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Forest fires cause serious damage not only to the ecosystem in the forest but also to 

social and economic life. Rapid detection of burned areas with remote sensing methods 

is important both to determine the current damage and to evaluate the economic and 

ecological losses caused by the fire and to create rapid response plans. This study 

presents an approach to identify and map burned forest areas using an object-based 

random forest (RF) machine learning (ML) classification method using only post-fire 

Sentinel-2 imagery on the Google Earth Engine (GEE) platform. In addition to original 

spectral bands of Sentinel-2 (B2, B3, B4, B8, B11, B12), mid-infrared burn index 

(MIRBI), normalized burn ratio 2 (NBR2), burn area index (BAI) and normalized 

difference vegetation index (NDVI) bands were calculated and included as additional 
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bands in the Sentinel-2 image. Prior to object-based classification, image segmentation 

was carried out using the Simple Non-Iterative Clustering (SNIC) algorithm. Training 

samples were selected on the GEE platform and object-based classification with the RF 

algorithm was applied to four study areas (Marmaris – MR, Kavaklıdere – KV, 

Manavgat – MG, Çanakkale - CK) in Türkiye where forest fires have occurred in recent 

years. The results showed high performance with an overall accuracy of 93.5% in MR, 

97.7% in CV, 94.8% in MG and 96.5% in CK with the object-based RF classifier. In 

addition, the spatial and temporal transferability of the object-based RF algorithm was 

evaluated based on two study areas (MG and CK) and the RF model transferability 

provided an overall accuracy of 87.5% in MR, 94.8% in CV, 93.6% in MG and 96.8% 

in CK. The results show that burned forest areas can be successfully detected by object-

based classification method using cloud-based GEE platform from Sentinel-2 images 

with a uni-temporal post-fire imagery approach and the potential of developing a 

transferable object-based classification model for mapping burned forest areas. 
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ÖZET 
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GÖRÜNTÜLERİNDEN YANMIŞ ORMAN HARİTALAMA 
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Orman yangınları sadece orman içerisindeki ekosisteme değil aynı zamanda sosyal ve 

ekonomik yaşama da ciddi zararlar vermektedir. Yanmış alanların uzaktan algılama 

yöntemleri ile hızlı tespitini yapmak hem mevcut hasarın belirlenmesinde hem de 

yangının yol açtığı ekonomik ve ekolojik kayıpları değerlendirmek ve hızlı müdahale 

planları oluşturabilmek için önemlidir. Bu çalışmada, yangın sonrasına ait tek tarihli 

Sentinel-2 görüntüsü kullanarak nesne tabanlı rastgele orman makine öğrenmesi 

sınıflandırma yöntemi ile yanmış alanların belirlenmesi ve haritalanması için Google 

Earth Engine (GEE) platformu üzerinden bir yaklaşım sunulmuştur. Sentinel-2'nin ham 

bantlarına (B2, B3, B4, B8, B11, B12) ek olarak orta kızılötesi yanma indeksi (Mid-

Infrared Burn Index - MIRBI), normalize edilmiş yanma şiddeti (Normalized Burn 
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Ratio 2 - NBR2), yanmış alan indeksi (Burn Area Index - BAI) ve normalize edilmiş 

bitki indeksi (Normalized Difference Vegetation Index – NDVI) bantları hesaplanmış 

ve görüntüye ek bantlar olarak dahil edilmiştir. Nesne tabanlı sınıflandırma öncesi basit 

yinelemesiz kümeleme (Simple Non-Iterative Clustering - SNIC) algoritması ile 

görüntü segmentasyonu gerçekleştirilmiştir. Eğitim örnekleri GEE platformu üzerinde 

seçilmiş ve rastgele orman (RO) algoritması ile nesne tabanlı sınıflandırma Türkiye de 

son yıllarda orman yangını meydana gelen dört çalışma alanına (Marmaris – MR, 

Kavaklıdere – KV, Manavgat – MG, Çanakkale - CK) uygulanmıştır. Sonuçlar nesne 

tabanlı RO sınıflandırıcısı ile MR’de %93.5, KV’de %97.7, MG’de %94.8 ve CK’da 

%96.5 genel doğruluk ile yüksek performans göstermiştir. Ayrıca nesne tabanlı RO 

algoritmasının mekânsal ve zamansal aktarılabilirliği iki çalışma alanına (MG ve CK) 

dayalı olarak değerlendirilmiş ve RO model aktarılabilirliği MR’de %87.5, KV’de 

%94.8, MG’de %93.6 ve CK’da %96.8 genel doğruluk değeri sağlamıştır. Sonuçlar 

yangın sonrası tek zamanlı görüntü kullanımı yaklaşımı ile Sentinel-2 görüntülerinden 

bulut tabanlı GEE platformunu kullanarak  nesne tabanlı sınıflandırma yöntemi ile 

yanan orman alanlarının başarılı bir şekilde tespit edilebileceğini ve yanmış orman 

alanlarının haritalanmasında aktarılabilir nesne tabanlı sınıflandırma modeli 

potansiyelini göstermiştir. 

 

 

Anahtar Kelimeler: Orman Yangını, Nesne Tabanlı Görüntü Analizi, Segmentasyon, 

Sentinel-2, Yangın Sonrası Tek Görüntü, Google Earth Engine 
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1. INTRODUCTION 

Forests are important for protecting and ensuring the sustainability of the ecosystem 

structure with a holistic approach, with their ecological, biological and landscape 

resource values [1]. Forests constitute approximately 1/3 of the world's land. According 

to the Global Forest Resources Assessment (FRA) 2020 report, the global forest asset in 

2020 was 4058931 ha. According to the same report, the European region constitutes 

25% of the world's forest areas. This rate is followed by South America at 21%, North 

and Central America at 19%, Africa at 16%, and Asia at 15%. According to the FRA 

2020 report, the global forest acreage fell by over178 million hectares between 1990 

and 2020.  

 

Forests experience many degradations that can affect their health, vitality and ability to 

provide a wide range of products and ecosystem services. Forest fires, insects, diseases 

and severe weather events are among these degradations [2]. Although forest fires are 

part of the cycle within the ecosystem as a whole due to regeneration, nutrient cycling, 

habitat diversity and control of pests and diseases, they are one of the increasing 

anthropogenic and disturbing events that affect ecosystems, biodiversity and human 

health [3, 4].  

 

Forest fires caused about 29% of global tree cover loss between 2001 and 2023. From 

2001 to 2023, a total of 154 million hectares (Mha) of tree cover was lost worldwide 

due to wildfires [5]. When the forest cover is evaluated for Türkiye, according to the 

FRA 2020 report, Türkiye ranked 27th in the world in terms of forest area in 2020 [2]. 

According to the statistics of the General Directorate of Forestry (GDF), the total forest 

assets in 2022 is 23245000 ha, of which 22248680 ha are high forest and 996320 ha are 

coppie forest [6]. When losses due to forest fire are evaluated for Türkiye, according to 

GDF data, 76931 fires occurred between 1998-2022.  In the last 5 years, the worst fire 

seasons have been seen for the country, and an area of 202242 ha forest was burned 

between 2017 and 2022 [6]. Figure 2.1 shows the number of fires and the amount of 

burned area annually between 2017 and 2022.When the data between 2013 and 2022 

was analyzed, it was observed that forest fires larger than 500 ha occurred between June 

and September, especially in July and August. 
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In recent years, the frequent and widespread occurrence of forest fires on a global scale 

has put the issue of forest fire prevention and mitigation on the agenda. Within the 

framework of sustainable forest management for the continuity of the ecosystem, 

determination of fire risk, determination of burned and destroyed areas, determination 

of fire severity, determination of the extent of damage are important for future planning 

[7-12]. Therefore, information on the extent of forests burned in countries in the past, 

mostly from terrestrial surveys, has been used to generate data on a global scale. 

However, the accuracy of statistical data reported by countries is often criticized as 

being based on outdated, incomplete or opaque methods. At the same time, although 

country data are obtained through field studies, there are concerns about data precision 

and accuracy. The inaccessibility of data for some countries is also a problem. 

Therefore, the differences in methodologies adopted by countries and the inadequacy of 

institutions in collecting and storing data have made these sources unreliable when 

making global or regional analyses [13]. For this reason, with the beginning of satellite 

observations, satellite images have begun to be used as a reliable alternative for burned 

area detection [14]. Satellite images are used for early detection of forest fires [15], 

monitoring their behavior [16], assessing damage [17], identifying hot spots [18], 

monitoring air quality [19], mapping [20], monitoring and modeling fire severity [21].  

 

Satellite imagery provides significant convenience in terms of time and labor for the 

detection and mapping of burned areas. Although high-resolution data can be obtained 

with commercial satellites, the high cost is the biggest obstacle to its use [22]. Free 

access to medium resolution and low temporal resolution satellite images offers 

significant advantages in mapping burned forest areas [23]. Particularly open source and 

free satellite images with medium geometric resolution, such as Landsat and 

ASTER/Terra, MODIS/Terra are preferred for national and global scale studies [22, 24, 

25]. For all that, in the recent past, OLI/Landsat-8, MSI/Sentinel-2 satellite images with 

better spatial resolutions have begun to be used more frequently to obtain more sensitive 

and accurate results [12, 26-28]. 

