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ABSTRACT

COMPUTATIONAL FLUID DYNAMICS (CFD) MODELING OF
INTERFACIAL MOMENTUM TRANSFER IN BUBBLY TWO-PHASE

FLOW

İzzet Özgün Güler

Doctor of Philosophy (PhD) , Nuclear Engineering
Supervisor: Prof. Dr. Cemil Kocar

July 2024, 138 pages

This dissertation addresses critical gaps in Computational Fluid Dynamics (CFD) modeling

of momentum transfer in two-phase flow systems. Available models, based on empirical

relations from the behavior of single bubbles in the Stokes regime, fail to capture the

complex dynamics of bubbly flows involving multiple interacting bubbles. This research

develops more accurate models by considering factors such as void fraction, shear, wake

effects, and turbulence.

The study begins with a literature review that highlights discrepancies between standard

modeling practices and the complexities of two-phase dynamics. It continues with CFD

simulations employing preferred closure models for drag, lift, and other forces, benchmarked

against experimental data to evaluate their accuracy and limitations. Insights from these

comparisons inform a design exploration procedure that defines functional forms for drag

and lift coefficient models with undetermined constants. An automated optimization process

minimizes discrepancies between CFD analysis and experimental observations across
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various cases.

The dissertation concludes by comparing available models with the newly developed ones,

demonstrating the latter’s performance in predicting two-phase flow dynamics. This research

contributes a methodologically robust and theoretically sound framework for advancing

CFD modeling, impacting both academic research and industrial applications.

Keywords: multiphase flow, two-phase flow, bubbly flow, CFD modeling, interphase

momentum exchange, momentum closure relations
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ÖZET

BALONCUKLU İKİ FAZLI AKIŞLARDA, FAZLAR ARASI
MOMENTUM TRANSFERİNİN HESAPLAMALI AKIŞKANLAR

DİNAMİĞİ (HAD) İLE MODELLENMESİ

İzzet Özgün Güler

Doktora, Nükleer Enerji Mühendisliği
Danışman: Prof. Dr. Cemil Kocar

Temmuz 2024, 138 sayfa

Bu tez, Hesaplamalı Akışkanlar Dinamiği (HAD) modellemesindeki kritik boşlukları ele

almakta ve özellikle iki fazlı akış sistemlerinde momentum transferi mekanizmalarına

odaklanmaktadır. Mevcut modeller, genellikle Stokes rejimindeki tekil baloncukların

davranışına dayanan ampirik ilişkilerden türetilmiş arayüz kapatma modellerine dayanır.

Ancak, birden fazla etkileşen baloncuğu içeren baloncuklu akışların karmaşık dinamiklerini

bu modeller yetersiz bir şekilde temsil eder. Bu araştırma, hacim oranı, kayma, iz

etkileri ve türbülans gibi kritik faktörleri dikkate alarak daha doğru modeller geliştirmeyi

amaçlamaktadır.

Çalışma, CFD simülasyonları için kapatma modeli seçimindeki trendleri ve dikey borularda

baloncuklu akış üzerine yapılan deneysel araştırmaları inceleyerek başlar. Standart

modelleme yaklaşımları ile iki fazlı akış dinamikleri arasında uyumsuzluk olduğu tespit

edilmiştir. Ardından, sürükleme, kaldırma ve diğer kuvvetler için tercih edilen kapatma

modelleri kullanılarak gerçekleştirilen CFD simülasyonları, kapsamlı deneysel verilerle

iii



karşılaştırılarak değerlendirilir. Bu karşılaştırmalar, sürükleme ve kaldırma katsayılarının

modelleri için fonksiyonel bir form ve belirsiz sabitler tanımlayan bir tasarım keşif prosedürü

geliştirilmesine rehberlik eder.

Araştırma, geliştirilen yeni modellerin mevcut modellerle karşılaştırmasını içerir ve bu

modellerin iki fazlı akış dinamiklerini tahmin etmedeki performansını gösterir. Bu tez,

akademik araştırma ve endüstriyel uygulamalara katkı sağlayacak metodolojik ve teorik

olarak sağlam bir çerçeve sunmaktadır.

Anahtar Kelimeler: çok fazlı akış, iki fazlı akış, baloncuklu akış, HAD modelleme, fazlar

arası momentum transferi, momentum kapatma ilişkileri

iv



CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
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Nomenclature

Roman Symbols

g Body force

n Unit vector

q Heat flux vector

u Velocity vector

x Spatial position vector

I Unit vector

J Efflux vector

T Surface stress tensor

u′iu
′
j Reynolds stress tensor

Dij Turbulent diffusion term

j Superficial velocity

k Turbulence kinetic energy

lm Mixing length

p Pressure

Pij Production term

t Time

ui Velocity component in the i-direction

u′i Fluctuating velocity component in the

i-direction

um Mixing velocity

h Enthalpy

m Mass

ey Unit vector

FB
d Basset force

FD
d Drag force

F L
d Lift force

F V
d Virtual mass force

F TD
d Turbulent dispersion force

FWL
d Wall lift force

FD Drag force
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FL∞ Lift force

FTD Turbulent dispersion force

FVM Virtual mass force

FWL Wall lubrication force

g Gravitational acceleration

MB
d Basset force per unit volume

MD
d Drag force per unit volume

ML
d Lift force per unit volume

MV
d Virtual mass force per unit volume

MTD
d Turbulent dispersion force per unit

volume

MWL
d Wall lift force per unit volume

Mid Generalized drag force per unit

volume

n Unit normal vector

vd Velocity of the particle

vg Velocity of the gas phase

vl Velocity of the liquid

vr Relative velocity

Erel Mean relative error

Ad Cross-sectional area of the sphere

Bd Volume of the particle

CD Drag coefficient

Cj Constraint violation for the j th

constraint

CL Tomiyama lift coefficient

Cγ1 Power law function constant 1

Cγ2 Power law function constant 2

CD,cap Drag coefficient for a cap

CD,ellipse Drag coefficient for an ellipse

CD,sphere Drag coefficient for a sphere

CDm Modified drag coefficient according to

Tomiyama’s theoretical model

CL0 Nominal lift coefficient

CL∞ Lift coefficient

CTD Turbulent dispersion coefficient

CVM Virtual mass coefficient

CW1 Wall lubrication constant 1

CW2 Wall lubrication constant 2

CW3 Wall lubrication constant 3

CWC Wall lubrication cut-off coefficient

CWD Wall lubrication damping coefficient
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CWL Wall lubrication coefficient

D Pipe diameter

d Characteristic length scale, diameter

Db Diameter of the bubble

E Aspect ratio of the bubble

E0 Aspect ratio of a bubble in infinite

stagnant liquid

F Function dependent on aspect ratio E

f Void fraction dependency function

fγ Power law function

fα α correction function

fd d correction function

fEod Eod correction function

fEo Eo correction function

fk k correction function

fReω Reω correction function

fRe Re correction function

fWe We correction function

kf Turbulent kinetic energy of the liquid

phase

md Mass of the particle

N Number of measurement stations

Ncon,j Normalization value for the j th

constraint

Ncon Number of constraints

Nobj,i Normalization value for the ith

objective

Nobj Number of objectives

Oi Response value for the ith objective

P Performance function

rp Radius of the particle

Si Sign for the ith objective

Vd Volume of the spherical particle

Vexp Experiment result

Vsim Simulation result

Wlin,i Linear weight for the ith objective

Wlin,j Linear weight for the j th constraint

Wquad,i Quadratic weight for the ith objective

Wquad,j Quadratic weight for the j th

constraint

Erel Relative error

y Distance from the wall
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A+ Empirical constant for wall damping

factor

Bd Volume of the particle

Cµ Model constant for turbulent viscosity

Cε1 Model constant for k-ε model

Cε2 Model constant for k-ε model

Cla1 Empirical constant for bubble-induced

turbulence near walls

Cla Empirical constant for bubble-induced

turbulence

Cvm Virtual mass coefficient

uη Kolmogorov velocity scale

A Area

C Constant

D Diameter

F Force

k Turbulent kinetic energy

L Characteristic length

P Pressure

Q Flow rate

q Volumetric heat source

u Internal energy

V Volume

Abbreviations

BIT Bubble Induced Turbulence

CFD Computational Fluid Dynamics

DNS Direct Numerical Simulation

FAD Favre-Averaged Drag

HPC High-Performance Computing

LES Large Eddy Simulation

MDO MultiDisciplinary Optimization

N-S Navier-Stokes

RANS Reynolds-Averaged Navier-Stokes

RSM Reynolds Stress Model

RST Reynolds Stress Transport

Dimensionless Numbers

Eo Eötvös number

Eod Modified Eötvös number

M Morton number

Re Two-phase Reynolds number

Red Particle Reynolds number

Re∞ Single-bubble Reynolds number

Reω Rotational Reynolds number

Ta Tadaki number
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Fr Froude number

Pr Prandtl number

Re Reynolds number

Sc Schmidt number

We Weber number

Greek Symbols

λ Bulk viscosity

µ Dynamic viscosity

ν Kinematic viscosity

ω Specific dissipation rate

ϕ Source term

Φij Pressure-strain correlation term

Πij Velocity-pressure gradient correlation

term

ψ Any physical quantity

ρ Density

ε Turbulence kinetic energy dissapation

εij Dissipation term

α Void fraction

µ Dynamic viscosity

µl Viscosity of the liquid

µm Mixture viscosity in the two-phase

system

νf Kinematic viscosity of the fluid

ωV Vorticity

ρd Density of the particle

ρf Density of the fluid

ρg Density of the gas phase

ρl Density of the liquid phase

σ Surface tension

ξ Bubble deformation modification

factor

α Model constant for k-ω model

β Model constant for k-ω model

β Thermal expansion coefficient

β∗ Model constant for k-ω model

δ Boundary layer thickness

η Kolmogorov length scale

κ von Kármán constant

ω Specific dissipation rate

ϕ Potential function

ρ Density
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σω Model constant for k-ω model

σε Model constant for k-ε model

σε Model constant for dissipation rate

σk Model constant for k-ε and k-ω

models

σk Model constant for shear-induced

turbulence

τ Shear stress

τη Kolmogorov time scale

Oversymbols

ui Mean velocity

ũi Favre-averaged velocity

Subscripts

b bubble

d dispersed

f fluid

g gas

i ith phase

k kth phase

l liquid

m mixture

p particle

S source

a area

g gas phase

i Index

j Index

k Index

l liquid phase

s surface

t turbulent

w wall

Superscripts

e eddy

mol molecular

T transpose

t turbulent

* dimensionless variable

+ non-dimensional wall units

′ fluctuating component
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1. INTRODUCTION

This dissertation presents an in-depth investigation into multiphase flow, a pivotal area in

nuclear engineering and across various engineering disciplines. The detailed understanding

and accurate modeling of multiphase flow is essential for the enhancement of performance

and the assurance of safety for variety of applications. This work aims to refine the

connection between theoretical models and experimental observations, improve the accuracy

of computational fluid dynamics (CFD) simulations, and contribute to the safe and efficient

design of systems across numerous industries, including but not limited to, energy, aerospace

and defense.

Multiphase flow dynamics is inherently complex, involving the interaction of multiple phases

with distinct physical properties. These interactions lead to unique flow behaviors and

patterns, challenging researchers and engineers to develop accurate predictive models. The

complexity of these models is augmented by the varied scales and conditions under which

multiphase flows occur.

1.1. Research Background

Multiphase, specifically bubbly two-phase flow dynamics is important in numerous industrial

processes, with specific importance in nuclear energy. Accurate CFD modeling is important

for understanding the performance of these processes, but it faces challenges due to narrow

coverage of the current models, or so called momentum closure relations. The study on

bubbly two-phase flows, has been a long lasting research, evolving from initial analytical

and theoretical explorations to more complex numerical analyses. The focus was primarily

on understanding the behavior and dynamics of single bubbles. Early research contributed

significantly to foundational knowledge but was often limited in practical applications.

Current research focuses on bubble dynamics, which represent applications of interest

involving considerable volume fractions of bubble clusters. Although there is effort towards
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improvements, this gap underlines the need for more generally applicable models, which

forms the core motivation for this research.

1.2. Research Objectives

Proposal of a new, generally applicable drag and lift coefficient models for momentum

closure required in CFD simulations of bubbly two-phase flow is the primary focus of

this study. This involves not only the development of new coefficient models but also a

new approach for evaluating these models against experimental data. The existing models

often lack the ability to predict flow behaviors under varied conditions, necessitating the

development of more applicable models.

Demonstration of the design exploration method use in multiphase flow research is the

specific objective of this research. This method, utilizing the use of automated processes

and efficient search algorithms, represents a novel approach in this field. Although there has

been a growing interest and some initial efforts by researchers including but not limited to

Bao et al. [3],[4], and Lucas et al. [5], to develop similar frameworks, the utilization of

design exploration methods remains relatively unexplored and underutilized in multiphase

flow studies. By the power of automation and advanced search algorithms, this research

aims to improve the process of model development.

1.3. Significance of the Research

This research aims to contribute significantly to the field of CFD modeling by introducing a

new approach to new model evaluation and development while addressing the gaps in current

methodologies. Given the growing accessibility to compute clusters, high-performance

computing (HPC) resources, the methodologies and findings of this study have the potential

to be applied broadly in similar research areas, while contributing to the accuracy of

two-phase flow CFD modeling.
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1.4. Research Methodology

The method involves determining widely preferred existing closure model sets of fellow

researchers for simulations of bubbly two-phase upward flow in cylindrical channels.

An initial performance evaluation of the selected sets of using simulations against the

available experimental databases is conducted. Following this, tunable model parameters

of the selected closure model set are evaluated through design space exploration using

a sophisticated search algorithm with the objective to minimize the simulation result

deviation against experimental data on void fraction, relative velocity, and turbulent kinetic

energy at measurement stations. Finally new models as functional forms for drag and lift

coefficients with unknown constants is proposed. The unknown constants in these functions

is determined with the same approach.

1.5. Thesis Structure

This structure is designed to cover the research process, from theory and literature review

through to the final discussion and conclusions to provide insight into the development

process of the new drag coefficient and lift coefficient models for bubbly two-phase flow

CFD modeling and validating against relevant experiments.

Introduction: The Introduction briefly explains the research, outlining the motivation,

objectives, and significance of the study. It provides the context and frames the study.

Theoretical Background: This chapter covers the fundamentals and principles of two fluid

modeling, the basis of the solver used for CFD modeling. Single phase and two-phase

turbulence modeling for CFD is detailed. Governing equations that the research methodology

and model development rely on are introduced.

Literature Review: Examination of existing literature is presented. This review assesses

previous studies, identifies gaps and positions the current research within context.
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Methodology: This section describes in detail the method employed in this research,

including the computational and design exploration tools used. Simulation set-up and

automated processes for parameter optimization, and model evaluation is detailed and a test

case is demonstrated.

Data and Analysis: Simulations with reference to the selected experiments are conducted

with default parameters of the most preferred closure models set. Parameter tuning is

demonstrated and comparison of default and tuned cases are detailed.

Model Development and Validation: This section details the development of new closure

models and their subsequent validation. It discusses the refinement of the models based on

the findings from the data analysis.

Discussion: Discussion section covers development and evaluation of the proposed models,

key findings, challenges and limitations and recommendations for model improvement.

Conclusion: The Conclusion briefly explains the key findings and shows alignment with

objectives. It highlights the contributions of the study to the CFD modeling research and

outlines recommendations for further research.
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2. THEORETICAL BACKGROUND

Two-phase flow is a complex fluid dynamics phenomenon with a common flow domain

for different single phases. These phases are separated into distinct regions by dynamic

interphases. The conventional differential balance equations are applicable to each of these

phases. Particular considerations are required for the interfaces and the boundary conditions.

The derivations and notations used throughout this subsection are adapted from Ishii’s

treatment of two-fluid modeling [6]. Ishii proposes that two-phase flow cases can be analyzed

through spatial and instantaneous variables. The proposed approach, known as the local

instant formulation, enables thorough assessment regarding overall flow characteristics.

The local instant formulation defines general flow properties such as phase velocities,

common pressure, temperature, and phase distribution in space and instance without

averaging. Averaged properties are smoothed over certain volumes and time frames.

Through appropriate averaging methods the local instant formulation forms the basis for

macroscopic models. These two-phase models require both phases to be addressed as

continuum for the common flow domain.

