
USING NETWORK-ON-CHIP STRUCTURE IN DEEP
NEURAL NETWORK ACCELERATOR DESIGN

DERİN SİNİR AĞI HIZLANDIRICI TASARIMLARINDA
YONGA-ÜSTÜ-AĞ YAPISININ KULLANIMI

FURKAN NACAR

PROF. DR. SÜLEYMAN TOSUN

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

January 2024

ABSTRACT

USING NETWORK-ON-CHIP STRUCTURE IN DEEP NEURAL
NETWORK ACCELERATOR DESIGN

Furkan Nacar

Master of Science , Computer Engineering
Supervisor: Prof. Dr. Süleyman TOSUN

January 2024, 102 pages

The widespread adoption of Deep Neural Networks (DNNs) in various fields, such as image

and speech recognition, natural language processing (NLP), and autonomous systems, has

been noted. However, the computational cost of these networks is often prohibitively high

due to the large number of communicating layers and neurons and the significant amount of

energy consumed. To address these challenges, developing new architectures to accelerate

DNNs is necessary. In this thesis, a Network-on-Chip (NoC)-based DNN accelerator is

proposed, taking into consideration both fully connected and partially connected DNN

models. Heuristic methods, including Integer Linear Programming (ILP) and Simulated

Annealing (SA), are utilized to group the neurons, to minimize the total volume of data

among the groups. The neurons are then mapped onto a 2D mesh NoC fabric, utilizing ILP

and SA, to minimize the system’s total communication cost. The proposed design is novel

in that it addresses the issue of high data communication in DNNs by utilizing the scalable,

low-overhead, and energy-efficient NoC communication structure. Through extensive

experimentation on various benchmarks and DNN models, an average improvement of

40% in communication cost has been observed. The proposed design targets low-overhead

inferencing and training DNNs on edge devices in the Internet-of-Things (IoT) era, with a

i

combination with cloud computing. The results of this thesis provide a new approach for

the acceleration of DNNs and can be applied to various fields, such as edge computing, IoT,

autonomous systems, computer vision, natural language processing, speech recognition, and

cloud computing.

Keywords: Deep Neural Network (DNN), Accelerators, Network-on-Chip (NoC),

Mapping Techniques, Integer Linear Programming (ILP), Simulated Annealing (SA),

Optimization, Comparative Study

ii

ÖZET

DERİN SİNİR AĞI HIZLANDIRICI TASARIMLARINDA
YONGA-ÜSTÜ-AĞ YAPISININ KULLANIMI

Furkan Nacar

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Süleyman TOSUN

Ocak 2024, 102 sayfa

Son yıllarda görüntü ve konuşma tanıma, doğal dil işleme (NLP) ve otonom sistemler

gibi çeşitli alanlarda kaydedilen ilerlemelerde Derin Sinir Ağları (DNN’ler) yaygın olarak

benimseniyor. Bu alanlardaki güncel problemlerin giderek karmaşık hale gelmesi, sinir

ağlarının iletişim kuran katmanlarının ve bu katmanlarda bulunan nöronların sayısının

artmasına neden olmuştur. Bu nedenle kullanılan sinir ağlarının enerji tüketimi ve

çalışma süresi gibi maliyetleri artırmıştır. Bu maliyetleri karşılamak için sinir ağlarının

çalışmasını hızlandıracak yeni mimarilerin geliştirilmesi gerekmektedir. Bilgisayarların

çalıştırıldığı uygulamaya bağlı olarak işlem birimlerinin işlevi için en uygun olan birim

üzerinde çalıştırılması ve bu şekilde donanımın uygulamaya özelleşmesi heterojen mimari

adı altında giderek yaygınlaşmaktadır. Bu tezde, sinir ağı katmanlarının hem tam bağlı

hem de kısmen bağlı sinir ağı modelleri dikkate alınarak Yonga-Üstü-Ağ (NoC) tabanlı

bir hızlandırıcı tasarımı önerilmiştir. Yonga-Üstü-Ağ yapısının sunduğu çip üzerindeki her

bir işlem elemanının kendi yönlendiricisine sahip olması ve işlem elemanlarının düzenli

bir yapıya sahip olması, çip üzerindeki veri iletişimini muadillerinden ileri bir seviyeye

taşımaktadır. Sinir ağındaki nöronların gruplandırılması ve bu işlem elemanları üzerinde

çalıştırılması sağlanan bu iletişim altyapısı, iyi bir seçenek haline gelmektedir. İşlem

iii

elemanlarında yapılan hesaplamanın, o işlem elemanına iletilen veri kadar olacağından, veri

iletişimi yoğunluğu Yonga-Üstü-Ağ yapısı üzerinde yapılacak olan hızlandırma modellerinin

karşılaştırmasında bir kıstas olarak kullanılabilir. Neuron grupları arasındaki veri hacmini

en aza indirmek amacıyla nöronları gruplandırmada tamsayılı doğrusal programlama (ILP)

ve simüle tavlama (SA) gibi sezgisel yöntemler analiz edilmiştir. Daha sonra nöronlar,

sistemin toplam iletişim maliyetini en aza indirmek için ILP ve SA kullanılarak 2 boyutlu

Yonga-Üstü-Ağ yapısına eşlenecektir. Böylece görülecektir ki Yonga-Üstü-Ağ yapısı

kullanılarak sinir ağı hızlandırıcısı tasarımı iki aşamalı bir problemdir: Nöron gruplandırma

ve grupların Yonga-Üstü-Ağ üzerine eşlenmesi. Bu tezde önerilen tasarım, Yonga-Üstü-Ağ

yapısı üzerindeki sinir ağları hızlandırıcılarında yüksek veri iletişimi sorununu ele alması

bakımından yenidir. Çeşitli DNN modelleri üzerinde yapılan kapsamlı deneyler, önerilen

tasarım ile iletişim maliyetinde ortalama %40’lık bir iyileşme göstermektedir. Önerilen

tasarım, DNN’lerin hızlandırılması için yeni bir yaklaşım sunmakta olup IoT, otonom

sistemler, doğal dil işleme, konuşma tanıma ve bulut bilişim gibi çeşitli alanlara

uygulanabilir.

Anahtar Kelimeler: Derin Sinir Ağlar, Hızlandırıcılar, Yonga-üstü-Ağ, Tamsayılı Doğrusal

Programlama, Optimizasyon

iv

ACKNOWLEDGEMENTS

First and foremost I am immensely grateful to my supervisor, Prof. Dr. Süleyman Tosun,

whose unwavering support, guidance, and dedication were instrumental in this research. His

tireless efforts and commitment to my academic growth have been invaluable. I appreciate

all of his lasting patience and neverending positivity throughout my study. Without his

persistent encouragement and endless support, it would have been impossible to finish this

research.

I extend my sincere appreciation to Dr. Selma Dilek for generously granting me access to

her ILP formulations and research materials. Her willingness to share her expertise and

positive attitude has been beneficial in this research. I would also like to thank Alperen

Çakın, my esteemed colleague, for his willingness to share his extensive knowledge and

experience in the field of optimization. His insights and collaboration have been invaluable

throughout this journey.

I owe my gratitude to Dr. İsmail Uyanık, for his encouragement in pursuing academic

purposes.

I am thankful to my superiors at work, Akın Yılmaz and Fatih İleri, for their understanding

and tolerance during this academic pursuit.

I want to thank my sister, Emine, for being a lifelong ally. Her influence and presence

have contributed to all the qualities I cherish in myself. To my mother, Fatma, I extend my

deepest gratitude for the love she has given me. It is her love that has enabled me to extend

love to the world around me. I also want to express my thanks to my father, Hasan, even

though it made some things impossible for him, he made everything possible for me.

I wish to thank Sultan for making everything in my life easier. Recognizing that the

choices we make define our identity, I appreciate your decision to choose us. I dedicate this

work to you.

