecture .

113

?pattern dct:subject dbc:Architectural_pattern_\

(computer_science\) .

?pattern dct:subject dbc:Software_design_pattern .

FILTER (CONTAINS(LCASE(?label), LCASE("${entityToQuery}")) ||

CONTAINS(LCASE(?abstract), LCASE("${entityToQuery}")))

}

LIMIT 10

4.3. USER INTERFACE DEVELOPMENT

The interface for users acts as the front end to our system for recommending architectural

patterns, facilitating interaction between users and the foundational models and algorithms.

The user interface (UI) was constructed utilizing Streamlit, a Python-based library that

facilitates rapid web application development with reduced code complexity. This portion

of the document explicates the UI’s design principles, operational capabilities, and its

developmental process.

Our approach to UI design prioritized straightforwardness and operational effectiveness,

allowing software architects to seamlessly explore the system and access recommendations

effortlessly. By adopting Streamlit’s array of widgets and design configurations, we aimed to

foster an environment characterized by its straightforward and user-friendly interface. There

are four different pages in the interface; a home page (4.11) where general information about

SOFAR-DSS is given, a classifier page (4.12) where the results of the different algorithms

used for classification within the scope of the thesis are given, a JIRA data recommendations

page (4.13) where the user gives issues from JIRA specific to the user’s project as input

to SOFAR-DSS, and a single issue recommendations page (4.15) where the user can see

the results for a single issue. Key functionalities offered by the UI include are summarized

below:

114

Issue Submission: The interface allows users to input only one issue or import multiple

issues from tools like Jira. This action initiates the backend processes for classifying the

issue and extracting relevant entities.

Visualization of Extracted Entities: If the issues entered are classified as design related,

the system presents the identified entities and offers users the opportunity to evaluate them.

Pattern Recommendation: The system suggests design patterns to the user according

to the issue or issues entered and presents their descriptions in dbpedia to the user with a

drop-down menu.

Feedback Mechanism: The platform incorporates a feature for users to appraise the

pertinence of the suggestions provided, thereby contributing to the continuous enhancement

of the recommendation algorithm.

115

Figure 4.11 Home page of user interface

116

Figure 4.12 Classifier page of user interface

Figure 4.13 JIRA Data Recommendations page of user interface

117

Figure 4.14 JIRA Data Recommendations page and system responses

The page shown in Figure 4.14 works with Jira issues. This page allows users to bring

issues from a specific Jira project and examine potential design model recommendations

based on the characteristics of each issue. Users can enter the name of the Jira project they

are interested in (for example, ”Project 1”) and then click on the ”Fetch” button to fetch

the relevant issues. Once fetched, the issues in the Jira project are displayed with their

keys, summaries and other relevant details. Each issue is listed with a unique identifier

(e.g. BUG-8, BUG-7) and a summary that provides a brief description of the issue. Only

design related issues are considered and analyzed accordingly. Based on the analysis of the

issue descriptions, the system suggests appropriate design models that could potentially solve

or address the challenges highlighted in the issues. For example, the system may suggest

118

”Adapter pattern” or ”Facade pattern” depending on the nature of the problem described in

the issue. Users can select the most appropriate design pattern from the suggested options.

After selecting a pattern, users are asked to rate how appropriate they find the suggestion on

a scale from 1 to 5, where 1 means least appropriate and 5 means most appropriate. After

making a selection and providing a rating, users can submit their feedback by clicking on the

”Submit” button. This action finalizes their input and can contribute to the system’s learning

and future recommendation accuracy.

Translated with DeepL.com (free version)

Figure 4.15 Single Issue Recommendations page of user interface

The single issue page displayed in Figure 4.16 allows users to test the model with custom

input. When a user inputs an issue, the system first determines whether the issue is related

to design. If the issue is design-related, the page displays relevant results using two local

explanation methods: LIME and SHAP. These methods help illustrate why the model made

its prediction about the issue being design-related. Additionally, the system recommends

specific design patterns suitable for the entered issue. For the example given in Figure 4.16,

”State pattern” and ”Strategy pattern” are recommended. Users can then select from the

recommended design patterns and provide a rating for the chosen pattern. The rating scale

is from 1 to 5, allowing users to evaluate how well the recommended pattern suits their

specific needs. This feedback mechanism helps refine the recommendations and enhance the

system’s accuracy and relevance for future queries.

119

Figure 4.16 Single Issue Recommendations page and system responses

4.4. VALIDATION OF SOFAR-DSS

The validation process for SOFAR-DSS incorporated three main approaches: validation

with Stack Overflow data, validation with design pattern cases from book and validation

with experts. To understand the intricacies of the inputs, selected samples from the initial

two validation techniques and a case instance for expert validation and their responses are

presented.

120

4.4.1. Validation with Stack Overflow Data

Initially, we leveraged a validation approach centered around issues shared and discussed

on the Stack Overflow and their corresponding solutions posted on Stack Overflow.

We collected software development-related queries and their accepted solutions from

this platform to test SOFAR-DSS. We specifically targeted questions that had received

community endorsement through accepted answers. A preliminary filter of tags

associated with ’software-design’ and ’design-patterns’ produced 279 questions. We

meticulously examined these to select queries with comprehensive problem descriptions

and community-approved answers. After a thorough selection process, we pinpointed 20

questions that closely matched the operational scope of SOFAR-DSS. These were then input

into our system to evaluate the alignment of our system’s suggestions with the accepted

responses on Stack Overflow. The results were promising: SOFAR-DSS’s recommendations

corresponded with the accepted answers in 17 out of the 20 instances. This 85% confidence

rate not only demonstrated SOFAR-DSS’s proficiency in offering viable solutions for

practical software design queries but also validated that its recommendations were consistent

with community-vetted solutions, thus boosting the system’s dependability and applicability.

The validated questions and a comparison of Stack Overflow’s accepted answers with

SOFAR-DSS’s recommendations are summarized in Table 4.4, presenting select examples

for illustration. All the questions used for validation from Stack Overflow, along with their

respective answers and the recommendations provided by SOFAR-DSS, are presented in

Table 6.1 in Appendix A.

4.4.2. Validation with Design Pattern Cases from Book

As a subsequent step, a set of example cases related to software design patterns, derived

from Shvets’ book on design patterns [131], were manually entered into SOFAR-DSS.

These cases presented typical challenges encountered in software architecture, along with

a spectrum of applicable software design patterns. We meticulously inputted examples for

each of the 22 design patterns into the system, except for the chain of responsibility pattern

121

Ta
bl

e
4.

4
Sa

m
pl

e
Q

ue
st

io
ns

fr
om

St
ac

k
O

ve
rfl

ow
an

d
th

ei
rA

cc
ep

te
d

A
ns

w
er

s
C

om
pa

re
d

w
ith

SO
FA

R
-D

SS
’s

R
es

po
ns

es

St
ac

k
O

ve
rfl

ow
Q

ue
st

io
n

A
cc

ep
te

d
A

ns
w

er
on

St
ac

k
O

ve
rfl

ow
fo

r
co

rr
es

po
nd

in
g

qu
es

tio
n

SO
FA

R
-D

SS
’s

R
ec

om
m

en
da

tio
ns

Ih
av

e
so

m
e

pr
e

in
iti

al
iz

ed
ob

je
ct

s
of

so
m

e
cl

as
s.

T
he

se
ob

je
ct

s
ar

e
he

av
y

w
ei

gh
t

ob
je

ct
s

an
d

ea
ch

co
rr

es
po

nd
to

so
m

e
co

nfi
gu

ra
tio

n
op

tio
ns

sp
ec

ifi
ed

by
us

er
.

T
he

re
w

ill
be

ex
ac

tly
on

e
in

st
an

ce
co

rr
es

po
nd

in
g

to
on

e
co

nfi
gu

ra
tio

n
an

d
sa

m
e

w
ill

be
us

ed
ev

er
y

tim
e.

Fl
yw

ei
gh

t
D

es
ig

n
Pa

tte
rn

Fl
yw

ei
gh

t
D

es
ig

n
Pa

tte
rn

,O
bj

ec
tP

oo
l

D
es

ig
n

Pa
tte

rn

I
ha

ve
de

ve
lo

pe
d

a
V

ST
O

4.
0

ad
d-

in
,

de
si

gn
ed

fo
r

th
e

in
te

gr
at

io
n

of
ou

r
bu

si
ne

ss
ap

pl
ic

at
io

n
in

to
M

ic
ro

so
ft

W
or

d.
C

od
e

w
ri

tte
n

in
th

e
m

ak
in

g
ad

d-
in

,
is

a
m

in
i

fr
am

ew
or

k
th

at
I

w
ou

ld
lik

e
to

re
-u

se
fo

r
a

ne
w

ad
d-

in
fo

r
M

ic
ro

so
ft

Po
w

er
Po

in
t.

T
he

m
ai

n
pr

ob
le

m
is

th
at

th
e

W
or

d
an

d
Po

w
er

Po
in

t
in

te
rf

ac
es

(f
or

ex
am

pl
e,

M
ic

ro
so

ft
.O

ffi
ce

.In
te

ro
p.

W
or

d.
Ta

bl
e

an
d

M
ic

ro
so

ft
.O

ffi
ce

.In
te

ro
p.

Po
w

er
Po

in
t.T

ab
le

)d
o

no
th

av
e

a
co

m
m

on
an

ce
st

or
,b

ut
I

ne
ed

to
cr

ea
te

an
ge

ne
ra

l
A

PI
fo

r
in

se
rt

in
g,

up
da

tin
g,

ta
bl

es
an

d
gr

ap
hs

,e
tc

.,
w

hi
ch

w
ill

be
st

an
da

rd
iz

ed
to

w
or

k
w

ith
W

or
d

an
d

Po
w

er
Po

in
to

bj
ec

ts

A
da

pt
er

D
es

ig
n

Pa
tte

rn

A
da

pt
er

D
es

ig
n

Pa
tte

rn
,

St
ra

te
gy

Pa
tte

rn

A
n

ex
am

pl
e

co
ul

d
be

po
ol

in
g

vi
de

os
fr

om
di

ff
er

en
tv

id
eo

-s
tr

ea
m

in
g

se
rv

ic
es

in
to

a
ge

ne
ra

liz
ed

m
od

el
.I

n
ot

he
rw

or
ds

,e
ac

h
vi

de
o-

st
re

am
in

g
se

rv
ic

e
w

ill
ha

ve
th

ei
r

ow
n

re
pr

es
en

ta
tio

n
of

a
V

id
eo

ob
je

ct
w

ith
a

di
ff

er
en

ts
et

of
pr

op
er

tie
s.