 

Majority of current applications for identifying and mapping burned forest areas are 

based on a bi-temporal approach that allows the identification of burned areas as a result 
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of changes in between the pre-fire and post-fire images due to reduced vegetation cover 

[12, 29-31]. In contrast, the uni-temporal approach only focuses on analyzing post-fire 

images and is faster to implement. Unlike the bi-temporal approach, it does not have 

disadvantages due to differences in phenology, sensor calibration or atmospheric 

effects. It eliminates the disadvantage of finding images with low cloud cover for two 

different times. However, the uni-temporal approach may have difficulties for areas that 

may be confused with the burned area due to the lack of reference images before the fire 

[29]. 

 

Images collected by different sensors and different methods have been used for the 

detection and mapping of burned areas. Pixel-based and object-based image analysis 

have been the two main approaches used in the classification of satellite images [32].  In 

previous years, several studies have employed object-based logic for the classification 

of satellite images with different resolutions in mapping burned areas as object-based 

approaches provide more accurate results than the pixel-based approaches [8, 33-35]. 

[36] has demonstrated that object-based image classification provides promising results 

in the field of burn area mapping.  

 

Although object-based image analysis techniques have proven to be effective in image 

classification, studies utilizing object-based classification with Sentinel-2 images for the 

detection of burned areas in the context of forest fires are limited [37]. In the study 

conducted by [38], 173 scientific papers were reviewed on supervised object-based 

land-cover image classification and it was concluded that the Random Forest (RF) 

algorithm is the best performing algorithm for object based classification and the most 

widely used algorithm in recent years. The RF algorithm is followed by the support 

vector machine (SVM) algorithm. These two algorithms are considered to be the most 

efficient and frequently used algorithms for satellite image classification [39].  

 

Evaluating the transferability of machine learning (ML) algorithms is a crucial step for 

generalization, showing how the model can be trained in one place or at a time and how 

it can be used in different domains and times, and the generalization of classification 

results [40]. In recent years, the spatial transferability of ML models has been 
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successfully applied in land cover classification and crop type classification [41]. 

Likewise, the spatial and temporal transferability methods were successfully applied for 

the detection of burned forest areas and burn severity from the satellite images with 

different resolutions [36, 37, 39, 42, 43].  

 

In the last few years, with the increasing availability of remote sensing data, cloud-

based platforms have been developed rapidly, enabling individuals to access and 

analyze geospatial data using web-based interfaces [44]. Google Earth Engine (GEE) is 

a cloud-based platform that leverages Google's enormous computing capabilities to a 

range of high-impact societal issues, including planetary-scale geospatial analysis [45]. 

By leveraging the vast archive of satellite imagery and the computational capabilities of 

GEE, researchers, land managers, and policymakers can effectively monitor and 

manage forest fires at regional and global scales. 

 

1.1.Thesis Aims and Objectives 

In this research study the main aim is to map burned forest areas using an object-based 

RF ML classification method from only the post-fire Sentinel-2 imagery, which is one 

of the open-source earth observation data on the cloud-based GEE platform. The other 

aim of the study is to evaluate the spatial and temporal transferability of the object-

based RF algorithm in detecting burned forest areas on the GEE platform and achieve 

high classification accuracy in different test areas. 

 

The goals of the thesis are as follows: 

• To evaluate the performance of the object-based RF algorithm for detecting burned 

forest areas using the uni-temporal Sentinel-2 data on the GEE platform. 

• To evaluate the spatial and temporal transferability of the object-based RF algorithm 

in detecting burned forest areas in different study sites on the GEE platform. 

• To determine appropriate parameter values for the simple non-iterative clustering 

(SNIC) segmentation algorithm, which will be used for the segmentation of the image 

into image objects. 



 

 5 

• To evaluate the success of object-based image classification and spatial transferability 

in detecting the burned forest areas in different study sites with different land cover 

types. 

• To quickly estimate fire damages and increase the effectiveness of rapid disaster 

management for potential future fires in Mediterranean forests in Türkiye with Sentinel-

2 data using the open-source GEE platform. 

 

1.2.Literature Review 

Historically, organizations have obtained burned area information from fire 

management teams. The different methods used by countries and the inadequacies of 

institutions in data collection and storage have made these sources unreliable when 

conducting global or regional analyses. With the introduction of satellite observations, 

satellite images have started to be used as a robust alternative for burned area detection 

[14]. Satellite imagery significantly facilitates the identification and mapping of burned 

areas in terms of time and labor. Rapid and accurate mapping of burned areas 

contributes to post-fire damage assessment, planning studies, vegetation restoration 

studies and reforestation studies [46].  

 

The use of satellite imagery within the framework of forest fires is widely used in many 

kinds of research, including pre-fire predictions, hazard, risk, susceptibility analyses, 

fire severity, burning area detection, monitoring and evaluation of burning areas [47-

50]. Although the use of satellite imagery for the detection and mapping of burned areas 

has a long history, there are still active studies and research integrating object oriented 

and ML methods [14]. In addition, studies on the detection of forest fires and mapping 

burned areas from Sentinel-2 images using object-based classification approaches are 

still limited [37].  In this part of the thesis, mostly object-based and ML integrated 

studies and studies using Sentinel-2 for the detection of burned forest areas are 

included. 

 

In the study conducted by [33], a methodology was applied to map burned areas with 

Sentinel-2 satellite images, aiming to minimize user interaction. The Mean-Shift 
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segmentation technique was used to generate image objects for the object-based image 

analysis. The fuzzy C-means clustering technique automatically selects a small section 

of the typical images object as the training set. The authors applied burned area indices 

on pre-fire and post-fire images to label training models. They used the pre-post fire 

index differences (MIRBI, NBR2, NDII, NDWI) to label the training model with a set 

of empirical threshold values. The methodology produces high accuracy burned area 

maps and requres minimal user interaction [33]. 

 

In the study conducted by [34] on Kangaroo Island, South Australia, burned areas and 

land uses were classified using multi-resolution segmentation and hierarchical 

classification. The burned areas, which were seriously affected by the 2019-2020 forest 

fire, were mapped and the severity of the fire was evaluated from Landsat 8 images 

using the GEE platform. The authors describes the importance of using a multi-source 

data approach to more accurately define burned areas and their approach provides an 

overall accuracy of 90.2% [34]. 

 

In the study conducted by [51], the results of object-based and pixel-based classification 

approaches were compared. A new set of rules to be used in a decision tree-based 

classification was created and SPOT-6 images were used. It was suggested that relying 

solely on normalized vegetation index thresholds for object-based classification is 

insufficient for mapping burn areas. The authors emphasized that the post-fire image 

may be the only source due to the difficulties in obtaining pre-fire images in some cases 

and compared their studies with single source and two sources separately. The results 

demonstrate that, in both cases, misclassification tended to rise as a result of shadows. 

There were other aspects that made the ML categorization challenging, such as different 

forms of the forest canopy and the mixing of the plants. It was shown that object-based 

classification can deduce boundaries of forest types. The burned region was mapped 

with the kappa value of 0.9322 in object-oriented classification, whereas the kappa 

value of 0.7433 was computed from the pixel-based classification [51]. 

 

In the study conducted by [8], the performance of RF algorithm was tested in extracting 

burned forest areas with multi-resolution segmentation technique. To detect burned 
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areas, variables such as brightness, maximum difference, average values of six bands 

and spectral indices were selected and RF model was used for the classification. The 

study areas used include Kumluca and Adrasan regions, which are two forest areas 

burned on the same date. An accuracy of 0.99 was achieved and the and the usability of 

the method for detecting burned areas was demonstrated [8]. 

 

In the study conducted by [52], a combination of rule-based and supervised 

classification methods was employed alongside image segmentation  to detect burned 

areas. A primary objective of the research was to delineate burned and unburned areas 

through the integration of spectral indices. The accuracy of the results was determined 

by comparing them with those of the Copernicus Emergency Management Service 

(EMS) maps. The findings revealed that the rule-based approach demonstrated an 

agreement of 86.9% for Landsat 8 imagery and 85.4% for Sentinel 2 imagery. On the 

other hand, the supervised classification method exhibited higher agreement rates, with 

88.6% for Landsat 8 imagery and 90.7% for Sentinel 2 imagery. The performance of the 

RF algorithm was evaluated in mapping burned forest areas using the multi-resolution 

segmentation technique. To detect burned areas, variables such as brightness, maximum 

difference, average values of six bands and spectral indices were selected and RF model 

was used for the classification. The study areas used include Kumluca and Adrasan 

regions, which are two forest areas burned on the same date. An accuracy of 0.99 was 

achieved and the and the usability of the method for detecting burned areas was 

demonstrated [52]. 

 

[53] integrated empirical approaches based on different spectral indices and supervised 

classification to identify and map burned areas. To train and validate the classifier, 64 

forest fires that occurred in Greece between 2016 and 2019 were taken as the reference. 

The Extreme Gradient Boosting (XGB) algorithm was combined with an empirical 

approach to select training models with difference spectral indices, and an automatic 

classification workflow was presented for the purpose of operating the approach in a 

national operating framework. Average overall accuracy of 98% was achieved, as well 

as high precision, recall, and F1 score values [53]. 
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In the study conducted by [54], an automatic method is presented for detecting burned 

areas via Sentinel-2 time series imagery. The algorithm includes optimal spectral 

indices, single-dual-temporal images, and MSI images, integration of multi-source 

active fire products, an interannual time series, and adaptive threshold post-processing 

for large burned areas. The algorithm uses GEE and local computation, and is tested on 

different land cover and large areas such as forests, croplands, shrublands, grasslands, 

savannas. The results were compared with existing MCD64A1, FireCCI51, LBA_CU, 

and FireCCISFD20 burned area products. The method automatically mapped burned 

areas at various land cover and regional scales and improved the membrane coefficient 

by about 7% and 9% compared to medium resolution burned area products [54]. 