This approach leads to a complex multi-boundary problem, where the interface locations

are undetermined due to the interdependence of the fields. It can be applied directly to

separated or sharp inter-phase flows and the dynamics of interfaces can be investigated. This

formulation is applicable for the assessment of the behavior and dynamics of single bubbles

and droplets, taking breakup and coalescence into account. Icing and melting can be analyzed

as both are surface related phenomena and require interface tracking.

A simplified two-phase model is the mixture model which takes the relative motion between

phases into account and is applicable to systems where one of the phases is dispersed with

relatively low volume fraction. Mixture model is derived using the average velocity of the

mixture. Slip velocity describes the relative motion of the phases. It is alternatively known

as the drift-flux model.
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Balance Equations

In fluid dynamics, both the theoretical and computational models are derived from the general

conservation laws. As cited in Ishii’s [6] work, these equations can be derived for any

physical quantity ψk by considering the density ρk, the efflux vector Jk, and the source

term ϕk.

The fundamental balance equation is shown below;

∂(ρkψk)

∂t
+∇ · (ukρkψk) = −∇ · Jk + ρkϕk (1)

where k denotes the phase of interest. The first term, time derivative of the quantity of

interest is followed by the convective term indicating the transfer due to fluid motion. The

remaining terms denote the surface flux representing the transfer of the quantity of interest

across the boundaries of the system and the volumetric source term describing the generation

or consumption of the physical quantity within the system’s volume. This equation represents

a general form that applies to various conservation laws.

For the continuity equation, the respective terms are set as;

ψk = 1, ϕk = 0, Jk = 0 (2)

results in Eq (3) shown below as,

∂ρk
∂t

+∇ · (ρkuk) = 0 (3)

Time derivative term denotes the change of mass of kth-phase over time. Divergence term

represents the net flow of mass of kth-phase through the control volume. The divergence of

mass flux accounts for spatial changes. The equation states, any change in mass of kth-phase

over time must be balanced by the mass of kth-phase flowing through the volume. This is

the mass conservation for cases without phase change.
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For the momentum equation, relevant quantity is defined in terms of surface stress tensor, Tk

and body force gk;

ψk = uk, ϕk = gk, Jk = −Tk = pkI − τk (4)

where Tk is decomposed into the pressure term and viscous stress τk, with I denoting the

unit tensor.

∂ρkuk

∂t
+∇ · (ρkukuk) = −∇pk +∇ · τk + ρkgk (5)

Decomposing the stress tensor, the linear constitutive equation is obtained as;

τk = µk

[
∇uk + (∇uk)

T
]
−
(
2

3
µk − λk

)
∇ · ukI (6)

where µk denote the dynamic and λk denote the bulk viscosity for the kth-phase.

Without any body torque, conservation of angular momentum is;

Tk = T T
k (7)

where T T
k is the transposed tensor. This condition, applicable to non-polar fluids, implies

that the torques due to the stress tensor do not contribute to the angular momentum. In the

case of polar fluids, additional terms representing intrinsic angular momentum are required

[7].

Energy conservation is described by taking internal, uk and kinetic energy into account as;

ψk = uk +
v2k
2
, ϕk = gk · uk +

q̇k
ρk
, Jk = qk − Tk · uk (8)

Here, qk and q̇k denote the heat flux and volumetric source.
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∂ρk

(
uk +

v2k
2

)
∂t

+∇·

ρk(uk + u2
k

2

)
uk

 = −∇·qk+∇· (Tk ·uk)+ρk(gk ·uk)+ q̇k (9)

The equations (3), (4), (7), and (9) encapsulate the fundamental conservation equations.

Accurate specification of fluxes, body sources, and the state equations are essential for the

solution of these equations, ensuring a comprehensive and accurate representation of the

physical phenomena in multi-phase flow systems.

Interfacial Balance (Jump Conditions)

Differential balance equations are typically confined to individual phases but do not cover

phase interfaces. There is sharp variations and discontinuities at the interfaces and requires

a specialized representation for the balance equations and is defined as the jump conditions.

Setting the surface quantity of interest and representing the source per interfacial area is

given below as;

ψa = ρaψs, ϕa = ϕaψa (10)

The differential balance equation for the interface is expressed as:

ds
dt
(ψa) + ψa∇s · ui =

2∑
k=1

{
ρkψknk · (uk − ui) + nk · Jk

}
− Aαβgln(t

n
αJ

l·
a ),β + ϕa (11)

Here, Aαβ and gln represent the surface and space metric tensors, respectively. tnα denotes the

hybrid tensor and (),β is the surface covariant derivative. The subscripts s and a denote the

quantity of interest per unit interface mass and interfacial area. [7]. ui denotes the surface

velocity and nk unit vector.
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Interfacial mass balance is,
2∑

k=1

ρknk · (uk − ui) = 0 (12)

Interfacial mass efflux of the kth phase can be presented as given below in Eq 13

ṁ ≡ ρknk · (uk − ui) (13)

which leads to;
2∑

k=1

ṁ = 0 (14)

This implies that the interface does not accumulate mass.

The interfacial momentum balance is represented by:

2∑
k=1

{
ρknk · (uk − ui)uk + nk · τk

}
+ (tnαA

αβσ),β = 0 (15)

where the balance of momentum fluxes against the interfacial tension forces is considered.

Setting interfacial energy ua per unit surface area for ψ, interface balance is represented as;

dsua
dt

+ ua∇s · ui =
2∑

k=1

ρknk · (uk − ui)

(
uk +

u2
k

2

)
+ nk · (−Tk · uk + qk)


+ (tnαA

αβσ · ui),β (16)

Left-hand terms denote the rate of change of surface energy and the remaining terms denote

energy transfer of phases through the interphase and the work arising from surface tension.

2.1. Two-Fluid Model

This model is introduced by Ishii [8] as a framework for multiphase analysis and refined by

Ishii and Mishima [9] for practical applications. The two-fluid model (TFM) approach takes
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phases into account individually. This model utilities separate conservation equations for

respective the phase. The most critical part of this model is the interaction between phases,

that is, the averaged fields of each phase affect the other. This results in exchange terms in

the balance equations, represented by Γk for mass, Mk for momentum and kE for energy

of the kth phase through the interfaces. All these interactions are constrained by balance

laws defined for the interfaces, resulting in the formulation of interfacial transfer based on

local discontinuities, referred to as the jump conditions. As a result, the macroscopic flow

dynamics are governed by differential field equations, three per phase and three respective

interfacial transfer equations, regarding the jump conditions.

The general balance equation of the kth-phase, which address any quantity ψk with density

ρk, efflux Jk, and source term ϕk, is expressed as;

∂αk ¯̄ρkψ̂k

∂t
+∇ · (αkûk ¯̄ρkψ̂k) = −∇ ·

[
αk(

¯̄Jk + JT
k )
]
+ αk ¯̄ρkϕ̂k + Ik (17)

with;

2∑
k=1

Ik − Ik = 0 (18)

For mass conservation:
∂(αk ¯̄ρk)

∂t
+∇ · (αk ¯̄ρkûk) = Γk (19)

Interfacial mass transfer condition:
2∑

k=1

Γk = 0 (20)

For momentum conservation:

∂(αk ¯̄ρkûk)

∂t
+∇ · (αk ¯̄ρkûkûk) = −∇(αk ¯̄pk) +∇ ·

[
αk( ¯̄τk + τ T

k )
]
+ αk ¯̄ρkgk +Mk (21)
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The two-fluid model, has been adapted for three-dimensional analysis through temporal or

statistical averaging. This model has two conservation equations, i.e. one per each phase.

Additionally the interaction terms are set as source terms regarding the interdependency of

the averaged fields per phase. For practical applications, Ishii and Mishima [9] have proposed

simplified forms of the model as;

Continuity equation,
∂(αkρk)

∂t
+∇ · (αkρkuk) = Γk (22)

where Γk represent the mass generation,

Momentum equation,

∂(αkρkuk)

∂t
+∇ · (αkρkukuk) = −αk∇pk +∇ ·

[
αk(τ

µ
k + τ T

k )
]

+αkρkg + Γkuki +Mki −∇αkτki + (pki − p)∇αk (23)

where Mki represent generalized interfacial drag, and τki represent interfacial shear stress,

Energy equation,

∂(αkρkhk)

∂t
+∇ · (αkρkhkuk) = −∇ ·

[
αk(q

C
k + qT

k )
]

+αk
Dkpk
Dt

+ (pk − pki)
Dkαk

Dt
+ Γkhki + aiq

′′
ki + ϕk (24)

where q′′ki, and ϕk represent interface heat flux and dissipation.

Through notation manipulation, simplifications for these equations are achieved by dropping

the averaging symbols of, ¯̄τk, ¯̄τki, and ¯̄qC
k as τ µ

k , τki, and qC
k , respectively.

Eq.s (22) to (24) include the interface transfer terms where the jump conditions are given

below in Eq.s (25) and (26) as;
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∑
k

Γk = 0 (25)

and,

∑
k

(Γk,Mki, aiq
′′
ki + Γkhki) = 0 (26)

The generalized drag, Mid is the term needed for the closure and it is a linear superposition

of several respective forces that can be presented as;

Mid =
αd

Bd

(FD
d + F V

d + FB
d + F L

d + FWL
d + F T

d )

= MD
d +MV

d +MB
d +ML

d +MWL
d +MT

d (27)

where the superscripts, D, V , B, L, WL, T denote the drag, virtual mass, Basset, lift, wall

lubrication and turbulent dispersion respectively.

The details of the force models with their respective model coefficients are discussed in the

Literature Review.

A representative example to derive the drag force on a particle in a carrier fluid is presented

below. The particle is considered spherical with no shape deformation and the carrier fluid is

assumed to be stagnant.

Equation of Motion of a Spherical Particle in Steady Fluid

As per Newton’s second law, the equation of motion for the particle is derived considering

the gravitational, buoyancy and drag force. For the steady-state condition, the equation is

given by;
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0 = md · g − Vd · (ρl − ρd) · g − 1

2
· CD · ρl · Ad · (vd − vl)

2 (28)

Where the terms are, md, mass of the particle, Vd, volume of the particle, ρl, liquid density,

ρd, particle’s density, CD, drag coefficient, Ad, particle’s cross-sectional area, vd, velocity of

the particle, vl, velocity of the liquid respectively.

This equation assumes the force balance and is used to specify particle’s motion in the fluid.

This resistance force on the particle against the direction of movement has the general form

shown in Eq. (29) below,

FD =
1

2
CDρf |vr|vrAd (29)

Where CD, ρf , vr and Ad are the drag coefficient, carrier fluid density, relative velocity and

the particle’s cross-sectional area respectively.

2.2. Turbulence

Turbulence is a chaotic fluid flow phenomenon; however, turbulent flow also exhibits

coherent structures and patterns. It is very complex in its nature due to rapid temporal and

spatial changes of velocity and pressure. Turbulence drives mixing. Turbulent flow involves

vortices and eddies in length scales. These length scales can be categorized as; integral

length scale (L), being the largest scale, Taylor micro scale (λ), being the intermediate and

the Kolmogorov length scale (η) being the smallest scale, with the order shown in Eq. (30).

L≫ λ≫ η (30)

where the the integral length scale groups largest eddies. This group has the maximum

contribution on the total turbulent kinetic energy. Kolmogorov length scale groups the

intermediate sized eddies. This group holds both energy-containing and dissipative eddies.

19



Kolmogorov length scale groups the smallest, dissipative eddies. Molecular diffusion is

dominant in this scale. Kolmogorov [10–12] describes the smallest scales for length (η),

time (τη), and velocity (uη) as shown in Eq. (31). Vortex stretching is the energy transfer

mechanism from larger to smaller scales. Turbulence is dissipative, as energy is transferred

to the smallest scales, it is dissipated.

η =

(
ν3

ε

)1/4

, τη =

(
ν

ε

)1/2

, uη = (νε)1/4 (31)

As shown in Eq.(32), ε is the rate of kinetic energy dissipation for isotropic turbulence.

ε = −dk
dt

(32)

2.2.1. Single-Phase Turbulence

The Navier-Stokes (N-S) equations, derived from conservation equations, shown in Eqs. (33,

37) are the fundamental equations for the laminar and turbulent fluid motion. The derivations

and notations used throughout this subsection are adapted from Wilcox’s treatment of

turbulence modeling [13].

∂ui
∂xi

= 0 (33)

is the mass conservation and,

ρ

(
∂ui
∂t

+ uj
∂ui
∂xj

)
= − ∂p

∂xi
+
∂τji
∂xj

(34)

is the momentum conservation, where p denotes the pressure and τij is the stress tensor. In

the case of a Newtonian fluid, by Newton’s viscosity law presented earlier in Eq. (6) with µ,

the molecular viscosity, leads to the stress-strain relation;
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τij = 2µsij (35)

where the strain rate tensor sij is show below in Eq.(36),

sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (36)

ρ

(
∂ui
∂t

+
∂

∂xj
(ujui)

)
= − ∂p

∂xi
+

∂

∂xj
(2µsji) (37)

The continuity and momentum equations are coupled through the pressure term. To ensure

the incompressibility condition a Poisson equation for the pressure field can be derived from

the momentum and continuity equations, as shown below in Eq. 38

∂2p

∂x2i
= −ρ ∂

∂xi

(
∂uj
∂t

+ uk
∂uj
∂xk

)
(38)

This equation shows how the pressure field is calculated by the velocity field while the

divergence remains zero.

Turbulence Closure

Turbulence can either be solved or modeled. For the solution of turbulence, the Direct

Numerical Simulations (DNS) method can be applied to the N-S equations [14]. DNS

resolves all scales of turbulence, from largest eddies to Kolmogorov scale. However, DNS

is computationally infeasible for most practical engineering cases due to the range of scales

and respective resolution.

The grid size for DNS simulations should be equivalent to the Kolmogoro scale, offering

high accuracy but incurring huge computational costs.
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Modeling, on the other hand, requires fewer computational resources with a compromise in

accuracy. Modeling can be classified as statistical and scale-resolving. Statistical models are

derived from Reynolds averaging of N-S equations and are used to model all scales.

Rapid changes in turbulent flows are turbulent fluctuations that can be defined

mathematically with appropriate averaging techniques. Reynolds averaging decomposes and

separates the instantaneous velocity and pressure forming the time-averaged and fluctuating

components.

ui(x, t) = Ui(x) + u′i(x, t) (39)

p(x, t) = P (x) + p′(x, t) (40)

where ui and p denote the instantaneous velocity and pressure. Ui and P are the mean

velocity and pressure. u′i and p′ are the fluctuating velocity and pressure. By using

Reynolds averaging, the chaotic structure of turbulence can be defined theoretically. After

decomposing and appropriate manipulation, the Reynolds-Averaged N-S (RANS) equations

are presented in Eqs. (41, 42).

∂Ui

∂xi
= 0 (41)

ρ

(
∂Ui

∂t
+ Uj

∂Ui

∂xj

)
= −∂P

∂xi
+

∂

∂xj
(2µSij − ρu′iu

′
j) (42)

here the additional term ρu′iu
′
j denotes the Reynolds stress tensor, (Rij) which represents the

momentum transport driven by the turbulent fluctuations and is given in Eq. (43).

Rij = −ρu′iu′j (43)
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Average kinetic energy is expressed as in Eq. (44);

1

2
U ′
iU

′
i +

1

2
u′iu

′
i (44)

where the sum of the normal Reynolds stresses is related to the turbulence kinetic energy k

as shown below in Eq. (45)

k =
1

2
u′iu

′
i (45)

Reynolds stress transport (RST) equation is shown below;

∂Rij

∂t
+ Uk

∂Rij

∂xk
= −Rik

∂Uj

∂xk
−Rjk

∂Ui

∂xk
+ εij − Πij +

∂

∂xk

(
ν
∂Rij

∂xk
+ Cijk

)
(46)

where the pressure-strain correlation;

Πij =
p′

ρ

(
∂u′i
∂xj

+
∂u′j
∂xi

)
(47)

dissipation tensor;

εij = 2ν
∂u′i
∂xk

∂u′j
∂xk

(48)

and the triple velocity correlation;

ρCijk = u′iu
′
ju

′
k + p′u′iδjk + p′u′jδik (49)

The relation between the kinematic eddy viscosity, turbulent length scale l and turbulence

kinetic energy k is given below in Eq. (50) as;

νt ≈ k1/2l (50)
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and the trace of the Rii is;

Rii = −u′iu′i = −2k (51)

and the trace of the RST equation gives the turbulence kinetic energy k equation presented

in Eq. (52)

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ε+

∂

∂xj

[(
ν + νt/σk

) ∂k
∂xj

]
(52)

This rises a closure problem requiring additional equations or models for the solution of

Reynolds stresses. One option is solving the transport equation for all Reynolds stresses.