So
yo

u
w

an
tt

o
ga

th
er

th
es

e
di

ff
er

en
tc

on
st

ru
ct

s
an

d
ag

gr
eg

at
e

th
em

in
to

a
ge

ne
ra

liz
ed

V
id

eo
ob

je
ct

.

C
om

po
si

te
D

es
ig

n
Pa

tte
rn

B
ui

ld
er

D
es

ig
n

Pa
tte

rn
,

A
da

pt
er

D
es

ig
n

Pa
tte

rn

122

due to its inadequate problem description, which led us to deactivate it. The examples

were carefully chosen to cover the three main pattern categories—creational, structural, and

behavioral—as defined by Shvets. By processing these instances, we could critically evaluate

SOFAR-DSS’s capability to offer solutions across varied architectural dilemmas. We then

measured the system’s output against the established patterns and best practices from the

literature. SOFAR-DSS’s accuracy in suggesting appropriate patterns was confirmed in 17

out of 23 cases. In one instance, the system did not categorize the issue as ‘design related’

and hence did not offer a recommendation, and for another case, it made no suggestion

at all. This demonstrated the system’s adeptness in adhering to recognized design pattern

conventions and its effectiveness in tackling a broad array of architectural situations. The

cases utilized for system validation have been disclosed. Table 4.5 lists some instances

from Shvets’s guide, alongside the corresponding recommendations from SOFAR-DSS. In

Appendix B, Table 6.2 lists all instances from Shvets’s guide, alongside the corresponding

recommendations from SOFAR-DSS.

123

Table 4.5 Example Cases with Design Pattern and the SOFAR-DSS’s Response

Example case from design pattern

book

Design pattern

as outlined in

the book for the

corresponding

example case

Recommended

Design Patterns by

SOFAR-DSS

Application needs to manipulate a

hierarchical collection of ”primitive”

and ”composite” objects. Processing

of a primitive object is handled one

way, and processing of a composite

object is handled differently. Having

to query the ”type” of each object

before attempting to process it is not

desirable.

Composite Design

Pattern

Composite Design

Pattern, Visitor

Design Pattern

Application needs one, and only one,

instance of an object. Additionally,

lazy initialization and global access

are necessary.

Singleton Design

Pattern

Singleton Design

Pattern, Factory

Method Design

Pattern

”Hardening of the software arteries”

has occurred by using subclassing of

an abstract base class to provide

alternative implementations.

This locks in compile-time

binding between interface and

implementation. The abstraction

and implementation cannot be

independently extended or composed.

Bridge Design Pattern

Strategy Design

Pattern, Abstract

Factory Design

Pattern

124

4.4.3. Expert Validation and Feedback

To evaluate SOFAR-DSS thoroughly, we consulted with subject matter experts for their

professional feedback.This process involved five specialists: four seasoned software

architects with a decade of experience each, and a senior developer with nine years in

the field. Before they began their assessment, we provided these experts with a clear

understanding of the data intricacies by showcasing a range of pre-tested case studies sourced

from both Stack Overflow discussions and established literature. Given the sensitivity of

proprietary corporate data, the specific details of company-related inputs remain undisclosed

in our documentation. These professionals also engaged with the system using sample

inquiries from Stack Overflow, thereby gauging the system’s applicability to actual industry

challenges. Table 4.6 in our document illustrates an instance where an expert interacted

with SOFAR-DSS, highlighting the system’s response mechanism. This case study serves

as a testament to the system’s operational effectiveness when confronted with real-life

problem statements. The system adeptly executes multiple functions: from classification

and entity recognition to query response and pattern suggestion, offering users a cohesive

and interactive experience that culminates in customized solution recommendations.

Table 4.6 SOFAR-DSS’s responses according to the issue entered by user

Issue Entered A broadcasted table will be used multiple times in
a query. We should cache them avoid duplicated
broadcasts.

Classification
Result

Related to design

Entities cache
Recommendations given by SOFAR-DSS Observer pattern,

Flyweight pattern

When an issue entered by a user is classified as ’design related’ by the system, the user

interface showcases the influence of individual words on this classification through LIME

and SHAP visualizations.

SHAP (SHapley Additive exPlanations): SHAP is a game theory-based model

interpretability tool that assigns each feature an importance value for a particular prediction

[123]. Its approach is grounded in the concept of Shapley values from cooperative

125

game theory, which attributes a fair distribution of payoffs to players depending on their

contribution to the total payout. In the context of machine learning, SHAP values provide

insights into how much each feature contributes, positively or negatively, to the target

variable. This is crucial for complex models, such as ensemble models or neural networks,

where the relationship between input features and the prediction is not straightforward.

SHAP not only helps in understanding individual predictions but also in analyzing the

model’s overall behavior. The visualizations generated by SHAP summarize the effects of

features across multiple instances, making it a powerful tool for both local and global model

explanation.

LIME (Local Interpretable Model-agnostic Explanations): LIME is a technique designed

to explain individual model predictions in a way that humans can understand [122]. It

works by creating a simple, interpretable model, such as a linear model, which approximates

the predictions of the complex model locally. To do this, LIME perturbs the input

data, generating a new dataset consisting of the perturbed samples and the corresponding

predictions from the complex model. Then, it weights these new samples according to their

proximity to the instance being explained and learns a simple model on this weighted dataset.

The resulting model is interpretable as it usually relies on a smaller, more understandable

set of features. The key idea is that even though the overall model may be complex and

nonlinear, around a local point, it can be approximated well by something simpler. LIME can

be applied to any model, making it model-agnostic, and it provides a way to understand why

a model made a certain prediction, thereby increasing trust in the model’s decision-making

process.

LIME and SHAP visualizations are depicted in Figures 4.17 and 4.18 for the case described

in Table 4.6. Detailed commentary for each figure follows below. The LIME visualization

(Figure 4.17) uses red and green to signify which elements (words, in this context) have

the most sway in the model’s decision-making process. The graph reveals that the length

of the bars corresponds to the extent of influence, with green representing positive and red

indicating negative impacts. For instance, the word ’use’ is shown to have a significant

positive effect on the model’s prediction, as evidenced by a long green bar. Conversely,

126

’avoid’ also contributes positively, though to a lesser degree than ’use’, while ’table’ appears

to exert a negative influence. Other terms are seen to have negligible or neutral effects.

The SHAP summary plot in Figure 4.18 offers a graphical representation of each feature’s

effect on the model’s output for a particular prediction class, labeled ‘Design Related’. Here,

individual points signify the SHAP value for a feature in a single instance, reflecting its

contribution to the model’s prediction. These values’ placement on the X-axis denotes the

strength and direction of their impact. Features leading to a higher prediction appear with

positive SHAP values, and those leading to a lower prediction show negative values. ’Use’

stands out with a pronounced positive impact, nudging the model towards a class 1 (related

to design) prediction. In contrast, ’multiple’ has a lesser negative effect, indicated by a red

bar, moving the prediction slightly away from class 1. Blue dots for words like ’table’ and

’time’ denote a neutral or variable influence on the model’s outcome. Features positioned

to the right side of the zero line contribute to a class 1 classification, while those on the left

side detract from it. When examining both graphs in Figure 4.17 and Figure 4.18, they

seem to provide congruent insights, although the specific words with negative influence

differ—’table’ in the LIME graph versus ’multiple’ in the SHAP graph. Using the LIME

approach necessitates a critical approach to its results due to inherent constraints. LIME

requires the user to specify the number of top features to focus on, which is inherently

subjective [132]. Moreover, it creates neighboring text data by randomly omitting words,

possibly leading to illogical strings of words that poorly represent actual data scenarios.

This randomness does not reflect the true distribution of feature values or the clustering

of class labels present in the data [133]. Hence, the model’s behavior is approximated

based on these distorted values, which might result in explanations that don’t accurately

portray real situations. While LIME can provide useful insights, its important to interpret its

results cautiously, keeping in mind the possibility of skewed interpretations because of these

methodical limitations.

The interface contains an area where users can rate the recommended recommendations

following classification, entity extraction and recommendation sections. From the suggested

options, users select and rate the design pattern and then submit their comments. In depth

127

Figure 4.17 Local explanation of text classification with LIME on individual instance for class 1
(related to design)

analysis of the system’s performance and usability has been carried out by experts through

collective feedback. We have conducted a survey of 11 questions to collect this feedback

on a systematic basis. A Likert scale was used in six of these questions to assess user

satisfaction with various aspects, such as ease of use, interface design, accuracy, reliability

of recommendations, and the impact of the system on decision making. Table 6 gives an

overview of the responses to Likert’s questions. Further questions were opened to collect

input on system improvements, potential new features and any problems that might arise in

the course of use. Three of the experts indicated that they intend to apply SOFARDSS in

their own companies. The replies indicated that the system was easy to use for all experts,

and that they would recommend it to others. The recommendations were considered to be

very accurate and adequate. The system has been considered to be effective as regards

decision making, although some feedback was received on improving it. The addition of

128

Figure 4.18 Local explanation of text classification with SHAP on individual instance for class 1
(related to design)

implementation details, UML diagrams and code for recommendations, explanations on

why they have been recommended, as well as the possibility of integrating this system into

project management tools like Jira were all suggestions for improvement. The requirement

of detailed task inputs to achieve optimum results has been identified as a major challenge.

Consequently, considerable insight was gained through a thorough validation of

SOFAR-DSS. Its effectiveness and reliability were confirmed by the alignment of the

system’s recommendations with recognized solutions for Stack Overflow, as well as its

design patterns. In addition, the practical applicability of this system has been reinforced

by favorable comments from industry experts that highlighted its ease of use, accuracy, and

usefulness for decision-making.

