

EVALUATING THE PERFORMANCE OF CNN-BASED

ALGORITHMS FOR BUILDING EXTRACTION IN

COMPARISON WITH CLASSICAL IMAGE PROCESSING

METHODS

CNN TABANLI ALGORİTMALARIN KLASİK GÖRÜNTÜ

İŞLEME YÖNTEMLERİ İLE KIYASLANARAK BİNA

ÇIKARIMI PERFORMANSININ DEĞERLENDİRİLMESİ

ZEINAB BAYAT

Assoc. Prof. Dr BURCU GÜLDÜR ERKAL

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Sience in Civil Engineering.

2024

i

ABSTRACT

EVALUATING THE PERFORMANCE OF CNN-BASED ALGORITHMS

FOR BUILDING EXTRACTION IN COMPARISON WITH CLASSICAL

IMAGE PROCESSING METHODS

Zeinab Bayat

Master of Science, Department of Civil Engineering

Supervisor: Assoc. Prof. BURCU GÜLDÜR ERKAL

June 2024, 95 pages

In the early morning of Local time at 04:17 AM, on the sixth of February 2023, (01:17 UTC),

a powerful earthquake measuring Mw 7.8 struck Syria's northern and western regions as well

as the southern and central portions of Turkey.. The serious problem of closed roads laden

with debris, arising after the devastating earthquake in Turkey, significantly hampers disaster

response and recovery efforts. This thesis emphasizes the growth and evaluation of algorithms

for the detection and classification of closed roads due to debris generated after the

earthquake, using images captured by drones. The study employs classic image processing

methods implemented in Python along with Convolutional neural network (CNN) based

algorithms. The unique dataset containing images captured after the earthquake provides a

detailed picture of extensive road blockages resulting from the disaster's aftermath.

An important contribution of this research the emergence of an intuitive and A GUI (Graphical

User Interface) that is intuitive and easy for users to navigate. This GUI panel serves as a

comprehensive platform showcasing a wide range of classical and deep learning image

processing methods, allowing users to interactively visualize the results of these methods. This

interactive tool not only simplifies access to algorithmic outputs but also empowers disaster

response teams and decision-makers to make data-driven and effective decisions.

The principal aim of of This research is to to assess how accurate and effective the proposed

algorithms are in identifying the nature and prevalence of road blockages. By distinguishing

between road segments filled with debris and those left open, this study provides critical

information to expedite disaster relief logistics and prioritize recovery operations.

ii

The findings presented in this thesis contribute to enhancing the disaster management toolkit

by expediting data-driven decision processes for post-earthquake recovery operations, thereby

contributing to the overall resilience of affected communities.

Keywords: Road Blockage Detection, Earthquake Impact, Disaster Response, Convolutional neural

networks, CNN Algorithms, Image Processing, Python Programming, Disaster Relief, Post-Earthquake

Assessment, Seismic Event, Turkish Earthquake, Aerial Observation, Graphical User Interface (GUI),

Real-Time Results Visualization, Image Processing Methods, Decision Support Interface,

Humanitarian Aid, Machine Learning Algorithms, Computer Vision, Human Intervention, Crisis

Management, Geographic Information System-based Decision Support.

iii

ÖZET

CNN TABANLI ALGORİTMALARIN KLASİK GÖRÜNTÜ İŞLEME YÖNTEMLERİ

İLE KIYASLANARAK BİNA ÇIKARIMI PERFORMANSININ

DEĞERLENDİRİLMESİ Zinab Bayat

İnşaat Mühendisliği Bölümü

Tez Danışmanı: Assoc. Prof. BURCU GÜLDÜR ERKAL

Haziran 2024, 95 sayfa

6 Şubat 2023 tarihinde, yerel saatle sabah 04:17'de (01:17 UTC), Mw 7.8 büyüklüğünde güçlü

bir deprem Suriye'nin kuzey ve batı bölgeleri ile Türkiye'nin güney ve orta kesimlerini vurdu.

Türkiye'de meydana gelen bu yıkıcı depremin ardından enkazla dolu kapalı yollar, afet

müdahale ve iyileştirme çabalarını ciddi şekilde engellemektedir. Bu tez, dronlarla çekilen

görüntüler kullanılarak deprem sonrası oluşan enkaz nedeniyle kapalı yolların tespiti ve

sınıflandırılması için algoritmaların geliştirilmesi ve değerlendirilmesine odaklanmaktadır.

Çalışmada, Python'da uygulanan klasik görüntü işleme yöntemleri ile Konvolüsyonel sinir ağı

(CNN) tabanlı algoritmalar kullanılmaktadır. Deprem sonrası çekilen görüntüleri içeren

benzersiz veri seti, felaketin ardından oluşan kapsamlı yol tıkanıklıklarının detaylı bir resmini

sunmaktadır.

Çalışma, Python dilinde uygulanan klasik görüntü işleme yöntemleri ile birlikte Convolutional

neural network (CNN) tabanlı algoritmaları kullanmaktadır. Depremin ardından yakalanan

görüntüler içeren benzersiz bir veri kümesi, felaketin yan etkileri olarak oluşan geniş yol

tıkanıklıklarının ayrıntılı bir resmini sunmaktadır.

Bu araştırmanın önemli bir katkısı, sezgisel ve kullanıcı dostu bir Grafiksel Kullanıcı Arayüzü

(GUI) paneli oluşturulmasıdır. Bu GUI paneli, klasik ve derin öğrenme görüntü işleme

yöntemlerinin geniş bir yelpazesini sergileyen kapsamlı bir platform olarak hizmet

vermektedir ve kullanıcılara bu yöntemlerin sonuçlarını etkileşimli olarak görüntüleme imkanı

sunmaktadır. Bu etkileşimli araç, yalnızca algoritmik çıktılara erişimi basitleştirmekle

kalmayıp aynı zamanda felaket müdahale ekiplerini ve karar vericileri veri odaklı ve etkili

kararlar almada yeteneklendirmektedir.

Bu araştırmanın temel amacı, önerilen algoritmaların yol tıkanıklarının doğasını ve

yaygınlığını tanımlamada ne kadar doğru ve etkili olduğunu değerlendirmektir. Enkazla dolu

yol segmentleri ile açık kalanlar arasındaki ayrımı yaparak, bu çalışma felaket yardım

lojistiğini hızlandırmak ve iyileştirme operasyonlarını önceliklendirmek için kritik bilgiler

sunmaktadır.

iv

Bu tezde sunulan bulgular, deprem sonrası iyileştirme operasyonlarının veri odaklı karar

süreçlerini hızlandırarak etkilenen toplulukların genel direncine katkıda bulunarak felaket

yönetimi araç setini geliştirmektedir.

Anahtar Kelimeler: Yol Tıkanıklık Tespiti, Deprem Etkisi, Felaket Müdahalesi, Evrişimli Sinir

Ağları, CNN Algoritmaları, Görüntü İşleme, Python Programlama, Felaket Yardımı, Deprem Sonrası

Değerlendirme, Sismik Olay, Türkiye Depremi, Hava Gözlemi, Grafiksel Kullanıcı Arayüzü (GUI),

Gerçek Zamanlı Sonuçlar Görüntüleme, Görüntü İşleme Yöntemleri, Karar Destek Arayüzü, İnsani

Yardım, Makine Öğrenme Algoritmaları, Bilgisayarlı Görü, İnsani Müdahale, Kriz Yönetimi, Coğrafi

Bilgi Sistemine Dayalı Karar Desteği.

v

ACKNOWLEDGEMENTS

The MSC journey has been one of the most extraordinary experiences of my life, marking the

first chapter of my scientific career. It’s not the end but the beginning. Through this journey, I

have built a strong foundation for the next phase, learning the importance of patience,

adaptability, idea management, and effective communication.

First of all, I would want to express my profound thanks to my supervisor Assoc. Prof.

BURCU GÜLDÜR ERKAL. Her consistent support, guidance, and valuable supervision

during my MSC degree were invaluable. Thank you for helping me navigates and completes

this project.

I would also like to express my gratitude to Prof. Dr. Baki Öztürk, Assoc. Prof. Dr. Alper

Aldemir, Assoc. Prof. Dr. M. Abdullah Sandıkkaya, and Doc. Dr. Zeynep Değer for providing

me the opportunity to defend my master’s thesis.

Special thanks go to my dear friend and life companion, Ahmad Salmanoghli Khiavi. Your

support and assistance were indispensable. I couldn't have done this without you. Your help

was crucial in getting through this long journey.

Finally, my heartfelt thanks to my parents. They set me off on this challenging yet rewarding

path a long time ago. Their encouragement and support have been the backbone of my

journey.

This MSC journey is just the start of my scientific story, a journey where I learned to be

patient, adapt, manage ideas, and express thoughts effectively. I look forward to the next

chapters with confidence and excitement.

vi

CONTENTS

ABSTRACT ... i

ÖZET iii

ACKNOWLEDGEMENTS ... v

CONTENTS ... vi

TABLES... viii

FIGURES .. ix

SYMBOLS AND ABBREVIATIONS ... xiii

1. INTRODUCTION ..1

1.1 Image processing ..1

1.1.1 The image processing pipeline ...2

1.1.2 Civil Engineering Approach in Image Processing ...3

1.2 Deep learning ..5

1.2.1 What is deep learning? ...6

1.2.2 Subsets of Deep Learning in Focus ..7

 1.2.2.1 Exploring Convolutional Neural Networks (CNNs) ..9

 1.2.2.2 An Introductory Guide to CNN Architecture) ... 10

1.3 Graphical User Interface ... 10

2. MATHERIAL AND METHODS ... 11

2.1 classical image processing algorithms .. 11

2.1.1 Preprocessing Techniques for Image Enhancement 12

2.1.2 Denoising Strategies ... 15

2.1.3 Image Segmentation Techniques ... 17

2.1.4 Morphological Operations ... 19

2.1.5 Thresholding Methods .. 22

2.2 Exploring Template Matching for Debris Localization 23

2.3 Integration of Deep Learning Techniques for Image Analysis 25

2.3.1 Custom Data Acquisition and annotation Strategy for Training Deep

Learning Models in Debris Detection Post-Earthquake:....................................... 25

2.3.2 Image Labeling Tools and annotation Process ... 26

vii

2.4 Advanced Object Detection and Segmentation Techniques 26

2.4.1 Object Detection with YOLOv5 and YOLOv8 .. 26

2.4.2 Object Segmentation with Mask R-CNN using Detectron2 32

2.4.3 Object Segmentation with YOLOv8 .. 34

2.4.4 Instance Segmentation with Roboflow3 .. 37

2.5 Challenges and Considerations in Deep Learning Training 38

3. RESULTS AND DESCUTIONS .. 41

3.1 Classical Image Processing Results ... 40

3.2 Deep learning Results ... 56

3.2.1 Roboflow Data annotation and Augmentation Results 57

3.2.2 Object Detection with YOLO Results .. 58

 3.2.2.1 Object Detection with YOLOv5 Results ... 61

 3.2.2.2 Object Detection with YOLOv8 Results ... 66

 3.2.2.3 YOLOv8 Object Segmentation Results .. 69

3.2.3 Mask R-CNN with Detectron2 Segmentation Results 75

3.2.4. Roboflow Instance Segmentation Results ... 78

3.3 Integrating Traffic Maps and Satellite Imagery for Comprehensive Analysis and

Visualization .. 81

4. CONCLUSIONS ... 89

REFERENCES ... 91

APPENDIXES .. 96

viii

TABLES

 Table 2.1 Comparing YOLOv8 Models: Performance Metrics Overview......................... 32

 Table 2.2 Performance Comparison of Mask R-CNN with Different Backbone

Architectures[48] ... 34

 Table 2.3. Comparing YOLOv8 Models: Performance Metrics Overview. 36

 Table 3.1. Performance comparison between models trained for 4 epochs / 1500 iterations

and 8 epochs / 2000 iterations. .. 74

ix

FIGURES

Figure 1.1. Image processing pipeline. ... 3

Figure 1.2 Industry digitization index [1]. .. 4

Figure 1.3. Image processing applications in civil engineering [15].. 5

Figure 1.4. Traditional ML feature extraction [17].. .. 6

Figure 1.5. Deep learning feature extraction [17]. ..7

Figure 1.6. Deep learning subsets ...7

Figure 1.7. CNNs algorithms .. 9

Figure 1.8. CNN architecture for image classification. .. 10

Figure 2.1. Classical Image Processing Methods Integrated into GUI 11

Figure 2.2. (a)original image (b) Log Transformation, (c) Gamma Correction (d) AHE (e)

Contrast stretch (f) Edge Enhancement (PIL) (g) Histogram Equalization (h) Anisotropic

Filtering (I) Super Resolution (j) original image(gray scale) (k) Local Enhancement (l)

Edge enhancement. .. 14

Figure 2.3 .Comparison of Laplacian Filters: Original Configuration (Image a) vs. Modified

with Central Kernel Value -4 (Image b) .. 16

Figure .2.4. (a) Original image (b) Laplacian Filter, (c) High-boost filtering (d) Unsharp (e)

Scharr Filter (f) Median filter (g) Mean filter .. 17

Figure 2.5. (a) original image (b) Canny Edge Detection (c) SLIC Segmentation (d)Sobel (e)

Custom Quick shift .. 19

Figure 2.6. (a) Original image (b) Dilation (c)Morphological Contrast Enhancement (d)

Remove Small Objects (e) Custom Quick shift (f) (g) .. 21

Figure 2.7. (a) Original image (b) adaptive (c) Otsu (d) Simple thresholding (e) Unsharp

 Masking (f) Color based .. 23

Figure 2.8. Utilizing Cross-Correlation to Locate Eyes in Raccoon Face Images. 25

Figure 2.9. Yolo System Model Detection .. 2

Figure 2.10. Yolov Architecture ... 29

x

Figure 2.11. The structure of Yolov5 ... 30

Figure 2.12 The structure of Yolov8 ... 30

Figure 2.13. Comparison of YOLO Versions for Object Detection 31

Figure 2.14. Architecture of Mask R-CNN. ... 33

Figure 2.15. From left to right: object detection, Instance Segmentation, and whole-scene

semantic segmentation ... 35

Figure 3.1. Pre-processing and Classical Algorithm GUI ... 40

Figure 3.2. From left to right: original mask and input image. ... 41

Figure 3.3. From left to right: the original mask and an image processed with the boundary

algorithm. ... 41

Figure 3.4. Test set images chosen for region matching analysis .. 43

Figure 3.5. Composite Mask of Debris Regions Identified by Boundary Algorithm Post-

Earthquake ... 45

Figure 3.6. Matched Regions Detected by Boundary Masks (Threshold = 0.5) 45

Figure 3.7. Composite Mask of Debris Regions Identified by color_threshold Algorithm

Post-Earthquake .. 46

Figure 3.8. Matched Regions Detected by color based thresholding Masks (Threshold 0.5) 46

Figure 3.9. Composite Mask of Debris Regions Identified by high boost Algorithm Post-

Earthquake ... 47

Figure 3.10. Matched Regions Detected by color based high boost masks (Threshold = 0.5)

 ... 47

Figure 3.11. Composite Mask of Debris Regions Identified by laplacian Algorithm Post-

Earthquake ... 48

Figure 3.12. Matched Regions Detected by color based laplacian Masks (Threshold = 0.5)

 ... 48

Figure 3.13. Composite Mask of Debris Regions Identified by odsu thresholding Algorithm

Post-Earthquake ... 49

Figure 3.14. Matched Regions Detected by color based v Masks (Threshold 0.5)

 ... 49

Figure 3.15. Composite Mask of Debris Regions Identified by sobel Algorithm Post-

Earthquake ... 50

xi

Figure 3.16 Matched Regions Detected by sobel Masks (Threshold = 0.5) 50

Figure 3.17. Composite Mask of Debris Regions Identified by unsharp masking Algorithm

Post-Earthquake ... 51

Figure 3.18. Matched Regions Detected by unsharp masking Masks (Threshold 0.5) 51

Figure 3.19. Composite Mask of Debris Regions Identified by local entropy Algorithm Post-

Earthquake ... 52

Figure 3.20. Matched Regions Detected by color based local entropy Masks (Threshold 0.5)

 .. 52.