v

CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENTS . v

CONTENTS . vi

TABLES . viii

FIGURES . ix

ABBREVIATIONS. x

1. INTRODUCTION . 1

1.1. Scope Of The Thesis . 3

1.2. Contributions . 3

1.3. Organization . 5

2. BACKGROUND OVERVIEW .. 6

2.1. Hardware Accelerators . 6

2.2. Network-on-Chip . 7

2.2.1. NoC Topology Alternatives. 10

2.3. Neural Networks . 13

2.4. Challenges in Accelerating DNNs . 15

2.5. Previous Approaches to DNN Acceleration . 16

2.6. Justification for Using NoC to Accelerate DNNs . 22

2.7. Optimization Techniques for NoC-based DNN Accelerators . 25

2.7.1. Simulated Annealing (SA). 26

2.7.2. Integer Linear Programming (ILP) . 27

3. RELATED WORK . 29

3.1. Neuron Grouping (Clustering) . 30

3.2. Neuron Mapping. 33

4. PROPOSED METHOD. 35

4.1. Existing ILP Approaches to Neuron Grouping and Mapping . 43

vi

4.1.1. ILP-based Neuron Grouping Method . 44

4.1.2. ILP-based Node Mapping Method . 50

4.2. Proposed Methods For Neuron Grouping . 53

4.2.1. Improved Heuristic Method . 53

4.2.2. SA-based neuron grouping method . 54

4.3. Proposed Method for Node Mapping . 59

4.3.1. SA-based Node Mapping Method. 60

5. EXPERIMENTAL RESULTS . 62

5.1. Evaluating the Impact of Pruning on Communication Weight . 63

5.2. Neuron Grouping Results . 64

5.3. Node Mapping Results . 70

5.3.1. Analysis of the Proposed Methods on Scaled and Pruned CNN

Architectures: Insights from LeNet and AlexNet Evaluation 74

6. CONCLUSION . 77

vii

TABLES

Page

Table 3.1 Summary of neuron grouping methods in the literature. 32

Table 3.2 Summary of neuron mapping approaches in the literature. 34

Table 4.1 Notations used in problem definitions and methodology. 38

Table 4.2 Notations used in the ILP model of the neuron grouping problem.. 45

Table 4.3 Notations used in the mathematical model for node mapping.. 50

Table 5.1 Summary of the Employed Benchmarks in Experimental Analysis. 63

Table 5.2 Neuron grouping communication weight results for pruning

percentage of 0%. 65

Table 5.3 Neuron grouping communication weight results for pruning

percentage of 50%. 65

Table 5.4 HM and SA neuron grouping communication weight results for big

benchmarks. 67

Table 5.5 Communication cost results for mapping of DNNs onto mesh-based

NoCs. 72

Table 5.6 Percentage improvements of communication load when SA and ILP

methods are used versus heuristic HM-dirX. 73

Table 5.7 CNN benchmarks. 75

Table 5.8 Communication cost results for mapping of CNNs onto mesh-based

NoCs. 76

viii

FIGURES

Page

Figure 2.1 Example ANN and DNN structures. 14

Figure 3.1 Fixed-Number Inter-Layer Grouping Demonstration.. 30

Figure 3.2 Fixed-Number Intra-Layer Grouping Demonstration. 31

Figure 3.3 Dynamic Intra-Layer Grouping with Optimization Demonstration. 31

Figure 4.1 A representative instance of neuron clustering and node mapping

problems. 41

Figure 4.2 The impact of alternative neuron clustering techniques on overall

communication cost. 42

Figure 4.3 The impact of alternative node mapping methods on overall

communication cost. 44

Figure 4.4 Illustration of the cooling schedule with α = 0.999 depicted on a

logarithmic scale.. 59

Figure 5.1 Variation in communication weight for benchmark B2 with different

pruning percentages (δ = 1.0, mesh size = 3x3). 64

Figure 5.2 Neuron grouping communication weight results for fully connected

DNNs (normalized to [0, 100]). 66

Figure 5.3 Neuron grouping communication weight results for 50% pruned

DNNs (normalized to [0, 100]). 66

Figure 5.4 Communication cost results for mapping of fully connected DNNs

(normalized to [0, 100]).. 73

Figure 5.5 Communication cost results for mapping of 50% pruned DNNs

(normalized to [0, 100]).. 73

Figure 5.6 Communication cost results for mapping of CNNs (normalized to

[0, 100]). 76

ix

ABBREVIATIONS

AI : Artificial Intelligence

ANN : Artifical Neural Network

ASIC : Application Specific Integrated Circuit

CNN : Convolutional Neural Network

CPU : Central Processing Unit

DNN : Deep Neural Network

DRAM : Dynamic Random Access Memory

FPGA : Field Programmable Gate Array

GPU : Graphical Processing Unit

HM : Heuristic Method

ILP : Integer Linear Programming

IoT : Internet Of Things

NLP : Natural Language Processing

NoC : Network On Chip

NRE : Nonrecurring Engineering

OSI : Open Systems Interconnection

PE : Processing Element

SA : Simulated Annealing

SNN : Spiking Neural Network

SRAM : Static Random Access Memory

x

1. INTRODUCTION

Deep Neural Networks (DNNs) [1] are computational architectures that simulate the tangled

neural connections of the human brain to process and understand complex data. DNNs have

emerged as a pivotal technology with a transformative impact across various domains, owing

to their ability to unravel complex patterns and perform complex tasks. These networks

have become instrumental in revolutionizing computer vision, Natural Language Processing

(NLP), healthcare, finance, autonomous systems, speech recognition, industrial processes,

and entertainment. In the realm of computer vision, DNNs excel in object detection and

recognition, enabling machines to precisely identify objects in images and videos [2].

Moreover, they play a crucial role in image segmentation, a critical task in many vision

applications.

In the context of NLP, DNNs have achieved remarkable milestones, powering machine

translation [3] for seamless communication across languages. They excel in sentiment

analysis, accurately discerning emotions from textual data [4], and contribute to language

generation tasks, enhancing applications like chatbots and content creation. Healthcare

leverages DNNs for medical diagnosis, especially in the analysis of medical images like

MRI scans and CT scans [5]. In finance, DNNs have proven their utility in algorithmic

trading, aiding in predicting market trends and optimizing trading strategies [6]. They also

find relevance in credit scoring applications [7].

In the domain of autonomous systems, DNNs are a cornerstone for self-driving cars

[8, 9]. Speech recognition applications [10] greatly benefit from DNNs, accurately

converting spoken language into text[11]. Industries adopt DNNs for predictive maintenance,

anticipating machinery failures through analysis of sensor data [12], and for enhancing

quality control processes [13]. Furthermore, DNNs play a pivotal role in entertainment,

contributing to content recommendation systems tailored to user preferences [14] and

even generating artistic content. These diverse applications of DNNs underscore their

transformative potential, shaping innovation and redefining industries across the globe.

1

In numerous instances, the computational requirements of Deep Neural Networks surpass

the capacities of conventional processors like Central Processing Units (CPUs) and Graphics

Processing Units (GPUs). So, the computational complexity of DNNs demands efficient

hardware accelerators to achieve real-time performance.

Hardware accelerators are specialized components designed to enhance the efficiency and

speed of specific computational tasks. Among these, DNN accelerators constitute a subset

tailored for the efficient processing of DNNs. These dedicated hardware units are intricately

crafted to optimize the operational efficiency and overall performance of Deep Neural

Network [15].

Primarily, DNN accelerators offer a substantial boost to DNN performance, enabling efficient

real-time processing of substantial data volumes and swift execution of complex tasks.

Such acceleration proves particularly critical in applications where rapid response times are

important, such as in scenarios involving mobile autonomous vehicles [9] or virtual assistants

[10]. Furthermore, DNN accelerators exhibit pronounced energy efficiency compared to

traditional processors, a virtue derived from their meticulous design tailored to the specific

computational demands of DNNs. This feature holds particular significance in the context

of mobile and IoT devices, which deal with demanding power constraints [16]. Finally, as

DNNs continually expand in both complexity and scale, the conventional processors may

present a performance bottleneck. To mitigate this concern, DNN accelerators are crafted to

seamlessly accommodate more sophisticated models, ensuring their sustained enhancement

in performance as DNN technology evolves [17].

Network-on-Chip (NoC) architectures have emerged as a promising solution for designing

efficient DNN accelerators, providing high-bandwidth communication and parallel

processing capabilities. One critical aspect of designing NoC-based DNN accelerators is the

mapping of neural network layers onto the NoC Processing Elements (PEs). The mapping

scheme can significantly impact the performance and energy efficiency of the accelerator. In

particular, the grouping and mapping of neurons within a layer can greatly influence data

communication and processing load balancing.

2

In this study, the focus is on investigating various neuron grouping and mapping methods for

NoC-based DNN accelerators. The aim is to compare and evaluate different approaches

to identify the most effective method for optimizing communication and computational

efficiency while maintaining high accuracy.

1.1. Scope Of The Thesis

This thesis mainly focuses on the proposed Network-on-Chip-based Deep Neural Network

accelerator, which has the potential to impact the field of Artificial Intelligence (AI)

by improving the processing speed and energy efficiency of DNNs, which are widely

used in various AI applications such as image and speech recognition, natural language

processing, and autonomous vehicles. By optimizing the communication cost between

neuron groups, the proposed solution can reduce the time required for DNN computations,

enabling faster and more efficient inference and training. Furthermore, the use of Integer

Linear Programming (ILP) and Simulated Annealing (SA) algorithms also provides a more

systematic and effective approach to optimizing DNN architectures. Overall, this work

has the potential to advance the state-of-the-art in DNN acceleration and contribute to the

development of more powerful and efficient AI systems.

1.2. Contributions

The main contributions of this work can be summarized as follows:

• A novel approach to designing DNN accelerators based on 2D mesh NoC architectures,

accommodating both fully connected and partially connected DNNs, is presented in

this study. To this end, the neuron grouping and node mapping problems are formally

defined within the context of this approach. This approach offers the advantage

of reducing the communication overhead between the processing elements, which

directly impacts the system’s performance and energy efficiency.

3

• A metaheuristic SA algorithm is introduced for solving the neuron grouping problem.

This method, faster than the ILP-based approach, exploits multi-threading to explore

multiple local minima in parallel, thereby finding optimal or near-optimal solutions.

• SA-based mapping algorithm is proposed to map the graph representation of grouped

neurons onto the 2D mesh NoC architecture. The objective of this mapping is to

minimize the total communication cost, which is directly proportional to the dynamic

energy consumption and performance of the system.

• Extensive evaluations of the acceleration on several DNN applications, implemented

on both fully connected and partially connected models, are performed. The results

demonstrate that the SA-based neuron grouping and SA-based mapping solutions

achieve the best performance in terms of inference accuracy, overall performance, and

energy consumption for practical NoC-based DNN accelerator designs. Furthermore,

the approach can be utilized as a general framework to design efficient DNN

accelerators for various neural network architectures.