Since this tensor is symmetric, a total of six transport equations will be added. Addition of

one more equation for the dissipation results in 7 equations and this model is the Reynolds

Stress Transport Model (RSM). RSM preserves the anisotropic behavior of turbulence.

RANS equations focus on predicting the mean flow behavior rather than resolving the

detailed turbulent fluctuations. RANS simulations are generally less computationally

expensive than DNS or large eddy simulations (LES), which resolve a wider range of

turbulent scales.

The Boussinesq hypothesis [15] is often employed in turbulence modeling to link Reynolds

stresses with mean velocity gradients. It postulates that Reynolds stresses are proportional to

the mean strain rate through turbulent viscosity (νt). Eddy viscosity (also called turbulent

viscosity) does not represent a fluid property like molecular viscosity (µ). Instead, it’s

a flow-dependent parameter that quantifies the turbulent mixing and momentum transport

due to eddies. Different turbulence models use different approaches for eddy viscosity

calculation via mean flow properties.

here; the Reynolds stress tensor shown in Eq. (53) is presented by Boussinesq eddy viscosity

approximation relation;
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Rij = 2νtSij −
2

3
kδij (53)

Law of the Wall

The single-phase law of the wall describes the velocity profile of turbulent flow in the

proximity of wall boundaries. This empirical relationship divides the boundary layer into

three regions, namely, the viscous sub-layer, the buffer layer, and the logarithmic layer [16].

Flow is considered laminar in the viscous sub-layer. In the logarithmic layer, turbulence

dominates the flow. The velocity profiles follows the viscous sub-layer and the logarithmic

laws given in Eq.s (54, 55) respectively while no law is applicable to the buffer layer.

u+ = y+ (54)

u+ =
1

κ
ln(y+) +B (55)

where u+ and y+ are the dimensionless velocity and wall distance. κ is the von Kármán

constant (approximately 0.41), and B is an empirical constant.

The law of the wall is crucial for modeling turbulent boundary layers. More complex

two-phase wall laws are derived from these laws.

2.2.2. Two-Phase Turbulence

Research in single-phase turbulence is relatively developed and there are variety of

turbulence models. These models are categorized as, algebraic, one-equation, two-equation

and stress models. While same categorization can be considered for multiphase turbulence,

modeling remains relatively underdeveloped.
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Two-phase turbulence can be modeled in either of the two approaches, mixture turbulence

and per phase turbulence approaches. In mixture turbulence approach, a single turbulence

model is used whereas in per-phase approach, both phases are taken into account individually.

While applicable to alternatives, a representative example is presented for the k-ε model.

Mixture Turbulence

In this approach, one set of turbulence equations are solved using mixture properties and

mixture velocities.

Since turbulence kinetic energy is the energy per mass of the velocity fluctuations, and

dissipation is rated by density, km and εm are defined as;

km = ki, εm = εi (56)

and defining mixture properties as;

ρm =
n∑
i

αiρi, µm =
n∑
i

αiµi (57)

with the definition of average mixture velocity,

ūm =

∑n
i αiρiui∑n
i αiρi

(58)

mixture turbulent eddy viscosity and the phase turbulent viscosity with the assumption of

equal kinematic viscosities of the phases are,

νtm = νti , µt
m =

ρmµ
t
i

ρi
µt
i =

ρiµ
t
m

ρm
(59)
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and the mixture k-ε turbulence model is defined as;

∂

∂t
(ρmkm) +∇.(ρmūmkm)

= ∇
[(
µm +

µm

σk

)
∇km

]
+ P k

m − ρm(εm − ε0) + Sk
m (60)

∂

∂t
(ρmεm) +∇.(ρmūmεm)

= ∇
[(
µm +

µt
m

σε

)
∇εm

]
+

[
1

tem
Cε1P

ε
m − Cε1f2ρm(

εm
tem

− ε0
t0m

) + Sε
m

]
(61)

where tem = km/εm, Cε1, Cε2 and f2 are, mixture large eddy time scale, model coefficients

and a damping function respectively.

Per-phase Turbulence

This approach takes each phase into account individually. Interface mechanisms such as

the drag, and other forces affect shear production effecting turbulence of the continuous

phase either by amplifying or damping. In per-phase approach, turbulence is modeled for

the continuous phase. For the dispersed phase, turbulence can either be modeled or coupled

with the continuous phase via turbulence response models.

Continuous Phase Turbulence

A single phase turbulence transport equation set can be modified by operating with the phase

void fractions and introducing additional source terms to model the phase interactions.

As an illustration, two-phase k-ε turbulence model is presented as;

∂

∂t
(αlρlkl) +∇ · (αlulkl)

= ∇ ·
(
αl

[(
µmol
l +

µt
l

σk

)
∇kl

])
+ αl(T

Re
l : ∇ul − ρlεl) + Sk

l (62)
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∂

∂t
(αlρlεl) +∇ · (αlulεl)

= ∇ ·
(
αl

[(
µmol
l +

µt
l

σε

)
∇εl
])

+ αl
εl
kl
(Cε1T

Re
l : ∇ul − Cε2ρlεl) + Sε

l (63)

As the form of the equations remain the same, all terms are operated by the continuous phase

void fractions. Additional source terms Sk
l and Sε

l are included to take phase interactions

into account.

Dispersed Phase Turbulence

Turbulence for the dispersed phase can either be modeled directly or can be modeled via

a response model approach. Any available turbulence model can be used for the dispersed

phase. Similarly, additional source terms to represent phase interactions are introduced to

the corresponding turbulence transport equations.

Particle Induced Turbulence

The presence of a dispersed phase can either augment or dampen the turbulence in the

continuous phase. This can be considered in two ways, by an additional source term to

the turbulence equation or by the modification of the effective viscosity. Both require

semi-empirical models. The correlations are derived by a response function that is defined

as the ratio of the dispersed versus continuous phase velocity fluctuation.

As a representative example, the following relations are given where the turbulent stress is

presented by the eddy-viscosity approach;

µt = ρCµ
k2

ε
(64)

where, Cµ is a k-ε model constant. The response function Ct is shown below;
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Ct =
|u′

d|
|u′

l|
(65)

where u′
d and u′

l are the fluctuating velocities of the dispersed and continuous phases

respectively.

If k-ε model is used for the continuous phase, then the dispersed-phase turbulent kinetic

energy is;

kd = C2
t kl (66)

and the turbulent eddy viscosity is;

µt
d =

ρd
ρl
C2

t µ
t
c (67)

Two-Phase Law of the Wall

To accurately model the behavior of two-phase turbulent boundary layers, it is essential to

modify the single-phase laws to incorporate the effects of dispersed phases. A modified

logarithmic law that includes a term to consider the bubble-induced component is necessary.

The form of the wall law function for monodispersed and polydispersed cases can be in the

form presented in Eq.s (68),(( 69)

u+ =
1

κ
ln(y+) +B − u+BI (68)

u+ =
1

κ
ln(y+) +B −

N∑
i=1

u+BI (69)

where u+BI denotes the dispersed phase contribution and N the total number of particle size

groups regarding the poly-dispersed case.

29



Several researches have proposed two-phase wall laws and they are reviewed in the Literature

Review section.
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3. LITERATURE REVIEW

This section provides review of research on two-phase flow emphasizing momentum and

two-phase turbulence closure models. To provide more comprehensive understanding of the

reviewed two-phase turbulence closure models, single-phase models are reviewed in advance

regarding the connections between single and two-phase turbulence phenomena with the

required modifications towards accurately modeling two-phase flows.

Additionally, conducted reference experiments of bubbly upward flow are examined. The

review of experiments provides a clearer understanding of the range of various parameters of

the conducted experiments such as pipe dimensions, velocities, void fractions while enabling

the selection of appropriate benchmark cases for testing the method and models proposed in

this thesis.

Lastly, related CFD studies are reviewed to show the methods used for two-phase flows

simulations. This includes an assessment of different closure models employed in previous

research which allows the identification of best practices and improvement opportunities.

This literature review highlights the current state flow and identifies on future directions of

research in two-phase flow.

3.1. Momentum Closure Models

Momentum closure models have great importance in CFD studies. These closure models

provide the necessary correlations. The precision and reliability of CFD simulations in

predicting two-phase flow dynamics and behaviors is significantly dependent and on these

models.

Closure models can be categorized according to the method of development. Analytical

models are based on theoretical principles, offer insights into momentum transfer in

two-phase flows. They are foundational but often too simplified for complex applications.

Numerical Models blend theoretical and empirical models, increasingly recognized for their
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adaptability across various flow regimes. Experimental Models arising from experimental

data, offer practical insights but may lack universality across different conditions.

3.1.1. Drag

The drag force, (FD) arises when a particle moves relative to the carrier fluid. This force

is effective in the opposite direction of the particle’s relative motion. In this context, single

bubbles, liquid droplets, or solid particles moving through a continuous phase experience the

drag force which effects the motion for both phases in a coupled fashion.

The magnitude of this force is a function of various parameters. The particles may have

spherical or non-spherical shapes. The shape and size of the particle directly effects drag.

The magnitude of particle’s velocity relative is another parameter where drag force has linear

dependency. Additionally, fluid properties, including density and viscosity, also affect the

drag force magnitude.

In a mixture of liquid and bubbles, the drag force determines how quickly the bubbles rise,

affecting the overall flow pattern. This interaction is particularly important for understanding

the motion of bubbles.

When a system includes multiple particles, swarm effect phenomena emerges. This rises

modification requirement to the drag force. The significant variable for this modification

is the void fraction. Higher void fractions indicate denser swarms, altering the drag force

experienced by each particle. To accurately model these effects, it’s essential to incorporate

model coefficients that adjust for variables like void fraction. These coefficients are derived

from empirical data or simulations.

Various drag coefficient, (CD) models have been proposed by different researchers is

reviewed in the following part of this section. It is noted that, flow conditions and particle

shape deformations affect the drag force and researchers account for these factors using

different approaches.
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Analytical Drag Coefficient Model

Analytically, CD can be derived by Stokes’ Law. It is noted that the model is for spherical,

relatively small particles in a viscous fluid and is expressed as shown in Eq.(70)

CD =
24

Red
for 0 ≤ Red ≤ 0.2 (70)

This model estimates the CD for spherical particles in steady flow where the particle

Reynolds number is very low. There is only Red dependency for the model.

Schiller-Neumann Drag Coefficient Model

Schiller and Neumann [17] expresses their drag coefficient, CD model in Eq. (71) as a

conditional function. Schiller and Neumann drag coefficient model is a composite function

and depends on particle Reynolds number (Red). The model converges a constant value of

0.44 for the condition of Red > 1000.

CD =


24
Red

(
1 + 0.15Re0.687d

)
if Red ≤ 1000,

0.44 if Red > 1000.

(71)

This model estimates the drag coefficient for rigid, small, spherical particles in fluid flow,

useful for predicting the resistance experienced by the particles.

Ishii and Zuber Drag Coefficient Model

While solid particles can be assumed rigid, droplets and bubbles may experience shape

deformations in certain conditions. Ishii and Zuber [18] introduces the shape deformation

through a dimensionless parameter Eötvös Number (Eo) shown in Eq. (72).

Eo =
g(ρl − ρg)d

2

σ
(72)
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Eo quantifies the influence of gravity, (g) versus surface tension, (σ) at the fluid interfaces.

Ishii and Zuber’s [18] CD model is given in Eq. (73) in a composite form.

CD = max
(
CD,sphere,min

(
CD,ellipse, CD,cap

))
(73)

where the model in the case of a spherical particle is presented as;

CD,sphere =
24

Re∞
(1 + 0.1Re0.75∞ ) (74)

and for the ellipse shaped particle, it is defined as;

CD,ellipse =
2

3

√
Eo (75)

and for the cap shaped particle is defined with a constant value as;

CD,cap =
8

3
(76)

The relation for the single particle Reynolds number, Re∞ is;

Re∞ =
ρl|vr|Db

µl

(77)

The Ishii-Zuber model is particularly useful in multiphase flows, to calculate the drag force

on spherical, elliptical, and cap shaped particles.

Ishii and Zuber Multiparticle Drag Coefficient Model

Alongside their single particle model, Ishii and Zuber [18], introduced their modified

coefficient model to account for multi-particle systems. They added void fraction

dependency f(α) to their model given in Eq.s (80) and (81).
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Stokes regime: CD =
24

Re
(78)

Undistorted bubble regime: CD =
24

Re
(1 + 0.1Re0.75) (79)

Distorted bubble regime: CD =
2

3
Db

√
g∆ρ

σ

{
1 + 17.67f(α)6/7

18.67f(α)

}2

(80)

Cap bubble regime: CD =
8

3
(1− α)2 (81)

where Db, ∆ρ, are the bubble diameter, density difference, respectively.

Two-phase Reynolds number, Re is modified as a function of mixture viscosity and is

presented in Eq. (82) as;

Re =
ρl|vr|Db

µm

(82)

where the two-phase mixture viscosity with void fraction, α dependency is;

µm

µl

= (1− α)−1 (83)

Tomiyama Drag Coefficient Model

In their study, Tomiyama et al. [19], proposed CD model for bubbles, taking into account the

bubble shape and the level of liquid contamination. This model differentiates between clean

Eq. (84), slight Eq. (85) and heavy Eq. (86) contamination of the liquid shown as;

CD = max

[
min

[
16

Re∞

(
1 + 0.15Re0.687∞

)
,

48

Re∞

]
,
8

3

Eo

Eo+ 4

]
, (84)

CD = max

[
min

[
24

Re∞

(
1 + 0.15Re0.687∞

)
,

72

Re∞

]
,
8

3

Eo

Eo+ 4

]
, (85)
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CD = max

[
24

Re∞

(
1 + 0.15Re0.687∞

)
,
8

3

Eo

Eo+ 4

]
(86)

here Re∞ denotes the single-bubble Reynolds number as presented in Eq. (87).

Re∞ =
ρl|vr∞|Db

µl

(87)

where vr∞ is the relative velocity of a single bubble.

Tomiyama Theoretical Drag Coefficient Model

Tomiyama et al. [20] modified and introduced their theoretical drag coefficient CDm model

in Eq. (88) to include the bubble aspect ratio, E, presented below in Eq. (89).

CDm =
8

3

Eo

E2/3(1− E2)−1Eo+ 16
E4/3F−2 (88)

F =
sin−1(

√
1− E2)− E

√
1− E2

1− E2
(89)

Vakrushev and Efremov [21] provided the following correlation to evaluate E0:

E0 =


1, Ta < 1

{0.81 + 0.206 tanh[2(0.8− log10 Ta)]}3, 1 < Ta < 39.8

0.24, 39.8 ≤ Ta

(90)

The Tadaki number Ta and the Morton number M is defined as:

Ta = Re ·M0.23 (91)
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M =

(
µ4(ρl − ρg)g

ρ2l σ
3

)
(92)

Using their pipe flow experimental data, they correlated the the expression shown in Eq.(93)

which approaches to the constant value of 0.65 towards the center of the circular pipe.

E

E0

= max
(
1.0− 0.35

y
d
, 0.65

)
(93)

where y/d denotes the dimensionless wall distance.

This modification to include the aspect ratio E suggests an improvement in the model to

handle the force balance for non-spherical particles including elongated bubbles. This is

particularly relevant in conditions where spherical shape is no longer sustained.

3.1.2. Lift

Lift force (FL) is the force acting on a particle in the lateral direction relative to its movement.

FL is affected by the liquid shear and particle size. Shear gradients causes uneven pressure

distribution on the particle-fluid interface, resulting in lateral force imbalance. The wake of

a particle creates vortices and turbulent eddies. Other particles entering these wake regions

experience pressure and velocity changes causing lateral force imbalance. A solid boundary

also affects the flow field in proximity to the particle. The rotation of a particle affects the

flow field causing difference in pressure on the it’s surface. When modeling lift, all these

mechanisms should be taken into consideration.