Figure 3.21. Generating Masks through Interactive GUI ... 53

Figure 3.22 Save the mask for future use in template matching ... 54.

Figure 3.23. Template Matching Process Visualization .. 55

Figure 3.24. Annotated Satellite Images from Roboflow .. 56

Figure 3.25. YOLOv5m object detection training Insights and Performance Metrics 60

Figure 3.26. Test data prediction with YOLOv5m object detection 61

Figure 3.27. Left to right: F1 Confidence, precision-Confidence, and precision-Recall curves

results with YOLOv5m object detection ... 61

Figure 3.28. YOLOv5m object detection confusion matrix .. 62

Figure 3.29. YOLOv5m object detection labels correlations .. 63

Figure 3.30. GUI Display of YOLOv5 Object Detection Result .. 63

Figure 3.31. Test data prediction with YOLOv8 object detection .. 64

Figure 3.32. YOLOv8 object detection training Insights and Performance Metrics 65

Figure 3.33. YOLOv8 object detection Performance Evaluation Curves 65

Figure 3.34. YOLOv8 object detection confusion matrix ... 66

Figure 3.35. GUI Display of YOLOv8 Object Detection Result .. 67

Figure 3.36. YOLOv8 segmentation Test data prediction after 60 epochs 68

Figure 3.37. YOLOv8 segmentation after 60 epochs Performance Evaluation Curves 68

Figure 3.38. YOLOv8 segmentation after 60 epochs training Insights and Performance

Metric... 69

Figure 3.39. YOLOv8 segmentation after 60 epochs confusion matrix 70

Figure 3.40. YOLOv8 segmentation Test data prediction after 200 epochs 71

xii

Figure 3.41. YOLOv8 segmentation after 200 epochs training Insights and Performance

Metrics ... 71

Figure 3.42. YOLOv8 segmentation after 200 epochs Performance Evaluation Curves 72

Figure 3.43. YOLOv8 segmentation after 200 epochs confusion matrix 72

Figure 3.44. GUI Display of YOLOv8 segmentation Result .. 73

Figure 3.45. Test Data Predictions Utilizing Mask R-CNN via Detectron2 with 4 Epochs and

1500 Iterations ... 75

Figure 3.46. Test Data Predictions Utilizing Mask R-CNN via Detectron2 with 8 Epochs and

2000 Iterations ... 75

Figure 3.47. Object Detection Performance using Mask R-CNN via Detectron2 after 4

Epochs and 1500 Iterations.. 76

Figure 3.48. Object Detection Performance using Mask R-CNN via Detectron2 after 8

Epochs and 2000 Iterations.. 76

Figure3.49. Visual Overview of satellite Dataset Analysis Of Roboflow Instance

Segmentation Results .. 77

Figure 3.50. A Visual Overview of drone_based Dataset Analysis Of Roboflow Instance

Segmentation Results .. 78

Figure 3.51. Roboflow Instance Segmentation training Insights and Performance Metrics .. 78

Figure 3.52. a) YOLOv8 Predicted Debris Result for Coordinates 316485.1, 4161069,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic 80

Figure 3.53. a) YOLOv8 Predicted Debris Result for Coordinates 316717.3, 4161155,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic 81

Figure 3.54. a) YOLOv8 Predicted Debris Result for Coordinates 316682.9, 4161409.5,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic 82

Figure 3.55. a) YOLOv8 Predicted Debris Result for Coordinates 316877.6, 4161036.4,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic 83

Figure 3.56. a) YOLOv8 Predicted Debris Result for Coordinates 316895.3, 4161318,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic 84

Figure 3.57. Overlaying Debris Masks on Traffic Imagery within the GUI 85

xiii

SYMBOLS AND ABBREVIATIONS

Abbreviations

DIP Digital image processing

DL Deep Learning

CNN Convolutional Neural Network

IP Image Processing

AI Artificial Intelligence

ML Machine Learning

ANNs Artificial Neural Networks

RNNs Recurrent Neural Networks

GANs Generative Adversarial Networks

SLTMs Long Short-Term Memory Networks

TL Transfer Learning Models

CapsNets Capsule Networks

RESNET Residual Network

SENET Squeeze-and-Excitation Network

YOLO You Only Look Once

PIL Python Imaging Library

SLIC Simple Linear Iterative Clustering

ACWE Active contours without edges

QGIS Quantum Geographic Information System

COCO Common Objects in Context

FPN Feature Pyramid Network

PAN Path Aggregation Network

TFRecord TensorFlow Record

Kitti Karlsruhe Institute of Technology and Toyota Technological Institute

Img image

xiv

MMDetection ultimedia Detection

GPUs Graphics Processing Units

Soft-NMS Soft Non-Maximum Suppression

mAPval Average Precision validation score

FLOPs Floating Point Operations Per Second

ONNX Open Neural Network Exchange

CPU Central Processing Unit

Ms milliseconds

params(M) number of parameters in millions

RPN region proposal network

Seg segmentation

Val Validation

Cls class

IoU Intersection over Union

lr/pg learning rates/ parameter groups

obj object

dfl Degree of Freedom Loss

GUI Graphical User Interfac

1

1. INTRODUCTION

1.1. Image processing

Digital image processing encompasses the manipulation of digital images utilizing a digital

computer. Image processing encompasses the analysis and enhancement of visual information

for improved interpretation [16]. Specifically, digital image processing (DIP) involves the

Systematic examination and analysis of images using computer systems. On the other hand,

computer vision is focused on developing models, extracting data, and deriving data from

images [13].

 A digital image, comprising finite elements and values, undergoes this processing, but authors

differ on its boundaries with image analysis and computer vision. Some define it as a

discipline where images serve as both input and output. For instance, even computing the

average intensity, yielding a single number, might not be considered image processing. On the

other hand, computer vision aims to replicate human vision in computers, enabling them to

learn, draw inferences, and initiate actions based on visual stimuli [16].

Classical image processing has varying applications; in this study, the segmentation technique

was employed to isolate cracks based on the gray-level differences between the cracks and

their background. Additionally, the Canny iterative method was utilized to detect crack edges,

leveraging the linear characteristics of the cracks. The Otsu method, along with multiple

filtering techniques, was also applied to identify cracks in concrete structures. While these

algorithms produced satisfactory experimental results, they were tested on images with simple

backgrounds, without considering obstacles. Therefore, these methods might not be suitable

for detecting debris in more complex backgrounds. Recently, many researchers have shifted

towards using deep learning (DL) instead of traditional image processing algorithms,

highlighting the trend towards advanced computer vision and deep learning techniques in the

field Contemporary researchers are embracing advanced technologies, particularly computer

vision and deep learning, like DL-based image processing, to enhance debris detection

capabilities in complex scenarios with intricate backgrounds and potential obstacles [2].

 Computer vision has transformed into a comprehensive field encompassing tasks ranging

from the acquisition of raw data to the extraction of visual patterns and the interpretation of

data [13]. The spectrum from image processing to computer vision encompasses various levels

of complexity. At the foundational level, basic operations such as image preprocessing are

performed. Moving up the hierarchy, tasks involve segmentation, description, and

classification of objects within images. Higher-level processing delves into interpreting

recognized objects, similar to image analysis, and, at the extreme, performing cognitive

functions associated with vision. The field lacks clear-cut boundaries, prompting a paradigm

that considers low, mid, and high-level computerized processes [16].

2

1.1.1. The image processing pipeline

The subsequent stages outline the fundamental processes within the image processing pipeline

a) Acquisition and Storage:

Capture the image using a device and store it on a device (e.g., hard disk) in a specific file

format (e.g., JPEG).

b) Load into Memory and Save to Disk:

Read the image from the disk into memory, store it using a data structure (e.g., numpy array),

and possibly serialize the data structure into an image file after applying algorithms.

c) Manipulation, Enhancement, and Restoration:

Execute preprocessing algorithms for tasks like image transformation, quality enhancement

(e.g., de-blurring), and restoration from noise degradation.

d) Segmentation:

Divide the image to extract objects of interest, facilitating the isolation and identification of

specific components.

e) Information Extraction/Representation:

Represent the image in an alternative form, involving hand-crafted feature descriptors (e.g.,

HOG descriptors) or automatic feature learning (e.g., deep learning).

f) Image Understanding/Interpretation:

Utilize the alternative representation to comprehend the image, performing tasks like image

classification (e.g., identifying human presence) and object recognition (e.g., locating objects

with bounding boxes) [17].

3

Figure 1.1 Image processing pipeline

1.1.2. Civil Engineering Approach in Image Processing

The advancement in computer technology has significantly impacted diverse scientific and

technological domains, enabling researchers to expand these techniques across various

domains. Despite this progress, the construction industry falls behind in utilizing digitization

to offer reliable data and improve decision-making processes, trailing other industries in this

aspect. Artificial Intelligence and image processing (IP) are significantly influencing the

construction sector lately. Both technologies possess distinct applications and potential within

various facets of the construction industry. The ensuing sections will delineate the

advancements in each of these technologies and elucidate their respective applications in the

construction domain [1].

4

Figure 1.2. Industry digitization index [1]

The civil industry stands out as the least digitized sector, facing challenges such as climatic,

environmental, economic, and sociopolitical complexities in civil projects, making digitization

challenging. Over the past decade, civil engineers have increasingly focused on Simulations

using computers and tracking systems that utilize image processing, artificial intelligence (AI),

machine learning (ML), and other advanced technologies. These innovations are considered

cost-effective and non-intrusive methods for collecting and analyzing image and video data in

numerous construction firms [1-12].

The utilization of 3D imaging technologies in construction has led to various targeted

applications by researchers. These applications include construction management, progress

monitoring [10, 11], safety [18], quality control [18, 19] and building extraction [14].

5

Figure 1.3 Image processing applications in civil engineering [15]

1.2. Deep learning

In history, inventors, inspired by ancient Greek myths, envisioned creating thinking machines

embodied by figures like Pygmalion and Daedalus. The advent of programmable computers in

1842, as speculated by Lovelace, fueled discussions about machines acquiring intelligence.

Today, Artificial Intelligence (AI) is a dynamic field, addressing diverse practical needs. AI

automates tasks, interprets speech/images, aids medical diagnoses, and supports scientific

inquiries. In its early stages, AI excelled at computationally straightforward challenges but

faced a true test in solving tasks performed effortlessly by humans, requiring intuitive

navigation, such as recognizing spoken words or facial features in images.

Representation learning involves determining an optimal visualization of the incoming data, a

key challenge in deep learning. The goal is to create efficient representations that capture

essential features, facilitating tasks like image recognition and language understanding. Deep

learning addresses this by constructing complex concepts from simpler ones. For instance, an

image of a person is represented by combining basic elements like corners and contours,

defined in terms of edges. This process enables the system to handle intricate variations in

data, enhancing its ability to extract meaningful information [20].

6

1.2.1. What is deep learning?

Machine Learning (ML) pursues generalization through training on data, particularly vital for

tasks like image classification. Traditional ML encounters challenges such as computational

costs, limited learning progress, and dependence on human expertise. In contrast, Deep

learning models show promise in overcoming these limitations and improving generalization

in intricate tasks.

A subtype of machine learning called deep learning uses artificial neural networks (ANNs) of

many layers inspired by the brain's structure. Each layer uses the output from the previous one,

utilizing ANNs for feature extraction, pattern recognition, and abstraction development. Both

supervised and unsupervised deep learning techniques are possible (e.g., pattern analysis) and

employs gradient-descent algorithms to learn hierarchical representations. By depicting the

universe as a layered hierarchy of notions, it acquires strength, where every idea relates to less

complicated ones, forming a flexible abstraction hierarchy. In the context of image

classification architecture, showcasing its adaptability and efficiency in processing complex

information problem, a Deep learning model incrementally learns image classes through its

hidden layer.

Initially, the system automatically discerns basic attributes like light or dark areas, progressing

to more advanced features such as edges. Subsequently, it identifies the most intricate features,

like shapes, facilitating classification. Each node or neuron encapsulates a specific facet of the

overall image, collectively portraying the entire image comprehensively. The nodes effectively

capture and represent the full complexity of the image. Furthermore, every node and neuron in

the network is assigned weights, signifying their significance in influencing the output's

strength. These weights are subject to adjustment during the model development phase,

allowing for refinement and optimization of the neural network [17].

Figure 1.4 Traditional ML feature extraction [17]

7

Figure 1.5 Deep learning feature extraction [17]

1.2.2 Subsets of Deep Learning in Focus

Figure 1.6. Deep learning subsets

a) Convolutional neural networks (CNNs):

1. Focus on spatial hierarchies, primarily used in image-related tasks.

2. Key architecture for image classification, object detection, and facial recognition

[20].

b) Recurrent neural networks (RNNs):

1. Specialized for consecutive data processing, such as time-series and natural

language.

8

2. Suitable for tasks involving temporal dependencies [22].

c) Generative Adversarial Networks (GANs):

1. GANs comprise a generator and discriminator involved in an adversarial

framework. The generator produces realistic data, while the discriminator identifies

and differentiates real samples from generated ones.

2. GANs are utilized across a wide array of domains, spanning from image synthesis

and style transfer to data augmentation. [23].

d) Long Short-Term Memory Networks (LSTMs):

1. These are a kind of recurrent neural network (RNN) created to solve the issue of

the vanishing gradient in conventional RNNs [24].

e) Auto encoders:

1. Auto encoders, neural networks designed for unsupervised learning, comprise an

encoder tasked with input data compression into a latent representation, followed

by a decoder that reconstructs the original data. Widely applied, they excel in tasks

like data de noising, anomaly detection, and feature learning, proving valuable

across diverse domains [25].

f) Transfer Learning Models(TL):

1. Transfer Learning (TL) is recognized for its ability to establish connections

between supplementary testing and training samples, leading to quicker outputs

with effective results.

2. TL is specifically suitable when there is a scarcity of training data for the target

task [26].

g) Attention Mechanisms:

1. They facilitate focusing on relevant parts of input data, enhancing model

performance. For an in-depth understanding of attention mechanisms.

2. Play a crucial role in Deep learning, acting as a resource allocation scheme to

address information flow challenges [27].

h) Capsule Networks (Caps Nets):

1. They are a neural network architecture type intended to solve constraints in

traditional convolutional neural networks (CNNs).

9

2. The key innovation of Capsule Networks lies in the use of capsules, which are

groups of neurons representing specific features and spatial relationships. Unlike

neurons in traditional networks, capsules consider the pose or orientation of

features, providing a more robust representation [28].

1.2.2.1. Exploring Convolutional Neural Networks (CNNs)

In the realm of computer vision and Deep learning, a diverse set of convolutional neural

network (CNN) algorithms assumes pivotal roles in various applications. Highlighted in the

figure below are these algorithms with distinct architectural nuances, contributing significantly

to advancements in image processing, object detection, and pattern recognition [30,31,46].

Figure 1.7 CNNs algorithms

1.2.2.2. An Introductory Guide to CNN Architecture

The CNN architecture comprises multiple layers, with a key component being the

convolutional layer. This layer uses convolutional filters, or kernels, to convolve the input

image, generating an output feature map. Kernels have discrete values called kernel weights,

initialized randomly during training and adjusted to extract significant features. The

convolutional operation involves sliding the kernel over the image, calculating dot products,

CNNs

Algorithms

SeNet

 YOLO

R
es

N
et

R
esN

ex
t

10

and creating a feature map. Padding and stride impact the output size, with padding crucial for

preserving border information. Convolutional layers offer benefits like sparse connectivity,

reducing required weights and memory, and weight sharing, streamlining training time by

becoming familiar with a particular set of weights for the entire input matrix. This

architectural design enhances efficiency in memory use and computational costs compared to

fully connect neural networks [30].