• Utilizing the existing Integer Linear Programming (ILP) method, the thesis applied and

compared it to the proposed heuristics for solving the neuron grouping problem. While

ILP, known for its extended computation times in scenarios involving DNNs with

numerous neurons, was not developed as part of this thesis, its optimal outcomes serve

as a benchmark to assess the effectiveness of the proposed heuristics. Specifically, ILP

is employed to establish the optimal grouping of neurons for smaller DNN models, and

the obtained results are systematically compared with those derived from the proposed

heuristics

In summary, this work addresses the fundamental challenge of designing efficient and

scalable DNN accelerators based on NoC architectures. A set of algorithms is provided

that can be used to optimally or heuristically group neurons and map them onto the NoC

architecture, with an emphasis on minimizing communication costs. The proposed approach

is adaptable to different types of neural network architectures and has the potential to lead to

more energy-efficient and high-performance DNN accelerators.

4

1.3. Organization

The organization of the thesis is as follows:

• Chapter 1 presents the motivation, contributions, and the scope of the thesis.

• Chapter 2 provides information about basic concepts essential for a comprehensive

understanding of the work outlined.

• Chapter 3 discusses previous studies and approaches related to the subject.

• Chapter 4 clearly defines the problem and includes detailed explanations of the solution

methods offered.

• Chapter 5 demonstrates experimental results obtained from the implemented methods.

• Chapter 6 states the summary of the thesis and possible future directions.

5

2. BACKGROUND OVERVIEW

To comprehend the work presented in this thesis, it is essential to be informed some

fundamental concepts. These basic concepts will be discussed from an accelerator

perspective in this section. Following an overview of hardware accelerators, the NoC

will be defined, and more specific details about its types and hardware topology will

be presented. This concludes the hardware aspect of the concepts that need familiarity.

Subsequently, information about neural networks will be provided, focusing on DNNs,

along with insights into the challenges encountered in accelerating them and the commonly

employed acceleration methods. Based on these concepts and previous findings, the usage

of NoC on DNN acceleration is justified.

2.1. Hardware Accelerators

In modern chip designs, the majority of performance gains are achieved through parallelism,

which is made possible by specialization. In the past, when processor performance scaled

according to Moore’s Law, high overhead was acceptable as existing applications would

automatically run faster with time. However, Moore’s Law has largely ended in recent times,

forcing the exploration of alternative architectures, such as domain-specific accelerators, to

achieve performance scalability.

A domain-specific accelerator refers to specialized hardware designed for running specific

applications. There are four main techniques employed to improve performance in these

accelerators:

• Data specialization: Specialized logic can be implemented to enhance inner-loop

function gains by considering the specialized data types used in the target applications.

• Parallelism: Parallelism can be exploited at multiple layers, where parallel units utilize

local memory and minimize global references to achieve performance gains.

6

• Local and optimized memory: Key data structures can be stored in small local

memories, such as caches, to achieve high bandwidth and reduce memory access

latency.

• Reduced overhead: Hardware specialization minimizes the overhead associated with

program interpretation, resulting in improved performance.

Domain-specific accelerators can be implemented using various technologies, such as

ASICs, FPGAs, or GPUs, each offering different trade-offs regarding development cost,

programmability, and efficiency. ASICs typically provide the highest efficiency but have

high nonrecurring engineering (NRE) costs and limited programmability.

Designing domain-specific accelerators involves striking a balance between generality and

efficiency. Building an architecture that is specialized for a single application can yield

high efficiency, but may have limited usability. On the other hand, building a completely

general-purpose computer may result in poor efficiency. Therefore, the key effort lies in

crafting an architecture that combines high parallelism with a small local memory footprint

and low global memory access requests.

In the future, domain-specific accelerators will likely be designed by writing parallel

programs and specifying the mapping of these programs to hardware resources in terms

of time and space. This approach holds promise for achieving optimized performance in

domain-specific applications [18].

2.2. Network-on-Chip

Network-on-chip (NoC) has emerged as a promising paradigm for addressing the

communication challenges in modern computing systems. It provides a scalable and

efficient on-chip communication infrastructure for connecting various components, such

as processors, memories, and accelerators, in a system-on-chip (SoC) design. NoC offers

several advantages over traditional bus-based or point-to-point interconnect architectures,

7

including improved scalability, higher bandwidth, lower power consumption, and better fault

tolerance [19].

At its core, a NoC consists of a network of interconnected routers that facilitate the exchange

of data between the components in the system. The routers are responsible for routing

packets of information across the network using efficient algorithms, ensuring reliable and

low-latency communication [20]. The routers in a NoC are commonly interconnected using

either a mesh or a grid topology, ensuring that each router is connected to its adjacent routers

in a structured manner. This regular arrangement facilitates the implementation of efficient

routing algorithms and simplifies the overall design and layout of the Network-on-Chip.

Extensive research has been conducted on NoC architectures, leading to the development of

numerous design considerations and optimization techniques. Among these considerations,

the choice of routing algorithm implemented by the routers is crucial. Various routing

algorithms, including XY-routing, source routing, and adaptive routing, have been proposed

to ensure efficient navigation through the network and mitigate congestion-related issues.

These algorithms aim to minimize communication latency and maximize the utilization of

network resources.

Another essential factor to consider in NoC design is the selection of an appropriate topology.

Researchers have investigated different topologies, including mesh, torus, and tree-based

structures, to cater to the specific needs of diverse applications. Each topology offers

distinct advantages and trade-offs in terms of scalability, fault tolerance, and performance.

Evaluating these factors is crucial for determining the most suitable topology for a given

application or system.

By embracing the concept of reuse, system designers can harness the potential of NoC

architectures to address the communication challenges posed by contemporary applications

effectively. This approach enables the construction of efficient and adaptable systems that

can meet the increasing demands of diverse and evolving application domains.

8

The Network-on-Chip (NoC) architecture serves as the on-chip communication

infrastructure, encompassing the physical layer, the data link layer, and the network layer

of the OSI protocol stack. It provides a crucial framework for efficient and scalable

communication among various components within a system.

To meet the demands of modern applications, system designs must leverage the reuse of

components, architectures, applications, and implementations. This approach enables the

development of cost-effective and flexible solutions that can adapt to diverse application

requirements. By capitalizing on reusable elements, system designers can streamline

the design process, optimize resource utilization, and expedite time-to-market for new

applications. The primary goal of the Network-on-Chip (NoC) development environment

is to facilitate the separation of various concerns and activities while providing a layer of

abstraction that shields specific tools and design tasks from the intricacies of others.

By establishing a modular and well-defined development environment, system designers

can focus on specific aspects of NoC design without being burdened by the complexities

of unrelated tools or tasks. This separation of concerns allows for parallel development

and specialization, enabling experts in different domains to collaborate effectively while

maintaining a clear boundary between their respective areas of expertise.

Furthermore, the abstraction provided by the NoC development environment allows

designers to work at higher levels of abstraction, promoting design reuse and modularity.

This abstraction shields designers from the underlying implementation details, enabling them

to focus on higher-level design considerations and optimization strategies.

The separation of concerns and the shielding of tools and design tasks within the NoC

development environment contribute to improved productivity, enhanced collaboration,

and increased design efficiency. By decoupling different aspects of NoC design, such

as communication protocols, routing algorithms, and performance analysis, designers can

leverage specialized tools and methodologies tailored to each specific task. This enables

them to explore design alternatives, analyze system behavior, and optimize performance

without being overwhelmed by the complexity of the entire NoC design process.

9

In summary, the NoC development environment aims to facilitate the division of concerns

and shield specific tools and design tasks from unnecessary details. This approach promotes

effective collaboration, modularity, and productivity, ultimately leading to the development

of efficient and scalable NoC architectures. [21]

Research efforts have also focused on power-aware NoC design to address the increasing

energy consumption in modern computing systems. Techniques such as power gating,

dynamic voltage and frequency scaling (DVFS), and clock gating have been investigated

to optimize power consumption in NoCs [22].

In recent times, there has been a significant uptake of NoC-based architectures across

multiple domains, encompassing high-performance computing, embedded systems, and

emerging technologies like the Internet of Things (IoT) and edge computing. These

architectures provide an efficient communication infrastructure for facilitating parallel and

distributed processing, thereby leading to enhanced performance and scalability in diverse

applications. Furthermore, NoCs have been utilized in accelerating specific applications,

such as DNNs, by leveraging their parallelism and communication capabilities [23].

2.2.1. NoC Topology Alternatives

Several design parameters are considered to evaluate the performance of NoC topology,

including hop count, path diversity, router complexity (ports), and bisection bandwidth. The

topology should be easy to lay out on-chip substrate and meet the wire budget of the NoC.

2D-Mesh Regular and equal-length linkages define the 2D-Mesh topology, which makes it

simple to lay out on-chip. High path diversity is provided, allowing for a variety of shortest

pathways to connect source and destination pairs. The 2D-Mesh features a simple layout

on the substrate, is fault-tolerant, and is load-balanced. However, because different parts of

the mesh may have varying levels of connection, the location of neurons can have an impact

on how well the mesh NoC performs. To maximize performance, it is crucial to take the

placement strategy into account.

10

Concentrated-Mesh A centralized mesh topology (CMesh) contains multiple cores per

router, thus requiring fewer routers and interconnects compared to a 2D mesh with the same

number of cores. This resource reduction enables cost and energy savings. However, CMesh

requires additional ports on routers to connect to centralized local cores, which can introduce

buffer queuing and alignment services. To maintain effective communication, this increased

complexity must be carefully managed.