The suggestions for improvement have also provided valuable directions for future

enhancements, motivating SOFAR-DSS will remain relevant and effective in evolving

software architecture scenarios. Overall, this validation process has robustly provided

129

Table 4.7 Likert questions for evaluation of system and the Likert scores of the answers for all
experts (E1-E5)

Question E
1

E
2

E
3

E
4

E
5

M
ea

n

M
ed

ia
n

M
od

e

How easy was the system to use? (1-Very Difficult,
5-Very Easy)

5 5 5 5 5 5 5 5

Was the interface design and navigation intuitive?
(1-Strongly Disagree, 5- Strongly Agree)

5 5 4 5 5 4.8 5 5

How accurate and appropriate did you find the
recommendations provided by the system?
(1-Not Accurate at All, 5-Very Accurate)

4 4 4 5 4 4.2 4 4

How reliable did you find the system’s
recommendations?
(1- Not Reliable at All, 5-Very Reliable)

4 5 4 4 4 4.2 4 4

How useful was the information provided by the system
in your decision-making process?
(1- Not Useful at All, 5-Very Useful)

3 4 3 4 4 3.6 4 4

How often do you plan to use the system?
(1-Never, 5-Very Frequently)

3 3 2 4 3 3.0 3 3

Would you recommend the system to your colleagues?
(Yes-Y, No-N, Maybe-M)

Y Y M Y Y

evidence that SOFAR-DSS is a credible candidate tool for software architects and developers.

The upgrade recommendations have also yielded important avenues for future development,

ensuring that SOFAR-DSS will continue to be applicable and efficient in changing software

architecture circumstances. All things considered, SOFAR-DSS is a reliable candidate tool

for software architects and engineers, as demonstrated by the solid proof this validation

procedure has produced.

4.5. Threats to Validity

Several potential threats to validity have been found and considered during this study on

the use of a QA Model and DBpedia ontology, which recommended software architecture

patterns. These threats and the steps taken to mitigate them are dealt with in this section.

Internal Validity: The recommendations made by the QA model can be affected by biases

in the training data. Efforts have been made to diversify the training set, but some residual

biases may remain. The classification of problems and subsequent entity extraction depends

on the quality of the input data. Any inaccuracies at this stage can cascade through

130

the system. To improve data accuracy, we performed rigorous preprocessing and applied

numerous iterations of manual validation. The selection of trust and support parameters for

DBpedia Spotlight was based on preliminary experiments designed to balance precision and

recall. These parameters may need to be further refined for different datasets or domains.

There was a potential threat of bias in the selection of questions and answers from Stack

Overflow. This could mean that our validation process may only represent certain types

of problems or user perspectives. To mitigate this, we used a random selection process to

cover a range of questions and provide a more representative sample of real-world software

development scenarios.

External Validity: Our presented results may not represent all architectural design

scenarios. We have limited this potential threat by including a wide range of topics and

models from different sources. The effectiveness of the methodology in different areas of

software engineering has not been extensively tested. Future work could broaden the scope

to include more diverse domains.

Construct Validity: There may be inconsistencies between the conceptual definitions of the

entities in our study and their real-world counterparts. To mitigate this, we closely aligned

our definitions with established software engineering terminology. The choice of DBpedia

Spotlight for entity extraction was based on its extensive use in this domain, even though

it is not fully aligned with software architecture-specific jargon. A thorough review of the

literature supported its application in this context.

4.6. Evaluation and Discussion

Our methodology for combining the QA model with the DBpedia ontology underwent

a thorough evaluation. We collected and classified issues from JIRA and applied entity

extraction to improve the performance of the QA model. We fine-tuned the precision of entity

recognition with DBpedia Spotlight to reach an ideal balance, thus guaranteeing both high

reliability and broad coverage. We measured the effectiveness of our classification models

using traditional metrics such as accuracy, precision, recall, and F1 score. These models

131

include both traditional machine learning models KNN, SVM, RF, XGBoost and LGBM,

and deep learning models BERT and LSTM. The model selection process was data-driven

and cross-validated to ensure robustness. The LSTM classifier was particularly adept at

managing the complexities of software architecture problems. We used SHAP and LIME,

both explainable artificial intelligence (XAI) techniques, to elucidate the operation of our

classification algorithms. The integration of XAI methods allowed us to provide users with

transparent and understandable explanations for classification decisions. These techniques

help to understand the rationale for classification by identifying specific words or phrases

in the text that most influenced the model’s decision. The crucial entity extraction step of

our methodology was supported by DBpedia Spotlight’s deep semantic analysis capability.

The extracted entities played a crucial role in the creation of structured queries that fed

the QA model, establishing a direct link between the issue reports and the corresponding

architectural models. This harmonious interaction between entity extraction and the QA

model underpins the effectiveness of our approach. The practical results of our system have

been significant, demonstrating its capacity to markedly improve decision making in software

architecture and facilitate more streamlined and enlightened pattern selection. The adaptive

framework of the system points to its potential to evolve with the field by continuously

incorporating new patterns and architectural insights.

While the SOFAR-DSS introduced here serves as a navigation aid for decisions in software

architecture, it is imperative that users accept the constraints of the system and exercise

discretion under certain conditions. The decision-making capability of the system depends

on the detail provided in the user’s input; therefore, vague or ambiguous requirements may

result in less accurate recommendations. To achieve the most precise and useful results,

users are encouraged to articulate their architectural issues in clear and relevant key phrases.

Furthermore, the effectiveness of the DSS depends on the extent to which it represents the

domain of the underlying database and algorithms, which may not cover the full range of

emerging technologies and methodologies. It is crucial that users supplement the DSS’s

recommendations with experienced human expertise, especially in complex cases that may

require an assessment beyond what the system currently offers. Users should also be aware

132

that the DSS functions as an auxiliary tool and is not intended to replace the complex and

critical decision-making processes carried out by experienced architects.

133

5. SUMMARY

This thesis topic was chosen based on the observation of the ongoing challenges and

inefficiencies in architectural decision making in software development. The complexity

of this process, characterized by a large number of options, the need for rapid decision

making and rigorous documentation requirements, poses significant challenges for software

architects. Such challenges not only hinder the process, but also affect the quality and

effectiveness of the software systems developed. Therefore, we aim to explore innovative

solutions that can improve the architectural decision-making process. This led to the

development of SOFAR-DSS, a tool designed to assist architects by simplifying decisions

and increasing the precision and relevance of software design recommendations. The

motivation stemmed from the desire to provide a robust framework that can alleviate

the burdens faced by architects and improve the overall decision-making environment in

software architecture.

In this context, this thesis started with a semi-structured exploratory study and an online

questionnaire aiming to uncover the realities of architectural decision-making in the field,

the influential and determining factors within this process, and the challenges that are

encountered. We targeted active software professionals involved in architectural decisions,

whether currently or in the past. The semi-structured exploratory study was conducted

with 9 experts from Turkey involved in architectural decision-making, while the survey was

conducted with 101 experts from around the world. The data was subject to both quantitative

and qualitative analysis techniques.

Valuable insights were obtained about the actual practices of decision-making within

organizations and by architects, the documentation and accessibility of these decisions, the

factors that pose challenges and hold significance in decision-making, the composition and

methods of the decision-making teams, and the aspects in need of enhancement within

the decision-making process. The findings reinforce the critical role that the process of

making software architecture decisions plays within the industry. This is evidenced by

134

participant feedback and their responses to open-ended questions within the survey. Our

primary observations indicate that decisions are typically recorded and made collaboratively

in teams. Brainstorming and consensus, which allow for open expression of ideas by all

team members, are favored approaches. Reviewing and discussions are common practices

for tracking interrelated decisions, defining architecturally significant requirements, and

confirming decisions made.

These outcomes highlight the value of discussion and information exchange for reaching

decisions in the architectural decision-making process. While some organizations follow

a systematic approach for each phase of this process, others do not adhere to any formal

methodology.

Diverging from previous survey research in software architecture, we statistically evaluated

responses from different groups (for instance, whether decisions are documented, whether

Agile methodologies are used) to the survey questions. Using the Mann-Whitney U test

and correlation analyses, we assessed the existence of statistically significant differences in

responses. The findings from these tests revealed significant variances between the groups

concerning both technical and social challenges faced in making architectural decisions,

as well as in responses to the factors affecting these decisions. Notably, peer pressure in

projects directed by an individual differed significantly from that in team-driven projects,

suggesting that an increase in the number of decision-makers can lead to more disagreements.

However, when comparing Agile versus non-Agile projects, and projects where decisions are

documented against those that are not, no significant differences were found in terms of the

factors influencing architectural decisions. This implies that the development lifecycle model

and documentation status do not sway the decision-making in architecture.

From our research findings, we deduce that effective communication holds paramount

importance in the decision-making process, as also inferred from the responses to questions

18b and 28. This stakeholder communication can be facilitated by robust architectural

documentation practices. To this end, the utilization and customization of documentation

templates from literature could be advantageous and tailored to best suit and serve

135

the organizational needs. Our study not only underscores the necessity of effective

communication but also the importance of a solid documentation process to enable it.

The survey predominantly included general questions reflecting the participants’ past

experiences. In future work, the survey could be tailored with more project-specific inquiries.

Additionally, investigating the relationship between software architecture decisions and

company or project characteristics could contribute significantly to the field of architectural

decisions. A study examining the link between technically unsuccessful projects and their

architectural decisions would also be enlightening, offering insights into the underlying

causes of project failures and the influence of architectural decisions. A forthcoming

initiative planned by the authors of this study is to develop a decision support system aimed

at mitigating uncertainties and challenges in the architectural decision-making process,

thereby streamlining it. This system, which is currently in development, seeks to enhance

the success rates of decision-making in software architecture through more systematic

documentation and improved traceability of decisions. The insights garnered from this study

will be pivotal in the creation of this decision support system and its accompanying tools.

Lastly, another potential avenue for future research is delving into the improvements in

the decision-making process as indicated by the study respondents, necessitating research

focused on understanding and addressing the problems and inefficiencies highlighted by this

study.

The insights from these studies have significantly improved our understanding of the

architectural decision-making process. Our findings show that this process is fraught with

challenges, making decision making increasingly difficult, especially when decision makers

are faced with insufficient information or a large number of alternatives.

To facilitate this process and ease the burden on architects, we introduced SOFAR-DSS.

The motivation behind the design of SOFAR-DSS was influenced by the feedback received

from people involved in architectural decision-making in various companies, especially

regarding problems with documentation. It was often mentioned that documentation was

136

often inadequate or seen as an additional burden. Our research revealed that decisions were

often made on the basis of meeting notes or personal records.