Figure 1.8 CNN architecture for image classification [30]

1.3. Graphical User Interface

Graphical User Interface, or GUI for short, provides users with a visual interface for using

software or electrical gadgets. It utilizes graphical elements like icons, buttons, and windows,

offering a more intuitive experience compared to text-based interfaces. It enhances user

experience by offering an intuitive and easy-to-use environment, allowing users to navigate

and operate applications more easily.

In my thesis, I employed a GUI to develop an application with the specific purpose of

streamlining the detection of debris after an earthquake. The GUI serves as the interface

through which users can interact with the implemented algorithms. This application aims to

simplify and enhance the process of identifying and assessing debris objects in post-

earthquake scenarios.

11

2. MATHERIAL AND METHODS

2.1. Classical image processing algorithms

In the methodology, classical image processing algorithms are used to detect debris post-

earthquake from drone-captured images. A dataset of 110 images is utilized, with 10 for

testing and 100 to create masks. Various algorithms are applied to select images and manually

delineate debris regions to generate masks. Nine effective algorithms are chosen to

discriminate debris from other elements in the images, with resulting masks aiding debris

identification. These masks are then applied to locate and analyze debris regions, offering a

comprehensive approach.

Additionally, a graphical representation will be provided, showcasing the integration of

classical algorithms into the graphical user interface (GUI) for debris detection. This graph

visually outlines the diverse methods incorporated in the study.

Figure 2.1 Classical Image Processing Methods Integrated into GUI

12

2.1.1. Preprocessing Techniques for Image Enhancement

In the field of image processing, preprocessing stands out as a pivotal step, allowing for the

refinement of raw images to enhance their quality and ease subsequent analysis. This

preliminary stage encompasses a range of techniques aimed at improving the visual clarity,

removing noise, and enhancing relevant features within the images. One fundamental aspect of

preprocessing is image enhancement, which involves the manipulation of pixel values to

augment image attributes such as contrast, brightness, and sharpness. By employing various

enhancement algorithms, researchers can accentuate important details, mitigate distortions,

and optimize images for subsequent processing steps.

a) Contrast stretch

The Contrast Enhancement algorithm enhances image clarity by adjusting pixel intensities to

amplify contrast between dark and bright areas, thereby improving visual quality and revealing

hidden details.

b) Edge enhancement

Edge Enhancement algorithm emphasizes edges in an image by boosting the intensity

gradients, making them more pronounced and enhancing the visibility of edge features. This

technique helps in highlighting object boundaries and structural details, aiding in better

analysis and detection tasks.

c) Gamma Correction

Gamma correction modifies an image's contrast and hue. by nonlinearly mapping the input

intensity values to output values, helping compensate for nonlinear response in displays and

improving image quality [16].

d) Super Resolution

Super-resolution techniques enhance low-resolution images to reconstruct high-resolution

versions, Employing interpolation and learning-based methods to enhance image details,

useful in medical imaging and satellite imagery [33].

e) Edge Enhancement (PIL)

Edge enhancement is a feature in the Pillow library, a modern fork of the Python Imaging

Library (PIL), which enhances the image's ability to distinguish edges. By applying the

EDGE_ENHANCE filter from the Image Filter module, Pillow increases the contrast around

edges, making them more prominent and detailed. This technique is particularly useful in

applications requiring clear edge delineation, such as object recognition and image analysis.

With Pillow, edge enhancement can be achieved easily, providing a quick way to improve

image sharpness and clarity [5].

f) Local Enhancement

Local enhancement techniques selectively enhance specific regions within an image based on

local characteristics, preserving global contrast while improving local details, commonly used

in medical imaging and satellite imagery analysis [16][34].

13

g) Histogram Equalization

Histogram equalization is a method employed to redistribute pixel intensities within an image,

aiming to achieve a uniform histogram. This process enhances contrast and improves the

visibility of image details, commonly employed in medical imaging and satellite imagery

processing. [16].

h) Adaptive Histogram Equalization (AHE)

AHE partitions an image into regions and performs histogram equalization individually on

each region, adapting to local image characteristics and enhancing contrast in both bright and

dark regions, widely used in medical imaging and remote sensing applications [35].

i) Logarithm Transformation

 Log transformation adjusts pixel intensities using logarithmic functions, compressing the

dynamic range of an image to enhance details in darker areas while preserving highlights,

commonly utilized in astronomical imaging and medical diagnostics [16].

j) Sharpening

Sharpening techniques enhance image clarity by increasing the contrast along edges, typically

achieved through the application of high-pass filters to accentuate high-frequency components,

widely employed in microscopy and satellite imagery analysis [16].

k) Anisotropic Filtering

Anisotropic filtering reduces image noise while preserving edge features by applying spatially

varying filter strengths based on the local gradient magnitude and orientation, commonly used

in medical imaging and digital photography [34].

The results depicted in Image 2.2 showcase the diverse effects of preprocessing techniques for

image enhancement. While some algorithms were applied to RGB images, others were

implemented in grayscale. Despite the already optimal resolution of the input images, the

application of these techniques may lead to subtle yet discernible improvements in certain

cases. The outputs reflect the nuanced alterations introduced by each algorithm, underscoring

their capacity to refine image quality and accentuate features of interest.

14

Figure 2.2 (a)original image (b) Log Transformation, (c) Gamma Correction (d) AHE (e)

Contrast stretch (f) Edge Enhancement (PIL) (g) Histogram Equalization (h)

Anisotropic Filtering (I) Super Resolution (j) original image(gray scale) (k)

Local Enhancement (l) Edge enhancement(PIL).

15

2.1.2. Denoising Strategies

Denoising plays an essential role in elevating image quality and facilitating analysis by

effectively eliminating unwanted noise. High-pass filters emerge as pivotal tools in this

process, as they excel in isolating debris by accentuating high-frequency components within

the image. Nonetheless, the performance of these filters exhibits variability across different

scenarios. For instance, mean and median filters demonstrate minimal alterations in the

absence of noise, suggesting their limited efficacy in significantly enhancing image quality

under such conditions. Conversely, the Scharr filter, although widely utilized, exhibits

constrained effectiveness in combating debris, showcasing the nuanced nature of filter

performance in real-world applications. This variability underscores the importance of

considering diverse filter options and their specific strengths and limitations in the context of

denoising and image enhancement efforts. Additionally, the image in Figure 2.4 illustrates all

denoising algorithms, providing visual insight into their application.

1. High-boost filtering

High Boost Filtering is a sharpening technique that accentuates high-frequency components in

images, effectively enhancing edges and fine details. By amplifying these components, the

algorithm sharpens image features and enhances overall clarity [7], [12].

2. Scharr Filter

The Scharr Filter, renowned for its gradient-based edge detection capabilities, stands out for its

exceptional performance in capturing subtle variations in pixel intensity along edges. This

filter excels in accentuating edges within images, facilitating accurate localization and

extraction of edge features. By effectively highlighting these edges, the Scharr Filter enhances

the overall clarity and detail of images, making it a valuable tool in various image processing

tasks. Its ability to discern intricate edge patterns contributes to its widespread use in

applications requiring precise edge detection and feature extraction. [36].

3. Laplacian Filter

The Laplacian Filter, a sharpening filter utilized in image processing, serves to accentuate

edges and intricate details within images. By highlighting regions of rapid intensity change,

particularly edges, this filter significantly boosts image contrast and sharpness [32].

In Figure 2.3, a comparison between the original and modified configurations of the Laplacian

filter is depicted, elucidating subtle disparities in their impact on image enhancement.

Although the conventional filter, featuring a central kernel value of -4, typically proves

sufficient, occasional limitations in effectively emphasizing fine details necessitated iterative

refinement. Through adjustments to the central kernel value, particularly setting it to -5,

notable improvements in edge detection and sharpening capabilities were achieved,

underscoring the dynamic nature of algorithmic optimization within the realm of image

processing.

16

 Figure 2.3. Comparison of Laplacian Filters: Original Configuration (Image a)

 vs. Modified with Central Kernel Value -4 (Image b)

4. Unsharp Masking

This is a popular technique for sharpening images by accentuating edges and fine details. It

involves subtracting a blurred version of the image from the original, thereby enhancing local

contrast and increasing image sharpness [17].

5. Mean Filter

This filter, also known as the Average Filter, is a spatial filtering technique used for smoothing

images and reducing noise. It replaces each pixel's value with the average value of its

neighboring pixels, effectively blurring the image and suppressing noise.

6. Median Filter

The Filter is a nonlinear filtering technique employed for denoising images by substituting

each pixel's value with the median value of the surrounding pixels. Unlike linear filters, the

Median Filter preserves edges and fine details while effectively removing impulse noise [32].

a b

17

 Figure 2.4 (a) Original image (b) Laplacian Filter, (c) High-boost filtering (d) Unsharp

masking (e) Scharr Filter (f) Median filter (g) Mean filter

2.1.3. Image Segmentation Techniques

Segmentation is essential in image analysis as it divides an image into separate regions or

objects based on specific criteria like color, texture, or intensity. By segmenting an image, we

can isolate and identify individual elements within the scene, enabling more targeted analysis

and interpretation. In the context of debris detection after an earthquake, Segmentation helps

discriminate between debris and other image components by delineating their boundaries.

Algorithms like Canny Edge Detection, Sobel Filter, and SLIC Segmentation are employed to

identify edges, regions of interest potential debris areas. By segmenting the image into

meaningful regions, we can focus our analysis on specific areas of interest, improving the

accuracy and efficiency of debris detection algorithms. These Segmentation techniques

18

provide valuable insights into the spatial distribution and characteristics of debris, facilitating

effective disaster response and recovery efforts [16] [17].

1. Canny Edge Detection

Canny Edge Detection is a popular technique for detecting edges in images. It involves several

steps, including noise reduction, gradient calculation, non-maximum suppression, and edge

tracking by hysteresis. The algorithm is known for its ability to accurately detect edges while

minimizing false positives [32].

2. Sobel Filter

The Sobel filter is a widely used method for edge detection in images. By convolving the

image with specific kernels, it highlights edges by emphasizing regions of high spatial

frequency. Its simplicity and effectiveness make it a popular choice for edge detection tasks in

various applications [37].

3. Custom Quick-Shift Segmentation

Custom Quick-Shift is an adaptation of the Quick-Shift algorithm, which is a hierarchical

clustering algorithm used for image Segmentation. It identifies regions of uniform color or

texture in images, effectively segmenting the image into coherent regions [17].

4. SLIC Segmentation

SLIC (Simple Linear Iterative Clustering) Segmentation is a super pixel and method for

segmenting images that divides them into compact, uniform regions. It groups pixels with

similar color and spatial proximity, enabling efficient image Segmentation [38].

The application of Quick-Shift and SLIC Segmentation algorithms for mask creation and their

application to test images are elucidated. Firstly, Quick-Shift, a hierarchical Segmentation

algorithm, is employed to divide the picture into regions based on color and texture similarity,

facilitating the creation of masks for different objects or regions of interest. Subsequently, the

SLIC (Simple Linear Iterative Clustering) algorithm is utilized for super pixel Segmentation,

generating compact, uniform segments. These segments are then converted into binary masks,

serving as templates for isolating specific regions within the images.

The resulting Segmentation algorithms, as depicted in Fig. 2.5, showcase the delineated

regions and objects achieved through the utilization of not only Quick-Shift and SLIC

algorithms but also Sobel and Canny edge Segmentation methods. This comprehensive

approach enhances the efficacy of image Segmentation by incorporating a diverse set of

techniques. By integrating Quick-Shift and SLIC for region-based Segmentation along with

Sobel and Canny edge detection for edge-based Segmentation, the methodology offers a

robust framework for extracting meaningful regions from images. Fig. 2.5 provides a visual

representation of the combined effects of these algorithms, demonstrating their collective

ability to identify relevant regions of interest and facilitate subsequent analysis or processing.

19

Figure 2.5 (a) Original image (b) Canny Edge Detection (c) SLIC Segmentation (d) Sobel (e)

Custom Quick shift

2.1.4. Morphological Operations

Morphological algorithms are essential tools in image processing, providing versatile means to

analyze and manipulate image structures. These algorithms operate on binary or grayscale

images by probing and modifying pixel values using predefined structuring elements or

kernels. Rooted in mathematical morphology principles, these operations include dilation,

erosion, opening, closing, and other transformations. Dilation expands image regions, while

20

erosion contracts them. Combining opening and closing operations refines shapes and

eliminates noise. Structuring elements define the neighborhood around each pixel, determining

the extent of influence during operations. By leveraging these operations, morphological

algorithms can extract features, enhance textures, and segment objects within images [37].

In the context of debris detection, morphological operations offer a crucial advantage. They

enhance texture features associated with debris, making them more distinguishable from the

background. By skillfully applying morphological operations, it becomes easier to isolate

debris regions and create masks that highlight these areas for further analysis. These

operations contribute significantly to the effectiveness of debris detection algorithms,

providing a robust framework for processing images captured in post-earthquake scenarios.

Additionally, the image in Figure 2.6 illustrates all morphological algorithms, providing visual

insight into their application.

1. Boundary

This algorithm extracts the boundaries of objects within an image, highlighting the transition

between object and background. It is useful for delineating object shapes and detecting subtle

features along their perimeters.

2. Dilation

Dilation is a fundamental morphological operation that expands regions in an image,

enhancing the presence of features and increasing their size. It's commonly used for filling

gaps in objects and joining disjointed components [16].

3. Local Entropy

Local entropy-based Segmentation calculates the entropy within local neighborhoods of

pixels, allowing for the identification of regions with varying degrees of complexity or

uniformity. It can be effective for segmenting objects with heterogeneous textures or

structures.

4. Morphological Contrast Enhancement

This algorithm enhances the contrast between regions of an image by adjusting the local

intensity distribution. It aims to improve the visual appearance of features and facilitate their

discrimination from the background.

5. Morphological ACWE Segmentation

Active contours without edges (ACWE) Segmentation are a technique that utilizes

morphological operations to evolve curves and delineate object boundaries without relying on

explicit edge information. It can accurately capture object shapes even in the absence of well-

defined edges.

21

6. Morphological Skeleton

The morphological skeleton is a representation of an object that captures its structural

characteristics while preserving its topology. It provides a simplified version of the object,

useful for shape analysis and pattern recognition tasks.

7. Remove Small Objects

This algorithm eliminates small objects or components in an image based on their size or area.

It helps to remove noise or irrelevant details, focusing attention on larger, more significant

features [17].

Figure 2.6 (a) Original image (b) Dilation (c) Boundary (d) Remove Small Objects (e)

Morphological Contrast Enhancement (f) Local entropy (g) Skeleton (h)

Morphological ACWE

22

2.1.5. Thresholding Methods

Thresholding techniques are essential for segmenting images by dividing them into areas

according to the levels of pixel intensity. The outcome of thresholding algorithms is depicted

in Figure 2.7. By setting a threshold value, pixels are categorized as foreground or

background, allowing the identification of specific features or objects in the image. In the

context of detecting debris, thresholding plays a vital role in distinguishing debris from the

surrounding background. By choosing an appropriate threshold, regions containing debris can

be precisely delineated, facilitating the creation of masks that highlight debris areas for further

analysis. This method utilizes intensity variations between debris and the background,

enabling effective detection and characterization of debris in post-disaster situations.