Crossbar Crossbar topologies are an effective communication pattern for neural networks

because any neuron can reach any other neuron in a single hop. However, crossbars impose

high hardware overhead due to the large number of crosspoints required. It does not

scale to large neural networks due to the quadratic increase in intersections and consequent

connection length. When considering his crossbar-based NoC, it is important to address the

challenges of hardware complexity and scalability.

Ring Ring network topology requires only three ports per router (local port, left and right

ports), thus reducing router complexity compared to 2D mesh NoC. However, depending on

the number of cores or routers in your network, the number of hops and latency will increase

significantly. Ring topologies lack path diversity, which can limit performance for certain

communication patterns. The network size and communication requirements of the neural

network must be carefully considered when using ring topologies.

Torus Torus NoC topology addresses the port asymmetry problem of 2D mesh NoC and

provides higher path diversity due to router and port symmetry. A torus network effectively

distributes the traffic balance across the NoC. However, scalability becomes an issue as the

length of long links increases with the size of the NoC. Longer links also increase line latency,

making it difficult to maintain performance in large-scale environments. Mitigating these

scalability limitations requires careful design and optimization techniques.

11

Flattened Butterfly A flattened butterfly topology uses high cardinality routers to reduce

the hop count in the network, resulting in shorter delays. It also offers high pass versatility.

However, like traditional butterfly topologies, flattened butterfly topologies require long

cables and can pose challenges in terms of physical implementation and signal integrity.

Due to the complexity of the routers and the increased number of channels required, this

topology may not be suitable for large neural networks.

Fat Tree A fat tree topology resembles a binary tree structure, with resources arranged in

leaf nodes and intermediate nodes that act as routers. It offers recursive scalability and easy

partitioning. However, the upper levels of the fat tree can become bottlenecks, limiting the

scalability of large neural network systems. Path diversity can also be an issue and affect

overall network performance.

Star In a star network setup, there is a big central point, and all the other points are

connected to it. However, star topologies suffer from a single point of failure. If the central

hub fails, the entire network will be affected. This vulnerability should be considered when

deploying star topologies in NoC-based systems.

Express Channel Express Channel is an enabler for NoC topologies that reduce the

number of multi-hops and reduce latency and power consumption. This is accomplished by

inserting long cable links between remote routers, usually one or more hops away. However,

using long wire connections increases wire delay, which can affect the practicality of using

such connections in practice. When considering his NoC topology for Express Channel,

the trade-off between a reduced number of multi-hops and increased line delay should be

carefully analyzed.

3D-Mesh A 3D mesh topology stacks multiple dies in a NoC, resulting in fewer

network hops, lower line latency, and lower power consumption compared to traditional

2D integration. This integrated technology provides thermal and performance benefits.

12

However, it also poses challenges such as thermal hotspots and manufacturing difficulties

associated with the lamination process. Effective thermal management and managing

manufacturing complexity are critical to the successful implementation of 3D mesh

topologies.

2.3. Neural Networks

Neural Networks are widely used in solving many complex real-world problems such as

computer vision, speech recognition, natural language processing, finance, and weather

prediction due to their remarkable success in classification and prediction problems. NNs

consist of a large number of simple processing units called neurons, which are connected to

form a network. An NN includes input, output, and hidden neuron layers. The confluence of

substantial datasets and powerful computing resources has sparked a renaissance in machine

learning, with a specific emphasis on NNs.

NNs aim to accomplish a brain-like functionality and are based on the analysis of neurons

as a nonlinear function of the weighted sum of the inputs. These representative neurons are

organized into layers, where the outputs of one layer serve as inputs to the next. The term

”deep” is attributed to neural networks with multiple layers. [24]

Three kinds of NNs are popular today:

1. Multi-layer perceptrons (MLP)

Each new layer is a set of nonlinear functions of the weighted sum of all outputs from

the prior one.

2. Convolutional Neural Networks (CNN)

In this case, each layer is a set of nonlinear functions of weighted sums at different

coordinates of the spatially nearby subset of outputs from the previous layer. This

method allows weights to be reused.

3. Recurrent Neural Networks (RNN)

Each layer is a collection of nonlinear functions of weighted sums of outputs from the

13

previous state. LSTM (Long Short-Term Memory) is a popular RNN. The main idea

of LSTM is deciding what to forget and what to pass on as the state of the next layer.

Figure 2.1 Example ANN and DNN structures.

Figure 2.1 provides examples of ANN and DNN structures. DNN is highly successful

in solving complex problems because it can process large, high-dimensional data sets,

model complex non-linear relationships, and discover hidden structures in unlabeled and

unstructured data. For example, a DNN can take thousands of images and cluster them based

on similarities, such as human, cat, and dog images. However, NNs require a high level

of computational power due to a large number of layers and neurons. One way to meet

this high computational power requirement is to parallelize operations, that is, distribute the

DNN neurons to different processing nodes (cores) in a multi-core architecture. However,

since computations are linked by communication between neurons, and the interconnection

between neurons in a DNN is high, an efficient communication architecture is required to

achieve the necessary parallelism.

14

2.4. Challenges in Accelerating DNNs

Accelerating deep neural networks (DNNs) poses several challenges that need to be

addressed to achieve efficient and high-performance solutions. This subsection discusses

some of the key challenges in accelerating DNNs:

1. Computational Complexity:

DNNs often consist of multiple layers with a large number of neurons, resulting in

a high computational workload. The complex computations involved in forward and

backward propagation, weight updates, and activation functions demand significant

computational resources [25, 26].

2. Communication Overhead:

DNNs demand intensive neuronal communication, which includes synchronization

between parallel processing units and data transit between layers. Large

communication overhead and latency might result from the number of data

transmissions. [27]

3. Energy Efficiency:

DNNs consume a lot of power due to massive parallelism and the intensive

computation that comes with it. The energy efficiency of DNN accelerators is a key

concern in achieving sustainable and energy-efficient solutions. [15]

4. Memory Bandwidth:

DNN models often exhibit high memory access requirements due to a large number of

parameters and intermediate feature maps. Efficient utilization of memory bandwidth

is essential to avoid memory bottlenecks and maximize performance [28]

5. Scalability:

Scalability becomes a major challenge as DNN models grow in size and complexity.

Accelerator designs must scale efficiently to accommodate increasing model sizes

and computational demands. [29] Different applications with varying DNN layer

15

shapes and sizes brought difficulties since they directly affect data communication and

processing. [30]

6. Flexibility and Programmability:

DNN accelerators should support a wide range of network architectures and provide

flexibility and programmability to optimize performance for various applications. The

ability to adapt to evolving DNN models and algorithms is critical.

Addressing these challenges requires innovative hardware architectures, efficient algorithms,

and system-level optimizations. Researchers have proposed various techniques such as

specialized hardware accelerators, NoC designs, algorithmic optimizations, and quantization

methods to overcome these challenges and improve the performance and efficiency of DNN

accelerators.

2.5. Previous Approaches to DNN Acceleration

Accelerating DNNs has been an active area of research, with several traditional approaches

being explored. These approaches aim to improve the computational efficiency and speed

of DNNs using various techniques. In this subsection, some of the commonly employed

traditional approaches and their characteristics are discussed.

1. Parallel Processing:

Parallel processing techniques involve distributing the computation of DNNs across

multiple processing units, such as CPUs or GPUs. This approach harnesses the power

of parallelism, allowing operations to be performed simultaneously on different data

segments. By leveraging parallel processing, the overall training or inference time of

DNNs can be significantly reduced. Numerous studies in the field of deep learning

have highlighted the effectiveness of parallel processing techniques in accelerating the

training and inference processes of DNN models.

2. Model Compression:

Model compression techniques focus on reducing the computational and memory

16

requirements of DNNs. These techniques aim to compress the size of the model while

preserving its performance. Methods such as pruning, quantization, and knowledge

distillation have been widely studied and applied to compress DNNs [31, 32].

Quantization is a powerful technique in deep neural network (DNN) acceleration

that aims to reduce the computational complexity and memory footprint of network

models. By reducing the precision of weights, biases, and activations, typically

from floating-point to lower-bit fixed-point representations, quantization effectively

reduces the number of computations required during inference. This not only

leads to significant savings in memory and storage requirements but also enables

more efficient utilization of hardware resources, such as CPUs or GPUs. Various

quantization methods have been proposed, with 8-bit integer quantization being the

most common approach. However, recent advancements have explored even lower

bit-width implementations, including binary neural networks, which achieve further

compression while maintaining acceptable accuracy levels. The combination of

quantization with other optimization techniques, such as pruning, offers the potential

for even greater acceleration and resource efficiency.

Pruning is another effective technique in DNN acceleration that focuses on reducing

the network’s complexity by removing redundant computations and parameters. It

can be performed either statically, offline during the training phase, or dynamically, at

runtime. Statically pruning techniques identify and eliminate redundant connections,

filters, or entire layers based on predefined criteria, such as weight magnitude

or importance. On the other hand, dynamic pruning adapts the network during

runtime by dynamically activating or deactivating specific neurons or connections

based on the input data. Pruning operates on different granularities, ranging

from element-wise pruning to channel-wise, shape-wise, filter-wise, layer-wise, and

even network-wise pruning. By reducing the network’s size and computational

requirements, pruning enables faster inference and reduces the energy costs associated

with DNN deployment. By combining pruning with quantization techniques, further

17

improvements in speed and efficiency can be achieved, making it a promising approach

for DNN acceleration. [33]

As exemplified in a study [28], a notable approach to model compression involves

pruning weights and neurons in a DNN based on a minimal distance error (MDE)

criterion within a range of safety margin error (SME). The pruning process ensues

when the condition MDE < SME (where SME is set at 10−6) is satisfied. This binding

criterion helps prevent overfitting. To evaluate the efficacy of weight and neuron

pruning, the authors evaluate the Error Before (EB) and Error After (EA) of the pruning

process and subsequently derive the MDE through the equation MDE = EB - EA. This

pre-strategy ensures a careful reduction in model complexity without compromising

performance.