Based on this, we aimed to design SOFAR-DSS to assist decision makers by integrating issue

tracking systems to retrieve relevant issues and propose design patterns accordingly. This

approach aims to prevent decision makers from spending excessive time evaluating different

alternatives and thus facilitate decision making in architectural studies. It is expected that

this system will not only simplify the process but also improve the quality and efficiency of

architectural decisions by providing timely and relevant information and recommendations.

As the final study of this thesis, we introduce SOFAR-DSS, a methodology designed to refine

the process of recommending software design patterns. Our approach was driven by the need

to make architectural pattern recommendations more pertinent to the distinct challenges

encountered during software design and development. Recognizing the importance of

customizing architectural advice to resolve specific issues faced by software architects

or decision-makers, we utilized a blend of question-answering models and the extensive

repository of knowledge contained within the DBpedia ontology.

Our methodology encompassed several critical stages, each contributing to a systematic and

effective design pattern recommendation process. We initiated by gathering issues from the

JIRA tracking system and employed sophisticated classification algorithms to ensure precise

categorization of these issues, distinguishing between design-related and unrelated concerns.

To provide transparent and comprehensible explanations for our models’ classification

decisions, we integrated explainability methods such as SHAP and LIME. These approaches

shed light on the influence of particular features on classification results, thus improving the

transparency and reliability of the recommendation process.

To enrich the issue data further, we harnessed the power of DBpedia Spotlight for robust

entity recognition. This step was instrumental in extracting significant information and

entities from the issue narratives. The integration of external knowledge from DBpedia

supplemented our comprehension of the issues. Utilizing the extracted issues and entities,

we deployed a question-answering model to deliver software pattern suggestions that were

137

customized to specific requirements. To corroborate these suggestions and enhance them

further, we retrieved corresponding software patterns from DBpedia using SPARQL queries,

capitalizing on the extracted entities.

By combining these innovative technologies and methods, our research has considerably

improved the identification and recommendation of pertinent architectural patterns,

marking a significant advancement in intelligent decision-support systems within software

architecture. Our validation process was crucial for determining the effectiveness of

SOFAR-DSS. First, by using verified solutions from Stack Overflow queries, we thoroughly

tested our system against practical situations, ensuring the accuracy and practicality of our

recommendations. Second, by incorporating various software pattern cases into our system,

we further validated its capacity to recommend architectural solutions. Lastly, we gathered

insights from five expert software architects who utilized SOFAR-DSS.

Our work underscores the potential of semantic technologies and sophisticated classification

methods to tackle intricate issues across diverse domain-specific applications. This

contribution not only assists software architects in making better-informed decisions but

also demonstrates the versatility of semantic technologies in complex, domain-specific

applications.

Future research directions in this area include broadening the dataset to improve the

generalizability of our findings. Subsequent studies could benefit from including a wider

array of software project types from diverse settings to enhance the dataset’s richness.

Moreover, the integration of SOFAR-DSS with additional models and ontologies from

the field of software architecture could substantially elevate the quality and detail of the

system’s recommendations. Another promising avenue is to develop a mechanism for

continuous learning, which would allow the system to evolve and refine its suggestions

based on new information, emerging trends, and user feedback. Such an approach could

make the model more resilient and adaptable over time, boosting its long-term utility in

the ever-changing landscape of software development. Furthermore, an extension of our

work could involve providing users with explanations for the recommended software design

138

patterns, thereby increasing the decision-making process’s transparency and giving users a

deeper understanding of each recommendation’s rationale, ensuring the tool’s outputs align

closely with the unique demands and constraints of their projects.

139

6. CONCLUSION

6.1. Contributions

In this thesis, we have concentrated on identifying enhancements that can alleviate the

challenges decision-makers encounter during the architectural decision-making process.

As a foundational step, we conducted a comprehensive survey to identify factors and

challenges prevalent in architectural decision-making. It targets a diverse spectrum of

industry professionals and academics. Our reach was both broad and deep: we distributed

over a thousand emails, as well as LinkedIn and Facebook messages directly to individuals

on the ground. Our efforts went beyond these direct communications, leveraging the power

of the digital network through strategic posts on forums and social media platforms as

well as announcements in private groups to maximize visibility and engagement. We also

leveraged network influence by encouraging practitioners to disseminate the survey to their

professional circles, thereby increasing our reach through their personal endorsement. This

multi-pronged outreach strategy resulted in a significant pool of 101 private individuals

completing the survey, providing us with a wealth of insight. This survey distinguishes itself

from prior studies by reaching a broader participants and analyzing the factors and challenges

across all stages of the architectural decision-making process, from the identification of

project requirements to the final steps. Unlike other studies that may focus on a single phase,

our approach involved examining each process in detail, posing questions to participants that

would yield insights into each specific stage.

In particular, our analysis shows that knowledge and insights gained from architectural

decisions in one project can be instrumental in informing and improving decisions in

subsequent projects within the same company. This cross-project application of architectural

knowledge represents an important area for future research by suggesting a model where

learnings from one context can directly benefit another, similar to knowledge transfer

practices observed in other areas of software engineering. By systematically documenting

decisions and their outcomes, companies can create a store of knowledge that can serve

140

as a valuable reference for future projects. This helps not only to avoid past mistakes but

also to repeat success, thus streamlining the decision-making process and improving project

outcomes. Moreover, such accumulated cross-project knowledge may serve as a basis for

any kind of automated decision support systems

Our findings illuminate the complex interplay between decision-making practices and the

broader objectives of software architecture, underscoring the critical role of documentation

and collaborative decision-making. Notably, the preference for team-based decisions and

the reliance on brainstorming and consensus underscore the value of diverse perspectives

and collective intelligence in navigating the intricacies of software architecture. This

collaborative ethos not only enriches the decision-making process but also fosters a culture

of shared responsibility and mutual understanding among team members.

The findings from the survey underscored the necessity of a tool that supports

decision-makers throughout the software architecture decision-making process. To

address this need, we developed an intelligent decision support system that utilizes

both question-answering capabilities and ontology to provide specific and accurate

recommendations to decision-makers. Our work uniquely combines different methodologies,

leveraging the strengths of each approach to create a comprehensive system. Additionally,

we have integrated explainable artificial intelligence (XAI) into our system to enhance

transparency and reliability from the end-user’s perspective. This inclusion allows users

to understand how the model classifies issues and the influential words that drive these

classifications, fostering a more transparent system.

We validated our work through three distinct methods, demonstrating its applicability and

accuracy in providing recommendations within the real world. This multi-faceted validation

approach has shown that our system has the potential to succeed across various domains,

indicating its robustness and versatility.

141

6.2. Challenges

During the development of this thesis, several challenges emerged that required careful

consideration and strategic problem solving. These challenges not only tested the robustness

of our methodologies, but also provided valuable learning experiences that enriched the

overall research.

• Participation and Response Rates: One of the main challenges was to ensure a high

level of participation for our survey. Despite an extensive outreach strategy that

included direct and indirect communication via email, LinkedIn, Facebook and various

online platforms, response rates posed a significant barrier. While our multi-pronged

approach ensured that 101 full responses were received, this number represents only

a fraction of the total reach and suggests the need for more different engagement

strategies to increase participation in future studies.

• Diversity of Perspectives: The diversity of survey responses was another challenge.

Given the complexity and broad scope of the architectural decision-making process, it

was critical to gather insights from a wide range of professionals from different areas

of expertise, seniority levels, and geographic locations. This diversity was necessary

to accurately project the results onto a specific subset of professionals or a specific set

of architectural practices.

• Complexity of Data Analysis: The survey revealed a rich dataset that required rigorous

analysis. The complexity and granularity of the data created a challenge in identifying

the most relevant factors and challenges influencing the architectural decision-making

process. We needed to develop a robust analytical framework that could transform the

vast amount of information into actionable insights.

• Development of the Decision Support System: The creation of the intelligent decision

support system posed numerous technical challenges, from integrating question

answering models with the DBpedia ontology to incorporating XAI for transparency.

142

Balancing accuracy, usability and explainability required a nuanced approach to

system design and continuous iteration.

• Finding the Data Set: Finding the data that will form the knowledge base of the

decision support system was one of the biggest challenges we faced in this thesis. Both

the confidentiality policies of the companies and the lack of systematic documentation

in the architectural decision-making process led to this challenge. For this reason, we

utilized the dataset of a study in the literature to create the knowledge base in our

system.

• Validation of Recommendations: Validating the recommendations provided by the

system required a rigorous and multifaceted approach. We needed to demonstrate

the effectiveness of the system in different scenarios and domains, which required

developing a validation process that could be universally applied and at the same time

take into account the specific nuances of each case.

• Future-proofing the System: The final challenge is to ensure that going forward, as

the software architecture evolves, the system remains current and useful. Continuous

learning mechanisms need to be developed so that the system can adapt to new models,

technologies and user feedback and remain relevant over time.

6.3. Constraints

The works conducted in this thesis, encompassing both the survey study and the development

of the SOFAR-DSS, faced various constraints that significantly influenced the scope and

depth of our research. First, despite extensive outreach efforts through email, social media,

and professional networks, the response rate for our survey was lower than anticipated. This

limitation in response rates severely restricted the scope of data available for analysis, thus

significantly affecting the data collection phase and reducing the generalizability of our

results across different demographic and professional groups. The limited data not only

restricted the statistical power of our analyses but also reduced the diversity of insights we

could draw regarding the architectural decision-making process across various industries.

143

Moreover, effectively using the SOFAR-DSS requires precise and comprehensive

articulation of the issues at hand. This necessitates incorporating additional expressions and

details to accurately frame the problem, adding another layer of complexity to the use of the

system.

The rich dataset required a sophisticated analytical framework to properly extract actionable

insights, necessitating extensive resources in terms of time and expertise.

Additionally, we encountered constraints in sourcing the data that would form the knowledge

base of the decision support system. Due to companies’ confidentiality policies, we

were unable to access corporate data directly, which posed substantial challenges in data

acquisition. These difficulties were compounded by difficulties in obtaining a robust data set

due to privacy policies and the general lack of systematic documentation in this area. Many

organizations do not maintain comprehensive records of their decision-making processes,

which limited our ability to validate and enrich our findings with real-world data.

