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ABSTRACT

EVALUATING THE PERFORMANCE OF CNN-BASED ALGORITHMS
FOR BUILDING EXTRACTION IN COMPARISON WITH CLASSICAL
IMAGE PROCESSING METHODS

Zeinab Bayat

Master of Science, Department of Civil Engineering
Supervisor: Assoc. Prof. BURCU GULDUR ERKAL
June 2024, 95 pages

In the early morning of Local time at 04:17 AM, on the sixth of February 2023, (01:17 UTC),
a powerful earthquake measuring Mw 7.8 struck Syria's northern and western regions as well
as the southern and central portions of Turkey.. The serious problem of closed roads laden
with debris, arising after the devastating earthquake in Turkey, significantly hampers disaster
response and recovery efforts. This thesis emphasizes the growth and evaluation of algorithms
for the detection and classification of closed roads due to debris generated after the
earthquake, using images captured by drones. The study employs classic image processing
methods implemented in Python along with Convolutional neural network (CNN) based
algorithms. The unique dataset containing images captured after the earthquake provides a
detailed picture of extensive road blockages resulting from the disaster's aftermath.

An important contribution of this research the emergence of an intuitive and A GUI (Graphical
User Interface) that is intuitive and easy for users to navigate. This GUI panel serves as a
comprehensive platform showcasing a wide range of classical and deep learning image
processing methods, allowing users to interactively visualize the results of these methods. This
interactive tool not only simplifies access to algorithmic outputs but also empowers disaster
response teams and decision-makers to make data-driven and effective decisions.

The principal aim of of This research is to to assess how accurate and effective the proposed
algorithms are in identifying the nature and prevalence of road blockages. By distinguishing
between road segments filled with debris and those left open, this study provides critical
information to expedite disaster relief logistics and prioritize recovery operations.



The findings presented in this thesis contribute to enhancing the disaster management toolkit
by expediting data-driven decision processes for post-earthquake recovery operations, thereby
contributing to the overall resilience of affected communities.

Keywords: Road Blockage Detection, Earthquake Impact, Disaster Response, Convolutional neural
networks, CNN Algorithms, Image Processing, Python Programming, Disaster Relief, Post-Earthquake
Assessment, Seismic Event, Turkish Earthquake, Aerial Observation, Graphical User Interface (GUI),
Real-Time Results Visualization, Image Processing Methods, Decision Support Interface,
Humanitarian Aid, Machine Learning Algorithms, Computer Vision, Human Intervention, Crisis
Management, Geographic Information System-based Decision Support.



OZET

CNN TABANLI ALGORITMALARIN KLASIK GORUNTU iISLEME YONTEMLERI
ILE KIYASLANARAK BiNA CIKARIMI PERFORMANSININ
DEGERLENDIRI MESI Zinab Bayat

Insaat Miihendisligi Boltimii
Tez Damismani: Assoc. Prof. BURCU GULDUR ERKAL
Haziran 2024, 95 sayfa

6 Subat 2023 tarihinde, yerel saatle sabah 04:17'de (01:17 UTC), Mw 7.8 biiyiikliigiinde gii¢lii
bir deprem Suriye'nin kuzey ve bat1 bolgeleri ile Tiirkiye'nin giiney ve orta kesimlerini vurdu.
Tiirkiye'de meydana gelen bu yikict depremin ardindan enkazla dolu kapali yollar, afet
miidahale ve iyilestirme cabalarini ciddi sekilde engellemektedir. Bu tez, dronlarla ¢ekilen
goriintiiler kullanilarak deprem sonrasit olusan enkaz nedeniyle kapali yollarin tespiti ve
siiflandirilmast i¢in algoritmalarin gelistirilmesi ve degerlendirilmesine odaklanmaktadir.
(Calismada, Python'da uygulanan klasik goriintii isleme yontemleri ile Konvoliisyonel sinir ag1
(CNN) tabanli algoritmalar kullanilmaktadir. Deprem sonrasi cekilen goriintiileri igeren
benzersiz veri seti, felaketin ardindan olusan kapsamli yol tikanikliklarinin detayli bir resmini
sunmaktadir.

Calisma, Python dilinde uygulanan klasik goriintii isleme yontemleri ile birlikte Convolutional
neural network (CNN) tabanli algoritmalar1 kullanmaktadir. Depremin ardindan yakalanan
gorlntiler igeren benzersiz bir veri kiimesi, felaketin yan etkileri olarak olusan genis yol
tikanikliklarinin ayrintili bir resmini sunmaktadir.

Bu arastirmanin 6nemli bir katkisi, sezgisel ve kullanict dostu bir Grafiksel Kullanic1 Araytzu
(GUI) paneli olusturulmasidir. Bu GUI paneli, klasik ve derin 6grenme goriintii isleme
yontemlerinin genis bir yelpazesini sergileyen kapsamli bir platform olarak hizmet
vermektedir ve kullanicilara bu yontemlerin sonuglarini etkilesimli olarak goriintiileme imkani
sunmaktadir. Bu etkilesimli arag, yalnizca algoritmik c¢iktilara erisimi basitlestirmekle
kalmayip ayni zamanda felaket miidahale ekiplerini ve karar vericileri veri odakli ve etkili
kararlar almada yeteneklendirmektedir.

Bu aragtirmanin temel amaci, Onerilen algoritmalarin yol tikaniklarinin dogasini ve
yaygimligimi tanimlamada ne kadar dogru ve etkili oldugunu degerlendirmektir. Enkazla dolu
yol segmentleri ile acik kalanlar arasindaki ayrimi yaparak, bu calisma felaket yardim
lojistigini hizlandirmak ve iyilestirme operasyonlarini dnceliklendirmek igin kritik bilgiler
sunmaktadir.



Bu tezde sunulan bulgular, deprem sonrasi iyilestirme operasyonlarinin veri odakli karar
stire¢lerini hizlandirarak etkilenen topluluklarin genel direncine katkida bulunarak felaket
yoOnetimi arag setini gelistirmektedir.

Anahtar Kelimeler: Yol Tikaniklik Tespiti, Deprem Etkisi, Felaket Miidahalesi, Evrisimli Sinir
Aglari, CNN Algoritmalari, Goriintii Isleme, Python Programlama, Felaket Yardimi, Deprem Sonrasi
Degerlendirme, Sismik Olay, Tiirkiye Depremi, Hava G6zlemi, Grafiksel Kullanic1 Arayiizii (GUI),
Gergek Zamanli Sonuglar Gériintiileme, Goriintii Isleme Yontemleri, Karar Destek Arayiizii, Insani
Yardim, Makine Ogrenme Algoritmalari, Bilgisayarli Gérii, Insani Miidahale, Kriz Yonetimi, Cografi
Bilgi Sistemine Dayali Karar Destegi.
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1. INTRODUCTION

1.1.  Image processing

Digital image processing encompasses the manipulation of digital images utilizing a digital
computer. Image processing encompasses the analysis and enhancement of visual information
for improved interpretation [16]. Specifically, digital image processing (DIP) involves the
Systematic examination and analysis of images using computer systems. On the other hand,
computer vision is focused on developing models, extracting data, and deriving data from
images [13].

A digital image, comprising finite elements and values, undergoes this processing, but authors
differ on its boundaries with image analysis and computer vision. Some define it as a
discipline where images serve as both input and output. For instance, even computing the
average intensity, yielding a single number, might not be considered image processing. On the
other hand, computer vision aims to replicate human vision in computers, enabling them to
learn, draw inferences, and initiate actions based on visual stimuli [16].

Classical image processing has varying applications; in this study, the segmentation technique
was employed to isolate cracks based on the gray-level differences between the cracks and
their background. Additionally, the Canny iterative method was utilized to detect crack edges,
leveraging the linear characteristics of the cracks. The Otsu method, along with multiple
filtering techniques, was also applied to identify cracks in concrete structures. While these
algorithms produced satisfactory experimental results, they were tested on images with simple
backgrounds, without considering obstacles. Therefore, these methods might not be suitable
for detecting debris in more complex backgrounds. Recently, many researchers have shifted
towards using deep learning (DL) instead of traditional image processing algorithms,
highlighting the trend towards advanced computer vision and deep learning techniques in the
field Contemporary researchers are embracing advanced technologies, particularly computer
vision and deep learning, like DL-based image processing, to enhance debris detection
capabilities in complex scenarios with intricate backgrounds and potential obstacles [2].

Computer vision has transformed into a comprehensive field encompassing tasks ranging
from the acquisition of raw data to the extraction of visual patterns and the interpretation of
data [13]. The spectrum from image processing to computer vision encompasses various levels
of complexity. At the foundational level, basic operations such as image preprocessing are
performed. Moving up the hierarchy, tasks involve segmentation, description, and
classification of objects within images. Higher-level processing delves into interpreting
recognized objects, similar to image analysis, and, at the extreme, performing cognitive
functions associated with vision. The field lacks clear-cut boundaries, prompting a paradigm
that considers low, mid, and high-level computerized processes [16].



1.1.1. The image processing pipeline

The subsequent stages outline the fundamental processes within the image processing pipeline

a) Acquisition and Storage:

Capture the image using a device and store it on a device (e.g., hard disk) in a specific file
format (e.g., JPEG).

b) Load into Memory and Save to Disk:

Read the image from the disk into memory, store it using a data structure (e.g., numpy array),
and possibly serialize the data structure into an image file after applying algorithms.

c) Manipulation, Enhancement, and Restoration:

Execute preprocessing algorithms for tasks like image transformation, quality enhancement
(e.g., de-blurring), and restoration from noise degradation.

d) Segmentation:

Divide the image to extract objects of interest, facilitating the isolation and identification of
specific components.

e) Information Extraction/Representation:

Represent the image in an alternative form, involving hand-crafted feature descriptors (e.g.,
HOG descriptors) or automatic feature learning (e.g., deep learning).

f) Image Understanding/Interpretation:

Utilize the alternative representation to comprehend the image, performing tasks like image
classification (e.g., identifying human presence) and object recognition (e.g., locating objects
with bounding boxes) [17].
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Figure 1.1 Image processing pipeline

1.1.2. Civil Engineering Approach in Image Processing

The advancement in computer technology has significantly impacted diverse scientific and
technological domains, enabling researchers to expand these techniques across various
domains. Despite this progress, the construction industry falls behind in utilizing digitization
to offer reliable data and improve decision-making processes, trailing other industries in this
aspect. Artificial Intelligence and image processing (IP) are significantly influencing the
construction sector lately. Both technologies possess distinct applications and potential within
various facets of the construction industry. The ensuing sections will delineate the
advancements in each of these technologies and elucidate their respective applications in the
construction domain [1].
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Figure 1.2. Industry digitization index [1]

The civil industry stands out as the least digitized sector, facing challenges such as climatic,
environmental, economic, and sociopolitical complexities in civil projects, making digitization
challenging. Over the past decade, civil engineers have increasingly focused on Simulations
using computers and tracking systems that utilize image processing, artificial intelligence (Al),
machine learning (ML), and other advanced technologies. These innovations are considered
cost-effective and non-intrusive methods for collecting and analyzing image and video data in
numerous construction firms [1-12].

The utilization of 3D imaging technologies in construction has led to various targeted
applications by researchers. These applications include construction management, progress
monitoring [10, 11], safety [18], quality control [18, 19] and building extraction [14].
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Figure 1.3 Image processing applications in civil engineering [15]

1.2. Deep learning

In history, inventors, inspired by ancient Greek myths, envisioned creating thinking machines
embodied by figures like Pygmalion and Daedalus. The advent of programmable computers in
1842, as speculated by Lovelace, fueled discussions about machines acquiring intelligence.
Today, Artificial Intelligence (Al) is a dynamic field, addressing diverse practical needs. Al
automates tasks, interprets speech/images, aids medical diagnoses, and supports scientific
inquiries. In its early stages, Al excelled at computationally straightforward challenges but
faced a true test in solving tasks performed effortlessly by humans, requiring intuitive
navigation, such as recognizing spoken words or facial features in images.

Representation learning involves determining an optimal visualization of the incoming data, a
key challenge in deep learning. The goal is to create efficient representations that capture
essential features, facilitating tasks like image recognition and language understanding. Deep
learning addresses this by constructing complex concepts from simpler ones. For instance, an
image of a person is represented by combining basic elements like corners and contours,
defined in terms of edges. This process enables the system to handle intricate variations in
data, enhancing its ability to extract meaningful information [20].



1.2.1. What is deep learning?

Machine Learning (ML) pursues generalization through training on data, particularly vital for
tasks like image classification. Traditional ML encounters challenges such as computational
costs, limited learning progress, and dependence on human expertise. In contrast, Deep
learning models show promise in overcoming these limitations and improving generalization
in intricate tasks.