The term ”one-shot learning” signifies the classification of tasks through the utilization

of a limited number of examples. The capability of a memory-augmented neural

network to swiftly incorporate new data is underscored in the literature [34]. The

approach outlined in the literature encompasses two key facets: the gradual acquisition

of an abstract technique for deriving valuable representations of raw data, achieved

through gradient descent, and the rapid integration of previously unencountered

information after a singular exposure, facilitated by an external memory module.

This synthesis of strategies empowers the neural network to efficiently process novel

information while building upon its existing knowledge base.

3. Hardware Accelerators:

Hardware accelerators are specialized hardware components designed to accelerate

the computation of DNNs. These accelerators can be implemented using

application-specific integrated circuits (ASICs), field-programmable gate arrays

(FPGAs), or dedicated PEs.

4. Circuit Optimization:

Circuit optimization techniques focus on improving the efficiency of hardware

implementations by reducing power consumption and increasing computational

18

throughput. These techniques involve architectural optimizations, such as low-power

design, pipeline parallelism, and memory hierarchy optimization. [15]

Some DNN accelerators leverage on-chip memory resources [28], such as embedded

dynamic RAM (eDRAM), static RAM (SRAM), and global buffers, to facilitate

local data storage of trained models. This strategic use of on-chip memory aims to

enhance memory access efficiency and optimize bandwidth requirements during DNN

inference and training processes.

By employing on-chip memory for local data storage, DNN accelerators can minimize

the need for frequent off-chip memory accesses, which tend to introduce latency

and incur higher energy costs. Instead, critical data can be readily accessed from

the on-chip memory, thereby significantly reducing data transfer time and improving

overall performance.

It is important to note that the choice of on-chip memory technology, such as

eDRAM, SRAM, or global buffers, can impact the trade-offs between memory access

speed, memory capacity, and energy consumption. Each memory type offers distinct

characteristics that must be considered based on the specific requirements of the DNN

accelerator design.

Eyersis v2 [30] presents a novel DNN accelerator architectural design. Specifically

tailored for compact and sparse DNN models. A key feature of this design is

the utilization of a highly flexible on-chip network called the hierarchical mesh

(HM-NoC).

Eyeriss v2 is constructed around an array of processing elements (PEs), each equipped

with multiply-and-accumulate logic and local scratchpad memory to exploit data

reuse. Additionally, global buffers (GLBs) are integrated into the design, serving

as an intermediary level of memory hierarchy situated between the PEs and the

off-chip DRAM. For enhanced flexibility, the PEs and GLBs are organized into

clusters, enabling the implementation of a cost-effective on-chip network (NoC) that

interconnects the GLBs to the PEs.

19

One noteworthy aspect of Eyeriss v2 is the deployment of separate NoCs for

transferring three distinct data types: input activations, weights, and partial sums

between the GLBs and PEs. The authors employ the Row-Stationary dataflow in this

context. The memory hierarchy in Eyeriss v2 operates as follows:

• Input activations are read from the off-chip source into the GLB cluster.

Depending on the configuration, these input activations can either be stored in

the GLB memory or directly passed to the router cluster.

• Partial sums, once generated by the PE cluster, are consistently stored in the GLB

memory.

• The final output activations bypass the GLB cluster and are directly transferred

off-chip.

• Weights, on the other hand, are not stored in the GLB but are transmitted to the

router clusters and directly stored in the local scratch pads within each PE.

Eyeriss v2 introduces the hierarchical mesh network (HM-NoC), which offers different

configurable modes, thereby accommodating a wide range of bandwidth and data reuse

requirements.

5. Software Optimization:

Software optimization techniques aim to enhance the performance of DNNs by

optimizing the software implementation. This includes algorithmic optimizations,

memory management, and compiler optimizations.

In the realm of DNN accelerators, data reuse is a crucial aspect of enhancing efficiency.

However, the extent of data reuse for each data type (input activations, weights, partial

sums) in a DNN layer depends on its shape and size. Diminished data dimensions pose

challenges in exploiting data reuse effectively, leading to two key issues:

• Array Utilization: When data dimensions are initially selected with high

parallelism in mind, an array of processing elements can be utilized optimally.

20

• Processing Element Utilization: As data reuse decreases, higher data bandwidth

is required to keep the processing elements efficiently utilized.

Moreover, as a software optimization technique, skipping cycles of processing results

with zero weights or input activations is desirable to further enhance efficiency.

In the previous study made on Spiking Neural Network (SNN) implementation on [35],

the processing elements, correspond to spiking neurons within the Network-on-Chip

(NoC). In this context, NoC channels can be likened to synaptic connections. The

paper under consideration introduces an advanced hierarchical NoC architecture tailored

for SNN implementations. This architectural design capitalizes on a fusion of star and

mesh topologies to optimize the one-to-many multicast communication paradigm that

characterizes inter-neuronal interactions in the networks. The fundamental unit of this

proposed architecture is the cluster facility, where an assembly of neurons is interconnected

through a hierarchical framework. This framework employs an array of both low and

high-level NoC routers to facilitate both local (within-cluster) and global (between-cluster)

connections among neurons. This configuration enables efficient information exchange

among neurons within the network, effectively enhancing the communication efficiency of

the SNN architecture.

In the context of topology choices for neural network accelerators, mesh topology

is an outstanding consideration. While shared bus topology offers simplicity and

cost-effectiveness, its scalability in terms of performance is limited. In contrast, mesh

topology, due to its inherent parallelism and communication pathways, has been favored

as a solution to address performance demands. However, researchers caution against its

unrestricted use, as larger mesh configurations can lead to heightened average latency

resulting from the absence of direct connections between distant nodes. To navigate these

challenges, innovative approaches like CuPAN [36] (Custom Parallel Architecture for Neural

Networks) have been introduced. CuPAN distinguishes itself by adopting a multi-stage clos

interconnection topology, a strategy designed to optimize inter-neuron connections while

encouraging performance constraints associated with larger mesh topologies. This nuanced

21

exploration underscores the iterative nature of architectural design in pursuing optimal neural

network accelerator performance.

Some previous studies [37] delve into optimizing bit lengths in DNN accelerator operations.

”Bit Fusion” blocks are introduced for which dynamically adjusting bit lengths for efficient

layer-specific operations, thereby enhancing computational efficiency and performance.

It is important to note that these traditional approaches have made significant contributions

to DNN acceleration. However, they often face limitations in terms of scalability, energy

efficiency, or hardware/software flexibility. Therefore, exploring novel approaches, such as

Network-on-Chip (NoC)-based accelerators, is essential to overcome these challenges.

2.6. Justification for Using NoC to Accelerate DNNs

DNNs require efficient communication between the layers to reduce the bottleneck effect.

As DNNs contain multiple hidden layers in addition to input and output layers, there is often

one-to-many and many-to-one communication between layers and no communication within

a single layer.

DNNs consist of convolution layers and fully connected layers. Convolution layers connect

each hidden/output neuron to a small region of the input neurons, while fully connected

layers use all input neurons for computation, leading to high and diverse communication

between layers. Communication can consume a significant portion of overall energy in a

deep learning accelerator.

In the context of accelerating DNNs, a comparison between CPU, GPU, ASIC, and FPGA

implementations reveals various trade-offs. CPUs and GPUs, while offering general-purpose

computing capabilities, often fall short in terms of performance when it comes to DNN

computations. Additionally, all four options exhibit high power consumption, limiting

their efficiency. Furthermore, their computational flexibility at runtime is limited, posing

challenges for dynamic adaptation to different DNN applications.

22

Comparatively, FPGA-based DNN accelerators provide a flexible design space for a wide

range of accelerator configurations. However, they still face constraints in terms of

computational flexibility, hindering their ability to support runtime reconfigurability. To

address these limitations and enhance design flexibility while reducing interconnection

complexity, a modular structure inspired by NoC can be leveraged.

While CPUs and GPUs offer high reconfigurability at runtime, enabling support for diverse

DNN applications, they suffer from issues such as high power consumption and data transfer

latency. On the other hand, ASIC-based DNN accelerators are specifically tailored for

optimal performance and efficiency in a particular DNN model but lack reconfigurability

at runtime. Although FPGA-based solutions improve design flexibility, their computational

flexibility is still insufficient to support runtime reconfiguration. It is important to note that

in FPGA solutions, the data path is fixed for a specific RNN or DNN model at design time,

limiting further reconfiguration.

Among the various options for DNN accelerator designs, the adoption of NoC-based

architectures proves advantageous due to several factors, including power efficiency,

computational flexibility, and reconfigurability. By leveraging flexible communication

mechanisms, NoC-based designs reduce the need for frequent off-chip memory access by

facilitating efficient on-chip data transfer between cores. This reduction in memory access

translates into significant power savings. While GPUs exhibit efficient parallel execution

of essential DNN operations, such as matrix multiplication and convolution, concerns arise

regarding their increasing power consumption.

In summary, considering the trade-offs in terms of performance, power consumption,

computational flexibility, and reconfigurability, the adoption of NoC-based DNN

accelerators emerges as a compelling and promising choice for accelerating deep neural

network workloads. The integration of NoC architectures addresses the limitations observed

in other conventional options such as CPUs, GPUs, ASICs, and FPGAs.