1. Otsu thresholding

Otsu thresholding is a popular technique for automatically identifying the most suitable

threshold value to differentiate between foreground and background pixels in an image. It

works by minimizing the intra-class variance of pixel intensities, effectively maximizing the

variation in foreground and backdrop between classes. This approach is especially helpful

when the histogram of pixel intensities exhibits a bimodal distribution, as it can accurately find

the threshold to separate the two classes [40].

2. Simple thresholding

Simple thresholding involves selecting a single threshold value to binaries an image,

classifying pixels with intensities above the threshold as foreground and those below as

background. This method is straightforward and simple to put into practice, yet may not be

suitable for images with varying lighting conditions or uneven illumination.

3. Adaptive thresholding

Adaptive thresholding dynamically calculates varying threshold values for distinct regions

within an image, considering localized variations in illumination. This approach helps

overcome the limitations of global thresholding methods, especially in scenarios where the

lighting conditions vary across the image [16].

4. Color based thresholding

Color thresholding segments images based on specific color characteristics, useful for

isolating objects or regions. By setting thresholds for color channels like red, green, and blue,

pixels within defined ranges are retained, aiding in object detection and classification.

5. Unsharp Masking

Unsharp masking is an image enhancement technique used to sharpen edges and enhance fine

details by accentuating high-frequency components. It involves subtracting a blurry version

from the original to get a sharper version of the picture, thereby emphasizing edges and edges

details [37].

23

Figure 2.7 (a) Original image (b) adaptive (c) Otsu (d) Simple thresholding (e) Color based

2.2. Exploring Template Matching for Debris Localization

In computer vision, template matching is a method for locating a template picture inside a

bigger image. The process involves comparing the template image, which represents the object

of interest, to various locations in the larger image. This comparison is typically performed by

sliding the template image across the larger image and computing a similarity measure at each

point. The position with the maximum similarity score indicates where the template image

best aligns with the content of the larger image. Template matching is commonly utilized in

operations like object identification, pattern recognition, and image registration. [32].

Correlation, within the framework of template matching, refers to the computation of

resemblance between the template picture and different regions of the larger image. The

correlation coefficient measures the degree of similarity between two signals or images. In

template matching, correlation is used to quantify how well the template image matches each

location in the larger image. Higher correlation values indicate stronger resemblance between

24

the template and the image region being examined. However, while correlation can provide a

measure of similarity between images, it may not always be efficient for detecting debris or

debris texture because of changes in the illumination, image noise, and the complex nature of

debris appearance [16].

In this particular example, cross-correlation is employed as a technique by utilizing an eye

template image as a kernel, which is then correlated with the raccoon face image. The outcome

of this cross-correlation operation provides insights into the precise location of the eye within

the raccoon's face image. By employing this process, we can effectively pinpoint and locate

the eye region within the broader facial context illustrated in Figure 2.8. This method serves as

a powerful tool for detecting specific features, such as the eye, within complex images,

enabling detailed analysis and interpretation of facial structures and expressions. Through

cross-correlation, we gain useful details on the spatial connection and alignment of features

within the image, facilitating various applications in computer vision, image processing, and

pattern recognition.

Figure 2.8 Utilizing Cross-Correlation to Locate Eyes in Raccoon Face Images [16]

2.3. Integration of Deep Learning Techniques for Image Analysis

Deep learning techniques, such as object detection and Segmentation, offer significant

advantages over classical image processing methods, particularly in scenarios like debris

identification after natural disasters. Unlike classical techniques, which often rely on

predefined rules and handcrafted features, Deep learning algorithms can autonomously learn

and identify pertinent features from the data. This adaptability enables them to effectively

handle the complex and diverse characteristics of debris in post-disaster images, including

variations in texture, shape, and lighting conditions. Additionally, Models for deep learning

such as convolutional neural networks (CNNs), can acquire layered representations of

features, enabling them to grasp both fine details and overall meanings of debris objects. By

leveraging these capabilities, deep learning-based approaches can achieve excellent output in

25

tasks like debris detection, localization, and Segmentation, making them a compelling choice

for automated analysis of disaster-affected areas.

Deep learning methods, distinct from traditional algorithms, necessitate training data to

iteratively adjust parameters and extract meaningful representations from input data. This

iterative process allows them to discern intricate patterns within images, resulting in more

accurate analysis outcomes. Throughout training, Deep learning models fine-tune internal

parameters, such as weights and biases, to minimize prediction errors and optimize

performance metrics, thus improving generalization to new data. This examination of the

training process sheds light on how deep learning algorithms acquire the ability to interpret

visual patterns, laying the groundwork for advanced image analysis tasks [32].

2.3.1. Custom Data Acquisition and annotation Strategy for Training Deep Learning

Models in Debris Detection Post-Earthquake

Training Deep learning models necessitates datasets for several reasons. Firstly, datasets serve

as the foundation upon which models acquire the ability to spot patterns and make predictions.

In the context of debris detection post-earthquake, datasets provide examples of various types

of debris, helping the model learn to distinguish between debris and other objects or

backgrounds in images.

Labels are essential components of datasets as they provide ground truth annotations for the

data. In the context of debris detection, labels indicate the presence and location of debris

within images. These annotations guide the model during training, enabling it to understand

the characteristics of debris and learn to identify them accurately.

a) Finding Datasets:

Online Platforms: Platforms like Roboflow, Kaggle, and GitHub often host diverse datasets

spanning various domains. While these platforms may not offer specific datasets for post-

earthquake debris, they serve as starting points for exploration.

Domain-Specific Repositories: Domain-specific repositories and academic databases may

contain datasets relevant to disaster response or civil engineering. These repositories can be

valuable resources for finding datasets tailored to specific needs.

b) Custom Dataset Creation:

In instances where datasets are not readily available on existing platforms, custom dataset

creation becomes imperative. This involves collecting and annotating data manually, often

through field surveys, drone imaging, satellite images or collaboration with relevant

authorities. This tailored approach ensures the dataset aligns closely with the particular

demands of the current assignment.

To compile the dataset for training the Deep learning models, satellite imagery from Google

Earth Pro and data from the OpenAerialMap site and QGIS were utilized.

26

1. Google Earth Pro: Satellite imagery from Google Earth Pro provided a rich source of

visual data. A total of 510 images were gathered from cities in Turkey following the 2023

earthquakes in Turkey and Syria. The majority of these images were captured in Hatay

and Gaziantep, providing a diverse dataset for training the models.

2. OpenAerialMap and QGIS: To complement the satellite imagery and create a

comprehensive dataset, traffic map images were obtained from Open Street Map. QGIS, a

geographic information system software, was then used to overlay the traffic map images

with the corresponding satellite images captured after the earthquake. This process

enabled the creation of paired images showing both the traffic infrastructure and debris

distribution post-earthquake.

2.3.2. Image Labeling Tools and annotation Process

Labeling involves the process of annotating data with these ground truth annotations. It entails

manually or semi-automatically adding labels to images, indicating the presence of debris and

specifying its location within the image. This process is crucial for supervised learning tasks,

where the model learns from labeled examples to generalize its understanding and make

accurate predictions on unseen data.

Roboflow, founded by Joseph Nelson and Brad Dwyer, offers a comprehensive platform for

image annotation and dataset preparation. While various methods exist for image annotation,

including manual, semi-automatic, and automatic techniques, Roboflow provides an efficient

solution for annotation tasks. By stating that 510 satellite images were annotated using

Roboflow, readers gain insight into the methodology employed for preparing the dataset. This

information underscores the systematic approach taken in labeling the data, contributing to the

reliability and robustness of the developed algorithms. Including such details enriches the

understanding of the methodology and reinforces the credibility of the research findings.

In addition, Roboflow offers various export versions to cater to different training algorithms

and workflows, allowing users to prepare their dataset types according to specific training

algorithms such as COCO JSON, YOLO Darknet, YOLOv4, TensorFlow Object Detection

(TFRecord), Pascal VOC, Kitti Vision, CreateML, Azure Custom Vision, LabelImg, and

MMDetection. These export versions streamline the process of preparing annotated data from

Roboflow for specific training algorithms and platforms.

2.4. Advanced Object Detection and Segmentation Techniques

2.4.1. Object Detection with YOLOv5 and YOLOv8

Object detection in the field of computer vision, represents a fundamental concept extensively

explored in scholarly literature. Academic sources delve into the theoretical underpinnings and

27

practical applications of object detection techniques. These texts offer comprehensive

discussions on convolutional neural networks (CNNs) and their pivotal role in detecting

objects within images. Additionally, scholarly works provide insights into traditional and

modern methodologies for object detection, including region-based approaches and cutting-

edge Deep learning methodologies. Such literature serves as invaluable resources for

researchers, practitioners, and students, fostering a deeper understanding of object detection

algorithms, their implementations, and their diverse real-world applications.

Object detection with Deep learning refers to the process of automatically identifying and

locating objects within images or videos. Unlike traditional computer vision methods that rely

on handcrafted features and algorithms, Deep learning models, particularly (CNNs), derive

layered representations straight from raw pixel data. These models can adeptly capture

intricate patterns and features, enabling precise localization and classification of objects. [32].

You Only Look Once, or YOLO, is a term for an object detection system that revolutionized

the field with its real-time performance and accuracy. Introduced by Joseph Redmon et al. in

2015, YOLO took a unique approach compared to traditional object detection methods via

handling it as a regression position to identify spatially separated bounding boxes along with

associated class probabilities in one single pass through the neural network. This integrated

architecture allowed YOLO to determine bounding boxes and classify objects directly from

complete images in real-time, unlike previous methods that relied on region proposal networks

[41].

The model outlined in Figure 2 operates by treating object detection as a regression challenge.

It segments the input image into an M × M grid, where each grid cell forecasts N bounding

boxes along with their respective confidence scores and K-class probabilities. These forecasts

are compiled into a tensor with dimensions M × M × (N ∗ 5 + K). Essentially, the model

processes the entire image just once, making predictions for each grid cell simultaneously,

thus greatly accelerating the detection process. By predicting multiple bounding boxes per grid

cell and assigning confidence scores and class probabilities, the model efficiently identifies

and classifies objects in the image. Figure 2.9 visually demonstrates this concept, showing the

grid structure and the predicted bounding boxes superimposed on the image.

28

Figure 2.9 Yolo System Model Detection [41]

The architecture shown in Figure 2.9 details the design of the detection network employed in

the YOLO algorithm. It includes 24 convolutional layers crucial for feature extraction from

input images. These are followed by 2 fully connected layers that make predictions based on

the extracted features. The alternating 1 × 1 convolutional layers significantly minimize the

feature space compared to earlier layers, enhancing the network's efficiency. Initially, the

network is trained on the ImageNet classification task at a lower resolution of 224 × 224

pixels. However, for detection tasks, the resolution is increased, enabling more detailed

analysis and precise object detection [41].

29

Figure 2.10 Yolov1 Architecture

In YOLOv5, the model architecture has been divided into three primary parts: the backbone,

neck, and head. The backbone utilizes Dark net 53, a novel network architecture emphasizing

feature extraction through small filter windows and residual connections. Acting as a bridge

between the backbone and head, the neck refines characteristics that the backbone extracts,

improving geographical and semantic data at various scales. The head comprises three

branches, each with a feature prediction at varying scales and generating bounding boxes,

probabilities, and confidence scores. To address overlapping bounding boxes, the network

employs Non-maximum Suppression (NMS) [42].

YOLOv8, the latest iteration in object detection model architecture, succeeds YOLOv5 and

brings about notable enhancements through a novel neural network structure. Feature Pyramid

Network (FPN) and Path Aggregation Network (PAN) are two neural networks that are

included in this release. Additionally, an innovative labeling application streamlines the

annotation process by offering features like automated labeling, shortcut labeling, and

customizable shortcuts, simplifying image annotation for model training.

FPN performs by gradually reducing the pixel density of input images while increasing the

quantity of feature channels at the same time. This method generates a feature map capable of

detecting objects across various scales and resolutions. Conversely, through skip connections,

the PAN design combines functionalities from several network tiers, enabling more effective

feature capture across different scales and resolutions. This capability is pivotal for precisely

identifying objects in diverse dimensions and forms [42].

30

Figure 2.11 Structure of YOLOv5 [42]

Figure 2.12 Structure of YOLOv8 [43]

31

YOLOv8, an advanced iteration of the YOLO object detection model, surpasses YOLOv5 in

various aspects, including better mean Average precision (map) and improved performance

across different datasets. It introduces a new architecture mixing components from the Path

Aggregation Network (PAN) and Feature Pyramid Network (FPN), enhancing feature

extraction and accuracy. Moreover, YOLOv8 benefits from training on a more extensive and

diverse dataset compared to YOLOv5. It employs a new labeling tool, Roboflow Annotate, for

easier image annotation and integrates advanced post-processing techniques like Soft-NMS for

refining detection results. Despite being slightly slower, YOLOv8 maintains real-time

processing capabilities on modern GPUs. Both YOLOv5 and YOLOv8 utilize mosaic

augmentation during training to improve model robustness [43].

Figure 2.13 Comparisons of YOLO Versions for Object Detection

[https://github.com/ultralytics/ultralytics?tab=readme-ov-file]

The comparison in Table 2.1 provides an insightful overview of the performance metrics

across various iterations of the YOLO (You Only Look Once) models, which include

YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and YOLOv8x. Each model undergoes

comprehensive assessment across multiple dimensions, such as its size measured in pixels, the

mean Average precision validation score (mAPval), speed metrics on CPU utilizing the

ONNX format, speed on the A100 TensorRT platform, Floating Point Operations Per Second

(FLOPs) expressed in billions, the parameter count in millions.

This detailed analysis not only offers a comparative examination of these YOLOv8 variants

but also facilitates a nuanced understanding of the trade-offs involved in their design. It sheds

light on the intricate balance between model size, computational efficiency, and performance

characteristics inherent in each variant. Researchers and practitioners alike can leverage this

comprehensive dataset to make informed decisions when selecting a suitable model for their

32

specific application requirements. By considering these metrics, they can effectively balance

factors such as accuracy, speed, and resource constraints to optimize their choice of YOLOv8

model for their particular use case.

Table 2.1 Comparing YOLOv8 Models: Performance Metrics Overview

[https://github.com/ultralytics/ultralytics?tab=readme-ov-file]

2.4.2 Object Segmentation with Mask R-CNN using Detectron2

The Mask Region-based Convolutional Neural Network, also known as Mask R-CNN, is a

sophisticated Deep Learning model that is mostly employed in computer vision applications

including object recognition and instance segmentation. Unlike traditional object detection

methods that only provide bounding box coordinates, Mask R-CNN goes a step further by not

only detecting objects but also precisely outlining their shapes with pixel-level accuracy. This

capability makes it invaluable for applications requiring detailed understanding of object

boundaries, such as in medical imaging, autonomous driving, and robotics. The architecture of

Mask R-CNN consists of a region proposal network (RPN) to generate possible object areas

and a backbone (CNN) for feature extraction, and parallel branches for predicting object

bounding boxes and Segmentation masks. These components work together to enable Mask R-

CNN to identify objects in images while accurately delineating their boundaries, making it a

powerful tool for various computer vision tasks [48].

A regional convolutional neural network called Mask R-CNN, involves two primary stages:

image scanning and proposal generation, followed by proposal classification, bounding box

prediction, and mask generation. This network utilizes the ResNet101 backbone along with

Feature Pyramid Networks (FPN) for feature extraction. The (RPN) scans backbone feature

maps to efficiently reuse features and minimize redundant computations, producing anchor

33

classes and bounding box refinements. Final proposals undergo further classification and

refinement. An ROI pooling algorithm extracts features for classification, leading to the

generation of masks for positive regions via fully convoluted layers. Another branch predicts

class labels and bounding boxes for each object based on the ROI pooling outputs.