A subtype of machine learning called deep learning uses artificial neural networks (ANNS) of
many layers inspired by the brain's structure. Each layer uses the output from the previous one,
utilizing ANNSs for feature extraction, pattern recognition, and abstraction development. Both
supervised and unsupervised deep learning techniques are possible (e.g., pattern analysis) and
employs gradient-descent algorithms to learn hierarchical representations. By depicting the
universe as a layered hierarchy of notions, it acquires strength, where every idea relates to less
complicated ones, forming a flexible abstraction hierarchy. In the context of image
classification architecture, showcasing its adaptability and efficiency in processing complex
information problem, a Deep learning model incrementally learns image classes through its
hidden layer.

Initially, the system automatically discerns basic attributes like light or dark areas, progressing
to more advanced features such as edges. Subsequently, it identifies the most intricate features,
like shapes, facilitating classification. Each node or neuron encapsulates a specific facet of the
overall image, collectively portraying the entire image comprehensively. The nodes effectively
capture and represent the full complexity of the image. Furthermore, every node and neuron in
the network is assigned weights, signifying their significance in influencing the output's
strength. These weights are subject to adjustment during the model development phase,
allowing for refinement and optimization of the neural network [17].
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Figure 1.4 Traditional ML feature extraction [17]
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1.2.2 Subsets of Deep Learning in Focus

Figure 1.6. Deep learning subsets

a) Convolutional neural networks (CNNs):
1. Focus on spatial hierarchies, primarily used in image-related tasks.

2. Key architecture for image classification, object detection, and facial recognition
[20].

b) Recurrent neural networks (RNNS):

1. Specialized for consecutive data processing, such as time-series and natural
language.



d)

9)

h)

2.

Suitable for tasks involving temporal dependencies [22].

Generative Adversarial Networks (GANS):

1.

GANs comprise a generator and discriminator involved in an adversarial
framework. The generator produces realistic data, while the discriminator identifies
and differentiates real samples from generated ones.

GAN:Ss are utilized across a wide array of domains, spanning from image synthesis
and style transfer to data augmentation. [23].

Long Short-Term Memory Networks (LSTMs):

1.

These are a kind of recurrent neural network (RNN) created to solve the issue of
the vanishing gradient in conventional RNNs [24].

Auto encoders:

1.

Auto encoders, neural networks designed for unsupervised learning, comprise an
encoder tasked with input data compression into a latent representation, followed
by a decoder that reconstructs the original data. Widely applied, they excel in tasks
like data de noising, anomaly detection, and feature learning, proving valuable
across diverse domains [25].

Transfer Learning Models(TL):

1.

Transfer Learning (TL) is recognized for its ability to establish connections
between supplementary testing and training samples, leading to quicker outputs
with effective results.

TL is specifically suitable when there is a scarcity of training data for the target
task [26].

Attention Mechanismes:

1.

They facilitate focusing on relevant parts of input data, enhancing model
performance. For an in-depth understanding of attention mechanisms.

Play a crucial role in Deep learning, acting as a resource allocation scheme to
address information flow challenges [27].

Capsule Networks (Caps Nets):

1.

They are a neural network architecture type intended to solve constraints in
traditional convolutional neural networks (CNNSs).



2. The key innovation of Capsule Networks lies in the use of capsules, which are
groups of neurons representing specific features and spatial relationships. Unlike
neurons in traditional networks, capsules consider the pose or orientation of
features, providing a more robust representation [28].

1.2.2.1. Exploring Convolutional Neural Networks (CNNs)

In the realm of computer vision and Deep learning, a diverse set of convolutional neural
network (CNN) algorithms assumes pivotal roles in various applications. Highlighted in the
figure below are these algorithms with distinct architectural nuances, contributing significantly
to advancements in image processing, object detection, and pattern recognition [30,31,46].
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Figure 1.7 CNNs algorithms

1.2.2.2. An Introductory Guide to CNN Architecture

The CNN architecture comprises multiple layers, with a key component being the
convolutional layer. This layer uses convolutional filters, or kernels, to convolve the input
image, generating an output feature map. Kernels have discrete values called kernel weights,
initialized randomly during training and adjusted to extract significant features. The
convolutional operation involves sliding the kernel over the image, calculating dot products,



and creating a feature map. Padding and stride impact the output size, with padding crucial for
preserving border information. Convolutional layers offer benefits like sparse connectivity,
reducing required weights and memory, and weight sharing, streamlining training time by
becoming familiar with a particular set of weights for the entire input matrix. This
architectural design enhances efficiency in memory use and computational costs compared to
fully connect neural networks [30].
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Figure 1.8 CNN architecture for image classification [30]

1.3.  Graphical User Interface

Graphical User Interface, or GUI for short, provides users with a visual interface for using
software or electrical gadgets. It utilizes graphical elements like icons, buttons, and windows,
offering a more intuitive experience compared to text-based interfaces. It enhances user
experience by offering an intuitive and easy-to-use environment, allowing users to navigate
and operate applications more easily.

In my thesis, I employed a GUI to develop an application with the specific purpose of
streamlining the detection of debris after an earthquake. The GUI serves as the interface
through which users can interact with the implemented algorithms. This application aims to
simplify and enhance the process of identifying and assessing debris objects in post-
earthquake scenarios.
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2. MATHERIAL AND METHODS

2.1. Classical image processing algorithms

In the methodology, classical image processing algorithms are used to detect debris post-
earthquake from drone-captured images. A dataset of 110 images is utilized, with 10 for
testing and 100 to create masks. Various algorithms are applied to select images and manually
delineate debris regions to generate masks. Nine effective algorithms are chosen to
discriminate debris from other elements in the images, with resulting masks aiding debris
identification. These masks are then applied to locate and analyze debris regions, offering a
comprehensive approach.

Additionally, a graphical representation will be provided, showcasing the integration of
classical algorithms into the graphical user interface (GUI) for debris detection. This graph
visually outlines the diverse methods incorporated in the study.
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Figure 2.1 Classical Image Processing Methods Integrated into GUI
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2.1.1. Preprocessing Techniques for Image Enhancement

In the field of image processing, preprocessing stands out as a pivotal step, allowing for the
refinement of raw images to enhance their quality and ease subsequent analysis. This
preliminary stage encompasses a range of techniques aimed at improving the visual clarity,
removing noise, and enhancing relevant features within the images. One fundamental aspect of
preprocessing is image enhancement, which involves the manipulation of pixel values to
augment image attributes such as contrast, brightness, and sharpness. By employing various
enhancement algorithms, researchers can accentuate important details, mitigate distortions,
and optimize images for subsequent processing steps.

a) Contrast stretch

The Contrast Enhancement algorithm enhances image clarity by adjusting pixel intensities to
amplify contrast between dark and bright areas, thereby improving visual quality and revealing
hidden details.

b) Edge enhancement

Edge Enhancement algorithm emphasizes edges in an image by boosting the intensity
gradients, making them more pronounced and enhancing the visibility of edge features. This
technique helps in highlighting object boundaries and structural details, aiding in better
analysis and detection tasks.

c) Gamma Correction

Gamma correction modifies an image's contrast and hue. by nonlinearly mapping the input
intensity values to output values, helping compensate for nonlinear response in displays and
improving image quality [16].

d) Super Resolution

Super-resolution techniques enhance low-resolution images to reconstruct high-resolution
versions, Employing interpolation and learning-based methods to enhance image details,
useful in medical imaging and satellite imagery [33].

e) Edge Enhancement (PIL)

Edge enhancement is a feature in the Pillow library, a modern fork of the Python Imaging
Library (PIL), which enhances the image's ability to distinguish edges. By applying the
EDGE_ENHANCE filter from the Image Filter module, Pillow increases the contrast around
edges, making them more prominent and detailed. This technique is particularly useful in
applications requiring clear edge delineation, such as object recognition and image analysis.
With Pillow, edge enhancement can be achieved easily, providing a quick way to improve
image sharpness and clarity [5].

f) Local Enhancement

Local enhancement techniques selectively enhance specific regions within an image based on
local characteristics, preserving global contrast while improving local details, commonly used
in medical imaging and satellite imagery analysis [16][34].
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g) Histogram Equalization

Histogram equalization is a method employed to redistribute pixel intensities within an image,
aiming to achieve a uniform histogram. This process enhances contrast and improves the
visibility of image details, commonly employed in medical imaging and satellite imagery
processing. [16].

h) Adaptive Histogram Equalization (AHE)

AHE partitions an image into regions and performs histogram equalization individually on
each region, adapting to local image characteristics and enhancing contrast in both bright and
dark regions, widely used in medical imaging and remote sensing applications [35].

1) Logarithm Transformation

Log transformation adjusts pixel intensities using logarithmic functions, compressing the
dynamic range of an image to enhance details in darker areas while preserving highlights,
commonly utilized in astronomical imaging and medical diagnostics [16].

J) Sharpening

Sharpening techniques enhance image clarity by increasing the contrast along edges, typically
achieved through the application of high-pass filters to accentuate high-frequency components,
widely employed in microscopy and satellite imagery analysis [16].

k) Anisotropic Filtering

Anisotropic filtering reduces image noise while preserving edge features by applying spatially
varying filter strengths based on the local gradient magnitude and orientation, commonly used
in medical imaging and digital photography [34].

The results depicted in Image 2.2 showcase the diverse effects of preprocessing techniques for
image enhancement. While some algorithms were applied to RGB images, others were
implemented in grayscale. Despite the already optimal resolution of the input images, the
application of these techniques may lead to subtle yet discernible improvements in certain
cases. The outputs reflect the nuanced alterations introduced by each algorithm, underscoring
their capacity to refine image quality and accentuate features of interest.
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Figure 2.2 (a)original image (b) Log Transformation, (¢) Gamma Correction (d) AHE (e)
Contrast stretch (f) Edge Enhancement (PIL) (g) Histogram Equalization (h)
Anisotropic Filtering (I) Super Resolution (j) original image(gray scale) (k)
Local Enhancement ( I) Edge enhancement(PIL).
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2.1.2. Denoising Strategies

Denoising plays an essential role in elevating image quality and facilitating analysis by
effectively eliminating unwanted noise. High-pass filters emerge as pivotal tools in this
process, as they excel in isolating debris by accentuating high-frequency components within
the image. Nonetheless, the performance of these filters exhibits variability across different
scenarios. For instance, mean and median filters demonstrate minimal alterations in the
absence of noise, suggesting their limited efficacy in significantly enhancing image quality
under such conditions. Conversely, the Scharr filter, although widely utilized, exhibits
constrained effectiveness in combating debris, showcasing the nuanced nature of filter
performance in real-world applications. This variability underscores the importance of
considering diverse filter options and their specific strengths and limitations in the context of
denoising and image enhancement efforts. Additionally, the image in Figure 2.4 illustrates all
denoising algorithms, providing visual insight into their application.

1. High-boost filtering

High Boost Filtering is a sharpening technique that accentuates high-frequency components in
images, effectively enhancing edges and fine details. By amplifying these components, the
algorithm sharpens image features and enhances overall clarity [7], [12].

2. Scharr Filter

The Scharr Filter, renowned for its gradient-based edge detection capabilities, stands out for its
exceptional performance in capturing subtle variations in pixel intensity along edges. This
filter excels in accentuating edges within images, facilitating accurate localization and
extraction of edge features. By effectively highlighting these edges, the Scharr Filter enhances
the overall clarity and detail of images, making it a valuable tool in various image processing
tasks. Its ability to discern intricate edge patterns contributes to its widespread use in
applications requiring precise edge detection and feature extraction. [36].

3. Laplacian Filter

The Laplacian Filter, a sharpening filter utilized in image processing, serves to accentuate
edges and intricate details within images. By highlighting regions of rapid intensity change,
particularly edges, this filter significantly boosts image contrast and sharpness [32].

In Figure 2.3, a comparison between the original and modified configurations of the Laplacian
filter is depicted, elucidating subtle disparities in their impact on image enhancement.
Although the conventional filter, featuring a central kernel value of -4, typically proves
sufficient, occasional limitations in effectively emphasizing fine details necessitated iterative
refinement. Through adjustments to the central kernel value, particularly setting it to -5,
notable improvements in edge detection and sharpening capabilities were achieved,
underscoring the dynamic nature of algorithmic optimization within the realm of image
processing.
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Figure 2.3. Comparison of Laplacian Filters: Original Configuration (Image a)

vs. Modified with Central Kernel Value -4 (Image b)

4. Unsharp Masking

This is a popular technique for sharpening images by accentuating edges and fine details. It
involves subtracting a blurred version of the image from the original, thereby enhancing local
contrast and increasing image sharpness [17].

5. Mean Filter

This filter, also known as the Average Filter, is a spatial filtering technique used for smoothing
images and reducing noise. It replaces each pixel's value with the average value of its
neighboring pixels, effectively blurring the image and suppressing noise.