One of the significant advantages of NoC-based DNN accelerators lies in their ability to

efficiently manage communication between processing elements, reducing data transfer

23

latencies and alleviating the bottleneck effect. This efficient communication is crucial in

DNNs, which often consist of multiple hidden layers with one-to-many and many-to-one

communication patterns between layers. Using NoC as the on-chip communication

infrastructure, DNN accelerators can effectively handle these communication requirements

and achieve better overall performance.

Furthermore, the modular design and power-gating capability of NoC architectures allow

specific regions or components of the NoC to be deactivated when not in use. This

power-saving feature contributes to reduced energy consumption and aligns with the growing

need for energy-efficient computing solutions.

NoC allows multiple cores to communicate with each other without interference, and a pair

of nodes have multiple paths to reach each other, ensuring high path diversity. The modular

design of NoC enables regions or components of the NoC that are not performing any

computation to be switched off through power-gating, without affecting other components,

which reduces energy consumption. NoC is a promising solution for the interconnection

between cores in DNNs due to its support for parallelism [30] and fault tolerance.

Moreover, NoC-based DNN accelerators offer enhanced computational flexibility, enabling

them to adapt to different DNN models with varying complexities and sizes. Through

proper mapping and routing algorithms, the computational power and performance can be

dynamically adjusted based on the specific requirements of each DNN workload. This

adaptability ensures that NoC-based accelerators can efficiently execute diverse DNN

applications, making them versatile solutions for accelerating a wide range of tasks.

Given the complex communication patterns in DNNs, a NoC with less complexity and cost

is necessary to accelerate DNNs. A solution addressing issues related to communication

patterns and achieving high performance and energy efficiency in DNNs was proposed

in a previous study [23]. A mapping algorithm was utilized by the authors to minimize

communication overhead, enabling the efficient mapping of the DNN onto the NoC.

24

Compared to CPUs and GPUs, which may suffer from low performance or high power

consumption, and ASIC-based accelerators, which lack reconfigurability, NoC-based designs

provide a more balanced and favorable trade-off between these critical aspects. The

incorporation of NoC architectures into DNN accelerators allows for a more efficient

allocation of resources, supporting optimal communication and computation, and resulting

in improved overall efficiency [28].

In conclusion, the adoption of NoC-based DNN accelerators offers an effective and efficient

solution for addressing the challenges associated with accelerating DNN workloads. By

leveraging the benefits of efficient communication, reduced power consumption, and

enhanced computational flexibility, NoC-based designs provide a promising path towards

achieving high-performance and energy-efficient deep neural network acceleration [38].

2.7. Optimization Techniques for NoC-based DNN Accelerators

In this section, a range of strategies aimed at enhancing the efficiency and performance of

DNN accelerators built on NoC architectures are explored. These optimization techniques

are crucial for effectively addressing the challenges posed by complex network architectures,

computation-intensive tasks, and concerns related to energy consumption.

Different mapping algorithms for DNNs in NoC-based accelerators are partially explored

in a previous study [23]. Two specific mapping algorithms are highlighted, each offering

distinct advantages and trade-offs:

1. Shortest Path Algorithm:

The shortest path algorithm is designed to minimize the communication distance

between neurons within the neural networks on the NoC. By placing communicating

neurons in close proximity, this algorithm significantly improves communication

performance by reducing data transfer delays. However, it’s important to note that

a mapping solution solely based on communication distance can potentially lead to

unbalanced load distribution across the NoC. Some regions of the NoC may experience

25

high utilization, while other parts remain under-utilized. This unbalanced load

distribution can create hotspots, increasing contention among packets and negatively

impacting performance.

2. Load-Balanced Algorithm:

The load-balanced mapping solution, on the other hand, addresses the issue of hotspots

caused by unbalanced load distribution. By employing load-balancing techniques,

this algorithm ensures a more even distribution of computational workload and

communication traffic throughout the NoC. As a result, it improves parallelism within

the system and reduces the occurrence of hotspots. Lower hotspots lead to reduced

congestion and queuing delay within the NoC, ultimately resulting in improved overall

performance.

This study addressed the grouping and mapping problems using two optimization techniques,

Simulated Annealing (SA) and Integer Linear Programming (ILP). A comparative evaluation

was conducted to determine their effectiveness in optimizing the system’s performance.

2.7.1. Simulated Annealing (SA)

Simulated Annealing, a widely adopted metaheuristic optimization technique, has found

application in addressing intricate optimization problems across various domains [39].

Drawing inspiration from the annealing process employed in metallurgy to refine the

structural integrity of metals, SA offers an algorithmic approach to solving complex

optimization challenges.

In its computational incarnation, SA commences with an initial solution to a problem

and embarks on an iterative journey through the solution space. During each iteration,

the algorithm introduces random, incremental alterations to the current solution. These

modifications may be accepted or rejected based on a probabilistic criterion, intricately

intertwined with both the quality of the current solution and user-defined algorithmic

parameters.

26

As the algorithm progresses, it gradually diminishes the likelihood of accepting deteriorating

solutions. This adaptive approach serves as a mechanism for breaking free from local optima,

enabling continued exploration of the expansive search space. Consequently, SA endeavors

to discern the optimal or near-optimal solution within the vast expanse of a global search

space [40]. This flexibility positions Simulated Annealing as a versatile tool applicable

to a diverse array of optimization conundrums, encompassing combinatorial optimization,

scheduling quandaries, network design conundrums, and parameter estimation dilemmas.

2.7.2. Integer Linear Programming (ILP)

ILP is a mathematical optimization technique that combines the concepts of linear

programming and integer variables. It is used to solve problems where decision variables

must take on integer values, rather than continuous values. This is particularly useful in

cases where the decision variables represent quantities that cannot be divided or allocated

in fractions. For example, ILP can be used to solve optimization problems involving

resource allocation, scheduling, network flows, and production planning. Additionally, it

finds applications in areas such as topology optimization [41], logistics, telecommunications,

and finance.

By formulating the optimization problem with integer variables and linear constraints,

ILP guarantees convergence to the globally optimal solution [42]. This approach has

been successfully applied across various fields, such as production planning and vehicle

scheduling, in addition to computational and systems biology. One of the advantages of ILP

is that computationally it ensures convergence to the globally optimal solution. Due to its

linear formulation of the problem, it can be efficient in practice, enabling application to large

networks. Additionally, optimal solutions can be found using standard algorithms developed

specifically for 0-1 integer programs, and there are many readily available automated

packages to solve integer programs.

27

However, in some cases, the required computational effort to find optimal solutions for some

problems can be prohibitive, making it necessary to explore alternative approaches, such as

heuristic methods.

Overall, ILP is a powerful optimization technique that can be used in a variety of applications,

including DNN acceleration. By formulating the problem as an ILP, it is possible to find an

optimal solution that minimizes communication costs and improves processing speed.

28

3. RELATED WORK

In this section, an overview is provided of the related studies in the literature that

focus on deep neural network (DNN) acceleration techniques and network-on-chip (NoC)

architectures for DNN accelerators. Specific emphasis is placed on neuron grouping and

mapping methods for NoC-based DNN accelerator designs.

Previous research on NoC-based DNN accelerators has primarily concentrated on designing

the accelerators themselves [30, 35, 38, 43] as well as developing simulators tailored for

these accelerators [44, 45].

The problem of mapping neurons on processing elements (PEs) of NoC architectures with

2-D topologies has been emphasized in several studies. Most of these studies have employed

methods that cluster neurons into groups and then map the resulting connected groups to

improve performance and efficiency. However, these approaches often rely on simplistic

assumptions, considering only either the communication weights among neurons or the

computation cost of each PE. Furthermore, these methods are typically limited to fully

connected PEs, while today’s DNN models often involve pruned (partially connected) neural

networks.

Given the increasing popularity of pruned neural networks and the need for efficient

acceleration of DNN models, there is a demand for more sophisticated methods that can

optimally group neurons in a DNN model, taking into account both the communication and

computation costs.

The grouping of neurons in a DNN model using a novel method that takes into account

both communication and computation for optimal grouping is a crucial step. This process

aims to create groups of neurons that are well-suited for subsequent mapping onto a NoC

architecture. The grouped DNN neurons are then represented in an intermediary graph,

which serves as a foundation for the subsequent mapping algorithm. The choice of the

mapping algorithm is of utmost importance, as it should consider both communication and

computation factors to ensure efficient and effective utilization of the NoC resources.

29

3.1. Neuron Grouping (Clustering)

The strategic grouping of neurons in DNNs using NoC architectures represents a critical

juncture in enhancing computational efficiency and managing data flow within advanced

neural network structures. This section elaborates on the frequent neuron grouping

methodologies, emphasizing their significance in optimizing DNN accelerators.

1. Fixed-Number Inter-Layer Grouping [44]: This strategy involves grouping a

predefined number of neurons across adjacent layers, which can facilitate parallel

processing and reduce computational bottlenecks. While promising, its effectiveness is

potentially limited in complex DNN architectures where layer connectivity and neuron

density vary significantly. Understanding these dynamics is crucial for optimizing data

flow and minimizing latency, especially in large-scale networks where computational

demands are substantial. This approach is explained visually in the Figure 3.1.

Figure 3.1 Fixed-Number Inter-Layer Grouping Demonstration.