Various lift force FL and lift coefficient (CL) models were introduced by different

researchers. These are reviewed in the following part of this section. It is noted that,

flow conditions and particle shape deformations affect the lift force and these have been

incorporated by the researchers.
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Saffman Lift Force Model

Saffman [22] proposed the analytical lift force model in Eq. (94). This model is for a single

rigid spherical particle.

FL∞ = 6.46ρfνf
1/2vr∞r

2
pω

1/2 (94)

where ω denotes the velocity gradient magnitude.

Žun Lift Force Model and Coefficient

Žun [23] proposed the single particle lift force model in Eq. (95). The lift coefficient CL∞ of

Žun is a constant value of 0.3.

FL∞ = CL∞
4

3
πρfr

3
pvr∞ × (∇× vf ) (95)

Auton Lift Force Model and Coefficient

Auton [24] proposed a constant CL∞ value, 0.5 for the same force model proposed by

Žun [23].

FL∞ = CL∞
4

3
πρfr

3
pvr∞ × (∇× vf ) (96)

Drew and Lahey Lift Force Model and Coefficient

Drew and Lahey [25] presented the single spherical particle lift force model in Eq.(97)with

the virtual mass coefficient CVM dependency.

FL = αdCVMρc(vd − vc) · [∇vc + (∇vc)
T ] (97)

where vd and vc denote the dispersed and continuous phase velocities.

Their model is valid for incompressible and inviscid flow conditions.
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Wang Lift Coefficient

Wang et al. [26] proposed the lift force model in Eq. (98) Their lift coefficient model, given

in Eq. (99) is based on the empirical correlation driven from the experimental study.

ML
d = CLρfαdvr

∂vf

∂r
(98)

CL = 0.01 +
0.49

π
cot−1

(
log ζ + 9.3168

0.1963

)
(99)

ζ = e−αg
db
vr

dvf

dr

(
db
D

µf

µm

1

NRe

vg

1.18(σg/ρf )1/4

)
(100)

Legendre and Magnaudet

Legendre and Magnaudet [27] proposed the model in Eq. (101)

FL∞ey = ρfBdCL∞vr∞ × ωV (101)

where ey is the unit vector. Bd is the particle volume and ωV denotes the vorticity.

Legendre and Magnaudet’s model for lift coefficient CL∞ is given below in Eq. (102);

CL∞ =

√
{C lowNRe∞

L∞ (NRe∞, GS∞)}2 + {ChighNRe∞
L∞ (NRe∞)}2 (102)

where;

C lowNRe∞
L∞ (NRe∞, GS∞) =

6

π2(2NRe∞, GS∞)1/2
2.255

(1 + 0.2ϵ−2
∞ )3/2

(103)

and,

39



ChighNRe∞
L∞ (NRe∞) =

1

2

1 + 16N−1
Re∞

1 + 29N−1
Re∞

(104)

Tomiyama Lift Coefficient

Tomiyama [28] introduced the Modified Eötvös Number (Eod) shown in Eq. (105), to adjust

the standard Eötvös number to include the aspect ratio (E) according to their drag coefficient

model.

Eod = Eo× E−2/3 (105)

and introduced the piecewise lift coefficient model shown in Eq. (106) as a function of Eod.

CL =


min[0.288 tanh(0.121Re), fT (Eod)] if Eod < 4,

fT (Eod) if 4 ≤ Eod ≤ 10.7,

−0.27 if Eod > 10.

(106)

where

fT (Eod) = 0.00105Eo3d − 0.0159Eo2d − 0.0204Eod + 0.474. (107)

Ishii Lift Coefficient

Hibiki and Ishii [29] modified the Legendre and Magnaudet [27] lift force model with a

modification coefficient, ξ to to handle shape deformation of particles,

CL∞ = ξ

√
(C lowRe

L∞ )
2
+ (ChighRe

L∞ )
2

(108)

where the modification coefficient ξ is expressed as;

ξ = 2− exp(0.136Eo1.11) (109)
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Shaver and Podowski Wall Damping Lift Coefficient Model

Shaver and Podowski [30] suggested a modification to the lift force, through their lift

coefficient model, particularly close to the wall boundaries. This model involves damping

the lift force towards the boundaries, and sets it to zero at the proximity of particle radius.

CL =


0 y/Db < 0.5

CL0

(
3
(

2y
Db

− 1
)2

− 2
(

2y
Db

− 1
)3 )

0.5 < y/Db < 1

CL0 1 < y/Db

(110)

where CL0 is the nominal lift coefficient. This model is particularly relevant for predicting

lift forces where the proximity to a wall boundary considerably alters the fluid dynamics

around a bubble or particle.

3.1.3. Virtual Mass

When a particle moves through the fluid, it accelerates some of the surrounding fluid. The

inertia of the accelerated fluid adds to the inertia of the particle. This creates an additional

force termed the virtual mass force (FVM ).

Zuber Virtual Mass Force and Coefficient

Zuber [31] defined their virtual mass coefficient model CVM as in Eq. (111)

CVM =
1

2
(1 + 3.32α) (111)

Ishii Virtual Mass Coefficient

Ishii et al. [32] defined the Virtual mass force FVM as in Eq. (112)

FVM = −CVMρf (
Dgvr

Dt
− vr · ∇vf ) (112)
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and introduced the virtual mass coefficient CVM model shown Eq.(113) with void fraction

dependency for bubbly flow and additionally particle size for slug flow;

CVM =


α
2
1+2α
1−α

for bubbly flow

5α[0.66 + 0.34( 1−Db/Lb

1−Db/3Lb
)] for slug flow

(113)

3.1.4. Turbulent Dispersion

Primary phase velocity fluctuations due to turbulence acts on the particles as the turbulent

dispersion force (FTD). FTD is a non-drag force with considerable effect on the radial void

fraction distribution by smoothing out local peaks. In the case of wall peaking trend, FTD

directs the dispersed phase away from boundaries.

Lopez de Bertodano’s Turbulent Dispersion Force Model

In their study, Lopez de Bertodano [33] introduced their model as shown in Eq. (114)

assuming that particle dispersion in a continuous phase is analogous to molecular diffusion.

FTD = −CTDρfkf∇α (114)

where ∇α denotes the volume fraction gradient and their recommended value for the model

coefficient CTD, is between 0.1 and 0.5.

FTD ≈ −α (115)

Lahey Turbulent Dispersion Force Model

Lahey et al. [34] studied the turbulent dispersion experimentally. Starting with the same force
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model shown in Eq.(116) proposed by Lopez de Bertodano, [33] they proposed a constant

CTD = 0.1.

FTD = −CTDρfkf∇α (116)

Drew Turbulent Dispersion Force Model

Drew [35] proposed the FTD model shown in Eq.(117). Their model has turbulence time

scale dependencies.

FTD = −CTD
τf
τg
kf∇α (117)

where;
τf
τg

=
18νfkf
d2bεf

(118)

Lucas Turbulent Dispersion Force Model and Coefficient Lucas et al. [36] introduced

their turbulent dispersion force model shown in Eq.(119). Their model has bubble shape

dependencies and is a function of Eo.

F TD
(tot) = F TD + F TD

Eo (119)

F TD
Eo = −CTDρf (Eo− 1)∇α (120)

F TD = −0.1ρfkf∇α (121)

They proposed the turbulent dispersion coefficient CTD as in Eq.(122).

CTD =

 0.0015 Eo > 1

0 Eo < 1
(122)
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Burns’ Turbulent Dispersion Force Model (FAD)

Burns et al. [37] introduced the Favre-Averaged Drag (FAD) FTD model given in Eq. (123).

Their model is correlated to the drag force.

FTD = −3

4

CD

Db

α | vG − vL | µ
turb
L

σTD

( 1
α
+

1

1− α

)
∇α (123)

3.1.5. Wall Lubrication

Depending on the flow conditions, particles may have the tendency for accumulation in wall

proximity. The non-drag type wall lubrication force FWL typically defined in conditional

functional form of the wall distance prevents accumulation of particles.

Antal Wall Lubrication Force Model and Coefficient

The dispersed phase radial distribution and near-wall localization are significantly influenced

by wall lubrication forces. These forces modeled by the potential flow theory can be

described as follows [38],

MWL
d =

αρf |vr.nz|2

rd

[
CW1 + CW2(

rd
yw

)

]
nw (124)

Antal et al. [38], defined their model coefficients CW1 and CW2 as;

CW1 = 0.06|vg − vl|+ 0.14 (125)

CW2 = 0.147 (126)
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Tomiyama Wall Lubrication Force Model and Coefficient

Tomiyama et al. [39] modified the Antal et al. [38] model. Their model shown in Eq.(127)

takes the bubble shape into account via the Eötvös(Eo) number.

MWL
∞ = −CW

Db

2
ρf |vr · nz|2

[
1

y2
W

− 1

(D − yW )2

]
nw (127)

They studied the wall lubrication coefficient empirically for a single bubble and proposed the

values shown in Eq.(128)

CW =

 e0.933Eo+0.179 for 1 ≤ Eo ≤ 5

0.007Eo+ 0.04 for 5 ≤ Eo ≤ 3
(128)

Their validation conditions cover Eo range 1 to 33 for the case of M = 10−2.8.

Hosokawa Wall Lubrication Coefficient

Hosokawa et al. [40] proposed the model coefficient in Eq.(129). 10−2.5 < M < 10−6 and

10−1 < Re < 102

CW = max(
7

Re1.9∞
, 0.0217Eo) (129)

Their validation conditions cover 10−2 < Eo < 101 through their conducted experiment.

Krepper Wall Lubrication Coefficient

Krepper [41] proposed the model coefficient Eq.(130.

CWL = max

(
−CW1 + CW2

Db

2y
, 0

)
(130)

where the constants CW1 and CW2 are given by:

CW1 = −0.0064 (131)
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CW2 = 0.016 (132)

Frank Wall Lubrication Coefficient

Frank et al. [42], [43] proposed the coefficient model shown in Eq.(133) which is based on

Tomiyama et al. [39] proposed model with the improvement to drop geometry dependency.

CW = CW3(Eo)×max

[
0,

1

CWD

1− yW/CWCDb

yW (yW/CWCDb)P−1

]
(133)

where they used CWC and CWD as cut-off and damping coefficients respectively.

Rzehak Wall Lubrication Coefficient

Rzehak et al. [44] numerically studied the wall lubrication coefficient. They extrapolated the

results of Hosokawa et al. [40], starting with Tomiyama et al. [39] coefficient model as given

in Eq.(134)

CWL = CW3

(
Db

2y

)2

(134)

they proposed CW3 as;

CW3 = 0.0217Eo (135)

Lubchenko Wall Lubrication Force Model and Coefficient

Lubchenko et al. [45] proposed a wall force model where they claim if Shaver and

Podowski’s [30] lift force model is used, FTD is the only force remaining perpendicular

to the wall thus a correction related to the bubble shape near the wall is required and has the

form shown in Eq.(136);

FWLTD + FTD = 0 (136)
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where FWLTD has the form shown in Eq.(137)

FWLTD =


3
4
CD

Db
|vrel|

µt
l

σTD

(
1 +

(
α

1−α

))
·
(
α 1

yW

(
Db−2yW

Db−yW

))
n, y < Db/2

0, y > Db/2

(137)

The void fraction gradient, ∇α part of Burn’s FTD model, shown in Eq.(123) is replaced by

the relation shown in Eq.(138) to take the bubble size and wall distance into account.

∇α = α · 1

yW

(
Db − 2yW

Db − yW

)
n (138)

3.2. Single-Phase Turbulence Closure Models

3.2.1. Algebraic Models

Prandtl [46] proposed the mixing length model, which introduces a characteristic length scale

over which turbulent eddies are assumed to mix properties. This model can be utilized for

turbulent viscosity prediction.

Prandtl’s Mixing Length Model

Analogy to molecular transport of momentum;

txy = µ
dU

dy
(139)

where,

µ =
1

2
ρuthlmfp (140)
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and,

τxy =
1

2
umlmµ

dU

dy
(141)

Prandtl proposed;

um = C · lmµ
dU

dy
(142)

The shear stress τxy is defined as:

τxy = νt

(
∂U

∂y

)
(143)

where νt denotes the turbulent kinematic viscosity, U and y denote the velocity and the

normal direction respectively.

Prandtl proposed that the turbulent viscosity could be defined as;

νt = l2m

∣∣∣∣∂U∂y
∣∣∣∣ (144)

where lm denotes the mixing length. The mixing length changes with respect to the wall

distance.

Substituting the expression for νt into the shear stress equation:

τxy = ρl2m

(
∂U

∂y

) ∣∣∣∣∂U∂y
∣∣∣∣ (145)

Van Driest’s Damping Factor

Van Driest [47] introduced a damping factor to the mixing length model specifically for

boundary layers. This modification accounts for the reduced turbulence near walls due to the

presence of the boundary layer. The modified mixing length near proposed by Van Driest is

shown below;
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lm = κy
(
1− e−y+/A+

)
(146)

where κ ≈ 0.41, y, y+ and A+ ≈ 26 denote the von Kármán constant, wall distance, the

dimensionless wall distance and an empirical constant respectively.

Accordingly, the turbulent viscosity becomes;

νt = (κy)2
(
1− e−y+/A+

)2 ∣∣∣∣∂U∂y
∣∣∣∣ (147)

and substituting this into the shear stress equation,

τ = ρ(κy)2
(
1− e−y+/A+

)2(∂U
∂y

) ∣∣∣∣∂U∂y
∣∣∣∣ (148)

3.2.2. One-Equation Models

Prandtl’s One-Equation Hypothesis

Prandtl’s one-equation turbulence model introduces the concept of eddy viscosity νt, which

is expressed with a single transport equation for the turbulent kinetic energy k as shown

below:

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ε+

∂

∂xj

[(
ν + νt/σk

) ∂k
∂xj

]
(149)

where the dissipation term ε is related to the mixing length l with a model constant CD,

ε = CDk
3/2/l (150)

and νt is expressed as;
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νt = CDk
2/ε (151)

3.2.3. Two-Equation Models

Standard k-ε Model

Launder and Spalding [48] developed the standard k-ε model presented below in

Eq.s (152,153) with two transport equations;

∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− ε+

∂

∂xj

[(
ν + νt/σk

) ∂k
∂xj

]
(152)

for the turbulent kinetic energy (k),

∂ε

∂t
+ Ui

∂ε

∂xj
= Cε1

ε

k
τij
∂Ui

∂xj
− Cε2

ε2

k
+

∂

∂xj

(
ν +

νt
σε

)
∂ε

∂xj
(153)

and for dissipation rate (ε).

The eddy viscosity νt is given by:

νt = Cµ
k2

ε

The model coefficients are given in Table. 3.1.

C1 C2 σk σε Cµ

1.44 1.92 1 1.272 0.09

Table 3.1 Launder and Spalding k-ε Model Coefficients

Standard k-ω Model

Saffman [49] developed the two-equation, k-ω turbulence model. This model includes

turbulent kinetic energy (k) and the specific dissipation rate (ω) transport equations as shown

in Eqs. (154,155) respectively.
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∂k

∂t
+ Uj

∂k

∂xj
= τij

∂Ui

∂xj
− β∗kω +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(154)

∂ω

∂t
+ Uj

∂ω

∂xj
= α

ω

k
τij
∂Ui

∂xj
− βω2 +

σd
ω

∂k

∂xj

∂ω

∂xj
+

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
(155)

where ν, νt are the dynamic and the eddy viscosity. The relation for eddy viscosity νt is

shown below and the model constantsσk, σω, β∗, β, and α are given in Table 3.2.

νt =
k

ω
(156)

σk σω β∗ β α
2.0 2.0 0.09 0.072 0.52

Table 3.2 Wilcox k-ω Model Coefficients

Menter’s Shear Stress Transport (SST) Model

The SST model by Menter [50] introduces the equations for turbulent kinetic energy and

specific dissipation rate, as presented in Eqs. (157,158), respectively.

∂k

∂t
+ Ui

∂k

∂xi
= Pk − β∗kω +

∂

∂xj

[
(ν + σkνt)

∂k

∂xj

]
(157)

∂ω

∂t
+ Ui

∂ω

∂xi
= α

ω

k
Pk − βω2 +

∂

∂xj

[
(ν + σωνt)

∂ω

∂xj

]
+ (1− F1)

2ρσω2
ω

∂k

∂xj

∂ω

∂xj
(158)

where α and β are model constants, σω is the turbulent Prandtl number, and F1 is a blending

function.
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here turbulent viscosity is defined as;

νt =
a1k

max(a1ω, SF2)
(159)

where the second blending function F2 is introduced alongside the model constants S and

a1.