6. Median Filter
The Filter is a nonlinear filtering technique employed for denoising images by substituting

each pixel's value with the median value of the surrounding pixels. Unlike linear filters, the
Median Filter preserves edges and fine details while effectively removing impulse noise [32].
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Figure 2.4 (a) Original image (b) Laplacian Filter, (c) High-boost filtering (d) Unsharp
masking (e) Scharr Filter (f) Median filter (g) Mean filter

2.1.3. Image Segmentation Techniques

Segmentation is essential in image analysis as it divides an image into separate regions or
objects based on specific criteria like color, texture, or intensity. By segmenting an image, we
can isolate and identify individual elements within the scene, enabling more targeted analysis
and interpretation. In the context of debris detection after an earthquake, Segmentation helps
discriminate between debris and other image components by delineating their boundaries.
Algorithms like Canny Edge Detection, Sobel Filter, and SLIC Segmentation are employed to
identify edges, regions of interest potential debris areas. By segmenting the image into
meaningful regions, we can focus our analysis on specific areas of interest, improving the
accuracy and efficiency of debris detection algorithms. These Segmentation techniques
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provide valuable insights into the spatial distribution and characteristics of debris, facilitating
effective disaster response and recovery efforts [16] [17].

1. Canny Edge Detection

Canny Edge Detection is a popular technique for detecting edges in images. It involves several
steps, including noise reduction, gradient calculation, non-maximum suppression, and edge
tracking by hysteresis. The algorithm is known for its ability to accurately detect edges while
minimizing false positives [32].

2. Sobel Filter

The Sobel filter is a widely used method for edge detection in images. By convolving the
image with specific kernels, it highlights edges by emphasizing regions of high spatial
frequency. Its simplicity and effectiveness make it a popular choice for edge detection tasks in
various applications [37].

3. Custom Quick-Shift Segmentation

Custom Quick-Shift is an adaptation of the Quick-Shift algorithm, which is a hierarchical
clustering algorithm used for image Segmentation. It identifies regions of uniform color or
texture in images, effectively segmenting the image into coherent regions [17].

4. SLIC Segmentation

SLIC (Simple Linear Iterative Clustering) Segmentation is a super pixel and method for
segmenting images that divides them into compact, uniform regions. It groups pixels with
similar color and spatial proximity, enabling efficient image Segmentation [38].

The application of Quick-Shift and SLIC Segmentation algorithms for mask creation and their
application to test images are elucidated. Firstly, Quick-Shift, a hierarchical Segmentation
algorithm, is employed to divide the picture into regions based on color and texture similarity,
facilitating the creation of masks for different objects or regions of interest. Subsequently, the
SLIC (Simple Linear Iterative Clustering) algorithm is utilized for super pixel Segmentation,
generating compact, uniform segments. These segments are then converted into binary masks,
serving as templates for isolating specific regions within the images.

The resulting Segmentation algorithms, as depicted in Fig. 2.5, showcase the delineated
regions and objects achieved through the utilization of not only Quick-Shift and SLIC
algorithms but also Sobel and Canny edge Segmentation methods. This comprehensive
approach enhances the efficacy of image Segmentation by incorporating a diverse set of
techniques. By integrating Quick-Shift and SLIC for region-based Segmentation along with
Sobel and Canny edge detection for edge-based Segmentation, the methodology offers a
robust framework for extracting meaningful regions from images. Fig. 2.5 provides a visual
representation of the combined effects of these algorithms, demonstrating their collective
ability to identify relevant regions of interest and facilitate subsequent analysis or processing.
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Figure 2.5 (a) Original image (b) Canny Edge Detection (c) SLIC Segmentation (d) Sobel (e)
Custom Quick shift

2.1.4. Morphological Operations

Morphological algorithms are essential tools in image processing, providing versatile means to
analyze and manipulate image structures. These algorithms operate on binary or grayscale
images by probing and modifying pixel values using predefined structuring elements or
kernels. Rooted in mathematical morphology principles, these operations include dilation,
erosion, opening, closing, and other transformations. Dilation expands image regions, while
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erosion contracts them. Combining opening and closing operations refines shapes and
eliminates noise. Structuring elements define the neighborhood around each pixel, determining
the extent of influence during operations. By leveraging these operations, morphological
algorithms can extract features, enhance textures, and segment objects within images [37].

In the context of debris detection, morphological operations offer a crucial advantage. They
enhance texture features associated with debris, making them more distinguishable from the
background. By skillfully applying morphological operations, it becomes easier to isolate
debris regions and create masks that highlight these areas for further analysis. These
operations contribute significantly to the effectiveness of debris detection algorithms,
providing a robust framework for processing images captured in post-earthquake scenarios.
Additionally, the image in Figure 2.6 illustrates all morphological algorithms, providing visual
insight into their application.

1. Boundary

This algorithm extracts the boundaries of objects within an image, highlighting the transition
between object and background. It is useful for delineating object shapes and detecting subtle
features along their perimeters.

2. Dilation

Dilation is a fundamental morphological operation that expands regions in an image,
enhancing the presence of features and increasing their size. It's commonly used for filling
gaps in objects and joining disjointed components [16].

3. Local Entropy

Local entropy-based Segmentation calculates the entropy within local neighborhoods of
pixels, allowing for the identification of regions with varying degrees of complexity or
uniformity. It can be effective for segmenting objects with heterogeneous textures or
structures.

4. Morphological Contrast Enhancement

This algorithm enhances the contrast between regions of an image by adjusting the local
intensity distribution. It aims to improve the visual appearance of features and facilitate their
discrimination from the background.

5. Morphological ACWE Segmentation

Active contours without edges (ACWE) Segmentation are a technique that utilizes
morphological operations to evolve curves and delineate object boundaries without relying on
explicit edge information. It can accurately capture object shapes even in the absence of well-
defined edges.
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6. Morphological Skeleton

The morphological skeleton is a representation of an object that captures its structural
characteristics while preserving its topology. It provides a simplified version of the object,
useful for shape analysis and pattern recognition tasks.

7. Remove Small Objects

This algorithm eliminates small objects or components in an image based on their size or area.
It helps to remove noise or irrelevant details, focusing attention on larger, more significant
features [17].

Figure 2.6 (a) Original image (b) Dilation (c) Boundary (d) Remove Small Objects (e)
Morphological Contrast Enhancement (f) Local entropy (g) Skeleton (h)
Morphological ACWE
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2.1.5. Thresholding Methods

Thresholding techniques are essential for segmenting images by dividing them into areas
according to the levels of pixel intensity. The outcome of thresholding algorithms is depicted
in Figure 2.7. By setting a threshold value, pixels are categorized as foreground or
background, allowing the identification of specific features or objects in the image. In the
context of detecting debris, thresholding plays a vital role in distinguishing debris from the
surrounding background. By choosing an appropriate threshold, regions containing debris can
be precisely delineated, facilitating the creation of masks that highlight debris areas for further
analysis. This method utilizes intensity variations between debris and the background,
enabling effective detection and characterization of debris in post-disaster situations.

1. Otsu thresholding

Otsu thresholding is a popular technique for automatically identifying the most suitable
threshold value to differentiate between foreground and background pixels in an image. It
works by minimizing the intra-class variance of pixel intensities, effectively maximizing the
variation in foreground and backdrop between classes. This approach is especially helpful
when the histogram of pixel intensities exhibits a bimodal distribution, as it can accurately find
the threshold to separate the two classes [40].

2. Simple thresholding

Simple thresholding involves selecting a single threshold value to binaries an image,
classifying pixels with intensities above the threshold as foreground and those below as
background. This method is straightforward and simple to put into practice, yet may not be
suitable for images with varying lighting conditions or uneven illumination.

3. Adaptive thresholding

Adaptive thresholding dynamically calculates varying threshold values for distinct regions
within an image, considering localized variations in illumination. This approach helps
overcome the limitations of global thresholding methods, especially in scenarios where the
lighting conditions vary across the image [16].

4. Color based thresholding

Color thresholding segments images based on specific color characteristics, useful for
isolating objects or regions. By setting thresholds for color channels like red, green, and blue,
pixels within defined ranges are retained, aiding in object detection and classification.

5. Unsharp Masking

Unsharp masking is an image enhancement technique used to sharpen edges and enhance fine
details by accentuating high-frequency components. It involves subtracting a blurry version
from the original to get a sharper version of the picture, thereby emphasizing edges and edges
details [37].
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Figure 2.7 (a) Original image (b) adaptive (c) Otsu (d) Simple thresholding (e) Color based

2.2.  Exploring Template Matching for Debris Localization

In computer vision, template matching is a method for locating a template picture inside a
bigger image. The process involves comparing the template image, which represents the object
of interest, to various locations in the larger image. This comparison is typically performed by
sliding the template image across the larger image and computing a similarity measure at each
point. The position with the maximum similarity score indicates where the template image
best aligns with the content of the larger image. Template matching is commonly utilized in
operations like object identification, pattern recognition, and image registration. [32].

Correlation, within the framework of template matching, refers to the computation of
resemblance between the template picture and different regions of the larger image. The
correlation coefficient measures the degree of similarity between two signals or images. In
template matching, correlation is used to quantify how well the template image matches each
location in the larger image. Higher correlation values indicate stronger resemblance between
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the template and the image region being examined. However, while correlation can provide a
measure of similarity between images, it may not always be efficient for detecting debris or
debris texture because of changes in the illumination, image noise, and the complex nature of
debris appearance [16].

In this particular example, cross-correlation is employed as a technique by utilizing an eye
template image as a kernel, which is then correlated with the raccoon face image. The outcome
of this cross-correlation operation provides insights into the precise location of the eye within
the raccoon's face image. By employing this process, we can effectively pinpoint and locate
the eye region within the broader facial context illustrated in Figure 2.8. This method serves as
a powerful tool for detecting specific features, such as the eye, within complex images,
enabling detailed analysis and interpretation of facial structures and expressions. Through
cross-correlation, we gain useful details on the spatial connection and alignment of features
within the image, facilitating various applications in computer vision, image processing, and
pattern recognition.

Template Original

Figure 2.8 Utilizing Cross-Correlation to Locate Eyes in Raccoon Face Images [16]

2.3. Integration of Deep Learning Techniques for Image Analysis

Deep learning techniques, such as object detection and Segmentation, offer significant
advantages over classical image processing methods, particularly in scenarios like debris
identification after natural disasters. Unlike classical techniques, which often rely on
predefined rules and handcrafted features, Deep learning algorithms can autonomously learn
and identify pertinent features from the data. This adaptability enables them to effectively
handle the complex and diverse characteristics of debris in post-disaster images, including
variations in texture, shape, and lighting conditions. Additionally, Models for deep learning
such as convolutional neural networks (CNNs), can acquire layered representations of
features, enabling them to grasp both fine details and overall meanings of debris objects. By
leveraging these capabilities, deep learning-based approaches can achieve excellent output in
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tasks like debris detection, localization, and Segmentation, making them a compelling choice
for automated analysis of disaster-affected areas.

Deep learning methods, distinct from traditional algorithms, necessitate training data to
iteratively adjust parameters and extract meaningful representations from input data. This
iterative process allows them to discern intricate patterns within images, resulting in more
accurate analysis outcomes. Throughout training, Deep learning models fine-tune internal
parameters, such as weights and biases, to minimize prediction errors and optimize
performance metrics, thus improving generalization to new data. This examination of the
training process sheds light on how deep learning algorithms acquire the ability to interpret
visual patterns, laying the groundwork for advanced image analysis tasks [32].

2.3.1. Custom Data Acquisition and annotation Strategy for Training Deep Learning
Models in Debris Detection Post-Earthquake

Training Deep learning models necessitates datasets for several reasons. Firstly, datasets serve
as the foundation upon which models acquire the ability to spot patterns and make predictions.
In the context of debris detection post-earthquake, datasets provide examples of various types
of debris, helping the model learn to distinguish between debris and other objects or
backgrounds in images.

Labels are essential components of datasets as they provide ground truth annotations for the
data. In the context of debris detection, labels indicate the presence and location of debris
within images. These annotations guide the model during training, enabling it to understand
the characteristics of debris and learn to identify them accurately.

a) Finding Datasets:

Online Platforms: Platforms like Roboflow, Kaggle, and GitHub often host diverse datasets
spanning various domains. While these platforms may not offer specific datasets for post-
earthquake debris, they serve as starting points for exploration.

Domain-Specific Repositories: Domain-specific repositories and academic databases may
contain datasets relevant to disaster response or civil engineering. These repositories can be
valuable resources for finding datasets tailored to specific needs.

b) Custom Dataset Creation:

In instances where datasets are not readily available on existing platforms, custom dataset
creation becomes imperative. This involves collecting and annotating data manually, often
through field surveys, drone imaging, satellite images or collaboration with relevant
authorities. This tailored approach ensures the dataset aligns closely with the particular
demands of the current assignment.