 

In the study conducted by [55], active fires identified from Terra and Aqua MODIS 

sensors and Sentinel-2 MSI reflectance measurements were used to create a locally 

adapted multi-temporal two-phase burn area algorithm. The whole of Sub-Saharan 

Africa was analyzed between January and December 2016. The product displayed 

accuracy values higher than those of current worldwide burn area offerings. After 

applying the burn area algorithm to more than 11,000 Sentinel-2 images, a database 

containing minor fires (less than 100 ha) was produced. Demonstrating the practical 

potential of these tools to improve understanding of the impacts of wildfires worldwide, 

this is the first continental burn area product produced with medium resolution sensors. 

Additionally, spectral sensitivity analysis was performed to determine appropriate bands 

and indices for the detection of sub-Saharan African burned areas. The algorithm 

employs the NDVI, Enhanced vegetation index (EVI), Normalized Burn Ratio (NBR), 

and BAI indices in various spaces. The proposed methodology aims to improve 

mapping accuracy, especially for small fires missed by global burned area products 

[55]. 

 

Using Sentinel-2 satellite imagery, [29] investigated how well the Normalized Burn 

Ratio Plus (NBR+) index can map the burned areas. It was found that when there are 

clouds and bodies of water, the NBR+ index performs better than other indices. 

Utilizing both uni-temporal and bi-temporal methods, the study evaluated the NBR+ 

index in Sicily in comparison to five other indices. Areas incorrectly identified as 
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burned by other indices because of clouds or bodies of water were effectively excluded 

by the NBR+ index. The authors discuss the benefits and drawbacks of post burned 

image analysis utilizing a uni-temporal vs a bi-temporal method. By concentrating just 

on post-burn images, the single-date strategy is quicker and eliminates inaccuracies 

caused by phenological variations, pixel misregistration, sensor calibration, sun-sensor 

geometry, and atmospheric influences. There would be problems in mapping regions 

that have recurring spectral signatures, such as water and wilted plants, as these areas 

might be confused with the burned areas. The bi-temporal technique, on the other hand, 

offers a more thorough analysis but necessitates careful consideration of cloud cover 

and image availability at various times [29]. 

 

[37] proposed an approach to automatically select training areas and perform object-

based classification to evaluate forest fire damage from Sentinel-2 images in GEE 

environment. For classification, three ML algorithms – RF, SVM, and CART were 

used. The transferability of the proposed method was also evaluated and it was 

concluded that RF was the most effective algorithm providing overall accuracies of 

97.6% and 93.8%, respectively in study areas Uljin and Gangneung [37]. 

 

[39] investigated the potential for burn severity mapping from Sentinel-2 imagery using 

ML algorithms and transferability of the model. RF and SVM algorithms were used 

with a pixel-based classification approach. Eight spectral indices were also included in 

the classification. In addition, the transferability of the model created on forest fires 

occurring in similar areas was evaluated and fire damage classification was performed. 

It was conducted based on the tests in the Portuguese forest area that the RF algorithm 

performed better than the SVM algorithm. Furthermore, the results confirmed that 

Copernicus EMS data can be transferred as a reference for fire damage classification in 

potential areas [39]. 

 

[42] developed a model for mapping burned areas in Greece using Landsat imagery and 

object-oriented classification logic. The performance of object-oriented classification in 

the Mediterranean region was demonstrated. The results were also compared with the 

results of pixel-based classification. In order to evaluate the transferability of the 
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developed model, the model was tested in a burned area in Spain. The results showed 

that the developed object-oriented method was successfully applied with an overall 

accuracy of 98.85%. The results also showed that the performance of object-oriented 

classification was higher than pixel-based classification and that the model was 

successful and transferable when tested in a slightly different study area in Spain [42]. 
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2. STUDY AREA & DATA 

 

2.1. Study Area 

Türkiye has a rich ecological diversity with an area of 78 million ha, and according to 

the findings made as of 2020, 29.4% of this area is covered by forest areas [6]. Forest 

fires in Türkiye are generally concentrated in the southern and western regions of the 

country, especially along the Mediterranean and Aegean coasts. These regions are often 

characterized by high temperatures and low humidity levels during hot, dry summer 

months, contributing to more frequent and severe wildfires [56]. 

 

According to annual reports published by European Forest Fire Information System 

(EFFIS), approximately 57% of Türkiye's forest area (12.5 million ha) is located in fire-

sensitive areas. 2021 was Türkiye's worst fire season in more than a decade. According 

to the same report, the total burned area resulting from 612 fires was 206,013 ha; This is 

the highest amount recorded in Europe, the Middle East and North Africa in 2021 [57]. 

The forest areas affected by the fires in Türkiye that occurred between 2017 and 2022 

are shown in Figure 2.1 [6]. 

 

Figure 2.1. Burned forest areas in Türkiye, 2017-2022 
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In this research work, the study areas were selected among the major forest fires 

occurred in Türkiye in recent years. The selected areas are located in the Muğla - 

Marmaris region (MR), Muğla - Kavaklidere region (KV), Antalya - Manavgat region 

(MG), where a forest fire occurred in 2021, and in the Çanakkale region (CK), where a 

forest fire occurred in 2023. The distribution of the study areas on the map is shown in 

Figure 2.2. For the selection of the study areas, care was taken to ensure that the burned 

areas and study areas represented different land use & land cover (LULC) such as 

forest, agriculture and settlement. The behavior of fire may differ in different land cover 

types. Moreover, since fire can occur not only in homogeneous forested areas but also 

in heterogeneous forested areas, test areas with different land cover distribution were 

selected. Although the selected study areas have the characteristics of Mediterranean 

forests, they contain a combination of forest types, a diversity of land use classes and 

different topographic conditions. 

 

Study Area MR: This study area is located within the borders of Muğla province of 

Türkiye. An area of 32,328.04 ha, including burned forest areas, was selected to test the 

proposed methodology and is shown in Figure 2.3. Based on the European Space 

Agency (ESA) WorldCover 10 m product based on Sentinel-1 and Sentinel-2 imagery, 

the study area in 2021 includes 19089.5 ha of trees, 2471.7 ha of shrubland, 1286.1 ha 

of grassland, 252.3 ha of cropland, 840.9 ha of built-up, 122.6 ha of barren/sparse 

vegetation, 8263 ha of open water, and 1.7 ha of herbaceous wetland. In this area, the 

dominant tree species is red pine. Of the forest area, 39% is degraded stand, 20% is high 

forest land and 25% includes Maquis vegetation (Figure 2.4 & Table 2.1). According to 

the long-term measurements of the General Directorate of Meteorology, the yearly 

average temperature of Muğla province is 15.1°C, the yearly average maximum 

temperature is 21.3°C, and the yearly minimum temperature is 9.6°C. The average 

monthly total rainfall is 1206.1 mm. According to the Koppen-Trewartha climate 

classification, the region has a subtropical dry summer climate, and Mediterranean 

climate. The forest fire in the region started on July 29, 2021 and continued for 8 days. 

Although the majority of the burned area is forest area, cropland and settlements areas 

are also among the burned areas.  



 

 13 

 

Figure 2.2. The study areas 
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Figure 2.3. Sentinel-2 satellite image acquired on August 27, 2021 after the fire in the 

study area MR. The spectral bands B11, B8, and B4 displayed in red, green and blue 

color planes discriminate between the burned areas and unburned land cover. 
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Figure 2.4. MR management plan according to LULC 

 

Table 2.1. MR management plan according to LULC and tree species on hectare base 

Management plan LULC Tree Species Area (ha) % 

Afforestation Red pine 273.8 1 

Degraded stand Red pine 9337.2 39 

High Forest land Red pine 4785.5 20 

Maquis Maquies 

vegetation 

6093.6 25 

Cropland and other land - 3718.7 15 

 

Study Area – KV: This study area is located within the borders of Muğla province of 

Türkiye. The size of the selected area is about 64285,73 ha, including the burned forest 

areas and is shown in Figure 2.5. Based on the ESA WorldCover, this study area in 

2021 includes 52388.2 ha of trees, 1679.9 ha of shrubland, 7022.9 ha of grassland, 
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1894.8 ha of cropland, 292.6 ha of built-up, 1000 ha of barren/sparse vegetation, and 

14.4 ha of open water. In this area, the dominant tree species are red pine and black 

pine. Of the forest area, 13% is degraded stand, 46% is high forest land and 15% 

includes Maquis vegetation (Figure 2.6 & Table 2.2). Based on the Köppen-Trewartha 

climate classification, the region has a subtropical dry summer climate, and 

Mediterranean climate. In this area, the forest fire started on August 2, 2021 and after 6 

days, it was brought under control on August 8, 2021. The majority of the burned area is 

a qualified forest asset. Cropland and settlement areas are quite small. 

 

Figure 2.5. Sentinel-2 satellite image acquired on August 17, 2021 after the fire in the 

study area KV. The spectral bands B11, B8, and B4 displayed in red, green and blue 

color planes discriminate between the burned areas and unburned land cover. 
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Figure 2.6. KV management plan according to LULC. 

 

Table 2.2. KV management plan according to LULC and tree species on hectare base. 