Figure 2.14 Architecture of Mask R-CNN [49]

Table 2.2 compares the performance metrics of different backbone architectures for Mask R-

CNN, the most recent model used for object detection and instance Segmentation. Here's what

each column represents:

Backbone: Indicates the backbone architecture used for feature extraction.

AP: Average precision, a metric that measures the accuracy of object detection.

AP50: With an intersection over union (IoU) criterion of 0.5, average precision, which

evaluates the precision of object detection with stricter criteria.

AP75: Average precision with a IoU threshold of 0.75, indicating a higher level of accuracy.

APS: Average precision for Small objects, focusing on the accuracy of detecting smaller

objects.

APM: Average precision for Medium objects, assessing the accuracy of detecting medium-

sized objects.

APL: Average precision for large objects, evaluating the accuracy of detecting larger objects.

34

The values in the table represent the performance scores achieved by different backbone

architectures across these metrics. For example, the higher the AP, AP50, AP75, APS, APM,

and APL values, the better the performance of the Mask R-CNN model with the corresponding

backbone architecture. In this comparison, the ResNeXt-101-FPN backbone architecture

generally outperforms the other architectures in terms of all metrics, indicating its

effectiveness in object detection and instance Segmentation tasks [48]

Table 2.2 Performance Comparison of Mask R-CNN with Different backbone Architectures

[48]

Mask R-CNN can be implemented using Detectron; a popular Deep learning platform created

by Facebook Artificial Intelligence Research. Detectron offers a versatile and effective

platform for training and deploying object detection models, including Mask R-CNN. By

leveraging Detectron's capabilities, developers can easily customize and fine-tune Mask R-

CNN models for specific tasks, such as instance Segmentation, object detection, and image

Segmentation. Detectron2, developed by Facebook AI Research, represents the latest

advancement in libraries for cutting-edge detection and Segmentation algorithms, evolving

from its predecessors, Detectron and maskrcnn-benchmark. This platform facilitates various

computer vision initiatives and practical implementations within Facebook's research and

production environments. To use Mask R-CNN with Detectron2, developers typically follow a

series of steps, including data preparation, model configuration, training, and evaluation.

Detectron2 offers extensive documentation and tutorials to guide users through each stage of

the process, making it accessible to both beginners and experienced practitioners.

Implementing Mask R-CNN with Detectron2 allows for seamless integration with other Deep

learning techniques and tools, enabling researchers and engineers to build sophisticated

computer vision applications with ease [47].

2.4.3. Object Segmentation with YOLOv8

In image processing and computer vision, picture segmentation is a fundamental idea, seeking

to divide a picture into many areas or parts according to certain criteria. This procedure is

essential for a variety of purposes, such object detection, recognition, and scene

35

understanding. In the Deep learning approach, a neural network is often employed to

automatically learn and extract features from images, allowing for accurate Segmentation. The

Segmentation process includes giving every pixel a label in the image, classifying them into

different categories or regions. This makes possible the neural network to understand the

spatial distribution of objects within the image and distinguish between different entities. By

segmenting images, the Deep learning model can effectively interpret visual data and perform

tasks such is crucial for helping machines understand and as identifying objects or delineating

boundaries. Overall, image Segmentation plays a vital role in enabling machines to

comprehend and interpret in visual understanding, contributing to progress in various domains

like medical imaging, autonomous driving, and satellite imagery analysis [44].

Figure 2.15 From left to right: object detection, Instance Segmentation, and whole-scene

semantic segmentation [44]

Three different tasks related to computer vision are shown in Figure 2.10: object identification

and instance division, and whole-scene semantic Segmentation, showcasing images from the

Arthropods and Cityscapes datasets. Object detection entails recognizing and pinpointing

specific objects within an image, enabling the recognition of multiple objects simultaneously.

Instance Segmentation extends its functionality by not only identifying objects but also

distinguishing between individual instances of the same object class, providing pixel-level

Segmentation. On the other hand, whole-scene semantic Segmentation aims to assign semantic

labels to each pixel in the image, categorizing entire scenes based on their content.

Understanding these tasks and their differences is crucial for developing robust computer

vision systems capable of handling diverse visual data and real-world applications [44].

36

YOLOv8 is a cutting-edge object detecting system and Segmentation algorithm that provides

real-time performance while maintaining high accuracy. Unlike traditional Segmentation

algorithms that require multiple passes over an image, to estimate bounding boxes and class

probabilities, YOLOv8 divides the incoming picture into a grid. It then uses this grid to make

its predictions. This approach enables YOLOv8 to achieve remarkable speed, making it

suitable for tasks requiring immediate response, like self-driving vehicles, surveillance, and

robotics.

Compared to other Segmentation algorithms like Mask R-CNN, YOLOv8 offers several

advantages. One key advantage is its speed, as YOLOv8 processes images in a single pass,

leading to faster inference times. Additionally, YOLOv8 provides instance-level

Segmentation, allowing it to differentiate between individual instances of the same object class

without the need for additional post-processing steps. However, it may sacrifice some

precision compared to more complex Segmentation methods like Mask R-CNN, which

perform pixel-level Segmentation. Despite this, YOLOv8' balance between speed and

accuracy making it a well-liked option for various computer vision tasks [45].

A comparison of the several YOLOv8 Segmentation models, such as YOLOv8n-seg,

YOLOv8s-seg, YOLOv8m-seg, YOLOv8l-seg, and YOLOv8x-seg, is shown in table 2.2. Key

metrics such as model size (in pixels), mAPbox (mean Average precision for bounding box

detection), mAPmask (mean Average precision for Segmentation mask), speed on CPU using

ONNX format (in milliseconds), speed on A100 TensorRT platform (in milliseconds), number

of parameters (in millions), and number of FLOPs (Floating Point Operations Per Second, in

billions) are provided.

This comparison facilitates an understanding of the performance and computational

characteristics across different YOLOv8 Segmentation variants, helping practitioners in

deciding which model is best for their particular use case.

37

Table 2.3 Comparing YOLOv8 Models: Performance Metrics Overview

[https://github.com/ultralytics/ultralytics?tab=readme-ov-file]

2.4.4. Instance Segmentation with Roboflow3

Roboflow is an online platform that simplifies the process of managing and preparing datasets

for computer vision tasks, including object Segmentation. It offers a range of tools and

features designed to streamline dataset creation, augmentation, and preprocessing. Users can

upload their image datasets to Roboflow, where they can perform various operations such as

resizing, labeling, and augmenting images to enhance model performance. Additionally,

Roboflow provides integration with popular Deep learning frameworks and libraries, allowing

users to seamlessly export their prepared datasets in formats compatible with their chosen

frameworks. Overall, Roboflow serves as a comprehensive solution for organizing, enhancing,

and preparing image datasets for object Segmentation and other computer vision applications.

Upon uploading all 510 satellite images to Roboflow, I leveraged its augmentation methods to

expand my dataset to over 1000 images. Through augmentation techniques such as rotation,

flipping, and scaling, I increased the diversity and variability of my dataset, thereby enhancing

the robustness and generalization ability of my object Segmentation models. Roboflow's

efficient augmentation pipeline facilitated the augmentation process, enabling me to efficiently

generate a larger and more comprehensive dataset for training and evaluation purposes.

Object Segmentation with Roboflow3 involves utilizing the Roboflow platform to streamline

the Segmentation process for images. By uploading images to Roboflow and leveraging its

intuitive interface, users can annotate objects within images, defining precise boundaries for

Segmentation tasks. Roboflow offers various annotation tools and techniques, such as

polygonal Segmentation, to accurately delineate objects of interest. Additionally, users can

38

apply augmentation methods within Roboflow to enhance the dataset, such as rotation,

flipping, and color augmentation, thereby improving model robustness. Once annotated and

augmented, the dataset can be exported in formats compatible with popular Deep learning

frameworks, enabling seamless integration into object Segmentation pipelines. Overall,

Roboflow3 simplifies and accelerates the object Segmentation workflow, empowering users to

efficiently annotate, augment, and export datasets for training Segmentation models [50].

2.5. Challenges and Considerations in Deep Learning Training

a) Overfitting: Overfitting arises when a model becomes overly adept at learning from the

training data, capturing noise and irrelevant patterns that fail to generalize to new, unseen

data.. This can lead to poor performance on new data.

1. High model capacity relative to the dataset size, allowing the model to memorize noise

and irrelevant features.

2. Inadequate regularization strategies, such weight decay or dropout, to stop the model

from fitting the training set too closely.Lack of diverse training data, leading the model to

learn specific examples rather than general patterns.

3. Complex model architectures with many layers or parameters, increasing the risk of

overfitting.

b) Underfitting: Underfitting happens when a model is too simplistic to recognize the

underlying patterns in the data. It thus does badly on the training and test datasets.

1. Insufficient model capacity to capture the complexity of the underlying data

distribution.

2. Inappropriate choice of model architecture or complexity for the given task.

3. Limited training data or inadequate representation of different classes or categories in

the dataset.

c) Data Imbalance:Data imbalance occurs when one class or category dominates the dataset,

leading to biased model predictions and reduced performance on minority classes.

1. Skewed distribution of classes or categories in the dataset, resulting in biased model

predictions.

2. Insufficient samples for minority classes, making it challenging for the model to learn

their representations effectively.

3. Inadequate data preprocessing techniques to address class imbalances, such as data

augmentation or resampling.

39

d) Vanishing and Exploding Gradients:In deep neural networks : it occur when the gradients

become too small during backpropagation, hindering learning. Conversely, exploding

gradients occur when the gradients become too large, causing instability in training.

1. Deep networks with many layers can suffer from vanishing gradients, especially during

training with activation functions like sigmoid or tanh.

2. Poor weight initialization strategies, leading to gradients that either vanish or explode

as they propagate through the network.

3. Lack of normalization techniques, such as batch normalization, to stabilize gradients

and mitigate exploding or vanishing gradient issues.

e) Local Minima and Plateaus:Deep learning optimization landscapes often contain numerous

local minima and plateaus, making it challenging for optimization algorithms to converge

to the global optimum.

1. Non-convex nature of the optimization landscape in Deep learning, resulting in

multiple local minima and plateaus that can trap optimization algorithms.

2. High-dimensional parameter space, making it difficult for optimization algorithms to

escape local minima and reach the global optimum.

f) Learning Rate Decay:Inappropriate learning rate schedules or decay rates can slow down

or hinder the convergence of the model during training, affecting its ability to learn

effectively.

1. Inappropriate learning rate schedules or decay rates that cause the learning rate to

decrease too quickly or too slowly during training.

2. Failure to adjust the learning rate based on the training dynamics or convergence

behavior of the model.

g) Batch Size Selection:Improper selection of batch size can impact the stability and

convergence of the training process. A batch size that is too small might introduce noise,

whereas a batch size that is too big could cause poor generalization or sluggish

convergence.

1. Small batch sizes may introduce noise and instability in the training process, affecting

gradient estimation and convergence.

2. Large batch sizes can lead to slower convergence or poorer generalization due to

reduced stochasticity in the optimization process.

40

h) Model Complexity:Deep learning models with excessive complexity relative to the dataset

size are prone to overfitting, as they may memorize training examples instead of learning

meaningful patterns.

1. Overly complex models with excessive parameters relative to the dataset size may

memorize training examples rather than learning meaningful patterns.

2. Lack of regularization techniques to constrain the model's complexity and prevent

overfitting.

i) Validation Set Leakage: Information from the validation set being leaked into the training

process could result in overfitting. It's crucial to ensure that the validation set remains

independent and unseen during model training.

1. Unintentional contamination of the validation set with training data, leading to overly

optimistic performance estimates during model evaluation.

2. Improper handling of data preprocessing steps or feature transformations that

inadvertently leak information from the validation set into the training process.

41

3. RESULTS AND DESCUTIONS

3.1. Classical Image Processing Results

I developed a user-friendly Graphical User Interface (GUI) that combines classical and deep

learning algorithms, each serving specific roles. The classical algorithms allow users to apply

various image processing techniques, visualize outcomes, and use masks for further analysis.

Additionally, the Deep learning aspect assists in identifying debris post-earthquake.

For classical image processing, I applied a range of traditional algorithms to a randomly

selected dataset. Details of these algorithm outcomes are provided in the materials and

methods section. Figure 2.2 demonstrates the process of selecting input images to apply

different preprocessing and classical algorithms within the GUI. This streamlined approach

enables users to easily apply algorithms and visualize output images, providing insights into

potential image changes induced by the algorithms.

Figure 3.1 Pre-processing and Classical Algorithm GUI

 Moving forward, in the results and discussion sections, I aim to delve deeper into the

methodology of template matching with correlation. By assessing the correlation between the

templates and overlapping regions of the image, template matching enables the detection of

42

specific features or patterns. In this study, template matching with correlation was applied to

the dataset, and its effectiveness in achieving the research objectives will be thoroughly

examined and discussed in subsequent sections.

Given the complexity of identifying debris, I initiated the exploration by employing template

matching. This involved selecting a mask from an original image and applying it to ensure the

functionality of the template matching approach. This preliminary step was crucial in

validating the efficacy of the template matching technique. Subsequently, I proceeded with

further investigation, building upon the initial findings to delve deeper into the process of

debris detection.

Figure 3.2 From left to right: original mask and input image

43

Figure 3.3 From left to right: the original mask and an image processed with the boundary

algorithm

The outcomes show the efficacy of employing the template matching with correlation method.

By specifically choosing the mask from the input image, the process ensures that the selected

template aligns seamlessly with the corresponding features present in the input image. This

meticulous approach not only validates the accuracy of the template matching technique but

also ensures that the identified mask precisely corresponds to the desired features within the

input images. Additionally, the region field, configured with a threshold value set to one,

further corroborates the effectiveness of the template matching process. This setting signifies

that the identified mask perfectly matches the features in the input images without any

deviations, thus affirming the robustness and reliability of the template matching methodology

in refining and fine-tuning the masks to achieve optimal alignment with the target features.

In the subsequent examination, I applied various classic image processing algorithms and

singled out those that excel in discriminating debris textures more effectively than others.

These selected algorithms encompass boundary detection, color-based thresholding, high-

boost filtering, Laplacian filtering, local entropy calculation, Otsu thresholding, Sobel

filtering, and unsharp masking. The selection process was meticulous, focusing on their

proven effectiveness in capturing nuanced texture variations indicative of debris. Although the

exact count of generated masks may vary for each algorithm, the average number remains

around 100, with slight deviations observed in some cases. These masks, each measuring

50x50 pixels, were derived from the output of the respective algorithms applied to the test

dataset. This comprehensive approach ensures thorough evaluation across diverse textures and

environmental conditions, facilitating a comprehensive comparative analysis to pinpoint the

most suitable technique for precise debris discrimination and Segmentation. Below, you will

find the collection of masks generated by each algorithm, along with the results of template

matching using correlation for each algorithm.

44

We recognize that classic image algorithms may not possess the same level of power and

versatility as Deep learning methods. However, the primary objective here is not to showcase

the superiority of classic image algorithms but rather to illustrate their functionality

specifically in the context of debris detection. This comparative analysis allows us to observe

how these traditional methods perform in a targeted application area, providing valuable

insights into their effectiveness and potential limitations.

Figure 3.4 Test set images chosen for region matching analysis.

In this segment, a variety of numerical algorithms were employed to evaluate their

performance in template matching with specific masks. This comparative analysis serves two

primary objectives: firstly, it enables a comprehensive assessment of each algorithm's

capability to detect and precisely match predetermined templates within the input images.

Secondly, it offers insights into the effectiveness of these algorithms for template matching,

helping to identify which ones are more suitable for this purpose. This methodology enhances

our comprehension of the strengths and limitations of each algorithm, thereby aiding in

45

informed decision-making concerning their suitability and effectiveness in template matching

tasks.