These constraints did not merely limit our research; they also illuminated critical areas for

future improvement and innovation in the field. For instance, the challenges associated with

data access and analysis highlighted the need for more collaborative relationships between

academia and industry. Such partnerships could facilitate better data sharing agreements and

improve the documentation practices within companies. Furthermore, the insights gained

from navigating these constraints have underscored the importance of developing more

robust methodologies in future studies that can accommodate and leverage incomplete or

limited data sets more effectively.

6.4. Further Analysis

The development of the SOFAR-DSS represents a significant step forward in augmenting

the cognitive capabilities of decision-makers in the architectural decision-making process.

By leveraging a question-answering model and the DBpedia ontology, the system has

demonstrated its potential to streamline complex cognitive tasks. The comprehensive

144

survey conducted prior to the system’s development has provided valuable insights into the

challenges and influential factors within the architectural decision-making process.

Going forward, our future work will focus on several key areas to enhance the SOFAR-DSS

further. Firstly, we aim to expand the knowledge base of the system by integrating more

diverse data sources, which will enrich the ontology and provide more comprehensive

support for a wider range of architectural decisions. Secondly, we plan to implement machine

learning algorithms that can learn from past decisions to offer increasingly relevant and

personalized recommendations.

Another avenue for future work is the refinement of the natural language processing

capabilities of the SOFAR-DSS. By incorporating advanced semantic analysis and

understanding, the system can become more adept at interpreting the nuances of user queries,

leading to more accurate and contextually appropriate responses.

Additionally, we recognize the importance of user experience in the adoption of decision

support systems. Therefore, we will be conducting user-centered design studies to

improve the system’s interface and interaction mechanisms, making it more intuitive and

user-friendly.

Furthermore, we intend to enhance the system by incorporating design styles—subcategories

within the design patterns we currently recommend. By reflecting the differences between

design patterns and design styles, this expansion will not only enhance the system’s

capability in handling decisions at various levels but also support higher-level strategic

decisions. We also aim to extend our system’s capabilities to support higher-level strategic

decisions, making it a more comprehensive tool for project planning and architecture design.

Finally, to address the scalability and evolving nature of software architecture, we will

work on developing adaptive algorithms that can incorporate the latest industry trends

and feedback from the community of practitioners. Through continuous learning and

adaptation, the SOFAR-DSS will aim to remain at the forefront of supporting architectural

decision-making in an ever-changing technological landscape.

145

In sum, the future work for SOFAR-DSS is geared towards making it more robust, intelligent,

and user-centric, thereby ensuring that it remains an essential tool for architects and

decision-makers in the field of software architecture.

REFERENCES

[1] Nick Rozanski and Eoin Woods. Software systems architecture: working with

stakeholders using viewpoints and perspectives. Addison-Wesley, 2012.

[2] Anton Jansen and Jan Bosch. Software architecture as a set of architectural

design decisions. In 5th Working IEEE/IFIP Conference on Software

Architecture (WICSA’05), pages 109–120. IEEE, 2005.

[3] Len Bass, Paul Clements, and Rick Kazman. Software architecture in practice.

Addison-Wesley Professional, 2003.

[4] Dan Tofan, Matthias Galster, and Paris Avgeriou. Difficulty of architectural

decisions–a survey with professional architects. In Software Architecture:

7th European Conference, ECSA 2013, Montpellier, France, July 1-5, 2013.

Proceedings 7, pages 192–199. Springer, 2013.

[5] Hans Van Vliet and Antony Tang. Decision making in software architecture.

Journal of Systems and Software, 117:638–644, 2016.

[6] Olaf Zimmermann. Architectural decisions as reusable design assets. IEEE

software, 28(1):64–69, 2010.

[7] Paul Clements, Rick Kazman, Mark Klein, Divya Devesh, Shivani Reddy, and

Prageti Verma. The duties, skills, and knowledge of software architects. In 2007

Working IEEE/IFIP Conference on Software Architecture (WICSA’07), pages

20–20. IEEE, 2007.

[8] Matthew R McBride. The software architect. Communications of the ACM,

50(5):75–81, 2007.

146

[9] Rick Kazman, Mark Klein, Mario Barbacci, Tom Longstaff, Howard Lipson,

and Jeromy Carriere. The architecture tradeoff analysis method. In Proceedings.

fourth ieee international conference on engineering of complex computer

systems (cat. no. 98ex193), pages 68–78. IEEE, 1998.

[10] Rick Kazman, Jai Asundi, and Mark Klein. Quantifying the costs and benefits

of architectural decisions. In Proceedings of the 23rd International Conference

on Software Engineering. ICSE 2001, pages 297–306. IEEE, 2001.

[11] Mikael Svahnberg, Claes Wohlin, Lars Lundberg, and Michael Mattsson. A

quality-driven decision-support method for identifying software architecture

candidates. International Journal of Software Engineering and Knowledge

Engineering, 13(05):547–573, 2003.

[12] Francisco Montero and Elena Navarro. Atrium: Software architecture driven by

requirements. In 2009 14th IEEE International Conference on Engineering of

Complex Computer Systems, pages 230–239. IEEE, 2009.

[13] Saheed Abiola Busari. Modelling and analysing software requirements and

architecture decisions under uncertainty. Ph.D. thesis, UCL (University College

London), 2019.

[14] Marco Barenkamp, Jonas Rebstadt, and Oliver Thomas. Applications of ai in

classical software engineering. AI Perspectives, 2(1):1, 2020.

[15] Lei Wang. Ai in software engineering: Case studies and prospects. arXiv

preprint arXiv:2309.15768, 2023.

[16] Fahad H Alshammari et al. Trends in intelligent and ai-based software

engineering processes: A deep learning-based software process model

recommendation method. Computational Intelligence and Neuroscience, 2022,

2022.

[17] Ipek Ozkaya. The next frontier in software development: Ai-augmented

software development processes. IEEE Software, 40(4):4–9, 2023.

147

[18] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,

Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick Van Kleef,

Sören Auer, et al. Dbpedia–a large-scale, multilingual knowledge base extracted

from wikipedia. Semantic web, 6(2):167–195, 2015.

[19] Dbpedia ontology. https://www.dbpedia.org/resources/

ontology/.

[20] David Gunning and David Aha. Darpa’s explainable artificial intelligence (xai)

program. AI magazine, 40(2):44–58, 2019.

[21] Merve Ozdes, Oumout Chouseinoglu, and Ayca Kolukısa Tarhan. Yazılım

projelerinde mimari karar alma sürecini etkileyen faktörler ve karşılaşılan

zorluklar: Keşifsel bir Çalışma. In 2020 8. Ulusal Yazılım Mühendisliği

Konferansı. TOBB ETU, 2020.

[22] Merve Ozdes Demir, Oumout Chouseinoglu, and Ayca Kolukısa Tarhan.

Sofar-dss: An advanced decision support system for architectural design

patterns using openai and dbpedia. Expert System with Applications, 2024.

[23] Davide Falessi, Muhammad Ali Babar, Giovanni Cantone, and Philippe

Kruchten. Applying empirical software engineering to software architecture:

challenges and lessons learned. Empirical Software Engineering, 15:250–276,

2010.

[24] Mary Shaw and David Garlan. Software architecture: perspectives on an

emerging discipline. Prentice-Hall, Inc., 1996.

[25] Philippe B Kruchten. The 4+ 1 view model of architecture. IEEE software,

12(6):42–50, 1995.

[26] Paul Clements, David Garlan, Reed Little, Robert Nord, and Judith Stafford.

Documenting software architectures: views and beyond. In 25th International

Conference on Software Engineering, 2003. Proceedings., pages 740–741.

IEEE, 2003.

148

https://www.dbpedia.org/resources/ontology/
https://www.dbpedia.org/resources/ontology/

[27] Neal Ford and Mark Richards. Fundamentals of software architecture. O’Reilly

Media, Incorporated, 2020.

[28] Manoj Bhat, Klym Shumaiev, Andreas Biesdorf, Uwe Hohenstein, and Florian

Matthes. Automatic extraction of design decisions from issue management

systems: a machine learning based approach. In Software Architecture: 11th

European Conference, ECSA 2017, Canterbury, UK, September 11-15, 2017,

Proceedings 11, pages 138–154. Springer, 2017.

[29] Rafael Capilla, Anton Jansen, Antony Tang, Paris Avgeriou, and

Muhammad Ali Babar. 10 years of software architecture knowledge

management: Practice and future. Journal of Systems and Software,

116:191–205, 2016.

[30] Anton Jansen, Jan Van Der Ven, Paris Avgeriou, and Dieter K Hammer. Tool

support for architectural decisions. In 2007 Working IEEE/IFIP Conference on

Software Architecture (WICSA’07), pages 4–4. Ieee, 2007.

[31] Anton Jansen, Paris Avgeriou, and Jan Salvador van der Ven. Enriching

software architecture documentation. Journal of Systems and Software,

82(8):1232–1248, 2009.

[32] Andrew Forward and Timothy C Lethbridge. The relevance of software

documentation, tools and technologies: a survey. In Proceedings of the 2002

ACM symposium on Document engineering, pages 26–33. 2002.

[33] Philippe Kruchten, Patricia Lago, and Hans Van Vliet. Building up and

reasoning about architectural knowledge. In International conference on the

quality of software architectures, pages 43–58. Springer, 2006.

[34] Anton Jansen, Jan Bosch, and Paris Avgeriou. Documenting after the fact:

Recovering architectural design decisions. Journal of Systems and Software,

81(4):536–557, 2008.

149

[35] Rick Kazman, Dennis Goldenson, Ira Monarch, William Nichols, and Giuseppe

Valetto. Evaluating the effects of architectural documentation: A case study of

a large scale open source project. IEEE Transactions on Software Engineering,

42(3):220–260, 2015.

[36] Uwe van Heesch, Paris Avgeriou, and Antony Tang. Does decision

documentation help junior designers rationalize their decisions? a comparative

multiple-case study. Journal of Systems and Software, 86(6):1545–1565, 2013.

[37] Jeff Tyree and Art Akerman. Architecture decisions: Demystifying architecture.

IEEE software, 22(2):19–27, 2005.