Management plan LULC Tree Species Area(ha) % 

Afforestation Red pine 647.1 1 

Degraded stand Red pine + Black pine 8588.2 13 

High Forest land Red pine + Black pine 29351.8 46 

Maquis Maquies vegetation 9706.9 15 

Cropland and other land - 15964.6 25 

 

Study Area -MG: This area is located within the borders of Antalya province of 

Türkiye. The size of the selected area is about 161177,11 ha, including the burned forest 

areas and is shown in Figure 2.7. Based on the ESA WorldCover, the area in 2021 

includes 94048.1 ha of trees, 11293.1 ha of shrubland, 30544.1 ha of grassland, 9217.2 

ha of cropland, 3427 ha of built-up, 1877.3 ha of barren/sparse vegetation, 10712.3 ha 
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of open water, and 57,8 ha of herbaceous wetland (Figure 2.8 & Table 2.3). In this area 

the dominant tree species are red pine, black pine and partly juniper. There are small 

amounts of oak, beech and hornbeam in forest areas. Of the forest area, 13% is 

degraded stand, 31% is high forest land, 7% includes Maquis vegetation and 13% 

includes degraded coppice. According to the long-term measurements of the General 

Directorate of Meteorology, the yearly average temperature of Antalya province is 

18.8°C, the yearly average maximum temperature is 24.2°C, and the yearly minimum 

temperature is 13.8°C. The average monthly total rainfall is 1053.4 mm. According to 

the Köppen-Trewartha climate classification, the region has a subtropical dry summer 

climate, and Mediterranean climate.  In this area, forest fire started on July 28, 2021 and 

was brought under control on August 8, 2021. The fire damaged an intensive cropland 

area along with the forest area. 

 

 

Figure 2.7. Sentinel-2 satellite image acquired on August 09, 2021 after the fire in the 

study area MG. The spectral bands B11, B8, and B4 displayed in red, green and blue 

color planes discriminate between the burned areas and unburned land cover. 
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Figure 2.8. MG management plan according to LULC. 

 

Table 2.3. MG management plan according to LULC and tree species on hectare base. 

Management plan LULC Tree Species Area(ha) % 

Degraded coppice  28509.8 19 

Degraded stand Red pine + Juniper +Oak 19761.9 13 

Degraded forest land + 

Maquis 

Red pine + Juniper + Maquies 

vegetation 

493.4 1 

High Forest land Red pine + Black pine + Juniper 47103.1 31 

Maquis Maquies vegetation 11521.6 7 

Cropland and other land  45449.1 29 

 

Study Area 4 – CK: This study area is located within the borders of Çanakkale province 

of Türkiye. The size of the selected area is about 36922,25 ha, including the burned 

forest areas and is shown in Figure 2.9. Based on the ESA WorldCover, the study area 
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in 2021 includes 18044.8 ha of trees, 1353 ha of shrubland, 6109.6 ha of grassland, 

7861 ha of cropland, 1159 ha of built-up, 176.9 ha of barren/sparse vegetation, 2176 ha 

of open water, and 42.1 ha of herbaceous wetland. In this study area, the dominant tree 

species is red pine. Of the forest areas, 17% are degraded stand, 37% are high forest 

land. Among the four study areas used this study area contains the most intensive 

cropland with 46% (Figure 2.10 & Table 2.4). According to the long-term 

measurements of the General Directorate of Meteorology, the yearly average 

temperature of Çanakkale province is 15.2°C, the yearly average maximum temperature 

is 19.7°C, and the yearly minimum temperature is 10.9°C. The average monthly total 

rainfall is 625.3 mm. According to the Köppen-Trewartha climate classification, the 

region has a subtropical dry summer climate, and Mediterranean climate. Two forest 

fires have recently occurred within the boundaries of the study area in the same year. 

The first forest fire occurred on July 16, 2023 and was brought under control after 52 

hours. The second forest fire started on August 22, 2023 and was taken under control on 

August 24, 2023. In addition to the forest areas, agricultural lands were also damaged 

by the fire. 

 

Figure 2.9. Sentinel-2 satellite image acquired on August 28, 2023 after the fire in the 

study area CK. The spectral bands B11, B8, and B4 displayed in red, green and blue 

color planes discriminate between the burned areas and unburned land cover. 
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Figure 2.10. CK management plan according to LULC. 

 

Table 2.4. CK management plan according to LULC and tree species on hectare base. 

Management plan LULC Tree Species Area(ha) % 

Degraded stand Red pine 5970.25 17 

High Forest land Red pine 12994.08 37 

Cropland and other land  16154.80 46 



 

 

2.2. Data 

 

2.2.1 Sentinel-2 MSI Images  

Sentinel-2 is a 13-spectral-band, wide-area, high-resolution, multi-spectral imaging 

mission developed by the ESA. It is based on two identical satellites orbiting each other. 

Sentinel-2 has a MSI sensor with 13 spectral bands ranging in size from 10 to 60-meter 

pixels. The orbital swath is 290 km, and the twin satellites in the same orbit aim to 

provide a high equatorial revisit frequency of 5 days [58]. The spatial and spectral 

characteristics of Sentinel-2 MSI sensor is given in Table 2.5. 

 

Table 2.5. Sentinel-2 MSI Bands. 

 

 

The ortho-images of Level-1C (L1C) and Level-2A (L2A) tiles are 110x110 km² in 

UTM/WGS84 projection. Earth is split using a 100 km step and a predetermined set of 

tiles that are defined in UTM/WGS84 projection. GEE offers both L1C and L2A 

products. The L2A product offers atmospherically corrected surface reflectance images, 

which are derived from the L1C products. L2A items have been produced consistently 



 

 

at the ground segment in Europe since March 2018, and manufacturing was expanded to 

the worldwide market in December 2018 [58].  

In this study, Sentinel-2 L2A products with the ID 'COPERNICUS/S2_SR' in GEE 

were used. The satellite images used in the study are given in the Table 2.6.  

 

Table 2.6. The Sentinel-2 images used in this study. 

Study 

Area 
Post-fire Images 

Acquisition 

Date 

MR COPERNICUS/S2_SR/20210827T084601_20210827T090001_T35SPA 2021-08-27 

KV COPERNICUS/S2_SR/20210817T084601_20210817T085325_T35SPB 2021-08-17 

MG 
COPERNICUS/S2_SR/20210809T083559_20210809T083843_T36SUF 

COPERNICUS/S2_SR/20210809T083559_20210809T083843_T36SUG 
2021-08-09 

CK COPERNICUS/S2_SR/20230828T090559_20230828T091557_T35TME 2023-08-28 

 

Previous studies have demonstrated that the near infrared (NIR) and short-wave infrared 

(SWIR) bands are sensitive to fire effects [14, 54, 59-61]. When leaves are burned, fire 

causes a decrease in leaf area index and a reduction and drying of leaf pigment. The first 

effects after fire are usually observed as a decrease in NIR reflectance, while dryness 

causes an increase in SWIR reflectance [14]. Little sensitivity to fire has been detected 

in the visible bands, but it has been used in studies to mask clouds and reduce confusion 

about cultivated areas [62]. Based on the scope of these studies, the bands B2, B3, B4, 

B8, B11, and B12 were used in this study (Table 2.7.).  

 

Table 2.7. The Sentinel-2 MSI bands used in this study. 

 



 

 

2.2.2. Ancillary Data 

The performance of the proposed methodology was evaluated by comparing the 

detected burned areas with the burned areas available in national and global burned area 

data sets. The purpose of this comparison was not to verify the methodology employed 

in the study, but to reflect the differences and uncertainties of the burned areas 

information between different global and national data sets. For this purpose, General 

Directorate of Forestry Data was used as the national burned area dataset, and 

Copernicus Climate Change Service (C3S) - C3SBA10 and MODIS - MCD64A1 and 

European Forest Fire Information System – EFFIS were used as the global burned area 

data sets. 

 

General Directorate of Forestry Data; The GDF is a public institution with a distinct 

budgetary and legal status which is affiliated with the Ministry of Agriculture and 

Forestry. Protecting forests and forest resources, managing and developing forests in a 

sustainable manner within the integrity of the ecosystem and providing multifaceted 

benefits to society are among the duties and responsibilities of the GDF. GDF keeps the 

information about the burned forest areas statistically, on a hectare basis, on the date 

and time of fire outbreak and the amount of burned area, specific to the regional 

directorate, operation directorate, operation chief, province and district. The data 

obtained from GDF and used for comparison in this study are not spatial data.  

 

Copernicus Climate Change Service (C3S) - C3SBA10; C3S's burned area product 

named C3SBA10 offers two burned area products at different spatial resolutions in 

pixel and grid scale. Burn area product was produced by analysis of reflectance changes 

from MODIS Terra and Sentinel-3 OLCI medium resolution sensors [63]. Product 

outputs are provided to users free of charge in NetCDF4 format, at 300 m spatial 

resolution for pixel products and 0.25° spatial resolution for grid products [64]. In this 

study, the 300 m spatial resolution pixel product of the C3SBA10 burn area product was 

used to compare with other data. Since the data used was provided for the period 2017-

2022, a comparison was made for the MR, KV, MG study areas. A comparison could 

not be made for the C3SBA10 burn area product for the CK area, where the forest fire 

occurred in 2023. 



 

 

MODIS - MCD64A1; The MODIS-MCD64A1 burned area product served on a global 

scale is a 500-meter (m) product with a spherical grid containing burned area 

information per pixel. The MCD64A1 product integrates 1 km MODIS active burned 

area observations and 500 m MODIS Surface Reflectance images [65]. MCD64A1 

product creates a fire-sensitive spectral band index with red, near-infrared and short-

wave infrared bands. Then, MODIS applies dynamic thresholds to Terra and Aqua 

images and serves burned area data at monthly temporal resolution from 2000 to the 

present [66]. 