In this segment, a variety of numerical algorithms were employed to evaluate their

performance in template matching with specific masks. This comparative analysis serves two

primary objectives: First, it enables a comprehensive assessment of each algorithm's capability

to detect and precisely match predetermined templates within the input images. Secondly, it

offers insights into the effectiveness of these algorithms for template matching, helping to

identify which ones are more suitable for this purpose. This methodology enhances our

comprehension of the strengths and limitations of each algorithm, thereby aiding in informed

decision-making concerning their suitability and effectiveness in template matching tasks.

Additionally, Figure 3.3 comprises four images, two of which depict debris, while the

remaining one illustrates a different object. These images were selected from the test set, and

they were not utilized in mask creation, serving solely for visual representation and

comparative analysis purposes.

It's notable that, in certain algorithms, no regions meet the specified threshold value.

Conversely, in others, multiple regions are identified, although many may not pertain to

debris. This variability arises due to the diverse textures and lighting conditions present in the

debris images, including instances where debris is obscured by shadows or exhibits varying

degrees of brightness and texture. Consequently, the outcomes of classical algorithms for

debris detection may not consistently meet expectations, reflecting the nuanced challenges

inherent in this task.

The subsequent section presents the masks generated by each algorithm alongside their

respective results. It becomes evident that the boundary detection algorithm outperforms the

others, yielding more satisfactory outcomes. Conversely, the performance of the remaining

algorithms appears less robust, indicating room for improvement or potentially rendering them

unsuitable for template matching purposes. This observation underscores the need for further

refinement and optimization of these algorithms to enhance their efficiency and efficacy in

template matching applications.

46

Figure 3.5 Composite Masks of Debris Regions Identified by Boundary Algorithm Post-

Earthquake.

Figure 3.6 Matched Regions Detected by Boundary Masks (Threshold 0.5.)

47

Figure 3.7 Composite Mask of Debris Regions Identified by color_threshold Algorithm Post-

Earthquake

Figure 3.8 Matched Regions Detected by color based thresholding Masks (Threshold 0.5)

48

Figure 3.9 Composite Mask of Debris Regions Identified by high boosts Algorithm Post-

Earthquake

Figure 3.10 Matched Regions Detected by color based high boost masks (Threshold 0.5)

49

Figure 3.11 Composite Mask of Debris Regions Identified by laplacian Algorithm Post-

Earthquake

Figure 3.12 Matched Regions Detected by color based laplacian Masks (Threshold 0.5)

50

Figure 3.13 Composite Mask of Debris Regions Identified by odsu thresholding Algorithm

Post-Earthquake

Figure 3.14 Matched Regions Detected by color based v Masks (Threshold 0.5)

51

Figure 3.15 Composite Mask of Debris Regions Identified by sobel Algorithm Post-

Earthquake

 Figure 3.16 Matched Regions Detected by sobel Masks (Threshold 0.5)

52

Figure 3.17 Composite Mask of Debris Regions Identified by unsharp masking Algorithm

Post-Earthquake

Figure 3.18 Matched Regions detected by unsharp masking Masks (Threshold 0.5)

53

.

Figure 3.19 Composite Mask of Debris Regions Identified by local entropy Algorithm Post-

Earthquake

Figure 3.20 Matched Regions Detected by color based local entropy Masks (Threshold 0.5)

54

As the primary objective of this study and thesis does not center on discerning differences

through classical image processing, the focus remains on comparing the outcomes with those

obtained through Deep learning methodologies. Consequently, the study did not endeavor to

generate additional masks from diverse regions. It is acknowledged that expanding the dataset

to include a greater number of images could potentially yield more satisfactory results. With

an augmented dataset, it would be feasible to create an extensive array of masks, potentially

exceeding 1000 masks for each algorithm. This increased dataset size could contribute to a

more comprehensive and nuanced understanding of the algorithms' performance across

various image contexts, enhancing the depth and reliability of the comparative analysis.

To create a mask within the graphical user interface (GUI), users can follow a simple process

facilitated by the interface controls. First, the GUI displays the image of interest, providing

users with a visual representation of the data. Users can then interact with the image by

clicking on it to define the center of the region of interest (ROI). Upon clicking, a resizable

rectangle appears, initially set to a default size. Users can adjust the size of the rectangle as

needed, either increasing or decreasing its dimensions using dedicated controls. The rectangle

is visually distinguished by a black outline, making it easy to identify within the image. Users

can adjust the size of the rectangle by pressing the '+' or '-' keys to increase or decrease its

dimensions, respectively. Once users are satisfied with the size and position of the rectangle,

they can finalize the selection by pressing a designated button or key. This action generates a

binary mask based on the dimensions and location of the rectangle, effectively isolating the

selected region from the rest of the image. This mask can then be used for further analysis,

processing, or visualization within the GUI or other applications. The entire mask creation

process is demonstrated in Figure 3.5, providing users with a clear understanding of the steps

involved.

Figure 3.21 Generating Masks through Interactive GUI

55

Once the desired area is selected, users can save the generated mask by specifying the address

of the destination folder within the GUI interface. This feature facilitates seamless integration

with template matching algorithms, enabling precise alignment and comparison of patterns

within images. The created mask is shown in Figure 3.5, providing users with a visual

reference of the steps involved.

Figure 3.22 Save the mask for future use in template matching

In the graphical user interface (GUI) developed for this application, the utilization of

correlation techniques initiates a process where a dedicated window dynamically presents a

comprehensive overview of the identified masks within the analyzed image. Serving as an

informative dashboard, this window effectively highlights the presence or absence of specific

masks within the image, thus offering insights into whether a particular region of interest

(ROI) is successfully detected. This functionality enables users to promptly discern which

masks are effectively matched within the image and which ones are not.

Furthermore, the GUI interface offers valuable insights into the compatibility of the detected

masks with potential debris. By leveraging this information, users can identify promising

candidates that may aid in the precise localization and identification of debris within the

analyzed imagery. This nuanced analysis and interpretation empower users to make informed

56

decisions regarding the selection and utilization of masks for effective debris detection and

analysis.

In the context of the template matching process illustrated in Figure 3.6, the GUI facilitates a

visual representation of the correlation techniques in action, showcasing their impact on mask

identification and utilization. Additionally, when a ROI mask is detected within an image

through template matching, users have the opportunity to manually assess whether that mask

represents debris. If confirmed, users can gather all masks representing debris as potential

debris masks, optimizing the template matching process and enhancing its accuracy in

identifying relevant debris within the imagery.

Figure 3.23 Template Matching Process Visualization

3.2 Deep learning Results

In this section, we present the outcomes of employing various Deep learning algorithms for

object detection and Segmentation tasks. The results encompass a range of state-of-the-art

algorithms, including YOLOv5 and YOLOv8 for object detection, Mask R-CNN with

Detectron2, Roboflow Instance Segmentation, and YOLOv8 for object Segmentation. Each

subsection discusses the specific algorithm's performance, accompanied by graphs illustrating

key metrics such as precision, recall, loss functions, and mean average precision (mAP).

Additionally, dataset prediction images are provided to visually depict the algorithm's

effectiveness in detecting and segmenting objects of interest. Through comprehensive analysis

57

and visualization, we evaluate the suitability and efficacy of each algorithm in addressing the

target tasks. For training, Google Colab Premium was utilized, offering ample computational

resources and an efficient execution environment.

3.2.1 Roboflow Data annotation and Augmentation Results

The dataset, comprising 510 satellite images initially sized at 1920x1080, underwent

preprocessing for compatibility with YOLO. Resizing the images to 640x640, the

augmentation process involved various techniques to enhance diversity and robustness.

Augmentation methods included auto-orientation, resizing, flipping (horizontal and vertical),

rotating (90° clockwise, counter-clockwise, and upside down), cropping (0-20% zoom),

rotation (-15° to +15°), shearing (±15° horizontally and vertically), grayscale conversion (19%

of images), hue adjustment (-23° to +23°), saturation modification (-30% to +30%), brightness

alteration (-25% to +25%), exposure variation (-14% to +14%), and adding noise (up to 6% of

pixels). Additionally, bounding boxes underwent similar transformations to maintain spatial

correspondence. The dataset was divided into three sets: a training set (88% - 1077 images), a

validation set (8% - 100 images), and a test set (4% - 51 images).

The four images in Figure 2.7 were selected from the annotated images available on the

Roboflow website for utilization in Deep learning algorithms. Prior to this selection process, I

uploaded all my satellite images to the Roboflow platform and meticulously annotated them.

Subsequently, from this annotated dataset, I randomly chose four images to illustrate the

quality and effectiveness of the annotation process on the Roboflow site. Leveraging

Roboflow's annotation capabilities not only ensured the accurate labeling of objects and

feature within the images but also facilitated the seamless integration of this annotated data

into Deep learning workflows for model training and evaluation.

58

Figure 2.24 Annotated Satellite Images from Roboflow

3.2.2 Object Detection with YOLO Results

Visualizing the outcomes through various graphs, depicting metrics such as precision, recall,

and accuracy over different epochs or evaluation criteria, offers insightful information about

the performance and effectiveness of the YOLO model in detecting objects across various

scenarios and datasets. By analyzing these graphs, we gain the ability to assess the model's

strengths, weaknesses, and areas for improvement, thereby advancing the field of computer

vision and object detection. In the following sections, I will provide a detailed explanation of

each graph, elucidating its significance and implications for the YOLO model.

a) Train/box_loss: This graph shows the loss associated with bounding box predictions

during the training process. It indicates how well the model is able to localize objects

within the images. A decreasing trend in this loss suggests that the model is improving in

accurately predicting the bounding boxes of objects.

59

b) Train/obj_loss: This graph represents the loss related to objectness prediction during

training. It reflects the model's ability to differentiate between object and background

regions in the images. Decreasing values of this loss indicate that the model is becoming

more proficient at identifying relevant objects.

c) Train/cls_loss: The train/cls_loss graph displays the loss attributed to class prediction

during training. It indicates how well the model is performing in classifying detected

objects into different categories or classes. Lower values of this loss signify better

classification accuracy.

d) Metrics/precision: This graph illustrates the precision of the model's predictions. precision

measures the accuracy of positive predictions made by the model, indicating the proportion

of true positive predictions among all positive predictions. Higher precision values indicate

fewer false positives.

e) Metrics/recall: The metrics/recall graph shows the recall of the model's predictions. Recall

measures the ability of the model to correctly identify all relevant instances, indicating the

proportion of true positives predicted among all actual positives. Higher recall values

suggest fewer false negatives.

f) Val/box_loss, Val/obj_loss, Val/cls_loss: These graphs are comparable to their respective

training counterparts but represent the loss values on the validation dataset. They provide

insight into the model's performance on unseen data during validation.

g) Metrics/mAP_0.5: This graph shows the (mAP) at an (IoU) threshold of 0.5. It evaluates

the overall performance of the model in object detection, considering both precision and

recall across different object categories.

h) Metrics/mAP_0.5:0.95: This graph presents the mAP across a range of IoU thresholds

from (0.5-0.95) It provides a comprehensive evaluation of the model's performance,

considering varying levels of overlap between predicted and ground-truth bounding boxes.

i) F1 Confidence Curve: This curve shows the connection between the F1 score and

confidence thresholds used for object detection or classification tasks. It helps in

determining the optimal confidence threshold that balances precision and recall to achieve

the highest F1 score, thereby providing insight into the model's performance across

different confidence levels.

60

j) Precision-Confidence Curve:The precision-confidence curve showcases how precision

varies with different confidence thresholds. It demonstrates the trade-off between precision

and confidence, helping to identify the threshold that achieves the desired precision level

for decision-making in object detection or classification tasks.

k) Precision-Recall Curve: The trade-off between precision and recall is shown by the graph.

at different confidence thresholds. It provides a comprehensive view of the model's

performance, allowing analysts to choose the appropriate threshold based on the specific

requirements of their application. A higher area under the precision-recall curve indicates

better model performance in balancing precision and recall.

l) Recall:Recall, also known as sensitivity, is a statistic used to assess a model's capacity. to

correctly identify all relevant instances, including true positives, out of all actual positive

instances in the dataset. It is calculated as the ratio of true positives to the sum of true

positives and false negatives. A higher recall indicates that the model can effectively

capture a larger proportion of positive instances, minimizing false negatives .

m) Precision: Precision gauges how well the model predicts favorable occurrences. among all

predicted positive instances. It is calculated as the ratio of true positives to the sum of true

positives and false positives. A higher precision indicates that the model makes fewer false

positive predictions, providing more confidence in the correctness of its positive

predictions.

n) F1 Confidence:F1 confidence is a metric that combines precision and recall into a single

score, providing a balance between the two. It is the harmonic mean of precision and recall

and is calculated as 2× precision×recall/ precision+recall . F1 confidence is useful when

there is an uneven class distribution or when both precision and recall are important

metrics for evaluating model performance[47] .

o) Confusion matrix:A confusion matrix is a evaluation of performance tool for machine

learning classification problems where the output can have two or more classes. It is a

table that provides a detailed breakdown of of accurate and inaccurate predictions made by

a classification model. The matrix consists of four different combinations of predicted and

actual class values: true positives (correctly predicted positive instances), false positives

(incorrectly predicted positive instances), true negatives (correctly predicted negative

61

instances), and false negatives (incorrectly predicted negative instances). The examples in

a predicted class are represented by each column of the matrix, whereas the occurrences in

an actual class are represented by each row. The confusion matrix is a useful tool for

evaluating the performance of a classification model, providing insights into its strengths

and weaknesses across different classes.

p) Labels correlations:In the context of object detection and classification, labels correlations

refer to the relationships or dependencies between different categories or classes of objects

within a dataset. These correlations indicate how often certain labels co-occur or share

similar visual characteristics. Understanding label correlations is crucial for developing

accurate and robust models, as it helps in predicting the presence of one object based on

the presence of another related object. For example, in an image containing a person, there

might be a high correlation with other objects such as a backpack or a bicycle. By

leveraging label correlations, object detection models can improve their accuracy and

performance, leading to more reliable results in real-world applications.

3.2.2.1. Object Detection with YOLOv5 Results

In the final epoch (epoch 59) of training the YOLOv5m model, several key performance

metrics were evaluated. The train/box_loss and train/obj_loss achieved low values of 0.029389

and 0.038873, respectively, indicating effective optimization of bounding box predictions and

abjectness scores. Notably, the model achieved a precision of 56.45% and a recall of 63.03%,

demonstrating its ability to accurately detect and classify objects within images. The (mAP) at

an IoU threshold of 0.5 (mAP_0.5) was measured at 57.105%, showcasing the model's

effectiveness in detecting objects with varying levels of overlap. Furthermore, the

mAP_0.5:0.95 values, which consider a broader range of IoU thresholds, reached 28.262%,

suggesting consistent performance across different IoU thresholds. Validation losses

(val/box_loss and val/obj_loss) remained low at 0.046376 and 0.055355, respectively,

indicating the model's ability to generalize well to unseen data. The learning rate parameters

(x/lr0, x/lr1, x/lr2) remained consistent at 0.00043 throughout training, suggesting stable

learning dynamics. Overall, the results of epoch 59 demonstrate the YOLOv5m model's

robustness and effectiveness in object detection tasks, with promising performance across

various evaluation metrics.

The Figure 3.5 containing nine test data predictions offers valuable insights into the efficacy of

YOLOv5m in detecting debris post-earthquake.YOLOv5m successfully identifies regions of

interest through object detection boxes, showcasing precision scores ranging from 0.25 to

0.87. However, it's notable that precision levels fluctuate across different debris detections due

to the diverse textures and appearances of the debris compared to the surrounding

environment.