To compile the dataset for training the Deep learning models, satellite imagery from Google
Earth Pro and data from the OpenAerialMap site and QGIS were utilized.
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1. Google Earth Pro: Satellite imagery from Google Earth Pro provided a rich source of
visual data. A total of 510 images were gathered from cities in Turkey following the 2023
earthquakes in Turkey and Syria. The majority of these images were captured in Hatay
and Gaziantep, providing a diverse dataset for training the models.

2. OpenAerialMap and QGIS: To complement the satellite imagery and create a
comprehensive dataset, traffic map images were obtained from Open Street Map. QGIS, a
geographic information system software, was then used to overlay the traffic map images
with the corresponding satellite images captured after the earthquake. This process
enabled the creation of paired images showing both the traffic infrastructure and debris

distribution post-earthquake.

2.3.2. Image Labeling Tools and annotation Process

Labeling involves the process of annotating data with these ground truth annotations. It entails
manually or semi-automatically adding labels to images, indicating the presence of debris and
specifying its location within the image. This process is crucial for supervised learning tasks,
where the model learns from labeled examples to generalize its understanding and make
accurate predictions on unseen data.

Roboflow, founded by Joseph Nelson and Brad Dwyer, offers a comprehensive platform for
image annotation and dataset preparation. While various methods exist for image annotation,
including manual, semi-automatic, and automatic techniques, Roboflow provides an efficient
solution for annotation tasks. By stating that 510 satellite images were annotated using
Roboflow, readers gain insight into the methodology employed for preparing the dataset. This
information underscores the systematic approach taken in labeling the data, contributing to the
reliability and robustness of the developed algorithms. Including such details enriches the
understanding of the methodology and reinforces the credibility of the research findings.

In addition, Roboflow offers various export versions to cater to different training algorithms
and workflows, allowing users to prepare their dataset types according to specific training
algorithms such as COCO JSON, YOLO Darknet, YOLOv4, TensorFlow Object Detection
(TFRecord), Pascal VOC, Kitti Vision, CreateML, Azure Custom Vision, Labellmg, and
MMDetection. These export versions streamline the process of preparing annotated data from
Roboflow for specific training algorithms and platforms.

2.4. Advanced Object Detection and Segmentation Techniques
2.4.1. Object Detection with YOLOvV5 and YOLOVS8

Object detection in the field of computer vision, represents a fundamental concept extensively
explored in scholarly literature. Academic sources delve into the theoretical underpinnings and
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practical applications of object detection techniques. These texts offer comprehensive
discussions on convolutional neural networks (CNNs) and their pivotal role in detecting
objects within images. Additionally, scholarly works provide insights into traditional and
modern methodologies for object detection, including region-based approaches and cutting-
edge Deep learning methodologies. Such literature serves as invaluable resources for
researchers, practitioners, and students, fostering a deeper understanding of object detection
algorithms, their implementations, and their diverse real-world applications.

Object detection with Deep learning refers to the process of automatically identifying and
locating objects within images or videos. Unlike traditional computer vision methods that rely
on handcrafted features and algorithms, Deep learning models, particularly (CNNs), derive
layered representations straight from raw pixel data. These models can adeptly capture
intricate patterns and features, enabling precise localization and classification of objects. [32].

You Only Look Once, or YOLO, is a term for an object detection system that revolutionized
the field with its real-time performance and accuracy. Introduced by Joseph Redmon et al. in
2015, YOLO took a unique approach compared to traditional object detection methods via
handling it as a regression position to identify spatially separated bounding boxes along with
associated class probabilities in one single pass through the neural network. This integrated
architecture allowed YOLO to determine bounding boxes and classify objects directly from
complete images in real-time, unlike previous methods that relied on region proposal networks
[41].

The model outlined in Figure 2 operates by treating object detection as a regression challenge.
It segments the input image into an M x M grid, where each grid cell forecasts N bounding
boxes along with their respective confidence scores and K-class probabilities. These forecasts
are compiled into a tensor with dimensions M x M x (N * 5 + K). Essentially, the model
processes the entire image just once, making predictions for each grid cell simultaneously,
thus greatly accelerating the detection process. By predicting multiple bounding boxes per grid
cell and assigning confidence scores and class probabilities, the model efficiently identifies
and classifies objects in the image. Figure 2.9 visually demonstrates this concept, showing the
grid structure and the predicted bounding boxes superimposed on the image.
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Flnal detectlons

Class probability map

Figure 2.9 Yolo System Model Detection [41]

The architecture shown in Figure 2.9 details the design of the detection network employed in
the YOLO algorithm. It includes 24 convolutional layers crucial for feature extraction from
input images. These are followed by 2 fully connected layers that make predictions based on
the extracted features. The alternating 1 x 1 convolutional layers significantly minimize the
feature space compared to earlier layers, enhancing the network's efficiency. Initially, the
network is trained on the ImageNet classification task at a lower resolution of 224 x 224
pixels. However, for detection tasks, the resolution is increased, enabling more detailed
analysis and precise object detection [41].
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Figure 2.10 Yolov1 Architecture

In YOLOVS5, the model architecture has been divided into three primary parts: the backbone,
neck, and head. The backbone utilizes Dark net 53, a novel network architecture emphasizing
feature extraction through small filter windows and residual connections. Acting as a bridge
between the backbone and head, the neck refines characteristics that the backbone extracts,
improving geographical and semantic data at various scales. The head comprises three
branches, each with a feature prediction at varying scales and generating bounding boxes,
probabilities, and confidence scores. To address overlapping bounding boxes, the network
employs Non-maximum Suppression (NMS) [42].

YOLOVS, the latest iteration in object detection model architecture, succeeds YOLOvV5 and
brings about notable enhancements through a novel neural network structure. Feature Pyramid
Network (FPN) and Path Aggregation Network (PAN) are two neural networks that are
included in this release. Additionally, an innovative labeling application streamlines the
annotation process by offering features like automated labeling, shortcut labeling, and
customizable shortcuts, simplifying image annotation for model training.

FPN performs by gradually reducing the pixel density of input images while increasing the
quantity of feature channels at the same time. This method generates a feature map capable of
detecting objects across various scales and resolutions. Conversely, through skip connections,
the PAN design combines functionalities from several network tiers, enabling more effective
feature capture across different scales and resolutions. This capability is pivotal for precisely
identifying objects in diverse dimensions and forms [42].
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YOLOVS, an advanced iteration of the YOLO object detection model, surpasses YOLOVS in
various aspects, including better mean Average precision (map) and improved performance
across different datasets. It introduces a new architecture mixing components from the Path
Aggregation Network (PAN) and Feature Pyramid Network (FPN), enhancing feature
extraction and accuracy. Moreover, YOLOV8 benefits from training on a more extensive and
diverse dataset compared to YOLOVS5. It employs a new labeling tool, Roboflow Annotate, for
easier image annotation and integrates advanced post-processing techniques like Soft-NMS for
refining detection results. Despite being slightly slower, YOLOv8 maintains real-time
processing capabilities on modern GPUs. Both YOLOv5 and YOLOvV8 utilize mosaic
augmentation during training to improve model robustness [43].
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Figure 2.13 Comparisons of YOLO Versions for Object Detection

[https://github.com/ultralytics/ultralytics?tab=readme-ov-file]

The comparison in Table 2.1 provides an insightful overview of the performance metrics
across various iterations of the YOLO (You Only Look Once) models, which include
YOLOv8n, YOLOvV8s, YOLOv8m, YOLOv8I, and YOLOv8x. Each model undergoes
comprehensive assessment across multiple dimensions, such as its size measured in pixels, the
mean Average precision validation score (mAPval), speed metrics on CPU utilizing the
ONNX format, speed on the A100 TensorRT platform, Floating Point Operations Per Second
(FLOPs) expressed in billions, the parameter count in millions.

This detailed analysis not only offers a comparative examination of these YOLOVS8 variants
but also facilitates a nuanced understanding of the trade-offs involved in their design. It sheds
light on the intricate balance between model size, computational efficiency, and performance
characteristics inherent in each variant. Researchers and practitioners alike can leverage this
comprehensive dataset to make informed decisions when selecting a suitable model for their
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specific application requirements. By considering these metrics, they can effectively balance
factors such as accuracy, speed, and resource constraints to optimize their choice of YOLOvVS8
model for their particular use case.

Model size mAP*! Epfﬂl Sl'.lfﬂl le‘ﬂHiSl FLOPs
(pixels) 5095 CFUONNX Al0D )] (B)
(ms) TensorRT
()
YOLOvSn 640 37.3 80.4 0.99 3.2 8.7
YOLOwvSs 640 44.9 128.4 1.20 11.2 28.6
YOLOv8m 640 50.2 234.7 1.83 25.9 78.9
YOLOvEI 640 529 375.2 2.39 43.7 165.2
YOLOvSx 640 53.9 479.1 3.53 68.2 257.8

Table 2.1 Comparing YOLOv8 Models: Performance Metrics Overview
[https://github.com/ultralytics/ultralytics?tab=readme-ov-file]

2.4.2 Object Segmentation with Mask R-CNN using Detectron2

The Mask Region-based Convolutional Neural Network, also known as Mask R-CNN, is a
sophisticated Deep Learning model that is mostly employed in computer vision applications
including object recognition and instance segmentation. Unlike traditional object detection
methods that only provide bounding box coordinates, Mask R-CNN goes a step further by not
only detecting objects but also precisely outlining their shapes with pixel-level accuracy. This
capability makes it invaluable for applications requiring detailed understanding of object
boundaries, such as in medical imaging, autonomous driving, and robotics. The architecture of
Mask R-CNN consists of a region proposal network (RPN) to generate possible object areas
and a backbone (CNN) for feature extraction, and parallel branches for predicting object
bounding boxes and Segmentation masks. These components work together to enable Mask R-
CNN to identify objects in images while accurately delineating their boundaries, making it a
powerful tool for various computer vision tasks [48].

A regional convolutional neural network called Mask R-CNN, involves two primary stages:
image scanning and proposal generation, followed by proposal classification, bounding box
prediction, and mask generation. This network utilizes the ResNet101 backbone along with
Feature Pyramid Networks (FPN) for feature extraction. The (RPN) scans backbone feature
maps to efficiently reuse features and minimize redundant computations, producing anchor
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classes and bounding box refinements. Final proposals undergo further classification and
refinement. An ROI pooling algorithm extracts features for classification, leading to the
generation of masks for positive regions via fully convoluted layers. Another branch predicts
class labels and bounding boxes for each object based on the ROI pooling outputs.

—

Fully
Connected

\ Layers

Backbone

by
RPN —5 \ —
Convolution Network

Figure 2.14 Architecture of Mask R-CNN [49]

Table 2.2 compares the performance metrics of different backbone architectures for Mask R-
CNN, the most recent model used for object detection and instance Segmentation. Here's what
each column represents:

Backbone: Indicates the backbone architecture used for feature extraction.
AP: Average precision, a metric that measures the accuracy of object detection.

AP50: With an intersection over union (loU) criterion of 0.5, average precision, which
evaluates the precision of object detection with stricter criteria.

AP75: Average precision with a loU threshold of 0.75, indicating a higher level of accuracy.

APS: Average precision for Small objects, focusing on the accuracy of detecting smaller
objects.

APM: Average precision for Medium objects, assessing the accuracy of detecting medium-
sized objects.

APL.: Average precision for large objects, evaluating the accuracy of detecting larger objects.
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The values in the table represent the performance scores achieved by different backbone
architectures across these metrics. For example, the higher the AP, AP50, AP75, APS, APM,
and APL values, the better the performance of the Mask R-CNN model with the corresponding
backbone architecture. In this comparison, the ResNeXt-101-FPN backbone architecture
generally outperforms the other architectures in terms of all metrics, indicating its
effectiveness in object detection and instance Segmentation tasks [48]

backbone AP AP0 AP75 AP APM APL

ResNet-101-C4 | 331 5495 48 12 356 511
ResNet-101-FPN | 357 380 378 15 381 514
ResNeXt-101-FPN | 371 600 394 16 399 535

Table 2.2 Performance Comparison of Mask R-CNN with Different backbone Architectures
[48]

Mask R-CNN can be implemented using Detectron; a popular Deep learning platform created
by Facebook Artificial Intelligence Research. Detectron offers a versatile and effective
platform for training and deploying object detection models, including Mask R-CNN. By
leveraging Detectron's capabilities, developers can easily customize and fine-tune Mask R-
CNN models for specific tasks, such as instance Segmentation, object detection, and image
Segmentation. Detectron2, developed by Facebook Al Research, represents the latest
advancement in libraries for cutting-edge detection and Segmentation algorithms, evolving
from its predecessors, Detectron and maskrcnn-benchmark. This platform facilitates various
computer vision initiatives and practical implementations within Facebook's research and
production environments. To use Mask R-CNN with Detectron2, developers typically follow a
series of steps, including data preparation, model configuration, training, and evaluation.
Detectron2 offers extensive documentation and tutorials to guide users through each stage of
the process, making it accessible to both beginners and experienced practitioners.
Implementing Mask R-CNN with Detectron2 allows for seamless integration with other Deep
learning techniques and tools, enabling researchers and engineers to build sophisticated
computer vision applications with ease [47].