 

European Forest Fire Information System – EFFIS; EFFIS, supports services against 

fire protection of forests in the European Union and neighboring countries and provides 

up-to-date and reliable information.  The system is one of the components of 

Copernicus-Emergency Management Services [57]. EFFIS is obtained by integrating 

burned area data, MODIS VNIR (250 m) and MODIS SWIR (500 m) and MODIS 

active fire product (1 km) data and various auxiliary data [66, 67]. In addition, the entire 

process is integrated with visual image interpretation and systematic analysis of news 

from various media sources [68]. The main task of the system is to provide a daily fire 

risk map for EU countries and to map forest fires larger than 50 hectares [67]. Burned 

area information in the EFFIS database is mainly obtained from forests. Burned areas 

seen in areas such as agricultural areas and cultivated areas are not included in this 

database. In the EFFIS database, information is kept in vector data format and is offered 

to users free of charge [66].  

 

 

 

 

 

 

 

 



 

 

3. METHODOLOGY 

Figure 3.1 shows the general steps of the methodology employed in this study to 

detect/map burned forest areas through object-based image classification from uni-

temporal Sentinel-2 imagery based on GEE and code editor platform and to evaluate the 

spatial and temporal transferability of the RF algorithm. The first step includes the pre-

processing and preparations of the data for the analysis. Step 2 includes image 

segmentation and object-based classification. The last step, step 3, involves model 

transferability and evaluation of the results. 

 

Figure 3.1. Workflow of the methodology 

 



 

 

3.1. Software Used 

GEE platform was used for all operations in step 1 and step 2 and for the 

“transferability” part in Step 3 in Figure 3.1. This corresponds to a large part of the 

proposed methodology. GEE is a scientific research and visualization tool for 

geographic datasets used by academics, non-profits, businesses, and governments. GEE 

hosts satellite imagery and preserves it in a public data library that includes earth 

images extending back over four decades [69]. The GEE Data Catalog is a 

comprehensive repository of geospatial datasets available within the GEE platform. The 

platform offers users access to a comprehensive array of Earth observation data, 

encompassing satellite imagery, climate data, land cover maps, terrain data, and other 

related resources.  

 

Key features of the GEE Data Catalog include the followings: the catalog that provides 

detailed metadata for each dataset, including descriptions, spatial and temporal 

resolutions, citation information, and access permissions. Users can import datasets 

directly into their GEE scripts and workflows, allowing for seamless integration with 

GEE's analysis tools and computing resources [69]. GEE leverages Google's cloud 

infrastructure to provide scalable computing resources for processing and analyzing 

large geospatial datasets. Users can write and execute code using the GEE JavaScript 

API or Python API directly in their web browser or through integrated development 

environments (IDEs) like Google Colab [70].  

 

GEE also provides tools and functions for performing various geospatial analysis tasks, 

including image classification, change detection, time series analysis, and spatial 

modeling. Users can apply algorithms to process and analyze imagery, extract 

information, and generate insights about land cover, land use, vegetation dynamics, and 

more. Furthermore, GEE offers interactive visualization capabilities that allow users to 

explore geospatial datasets and analyze results through dynamic maps, charts, and 

graphs [71]. At the present time, applications based on Landsat, Modis and Sentinel 

imagery for burned area mapping are performed using GEE [72, 73]. 

 



 

 

For the “accuracy assessment” part in Step 3, the ArcGIS Pro 3.2 software and Google 

Earth Pro software were used. For accuracy assessment, the ‘Create Accuracy 

Assessment Points’ tool in ArcGIS Pro software was used to assign points to the study 

areas by stratified random sampling method. Google Earth Pro software was used for 

visual interpretation with high resolution data. After all points were evaluated, the 

‘Compute Confusion Matrix’ in ArcGIS Pro software was used to create the confusion 

matrix and obtain the accuracy. 

 

3.2. Sentinel-2 Data Preprocessing and Spectral Indices 

The preprocessing operations carried out on the Sentinel-2 data include image clipping 

and mosaicking, and cloud masking on the post-fire satellite imagery used. In addition, 

in order to ensure that all spectral bands used in this study have the same geometric 

resolution, 20 m resolution bands were resampled to 10 m resolution using the bicubic 

interpolation method. The ‘ee.Image.resample’ function of GEE was used for this step. 

 

Several spectral indices were computed from the spectral bands of Sentinel-2 and used 

as additional bands in the classification. In the study conducted by [55], spectral 

sensitivity analysis was performed with the objective of determining which bands 

and/or spectral indices are the most suitable ones for burn area detection from Sentinel-

2 images. Spectral sensitivity analysis was performed with parametric/non-parametric 

analyses and the performances were compared. In the study conducted by [74] post-fire 

Sentinel-2 images were used to select burned and unburned adjacent areas of different 

land cover types and the separability index was employed to quantify the degree of 

separability between the areas with the performance of the indexes was evaluated. 

Therefore, inspired from these studies the mid-infrared burn index (MIRBI), burn area 

index (BAI), normalized burn ratio 2 (NBR2), and normalized difference vegetation 

index (NDVI) were selected as the spectral indices (Table 3.1.). 

 

 

 

 



 

 

Table 3.1. Spectral indices used in this study 

Spectral Index Equation References 

MIRBI 
 

[75] 

BAI 

 

[76] 

 NBR2 

 

[55] 

NDVI 
 

[77] 

 

Mid-infrared burn index (MIRBI):  This index was developed especially for shrub 

ecosystems. It combines two Short Wave Infrared (SWIR) bands, which provides better 

spectral separation in burned areas and is suitable for assessing the effects of fire on 

vegetation, especially on shrub vegetation [75, 78]. 

 

Burn area index (BAI): It identifies areas affected by fire using red band (R) and NIR 

reflectance. This index stages the burned areas in the post-fire image with a charcoal 

black signal [76, 79]. 

 

Normalized burn ratio 2 (NBR2): This index modifies the NBR index to emphasize 

water sensitivity and uses the SWIR band instead of the NIR band [55, 79]. 

 

Normalized Difference Vegetation Index (NDVI): NDVI is related to vegetation 

monitoring and is widely used as the detection of burned areas [77, 79, 80]. 

 

3.3. Image Segmentation 

Pixel-based approach has limitations in classifying images from optical images in terms 

of landscape texture, structure and shape and causes salt and paper noise in the 

classified image. Object-based image classification uses color, shape and topological 



 

 

features of the image to classify the image into meaningful objects and then analyses 

and classifies these objects [34]. 

 

Object based image analysis (OBIA) consists of two main stages: segmentation and 

classification [81]. Segmentation is a crucial step in OBIA to divide pixels with similar 

properties and create homogenous picture objects [37]. The purpose of segmentation is 

to divide the image into meaningful objects according to features such as texture, color, 

shape, size and gray level [82]. Segmentation methods can be categorized as edge-based 

methods, region based methods, hybrid methods, and semantic methods [82]. The 

segmentation preferences to be used for segmentation are very important as they form 

the basis of the object-based classification process [83].  

 

GMeans, KMeans and SNIC are three algorithms that can be used for image 

segmentation in GEE. In this study, SNIC algorithm was chosen as the segmentation 

algorithm. The SNIC algorithm is a non-iterative version of the simple linear iterative 

clustering (SLIC) algorithm [84]. It improves computational efficiency and 

segmentation quality, requires less memory and is a faster and simpler algorithm [84]. 

Similar to SLIC algorithm, it initializes the center points with pixels selected in the 

normal grid. Then, normalized spatial distances and color distances are used to 

determine the proximity of a pixel to the center. This creates homogeneous super pixels 

and the smallest distance from the center determines the candidate pixel to be selected 

[84]. Seed size, compactness, connectivity, and neighborhood size are the basic 

parameters of the SNIC algorithm in GEE. The compactness parameter affects the shape 

of the clusters, and higher values will result in more compact clusters, that is, closer to 

square. The connectivity parameter can be set as 4 or 8, and expresses how neighboring 

pixels will be taken when assigning them to the super pixel. The neighborhood size 

parameter specifies the window size used for clustering. The seed size parameter 

defines the super pixel seed location spacing in pixels [37, 44, 84-87].  

 

The outputs of the SNIC algorithm vary depending on visualization scale on the GEE 

platform. It was therefore necessary in the code to use the "reproject" function to fix a 

proper output scale for the clusters. A regular seed grid was used using the 



 

 

"Image.Segmentation.seedGrid" function of GEE for superpixel seed location. This 

affects the number of clusters. The most appropriate parameter value was found based 

on several trials. Considering the characteristics and sizes of the study areas, the 

parameter values were selected as follows: “seeedGrid” = 50, “compactness” = 0, 

“connectivity” = 8, “neighborhoodSize” = 128. The SNIC algorithm implemented in 

GEE environment generates a multi-band raster dataset that consists of segments with 

the mean values computed for all bands of the input image, as well as a band that 

consists of the identification numbers assigned to the generated segments. In this way, 

for each segment, the mean value is calculated and all pixels that fall within a segment 

are assigned the mean value of the corresponding segment. The segmented image that 

contains the mean values of the image segments is then used as the input dataset for the 

classification operation. 

 

3.4. Training Data 

One of the main aims of this study was to evaluate the spatial and temporal 

transferability of the object-based ML classification algorithm. RF ML algorithm was 

selected as the classification algorithm. The algorithm was trained on the cloud-based 

GEE platform and its transferability was also tested. For this reason, each study area 

was trained with different training data and classified with two different RF models. 