62

Figure 3.25 YOLOv5m object detection training Insights and Performance Metrics

63

Figure 3.26 Test data prediction with YOLOv5m object detection

Figure 3.27 Left to right: F1 Confidence, precision-Confidence, and precision-Recall curves

results with YOLOv5m object detection

64

In the YOLOv5m object detection confusion matrix for debris detection, the confidence scores

provide insights into the model's performance in distinguishing between debris and

background classes. A confidence score of 0.65 is associated with the debris class, indicating a

high level of certainty when the model identifies an object as debris. This suggests that the

model is correct about 65% of the time when predicting debris. Conversely, a confidence score

of 0.35 is assigned to the background class, implying a lower level of certainty compared to

debris predictions. When the model predicts an area as background, it is correct about 35% of

the time. These confidence scores reflect the model's ability to accurately differentiate between

debris and background, with higher scores indicating greater confidence in the predictions.

Figure 3.28 YOLOv5m object detection confusion matrix

65

Figure 3.29 YOLOv5m object detection labels correlations

Figure 3.30 GUI Display of YOLOv5 Object Detection Result

66

3.2.2.2. Object Detection with YOLOv8 Results

In the final epoch of training the YOLOv8 model, the performance metrics were evaluated.

The Train/box_loss and Train/obj_loss reached 1.6325 and 1.2281, respectively, indicating

relatively higher losses compared to YOLOv5m, suggesting potential challenges in bounding

box predictions and objectness scores optimization. The Metrics/precision achieved 58.856%,

while Metrics/recall attained 47.541%, demonstrating moderate performance in object

detection and classification tasks. The Metrics/mAP_0.5 and Metrics/mAP_0.5:0.95 reached

51.988% and 23.239%, respectively, suggesting lower performance compared to YOLOv5m,

particularly in detecting objects with higher IoU thresholds. Validation losses, Val/box_loss

and Val/dfl_loss, remained at 0, indicating potential overfitting or inadequate generalization to

unseen data. Learning rates (LR/pg0, LR/pg1, LR/pg2) remained constant at 0.00043559

throughout training, implying stable learning dynamics. Additionally, it's worth noting that

following these results, there are 9 test image prediction results of YOLOv8, providing further

insight into the model's performance.

Figure 3.31 Test data prediction with YOLOv8 objects detection

67

Figure 3.32 YOLOv8 object detection training Insights and Performance Metrics

Figure 3.33 YOLOv8 object detection Performance Evaluation Curves

68

In the YOLOv8m object detection confusion matrix, the value of 0.55 attributed to Debris

signifies a moderate level of confidence in the model's prediction when identifying an object

as debris. This score indicates that the model correctly identifies debris approximately 55% of

the time, reflecting a reasonable degree of accuracy in its predictions. Conversely, the score of

0.45 assigned to Background suggests a lower level of confidence when the model predicts an

area as background. In such instances, the model is accurate about 45% of the time. When

comparing these results with the YOLOv5m model, which achieved a higher confidence score

of 0.65 for debris and a lower score of 0.35 for background, it appears that the YOLOv5m

model demonstrates greater confidence in its predictions, particularly for identifying debris.

The higher confidence score for debris indicates a higher accuracy rate compared to the

YOLOv8m model, while the lower confidence score for background implies a similar level of

uncertainty in both models' background predictions.

Figure 3.34 YOLOv8 object detection confusion matrix

69

Figure 3.35 GUI Display of YOLOv8 Object Detection Result

3.2.2.3 YOLOv8 Object Segmentation Results

In the final epoch (epoch 59) of training the YOLOv8 model for Segmentation tasks, several

key performance metrics were assessed. The train/box_loss was recorded at 1.8554, indicating

the optimization of bounding box predictions, while the train/seg_loss was 3.5162,

representing the Segmentation loss during training. Additionally, the train/cls_loss was noted

at 11.5774, reflecting the classification loss incurred during training. The model exhibited a

precision of 51.313% and a recall of 45.173%, indicating its ability to accurately classify and

capture segmented objects. The average precision at mean (mAP) threshold of 0.5 for IoU

(mAP_0.5) was evaluated at 45.756%, while the mAP_0.5:0.95 was measured at 19.717%,

suggesting moderate performance across different IoU thresholds. Furthermore, the

Val/box_loss and Val/seg_loss maintained relatively high values at 1.9369 and 3.1221,

respectively, indicating areas for potential improvement in validation losses. The learning rate

parameters (lr/pg0, lr/pg1, lr/pg2) remained consistent at 8.71E-05 throughout training,

suggesting stable learning dynamics. Overall, while the YOLOv8 model showed promising

performance in certain aspects such as precision and recall, there is room for enhancement in

reducing validation losses and improving mAP scores to enhance its effectiveness in

Segmentation tasks. Additionally, the subsequent evaluation of four test image predictions will

provide further insights into the model's generalization capabilities and practical applicability.

70

Figure 3.36 YOLOv8 segmentation Test data prediction after 60 epochs

Figure 3.37 YOLOv8 segmentation after 60 epochs Performance Evaluation Curves

71

Figure 3.38 YOLOv8 segmentation after 60 epochs training Insights and Performance

Metrics

72

Figure 3.39 YOLOv8 segmentation after 60 epoch’s confusion matrix

In the 200th epoch of training the YOLOv8 Segmentation model, significant improvements

were observed across various key metrics compared to the results from epoch 59. The

train/box_loss decreased to 1.4879, indicating enhanced optimization of bounding box

predictions. Similarly, the Segmentation loss (train/seg_loss) decreased to 2.9593, reflecting

improved Segmentation accuracy. Notably, the model achieved a higher precision of 61.913%

and recall of 48.998%, demonstrating enhanced object detection capabilities. Moreover when

the IoU threshold is reached, the mean average precision (mAP) of 0.5 (mAP_0.5) increased to

53.818%, indicating improved object localization accuracy. The mAP_0.5:0.95 also saw a

notable improvement, reaching 25.358%, suggesting enhanced performance across a broader

range of IoU thresholds. In terms of validation losses (val/box_loss, val/seg_loss, val/cls_loss,

val/dfl_loss), reductions were observed, indicating better generalization to unseen data. The

learning rate parameters remained consistent throughout training. Overall, the results of the

200th epoch demonstrate the YOLOv8 Segmentation model's continued learning and

improved performance over extended training periods. Comparatively, these advancements

highlight the model's ability to refine its object detection and Segmentation capabilities over

prolonged training durations.

73

Figure 3.40 YOLOv8 segmentation Test data prediction after 200 epochs

Figure 3.41 YOLOv8 segmentation after 200 epochs training Insights and Performance

Metrics

74

Figure 3.42 YOLOv8 segmentation after 200 epochs Performance Evaluation Curves

Figure 3.43 YOLOv8 segmentation after 200 epochs confusion matrix

75

Figure 3.44 GUI Display of YOLOv8 segmentation Result

3.2.3 Mask R-CNN with Detectron2 Segmentation Results

The Mask R-CNN model underwent evaluation on the test dataset, with training epochs set at

4 and 1500. Performance metrics were computed using the COCO evaluation method.

The model achieved an Average precision (AP) of 6.61% across IoU thresholds ranging from

(0.50-0.95), with a notable precision of 22.04% at IoU=0.50. At a higher IoU threshold of

0.75, the precision dropped to 2.78%. The Average Recall (AR) at IoU=0.50:0.95 was

calculated to be 28.9%. Notably, the model demonstrated an AP of 6.61% specifically for the

'Debris' category.

In terms of Segmentation performance, the model achieved an AP of 6.56% across all IoU

thresholds, with a precision of 22.34% at IoU=0.50. At IoU=0.75, the precision decreased to

1.67%. The Average Recall (AR) at IoU=0.50:0.95 was 26.1%. Specifically for the 'Debris'

category, the model attained an AP of 6.56%.

The evaluation results suggest moderate performance of the Mask R-CNN model on the test

dataset. Notably, the model exhibits better performance in detecting larger debris instances

compared to smaller ones. However, there remains room for improvement, particularly in

achieving higher precision and recall rates across different categories and IoU thresholds.

Further refinement of the model architecture, dataset augmentation, and exploration of

alternative object detection frameworks could potentially enhance its efficacy in real-world

scenarios.

76

The evaluation results for the Mask R-CNN model trained with 8 epochs and 2000 iterations

show improvements in performance compared to the previous evaluation. The model achieved

an Average precision (AP) of 7.88% for bounding box detection, with a notable precision of

25.23% at IoU=0.50. The Average Recall (AR) across all IoU thresholds from 0.50 to 0.95

was computed to be 29.4%, indicating enhanced detection capabilities, particularly for smaller

debris instances. For Segmentation, the model attained an AP of 7.49%, with a precision of

25.71% at IoU=0.50. The AR at IoU=0.50:0.95 was 25.8%, with improved recall rates across

all object sizes compared to the previous evaluation.

The comparison between the models trained with 4 and 1500 epochs versus 8 epochs and 2000

iterations indicates a noticeable improvement in performance with increased training epochs

and iterations. Specifically, the model trained with 8 epochs and 2000 iterations demonstrates

higher Average precision and Recall values for both bounding box detection and Segmentation

tasks. This suggests that increasing the epochs and iterations has led to better model

convergence and enhanced capability to detect debris instances across different sizes and

complexities. Further analysis and experimentation may be warranted to optimize the model's

performance and assess its robustness under varying conditions. Additionally, Figures 3.5 and

3.6 contain the images that underwent Segmentation applied to the test datasets.

Metric 4 Epochs, 1500 Iterations 8 Epochs, 2000 Iterations

BBox AP 6.61% 7.88%

BBox AP50 2.78% 22.04%

BBox AP75 3.99% | 25.23%

Segm AP 6.56% 7.49%

Segm AP50 22.34% 25.71%

Segm AP75 1.67% 2.48%

Average Recall 28.9% 29.4%

Small Debris AR 37.5% 35.0%

Medium Debris AR 26.5% 26.1%

Large Debris 36.1% 39.8%

Table 3.1 Performance comparisons between models trained for 4 epochs / 1500 iterations and

8 epochs / 2000 iterations

77

Figure 3.45 Test Data Predictions Utilizing Mask R-CNN via Detectron2 with 4 Epochs and

1500 Iteration.

Figure 3.46 Test Data Predictions Utilizing Mask R-CNN via Detectron2 with 8 Epochs and

2000 Iterations

78

Figure 3.47 Object Detection Performance using Mask R-CNN via Detectron2 after 4 Epochs

and 1500 Iterations

Figure 3.48 Object Detection Performance using Mask R-CNN via Detectron2 after 8 Epochs

and 2000 Iteration.

3.2.4. Roboflow Instance Segmentation Results

The instance Segmentation results obtained from Roboflow on my dataset demonstrates a

moderate level of performance. With a mean Average precision (mAP) of 53.5%, the model

shows an ability to accurately identify and delineate instances within the images. Precision, at

58.0%, indicates the proportion of correctly identified instances among all instances predicted

by the model, reflecting its capability to minimize false positives. Meanwhile, the recall score

79

the 53.9% demonstrates how well the model captures a sizable percentage of real positive

events out of all positive instances. While these metrics indicate a reasonable performance

level, there may still be room for improvement to enhance both precision and recall for better

instance Segmentation results.

Figure 3.49 A Visual Overview of satellite Dataset Analysis of Roboflow Instance

Segmentation Results

80

Figure 3.50 A Visual Overview of drone based Dataset Analysis of Roboflow Instance

Segmentation Results

81

Figure 3.51 Roboflow Instance Segmentation training Insights and Performance Metric.

3.3 Integrating Traffic Maps and Satellite Imagery for Comprehensive Analysis and

Visualization

In this section, the integration of traffic maps and satellite imagery for comprehensive analysis

and visualization is explored. The process began by downloading a map from an official

source, specifically a TIF file named '63e6b164c6ef740006cfd110', depicting the city of

82

Kahramanmaras in Turkey following an earthquake event in 2023. This map was then

imported into QGIS for further analysis. Within QGIS, images containing both the satellite

imagery and the traffic layer were examined. Utilizing YOLOv8 Segmentation for debris

Segmentation, predictions were made to identify areas of debris accumulation. Subsequently,

the mask representing the debris was overlaid onto the traffic maps. This overlay facilitated

the visualization of roadways and traffic patterns affected by the presence of debris, offering

insights into the impact of the earthquake on transportation infrastructure and aiding in

comprehensive analysis and decision-making processes.

Additionally, the TIF was accompanied by a JGW file, providing essential geo-referencing

information. The JGW file contains parameters defining the spatial transformation and

coordinates of the raster image, enabling its accurate positioning and scaling within GIS

software. By leveraging the information from the JGW file, the satellite imagery depicting the

city of Kahramanmaras was correctly georeferenced and integrated into the analysis within

QGIS.

Moreover, with the generation of debris mask and traffic map overlay images for each

segment of the city map, the ability to navigate through the urban landscape amidst debris

blockages was significantly enhanced. By overlaying the debris mask onto the traffic map,

areas affected by debris accumulation were visually highlighted, providing valuable insights

into the extent of road blockages and traffic disruptions following the earthquake event.

Leveraging the geo referencing information provided by the JGW files associated with the

satellite imagery, route calculation algorithms could accurately determine navigational paths

between specified streets within the affected area. By considering the blocked routes due to

debris accumulation, these routing algorithms could dynamically adjust the proposed paths to

ensure safe and efficient navigation through the city's road network. This advanced routing

functionality enabled emergency responders, city planners, and residents to identify alternative

routes, avoid impassable roads, and optimize travel times, thereby facilitating effective

disaster response and recovery efforts.

Furthermore, the integration of real-time data feeds and geospatial analytics allowed for the

continuous monitoring and updating of navigation routes in response to changing conditions

on the ground. Satellite imagery, drone footage, and crowd-sourced reports of debris clearance

efforts were integrated into the GIS platform, providing up-to-date information on road

conditions and accessibility. This dynamic, data-driven approach to urban navigation not only

improved the safety and efficiency of travel but also enhanced situational awareness and

coordination among stakeholders involved in disaster response and recovery operations.

83

Figure 3.52 a) YOLOv8 Predicted Debris Result for Coordinates 316485.1, 4161069,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic

84

Figure 0.53 a) YOLOv8 Predicted Debris Result for Coordinates 316717.3, 4161155,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic

85

Figure 0.54 a) YOLOv8 Predicted Debris Result for Coordinates 316682.9, 4161409.5,b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic.

86

Figure 0.55 a) YOLOv8 Predicted Debris Result for Coordinates 316877.6, 4161036.4, b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic

87

Figure 0.56 a) YOLOv8 Predicted Debris Result for Coordinates 316895.3, 4161318, b)

Associated Traffic Map, c) Mask Representation, d) Overlay of Mask and Traffic

88

Figure 3.57 Overlaying Debris Masks on Traffic Imagery within the GUI

89

4. CONCLUSIONS

In the initial stages of our research, we employed classical image processing algorithms to

identify debris within drone-captured images following earthquakes. Through experimentation

and analysis, we explored various traditional techniques to delineate debris regions and create

masks. Among the nine algorithms tested, boundary detection emerged as particularly adept at

discerning debris textures. However, while classical algorithms provided some insights, they

fell short in accurately detecting debris due to the diverse nature of debris textures. We

propose that increasing the diversity and number of masks could potentially enhance classical

algorithm performance by better representing the varied debris textures. Nonetheless, this

approach entails significant time investment, prompting consideration of alternative methods

such as Deep learning, which offer greater accuracy and efficiency.

In our exploration of Deep learning algorithms for object detection and Segmentation tasks,

we analyzed several state-of-the-art models, including YOLOv5, YOLOv8, Mask R-CNN

with Detectron2, and Roboflow Instance Segmentation. Each algorithm's performance was

meticulously assessed, with discussions on key metrics such as precision, recall, loss

functions, and mean average precision (mAP), complemented by visual representations of

dataset prediction images. Through this comprehensive evaluation, we aimed to gauge the

suitability and efficacy of each algorithm in addressing our target tasks.