Transition between the k−ω and k− ε models are achived by the blending functions F1 and

F2 shown below;

F1 = tanh


min

max

( √
k

β∗ωy
,
500ν

y2ω

)
,

4σω2k

CDkωy2




4
 (160)

F2 = tanh


max

(
2
√
k

β∗ωy
,
500ν

y2ω

)2
 (161)

where y is the wall distance and CDk is a cross-diffusion term. The closure coefficients are

given in Table 3.3.

σk σω beta∗ β α α1

1.0 1.168 0.09 0.072 0.31 0.31

Table 3.3 Menter k-ω Model Coefficients

3.2.4. Reynolds Stress Model (RSM)

The RSM equation for incompressible flow is given in Eq. (46)

Algebraic RSM

Rodi [51] introduced the non-linear eddy viscosity model;
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∂τij
∂t

+ Uk
∂τij
∂xk

− ∂

∂xk

(
ν
∂τij
∂xk

+ Cijk

)
≈ τij

k

(
∂k

∂t
+ Uk

∂k

∂xk
− ∂

∂xk

(
ν
∂k

∂xk
+

1

2
Cijk

))
(162)

τij
k

(
τmn

∂Um

∂xn
− ϵ

)
= −τik

∂Uj

∂xk
− τjk

∂Ui

∂xk
+ ϵij − Πij (163)

Pope [52] and Rodi [51] introduced the algebraic RSM model derived from simplified

versions of the Reynolds stress transport equations where Rij is approximated as;

Rij =
νt
2S

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(164)

and S is a scalar representing the strain rate relation.

Turbulent viscosity is expressed with a model constant Cµ as;

νt = Cµ
k2

ε
(165)

Reynolds stress tensor is re-written as;

Rij = Cµ
k2

2Sε

(
∂Ui

∂xj
+
∂Uj

∂xi

)
(166)

Differential RSM

Launder et al. [53] developed differential RSM (DRSMs), which solve transport equations

for each component of the Reynolds stress tensor.
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3.3. Two-Phase Turbulence Closure Models

Bubble-Induced Turbulence (BIT) Models

The existence of bubbles significantly alters the liquid phase turbulence characteristics. BIT

models address the change in turbulence generation due to bubbles. The turbulent viscosity

in BIT models is often represented as;

νt = νt,SI + νt,BI (167)

where νt,SI denote the shear-induced and νt,BI denote the bubble-induced viscosity.

3.3.1. Algebraic Models

Sato and Sekoguchi

Sato and Sekoguchi [54] proposed an algebraic model for BIT as shown below where they

consider a linear combination of BIT with the shear induced turbulence (SIT) through the

viscosity.

νt,BI = Claαdbur (168)

where Cla is an empirical constant for which Sato et al. [55] proposed the constant value of

0.6.

Michiyoshi and Serizawa

Michiyoshi and Serizawa [56] applied the Van Driest damping factor and extended the

algebraic BIT model to wall-bounded flows.
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νt,BI =


Cla1αla1urD(y+) for y > db

Cla2αla2urD(y+) for y∗ < y < db

(169)

where Cla1 and Cla2 are model coefficients, la1 and la2 are the length scales, y is the wall

distance and y∗ is the minimum clearance between the wall and the bubble, defined as 20

µm .

Kataoka et al.

Kataoka et al. [57] defined the effective viscosity, (νt) as;

νt = Cµαl
√
k1 (170)

and defined the length scale l as;

l = lSI + lBI (171)

where;

lSI = 0.4y , lBI =
1

3
αdb (172)

and,

k1 =
3

4

αCDl/Db

0.04αl + αl/Db

|u2r| (173)

where CD dependency is introduced.
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3.3.2. One-Equation Models

One-equation two-phase turbulence models typically solve only the turbulent kinetic energy

equation.

Kataoka and Serizawa

In their work, Kataoka and Serizawa [58] proposed the below equation for turbulent kinetic

energy.

α

(
∂kl
∂t

+ Uj
∂kl
∂xj

)
=

∂

∂xj

(
αµt

∂kl
∂xj

)
+ α(P − εl) + Skli (174)

where Pk and Skli are the production and source terms rising from interfacial transfer.

Skli =MD
li ur (175)

lSI = 0.4yD(y+) (176)

lBI =


1
3
αla1 for 3

2
db ≤ yR

1
6
αla2 for db ≤ yy ≤ y 3

2
db

1
6
αla3 for 0 ≤ y ≤ db

(177)

3.3.3. Two-Equation Models

While the form of the two-phase models are similar to the single phase counterparts,

additional source terms are included for the respective equations.
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Elghobashi and Abou-Arab

Elghobashi and Abou-Arab [59] proposed the two-phase k − ε model by introducing

additional source terms to represent the dispersed phase effect on continuous phase

turbulence.

Turbulent kinetic energy (k) equation;

α

(
∂k1
∂t

+ Uj
∂k1
∂xj

)
=

∂

∂xj

(
αµt

∂k1
∂xj

)
+ α(P − ε1) + Ski (178)

where Sk denotes the source term due to the dispersed phase.

Dissipation rate (ε) equation;

α

(
∂ε1
∂t

+ Uj
∂ε1
∂xj

)
=

∂

∂xj

(
a1
µt

σε

∂ε1
∂xj

)
+ α

ε1
k1

(Cε1PSI − Cε2ε1) + Sεi (179)

where Sε is the respective source term.

Kataoka and Serizawa

Kataoka and Serizawa [60] developed a k − ε model for two-phase flows, emphasizing the

effects of bubble-induced turbulence.

Turbulent kinetic energy equation;

∂k

∂t
+ Uj

∂k

∂xj
= Pk − ε+ Pb (180)

where Pb is the turbulence production due to bubbles.

Dissipation rate equation;

∂ε

∂t
+ Uj

∂ε

∂xj
= Cε1

ε

k
Pk − Cε2

ε2

k
+ Pεb (181)
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where Pεb is the bubble-induced dissipation rate.

Lopez de Bertodano et al.

Lopez de Bertodano et al. [61] developed a two-phase k − ε model, focusing on the effects

of interfacial forces and turbulence modulation by the dispersed phase.

Turbulent kinetic energy (k) equation;

∂k

∂t
+ Uj

∂k

∂xj
= Pk − ε+ Sint

k (182)

where Sint
k represents the source term due to interfacial forces.

Dissipation rate (ε) equation;

∂ε

∂t
+ Uj

∂ε

∂xj
= Cε1

ε

k
Pk − Cε2

ε2

k
+ Sint

ε (183)

where Sint
ε is the dissipation rate source term due to interfacial forces.

Troshko and Hassan

Troshko and Hassan [62] introduced the two-phase k − ε model,

Turbulent kinetic energy (k) equation;

∂(ρcαckc)

∂t
+∇ · (ρcαcUckc) = αcT

Re
c : (∇Uc)−∇ · (ρcν

t
c

σk
∇kc)

− ρcαcεc +
3

4

Cd

d
αdρc|Ur|3 (184)

smallest eddy frequency scale [48];

ω =
ε

k
(185)
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bubble dissipation frequency from bubble relaxation time constant τb proposed by

Bertodano [61];

ωb = (τb)
−1 =

(
(
2

3

Cvm

CD

)
Db

ur

)−1

(186)

Dissipation rate (ε) equation;

∂(ρcαcεc)

∂t
+∇ · (ρcαcUcεc) = ω(C1αcT

Re
c : (∇Uc)− C2ρcαcεc)

−∇ · (ρcν
t
c

σε
∇εc) + ωbC3

3

4

Cd

d
αdρc|Ur|3 (187)

where C3 and Cω are the new model constant, and . The remaining model constants are taken

from the standard k-ε model as shown in Table 3.1

Fig.s (3.1-3.3) illustrate the use of Troshko and Hassan model with different turbulence

models.

Politano et al.

Politano et al. [63] introduced the two-phase k − ε model,

Turbulent Kinetic Energy (k) Equation;

αc
dk

dt
+ αcUc∇k = ∇ · (αcν

t∇k) + P1 (188)

− αcCε2 + αcϕkk (189)

Dissipation Rate (ε) Equation;

αc
dε

dt
+ αcUc∇ε = ∇ · (ν

t

σε
∇ε) + Cε1P1

ε

k
(190)

− αcCε2
ε2

k
+ αcϕkCε2

ε

k
(191)
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Figure 3.1 Standard k-ε with Troshko-Hassan model

where Cε1 and Cε2 are model constants, and ϕk is the source term due to the dispersed phase.

where the production term is defined as;

P1 = αcν
t(∇Uc +∇UT

c ) : ∇Uc (192)

and the source term is defined for a multigroup dispersed phase condition as proposed by

Lee at al. [64],

ϕk = Cp

N∑
g=1

αg|Ur|3

2rg
(193)

and the turbulent viscosity is defined as;

60



Figure 3.2 Standard k-ω with Troshko-Hassan model

νt = Cµ
k2

ε
(194)

where the model constant Cp is taken 1 and the rest of the model constants are used as

proposed by Launder and Spalding [48] as shown in Table 3.1

3.3.4. Reynolds Stress Model (RSM)

Kumar et al.

Kumar [65] proposed an algebraic RSM starting with the bubble induced expression for νt

as;

νt,BI = Cµ
k2

ε
+ Claαdbur (195)
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Figure 3.3 SST k-ω with Troshko-Hassan model

Fig (3.4) illustrate the use of the algebraic RSM model for a test case.

Lopez de Bertodano et al.

Lopez de Bertodano et al. [66] developed a differential RSM. using Lee et al. [64]

Launder et al. [53] developed differential RSM (DRSM), which solve transport equations for

each component of the Rij , providing a more detailed representation of turbulence.

The Reynolds stress transport equation is:

αc
D

Dt
u′u′ = αc(∇ ·DSI + PSI) + φSI − 2Iεc) + Pi (196)

where: DSI is the diffusion term, PSI is the production term, φSI is the pressure-strain term,

Pi is the bubble induced production term.
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Figure 3.4 Algebraic RSM with Sato viscosity model

The diffusion term is:

DSI =
∂

∂xk

(
ν
∂Rij

∂xk

)
(197)

Turbulent Diffusion Term (Dij);

DSI = − ∂

∂xk

(
u′iu

′
ju

′
k +

p′u′iδjk + p′u′jδik

ρ
− 2ν

∂u′iu
′
j

∂xk

)
(198)

The production term is given by:

PSI = −Rik
∂Uj

∂xk
−Rjk

∂Ui

∂xk
(199)
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The pressure-strain term is:

φSI = −1

ρ

(
p′
∂u′i
∂xj

+ p′
∂u′j
∂xi

)
(200)

The dissipation term is:

εc =
2

3
εδij (201)

and the dissipation rate equation is in the same form as the one given in Eq.(153)

The bubble induced production term is given by:

PBI =


4/5 0 0

0 3/5 0

0 0 3/5

Ski (202)

where;

Ski = CiM
D
2i ·Ur (203)

with the model constant Ci

Fig.s (3.5-3.6) illustrate the effect of DRSM model constant Ci.
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Figure 3.5 Differential RSM model (Ci = 0.25)

3.4. Review of Experiments

This literature review focuses on two-phase flow database source experiments, which are

critical for developing new momentum closure models and validating existing ones. A broad

range of scenarios are listed for various flow conditions across different flow domains such

as, but not limited to, bubble columns, circular and rectangular even triangular ducts aligned

vertically or horizontally. “The growth of the experiment database over the years is clearly

seen; however, Hibiki et al. [1] note in their investigation and review that further systematic

experimental efforts are essential to establish solid experimental databases for benchmarking

the interfacial area transport equations and both 1D and 3D thermo-fluid dynamic codes.”

In the context of this study, the experiments of interest are iso-thermal and bubbly upward

flow in cylindrical pipes, primarily due to its compatibility with 2-D axisymmetric modeling.

“The list of experiments of this category is filtered from the review of Hibiki et al. [1] and is

listed in Table 3.4”
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Figure 3.6 Differential RSM model (Ci = 0.02)

The availability of the databases mentioned is limited, as investigated and reported by the

valuable study of Sari et al. [67]. It is a common exercise for the researchers to digitalize and

utilize the related data from referring studies.

Serizawa Experiments

Accessible databases include, the investigations conducted by Serizawa et al. [68] for vertical

upwards flow of continuous phase with different dispersed phase fluxes in cylindrical pipes.

Two different configurations are for pipe diameters D = 30 and 60 mm. Measurement stations

are at L/D = 83.
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Investigators Di(mm) z/D jg(m/s) jf (m/s)
Serizawa et al. (1991) 30.0 83 0.018-0.54 0.5-5.0
Kaklach-Navarro et al. (1993) 38.1 50 0.0562-0.332 0.3-1.25
Liu and Bankoff (1993) 57.2 30-120 0.1-0.4 0.5-3.0
Leung et al. (1995) 50.8 8-60 0.0192-0.0965 0.1-1.0
Grossetete (1995) 38.1 155 0.0895-0.181 0.877-1.75
Hibiki and Ishii (1998) 50.8 2-62 0.0147-0.0790 0.6-1.3
Hibiki and Ishii (1999) 25.4 125 0.0566-1.27 0.262-3.49
Ohnuki and Akimoto (2000) 20 12-112 0.03-4.7 0.06-1.06
Kim et al. (2001) 50.8 32-64 0.0358-4.87 0.491-5.00
Hibiki and Ishii (2001) 50.8 54 0.0358-4.87 0.491-5.00
Shoukri et al. (2003) 200 43 2.0-10.0 0.0-40.0
Prasser (2007) 195.3 2-40 0.0094-0.53 1.02
Manera et al. (2009) 25.4 13.0-133.0 0.036-2.089 0.647-2.554
Manera et al. (2009) 50.8 7.0-67.0 0.036-2.089 0.647-2.554
Chiva et al. (2010) 52 6.0-52.0 - 0.941-0.981
Xing et al. (2013) 50 20 0.002-0.037 0.072-0.569

Table 3.4 “Filtered list of two-phase flows experiments from Hibiki et al. [1]”

Liu and Bankoff Experiments

Liu and Bankoff [69] studied vertical upward flow of continuous phase with varying

dispersed phase mass fluxes in circular pipe with diameter D = 38 mm. Measurement station

is located at L/D = 38. Void fraction, phase velocities, bubble size and turbulence intensity

distributions are reported. The conducted experiments include only for wall peaking profiles.

Hibiki Experiments

Hibiki et al. [70], [71] conducted experiments in circular pipes. The setup is upward flow.

The pipe diameters are 25.4 mm and 50.8 mm. Their extensive database provides Dispersed

phase volume fraction profile, primary phase turbulence intensity and phase velocities. Since

this experiment investigates poly-dispersed scenarios, interfacial area concentration data is

also provided.
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Liu Experiments

Apart from the list presented in Table 3.4 Liu, conducted experiments with varying, bubble

size and water and air mass fluxes. The experiments were on bubbly upward flow in a circular

pipe sized D = 57.2 mm and the measurement station is at L/D = 60. Dispersed phase volume

fraction, bubble diameter, phase velocities alongside primary phase turbulence intensity are

reported.

Hosokawa Experiments

Hosokawa and Tomiyama [72] conducted experiments on bubbly upward flow. The pipe is

sized 25 mm in diameter and the measurement station is at L/D = 68. Measurement data

for dispersed phase volume fraction, phase velocities, and primary phase turbulence kinetic

energy are provided. Their experiments cover both wall peak and core peak cases.

Shawkat Experiments

Shawkat et al. [73] has the experiment set up with cylindrical pipe dimension D = 200

mm. and the measurement station is at the location L/D = 42 of a 9.56 m long cylindrical

pipe. Their experiments include wall and core peaking cases. They provide experiment data

for continuous phase turbulent kinetic energy. Continuous and dispersed phase superficial

velocities span the range 0.2 – 0.68 m/s and 0.005 – 0.18 m/s respectively. Void fraction and

bubble diameter range is between 1.2 - 15.4 % and 3 - 6 mm. respectively.