2.4.3. Object Segmentation with YOLOv8

In image processing and computer vision, picture segmentation is a fundamental idea, seeking
to divide a picture into many areas or parts according to certain criteria. This procedure is
essential for a variety of purposes, such object detection, recognition, and scene

34



understanding. In the Deep learning approach, a neural network is often employed to
automatically learn and extract features from images, allowing for accurate Segmentation. The
Segmentation process includes giving every pixel a label in the image, classifying them into
different categories or regions. This makes possible the neural network to understand the
spatial distribution of objects within the image and distinguish between different entities. By
segmenting images, the Deep learning model can effectively interpret visual data and perform
tasks such is crucial for helping machines understand and as identifying objects or delineating
boundaries. Overall, image Segmentation plays a vital role in enabling machines to
comprehend and interpret in visual understanding, contributing to progress in various domains
like medical imaging, autonomous driving, and satellite imagery analysis [44].

Figure 2.15 From left to right: object detection, Instance Segmentation, and whole-scene
semantic segmentation [44]

Three different tasks related to computer vision are shown in Figure 2.10: object identification
and instance division, and whole-scene semantic Segmentation, showcasing images from the
Arthropods and Cityscapes datasets. Object detection entails recognizing and pinpointing
specific objects within an image, enabling the recognition of multiple objects simultaneously.
Instance Segmentation extends its functionality by not only identifying objects but also
distinguishing between individual instances of the same object class, providing pixel-level
Segmentation. On the other hand, whole-scene semantic Segmentation aims to assign semantic
labels to each pixel in the image, categorizing entire scenes based on their content.
Understanding these tasks and their differences is crucial for developing robust computer
vision systems capable of handling diverse visual data and real-world applications [44].
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YOLOVS is a cutting-edge object detecting system and Segmentation algorithm that provides
real-time performance while maintaining high accuracy. Unlike traditional Segmentation
algorithms that require multiple passes over an image, to estimate bounding boxes and class
probabilities, YOLOV8 divides the incoming picture into a grid. It then uses this grid to make
its predictions. This approach enables YOLOv8 to achieve remarkable speed, making it
suitable for tasks requiring immediate response, like self-driving vehicles, surveillance, and
robotics.

Compared to other Segmentation algorithms like Mask R-CNN, YOLOv8 offers several
advantages. One key advantage is its speed, as YOLOv8 processes images in a single pass,
leading to faster inference times. Additionally, YOLOvV8 provides instance-level
Segmentation, allowing it to differentiate between individual instances of the same object class
without the need for additional post-processing steps. However, it may sacrifice some
precision compared to more complex Segmentation methods like Mask R-CNN, which
perform pixel-level Segmentation. Despite this, YOLOvV8' balance between speed and
accuracy making it a well-liked option for various computer vision tasks [45].

A comparison of the several YOLOv8 Segmentation models, such as YOLOv8n-seg,
YOLOv8s-seg, YOLOv8m-seg, YOLOV8I-seg, and YOLOvV8x-seg, is shown in table 2.2. Key
metrics such as model size (in pixels), mAPbox (mean Average precision for bounding box
detection), mAPmask (mean Average precision for Segmentation mask), speed on CPU using
ONNX format (in milliseconds), speed on A100 TensorRT platform (in milliseconds), number
of parameters (in millions), and number of FLOPs (Floating Point Operations Per Second, in
billions) are provided.

This comparison facilitates an understanding of the performance and computational
characteristics across different YOLOv8 Segmentation variants, helping practitioners in
deciding which model is best for their particular use case.

36



Model size mAPPtex | mAPmsk | Speed Speed | params | FLOPs
(pixels) 50-95 50-95 CPU ONNX A100 oD ®)
(ms) TensorRT
(ms)

YOLOvEn- 640 36.7 30.5 96.1 1.21 3.4 12.6
seg

YOLOv8s- 640 44.6 36.8 155.7 1.47 11.8 42.6
seg

YOLOv8m- 640 49.9 40.8 317.0 2.18 27.3 110.2
seg

YOLOvSI- 640 52.3 42.6 572.4 2.79 46.0 220.5
seg

YOLOv8x- 640 53.4 43.4 712.1 4.02 71.8 344.1
seg

Table 2.3 Comparing YOLOv8 Models: Performance Metrics Overview
[https://github.com/ultralytics/ultralytics?tab=readme-ov-file]

2.4.4. Instance Segmentation with Roboflow3

Roboflow is an online platform that simplifies the process of managing and preparing datasets
for computer vision tasks, including object Segmentation. It offers a range of tools and
features designed to streamline dataset creation, augmentation, and preprocessing. Users can
upload their image datasets to Roboflow, where they can perform various operations such as
resizing, labeling, and augmenting images to enhance model performance. Additionally,
Roboflow provides integration with popular Deep learning frameworks and libraries, allowing
users to seamlessly export their prepared datasets in formats compatible with their chosen
frameworks. Overall, Roboflow serves as a comprehensive solution for organizing, enhancing,
and preparing image datasets for object Segmentation and other computer vision applications.

Upon uploading all 510 satellite images to Roboflow, I leveraged its augmentation methods to
expand my dataset to over 1000 images. Through augmentation techniques such as rotation,
flipping, and scaling, | increased the diversity and variability of my dataset, thereby enhancing
the robustness and generalization ability of my object Segmentation models. Roboflow's
efficient augmentation pipeline facilitated the augmentation process, enabling me to efficiently
generate a larger and more comprehensive dataset for training and evaluation purposes.

Object Segmentation with Roboflow3 involves utilizing the Roboflow platform to streamline
the Segmentation process for images. By uploading images to Roboflow and leveraging its
intuitive interface, users can annotate objects within images, defining precise boundaries for
Segmentation tasks. Roboflow offers various annotation tools and techniques, such as
polygonal Segmentation, to accurately delineate objects of interest. Additionally, users can
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apply augmentation methods within Roboflow to enhance the dataset, such as rotation,
flipping, and color augmentation, thereby improving model robustness. Once annotated and
augmented, the dataset can be exported in formats compatible with popular Deep learning
frameworks, enabling seamless integration into object Segmentation pipelines. Overall,
Roboflow3 simplifies and accelerates the object Segmentation workflow, empowering users to
efficiently annotate, augment, and export datasets for training Segmentation models [50].

2.5.  Challenges and Considerations in Deep Learning Training

a) Overfitting: Overfitting arises when a model becomes overly adept at learning from the
training data, capturing noise and irrelevant patterns that fail to generalize to new, unseen
data.. This can lead to poor performance on new data.

1. High model capacity relative to the dataset size, allowing the model to memorize noise
and irrelevant features.

2. Inadequate regularization strategies, such weight decay or dropout, to stop the model
from fitting the training set too closely.Lack of diverse training data, leading the model to
learn specific examples rather than general patterns.

3. Complex model architectures with many layers or parameters, increasing the risk of
overfitting.

b) Underfitting: Underfitting happens when a model is too simplistic to recognize the
underlying patterns in the data. It thus does badly on the training and test datasets.

1. Insufficient model capacity to capture the complexity of the underlying data
distribution.

2. Inappropriate choice of model architecture or complexity for the given task.

3. Limited training data or inadequate representation of different classes or categories in
the dataset.

c) Data Imbalance:Data imbalance occurs when one class or category dominates the dataset,
leading to biased model predictions and reduced performance on minority classes.

1. Skewed distribution of classes or categories in the dataset, resulting in biased model
predictions.

2. Insufficient samples for minority classes, making it challenging for the model to learn
their representations effectively.

3. Inadequate data preprocessing techniques to address class imbalances, such as data

augmentation or resampling.
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d) Vanishing and Exploding Gradients:In deep neural networks : it occur when the gradients

f)

become too small during backpropagation, hindering learning. Conversely, exploding
gradients occur when the gradients become too large, causing instability in training.
1. Deep networks with many layers can suffer from vanishing gradients, especially during
training with activation functions like sigmoid or tanh.
2. Poor weight initialization strategies, leading to gradients that either vanish or explode
as they propagate through the network.
3. Lack of normalization techniques, such as batch normalization, to stabilize gradients
and mitigate exploding or vanishing gradient issues.
Local Minima and Plateaus:Deep learning optimization landscapes often contain numerous
local minima and plateaus, making it challenging for optimization algorithms to converge
to the global optimum.
1. Non-convex nature of the optimization landscape in Deep learning, resulting in
multiple local minima and plateaus that can trap optimization algorithms.
2. High-dimensional parameter space, making it difficult for optimization algorithms to
escape local minima and reach the global optimum.
Learning Rate Decay:Inappropriate learning rate schedules or decay rates can slow down
or hinder the convergence of the model during training, affecting its ability to learn
effectively.
Inappropriate learning rate schedules or decay rates that cause the learning rate to
decrease too quickly or too slowly during training.
Failure to adjust the learning rate based on the training dynamics or convergence

behavior of the model.

g) Batch Size Selection:Improper selection of batch size can impact the stability and

convergence of the training process. A batch size that is too small might introduce noise,

whereas a batch size that is too big could cause poor generalization or sluggish

convergence.

1. Small batch sizes may introduce noise and instability in the training process, affecting
gradient estimation and convergence.

2. Large batch sizes can lead to slower convergence or poorer generalization due to

reduced stochasticity in the optimization process.
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h) Model Complexity:Deep learning models with excessive complexity relative to the dataset

size are prone to overfitting, as they may memorize training examples instead of learning

meaningful patterns.

1. Overly complex models with excessive parameters relative to the dataset size may
memorize training examples rather than learning meaningful patterns.

2. Lack of regularization techniques to constrain the model's complexity and prevent
overfitting.

Validation Set Leakage: Information from the validation set being leaked into the training

process could result in overfitting. It's crucial to ensure that the validation set remains

independent and unseen during model training.

1. Unintentional contamination of the validation set with training data, leading to overly
optimistic performance estimates during model evaluation.

2. Improper handling of data preprocessing steps or feature transformations that

inadvertently leak information from the validation set into the training process.
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3. RESULTS AND DESCUTIONS

3.1.  Classical Image Processing Results

| developed a user-friendly Graphical User Interface (GUI) that combines classical and deep
learning algorithms, each serving specific roles. The classical algorithms allow users to apply
various image processing techniques, visualize outcomes, and use masks for further analysis.
Additionally, the Deep learning aspect assists in identifying debris post-earthquake.

For classical image processing, | applied a range of traditional algorithms to a randomly
selected dataset. Details of these algorithm outcomes are provided in the materials and
methods section. Figure 2.2 demonstrates the process of selecting input images to apply
different preprocessing and classical algorithms within the GUI. This streamlined approach
enables users to easily apply algorithms and visualize output images, providing insights into
potential image changes induced by the algorithms.

¢ Earthquake Debris Detection System

Clasicall algorithms Deep learning algorithms
Browse Input Image Apply deep leamning | Overlaying Traffic Image with Debris

Pre_processing B
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Figure 3.1 Pre-processing and Classical Algorithm GUI

Moving forward, in the results and discussion sections, | aim to delve deeper into the
methodology of template matching with correlation. By assessing the correlation between the
templates and overlapping regions of the image, template matching enables the detection of
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specific features or patterns. In this study, template matching with correlation was applied to
the dataset, and its effectiveness in achieving the research objectives will be thoroughly
examined and discussed in subsequent sections.

Given the complexity of identifying debris, I initiated the exploration by employing template
matching. This involved selecting a mask from an original image and applying it to ensure the
functionality of the template matching approach. This preliminary step was crucial in
validating the efficacy of the template matching technique. Subsequently, | proceeded with
further investigation, building upon the initial findings to delve deeper into the process of
debris detection.

0 Matched Regions (Threshold = 1)

Original Mask

0 50 100 150

0 250 500 750 1000 1250

Figure 3.2 From left to right: original mask and input image
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Figure 3.3 From left to right: the original mask and an image processed with the boundary
algorithm

The outcomes show the efficacy of employing the template matching with correlation method.
By specifically choosing the mask from the input image, the process ensures that the selected
template aligns seamlessly with the corresponding features present in the input image. This
meticulous approach not only validates the accuracy of the template matching technique but
also ensures that the identified mask precisely corresponds to the desired features within the
input images. Additionally, the region field, configured with a threshold value set to one,
further corroborates the effectiveness of the template matching process. This setting signifies
that the identified mask perfectly matches the features in the input images without any
deviations, thus affirming the robustness and reliability of the template matching methodology
in refining and fine-tuning the masks to achieve optimal alignment with the target features.