 

The training samples were collected based on the segments generated. In the GEE 

platform, the classifier is standardized on a pixel basis [88]. For this reason, for each 

segment the SNIC algorithm calculated the mean value from the pixels that fall within 

the segment, and all pixels falling within a segment were assigned the computed mean 

value of that segment [86]. First of all, 5%-20% of the number of segments from the 

segmented study areas were selected individually as the training segments using the 

geometry tools of the GEE web-based code editor. Training data were collected for two 

classes: ‘burned’ and ‘unburned’. Training data was collected as feature collection and 

it has a property that stores the class label and properties that store the predictor 

variables. Then, the selected training samples were randomly split as training and 

validation in a ratio of 70 percent to 30 percent. The data allocated for training were 

used to train the model. Thus, a trained RF model was created for each study area using 



 

 

the training data collected within it, and object-based classification was carried out 

using this model.  

 

To evaluate the transferability of the RF model, the study areas were divided into target 

domain and source domain. Study areas MG and CK were selected as source domain 

and the RF model was trained with the data collected from these two domains. The 

reason for choosing these two study areas as source domain is that they contain a 

combination of forest types, diversity of land use classes and different topographic 

conditions, although they have the characteristics of Mediterranean forests, and the 

forest fires that occurred in these areas occurred in different years (in 2021 for MG and 

in 2023 for CK). Detailed description about the study areas is given in Chapter 2.2.1. 

All study areas (MR, MG, KV, CK) including MG and CK were used as the target 

domain. Figures 3.2, 3.3, 3.4, and 3.5 respectively show the locations of training 

samples collected from the study areas MR, KV, MG, and CK for the classes ‘burned’ 

and ‘unburned’. 

 

 

Figure 3.2. MR Study Area Training Data Set 



 

 

 

Figure 3.3. KV Study Area Training Data Set 

 

Figure 3.4. MG Study Area Training Data Set 



 

 

 

Figure 3.5. CK Study Area Training Data Set 

 

3.5. Object-Based Classification 

Despite the great advantages of remote sensing, especially in earth observation, various 

problems have been encountered in the detection of burned forest areas with satellite 

images. One problem is that multispectral reflectance creates various types of 

confusion. For example, mixing of lightly burned areas with other areas, especially 

shadows, bare soil, and water bodies, mixing of spectral reflections of burned areas and 

shaded areas can be given as examples. Object-based image analysis is an approach that 

uses spatial information as well as spectral information [42]. The fact that object-based 

classification uses color, shape, size and topological features of the image and thus 

analyses the objects and then proceeds to the classification stage provides a solution to 

many problems encountered in pixel-based classification. 

 

In this study, image classification was carried out using an object-based approach. RF 

machine learning model was selected as the classification algorithm. For image 



 

 

segmentation, which is the first step of object-based classification, the SNIC algorithm 

was selected.  

 

Developed by [89] RF is an ensemble learning technique.  RFs are combinations of tree 

estimates where each tree is sampled independently and all trees depend on the values 

of a vector with the same distribution [89]. RF is an advantageous classification 

algorithm with its robustness against outliers and overfitting and its ease of use [90]. 

High accuracy and processing speed are two important main benefits of RF [91]. In RF, 

each tree is trained on different training sets using bootstrap aggregation and error 

estimation [92, 93]. 

 

The main steps of RF algorithm are as follows (Figure 3.6): 

Step 1: Selection of random samples from training set. 

Step 2: Creating a decision tree for each training data associated with the training data. 

Step 3: Making predictions and voting for all trees in the forest. 

Step 4: Selection of the prediction result with the maximum number of votes as the 

prediction result. 

 

Figure 3.6. The RF Algorithm 

 



 

 

In GEE, the ‘classifier’ package manages traditional ML algorithms, including RF. To 

implement RF in GEE several parameter values must be defined. These include 

“numberOfTrees”, the number of decision trees in the forest, “variablesPerSplit”, the 

number of variables per split, “minLeafPopulation, the minimum leaf population, 

“bagFraction”, the bag fraction, the proportion of training data to be used in the creation 

of the next tree, “maxNodes”, the maximum number of nodes, and “seed”, the 

randomization seed. 

 

Considering the number of classes used in this study (burned areas and unburned areas) 

50 trees were built. The number of variables (bands) used for each split was computed 

as the square root of the number of the input bands. 

 

3.6. Model Transferability 

Transferability describes the situation where a model is trained on one partition and 

tested on another partition. Spatial transferability is the training of a model in one area 

and testing it in other areas. This method is relevant to remote sensing studies that deal 

with large geographical areas or different temporal scales. Evaluating the spatial and 

temporal transferability of ML algorithms, seeing the usability of the developed models 

in different areas and at different times, and testing their success is an important step to 

generalize the algorithms and classification results and to adapt them faster to future 

studies [40]. 

 

In the literature, model transferability has been applied to different satellite images of 

different resolutions with different scenarios to detect burned forest areas or to 

determine the fire severity in burned forest areas, and the transferability of the model 

has been successfully achieved spatially and temporally [36, 37, 39, 42, 43]. RF is a 

classification algorithm characterized by its robustness and adaptability to outliers [90]. 

This makes it a valuable tool for good generalization and adaptation to new datasets and 

conditions across different geographical regions and environmental conditions. Several 

studies have tested the transferability of the RF algorithm for mapping burned forest 

areas using Sentinel-2 imagery for different ecosystems and experimenting with 



 

 

different scenarios. [39] tested the transferability of the RF algorithm for two different 

forest fires in South Korea with sentinel-2 images. [37] tested the transferability of the 

RF algorithm on the GEE platform with the object-based classification method and 

obtained successful results for South Korea.  These studies show the potential of the 

transferability of the RF algorithm for mapping burned forest areas. This potential can 

accelerate and facilitate the process of mapping burned areas and the acquisition of 

spatial information and support opinion makers to make informed decisions. 

 

One of the main objectives of this study was to assess the transferability of the object-

based ML classification algorithm for burned area mapping using cloud computing and 

freely available Sentine-2 images. This will enable a great potential for rapid damage 

assessment and the formulation of emergency response plans to be identified, without 

the need for pre-intervention for possible future forest fires specific to the 

Mediterranean forests, woodland and scrub biome.  

 

To implement the concept of the model transferability, the study areas (4 in total) were 

divided into target domain and source domain. Study areas MG and CK were selected 

as the source domain as they are located in different geographical regions with different 

combinations of forest types, diversity of land use classes and topographic conditions. 

Furthermore, in these study areas the fire events occurred in different years. In study 

area MG, the fire event occurred in 2021, while in study area CK, the fire event 

occurred in 2023. Detailed description about the study areas are given in Chapter 2.2.1. 

The spatial, spectral and temporal characteristics of the study areas make the 

transferability of the object-based RF machine learning classification more challenging. 

The RF algorithm was trained using the samples collected from these two areas. Then, 

the trained model was applied to all study areas to map the burnt areas. In this regard, 

the present study aims to provide spectral diversity with the training data collected from 

two study areas and test the transferability of the model spatially and temporally by 

means of applying it in all study areas. 

 



 

 

3.7. Accuracy Assessment 

The accuracy assessment of the classified images is an important step in remote sensing 

studies, as it is an indicator of how well the classification objective is achieved and how 

well objects are extracted from the image. In order to evaluate the accuracy, validation 

data, usually called ground truth or reference data, are needed [94]. 

 

In this study, samples for ground truth were created using the natural color, false color 

band composites, and high-resolution Google Earth images. For each of the study areas 

CK and MR, 1000 points were selected, while for study areas KV and MG respectively, 

1200 and 1500 points were selected using the ArcGIS Pro software (Table 3.2.). The 

sample selection procedure was based on the stratified random sampling method. 

Accuracy values were computed by comparing the classification results with the ground 

truth samples based on an error matrix. The tools used in ArcGIS Pro software are given 

in Chapter 3.1. 

 

Table 3.2. The number of samples used for accuracy validation 

Study Area Ground Truth Samples 

CK 1000 

MR 1000 

KV 1200 

MG 1500 

 

Error Matrix (EM) gives three accuracy measures, Producer's accuracy (PA), User's 

accuracy (UA) and Overall accuracy (OA). An EM is a square matrix expressing the 

number of pixels assigned to certain classes according to the reference data [95]. It is a 

suitable technique to communicate classification accuracy since it describes each class 

along with both the mistakes of inclusion (commission error) and errors of exclusion 

(omission error) [95]. OA is defined as the total number of correctly classified pixels 

(sum of diagonals) divided by the total number of reference pixels. PA is derived by 

dividing the number of successfully categorized pixels in each class by the number of 

sample data set pixels used for that class, and it represents how effectively the sampling 



 

 

set pixels of a certain land cover type can be classified. The UA is the number of 

properly classified pixels within each class divided by the total number of pixels 

classified within that category, and it reflects how likely it is that a pixel assigned to a 

class represents that class. 

 

The kappa coefficient found by [96]  is also widely used in accuracy assessment. All 

elements in the error matrix are used to calculate the kappa coefficient. In this study, 

OA, PA, UA and Kappa coefficient values were calculated to assess the accuracy of the 

classified images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

4. RESULTS AND DISCUSSIONS 

 

4.1. Segmentation 

Segmentation was performed using a total of ten bands including six bands (B2, B3, B4, 

B8, B11, B12) of Sentinel-2 data and four spectral indices (MIRBI, BAI, NBR2, NDVI) 

derived from Sentinel-2 data. GEE creates a multiband raster dataset as an output after 

defining the SNIC segments, i.e., clusters. This multiband raster dataset contains the 

clusters and additional layers that contain the mean values of the input bands.  