[38] Antony Tang, Paris Avgeriou, Anton Jansen, Rafael Capilla, and

Muhammad Ali Babar. A comparative study of architecture knowledge

management tools. Journal of Systems and Software, 83(3):352–370, 2010.

[39] Dominik Rost, Matthias Naab, Crescencio Lima, and Christina von Flach

Garcia Chavez. Software architecture documentation for developers: A survey.

In Software Architecture: 7th European Conference, ECSA 2013, Montpellier,

France, July 1-5, 2013. Proceedings 7, pages 72–88. Springer, 2013.

[40] Sandun Dasanayake, Jouni Markkula, Sanja Aaramaa, and Markku Oivo.

Software architecture decision-making practices and challenges: an industrial

case study. In 2015 24th Australasian Software Engineering Conference, pages

88–97. IEEE, 2015.

[41] Emad Aghajani, Csaba Nagy, Mario Linares-Vásquez, Laura Moreno, Gabriele

Bavota, Michele Lanza, and David C Shepherd. Software documentation: the

practitioners’ perspective. In Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, pages 590–601. 2020.

[42] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

patterns: elements of reusable object-oriented software. Pearson Deutschland

GmbH, 1995.

150

[43] Robert C Martin. Clean architecture, 2017.

[44] Paris Avgeriou and Uwe Zdun. Architectural patterns revisited-a pattern

language. 2005.

[45] F Buschmann, R Meunier, H Rohnert, P Sommerlad, and M Stal. A system of

patterns: Pattern-oriented software architecture wiley new york. Google Scholar

Google Scholar Digital Library Digital Library, 1996.

[46] Brad Appleton. Patterns and software: Essential concepts and terminology.

Object Magazine Online, 3(5):20–25, 1997.

[47] Fatimah Mohammed Alghamdi and M Rizwan Jameel Qureshi. Impact of

design patterns on software maintainability. International Journal of Intelligent

Systems and Applications, 6(10):41, 2014.

[48] Peter GW Keen and Michael S Scott Morton. Decision support systems: an

organizational perspective. (No Title), 1978.

[49] Chiang Jao. Decision support systems. BoD–Books on Demand, 2010.

[50] Gloria Phillips-Wren. Intelligent decision support systems. Multicriteria

decision aid and artificial intelligence: links, theory and applications, pages

25–44, 2013.

[51] Antony Tang, Maryam Razavian, Barbara Paech, and Tom-Michael Hesse.

Human aspects in software architecture decision making: a literature review.

In 2017 IEEE International Conference on Software Architecture (ICSA), pages

107–116. IEEE, 2017.

[52] Rainer Weinreich, Iris Groher, and Cornelia Miesbauer. An expert survey

on kinds, influence factors and documentation of design decisions in practice.

Future Generation Computer Systems, 47:145–160, 2015.

[53] Henry Muccini et al. Group decision-making in software architecture: A study

on industrial practices. Information and software technology, 101:51–63, 2018.

151

[54] Cornelia Miesbauer and Rainer Weinreich. Classification of design decisions–an

expert survey in practice. In Software Architecture: 7th European Conference,

ECSA 2013, Montpellier, France, July 1-5, 2013. Proceedings 7, pages 130–145.

Springer, 2013.

[55] Christine Hofmeister, Philippe Kruchten, Robert L Nord, Henk Obbink,

Alexander Ran, and Pierre America. A general model of software architecture

design derived from five industrial approaches. Journal of Systems and Software,

80(1):106–126, 2007.

[56] Merve Ozdes Demir, Oumout Chouseinoglu, and Ayca Kolukısa Tarhan. Factors

affecting architectural decision-making process and challenges in software

projects: an industrial survey. Journal of Software: Evolution and process,

2024.

[57] Colin Robson. Real world research: A resource for social scientists and

practitioner-researchers. (No Title), 2002.

[58] Uwe Flick. The SAGE handbook of qualitative data analysis. Sage, 2013.

[59] Michael Quinn Patton. Qualitative research & evaluation methods: Integrating

theory and practice. Sage publications, 2014.

[60] Clive Seale. Quality issues in qualitative inquiry. Qualitative social work,

1(1):97–110, 2002.

[61] Philipp Mayring. Qualitative content analysis: Theoretical background and

procedures. Approaches to qualitative research in mathematics education:

Examples of methodology and methods, pages 365–380, 2015.

[62] Beverley Hancock, Elizabeth Ockleford, and Kate Windridge. An introduction

to qualitative research. Trent focus group London, 2001.

[63] Lee J Cronbach. Coefficient alpha and the internal structure of tests.

psychometrika, 16(3):297–334, 1951.

152

[64] Darren George and Paul Mallery. IBM SPSS statistics 26 step by step: A simple

guide and reference. Routledge, 2019.

[65] Hsiu-Fang Hsieh and Sarah E Shannon. Three approaches to qualitative content

analysis. Qualitative health research, 15(9):1277–1288, 2005.

[66] Robert W Service. Book review: Corbin, j., & strauss, a.(2008). basics of

qualitative research: Techniques and procedures for developing grounded theory

. thousand oaks, ca: Sage. Organizational Research Methods, 12(3):614–617,

2009.

[67] Barney Glaser and Anselm Strauss. Discovery of grounded theory: Strategies

for qualitative research. Routledge, 2017.

[68] Claes Wohlin, Martin Höst, and Kennet Henningsson. Empirical research

methods in software engineering. Empirical methods and studies in software

engineering: Experiences from ESERNET, pages 7–23, 2003.

[69] David R Anderson, Dennis J Sweeney, Thomas A Williams, Jeffrey D Camm,

and James J Cochran. Statistics for business & economics. Cengage Learning,

2016.

[70] Klaas Andries de Graaf, Peng Liang, Antony Tang, and Hans van Vliet.

How organisation of architecture documentation affects architectural knowledge

retrieval. Science of Computer Programming, 121:75–99, 2016.

[71] Iris Groher and Rainer Weinreich. A study on architectural decision-making in

context. In 2015 12th Working IEEE/IFIP Conference on Software Architecture,

pages 11–20. IEEE, 2015.

[72] Perla Velasco-Elizondo, Rosario Marı́n-Piña, Sodel Vazquez-Reyes, Arturo

Mora-Soto, and Jezreel Mejia. Knowledge representation and information

extraction for analysing architectural patterns. Science of Computer

Programming, 121:176–189, 2016.

153

[73] Mariem Haoues, Asma Sellami, Hanêne Ben-Abdallah, and Laila Cheikhi. A

guideline for software architecture selection based on iso 25010 quality related

characteristics. International Journal of System Assurance Engineering and

Management, 8:886–909, 2017.

[74] Ioanna Lytra, Carlos Carrillo, Rafael Capilla, and Uwe Zdun. Quality attributes

use in architecture design decision methods: research and practice. Computing,

102:551–572, 2020.

[75] Nancy R Mead and Ted Stehney. Security quality requirements engineering

(square) methodology. ACM SIGSOFT Software Engineering Notes, 30(4):1–7,

2005.

[76] Tingting Bi, Peng Liang, and Antony Tang. Architecture patterns, quality

attributes, and design contexts: How developers design with them. In 2018 25th

Asia-Pacific Software Engineering Conference (APSEC), pages 49–58. IEEE,

2018.

[77] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for architecture

evaluation. Carnegie Mellon University, Software Engineering Institute

Pittsburgh, PA, 2000.

[78] Robert L Nord, Mario R Barbacci, Paul Clements, Rick Kazman, Mark

Klein, Liam O’Brien, and James E Tomayko. Integrating the architecture

tradeoff analysis method (atam) with the cost benefit analysis method (cbam).

Sei-Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Institute, pages

1–35, 2003.

[79] Jeffrey Bell, Françoise Bellegarde, James Hook, Richard B Kieburtz, Alex

Kotov, Jeffrey Lewis, Laura McKinney, DP Oliva, Tim Sheard, L Tong, et al.

Software design for reliability and reuse: A proof-of-concept demonstration. In

Proceedings of the conference on TRI-Ada’94, pages 396–404. 1994.

154

[80] Maryam Razavian, Barbara Paech, and Antony Tang. Empirical research for

software architecture decision making: An analysis. Journal of Systems and

Software, 149:360–381, 2019.

[81] Emma Bell, Alan Bryman, and Bill Harley. Business research methods. Oxford

university press, 2022.

[82] Antony Tang, Muhammad Ali Babar, Ian Gorton, and Jun Han. A

survey of architecture design rationale. Journal of systems and software,

79(12):1792–1804, 2006.

[83] Key architecture decisions template. http://www.bredemeyer.com,

2005.

[84] Documenting architecture decisions. http://thinkrelevance.com/

blog/2011/11/15/documenting-architecture-, 2011.

[85] Atlassian software suite. https://www.atlassian.com/software/

confluence, 2012.

[86] Smrithi Rekha V and Henry Muccini. Suitability of software architecture

decision making methods for group decisions. In European Conference on

Software Architecture, pages 17–32. Springer, 2014.

[87] Siamak Farshidi and Slinger Jansen. A decision support system for

pattern-driven software architecture. In European Conference on Software

Architecture, pages 68–81. Springer, 2020.

[88] Martin Aruldoss, T Miranda Lakshmi, and V Prasanna Venkatesan. A survey on

multi criteria decision making methods and its applications. American Journal

of Information Systems, 1(1):31–43, 2013.

[89] Omkarprasad S Vaidya and Sushil Kumar. Analytic hierarchy process:

An overview of applications. European Journal of operational research,

169(1):1–29, 2006.

155

http://www.bredemeyer.com
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-
http://thinkrelevance.com/blog/2011/11/15/documenting-architecture-
https://www.atlassian.com/software/confluence
https://www.atlassian.com/software/confluence

[90] Rita A Ribeiro, Ana M Moreira, Pim Van den Broek, and Afonso Pimentel.

Hybrid assessment method for software engineering decisions. Decision

Support Systems, 51(1):208–219, 2011.

[91] Rafael Capilla, Francisco Nava, Sandra Pérez, and Juan C Dueñas. A web-based

tool for managing architectural design decisions. ACM SIGSOFT software

engineering notes, 31(5):4–es, 2006.

[92] Rafael Capilla, Francisco Nava, and Juan C Duenas. Modeling and documenting

the evolution of architectural design decisions. In Second Workshop on Sharing

and Reusing Architectural Knowledge-Architecture, Rationale, and Design

Intent (SHARK/ADI’07: ICSE Workshops 2007), pages 9–9. IEEE, 2007.