In the subsequent examination, | applied various classic image processing algorithms and
singled out those that excel in discriminating debris textures more effectively than others.
These selected algorithms encompass boundary detection, color-based thresholding, high-
boost filtering, Laplacian filtering, local entropy calculation, Otsu thresholding, Sobel
filtering, and unsharp masking. The selection process was meticulous, focusing on their
proven effectiveness in capturing nuanced texture variations indicative of debris. Although the
exact count of generated masks may vary for each algorithm, the average number remains
around 100, with slight deviations observed in some cases. These masks, each measuring
50x50 pixels, were derived from the output of the respective algorithms applied to the test
dataset. This comprehensive approach ensures thorough evaluation across diverse textures and
environmental conditions, facilitating a comprehensive comparative analysis to pinpoint the
most suitable technique for precise debris discrimination and Segmentation. Below, you will
find the collection of masks generated by each algorithm, along with the results of template
matching using correlation for each algorithm.
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We recognize that classic image algorithms may not possess the same level of power and
versatility as Deep learning methods. However, the primary objective here is not to showcase
the superiority of classic image algorithms but rather to illustrate their functionality
specifically in the context of debris detection. This comparative analysis allows us to observe
how these traditional methods perform in a targeted application area, providing valuable
insights into their effectiveness and potential limitations.

Figure 3.4 Test set images chosen for region matching analysis.

In this segment, a variety of numerical algorithms were employed to evaluate their
performance in template matching with specific masks. This comparative analysis serves two
primary objectives: firstly, it enables a comprehensive assessment of each algorithm's
capability to detect and precisely match predetermined templates within the input images.
Secondly, it offers insights into the effectiveness of these algorithms for template matching,
helping to identify which ones are more suitable for this purpose. This methodology enhances
our comprehension of the strengths and limitations of each algorithm, thereby aiding in
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informed decision-making concerning their suitability and effectiveness in template matching
tasks.

In this segment, a variety of numerical algorithms were employed to evaluate their
performance in template matching with specific masks. This comparative analysis serves two
primary objectives: First, it enables a comprehensive assessment of each algorithm's capability
to detect and precisely match predetermined templates within the input images. Secondly, it
offers insights into the effectiveness of these algorithms for template matching, helping to
identify which ones are more suitable for this purpose. This methodology enhances our
comprehension of the strengths and limitations of each algorithm, thereby aiding in informed
decision-making concerning their suitability and effectiveness in template matching tasks.
Additionally, Figure 3.3 comprises four images, two of which depict debris, while the
remaining one illustrates a different object. These images were selected from the test set, and
they were not utilized in mask creation, serving solely for visual representation and
comparative analysis purposes.

It's notable that, in certain algorithms, no regions meet the specified threshold value.
Conversely, in others, multiple regions are identified, although many may not pertain to
debris. This variability arises due to the diverse textures and lighting conditions present in the
debris images, including instances where debris is obscured by shadows or exhibits varying
degrees of brightness and texture. Consequently, the outcomes of classical algorithms for
debris detection may not consistently meet expectations, reflecting the nuanced challenges
inherent in this task.

The subsequent section presents the masks generated by each algorithm alongside their
respective results. It becomes evident that the boundary detection algorithm outperforms the
others, yielding more satisfactory outcomes. Conversely, the performance of the remaining
algorithms appears less robust, indicating room for improvement or potentially rendering them
unsuitable for template matching purposes. This observation underscores the need for further
refinement and optimization of these algorithms to enhance their efficiency and efficacy in
template matching applications.

45



Figure 3.5 Composite Masks of Debris Regions Identified by Boundary Algorithm Post-
Earthquake.
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Figure 3.6 Matched Regions Detected by Boundary Masks (Threshold 0.5.)
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Figure 3.7 Composite Mask of Debris Regions Identified by color_threshold Algorithm Post-
Earthquake

Matched Regions (Threshold = 0.5) Matched Regions (Threshold = 0.5)

Figure 3.8 Matched Regions Detected by color based thresholding Masks (Threshold 0.5)
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Figure 3.9 Composite Mask of Debris Regions Identified by high boosts Algorithm Post-
Earthquake
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Figure 3.10 Matched Regions Detected by color based high boost masks (Threshold 0.5)
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Figure 3.11 Composite Mask of Debris Regions Identified by laplacian Algorithm Post-
Earthquake

Matched Regions (Threshold = 0.5) Matched Regions (Threshold = 0.5)

Figure 3.12 Matched Regions Detected by color based laplacian Masks (Threshold 0.5)
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Figure 3.13 Composite Mask of Debris Regions Identified by odsu thresholding Algorithm

Post-Earthquake
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Figure 3.14 Matched Regions Detected by color based v Masks (Threshold 0.5)
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Figure 3.15 Composite Mask of Debris Regions Identified by sobel Algorithm Post-
Earthquake
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Figure 3.16 Matched Regions Detected by sobel Masks (Threshold 0.5)
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Figure 3.17 Composite Mask of Debris Regions Identified by unsharp masking Algorithm
Post-Earthquake

Matched Regions (Thres

Figure 3.18 Matched Regions detected by unsharp masking Masks (Threshold 0.5)
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Figure 3.19 Composite Mask of Debris Regions Identified by local entropy Algorithm Post-
Earthquake
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Figure 3.20 Matched Regions Detected by color based local entropy Masks (Threshold 0.5)
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As the primary objective of this study and thesis does not center on discerning differences
through classical image processing, the focus remains on comparing the outcomes with those
obtained through Deep learning methodologies. Consequently, the study did not endeavor to
generate additional masks from diverse regions. It is acknowledged that expanding the dataset
to include a greater number of images could potentially yield more satisfactory results. With
an augmented dataset, it would be feasible to create an extensive array of masks, potentially
exceeding 1000 masks for each algorithm. This increased dataset size could contribute to a
more comprehensive and nuanced understanding of the algorithms' performance across
various image contexts, enhancing the depth and reliability of the comparative analysis.

To create a mask within the graphical user interface (GUI), users can follow a simple process
facilitated by the interface controls. First, the GUI displays the image of interest, providing
users with a visual representation of the data. Users can then interact with the image by
clicking on it to define the center of the region of interest (ROI). Upon clicking, a resizable
rectangle appears, initially set to a default size. Users can adjust the size of the rectangle as
needed, either increasing or decreasing its dimensions using dedicated controls. The rectangle
is visually distinguished by a black outline, making it easy to identify within the image. Users
can adjust the size of the rectangle by pressing the '+' or '-' keys to increase or decrease its
dimensions, respectively. Once users are satisfied with the size and position of the rectangle,
they can finalize the selection by pressing a designated button or key. This action generates a
binary mask based on the dimensions and location of the rectangle, effectively isolating the
selected region from the rest of the image. This mask can then be used for further analysis,
processing, or visualization within the GUI or other applications. The entire mask creation
process is demonstrated in Figure 3.5, providing users with a clear understanding of the steps
involved.
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Figure 3.21 Generating Masks through Interactive GUI
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Once the desired area is selected, users can save the generated mask by specifying the address
of the destination folder within the GUI interface. This feature facilitates seamless integration
with template matching algorithms, enabling precise alignment and comparison of patterns
within images. The created mask is shown in Figure 3.5, providing users with a visual
reference of the steps involved.
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Figure 3.22 Save the mask for future use in template matching

In the graphical user interface (GUI) developed for this application, the utilization of
correlation techniques initiates a process where a dedicated window dynamically presents a
comprehensive overview of the identified masks within the analyzed image. Serving as an
informative dashboard, this window effectively highlights the presence or absence of specific
masks within the image, thus offering insights into whether a particular region of interest
(ROI) is successfully detected. This functionality enables users to promptly discern which
masks are effectively matched within the image and which ones are not.

Furthermore, the GUI interface offers valuable insights into the compatibility of the detected
masks with potential debris. By leveraging this information, users can identify promising
candidates that may aid in the precise localization and identification of debris within the
analyzed imagery. This nuanced analysis and interpretation empower users to make informed
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decisions regarding the selection and utilization of masks for effective debris detection and
analysis.

In the context of the template matching process illustrated in Figure 3.6, the GUI facilitates a
visual representation of the correlation techniques in action, showcasing their impact on mask
identification and utilization. Additionally, when a ROl mask is detected within an image
through template matching, users have the opportunity to manually assess whether that mask
represents debris. If confirmed, users can gather all masks representing debris as potential
debris masks, optimizing the template matching process and enhancing its accuracy in
identifying relevant debris within the imagery.
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Figure 3.23 Template Matching Process Visualization

3.2 Deep learning Results

In this section, we present the outcomes of employing various Deep learning algorithms for
object detection and Segmentation tasks. The results encompass a range of state-of-the-art
algorithms, including YOLOv5 and YOLOv8 for object detection, Mask R-CNN with
Detectron2, Roboflow Instance Segmentation, and YOLOvV8 for object Segmentation. Each
subsection discusses the specific algorithm's performance, accompanied by graphs illustrating
key metrics such as precision, recall, loss functions, and mean average precision (MAP).
Additionally, dataset prediction images are provided to visually depict the algorithm's
effectiveness in detecting and segmenting objects of interest. Through comprehensive analysis
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and visualization, we evaluate the suitability and efficacy of each algorithm in addressing the
target tasks. For training, Google Colab Premium was utilized, offering ample computational
resources and an efficient execution environment.

3.2.1 Roboflow Data annotation and Augmentation Results

The dataset, comprising 510 satellite images initially sized at 1920x1080, underwent
preprocessing for compatibility with YOLO. Resizing the images to 640x640, the
augmentation process involved various techniques to enhance diversity and robustness.
Augmentation methods included auto-orientation, resizing, flipping (horizontal and vertical),
rotating (90° clockwise, counter-clockwise, and upside down), cropping (0-20% zoom),
rotation (-15° to +15°), shearing (x15° horizontally and vertically), grayscale conversion (19%
of images), hue adjustment (-23° to +23°), saturation modification (-30% to +30%), brightness
alteration (-25% to +25%), exposure variation (-14% to +14%), and adding noise (up to 6% of
pixels). Additionally, bounding boxes underwent similar transformations to maintain spatial
correspondence. The dataset was divided into three sets: a training set (88% - 1077 images), a
validation set (8% - 100 images), and a test set (4% - 51 images).

The four images in Figure 2.7 were selected from the annotated images available on the
Roboflow website for utilization in Deep learning algorithms. Prior to this selection process, |
uploaded all my satellite images to the Roboflow platform and meticulously annotated them.
Subsequently, from this annotated dataset, |1 randomly chose four images to illustrate the
quality and effectiveness of the annotation process on the Roboflow site. Leveraging
Roboflow's annotation capabilities not only ensured the accurate labeling of objects and
feature within the images but also facilitated the seamless integration of this annotated data
into Deep learning workflows for model training and evaluation.
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Figure 2.24 Annotated Satellite Images from Roboflow

3.2.2 Object Detection with YOLO Results

Visualizing the outcomes through various graphs, depicting metrics such as precision, recall,
and accuracy over different epochs or evaluation criteria, offers insightful information about
the performance and effectiveness of the YOLO model in detecting objects across various
scenarios and datasets. By analyzing these graphs, we gain the ability to assess the model's
strengths, weaknesses, and areas for improvement, thereby advancing the field of computer
vision and object detection. In the following sections, I will provide a detailed explanation of
each graph, elucidating its significance and implications for the YOLO model.

a) Train/box_loss: This graph shows the loss associated with bounding box predictions
during the training process. It indicates how well the model is able to localize objects
within the images. A decreasing trend in this loss suggests that the model is improving in

accurately predicting the bounding boxes of objects.
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b)

d)

f)

9)

h)

Train/obj_loss: This graph represents the loss related to objectness prediction during
training. It reflects the model's ability to differentiate between object and background
regions in the images. Decreasing values of this loss indicate that the model is becoming
more proficient at identifying relevant objects.

Train/cls_loss: The train/cls_loss graph displays the loss attributed to class prediction
during training. It indicates how well the model is performing in classifying detected
objects into different categories or classes. Lower values of this loss signify better
classification accuracy.

Metrics/precision: This graph illustrates the precision of the model's predictions. precision
measures the accuracy of positive predictions made by the model, indicating the proportion
of true positive predictions among all positive predictions. Higher precision values indicate
fewer false positives.

Metrics/recall: The metrics/recall graph shows the recall of the model's predictions. Recall
measures the ability of the model to correctly identify all relevant instances, indicating the
proportion of true positives predicted among all actual positives. Higher recall values
suggest fewer false negatives.