MTLoop Experiments

The MTLoop facility described by Lucas et al. [74] has the experiment set up with cylindrical

pipe dimension D = 51.2 mm. and the measurement station is at the location L/D = 60. Their

extensive database provides dispersed phase volume fraction, velocity and diameter data for

the investigated continuous and dispersed volumetric flux cases.
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3.5. Review of Simulations

Researchers conducting CFD simulations have a variety of momentum closure model sets to

choose from. An extensive review study by Irfan Khan et al. [2] presents a comprehensive list

of the conducted CFD analysis for bubbly two-phase flow cases. The list consists of various

methods for multiphase and turbulence modeling. While many researchers prefer RANS, it is

seen that there are cases where LES and DNS is also applied. Additionally, Euler-Lagrangian

and Euler-Euler TFM models are both used by the researchers for different cases. Filtering

this list to the studies with Euler-Euler Two Fluid and RANS model approaches yields the

list in “Table 3.5 adapted from Irfan Khan et al. [2] summarizing different closure model sets

preferred by fellow researchers for similar CFD studies of bubbly two-phase flow.”

Researcher Drag Force Lift Force Turbulent Dispersion Force Wall Lubrication Force Virtual Mass
Ziegenhein and Lucas (2019) Tomiyama Ziegenhein FAD Hosokawa 0.5
Colombo and Fairweather (2019) Tomiyama (modified Eo ) Tomiyama FAD Antal –

Jin et al. (2019)
Grace/Ishii and Zuber
Tomiyama/Simonnet

Saffman/Mei and Klausner
Legendre and Magnaudet/Tomiyama FAD

Antal/Tomiyama
Hosokawa/Frank –

Chen et al. (2019b) Ishii and Zuber Moraga Lopez de Bertodano – –
Liao et al. (2019) Ishii and Zuber Tomiyama FAD Hosokawa 0.5
Kim and Park (2019) Ishii and Zuber Tomiyama Lahey Frank –
Krepper et al. (2018) Tomiyama Tomiyama FAD Rzehak 0.5
Parekh and Rzehak (2018) Ishii and Zuber Tomiyama/Hosokawa FAD – 0.5
Liao et al. (2018) Ishii and Zuber Tomiyama FAD Hosokawa
Feng and Bolotnov (2018) Feng and Bolotnov Tomiyama – Hosokawa –
Chinak et al. (2018) Loth Tomiyama 0.1 Antal 0.5
Marfaing et al. (2018) Ishii and Zuber/Tomiyama Tomiyama/Shaver Podowski Lavié ville/ Burns Tomiyama/ Lubchenko –
Shi and Rzehak (2018) Ishii and Zuber Tomiyama FAD Hosokawa 0.5
Sugrue et al. (2017) Tomiyama 0.025 FAD Shaver and Podowski –
Rzehak et al. (2017) Tomiyama Tomiyama FAD Hosokawa 0.5
Mimouni et al. (2017) Ishii and Zuber Tomiyama Lavieville Tomiyama Zuber
Kriebitzsch and Rzehak (2016) Ishii and Zuber Tomiyama FAD Hosokawa –
Pakhomov and Terekhov (2016) Loth Tomiyama Lahey(0.1) Tomiyama 0.5
Yamoah et al. (2015) Grace Tomiyama FAD Antal –
Ziegenhein et al.(2015) Tomiyama Tomiyama FAD Hosokawa 0.5
Guan et al. (2015) Ishii and Zuber Tomiyama FAD Hosokawa –
Ma et al. (2015) Tomiyama Tomiyama – Hosokawa –
Lau et al. (2014) Roghair Tomiyama – Tomiyama 0.5
Masood and Delgado (2014) Ishii and Zuber Tomiyama 0.3 0.3 0.5
Rzehak and Krepper (2013) Tomiyama Tomiyama FAD Antal –
Mohd. Akbar et al. (2013) Tomiyama Tomiyama Lopez de Bertodano – 0.5
Rzehak et al. (2012) Ishii and Zuber Tomiyama FAD Tomiyama/Hosokawa/Antal –
Duan et al. (2011) Zuber Tomiyama FAD Antal –
Xiang et al. (2011) Ishii and Zuber Tomiyama FAD Antal –
Wang and Sun (2010) Tomiyama Tomiyama 0.1 Antal –
Li et al. (2009) Grace Tomiyama FAD Antal 0.5
Darmana et al. (2009) Tomiyama Tomiyama Tomiyama – 0.5
Dhotre et al. (2008) Ishii and Zuber Auton (0.5) 0.2 – 0.5
Ekambara et al. (2008) Ishii and Zuber -0.2 0.5 Antal -

Table 3.5 “Adapted List of closure model sets used in recent CFD studies from Irfan Khan et al. [2]”

The most preferred drag force coefficients are Ishii and Zuber [18] and Tomiyama [19]

models. Simonnet’s [75] model is preferred as a correction model for drag in specific

applicable cases. Regarding the lift models, Tomiyama [28] is the most preferred,

although it often necessitates progressive under-relaxation for stable simulations. Alongside

Tomiyama’s model, the drag correlated lift correction model is also frequently used. The
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Podowski [30] lift correction is commonly implemented as well. For modeling the turbulent

dispersion force, the correlation-based FAD [37] is the most preferred. It is also seen that

some researchers omit the use of this model. Antal [38] and Hosokawa [40] wall lubrication

models are the most preferred models, while some researchers omitted their use. The virtual

mass model is either used with a constant coefficient or omitted, however, when bubble

induced turbulence is considered, Troshko and Hassan [62] model requires this coefficient

even if force is not calculated and used.

It is interesting to see that many combinations are utilized and even in the case of using

specific coefficients as constants, they vary in sign and magnitude. Also it should be noted

that most of the models do have model coefficients and the researcher do modify these

coefficients manually per cases. Even with a particular model set selection, the turbulence

modeling has direct effect on simulation outcomes considering direct interaction through

dependent variables.
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4. METHODOLOGY

This section outlines the approach employed and the method implemented in this study,

focusing on CFD simulations for modeling momentum transfer mechanisms in two-phase

flow. The approach for selecting and configuring closure models, and assessment against

experimental data, is detailed. The method for the development of new and improvement of

existing closure models with design space exploration approach in an automated fashion is

introduced.

Since most of the closure models have tunable parameters, these parameters can be defined

as variables and since the effectiveness of these closure models are benchmarked against

experiment data, the deviation of the results of the simulations conducted with these models

can be defined as responses. The complex structure of multiphase simulations rises quite

a few number of tunable parameters that can be specified as variables in this method, not

only for closure models but also for other models such as turbulence so the description of

variables and responses are not limited.

The effectiveness of closure models, or more precisely, the entire set of selected models for

simulations, can be measured by the relative error against experimental data. The focus is on

minimizing the relative error during the development and tuning of the available models.

General applicability is desired for the closure models to cover a broad spectrum of

conditions. The reviewed experiments demonstrate a considerable amount of experimental

data available for model testing. Repetitive simulations during the testing phase may rise

issues. Automating these repetitive tasks reduces the required effort and eliminates potential

errors inherent in manual processes.

This is an optimization problem with a high-dimensional solution space. Optimization

techniques may align with the challenges and requirements of developing and testing closure

models for two-phase flow CFD simulations.
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In multi-objective optimization scenarios, such as those encountered in CFD simulations for

two-phase flow, the challenges include managing trade-offs between conflicting objectives.

A hybrid, adaptive, and efficient search algorithm is required for this research, to ensure

effective design space exploration.

4.1. Design Space Exploration

The SHERPA algorithm offered with the commercial process automation and design space

exploration software HEEDS-MDO is a hybrid and adaptive search algorithm. This

algorithm is capable of combining multiple search strategies and adapts while the learning

about the design space progresses and is capable of handling both, single objective and

multi-objective studies. SHERPA algorithm is a hybrid algorithm combining global search

strategies, which explores the design space broadly, with local search strategies, which

refine solutions in promising regions. This is critical for finding globally optimal solutions

in complex optimization problems since algorithms with local only capabilities requires a

narrower search space.

There are two options for multi-objective studies. The first one is the weighted sum of all

objectives type where all objectives are taken into account and the provided solutions are

based on a performance function defined as;

P =

Nobj∑
i=1

(
Wlin,i · Si ·Oi

Nobj,i
+
Wquad,i · Si ·O2

i

N2
obj,i

)
−

Ncon∑
j=1

(
Wlin,j · Cj ·Oi

Ncon,j
+
Wquad,j · C2

j ·Oi

N2
con,j

)
(204)

where: Nobj is the number of objectives in the design study. Wlin,i and Wquad,i are the linear

and quadratic weights for the ith objective, respectively. Si is the sign for the ith objective.

Oi is the response value for the ith objective. Nobj,i is the normalization value for the ith

objective. Ncon is the number of constraints in the design study. Wlin,j and Wquad,j are the

linear and quadratic weights for the j th constraint, respectively. Cj is the amount by which the
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j th constraint is violated. Ncon,j is the normalization value for the j th constraint. Depending

on the type of objective, Si is set to -1 for minimization and 1 for maximization.

The performance function, P , is a weighted sum of all the objectives and constraints in a

design study. It allows for optimization based on a single objective or multiple objectives.

When multiple objectives are defined, linear weighting is used to convert all objectives into a

single objective. Running this analysis with multiple objectives returns a single best design.

A typical performance history plot for a study is shown in Fig. 4.1. There are three categories

namely, feasible, infeasible and error designs. Baseline design is the first design and

regarding the study type, it can be a member of any of the categories. If the study is set

as an exploration with the performance function referencing the baseline for normalization

Nobj,i, that is an improvement type of study, the baseline design must be a member of the

feasible designs. On the other hand, if the procedure as defined as an exploration without

any reference where Nobj,i can be set to any value, in that case the baseline design can be a

member of any of the categories.
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Figure 4.1 Performance history plot

The second option is the multiple objective trade-off study also called Pareto optimization is

suitable when there are conflicting objectives. It works in the same principal as the weighted
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sum of all objectives option, but offers handling of multiple objectives independently

resulting in a set of solutions. Each solution is considered best in a specific aspect for one

of the objectives. This option is preferred for optimization studies where the trade-offs are

important. Pareto optimization study does not provide a single optimum design, instead

results in a curve. This curve is the Pareto front. Pareto front is used to identify the trade-off

relationships of competing objectives.

SHERPA is an iterative algorithm which allows continuous refinement of solutions. Starting

with a broad exploration of the solution space, the algorithm incrementally narrows down the

search, focusing more on areas with high potential based on the feedback from each cycle of

simulations.

Given the complexity and resource intensive nature of CFD simulations with , multi-objective

optimization scenarios, such as minimizing deviations from experimental data across

different flow conditions SHERPA algorithm’s efficiency in converging towards optimal

solutions in relatively low number of cycles is beneficial.

In the context of this research, the SHERPA algorithm is used to explore the parameters of

closure models in two-phase flow simulations by iteratively adjusting these parameters and

evaluating the simulation results against experimental data. SHERPA guided the exploration

process towards the most accurate and reliable models by systematically exploring their

effects on the simulation results.

4.2. Simulation

CFD simulations are carried out utilizing the commercial software suit STAR-CCM+. This

tool offers comprehensive multi-physics solvers and state-of-the-art capabilities required for

detailed modeling of two-phase flow dynamics, essential for this study’s objectives. A key

feature of this tool is its flexibility in customizability and automatability. This feature is

utilized in this study. Specifically, the process involves creating simulation templates with

pre-defined solvers, models, and settings, while leaving geometric dimension, boundary

conditions, operating conditions, and tunable model parameters as adjustable simulation
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automation parameters for the automated exploration procedure. This enables generation

of diverse simulation scenarios.

A critical step of the methodology is the automated pre-processing and case generation. This

is achieved by defining flow domain dimensions as simulation parameters. This automation

also handles mesh generation, where cell sizes are linked to these dimensions.

For the solution phase Eulerian multiphase solver is selected. This solver is capable of

solving mass conservation and momentum conservation equations for multiple phases. This

solver utilizes the TFM and offers a variety of closure models. Among the range of available

turbulence models, the Realizable k-ε model is chosen for the primary phase with the

turbulence response model. Closure model sets selection is narrowed according to bubbly

flow compatibility. All these selections are guided by the literature review of existing CFD

studies.

Furthermore, the post-processing capabilities of STAR-CCM+ include automatic report

generation and data exporting. Placement of probes in the flow domain, represented

the measurement stations in related experimental configurations. This alignment with

experimental configurations enables the digital representation of the conducted experiments.

The acquisition of simulation data, including void fraction αg, relative velocity vrel, and

turbulent kinetic energy of water kl, is performed using STAR-CCM+’s built-in reporting

functionality. The deviation of CFD simulation outputs against the experimental results at

specified probes and corresponding measurement stations is assessed as shown in Eq.(205)

providing a quantitative measure as the response.

Erel =
|Vsim − Vexp|

|Vexp|
(205)

The overall measure of error for the entire data-set is calculated as shown in Eq.(206) This

allows systematic data collection and is required for the exploration process.
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Erel =
1

N

N∑
i=1

|Vsim,i − Vexp,i|
|Vexp,i|

(206)

The CFD models for this study are prepared in STAR-CCM+, with templates and in an

automated fashion to ensure consistency across all simulations. Each model is configured

to replicate the conditions of a corresponding experiment, as outlined in Table 5.2, which

summarizes the diverse experimental conditions examined. This approach offers a broad and

robust basis for validating the closure models across a range of two-phase flow scenarios.

4.3. Automated Process Workflow

Two-phase flow CFD simulations work-flow automation is established with HEEDS and

STAR-CCM+ through a coupling portal. The functionality of HEEDS is to automate the

simulation processes, manage data and apply the advanced search algorithm SHERPA for

design space exploration. It is designed to handle complex engineering problems where the

design space is extensive and non-linear, with multiple competing objectives and constraints.

In this study, HEEDS and the SHERPA algorithm are used for multi-objective design space

exploration, to minimize the deviation between CFD simulations and experiment data across

a range of flow conditions. The algorithm iteratively explores various combinations of

design variables, which include tunable parameters of the closure models, and evaluates their

performance against the predefined objectives.

In the context of this research, HEEDS is instrumental in systematically refining the closure

models for two-phase flow. By leveraging its advanced optimization capabilities, the study

aims to achieve closure models that not only fit the experimental data with high fidelity but

also maintain robustness and applicability across various scenarios. an innovative approach

to model development and validation, ensuring that the findings of this study are both

scientifically and practically relevant.
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This process involves the submission of all prepared CFD simulations to HEEDS, which then

executes them sequentially. The baseline variables, representing the tunable parameters of

the closure models, are consistently applied across all simulations.

HEEDS, utilizing its SHERPA algorithm, systematically evaluates the results of each CFD

simulation against the corresponding experiment data. The algorithm then adjusts the

baseline variables across all models and initiates a new set of simulations. This iterative

process of running simulations, evaluating results, and adjusting variables continues until the

optimal set of parameters is identified.

The objective functions in HEEDS are equi-weighted, focusing on minimizing the overall

discrepancy between CFD results and experimental data. This multi-objective approach

ensures that the optimized models perform well across a range of different experimental

conditions, providing a comprehensive validation of their accuracy and applicability.

In this research, the integration of CFD with sophisticated search algorithms represents a

key element of the methodology bringing an alternative perspective as utilizing the design

space exploration approach to develop coefficient models for momentum closure relations in

two-phase flow and validating the new models in an automated fashion.

The SHERPA algorithm conducts a comprehensive, iterative process, adjusting variables and

rerunning simulations until an optimal set of parameters is identified. Performance metrics,

according to the alignment of simulation results with experimental measurements, guide the

optimization.