[93] Rafael Capilla and Francisco Nava. Extending software architecting processes

with decision-making activities. In IFIP Central and East European Conference

on Software Engineering Techniques, pages 182–195. Springer, 2007.

[94] Rafael Capilla, Francisco Nava, and Antony Tang. Attributes for characterizing

the evolution of architectural design decisions. In Third International IEEE

Workshop on Software Evolvability 2007, pages 15–22. IEEE, 2007.

[95] Rafael Capilla, Francisco Nava, and Carlos Carrillo. Effort estimation in

capturing architectural knowledge. In 2008 23rd IEEE/ACM International

Conference on Automated Software Engineering, pages 208–217. IEEE, 2008.

[96] Rafael Capilla. Embedded design rationale in software architecture. In 2009

Joint Working IEEE/IFIP Conference on Software Architecture & European

Conference on Software Architecture, pages 305–308. IEEE, 2009.

[97] Antony Tang, Yan Jin, and Jun Han. A rationale-based architecture model

for design traceability and reasoning. Journal of Systems and Software,

80(6):918–934, 2007.

156

[98] Anton Jansen, Tjaard de Vries, Paris Avgeriou, and Martijn van Veelen. Sharing

the architectural knowledge of quantitative analysis. In Quality of Software

Architectures. Models and Architectures: 4th International Conference on the

Quality of Software-Architectures, QoSA 2008, Karlsruhe, Germany, October

14-17, 2008. Proceedings 4, pages 220–234. Springer, 2008.

[99] Sol Jin, Xu Lian, Hanearl Jung, Jinsoo Park, and Jihae Suh. Building a deep

learning-based qa system from a cqa dataset. Decision Support Systems, page

114038, 2023.

[100] Ahmad Abdellatif, Khaled Badran, and Emad Shihab. Msrbot: Using bots to

answer questions from software repositories. Empirical Software Engineering,

25:1834–1863, 2020.

[101] Johnathan Mauricio Calle Gallego and Carlos Mario Zapata Jaramillo. Quare:

towards a question-answering model for requirements elicitation. Automated

Software Engineering, 30(2):25, 2023.

[102] Xiaoli Lian, Wenchuang Liu, and Li Zhang. Assisting engineers extracting

requirements on components from domain documents. Information and

Software Technology, 118:106196, 2020.

[103] Open ai models. https://platform.openai.com/docs/models/

gpt-3-5-turbo.

[104] Atlassian. https://www.atlassian.com/software/jira.

[105] Gerard Salton and Christopher Buckley. Term-weighting approaches in

automatic text retrieval. Information processing & management, 24(5):513–523,

1988.

[106] Chuan Wan, Yuling Wang, Yaoze Liu, Jinchao Ji, and Guozhong Feng.

Composite feature extraction and selection for text classification. IEEE Access,

7:35208–35219, 2019.

157

https://platform.openai.com/docs/models/gpt-3-5-turbo
https://platform.openai.com/docs/models/gpt-3-5-turbo
https://www.atlassian.com/software/jira

[107] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:

Pre-training of deep bidirectional transformers for language understanding.

arXiv preprint arXiv:1810.04805, 2018.

[108] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

computation, 9(8):1735–1780, 1997.

[109] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[110] Marti A. Hearst, Susan T Dumais, Edgar Osuna, John Platt, and Bernhard

Scholkopf. Support vector machines. IEEE Intelligent Systems and their

applications, 13(4):18–28, 1998.

[111] Leif E Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[112] Tianqi Chen, Tong He, Michael Benesty, Vadim Khotilovich, Yuan Tang,

Hyunsu Cho, Kailong Chen, Rory Mitchell, Ignacio Cano, Tianyi Zhou, et al.

Xgboost: extreme gradient boosting. R package version 0.4-2, 1(4):1–4, 2015.

[113] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma,

Qiwei Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting

decision tree. Advances in neural information processing systems, 30, 2017.

[114] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,

Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron

Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. the

Journal of machine Learning research, 12:2825–2830, 2011.

[115] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need.

Advances in neural information processing systems, 30, 2017.

[116] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun,

Antonio Torralba, and Sanja Fidler. Aligning books and movies: Towards

story-like visual explanations by watching movies and reading books. In

158

Proceedings of the IEEE international conference on computer vision, pages

19–27. 2015.

[117] Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang. How to fine-tune bert for

text classification? In Chinese Computational Linguistics: 18th China National

Conference, CCL 2019, Kunming, China, October 18–20, 2019, Proceedings

18, pages 194–206. Springer, 2019.

[118] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,

a distilled version of bert: Smaller, faster, cheaper and lighter. arxiv 2019. arXiv

preprint arXiv:1910.01108, 2019.

[119] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush

Sharma, and Radu Soricut. Albert: A lite bert for self-supervised learning of

language representations. arXiv preprint arXiv:1909.11942, 2019.

[120] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning

with neural networks. Advances in neural information processing systems, 27,

2014.

[121] Duyu Tang, Bing Qin, and Ting Liu. Document modeling with gated

recurrent neural network for sentiment classification. In Proceedings of the

2015 conference on empirical methods in natural language processing, pages

1422–1432. 2015.

[122] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. “why should i

trust you?” explaining the predictions of any classifier. In Proceedings of the

22nd ACM SIGKDD international conference on knowledge discovery and data

mining, pages 1135–1144. 2016.

[123] Scott M Lundberg and Su-In Lee. A unified approach to interpreting model

predictions. Advances in neural information processing systems, 30, 2017.

159

[124] Yuming Li, Johnny Chan, Gabrielle Peko, and David Sundaram. An explanation

framework and method for ai-based text emotion analysis and visualisation.

Decision Support Systems, 178:114121, 2024.

[125] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature,

521(7553):436–444, 2015.

[126] Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge

discovery and data mining, pages 785–794. 2016.

[127] Andy Liaw, Matthew Wiener, et al. Classification and regression by

randomforest. R news, 2(3):18–22, 2002.

[128] Robi Polikar. Ensemble learning. Ensemble machine learning: Methods and

applications, pages 1–34, 2012.

[129] Pablo N Mendes, Max Jakob, Andrés Garcı́a-Silva, and Christian Bizer.

Dbpedia spotlight: shedding light on the web of documents. In Proceedings

of the 7th international conference on semantic systems, pages 1–8. 2011.

[130] Spacy dbpedia spotlight. https://pypi.org/project/

spacy-dbpedia-spotlight/.

[131] Alexander Shvets. Dive into design patterns. Refactoring. Guru, 2018.

[132] Orestis Lampridis, Laura State, Riccardo Guidotti, and Salvatore Ruggieri.

Explaining short text classification with diverse synthetic exemplars and

counter-exemplars. Machine Learning, 112(11):4289–4322, 2023.

[133] Riccardo Guidotti, Anna Monreale, Salvatore Ruggieri, Dino Pedreschi, Franco

Turini, and Fosca Giannotti. Local rule-based explanations of black box decision

systems. arXiv preprint arXiv:1805.10820, 2018.

160

https://pypi.org/project/spacy-dbpedia-spotlight/
https://pypi.org/project/spacy-dbpedia-spotlight/

APPENDICES

Appendix A. Validation with Stack Overflow Data

The Table 6.1 compares the system’s recommendations against accepted answers from Stack

Overflow for selected queries tagged with ’software-design’ and ’design-patterns’. Out of the

20 queries evaluated, SOFAR-DSS’s recommendations aligned with the accepted answers in

17 instances, demonstrating an 85% alignment rate. This highlights the system’s ability to

provide viable solutions that are consistent with community-endorsed practices.

Table 6.1 Design Pattern Recommendations Based on Stack Overflow Queries

Stack Overflow Query (URL) Answer Response of SOFAR-DSS

https://tinyurl.com/mrncha4w Implement yourself a

Factory. Your factory will

produce a list of available

IReports and possibly

return some metadata about

them.

Factory method, template

method

https://tinyurl.com/yrd6muck Your solution probably will

use the Iterator pattern, and

could also use the Adapter

(or wrapper) pattern.

Adapter, MVC, Iterator

https://tinyurl.com/yc4xnn9b This sounds like you need

to use the factory pattern

Factory method, template

method

https://tinyurl.com/3256m3aj Most likely a Flyweight is

what you are looking for.

Object pool, flyweight

Continued on next page

161

https://stackoverflow.com/questions/22788429/which-design-pattern-should-i-use-for-a-dynamic-report-generator
https://stackoverflow.com/questions/9652637/which-design-pattern-should-i-use-for-storing-collections
https://stackoverflow.com/questions/4481483/which-design-pattern-should-i-use-here
https://stackoverflow.com/questions/38694645/which-design-pattern-should-i-use-to-maintain-pre-initialized-set-of-objects

Table 6.1 (continued)

Stack Overflow Query (URL) Answer Response of SOFAR-DSS

https://tinyurl.com/2wwucfdu I’ll throw strategy out there

as well, but we may be

getting off-track.

Adapter, Builder, State

https://tinyurl.com/4p8bkz7h Strategy is basically

configuring your system

at runtime with a general,

consistent way to handle

some aspect of the

operation, in this case

generating the requests.

Command, abstract factory

https://tinyurl.com/yc4xnn9b This sounds like you need

to use the factory pattern

Command, strategy, Bridge

https://tinyurl.com/37vmhchj One other approach, might

be for your framework to

handle what it does, in an

abstract and common way,

through your own set of

classes.

Adapter, Model view

adapter,strategy

https://tinyurl.com/vb5znnbj You need to want to use an

abstract factor as you seem

to have high interaction

multiple instances of

different source system

interfaces APIs.

Builder, adapter, decorator

Continued on next page

162

https://stackoverflow.com/questions/9475205/which-design-pattern-should-i-use-payment-system-api
https://stackoverflow.com/questions/11388739/design-pattern-scenario-which-should-i-use
https://stackoverflow.com/questions/4481483/which-design-pattern-should-i-use-here
https://stackoverflow.com/questions/19583468/which-design-pattern-should-i-use
https://stackoverflow.com/questions/15367860/which-design-pattern-should-i-choose

Table 6.1 (continued)

Stack Overflow Query (URL) Answer Response of SOFAR-DSS

https://tinyurl.com/3d5byyap Sounds like a clear cut case

for the Observer Pattern,

whereby Newspaper and

Document will be Subjects

and your observers will be

Observers.