Val/box_loss, Val/obj_loss, Val/cls_loss: These graphs are comparable to their respective
training counterparts but represent the loss values on the validation dataset. They provide
insight into the model's performance on unseen data during validation.

Metrics/mAP_0.5: This graph shows the (mAP) at an (loU) threshold of 0.5. It evaluates
the overall performance of the model in object detection, considering both precision and
recall across different object categories.

Metrics/mAP_0.5:0.95: This graph presents the mAP across a range of loU thresholds
from (0.5-0.95) It provides a comprehensive evaluation of the model's performance,
considering varying levels of overlap between predicted and ground-truth bounding boxes.
F1 Confidence Curve: This curve shows the connection between the F1 score and
confidence thresholds used for object detection or classification tasks. It helps in
determining the optimal confidence threshold that balances precision and recall to achieve
the highest F1 score, thereby providing insight into the model's performance across

different confidence levels.
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K)

Precision-Confidence Curve:The precision-confidence curve showcases how precision
varies with different confidence thresholds. It demonstrates the trade-off between precision
and confidence, helping to identify the threshold that achieves the desired precision level
for decision-making in object detection or classification tasks.

Precision-Recall Curve: The trade-off between precision and recall is shown by the graph.
at different confidence thresholds. It provides a comprehensive view of the model's
performance, allowing analysts to choose the appropriate threshold based on the specific
requirements of their application. A higher area under the precision-recall curve indicates
better model performance in balancing precision and recall.

Recall:Recall, also known as sensitivity, is a statistic used to assess a model's capacity. to
correctly identify all relevant instances, including true positives, out of all actual positive
instances in the dataset. It is calculated as the ratio of true positives to the sum of true
positives and false negatives. A higher recall indicates that the model can effectively

capture a larger proportion of positive instances, minimizing false negatives .

m) Precision: Precision gauges how well the model predicts favorable occurrences. among all

predicted positive instances. It is calculated as the ratio of true positives to the sum of true
positives and false positives. A higher precision indicates that the model makes fewer false
positive predictions, providing more confidence in the correctness of its positive
predictions.

F1 Confidence:F1 confidence is a metric that combines precision and recall into a single
score, providing a balance between the two. It is the harmonic mean of precision and recall
and is calculated as 2x precisionxrecall/ precision+recall . F1 confidence is useful when
there is an uneven class distribution or when both precision and recall are important
metrics for evaluating model performance[47] .

Confusion matrix:A confusion matrix is a evaluation of performance tool for machine
learning classification problems where the output can have two or more classes. It is a
table that provides a detailed breakdown of of accurate and inaccurate predictions made by
a classification model. The matrix consists of four different combinations of predicted and
actual class values: true positives (correctly predicted positive instances), false positives

(incorrectly predicted positive instances), true negatives (correctly predicted negative
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instances), and false negatives (incorrectly predicted negative instances). The examples in
a predicted class are represented by each column of the matrix, whereas the occurrences in
an actual class are represented by each row. The confusion matrix is a useful tool for
evaluating the performance of a classification model, providing insights into its strengths
and weaknesses across different classes.

p) Labels correlations:In the context of object detection and classification, labels correlations
refer to the relationships or dependencies between different categories or classes of objects
within a dataset. These correlations indicate how often certain labels co-occur or share
similar visual characteristics. Understanding label correlations is crucial for developing
accurate and robust models, as it helps in predicting the presence of one object based on
the presence of another related object. For example, in an image containing a person, there
might be a high correlation with other objects such as a backpack or a bicycle. By
leveraging label correlations, object detection models can improve their accuracy and

performance, leading to more reliable results in real-world applications.

3.2.2.1. Object Detection with YOLOV5 Results

In the final epoch (epoch 59) of training the YOLOv5m model, several key performance
metrics were evaluated. The train/box_loss and train/obj_loss achieved low values of 0.029389
and 0.038873, respectively, indicating effective optimization of bounding box predictions and
abjectness scores. Notably, the model achieved a precision of 56.45% and a recall of 63.03%,
demonstrating its ability to accurately detect and classify objects within images. The (mAP) at
an loU threshold of 0.5 (mAP_0.5) was measured at 57.105%, showcasing the model's
effectiveness in detecting objects with varying levels of overlap. Furthermore, the
mAP_0.5:0.95 values, which consider a broader range of loU thresholds, reached 28.262%,
suggesting consistent performance across different loU thresholds. Validation losses
(val/box_loss and val/obj_loss) remained low at 0.046376 and 0.055355, respectively,
indicating the model's ability to generalize well to unseen data. The learning rate parameters
(x/1r0, x/Irl, x/Ir2) remained consistent at 0.00043 throughout training, suggesting stable
learning dynamics. Overall, the results of epoch 59 demonstrate the YOLOv5m model's
robustness and effectiveness in object detection tasks, with promising performance across
various evaluation metrics.

The Figure 3.5 containing nine test data predictions offers valuable insights into the efficacy of
YOLOvV5m in detecting debris post-earthquake.YOLOv5m successfully identifies regions of
interest through object detection boxes, showcasing precision scores ranging from 0.25 to
0.87. However, it's notable that precision levels fluctuate across different debris detections due
to the diverse textures and appearances of the debris compared to the surrounding
environment.
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Figure 3.25 YOLOv5m object detection training Insights and Performance Metrics
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Figure 3.26 Test data prediction with YOLOv5m object detection
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Figure 3.27 Left to right: F1 Confidence, precision-Confidence, and precision-Recall curves
results with YOLOv5m object detection
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In the YOLOvV5m object detection confusion matrix for debris detection, the confidence scores
provide insights into the model's performance in distinguishing between debris and
background classes. A confidence score of 0.65 is associated with the debris class, indicating a
high level of certainty when the model identifies an object as debris. This suggests that the
model is correct about 65% of the time when predicting debris. Conversely, a confidence score
of 0.35 is assigned to the background class, implying a lower level of certainty compared to
debris predictions. When the model predicts an area as background, it is correct about 35% of
the time. These confidence scores reflect the model's ability to accurately differentiate between
debris and background, with higher scores indicating greater confidence in the predictions.
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Figure 3.28 YOLOv5m object detection confusion matrix

64



1.0 000 025 050 075
width

instances
§ 8§ 8

g

08-

06-

04-

02-

02 04 06

000 025 050 width

height

0.75 x

Figure 3.29 YOLOv5m object detection labels correlations
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3.2.2.2. Object Detection with YOLOvV8 Results

In the final epoch of training the YOLOV8 model, the performance metrics were evaluated.
The Train/box_loss and Train/obj_loss reached 1.6325 and 1.2281, respectively, indicating
relatively higher losses compared to YOLOv5m, suggesting potential challenges in bounding
box predictions and objectness scores optimization. The Metrics/precision achieved 58.856%,
while Metrics/recall attained 47.541%, demonstrating moderate performance in object
detection and classification tasks. The Metrics/mAP_0.5 and Metrics/mAP_0.5:0.95 reached
51.988% and 23.239%, respectively, suggesting lower performance compared to YOLOv5m,
particularly in detecting objects with higher loU thresholds. Validation losses, Val/box_loss
and Val/dfl_loss, remained at O, indicating potential overfitting or inadequate generalization to
unseen data. Learning rates (LR/pg0, LR/pgl, LR/pg2) remained constant at 0.00043559
throughout training, implying stable learning dynamics. Additionally, it's worth noting that
following these results, there are 9 test image prediction results of YOLOVS, providing further
insight into the model's performance.

Figure 3.31  Test data prediction with YOLOV8 objects detection
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In the YOLOV8m object detection confusion matrix, the value of 0.55 attributed to Debris
signifies a moderate level of confidence in the model's prediction when identifying an object
as debris. This score indicates that the model correctly identifies debris approximately 55% of
the time, reflecting a reasonable degree of accuracy in its predictions. Conversely, the score of
0.45 assigned to Background suggests a lower level of confidence when the model predicts an
area as background. In such instances, the model is accurate about 45% of the time. When
comparing these results with the YOLOv5m model, which achieved a higher confidence score
of 0.65 for debris and a lower score of 0.35 for background, it appears that the YOLOv5m
model demonstrates greater confidence in its predictions, particularly for identifying debris.
The higher confidence score for debris indicates a higher accuracy rate compared to the
YOLOv8m model, while the lower confidence score for background implies a similar level of
uncertainty in both models' background predictions.
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Figure 3.34 YOLOVS8 object detection confusion matrix
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Figure 3.35 GUI Display of YOLOV8 Object Detection Result

3.2.2.3 YOLOvV8 Object Segmentation Results

In the final epoch (epoch 59) of training the YOLOvV8 model for Segmentation tasks, several
key performance metrics were assessed. The train/box_loss was recorded at 1.8554, indicating
the optimization of bounding box predictions, while the train/seg_loss was 3.5162,
representing the Segmentation loss during training. Additionally, the train/cls_loss was noted
at 11.5774, reflecting the classification loss incurred during training. The model exhibited a
precision of 51.313% and a recall of 45.173%, indicating its ability to accurately classify and
capture segmented objects. The average precision at mean (mAP) threshold of 0.5 for loU
(mAP_0.5) was evaluated at 45.756%, while the mAP_0.5:0.95 was measured at 19.717%,
suggesting moderate performance across different loU thresholds. Furthermore, the
Val/box_loss and Val/seg_loss maintained relatively high values at 1.9369 and 3.1221,
respectively, indicating areas for potential improvement in validation losses. The learning rate
parameters (Ir/pg0, Ir/pgl, Ir/pg2) remained consistent at 8.71E-05 throughout training,
suggesting stable learning dynamics. Overall, while the YOLOv8 model showed promising
performance in certain aspects such as precision and recall, there is room for enhancement in
reducing validation losses and improving mAP scores to enhance its effectiveness in
Segmentation tasks. Additionally, the subsequent evaluation of four test image predictions will
provide further insights into the model's generalization capabilities and practical applicability.
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Figure 3.36 YOLOV8 segmentation Test data prediction after 60 epochs
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Figure 3.37 YOLOvV8 segmentation after 60 epochs Performance Evaluation Curves
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Figure 3.39 YOLOVS8 segmentation after 60 epoch’s confusion matrix

In the 200th epoch of training the YOLOv8 Segmentation model, significant improvements
were observed across various key metrics compared to the results from epoch 59. The
train/box_loss decreased to 1.4879, indicating enhanced optimization of bounding box
predictions. Similarly, the Segmentation loss (train/seg_loss) decreased to 2.9593, reflecting
improved Segmentation accuracy. Notably, the model achieved a higher precision of 61.913%
and recall of 48.998%, demonstrating enhanced object detection capabilities. Moreover when
the loU threshold is reached, the mean average precision (mAP) of 0.5 (mAP_0.5) increased to
53.818%, indicating improved object localization accuracy. The mAP_0.5:0.95 also saw a
notable improvement, reaching 25.358%, suggesting enhanced performance across a broader
range of loU thresholds. In terms of validation losses (val/box_loss, val/seg_loss, val/cls_loss,
val/dfl_loss), reductions were observed, indicating better generalization to unseen data. The
learning rate parameters remained consistent throughout training. Overall, the results of the
200th epoch demonstrate the YOLOvV8 Segmentation model's continued learning and
improved performance over extended training periods. Comparatively, these advancements
highlight the model's ability to refine its object detection and Segmentation capabilities over
prolonged training durations.
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Figure 3.40 YOLOV8 segmentation Test data prediction after 200 epochs
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Figure 3.41 YOLOV8 segmentation after 200 epochs training Insights and Performance
Metrics
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Figure 3.44 GUI Display of YOLOvV8 segmentation Result

3.2.3 Mask R-CNN with Detectron2 Segmentation Results

The Mask R-CNN model underwent evaluation on the test dataset, with training epochs set at
4 and 1500. Performance metrics were computed using the COCO evaluation method.

The model achieved an Average precision (AP) of 6.61% across loU thresholds ranging from
(0.50-0.95), with a notable precision of 22.04% at 1oU=0.50. At a higher loU threshold of
0.75, the precision dropped to 2.78%. The Average Recall (AR) at 10U=0.50:0.95 was
calculated to be 28.9%. Notably, the model demonstrated an AP of 6.61% specifically for the
'‘Debris’ category.

In terms of Segmentation performance, the model achieved an AP of 6.56% across all loU
thresholds, with a precision of 22.34% at 10U=0.50. At 1oU=0.75, the precision decreased to
1.67%. The Average Recall (AR) at 10U=0.50:0.95 was 26.1%. Specifically for the 'Debris'
category, the model attained an AP of 6.56%.