 

In this study, the input image is a 10-band composite image. The output of the SNIC 

algorithm is a 11-band raster dataset. Of these 11 bands, 10 bands contain the mean 

values of the input bands calculated for each segment from the pixels that fall within the 

segment. One band contains the clusters. With the segmentation step, similar pixels are 

grouped, reducing the number of input elements for the object-based classification 

process.  

 

The SNIC segmentation generated a total of 2016 segments for study area MR, 4056 

segments for study area CV, 10176 segments for study area MG and 2250 segments for 

study area CK. Hence, with the segmentation process, the input data elements (number 

of pixels) decreased from 4046526 to 2016 for study area MR, from 6425837 to 4046 

for study area CV, from 20210553 to 10176 for study area MG and from 3689469 to 

2250 for study area CK. Figure 4.1 shows the result of SNIC segmentation for study 

area MR. Figure 4.2 shows the result of SNIC segmentation in vector form for study 

area MR. Figure 4.3 depicts the result of SNIC segmentation for study area KV. Figure 

4.4 depicts the result of SNIC segmentation in vector form for study area KV. Similarly, 

Figure 4.5 shows the result of SNIC segmentation for study area MG. Figure 4.6 shows 

the result of SNIC segmentation in vector form for study area MG. Figure 4.7 illustrate 

the result of SNIC segmentation of study area CK. Figure 4.8 shows the result of SNIC 

segmentation in vector form for study area CK.  

 



 

 

Since the classifier in GEE is standardized on a pixel basis, in order to implement an 

object-based classification approach, the same brightness value, such as the mean value 

must be assigned to each pixel in a segment. The SNIC algorithm overcomes this 

problem by creating a multiband raster dataset with the mean bands. Since the SNIC 

output image varies depending on the visualization scale, the output scale should be 

fixed for clusters with segmentation outputs. In this study, the cluster output scales were 

fixed to Sentinel-2's native resolution of 10m. The output scale of the clusters affects the 

processing time. For example, setting the clusters to a lower scale was found to speed 

up the processing time.  

 

The SNIC algorithm in GEE is based on a regularly spaced seed grid. The selected seed 

grid parameter, i.e. the superpixel seed position range in pixels, influences the number 

of clusters. The evaluation of different cluster shapes with varying seed grid parameters 

is necessary to find a more effective cluster size for the study area and size of the 

landscape patches. [86] compared different classification algorithms in terms of OA by 

applying various seed grid parameters to different data sets for LULC classification 

over Sentinel-2 and Landsat-8 images and emphasized that testing various seed grid 

parameters would be useful in finding the effective cluster size.  

 

In this study, for each study area, the seed grid parameter value was determined based 

on several trials taking into consideration the heterogeneity of the study areas. Figure 

4.9 shows the results of different seed grid parameters tried for a part of the MR study 

area. In order to avoid over and under segmentation procedures it is important to 

generate segments with appropriate sizes. Under segmentation results in more complex 

objects and an inherent error in classification [97]. Over-segmentation may be preferred 

to under-segmentation because it is a more complex process to split segments than to 

merge them [52]. In this study, the selected study areas are quite heterogeneous. 

Moreover, burned areas themselves are also heterogeneous as they tend to be burned 

with different severity. Thus, over-segmentation was preferred in this study. Figure 4.10 

is an example that shows over-segmentation for a part of study area MR when the seed 

grid parameter is set to 50. Over-segmentation would generate higher number of 



 

 

segments with smaller sizes. Although this increases the computation time for 

classification, it does not affect the classification accuracy [98].  

 

The computation and analysis required for segmentation and object-based classification 

in GEE is computationally and analytically heavy, and this can lead to errors or longer 

time for the analysis due to the processing and memory limit quotas that GEE offers 

free of charge to the users [37]. Especially the conversion of the segments in raster form 

into vector form takes a long time if the seed grid parameter is kept low and the number 

of segments is high. In this study, the result of image segmentation was converted to 

vector form only for the visual analysis of the segments and to collect training samples 

from the segments. For the developed code to run fast and avoid problems due to over 

segmentation, all operations except training data collection were successfully carried 

out on raster dataset.  

 

 

Figure 4.1. The result of SNIC segmentation for study area MR. 

 

 



 

 

 

  

Figure 4.2. The segments in vector form for study area MR (Seed size: 50). 



 

 

 

Figure 4.3. The result of SNIC segmentation for study area KV. 

 

 

 



 

 

 

  

Figure 4.4. The segments in vector form for study area KV (Seed size: 50). 

 



 

 

 

Figure 4.5. The result of SNIC segmentation for study area MG. 

 

 

 



 

 

 

  

Figure 4.6. The segments in vector form for study area MG (Seed size: 50). 



 

 

 

Figure 4.7. The result of SNIC segmentation for study area CK. 

 

 

 



 

 

 

  

Figure 4.8. The segments in vector form for study area CK (Seed size: 50). 
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Figure 4.9. The result of SNIC segmentation for study area MR. a) seed size: 25, b) seed 

size: 50, c) seed size: 150, d) seed size: 250 



 

 

 

Figure 4.10. Several examples (red circled areas) for illustrating over-segmentation 

from study area MR (Seed size: 50). 

 

4.2. Burned Area Maps 

After the segmentation stage, training data were collected from all study areas. Then, 

for each study area, the RF algorithm was trained with the training data collected for the 

study area being considered, and the burned area maps were generated based on the 

object-based classification logic. Figures 4.11, 4.12, 4.13, and 4.14 respectively show 

the burned area maps generated for study areas MR, KV, MG, and CK. These maps, 

produced at 10 m resolution from Sentinel-2 images after the fire, are a valuable 

resource for studies such as understanding the impact of the fire after the fire and 

creating rapid action plans. In addition, the possibility of free access to Sentinel-2 

images makes these images a valuable resource for the rapid assessment of forest fire 

effects, as well as developing novel methods and producing accurate burned area maps. 



 

 

 

Figure 4.11. Burned-area map of study area MR obtained through object-based RF 

classification of the post-fire Sentinel-2 image. 

 

Figure 4.12. Burned-area map of study area KV obtained through object-based RF 

classification of the post-fire Sentinel-2 image. 



 

 

 

Figure 4.13. Burned-area map of study area MG obtained through object-based RF 

classification of the post-fire Sentinel-2 image. 

 

Figure 4.14. Burned-area map of study area CK obtained through object-based RF 

classification of the post-fire Sentinel-2 image. 



 

 

4.3. Burned Area Maps Based on Model Transferability 

The spatial transferability of the RF model, which was trained based on two study areas 

(MG and CK), was evaluated on all study areas. To do that object-based classification 

was applied to all study areas using the model trained based on these two study areas. 

The difference in the model is that only the data used changed in training the model. All 

the parameters of the RF classification algorithm and the SNIC segmentation algorithm 

were kept constant. As described in the chapter 3.4., the algorithm was trained with the 

training samples collected from the study areas MG and CK, which were selected as the 

source domain, and then applied to all study areas to extract burned areas through 

object-based classification. Figures 4.15, 4.16, 4.17, and 4.18 illustrate the burned area 

maps and the spatial distribution of the burned forest areas extracted by applying 

transfer learning of the RF algorithm.  

 

 

Figure 4.15. Burned-area map of MR obtained through transferability of the RF model. 



 

 

 

Figure 4.16. Burned-area map of KV obtained through transferability of the RF model. 

 

Figure 4.17. Burned-area map of MG obtained through transferability of the RF model. 



 

 

 

Figure 4.18. Burned-area map of CK obtained through transferability of the RF model. 

 

In order to observe misclassifications occurred in burned area maps based on the RF 

model transferability, the classification maps and the composite images were visually 

compared and analyzed. In figure 4.19, several areas selected from study areas MG and 

MR where transferability did not give correct results are shown. Figures 4.19 a, b and c 

show a subset of the study area MG where the model transferability gave incorrect 

results. To remind, MG was one of the source domain study areas. When Figures 4.19 b 

and c are compared, it is observed that the transferred model provided results with 

misclassification in shaded areas, some agricultural areas according to the vegetation 

period, roads and bare soil cover. Figures 4.19 d, e and f show the comparative results 

for study area MR, which was not the source domain and no training data from this 

study area was used for training the model. Comparing Figures 4.19 e and f, the 

predominantly maquis areas described in detail in chapter 2.2.1 are misclassified by the 

transferred model. The misclassifications given in Figure 4.19 c are among the expected 

results for the source domains due to the inclusion of training samples from another 

domain in the model, although one of the given sample study areas is the source 

domain. Similarly, the misclassifications given in Figure 4.19 f are among the expected 



 

 

results of applying the model trained with data from other study areas to the MG study 

area without collecting data specific to the MG study area. Compared to Figure 4.19 e, 

it is observed that some maquis areas and degraded stand areas are mixed with burned 

areas. Despite these confusions between the classes, it is considered that the 

transferability of the RF model provided satisfactory results in the study areas used in 

this work. 
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Figure 4.19. (a) For a selected region of MG, false color display of the post-fire 

Sentinel-2 image. (b) Burned-area map obtained by using RF model. (c) Burned-area 

map obtained by using RF model transferability. (d) For a selected region of MR, false 

color display of the post-fire Sentinel-2 image. (e) Burned-area map obtained by using 

RF model. (f) Burned-area map obtained by using RF model transferability. 