2. Fixed-Number Intra-Layer Grouping [38] This method restricts neuron groups to

a constant size within individual layers. This strategy is particularly beneficial in

scenarios where maintaining a streamlined and efficient data flow within layers is

crucial. As seen in Figure 3.2 grouping is made inside layers. Its application

is most evident in smaller networks where NoC latency overshadows processing

delays, underscoring the need for tailored approaches depending on network size and

complexity.

3. Dynamic Intra-Layer Grouping with Optimization [46]: This comparatively advanced

approach involves a dynamic adjustment in the number of neurons per group based

30

Figure 3.2 Fixed-Number Intra-Layer Grouping Demonstration.

on computational load requirements. This method optimizes processing power

and resource allocation, ensuring that computational loads are evenly distributed

and network efficiency is maximized. As represented in Figure 3.3 neurons are

grouped evenly inside the layer due to consideration of processing power. The

adaptability of this strategy makes it particularly attractive for diverse and evolving

DNN configurations.

Figure 3.3 Dynamic Intra-Layer Grouping with Optimization Demonstration.

Recent years have witnessed the emergence of innovative methods for groping neurons

within DNNs. Sequential layer mapping is advanced as a method [47] in NoC architectures,

though it may lead to suboptimal utilization of processing elements in certain scenarios.

This highlights the ongoing challenge of balancing computational efficiency with hardware

resource allocation. Clustering methods that popular in other fields like k-means and network

slicing have been explored [48, 49], respectively, each offering unique advantages tailored to

specific network needs. These varied approaches underscore the importance of customizing

neuron grouping strategies to the specific requirements of each DNN.

In the realm of CNNs, pioneering steps have been taken [50] by grouping neurons based on

connection weights within channels or filters, a method particularly relevant for managing

31

complex CNN architectures. This approach addresses both computational complexity and

memory efficiency, key factors in the design of advanced DNN systems.

The Neu-NoC architecture [43], condensed a breakthrough in neuron grouping optimization

for NoC-based DNN accelerators. By integrating a hybrid ring-mesh NoC structure,

Neu-NoC effectively marries the benefits of local and global data transfer, significantly

reducing redundant communications and enhancing bandwidth utilization. This architecture

not only exemplifies innovation in NoC design but also serves as a benchmark for future

developments in the field.

Despite the rich diversity of strategies in neuron grouping, the field has not yet converged

on a universally optimal approach, particularly when considering the vast array of DNN

architectures and NoC configurations. This thesis endeavors to fill this gap by presenting

a detailed comparative analysis of these neuron grouping methodologies. By thoroughly

evaluating each strategy against a spectrum of performance metrics and computational

demands, this research aims to illuminate the path forward in NoC-based DNN accelerator

design, contributing to both theoretical understanding and practical applications in this

rapidly evolving field. In Table3.1 a summary of neuron grouping methods in the literature

is presented by indicating the advantages and disadvantages of each of them. The heuristic

method presented in this study is also added at the end.

Table 3.1 Summary of neuron grouping methods in the literature.

Study Grouping

Approach
Advantages Disadvantages

[44] Fixed-Number Inter-Layer Reduced traffic load Potential latency issues in complex architectures

[38] Fixed-Number Intra-Layer Efficient data routing within layers Limited inter-layer data processing

[46] Dynamic Intra-Layer with Optimization Adaptive to computational loads Requires additional computation for optimization

[47] Sequential Layer Mapping Structured approach to neuron grouping Possible underutilization of processing elements

[48] k-Means Clustering Customizable to network needs May not optimally reflect neuron connectivity

[49] Network Slicing Evenly distributed inter-neuron data traffic Increased communication cost

[50] Connection Weights Based Grouping Prevents unnecessary memory overhead Assumptions about load may not apply to all ANNs

This study Novel Method Optimal grouping based on communication load Time and memory problems in large architectures

32

3.2. Neuron Mapping

The quest for efficient DNN accelerators in modern computational architectures necessitates

innovative neuron mapping strategies, especially for 2D-mesh Network-on-Chip (NoC)

systems. This subsection synthesizes a range of mapping methodologies, highlighting their

evolution, applications, and implications in optimizing DNN accelerator performance.

Direct and layer-based mapping strategies [44] explored previously, notably the Dir X /

Dir Y and Lyr X / Lyr Y approaches. These methods emphasize the balance between

ease of implementation and maintaining the logical integrity of DNN layers.

Building upon this foundational work, sequential mapping methods [47] streamline the

process but could potentially lead to underutilization of resources. Complementing these

techniques, snake pattern mapping [50] is introduced to address memory footprint concerns,

showcasing the diversity of approaches in the field.

Recent progress in the mapping of neurons has involved a transition toward more

sophisticated strategies. The integration of clustering algorithms is proposed [28] with

mapping solutions to simplify the complex interconnections in DNNs.

An NN-aware mapping algorithm is introduced [43], tailoring the mapping process to the

specific communication flow and NoC topology. Similarly, linear programming is utilized

in the mapping approach [23], aiming to reduce communication distances while balancing

multiple performance factors.

The role of mesh topology in DNN traffic management has been increasingly recognized.

Its scalability and efficacy in handling memory traffic within DNN accelerators are

highlighted [51]. Further, in-depth studies are conducted on mesh networks [52, 53],

emphasizing load-balanced mapping and efficient traffic distribution. These studies

collectively underscore the importance of mesh topology in the context of NoC frameworks.

Comprehensive analysis of mapping within NoC is offered in the literature [54], considering

crucial factors like Manhattan Distance and traffic volume. Their research underlines the

33

significance of these elements in formulating effective mapping strategies. Such analytical

perspectives are instrumental in devising mapping frameworks that are compatible with the

architectural nuances of NoC topologies.

In Table 3.2 summary of neuron mapping approaches in the literature is presented with their

advantages and disadvantages. The novel methods that are examined in this study are also

added.

Table 3.2 Summary of neuron mapping approaches in the literature.

Study Mapping

Approach
Advantages Disadvantages

[44] Dir X / Dir Y Direct, continuous mapping May not suit complex network structures

[38] Lyr X / Lyr Y Layer-wise mapping enhances structure Potential underutilization of PEs

[50] Snake Pattern Mapping Efficient memory utilization Complexity in mapping process

[28] Clustering-Integrated Mapping Simplifies interconnections Requires complex pre-mapping clustering

[43] NN-Aware Mapping Tailored to communication flow Computationally intensive

[23] Linear Programming-Based Mapping Minimizes communication distances May overlook some network nuances

[51] Mesh Network Traffic Distribution Scalable and efficient Requires careful traffic management

[52] Shortest Path Algorithm Minimizes energy consumption Risk of imbalanced load distribution

[53] Load-Balanced Mapping Enhances parallelism and TDP Requires detailed network analysis

[54] Manhattan Distance-Based Mapping Optimizes data movement Complex calculation of optimal paths

This study SA Mapping Minimizes communication costs Computationally demanding in large networks

In this research, these diverse methodologies are built upon by employing ILP and SA

for neuron mapping, aiming to minimize communication costs, a critical aspect of energy

consumption and performance in NoC-based DNN accelerators. This unique approach

leverages established theories while introducing novel insights to optimize router efficiency

and enhance data exchange efficiency. The integration of these methodologies with the

research goals aims to contribute a distinctive perspective to the field, paving the way for

more efficient and effective DNN accelerator architectures.

34

4. PROPOSED METHOD

In this section, the problem is first defined precisely, building upon the foundational

challenges and traditional approaches discussed in the ’2..Background Overview’ section.

The background section provided detailed insights into the complexity of hardware

accelerators, Network-on-Chip (NoC) technologies, and the specific complications faced in

the field of Deep Neural Network (DNN) acceleration. The goal is to specify the problem

to be addressed, particularly concentrating on optimizing DNN acceleration within NoC

architectures.

In addition to defining the problem, this section is dedicated to presenting the methods

that have been developed as solutions. These methodologies are designed to specifically

target and address the critical aspects identified in the problem definition. The discussion

will delve into how these solutions are tailored to enhance the performance and energy

efficiency of 2D-mesh NoC architectures, a dominant topology in NoC designs known for

their adaptability in various DNN applications.

The exploration includes an in-depth examination of computation and communication

dynamics within these architectures. Optimal task distribution across PEs is crucial, and

the approach aims to balance computational loads effectively while minimizing energy

consumption, as supported by existing literature [55]. Moreover, the application of dynamic

voltage scaling (DVS) is considered a viable strategy to adjust PE operations in response to

real-time computational demands [56].

The pivotal role of data movement in determining the performance of DNNs cannot be

overstated. Recognizing this, the primary objective in enhancing DNN accelerators revolves

around minimizing the volume of data transit within the NoC network. This focus is rooted in

the understanding that optimizing communication costs is directly proportional to improving

both system performance and energy efficiency.

In pursuit of this goal, the work is dedicated to refining both the communication and

computation aspects of DNN accelerator systems. A methodical approach is proposed to

35

map neurons onto processing elements (PEs) in a manner that ensures an approximately

equal distribution of computational loads. By doing so, the aim is not only to balance

the workload across the PEs but also to significantly reduce the communication overhead

within the network. This dual focus on computation and communication is intrinsic to the

methodology, addressing the two-fold challenge of enhancing processing efficiency while

concurrently reducing energy consumption.

This strategy recognizes that efficiency in DNN accelerators is not solely dependent on the

computational capability of individual processing elements (PEs). Instead, it hinges on the

holistic optimization of the entire system, where data movement and processing efficiency

are inextricably linked. By adopting this comprehensive approach, the aim is to establish a

new benchmark in the design and operation of NoC-based DNN accelerators, one that aligns

computational power with communication efficacy to achieve optimal system performance.