The evaluation results suggest moderate performance of the Mask R-CNN model on the test
dataset. Notably, the model exhibits better performance in detecting larger debris instances
compared to smaller ones. However, there remains room for improvement, particularly in
achieving higher precision and recall rates across different categories and loU thresholds.
Further refinement of the model architecture, dataset augmentation, and exploration of
alternative object detection frameworks could potentially enhance its efficacy in real-world
scenarios.
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The evaluation results for the Mask R-CNN model trained with 8 epochs and 2000 iterations
show improvements in performance compared to the previous evaluation. The model achieved
an Average precision (AP) of 7.88% for bounding box detection, with a notable precision of
25.23% at 10U=0.50. The Average Recall (AR) across all IoU thresholds from 0.50 to 0.95
was computed to be 29.4%, indicating enhanced detection capabilities, particularly for smaller
debris instances. For Segmentation, the model attained an AP of 7.49%, with a precision of
25.71% at 1oU=0.50. The AR at 10U=0.50:0.95 was 25.8%, with improved recall rates across
all object sizes compared to the previous evaluation.

The comparison between the models trained with 4 and 1500 epochs versus 8 epochs and 2000
iterations indicates a noticeable improvement in performance with increased training epochs
and iterations. Specifically, the model trained with 8 epochs and 2000 iterations demonstrates
higher Average precision and Recall values for both bounding box detection and Segmentation
tasks. This suggests that increasing the epochs and iterations has led to better model
convergence and enhanced capability to detect debris instances across different sizes and
complexities. Further analysis and experimentation may be warranted to optimize the model's
performance and assess its robustness under varying conditions. Additionally, Figures 3.5 and
3.6 contain the images that underwent Segmentation applied to the test datasets.

Metric 4 Epochs, 1500 Iterations 8 Epochs, 2000 Iterations
6.61% 7.88%
2.78% 22.04%
3.99% | 25.23%
6.56% 7.49%
22.34% 25.71%
1.67% 2.48%
28.9% 29.4%
37.5% 35.0%
26.5% 26.1%
36.1% 39.8%

Table 3.1 Performance comparisons between models trained for 4 epochs / 1500 iterations and
8 epochs / 2000 iterations
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Figure 3.45 Test Data Predictions Utilizing Mask R-CNN via Detectron2 with 4 Epochs and
1500 lteration.

Figure 3.46 Test Data Predictions Utilizing Mask R-CNN via Detectron2 with 8 Epochs and
2000 Iterations
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Figure 3.47 Object Detection Performance using Mask R-CNN via Detectron2 after 4 Epochs
and 1500 Iterations
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Figure 3.48 Object Detection Performance using Mask R-CNN via Detectron2 after 8 Epochs
and 2000 Iteration.

3.2.4. Roboflow Instance Segmentation Results

The instance Segmentation results obtained from Roboflow on my dataset demonstrates a
moderate level of performance. With a mean Average precision (mAP) of 53.5%, the model
shows an ability to accurately identify and delineate instances within the images. Precision, at
58.0%, indicates the proportion of correctly identified instances among all instances predicted
by the model, reflecting its capability to minimize false positives. Meanwhile, the recall score
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the 53.9% demonstrates how well the model captures a sizable percentage of real positive
events out of all positive instances. While these metrics indicate a reasonable performance

level, there may still be room for improvement to enhance both precision and recall for better
instance Segmentation results.

Figure 3.49 A Visual Overview of satellite Dataset Analysis of Roboflow Instance
Segmentation Results
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Figure 3.50 A Visual Overview of drone based Dataset Analysis of Roboflow Instance
Segmentation Results
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Figure 3.51 Roboflow Instance Segmentation training Insights and Performance Metric.

3.3
Visualization

Integrating Traffic Maps and Satellite Imagery for Comprehensive Analysis and

In this section, the integration of traffic maps and satellite imagery for comprehensive analysis
and visualization is explored. The process began by downloading a map from an official
source, specifically a TIF file named '63e6b164c6ef740006cfd110’, depicting the city of
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Kahramanmaras in Turkey following an earthquake event in 2023. This map was then
imported into QGIS for further analysis. Within QGIS, images containing both the satellite
imagery and the traffic layer were examined. Utilizing YOLOvV8 Segmentation for debris
Segmentation, predictions were made to identify areas of debris accumulation. Subsequently,
the mask representing the debris was overlaid onto the traffic maps. This overlay facilitated
the visualization of roadways and traffic patterns affected by the presence of debris, offering
insights into the impact of the earthquake on transportation infrastructure and aiding in
comprehensive analysis and decision-making processes.

Additionally, the TIF was accompanied by a JGW file, providing essential geo-referencing
information. The JGW file contains parameters defining the spatial transformation and
coordinates of the raster image, enabling its accurate positioning and scaling within GIS
software. By leveraging the information from the JGW file, the satellite imagery depicting the
city of Kahramanmaras was correctly georeferenced and integrated into the analysis within
QGIS.

Moreover, with the generation of debris mask and traffic map overlay images for each
segment of the city map, the ability to navigate through the urban landscape amidst debris
blockages was significantly enhanced. By overlaying the debris mask onto the traffic map,
areas affected by debris accumulation were visually highlighted, providing valuable insights
into the extent of road blockages and traffic disruptions following the earthquake event.

Leveraging the geo referencing information provided by the JGW files associated with the
satellite imagery, route calculation algorithms could accurately determine navigational paths
between specified streets within the affected area. By considering the blocked routes due to
debris accumulation, these routing algorithms could dynamically adjust the proposed paths to
ensure safe and efficient navigation through the city's road network. This advanced routing
functionality enabled emergency responders, city planners, and residents to identify alternative
routes, avoid impassable roads, and optimize travel times, thereby facilitating effective
disaster response and recovery efforts.

Furthermore, the integration of real-time data feeds and geospatial analytics allowed for the
continuous monitoring and updating of navigation routes in response to changing conditions
on the ground. Satellite imagery, drone footage, and crowd-sourced reports of debris clearance
efforts were integrated into the GIS platform, providing up-to-date information on road
conditions and accessibility. This dynamic, data-driven approach to urban navigation not only
improved the safety and efficiency of travel but also enhanced situational awareness and
coordination among stakeholders involved in disaster response and recovery operations.
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Figure 0.55 a) YOLOV8 Predicted Debris Result for Coordinates 316877.6, 416103@3.4, b)
Associated Traffic Map, ¢) Mask Representation, d) Overlay of Mask and Traffic

86



ey yuvse

b 4

¥

ERAY
AKVARYUME!

krem Coglun
e Cothn Pet supply dore
Morag Kebap 8088k -
o
33011, Sk 9 Kokoreog Arif sty 50“,3&'“‘

jozetest
com.tr

i aydin 9

Ozlem Tuhafiye
orety stoee
Giyim e

("]

Kuyum k UST
o;-i’..,'.‘.":f“" USTA

Zirat Bankasi AV
Taksi By Ay s 9
Urk Telekom

Zirsal Bankash
esettyr W N

MMC TEKNOLOJI 2
KAHRAMANMARAS

ORuya Oyuncak Arzy
o Yoy short Braun

Cell phome stors Home goocis

B1g
st Muhasebeci Mg 9
BAlisavir Mehmet G p
Kahramanmarag
9 Defierdarigy 9

sl Magazalan Ceparesyar
manmarag Gars, Kahramanmarag

NetTeknoloji
Kaeavadl Ribee

\

ERAY
c rem Coghun AKVARYUMSE |
K Marog §b (D) P oy i
Morag Kebap 51000k
3301, 5k Kokoreogi Avif Usia o

Jozetest Ozl
com.tr 4:‘:;“(1.“-"0'"'
Siyim
fased
nyd.no v vkuyum:u burak USTA Glnes
o ol cioned Kahram{gmaras Jeweiry share 2icaat Bankas At

Taksi Baym Ay e

u elekom
ﬁ’f"'. lletsstmg

Ziragt BankosTlh

bsettur

Kilsf Dii
Eitcroncs gt

B1g

Kahramanmarag Q, )
9 Defierdary 9 ods Al
filal Magazalon Cepaxesuar E

hramanmaorog Cargy Kahramanmarag

A g
Kacavahls Rihoe

Ender Temizlik
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4. CONCLUSIONS

In the initial stages of our research, we employed classical image processing algorithms to
identify debris within drone-captured images following earthquakes. Through experimentation
and analysis, we explored various traditional techniques to delineate debris regions and create
masks. Among the nine algorithms tested, boundary detection emerged as particularly adept at
discerning debris textures. However, while classical algorithms provided some insights, they
fell short in accurately detecting debris due to the diverse nature of debris textures. We
propose that increasing the diversity and number of masks could potentially enhance classical
algorithm performance by better representing the varied debris textures. Nonetheless, this
approach entails significant time investment, prompting consideration of alternative methods
such as Deep learning, which offer greater accuracy and efficiency.

In our exploration of Deep learning algorithms for object detection and Segmentation tasks,
we analyzed several state-of-the-art models, including YOLOv5, YOLOvV8, Mask R-CNN
with Detectron2, and Roboflow Instance Segmentation. Each algorithm's performance was
meticulously assessed, with discussions on key metrics such as precision, recall, loss
functions, and mean average precision (mAP), complemented by visual representations of
dataset prediction images. Through this comprehensive evaluation, we aimed to gauge the
suitability and efficacy of each algorithm in addressing our target tasks.

The evaluation of the YOLOv5m model yielded promising results in object detection,
achieving a commendable precision of 56.45% and a recall of 63.03%, with a mean average
precision (MAP) of 57.105%. However, precision levels fluctuated due to diverse debris
textures. In contrast, YOLOV8 exhibited relatively higher losses in bounding box predictions
and objectness scores but achieved moderate performance metrics. The YOLOv8
Segmentation model showed improvements in various metrics in the 200th epoch. The Mask
R-CNN and Roboflow Instance Segmentation models demonstrated moderate performance in
Segmentation, with better results for larger debris instances. Further enhancements are needed
for precision and recall rates across different categories and thresholds.

In our investigation, we utilized traffic maps and satellite imagery to analyze post-earthquake
scenarios. Through YOLOvV8 Segmentation; we identified debris areas, overlaying them onto
traffic maps to visualize affected roadways. By overlaying debris masks onto traffic maps, we
improved navigation amidst debris, aiding in disaster response. Integration of real-time data
feeds allowed continuous route monitoring and updating, enhancing situational awareness
among stakeholders. This dynamic approach offers a valuable tool for urban navigation,
ensuring safe travel and effective disaster management.

Furthermore, optimizing Segmentation results and developing a user-friendly application that
operates effectively post-earthquake are crucial steps. Creating an application that functions
reliably in the aftermath of an earthquake event is essential for facilitating efficient navigation
and disaster response efforts.
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For further optimization of my thesis and project, several advanced strategies can be
employed. Enhancing the quality of our dataset remains a primary focus. By utilizing
advanced data augmentation techniques, refining annotation processes, and collecting datasets
with the best possible resolution, we aim to improve the model's accuracy. Addressing the
challenge of partially and completely blocked roads is also critical, enabling us to define
optimal routes for post-earthquake disaster assistance. Incorporating video processing
capabilities into our workflow is essential for analyzing dynamic visual data, allowing for
comprehensive insights into temporal patterns and changes over time. Additionally,
integrating an online Geographic Information System (GIS) platform can facilitate real-time
disaster detection and management post-earthquake by providing up-to-date spatial data.
Reducing computational time is another key factor; optimizing algorithms and streamlining
processes will significantly decrease the time required for model training and inference,
enhancing productivity. Moreover, considering the elevation of imagery and camera is crucial,
as the model struggles with detecting debris when the camera elevation varies significantly.
By incorporating images taken from different elevations, we can help the model understand
debris patterns more accurately. Collectively, these strategies aim to enhance the system's
efficiency, accuracy, and real-time applicability, ultimately improving disaster response and
management.
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APPENDIX
Appendix 1 — Images from YOLO Object Detection Batch and Validation Dataset

Results

Figure 1YOLOv5m object detection Train batch number one
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Figure 2 YOLOv5m object detection train batch number two
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Figure 7 YOLOVS object detection train batch number one
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Figure 12 YOLOVS object detection validation batch number zero labels
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Figure 14 YOLOVS object detection validation batch number one labels
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110



iy Nahrie N 3

ebris 0.3 & 3ol s s 1 W e gl R R
W ) P B NEK VB "L-.

.;.’a{ :
48

G

Y

‘&t/
<&Debris 0.4/4
1 1) S

I

Figure 16 YOLOV8 object detection validation batch number one prediction

111



DI a2l AT
%Debrisqf -
,i!“( / —a-X

[
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Appendix 2 — Images from YOLOv8 segmentation Batch and Validation Dataset

Results

Figure 1 YOLOVS8 segmentation train batch number zero
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Figure 2 YOLOVS8 segmentation train batch number one
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Figure 5 YOLOVS8 segmentation train batch number 3333
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Figure 11 YOLOvV8 segmentation validation batch number two labels
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