Factory, observer, singleton

https://tinyurl.com/37vmhchj Indeed, factory would

be quite reasonable, but

combined with the Strategy

pattern (as noticed in the

other answers).

Command, strategy, Bridge

https://tinyurl.com/3xuv5j6f One other approach, might

be for your framework to

handle what it does, in an

abstract and common way,

through your own set of

classes. And then have

two different strategies

for rendering the content

(two separate renderers,

one for Word and one for

PowerPoint).

Adapter, Model view

adapter,strategy

Continued on next page

163

https://stackoverflow.com/questions/18800599/design-pattern-for-participant-list-presence-query-in-group-chat
https://stackoverflow.com/questions/19583468/which-design-pattern-should-i-use
https://stackoverflow.com/questions/15367860/what-design-principle-pattern-should-i-choose

Table 6.1 (continued)

Stack Overflow Query (URL) Answer Response of SOFAR-DSS

https://tinyurl.com/2xrbajnr Strategy Pattern: It will

define the notification

strategy based on the

contexts like email, push,

WhatsApp, etc.

Template, Strategy,

Observer

https://tinyurl.com/mw4vzyk8 Short Answer: Monitor

design pattern.

Observer, Command

https://tinyurl.com/46zp2dhe As you need to

communicate to different

sources for input, it would

be good to have that part

completely asynchronous

so that you don’t block

your main program for that.

Builder, adapter, decorator

https://tinyurl.com/uaf5wvmp Sounds like you want the

Adapter pattern.

Strategy, adapter

https://tinyurl.com/232awp5x I suggest you to implement

a Factory Method and let

Symfony instantiate the

correct class for you (as

described here).

Factory, adapter, mvc

Continued on next page

164

https://stackoverflow.com/questions/48920042/what-design-pattern-should-i-use-in-my-notification-system
https://stackoverflow.com/questions/30721476/design-pattern-for-handling-interrupt-data
https://stackoverflow.com/questions/17263158/design-pattern-for-aggregation-gathering-from-different-sources
https://stackoverflow.com/questions/38007734/what-design-pattern-to-implement-for-accessing-api-for-different-service-provide
https://stackoverflow.com/questions/26528866/choosing-the-right-design-pattern-for-service-which-connects-to-thirdparty

Table 6.1 (continued)

Stack Overflow Query (URL) Answer Response of SOFAR-DSS

https://tinyurl.com/3d5byyap You could think using the

observer pattern to monitor

the event you are interested

at and notify appropriately

a list of observers when

changes occur so they may

respond accordingly.

Factory, observer, singleton

https://tinyurl.com/4msw6zt6 Sounds like a clear cut case

for the Observer Pattern,

whereby Newspaper and

Document will be Subjects

and your Notifications will

be Observers.

State, strategy, observer

https://tinyurl.com/a76j6e72 If something reflect

”is” relationship use

inheritance, if something

reflect ”has” relationship

use aggregation.

Factory, Strategy

https://tinyurl.com/5y6smtcr Ignoring the fact that you

have missed the No.1

Golden Rule of coding,

namely that everything

should be named correctly,

you could use the Iterator

and Composite patterns.

Strategy design pattern,

Composite design pattern

Continued on next page

165

https://stackoverflow.com/questions/18800599/design-pattern-for-participant-list-presence-query-in-group-chat
https://stackoverflow.com/questions/28274766/which-design-patterns-for-event-driven-notification-service-for-content-in-jav
https://stackoverflow.com/questions/37452703/best-design-pattern-for-switching-between-hardware-interfaces
https://stackoverflow.com/questions/8860291/which-design-pattern-to-use

Table 6.1 (continued)

Stack Overflow Query (URL) Answer Response of SOFAR-DSS

https://tinyurl.com/kcrx2psa Iterator is used to traverse

a container and access the

container’s elements. The

iterator pattern decouples

algorithms from containers.

Observer, Factory method

pattern

Appendix B. Validation with Design Pattern Cases from

Book

In this appendix, we provide details of the design patterns discussed in the main text using

specific cases taken from a book. This validation aims to illustrate the practical applicability

of these patterns in addressing common software development challenges.

Table 6.2 Book Cases with Their Design Patterns and the SOFAR-DSS’s Responses

Problem Solution Response of SOFAR-DSS

An application needs a single

database connection to ensure

data integrity and optimize

resource usage.

Singleton Singleton, Abstract Factory

A text editor needs to provide

undo and redo functionality.

Memento Command-line interface,

command pattern

In a gaming application, the

behavior of a player character

needs to change depending

on the character’s state (like

standing, jumping, running).

State State, Strategy

166

https://stackoverflow.com/questions/62138835/which-design-pattern-to-use-to-iterate-over-request-attributes-in-spring-boot

Table 6.2 Design Pattern Recommendations (continued)

Problem Solution Response of SOFAR-DSS

An application needs to create

the elements of a complex

aggregate. The specification

for the aggregate exists on

secondary storage and one of

many representations needs to

be built in primary storage.

Builder Builder, Abstract Factory

A framework needs to

standardize the architectural

model for a range of

applications, but allow for

individual applications to define

their own domain objects and

provide for their instantiation.

Factory Abstract Factory, Factory

Application ”hard wires” the

class of object to create in each

”new” expression.

Prototype Design Abstract Factory, Factory

Application needs one, and only

one, instance of an object.

Additionally, lazy initialization

and global access are necessary.

Singleton Singleton, Factory method

167

Table 6.2 Design Pattern Recommendations (continued)

Problem Solution Response of SOFAR-DSS

An ”off the shelf” component

offers compelling functionality

that you would like to reuse, but

its ”view of the world” is not

compatible with the philosophy

and architecture of the system

currently being developed.

Adapter MVC, Adapter

Hardening of the software

arteries” has occurred by

using subclassing of an

abstract base class to provide

alternative implementations.

This locks in compile-time

binding between interface

and implementation. The

abstraction and implementation

cannot be independently

extended or composed.

Bridge Strategy, Abstract Factory

Processing of a primitive

object is handled one way,

and processing of a composite

object is handled differently.

Having to query the ”type” of

each object before attempting to

process it is not desirable.

Composite Composite, Visitor

168

Table 6.2 Design Pattern Recommendations (continued)

Problem Solution Response of SOFAR-DSS

You want to add behavior or

state to individual objects at

run-time. Inheritance is not

feasible because it is static and

applies to an entire class

Decorator Strategy, Decorator

A segment of the client

community needs a simplified

interface to the overall

functionality of a complex

subsystem.

Facade Facade, Adapter

You need to support

resource-hungry objects, and

you do not want to instantiate

such objects unless and until

they are actually requested by

the client.

Proxy Flyweight, Proxy

169

Table 6.2 Design Pattern Recommendations (continued)

Problem Solution Response of SOFAR-DSS

If an application is to be

portable, it needs to encapsulate

platform dependencies. These

”platforms” might include:

windowing system, operating

system, database, etc. Too

often, this encapsulation is not

engineered in advance, and

lots of #ifdef case statements

with options for all currently

supported platforms begin

to procreate like rabbits

throughout the code.

Abstract Factory Factory, Abstract Factory

Designing objects down to

the lowest levels of system

”granularity” provides

optimal flexibility, but can

be unacceptably expensive

in terms of performance and

memory usage.

Flyweight Flyweight, Composite

A class of requests occurs

repeatedly in a well-defined and

well-understood domain. If the

domain were characterized with

a ”language”, then problems

could be easily solved with an

interpretation ”engine”.

Command Command, Mediator

170

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Problem Statement and Research Questions
	1.2. Scope of the Thesis
	1.3. Contributions
	1.4. Research Design
	1.5. Organization

	2. BACKGROUND OVERVIEW
	2.1. Software Architecture
	2.2. Software Architectural Decision Making
	2.3. Design Patterns in Software Architecture
	2.4. Decision Support Systems

	3. FACTORS AFFECTING ARCHITECTURAL DECISION-MAKING PROCESS AND CHALLENGES IN SOFTWARE PROJECTS
	3.1. Related Work
	3.2. Methodology
	3.2.1. Semi-structured Exploratory Study
	3.2.1.1. Population
	3.2.1.2. Data Collection
	3.2.1.3. Data Analysis
	3.2.1.4. Findings

	3.2.2. Survey Study
	3.2.2.1. First Phase: Design of Questionnaire
	3.2.2.2. Second Phase: Distribution of Questionnaire and Obtaining Responses
	3.2.2.3. Third Phase: Analysis of Responses

	3.3. ANALYSIS OF RESULTS
	3.3.1. Participant Demographics
	3.3.2. Company and Project Demographics
	3.3.3. Results from questions about how architectural decisions are made in practice and how these decisions are documented in participants’ current or last company/project
	3.3.4. Results from general questions about software architecture

	3.4. Threats to Validity
	3.5. Evaluation and Discussion
	3.5.1. Making and Documenting Decisions
	3.5.2. Influence and Compelling Factors
	3.5.3. Final Decision and Validation
	3.5.4. Improvements

	4. SOFAR-DSS: An Advanced Decision Support System for Architectural Design Patterns Using OpenAI and DBpedia
	4.1. Related Work
	4.2. Methodology
	4.2.1. Step 1: Classifier Module
	4.2.1.1. Dataset
	4.2.1.2. Classification Algorithms and Model Selection

	4.2.2. Step 2: Entity Extraction Module
	4.2.3. Step 3: Generating Recommendations with QA Model
	4.2.4. Step 4: Recommender
	4.2.4.1. Validation with External Database DBpedia
	4.2.4.2. Enrichment

	4.3. USER INTERFACE DEVELOPMENT
	4.4. VALIDATION OF SOFAR-DSS
	4.4.1. Validation with Stack Overflow Data
	4.4.2. Validation with Design Pattern Cases from Book
	4.4.3. Expert Validation and Feedback

	4.5. Threats to Validity
	4.6. Evaluation and Discussion

	5. SUMMARY
	6. CONCLUSION
	6.1. Contributions
	6.2. Challenges
	6.3. Constraints
	6.4. Further Analysis