The evaluation of the YOLOv5m model yielded promising results in object detection,

achieving a commendable precision of 56.45% and a recall of 63.03%, with a mean average

precision (mAP) of 57.105%. However, precision levels fluctuated due to diverse debris

textures. In contrast, YOLOv8 exhibited relatively higher losses in bounding box predictions

and objectness scores but achieved moderate performance metrics. The YOLOv8

Segmentation model showed improvements in various metrics in the 200th epoch. The Mask

R-CNN and Roboflow Instance Segmentation models demonstrated moderate performance in

Segmentation, with better results for larger debris instances. Further enhancements are needed

for precision and recall rates across different categories and thresholds.

In our investigation, we utilized traffic maps and satellite imagery to analyze post-earthquake

scenarios. Through YOLOv8 Segmentation; we identified debris areas, overlaying them onto

traffic maps to visualize affected roadways. By overlaying debris masks onto traffic maps, we

improved navigation amidst debris, aiding in disaster response. Integration of real-time data

feeds allowed continuous route monitoring and updating, enhancing situational awareness

among stakeholders. This dynamic approach offers a valuable tool for urban navigation,

ensuring safe travel and effective disaster management.

Furthermore, optimizing Segmentation results and developing a user-friendly application that

operates effectively post-earthquake are crucial steps. Creating an application that functions

reliably in the aftermath of an earthquake event is essential for facilitating efficient navigation

and disaster response efforts.

90

For further optimization of my thesis and project, several advanced strategies can be

employed. Enhancing the quality of our dataset remains a primary focus. By utilizing

advanced data augmentation techniques, refining annotation processes, and collecting datasets

with the best possible resolution, we aim to improve the model's accuracy. Addressing the

challenge of partially and completely blocked roads is also critical, enabling us to define

optimal routes for post-earthquake disaster assistance. Incorporating video processing

capabilities into our workflow is essential for analyzing dynamic visual data, allowing for

comprehensive insights into temporal patterns and changes over time. Additionally,

integrating an online Geographic Information System (GIS) platform can facilitate real-time

disaster detection and management post-earthquake by providing up-to-date spatial data.

Reducing computational time is another key factor; optimizing algorithms and streamlining

processes will significantly decrease the time required for model training and inference,

enhancing productivity. Moreover, considering the elevation of imagery and camera is crucial,

as the model struggles with detecting debris when the camera elevation varies significantly.

By incorporating images taken from different elevations, we can help the model understand

debris patterns more accurately. Collectively, these strategies aim to enhance the system's

efficiency, accuracy, and real-time applicability, ultimately improving disaster response and

management.

91

REFERENCES

[1] Karji, A., Woldesenbet, A., & Rokooei, S. (2017). Integration of augmented reality,

building information modeling, and image processing in construction management: A

content analysis. In Proceedings of the AEI 2017. American Society of Civil

Engineers.

[2] Yu, L., He, S., Liu, X., Jiang, S., & Xiang, S. (2022). Intelligent crack detection and

quantification in the concrete bridge: A Deep learning-assisted image processing

approach. Advances in Civil Engineering, 2022(1813821), 1-15.

[3] Fukuda, Y., Feng, M. Q., & Shinozuka, M. (2010). Cost-effective vision-based system

for monitoring dynamic response of civil engineering structures. Structural Control and

Health Monitoring, 17(8), 918–936.

[4] Ramachandran, R. M., & Reddy, C. S. (2017). Monitoring of deforestation and land

use changes (1925-2012) in Idukki district, Kerala, India using remote sensing and

GIS. Journal of the Indian Society of Remote Sensing, 45(1), 163–170.

[5] Bohn, J. S., & Teizer, J. (2010). Benefits and barriers of construction project

monitoring using high-resolution automated cameras. Journal of Construction

Engineering and Management, 136(6), 632–640.

[6] Schindler, S., Hegemann, F., Koch, C., König, M., & Mark, P. (2016). Radar

interferometry based settlement monitoring in tunnelling: visualisation and accuracy

analyses. Visualization in Engineering, 4.

[7] Vasileva, A. V., Vasilev, A. S., & Konyakhin, I. A. (2018). Vision-based system for

long-term remote monitoring of large civil engineering structures: design, testing,

evaluation. Measurement Science and Technology, 29(11), Article ID 115003.

[8] Bashir, H., & Ahmad, S. S. (2017). Exploring geospatial techniques for spatiotemporal

change detection in land cover dynamics along Soan River, Pakistan. Environmental

Monitoring and Assessment, 189(5), 222.

[9] Ehrhart, M., & Werner, L. (2015, February). Image-based dynamic deformation

monitoring of civil engineering structures from long ranges. In Proceedings of the

Image Processing: Machine Vision Applications VIII, SPIE, San Francisco, CA, USA.

[SPIE]

[10] Yang, J., Park, M.-W., Vela, P. A., & Golparvar-Fard, M. (2015). Construction

performance monitoring via still images, time-lapse photos, and video streams: now,

92

tomorrow, and the future. Advanced Engineering Informatics, 29(2), 211–224.

[Elsevier]

[11] Golparvar-Fard, M., Peña-Mora, F., & Savarese, S. (2015). Automated progress

monitoring using unordered daily construction photographs and IFC-based building

information models. ASCE, Journal of Computing in Civil Engineering, 29(1).

[12] Woldesenbet, A., Jeong, H. D., & Park, H. (2016). Framework for integrating and

assessing highway infrastructure data. Journal of Management in Engineering, 32(1),

Article ID 04015028.

[13] Patel, K. K., Kar, A., Jha, S. N., & Khan, M. A. (2011). Machine vision system: a tool

for quality inspection of food and agricultural products. Journal of Food Science &

Technology, 49(2), 123–141.

[14] Xu, G., Deng, M., Sun, G., Guo, Y., & Chen, J. (2022). Improving Building Extraction

by Using Knowledge Distillation to Reduce the Impact of Label Noise. Remote

Sensing, 14(22), 5645.

[15] Salunkhe, A. A., Gobinath, R., Vinay, S., & Joseph, L. (2022). Progress and Trends in

Image Processing Applications in Civil Engineering: Opportunities and Challenges.

Volume 2022, Article ID 6400254.

[16] Gonzalez, R. C., & Woods, R. E. (2008). Digital image processing, Third Edition.

[17] Dey, S. (2018). Hands-On image processing with Python.

[18] Ferrer, J., Pomares, J. C., Irles, R., Espinosa, J., & Mas, D. (2013). image processing

for safety assessment in civil engineering. Applied Optics, 52(18), 4385.

[19] Chen, L. Y., Wang, M. Y., Chao, C. C., & Lo, W. (2015). Assessment of asphalt

concrete pavement quality by using infrared thermal imaging technology. Journal of

Marine Science and Technology, 23(3), 331–338.

[20] dzgold. (2021). Deep learning Collection PDF. Retrieved from

https://archive.org/details/deep-learning-collection-pdf

[21] Yamashita, R., Nishio, M., Do, R. K. G., & Togashi, K. (2018). Convolutional neural

networks: An overview and application in radiology. Insights into Imaging, 9, 611–

629.

[22] Salem, F. M. (2022). Recurrent neural networks: From Simple to Gated Architectures.

Textbook.

[23] Tripathi, S., Augustin, A. I., Dunlop, A., Sukumaran, R., Dheer, S., Zavalny, A.,

Haslam, O., Austin, T., Donchez, J., Tripathi, P. K., & Kim, E. (2022). Recent

advances and application of generative adversarial networks in drug discovery,

93

development, and targeting. Artificial Intelligence in Life Sciences.

https://doi.org/10.1016/j.ailsci.2022.100045

[24] Long Short-Term Memory Network, Expert Systems with Applications, 2021.

[25] Li, P., Pei, Y., & Li, J. (2023). A comprehensive survey on design and application of

autoencoder in Deep learning. Applied Soft Computing, 137, 110176.

https://doi.org/10.1016/j.asoc.2023.110176 [26] Transfer learning: a friendly

introduction, Journal of Big Data

[27] Niu, Z., Zhong, G., & Yu, H. (2021). A review on the attention mechanism of Deep

learning. Neurocomputing, 460, 381-401.

https://doi.org/10.1016/j.neucom.2021.03.091

[28] Haq, M. U., Sethi, M. A. J., & Rehman, A. U. (2023). Capsule Network with Its

Limitation, Modification, and Applications—A Survey. Machine Learning and

Knowledge Extraction, 5(3), 891-921. https://doi.org/10.3390/make5030047

[29] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al‑Dujaili, A., Duan, Y., Al‑Shamma, O.,

Santamaría, J., Fadhel, M. A., Al‑Amidie, M., & Farhan, L. (2021). Review of Deep

learning: concepts, CNN architectures, challenges, applications, future directions.

Journal of Big Data, 8, 53. https://doi.org/10.1186/s40537-021-00444-8

[30] Alzubaidi, L., Zhang, J., Humaidi, A. J., Al‑Dujaili, A., Duan, Y., Al‑Shamma, O.,

Santamaría, J., Fadhel, M. A., Al‑Amidie, M., & Farhan, L. (2021). Review of Deep

learning: concepts, CNN architectures, challenges, applications, future directions.

Journal of Big Data, 8, 53. https://doi.org/10.1186/s40537-021-00444-8

[31] Bai, C., Bai, X., & Wu, K. (Year). A Review: Remote Sensing Image Object Detection

Algorithm Based on Deep learning. Electronic and Information Engineering, Lanzhou

Jiaotong University, Lanzhou 730070

[32] Szeliski, R. (Year). computer vision: Algorithms and Applications. In D. Gries & F. B.

Schneider (Eds.), Texts in Computer Science. Springer. Available at:

www.springer.com/series/3191.

[33] Park, S.C., Park, M.K., & Kang, M.G. (2003). Super-resolution image reconstruction: a

technical overview. IEEE Signal Processing Magazine, 20(3), 21-36.

doi:10.1109/MSP.2003.1203207

94

[34] Sonka, M., Hlavac, V., & Boyle, R. (2008). image processing, Analysis, and Machine

Vision (3rd Edition). Brooks/Cole Publishing Co. [Source: DBLP] [Available at:

https://www.researchgate.net/publication/220695728]

[35] Pizer, S.M., Amburn, E.P., Austin, J.D., Cromartie, R., Geselowitz, A., Greer, T., ter

Haar Romeny, B., Zimmerman, J.B., & Zuiderveld, K. (1987). Adaptive histogram

equalization and its variations. computer vision, Graphics, and image processing,

39(3), 355-368. https://doi.org/10.1016/S0734-189X(87)80186-X

[36] Jain, A. K. (Year). Fundamentals of Digital image processing.

[37] Pratt, William K. (2007). Digital image processing: PIKS Scientific inside. (4th ed.). A

Wiley-Interscience publication. ISBN: 978-0-471-76777-0

[38] Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., & Süssstrunk, S. (2012). SLIC

superpixels. School of Computer and Communication Sciences (IC), École

Polytechnique Fédérale de Lausanne (EPFL).

[39] Jardim, S., António, J., & Mora, C. (2023). Image thresholding approaches for medical

image Segmentation - short literature review. Procedia Computer Science.

https://doi.org/10.1016/j.procs.2023.01.439

[40] Otsu, N. (1979). A Threshold Selection Method from Gray-Level Histograms. IEEE

Transactions on Systems, Man, and Cybernetics, 9(1), 62-66.

https://doi.org/10.1109/TSMC.1979.4310076

[41] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2015). You Only Look Once:

Unified, Real-Time Object Detection. University of Washington, Allen Institute for AI,

Facebook AI Research. Retrieved from http://pjreddie.com/yolo/

[42] Sary, I. P., Armin, E. U., & Andromeda, S. (2023). Performance Comparison of

YOLOv5 and YOLOv8 Architectures in Human Detection Using Aerial Images.

Electrical Engineering, ISSN 2355-3286.

[43] Reis, D., Kupec, J., Hong, J., Daoudi, A. (Year). Real-Time Flying Object Detection

with YOLOv8. Georgia Institute of Technology.

[44] Lakshmanan, V., Görner, M., Gillard, R. (2021). Practical Machine Learning for

computer vision. Released in July 2021.

[45] Sapkota, R., Ahmed, D., Karkee, M. (Year). Comparing YOLOv8 and Mask RCNN

for object Segmentation in complex orchard environments. Center for precision &

Automated Agricultural Systems, Washington State University, 24106 N Bunn Rd,

Prosser, 99350, Washington, USA. [46] Deep learning for Computer Vision by

Rajalingappaa Shanmugamani

95

[46] Rosebrock, A. (2017). Deep learning for Computer Vision with Python: Practitioner

Bundle (1st Edition, 1.2.1). First printing, September 2017.

[47] https://github.com

[48] He, K., Gkioxari, G., Dollar, P., & Girshick, R. (2017). Mask R-CNN. In 2017 IEEE

International Conference on Computer Vision. IEEE.

[49] Zhang, J. K., Fanous, M., Sobh, N., Kajdacsy-Balla, A., & Popescu, G. (Year).

Automatic Colorectal Cancer Screening Using Deep learning in Spatial Light

Interference Microscopy Data.

[50] https://docs.roboflow.com/datasets/adding-data

 [51] Ronneberger, O., Fischer, P., & Brox, T. (Year). U-Net: Convolutional Networks for

Biomedical Image Segmentation. Medical Image Computing and Computer-Assisted

Intervention – MICCAI.

[52] Siddique, N., Paheding, S., Elkin, C. P., & Devabhaktuni, V. (Year). U-Net and Its

Variants for Medical Image Segmentation: A Review of Theory and Applications.

https://github.com/

96

APPENDIX

Appendix 1 – Images from YOLO Object Detection Batch and Validation Dataset

 Results

Figure 1YOLOv5m object detection Train batch number one

97

Figure 2 YOLOv5m object detection train batch number two

98

Figure 3 YOLOv5m object detection validation batch number zero labels

99

Figure 4 YOLOv5m object detection validation batch number one labels

100

Figure 5 YOLOv5m object detection validation batch number one prediction

101

Figure 6 YOLOv8 object detection train batch number zero

102

Figure 7 YOLOv8 object detection train batch number one

103

Figure 8 YOLOv8 object detection train batch number two

104

Figure 9 YOLOv8 object detection train batch number 3332

105

Figure 10 YOLOv8 object detection train batch number 3333

106

Figure 11 YOLOv8 object detection train batch number 3334

107

Figure 12 YOLOv8 object detection validation batch number zero labels

108

Figure 13YOLOv8 object detection validation batch number zero prediction

109

Figure 14 YOLOv8 object detection validation batch number one labels

110

Figure 15 YOLOv8 object detection validation batch number one labels

111

Figure 16 YOLOv8 object detection validation batch number one prediction

112

Figure 17 YOLOv8 object detection validation batch number two labels

113

Figure 18 YOLOv8 object detection validation batch number two prediction

114

Appendix 2 – Images from YOLOv8 segmentation Batch and Validation Dataset

 Results

Figure 1 YOLOv8 segmentation train batch number zero

115

Figure 2 YOLOv8 segmentation train batch number one

116

Figure 3 YOLOv8 segmentation train batch number two

117

Figure 4 YOLOv8 segmentation train batch number 3332

118

Figure 5 YOLOv8 segmentation train batch number 3333

119

Figure 6 YOLOv8 segmentation train batch number 3334

120

Figure 7 YOLOv8 segmentation validation batch number zero labels

121

Figure 8 YOLOv8 segmentation validation batch number zero predictions

122

Figure 9 YOLOv8 segmentation validation batch number one labels

123

Figure 10 YOLOv8 segmentation validation batch number one predictions

124

Figure 11 YOLOv8 segmentation validation batch number two labels

125

Figure 12 YOLOv8 segmentation validation batch number two predictions