4.4. Test Case

The method is demonstrated with a test case using reference data from the experiment, H3,

of Hosokawa and Tomiyama [72]. Void fraction data for this experiment is collected from 9

measurement stations. The simulation outputs at these stations for the respective variables are

designated as responses. The set of selected closure models, correction models, turbulence

models and their respected tunable model parameters are given below in Table 4.1 below,
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model constants
CD Tomiyama -
CD correction αn −50 ≤ n ≤ 0
CL Tomiyama -
CL correction Podowski -
CTD Burns 0.1 ≤ σα ≤ 10
CWL Antal −0.1 ≤ Cw1 ≤ 0 0 ≤ Cw2 ≤ 0.1
TR Issa -
BIT Troshko and Hassan 0.01 ≤ C3 ≤ 10 0 ≤ C ≤ 10

Table 4.1 Closure model set and tuning parameter ranges

The objective of this method is to minimize the mismatch of experimental data and

simulation results at each corresponding measurement station. This deviation is quantified

as the relative error, calculated using the formula given in Eq.(205). The procedure adopted

is classified as a multi-objective design optimization. The performance regarding each

design iteration is calculated based on the weighted sum of all objectives. The performance

improvement is evaluated relative to the baseline model, which represents the simulation

conducted with default values of the tunable parameters.

baseline tuned
n 0 -27
σα 1 0.1
Cw1 -0.01 -0.099
Cw2 0.05 0.33
C3 0.45 4.35
C 1 0.54
P -6.85 -1.99

Table 4.2 Tuning parameters for the baseline and tuned models

The results and relative errors of the base model are shown in Fig. (4.2), with a calculated

performance value of -6.85. After 500 evaluations, the optimal design emerged with a

performance value of -1.99 , indicative of reduction in deviation compared to the base model.

The outcomes of this optimal design are detailed in Figure.(4.2). Presented figure not only

display the simulation results but also presents relative errors, showing the effectiveness of

the proposed method.
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Figure 4.2 Baseline vs. tuned model comparison plot

In conclusion, this method demonstrates a systematic and efficient approach to enhancing

the accuracy of simulations by fine-tuning the parameters of closure models. The use of a

design space exploration multi-objective optimization framework allows for a comprehensive

evaluation of model performance, ensuring improvement over the base model. The

significant reduction in deviation from experimental data shows the method’s effectiveness

in refining simulations.
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5. DATA AND ANALYSIS

This section introduces the outcomes of the simulations conducted using Star-CCM+ with

an Eulerian multiphase solver, against the selected experiment data listed in Table 5.2. The

listed experiments are selected to cover both wall and core peaking categories. Pipe diameters

and void fractions varies between, 25 mm and 60 mm and 2.5% and 16% respectively. The

continuous phase superficial velocities span 0.5 m/s to 1.03 m/s, dispersed phase superficial

velocities span 0.018 m/s and 0.2 m/s and the bubble diameters in the experiments span

2.94 mm to 4.25 mm. Cases with experiment data for single-phase conditions are used to

determine cell sizes for the simulations.

Initially a case is presented to show the effect of model combinations on the results of

the simulation in terms of predicting the volume fraction distribution. Table.4.2 shows the

selected closure model set. This set is also used for method testing. The case is a wall

peaking case with the corresponding experiment ID H3 with 2.8% void fraction and 3.52

mm. bubble diameter with continuous and dispersed superficial velocities, 1.0 m/s , 0.035

m/s respectively. Momentum closure model set used in default simulations is presented with

the regarding tunable parameters.

Tomiyama Drag Coefficient Model

Tomiyama et al.[19], general drag coefficient is given in Eq.(84). This model is used as

presented thus no tunable parameter is present however case specific particle size is taken

into account by the model through the Eo number.

Volume Fraction Exponent Drag Correction

The form of this correction factor is presented below;

CD = fDCD∞ (207)

where,
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fD = αnD
c (208)

This correction model utilizes the void fraction value thus has the respective tunable

parameter.

Tomiyama Lift Coefficient

The Tomiyama lift coefficient model [28], is shown in Eq.(106) Since no tunable parameter

exists, this model is used as presented. This CL model is used as presented thus no tunable

parameter is present however as the CD model, case specific particle size is considered by

this model via the Eo number.

Burns’ Turbulent Dispersion Force Model (FAD)

Burns [37] FTD model is given in Eq.(123). The FTD model is used with the tunable

parameter σTD within the defined range given in Table. 5.1.

Antal Wall Lubrication Force Model and Coefficient

Antal et al. [38] FWL model [38], is given in Eq.(124) with the coefficients CW1 and CW2 as;

CW1 = 0.06|vg − vl|+ 0.14 (209)

CW2 = 0.147 (210)

where these coefficients are set as tunable parameters with the defined range given in

Table. 5.1.
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Shaver and Podowski Wall Damping Lift Coefficient Model

Shaver and Podowski [30] lift model is presented in Eq. 110. Since this correction model is

a self adjusting function, no tunable parameter exists and is used as presented.

Troshko and Hassan

Troshko and Hassan [62] BIT model is presented below in Eq.s 211, 214 with the source

definitions

Turbulent Kinetic Energy (k) Equation;

∂(ρcαckc)

∂t
+∇ · (ρcαcUckc) = αcT

Re
c : (∇Uc)−∇ · (ρcν

t
c

σk
∇kc)

− ρcαcεc +
3

4

Cd

d
αdρc|Ur|3 (211)

smallest eddy frequency scale [48];

ω =
ε

k
(212)

bubble dissipation frequency from bubble relaxation time constant τb proposed by

Bertodano [61];

ωb = (τb)
−1 =

(
2

3

CVM

CD

Db

ur

)−1

(213)

Dissipation Rate (ε) Equation;

∂(ρcαcεc)

∂t
+∇ · (ρcαcUcεc) = ω(C1αcT

Re
c : (∇Uc)− C2ρcαcεc)

−∇ · (ρcν
t
c

σε
∇εc) + ωbC3

3

4

Cd

d
αdρc|Ur|3 (214)

where C3 and Cω are the new model constant, and they are used as tunable parameters with

the limits given below in Table. 5.1. The remaining are the standard k-ε model constants in

Table. 3.1 and they are not subject to tuning.
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The tunable parameters and their limits are presented in Table. 5.1

min variable max resolution
0 Drag Correction Volume Fraction Exponent n 1 101
0 BIT Source C3 1 101
0 BIT Production Calibration Factor CCF 1 101
0 Turbulent Dispersion Prandtl Number σα 1 101

-0.1 Wall Lubrication Coefficient Cw1 0 101
0 Wall Lubrication Coefficient Cw2 0.1 101

Table 5.1 Limits and resolution for the variables

Figure 5.1 H3 Void fraction (closure model sets)

The initial simulations, focusing solely on the drag model, showed negligible effects on

void fraction distribution. Addition of the swarm corrector over the drag model did not

have any effect since the absence of any lateral force sustained the flat volume fraction

distribution. The subsequent addition of the lift model, although physically accurate, led

to unrealistic results, pushing the air phase towards the pipe wall and causing accumulation.

Although the lift correction model, Podowski setsCL = 0 for the neighboring cells to the wall,

accumulation was not entirely eliminated, suggesting the presence of competing additional

factors influencing the volume fraction profile in wall boundary proximity. However, the
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Figure 5.2 H3 Turbulence kinetic energy (closure model sets)

Figure 5.3 H3 Relative velocity (closure model sets)
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incorporation of the FWL model considerably improved the results by reducing void fraction

near the wall and creating a more realistic peak. The inclusion of FTD further refined the

distribution, flattening the peak in wall proximity. Taking the dispersed phase turbulence

into account by use of BIT model enhanced the turbulence resolution and overall solution.

Yet it is still interesting to see that a widely preferred closure model set directs the results

towards a clustering near the wall boundary. This is a good indicator that models developed

for single bubbles need to be corrected with the appropriate correction models which are

functions mostly functions of void fraction or gradient of relative velocity.

Data for this study is collected from 24 measurement stations. Among these, 9 provide

data on void fraction, 7 on relative velocity, and 17 on turbulence kinetic energy. Error

analysis, revealed high discrepancies across all cases, often exceeding 50% relative error.

Although such error values are not acceptable for single-phase CFD simulations, they

are quite common for multi-phase simulations which results from the added complexity

rising from closure models. The Eulerian solver’s requirement to solve the conservation

equations for each phase individually, coupled with the need for inter-phase closure relations

(including drag and non-drag models), introduces an additional level of non-linearity absent

in single-phase flow simulations.

The simulation results revealed the role of specific models, particularly the models that effect

the near wall behavior. Wall lubrication model and the lift correction models are critical in

predicting the correct void fraction distribution trend. However, the persistent high error

rates across all cases indicate a gap in the current modeling approach for multiphase flows.

5.1. Experiment Groups

The experiments selected for this study span a broad range of flow conditions with

the details given in Table 5.2. The experiments by Serizawa et al. [76], [77], [78],

provide data sets that include void fraction, phase velocities, scaled turbulence kinetic

energy. Their experiment data for the phase velocities are normalized by values at pipe

center-line. Liu’s [69], [79], [80] experiments were conducted at 2 different liquid velocities.
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Measurements include void fraction, phase velocities and turbulence kinetic energy presented

scaled. These experiments are notable for their high bubble Reynolds number conditions.

Hosokawa’s [72] experiments focus on multi-scale in bubbly flows. These experiments

provide void fraction, relative velocities and turbulence kinetic energy. None of these

experiments provide detailed inlet profile data. Given bubble size data is used with

mono-dispersed case assumption. Each of these experiments offers data for validating the

single-phase. These data is used for validating our approaches parameter sets.

The series of reference experiments shown in Table 5.2 is selected towards the assessment

of simulation results via comparison. The selected experiments provide single phase data

besides two-phase data. Although the majority of the data is for wall peak profiles, there are

also core peak profile data provided with certain experiments.

Table 5.2 List of reference experiments

ID dd Jl Jb db αb (%) Reb Profile
(mm) (m/s) (m/s) (mm) (%)

S0 60 1.03
S1 60 1.03 0.0753 4.0 3.97 763 Wall Peak
S2 60 1.03 0.151 4.0 10.23 1480 Wall Peak
S3 60 1.03 0.151 4.0 16.27 930 Wall Peak
L01 57.2 0.5
L1 57.2 0.5 0.1 2.94 15.2 1934 Wall Peak
L02 57.2 1.0
L2 57.2 1.0 0.1 3.03 10.6 2859 Wall Peak
L3 57.2 1.0 0.2 3.89 15.7 4942 Wall Peak
H01 25.0 0.5
H1 25.0 0.5 0.018 3.21 2.5 579 Core Peak
H2 25.0 0.5 0.031 4.25 4.1 1285 Core Peak
H02 25.0 1.0
H3 25.0 1.0 0.035 3.52 2.8 1257 Wall Peak
H4 25.0 1.0 0.042 3.66 3.2 1204 Wall

5.2. Single Phase

Simulation results with grid sensitivity investigation for the single phase scenarios are

presented for the corresponding experiments. The selected grid size per case is used for
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the corresponding two-phase simulations.

Single phase simulation result for the Serizawa al. [76], [77], [78] experiment with the ID

S0 is presented in Fig. 5.4. It is noted that the experiment data is normalized for the velocity

by the velocity value at the pipe center and scaled turbulent kinetic energy is provided.

The simulation versus experiment data mismatch is significant especially for the turbulent

kinetic energy. The cause of mismatch is the poor near wall resolution besides the selected

turbulence model.

Figure 5.4 S0 results

Fig. 5.5 presents the single phase simulation result for the Liu [80] experiment with the

ID’s L01 and L02 corresponding to high and low velocity cases respectively is presented in

Fig 5.5. There is only turbulent kinetic energy data for this experiment. The simulation and

experiment data mismatch is significant in the wall boundary proximity for velocity besides

turbulent kinetic energy throughout the whole flow domain.

Single phase simulation result for the Hosokawa [72] experiments with the ID H01 and

H02 corresponding to high and low velocity cases respectively is presented in Fig. 5.6. It is

noted that the experiment data is normalized for the velocity by the velocity value at the pipe

center and scaled turbulent kinetic energy is provided. The simulation and experiment data

mismatch is significant especially for the turbulence kinetic energy.
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Figure 5.5 L01-L02 results

Although mismatch of simulated and experiment data is observed, the reason being the near

wall resolution efficiency, it is a typical practice for two-phase flow CFD simulations to

disregard it since the grid size and grid size change profile of two-phase simulations effect

the stability of the overall simulation.

5.3. Default Parameters

5.3.1. Wall Peak

Two phase simulations for the selected experiments are conducted and the results are

presented. The set of closure models selected for the conducted simulations are presented
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Figure 5.6 H01-H02 results

below in Table 4.1 and the related coefficients are presented in Table 4.2 as the default

parameter set.

Two phase simulation result for the Serizawa al. [76], [77], [78] experiment with the ID S1

is presented in Fig. 5.7 . Besides comparison, Fig. 5.8 is presented to indicate the profiles

for drag and lift coefficients (CD,CL) and bubble and rotational Reynolds numbers, (Reb,

Reω) along the measurement stations. It is noted that although the trend match is observed

experiment data mismatch is significant.
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Figure 5.7 S1 results 1 (default sets)
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Figure 5.8 S1 results 2 (default sets)

Fig. 5.8 shows the steep change in the magnitude of the Reω in the respective plot. This

clearly indicates the significance of the wall boundary for most of the phenomena
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Result for the experiment with the ID S2 is presented in Fig. 5.9. Simulated and experiment

data mismatch especially for the void fraction distribution is observed while normalized

water velocity deviation was relatively low.

Figure 5.9 S2 results (default sets)

Result for the experiment with the ID S3 is presented in Fig. 5.10. Simulated and experiment

data mismatch especially for the void fraction distribution is observed while normalized

water velocity deviation was relatively low.

Two phase simulation result for the Liu [80] experiments with the IDs L1, L2 and L3

corresponding to wall peaking cases are presented in Fig.s 5.11, 5.12 and 5.13 respectively.
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Figure 5.10 S3 results (default sets)

Two phase simulation result for the Hosokawa [72] experiments with the ID H3 and H4

corresponding to wall peaking cases are presented in Fig.s 5.14 and 5.15 respectively.

5.3.2. Core Peak

Two phase simulation result for the Hosokawa [72] experiments with the ID H1 and H2

corresponding to core peaking cases are presented in Fig.s 5.16 and 5.17 respectively.
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Figure 5.11 L1 results (default sets)

5.4. Parameter Tuning

5.4.1. Wall Peak

L1-L2-L3 tuning

Liu [80] experiments with the IDs L1, L2 and L3 corresponding to wall peaking cases are

selected for parameter tuning simultaneously. The baseline model has 6 tunable parameters

and the experiment provides void fraction, turbulence kinetic energy and liquid velocity

data from 15 measurement stations making a total of 135. This results in an optimization

statement with 135 responses to be minimized my modifying 6 variables between the

predefined range given in Table. 5.3 at the specified resolution. The performance value P
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Figure 5.12 L2 results (default sets)

for the baseline value is set to -270 due to weighting. The responses related to turbulence

kinetic energy and liquid velocity for all 3 cases were set to have linear weights of 1 while

the void fraction responses were set to 4 for their linear weights. After the specified 4000

runs, the performance value P reached the value of 249. The comparison plot of this study

is presented in Fig.s 5.18, 5.19, 5.20.

The default and the tuned model set parameters are presented in Table. 5.4.

It is seen that for the L1 case, simulation with the tuned parameter set performed well in

turbulence kinetic energy and velocity predictions. Void fraction distribution in contrast is

arguable thus, while better prediction was obtained for the near wall region, core region

showed poor performance.
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Figure 5.13 L3 results (default sets)

min variable max resolution
0 Drag Correction Volume Fraction Exponent n 1 101
0 BIT Source C3 1 101
0 BIT Production Calibration Factor CCF 1 101
0 Turbulent Dispersion Prandtl Number σα 1 101

-0.1 Wall Lubrication Coefficient Cw1 0 101
0 Wall Lubrication Coefficient Cw2 0.1 101

Table 5.3 Limits and resolution for the variables

n σα Cw1 Cw2 C3 CCF P

baseline 0 1 -0.01 0.05 0.45 1 -270

tuned 0.02 0.82 -0.014 0.49 0.41 0.98 -249

Table 5.4 Baseline vs. tuned model parameters for L1-L2-L3
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Figure 5.14 H3 results (default sets)

The simulation for the L2 case with the tuned parameter set showed poor performance on all

comparisons.

The simulation for the L3 case with the tuned parameter set resulted in considerable in

performance on all comparisons.
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Figure 5.15 H4 results (default sets)
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Figure 5.16 H1 results (default sets)
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Figure 5.17 H2 results (default sets)
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Figure 5.18 L1 results (tuned vs. default sets)
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Figure 5.19 L2 results (tuned vs. default sets)
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Figure 5.20 L3 results (tuned vs. default sets)
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5.4.2. Core Peak

Hosokawa [72] experiment core peak profile cases are presented.