 



 

 

4.4. Accuracy Values 

Table 4.1 presents the OA and Kappa values of the results of the object-based RF 

classification and the classification based on RF model transferability. The results were 

validated based on high-resolution Google Maps and true color and false color Sentinel-

2 images. The RF classifier resulted in an OA of over 93% in all study areas. The 

highest OA among the study areas was obtained for the study area KV. This study area 

contains both more forest cover and less heterogeneity compared to other areas. High 

forest land constitutes about 46% of this study area. This means that the structure of the 

study area is effective on the classification accuracy. The Kappa values computed for all 

study areas were above 85%. Similar to OA, the highest Kappa value was obtained for 

the study area KV. When the transferability of the model is assessed, the OA for all 

study areas were above 85 %. On the other hand, the Kappa values were above 72% for 

all study areas.  

 

The transferability of the RF model appears to be most successful in the study area CK, 

which provided the highest OA value of 96.8%. This study area was one of the study 

areas selected as the source domain for testing the RF model transferability. This is 

associated with the transferability of the model giving the highest accuracy in this study 

area. However, there was some decrease in the accuracy of the other source domain, the 

study area MG. The accuracy for the study areas MR and KV that were not selected as 

source areas decreased. 

 

Figure 4.20 presents the confusion matrices computed for the study areas used in the 

study. Figure 4.21 shows the UA values and PA values of the classification results. For 

all study areas, both RF model and RF model transferability produced UA values higher 

than 77% and PA values higher than 85%. Except for study area CK, in all other study 

areas the RF model produced higher UA values than the RF model transferability for 

both classes (burned & unburned). In the case of PA, except for study area MG, in all 

other study areas the RF model provided higher values than the RF model transferability 

for the class burned.  

 



 

 

Table 4.1. OA and Kappa coefficients resulting from object-based RF classification and 

RF model transferability for all study areas. 

 RF RF Transferability 

Study Area OA Kappa OA Kappa 

MR 93.5% 85.3% 87.5% 72.8% 

KV 97.7% 92.8% 94.8% 84.5% 

MG 94.8% 87% 93.6% 84.5% 

CK 96.5% 85.9% 96.8% 86.7% 

 

 

Figure 4.20. For all study areas, the confusion matrices computed for the RF model and 

RF model transferability. 

 



 

 

 

 

Figure 4.21. PA and UA values computed for the RF model and RF transferability 

 

As it was mentioned earlier (Chapter 3.4), the collected samples were randomly divided 

into 70 per cent as training data and 30 per cent as validation data. With the data 

allocated for validation, an accuracy score was calculated to evaluate how the RF 

algorithm performs with data it has not seen before. The RF model trained based on the 

data sets of study areas MR, KV, MG and CK provided the accuracy values of 92.31%, 

97.73%, 94.23% and 95% respectively on test data. For the evaluation of the 

transferability of the RF model, the trained model provided an accuracy score of 93.6% 

on the test data of the source domains MG and CK. 

 



 

 

4.5. Inter-comparison with ancillary data  

The burned-area maps generated using the object-based RF classification approach and 

the RF model transferability were compared with the C3S - C3SBA10, MODIS - 

MCD64A1 and EFFIS as global burned area datasets and General Directorate of 

Forestry data as national burned area data on hectare basis (Table 4.2). The purpose of 

this comparison was not to validate the obtained results. It was to reflect the differences 

and uncertainties of the burned area information between different global and national 

data sets.  

 

As shown in Figure 4.22, the burned scar shape and spatial information obtained by the 

applied object-based RF image classification method on the post-fire Sentinel-2 images 

are in close agreement with the global data sets. Differences in the spatial, spectral and 

temporal resolution of the compared global burned area products, and differences in the 

data and methods used for burned area information are among the reasons for the 

difference in burned area information.  

 

The difference in burned area information between different sensors can also be related 

to the heterogeneity of the burned areas. In those study sites with heterogeneous land 

cover types, unburned areas can be included in the information from coarse resolution 

sensors, leading to a higher burned area information [67]. In addition, the EFFIS maps 

show fires that occurred in the forested and semi-natural areas and does not include 

agricultural areas [68]. In the study of [68] it was shown that when the comparison 

between Modis and EFFIS data is reduced to only forest and semi-natural areas, the 

differences between the burned areas reduce, but since the difference persists, they 

emphasized that the differences between the two products should be associated with 

other factors. The authors also emphasized that since EFFIS data is in vector format and 

is a digitization product, it also contains generalization error. In the study conducted by 

[66], EFFIS data were used as ground truth data to evaluate the accuracy of the MODIS 

MCD64A1 dataset over the fires that occurred in Türkiye between 2015-2020 and the 

accuracy of the MCD64A1 data was evaluated. A precision of 93.81% and an F1 score 

of 79.38% were reported for the MCD64A1 data. 

 



 

 

Table 4.2. Comparison of the burned areas detected in this study with the burned-areas 

provided by the data sets MCD64A1, C3SBA10, EFFIS, and GDF. *The C3SBA10 

dataset did not contain burned area information for study area CK . The values are in 

hectars. 

 Study Areas 

MR KV MG CK 

RF 10724,16 13083,46 41960,69 5729,73 

RF Transferability 12078,63 14437,54 47799,99 5203,40 

MCD64A1 12478,53 15175,97 57799,43 6911,64 

C3SBA10 7820,29 13112,70 33367,12 -* 

EFFIS 11548,00 15322,00 54769,00 7031,00 

GDF 9051,60 16331,00 48412,00 3869,75 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

  

  

 

 

Figure 4.22. For study area KV, comparison of the detected burned areas (shown in red 

color) with the burned areas provided by the data sets MCD64A1, C3SBA10, and 

EFFIS. *GDF data was not included as it is not in spatial form. 



 

 

5. CONCLUSIONS 

Detection of burned forest areas from satellite imagery has been investigated in the 

previous studies using the ML algorithms and object-based classification method, 

however studies based on post-fire Sentinel-2 imagery using the object-based method 

on cloud-based platform remain limited. In this study, SNIC segmentation and RF 

machine learning algorithm were integrated on GEE platform, which is a free geospatial 

processing and analysis platform, and burned areas in four different study sites were 

successfully extracted from post-fire Sentinel-2 images through object-based 

classification logic. After pre-processing operations (downscaling, clipping, mosaicking 

etc.) the Sentinel-2 images were made ready to be used for achieving the segmentation 

stage. After performing image segmentation, object-based RF classification was carried 

out on the segmented image. Furthermore, the transferability of the RF model was 

evaluated on the study areas.  

 

The principal conclusion to be drawn from this study is that the proposed object-based 

RF classification approach applied in four different study areas provided quite 

satisfactory results. When the transferability of the model is evaluated, the results are 

still satisfactory, although there is a decrease in the OA. 

 

The fundamental conclusions obtained in this study can be summarized as follows: 

• The results show that the object-based RF model can be effectively used for the 

detection and mapping of burned forest areas with an OA of over 93%.  

• The results with the OA of over 85% obtained through transferability of the RF 

model demonstrate that the utilized object-based RF model has a high potential 

to be implemented in different parts of Türkiye, where the land cover types are 

Mediterranean forests, woodlands, and shrublands. 

• The results show that the post-fire uni-temporal approach can be successfully 

applied with the post-fire Sentinel-2 imagery to extract and map burned forest 

areas. The uni-temporal approach on post-fire image facilitated the application 

speed, reduced data and analysis requirements, and highlighted the usefulness of 

the uni-temporal approach in the detection of burned forest areas. 



 

 

• Based on the visual interpretation of the results it can be stated that the selection 

of the SNIC segmentation parameter values have a significant effect on the 

segmentation results of the 10 m Sentinel-2 imagery and effect the results of 

object-based classification. Different segmentation parameters affect the size 

and number of the image objects, which can directly affect the classification 

results. The seed size parameter, which defines the super pixel seed position 

range in pixels, was found to be highly effective on the segmentation results. 

Therefore, it is important to test and evaluate the seed size parameter and other 

segmentation parameters to achieve the best segmentation results, as failure to 

select the appropriate parameter may lead to over- or under-segmentation and 

directly affect the classification results. 

• Certain level of inconsistencies exist between the burned area maps generated by 

the used approach and the global burned area data sets (C3SBA10, MCD64A1, 

EFFIS) and GDF data, demonstrating the amount of burned area. . The fact that 

global burned area data are inconsistent even among themselves and present 

different amounts of burned area reveals the importance of accurate, precise and 

consistent information in burned area data.  

• As a result of the tested SNIC parameters, smaller sized segments resulted in a 

higher number of segments, and as the study area increased, the number of 

segments to be classified increased and the processing time increased. This may 

lead to long and heavy analyses or errors due to the computational and memory 

limitations of GEE [37, 99]. 

• The use of the cloud-based and free GEE platform for the entire study allows 

users to quickly analyze high-resolution satellite imagery for assessing wildfire 

damage, developing response plans and other relevant analyses on a single 

platform, independent of computer processing power. 

 

Overall, this study demonstrates that object-based ML classification of the 10-metre 

resolution post-fire uni-temporal Sentinel-2 data can be effectively used to detect 

burned forest areas using the cloud-based GEE platform. This study also shows that the 

trained model can be applied for rapid assessment of potential fires in Mediterranean 

forests, woodlands and shrublands biome specific areas in Türkiye. Furthermore, this 



 

 

study highlights that the GEE platform has the potential to be a powerful and preferred 

tool for disaster management, especially for forest fires. 
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