H1-H2 tuning

n σα Cw1 Cw2 C3 CCF P

baseline 0 1 -0.01 0.05 0.45 1 -

tuned -12.6 0.69 -0.035 0.5 0.3 1.82 -3.89

Table 5.5 Baseline vs. tuned model parameters for H1-H2

Baseline performance value is not present due to the fact that the use of default values for the

simultaneous simulations of H1 and H2 resulted successfully but tagged in-feasible, where

the feasibility condition was set as the maximum value of 0.1 for α at the wall boundary of

the axial position of the measurement stations.

Fig. 5.21 presents the tuned coefficient set for H1 obtained from simultaneous simulations of

H1 and H2.

Fig. 5.22 presents the tuned coefficient set for H2 obtained from simultaneous simulations of

H1 and H2.

The overall results indicate the general applicability of a randomly selected readily available

momentum closure model set with tunable parameters may not be possible.
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Figure 5.21 H1 tuned coefficient results (H1-H2)
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Figure 5.22 H2 tuned coefficient results (H1-H2)
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6. MODEL DEVELOPMENT AND VALIDATION

6.1. Model Description

The research focused on developing models specifically for drag coefficient and lift

coefficient in bubbly two-phase upward flow conditions. The theoretical foundation was

based on single bubble drag and lift coefficients. Data from relevant experiments previously

reviewed in the dissertation are used as reference. The power law functional form as shown

below in Eq.(215) is considered for the relevant parts of the proposed models. A novel

methodological approach was adopted, utilizing an efficient search algorithm to identify and

fine-tune unknown constants in the proposed functional forms of drag and lift coefficient

models. This approach allowed for a more precise and adaptive model development, capable

of accounting for a wide range of variables.

fγ = Cγ1γ
Cγ2 (215)

To achieve the best-performing models, it is essential to develope and validate against a wide

array of reference experiments, covering a broad spectrum of flow conditions. A complete

model should account for all the dimensionless numbers and flow-dependent variables such

as, Reb, rotational Reynolds number Reω, void fraction α, bubble size d, turbulent kinetic

energy k, Eo, Eod, the Weber number We and so forth. The addition of these parameters

would help the models to capture more complex interactions within the flow.

The coefficient model, which integrate the effects of multiple parameters, is presented below

in Eq.(216) as;

C = C0 · fReb · fα · fReω · fd · fk · fEo · fEod · fWe · .... (216)
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Such models are expected to offer a significant improvement in predictive capability for a

broader range of conditions.

In this study, relatively simplified versions of the models are proposed and the FAD FTD

model is used as is with the new set in certain cases and the effect is observed.

Regarding the drag coefficient model, rotational Reynolds number Reω and the swarm effect

is also considered besides the bubble Reynolds number,Reb. Although function constants for

Reb part in most of the already available coefficient models are widely accepted and utilized,

as an additional indicator of the performance of the exploration procedure, these constants

are also set to be explored with the new coefficient model.

The proposed drag coefficient model with integrated effects can be represented as;

CD = CD0 · fRe · fα · fReω (217)

where,

CD0 =
24

Re
(218)

The lift coefficient model is proposed withReb and swarm effect dependencies. Additionally,

since the rotational Reynolds number Reω is implicitly including the wall effects through

steep change in value with wall distance, it is also included to capture the related effects.

This form of the model is to handle the dynamics without the need of any near wall correction

model.

The proposed lift coefficient model is presented below as;

CL = CL0 · fRe · fα · fReω (219)

where,
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CL0 = C1 (220)

The limits and the resolution of the coefficients are presented below in Table 6.1,

min variable max resolution

-5 CD
α2 5 101

0.1 CD
Reb1

1 101

0.1 CD
Reb2

1 101

0 CD
Reω2

1 101

0.005 CL
1 0.5 101

-5 CL
α2 5 101

0 CL
Reb1

1 101

0 CL
Reb2

10 101

0 CL
Reω1

1 101

0 CL
Reω2

1 101

Table 6.1 Limits for the new model coefficients

6.2. Wall Peak

Wall peak profile cases of Hosokawa [72] and Serizawa al. [76], [77], [78] are examined

and related coefficient model constants are determined in a single and grouped fashion and

presented for the respective cases.

6.2.1. S1 new model set

The single S1 experiment of Serizawa al. [76], [77], [78] is chosen for determining the

coefficients. Only the lift and drag forces are used and no turbulence related force or model is

used. The search procedure is set only against the radial distribution of the volume fraction.

The results for the model parameter search against the single experiment, S1 are presented

in Fig. 6.1 and the model constants are shown in Table 6.2. As expected, while good fit is
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CD
α1 CD

Reb1
CD

Reb2
CD

Reω1
CL

0 CL
α1 CL

Reb2
CL

Reb1
CL

Reω1
CL

Reω2

0.70 0.81 0.71 0.4 0.12 −0.6 6.64 0.29 0.8 0.19

Table 6.2 Model coefficients for S1

Figure 6.1 S1 (new model sets)

achieved against the volume fraction profile, relatively higher deviation is observed for the

turbulence scale. It is also noted that the coefficients for the Reb part of the drag coefficient

model appear to be in good agreement with the readily available alternative models.
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6.2.2. S1-S2-S3 new model set

The three experiments of Serizawa al. [76], [77], [78] referred to as S1-S2-S3 are chosen for

determining the coefficients. A single set of coefficients are investigated for simultaneous

application across these cases. Only the lift and drag forces were considered, with no

turbulence-related forces or models included. The search procedure focused solely on the

radial distribution of the volume fraction.

Figure 6.2 S1 model coefficient results (S1-S2-S3)
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Figure 6.3 S2 model coefficient results (S1-S2-S3)
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Figure 6.4 S3 model coefficient results (S1-S2-S3)

The results for the model parameter search against multiple experiments, i.e. S1-S2-S3 are

presented in Fig.s (6.2, 6.3, 6.4) and the model constants are shown in Table 6.3. While good

agreement for the void fraction profiles were achieved, omitting turbulence related models

and forces resulted in poor prediction of turbulence scales.

CD
α1 CD

Reb1
CD

Reb2
CD

Reω1
CL

0 CL
α1 CL

Reb2
CL

Reb1
CL

Reω1
CL

Reω2

−2.2 0.99 0.62 0.3 0.26 4.9 0.26 0.17 0.78 0.16

Table 6.3 Model coefficients for S1-S2-S3
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6.2.3. S1-S2-S3 new model set (FTD and BIT )

The three experiments of Serizawa al. [76], [77], [78] referred to as S1-S2-S3 are chosen for

determining the coefficients. A single set of coefficients are investigated for simultaneous

application across these cases. Besides the lift and drag forces, FTD and BIT are also

considered to enhance turbulence scale prediction. The search procedure focused solely on

the radial distribution of the volume fraction.

FAD turbulent dispersion force model included simulation results for the model parameter

search against multiple experiments, i.e. S1-S2-S3 are presented in Fig.s (6.5, 6.6, 6.7) and

the model constants are shown in Table 6.4. As expected, the void fraction profiles are

smoothed out and the turbulence scale prediction is relatively enhanced. It is also noted that

the coefficients for the Reb part of the drag coefficient model appear to be in good agreement

with the readily available alternative models. Addition of the FTD & BIT) affected the swarm

and Reω parts of the coefficient model. While a sign change and increase in amplitude

is observed for the swarm part, compared against single and grouped cases respectively,

coefficient for Reω approached to zero.

CD
α1 CD

Reb1
CD

Reb2
CD

Reω1
CL

0 CL
α1 CL

Reb2
CL

Reb1
CL

Reω1
CL

Reω2
σT

−3.1 0.58 0.41 0 0.097 4.4 0.64 0.21 1 0.02 0.06

Table 6.4 Model coefficients for S1-S2-S3 (FTD & BIT )

C3 CCF

0.27 0.96

Table 6.5 BIT coefficients for S1-S2-S3
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Figure 6.5 S1 model coefficient results (S1-S2-S3) (FTD & BIT )
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Figure 6.6 S2 model coefficient results (S1-S2-S3) (FTD & BIT )

116



Figure 6.7 S3 model coefficient results (S1-S2-S3) (FTD & BIT)

117



6.2.4. H3-H4 new model set

Wall peak profile cases H3-H4 of Hosokawa [72] are chosen for determining the coefficients.

A single set of coefficients are investigated for simultaneous application across these cases.

Besides the lift and drag forces, FTD and BIT are also considered.

Figure 6.8 H3 model coefficients (FTD & BIT)

The results for the model parameter search against multiple experiments,Fig.s (6.8-6.9) and

the model coefficients are shown in Tables 6.6, 6.7. While a relatively good prediction is

achieved, it is observed that the deviation is still significant.
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Figure 6.9 H4 model coefficients (FTD & BIT)

CD
Reb1

CD
Reb2

CD
α1 CD

Reω1
CL

0 CL
α1 CL

Reb2
CL

Reb1
CL

Reω1
CL

Reω2

0.8 0.65 1.95 0.17 0.2 0.0181 2.5 0.2 0.8 0.9

Table 6.6 Model coefficients for H3-H4 (FTD & BIT)

C3 CCF

0.36 9.7

Table 6.7 BIT coefficients for H3-H4
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6.3. Core Peak

Core peak case of Hosokawa [72] experiment is examined and related coefficient model

constants are determined for the respective case.

6.3.1. H2 new model set

Table 6.8, 6.9 presents the model coefficients. As expected, there is a notable change in the

coefficients, specifically the parts of the lift coefficient, reason being the radical change in

the peak profile.

CD
α1 CD

Reb1
CD

Reb2
CD

Reω1
CL

0 CL
α1 CL

Reb2
CL

Reb1
CL

Reω1
CL

Reω2

−2.73 1 0.90 0.24 0.18 0.05 0.31 0.06 1 0.22

Table 6.8 Model coefficients for H2 with (FTD & BIT)

C3 CCF

−0.7 0.22

Table 6.9 BIT coefficients for H2 (FTD & BIT)

Fig. 6.10 presents the new coefficient model with the addition of turbulence dispersion force

FTD. It is seen that, reasonable prediction is achieved.
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Figure 6.10 H2 model coefficient results (FTD & BIT)
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6.4. All Peak

Both wall and core peak cases of Hosokawa [72] experiments are examined and related

coefficient model constants are determined for the respective cases. For the assessment of

the performance of the proposed coefficient model set, tuned coefficients achieved earlier are

referenced for comparison.

6.4.1. H1-H2-H3-H4 new model vs. tuned set

Table 6.10, 6.11 presents the model coefficient set, model BIT coefficients and tuning

parameters for the simultaneous simulations of all 4 Hosokawa [72] experiment cases which

include 2 wall peak and 2 core peak profiles.

CD
α1 CD

Reb1
CD

Reb2
CD

Reω1
CL

0 CL
α1 CL

Reb2
CL

Reb1
CL

Reω1
CL

Reω2

2.5 0.208 0.838 0.2 0.0609 −0.4 0.8 0.11 0.42 0.7

Table 6.10 Model coefficients for H1-H2-H3-H4 with (FTD & BIT)

C3 CCF

0.838 0.19

Table 6.11 BIT coefficients for H1-H2-H3-H4 with (FTD & BIT)

Fig.s 6.11, 6.12, 6.13 presents the comparison of void fraction distribution, turbulence kinetic

energy profile and relative velocity profile predictions of the proposed approach against tuned

sets respectively.

The results show considerable prediction performance of the new model, while requiring

additional improvements.

This study is conducted for mono-dispersed cases. For further improvement, functions

including turbulence kinetic energy, bubble shape, size and aspect ratio should be included.
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Figure 6.11 H1-H2-H3-H4 new coefficients vs. tuned set (FTD & BIT)
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Figure 6.12 H1-H2-H3-H4 new coefficients vs. tuned set (FTD & BIT)
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Figure 6.13 H1-H2-H3-H4 new coefficients vs. tuned set (FTD & BIT)
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7. DISCUSSION

Current momentum closure models are confined to the particular experimental conditions

which they were developed against. By addressing this gap, this study aimed to propose new

drag coefficient model and lift coefficient model and determine the model coefficients using

design space exploration method. CFD simulations were conducted for validation against

experiment data. The proposed drag coefficient and lift coefficient models were formulated

with the dependencies on flow dependent parameters such as shear rate, volume fraction and

Reynolds number to provide a more robust closure relation. The design space exploration

method, aimed to minimize the mismatch between CFD simulation outcomes and experiment

measurement data by automatically changing model coefficients.

The exploration process revealed that while the proposed models can be calibrated to match

void fraction distributions closely, this alone was insufficient. It is observed that, matching

void fraction distributions does not guarantee accurate predictions for other flow variables

such as turbulence kinetic energy and continuous and dispersed phase velocities. This

shows that relying solely on void fraction distribution data for model calibration leads to

significant discrepancies in the rest of the flow parameters. This is also highly coupled with

turbulence modeling and may result in inaccuracy. The use of shear rate for the lift model

handled the sign change of the lift coefficient, however, further theoretical development is

required. Furthermore, two-phase bubbly upward flow in cylindrical pipes can be classified

regarding void fraction profiles as wall and core-peaking based on phase velocities, volume

fraction profiles, and bubble shape and sizes. Models and constants determined against core

peaking experiments did not perform well for wall peaking cases and vice versa. Calibration

attempts for both peak types simultaneously resulted in poor performance for both cases.

This may highlight the difficulty in developing a generally applicable model. An advantage

of the proposed models is, unlike many existing momentum closure models, there are no

non-flow parameters such as wall distance or any conditional functions such as bubble size

conditions. The proposed models only depends on flow parameters. This simplicity enhances

its adaptability and ease of implementation.
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Stability issues are common in two-phase flow CFD simulations. To mitigate, smoothing

methods and low under-relaxation factors were applied. The turbulence model sensitivity of

the proposed coefficient models was another challenge. The choice of turbulence method

and turbulence model, and even any additional momentum closure models like the turbulent

dispersion model directly affected the performance of the proposed drag and lift models.

This dependency shows a limitation in the generality of the proposed models.

For general applicability of the proposed models, future models should consider

dependencies on additional flow variables, such as turbulence kinetic energy, void fraction

gradient, dispersed phase shape functions and so forth. Smoothing techniques should

be considered for stability issues during flow development, particularly until steady-state

conditions are achieved.

A coupled or hybrid turbulence and momentum closure model may offer a more robust

solution. This would also support general applicability for different turbulence models and

flow conditions.

More experimental data spanning a broad range of flow variables representing diverse

scenarios are required to improve the calibration and validation of the models. A deeper

theoretical examination of the dependent flow variables used in the models, particularly the

use of shear rate in the lift model, is needed to ensure mathematical consistency.

The method demonstrated potential for developing more universally applicable momentum

closure models. The findings show the importance of data sets for model calibration. The

proposed methodology can be applied, but not limited to turbulence modeling for more

generalized turbulence closure models.

In summary, this research aimed improvement for the generality of momentum closure

models used and applicable in bubbly two-phase flow studies and highlighted the potential

and the challenges. Further refinement and validation is required for practical applications.
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8. CONCLUSION

This thesis has addressed the complex problem of modeling momentum transfer mechanisms

in isothermal bubbly two-phase upward flow in cylindrical pipes and the gap between

theoretical predictions and experimental observations.

A novel method of the integration of simulations, for model selection, validation, and

development processes with sophisticated design exploration techniques is introduced. This

integration enabled automated, optimization process, ensuring a robust and innovative

framework for the study. This integration enables more comprehensive exploration of the

design space, leading to more precise and reliable closure models.

A new closure set with drag and lift coefficients is proposed for improved representation of

the dynamics of momentum transfer mechanisms for isothermal conditions. The proposed set

has been successfully integrated into a CFD framework and validated with a comprehensive

set of experimental data. The validation process demonstrated improvement in predicting

void fraction, while a relatively poor performance of prediction for continuous phase

turbulent kinetic energy, phase velocities and relative velocity distribution, against the

available reference sets was observed. This set represents an improvement over existing

sets, particularly in terms of adaptability to different flow conditions and pipe diameter range

of 25-60 mm.

In conclusion, presented approach outlined in this research represents a supplementary

method to existing numerical methods in the development of closure models. This method

enhances and supports the current numerical techniques used in CFD simulations and is

valuable in refining the precision and applicability of closure models. The method not only

has the ability to enhance model development and validation, but also has the potential of

offering a robust framework that can be adopted to wide ranging challenges in the field of

fluid dynamics.
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