In addressing the neuron mapping challenge within NoC architectures, a complex

many-to-many relationship that is inherently NP-hard (no known algorithm that can find

the optimal solution in polynomial time) is confronted. This complexity is particularly

pronounced when considering a direct mapping of neurons to PEs. Conceptualizing this,

let p represent the number of PEs and n the total number of neurons. To map these neurons

equally across r neurons per PE, a computational complexity of p!C(n, r) is faced. Given

the scale of modern DNNs, which often comprise thousands of neurons, finding optimal

mapping solutions within a reasonable timeframe becomes a formidable challenge.

To mitigate this complexity, the approach involves bifurcating the neuron-PE mapping

problem into two distinct phases. The initial phase focuses on grouping the neurons, where

neurons are aggregated into clusters, with each cluster containing several neurons less than

or equal to the number of available PEs. This strategic grouping paves the way for a more

manageable one-to-one mapping between neuron clusters and PEs. The outcome of this

neuron grouping phase is represented as a connected graph.

Subsequently, in the second phase, the mapping of this connected graph onto the 2D-mesh

NoC architecture is addressed. The guiding principle is to minimize communication

36

costs, a factor intrinsically linked to the dynamic energy consumption of the system. By

structuring the problem-solving approach into these two distinct yet interconnected phases,

the complexity is effectively reduced to C(n, r) + p!. This division not only simplifies the

computational process but also aligns closely with the goal of optimizing both performance

and energy efficiency within NoC-based DNN accelerators.

As the intricate details of the proposed methods for neuron grouping and mapping in

2D-mesh NoC architectures are delved into, it becomes imperative to establish a clear

understanding of the specific notations used throughout this discussion. These notations are

fundamental to accurately grasping the mathematical and computational concepts underlying

the approach. They serve as the building blocks for the complex models and algorithms

developed to optimize DNN acceleration within NoC systems.

Table 4.1 provides a comprehensive list of these notations along with their descriptions.

This reference is designed to aid readers in navigating through the technical aspects of the

methodology, ensuring clarity and coherence in understanding the problem-solving strategies

employed in this study.

By familiarizing themselves with these notations, readers can gain deeper insights into

the logical framework and computational processes that are central to this research. Each

notation plays a pivotal role in shaping the models and solutions presented, thereby

contributing to the innovative advancements proposed in the field of DNN acceleration.

In the pursuit of optimizing DNN accelerators within 2D-mesh NoC architectures, the

efficient grouping of neurons emerges as a fundamental task. This process is integral to

enhancing both the performance and energy efficiency of the system, necessitating a strategic

alignment of neurons to nodes within the network.

Central to this neuron grouping effort is the objective to map each neuron, denoted as ni ∈

N in the DNN graph DNNG(N,A), to a distinct node vj ∈ V in the application graph

DAG(V,E). The primary aim here is to minimize the total communication weight, Ω, a

critical factor for optimal system functionality.

37

Table 4.1 Notations used in problem definitions and methodology.

Notation Description

N Set of neurons in the DNN Graph

A Set of connections (arcs) among neurons in the DNN Graph

ai,j Connection from neuron ni to neuron nj

DNNG(N,A) Directed graph representing the DNN topology

V Set of vertices (nodes) in the Application Graph

E Set of directed edges in the Application Graph

ei,j Edge representing the connection from node vi to node vj

wi,j Communication weight of the edge ei,j

DAG(V,E) Directed acyclic graph representing the Application Graph

P Set of processing elements (cores) in the 2D-mesh NoC

L Set of bidirectional links connecting neighboring cores

li,j Link connecting core pi to core pj

TG(P,L) Bidirectional graph representing 2D-mesh NoC topology

Ω Total communication weight in the neuron grouping problem

ΨNoC Total communication cost in the NoC architecture

di,j Hop distance between nodes vi and vj on the 2D-mesh

tavg Average computation cost for each processing element

tvi Total computation time for neurons in node vi

δ Deviation parameter from the average computation

38

In this mapping, the total number of nodes in DAG, represented by |V |, is constrained not

to exceed the available processing elements (PEs) in the NoC architecture, indicated by |P |.

The average computation cost for each PE, tavg, is also considered, ensuring that the total

computation time for neurons in each node vi, represented as tvi , adheres to a user-defined

range. This range is determined by δ, a deviation parameter from tavg, tailored to specific

system needs.

The focus of the optimization is thus captured in the following equation(1), aiming to

minimize the overall communication weight:

min Γ Ω =
∑

∀ei,j∈E

wi,j (1)

Simultaneously, the node mapping challenge in 2D-mesh NoC systems for DNN accelerators

is approached with equal significance. This involves establishing a one-to-one mapping

between the nodes inDAG and the PEs in the NoC, pivotal for ensuring efficient data transfer

and system performance.

This mapping involves assigning each node vi ∈ V of DAG to a unique PE p ∈ P , with

the overarching goal of minimizing the total communication cost within the NoC, denoted

as ΨNoC . The calculation of this cost includes aggregating the costs for each data transfer,

determined by the product of data weight wi,j and the hop distance di,j between nodes vi

and vj on the 2D-mesh. This distance is calculated using the Manhattan metric as follows:

di,j = |xvi − xvj |+|yvi − yvj |.

The function aiming to reduce the total communication cost is formulated in(2) as follows:

min Γ ΨNoC =
∑

∀ei,j∈E

di,jwi,j (2)

By adopting these strategies, both neuron grouping and node mapping challenges within

NoC architectures are comprehensively addressed, with a dedicated focus on optimizing

communication efficiency and enhancing the overall functionality of DNN accelerators.

39

As depicted in Figure 4.1, a visual representation of the challenges discussed earlier,

specifically neuron grouping and node mapping within a DNN framework, is provided. This

figure utilizes a representative DNN model composed of seventeen neurons, with twelve of

these neurons evenly distributed across two hidden layers, exemplifying a common structural

organization in DNNs. The model is mathematically depicted as DNNG(V,A), aligning

with the notations defined earlier.

For this illustration, a neuron grouping approach is used which was proposed previously

[50], referenced in Figure 3.3, is adopted. This example serves to visually contextualize the

abstract concepts of neuron grouping and mapping, providing a clearer understanding of how

these processes are implemented in practical scenarios.

In the central part of Figure 4.1, the application graph, designated as DAG(V,E), is

presented. This graph effectively visualizes the groups formed from the neuron grouping

process, with each node distinctly marked with a number that denotes its group. The

numerical labels on the edges of this graph are indicative of the communication volume

between groups, essentially quantifying the number of weights transferred from one neuron

group to another. In the context of the sample DNN model, this grouping method resulted

in a cumulative weight of 28, reflecting the total communication demand imposed by the

chosen neuron grouping configuration.

Furthering the analysis, the spiral mapping technique for node mapping, a method detailed

in a previous study [50], was applied. This approach involves arranging the nodes in

a sequential, snake-like pattern, adhering to their numerical order, which facilitates a

more organized and systematic mapping process. Employing this method yielded a total

communication cost of 43.

Figure 4.2 in the study illustrates the impact of employing an alternative approach to neuron

grouping. This variation involves a different arrangement of neurons within the layers

compared to the initial example. Despite the altered grouping strategy, the total weight of

the communication, interestingly, remains at 28, similar to the first example. However, it

40

Figure 4.1 A representative instance of neuron clustering and node mapping problems.

is important to note that in this scenario, the mapping method remained consistent with the

previous example.

A noteworthy observation from this approach is the subtle yet significant increase in the

total communication cost, which rises to 45. This increment, despite the constant total

weight, underscores the sensitivity of the communication cost to the specific neuron grouping

method employed. It highlights that even with a similar level of communication weight,

41

different grouping strategies can lead to varying efficiencies in communication cost, thereby

influencing the overall effectiveness of the network design.

This outcome demonstrates the critical influence that neuron grouping methods exert on

the final design objectives of NoC-based DNN accelerators. It underlines the importance

of careful consideration and selection of neuron grouping strategies in optimizing network

performance and achieving desired design goals.

Figure 4.2 The impact of alternative neuron clustering techniques on overall communication cost.

42

In the continued exploration, Figure 4.3 illustrates the significant impact of varying the node

mapping method. By applying an alternative mapping strategy to the application graph

showcased in Figure 4.2, a notable reduction in the total communication cost is observed.

This adjusted approach leads to a decreased communication cost of 40, as effectively

depicted in Figure 4.3.

This result not only highlights the influence of the chosen node mapping method on

communication efficiency but also underscores the importance of an integrated approach

to both neuron grouping and node mapping in the system design. The variation in

communication costs with different mapping techniques indicates that optimal solutions for

both grouping and mapping are essential to achieving the most effective and efficient design

outcomes in NoC-based DNN accelerators.

4.1. Existing ILP Approaches to Neuron Grouping and Mapping

ILP serves as a potent mathematical optimization tool, especially effective for problems

characterized by discrete and integer variables. Its core function is to identify an optimal

solution, either by maximizing or minimizing an objective function, within a defined

framework of constraints. ILP’s strength lies in its ability to provide precise and optimal

solutions, making it highly valuable for specific problem-solving scenarios.

A previously existing ILP-based approach will be compared with the proposed SA and HM

within the scope of this thesis. Essentially, ILP is a good option to compare proposed

methods because it includes the mathematical representation of the problem and its optimal

solution.

However, it is important to acknowledge that ILP can be resource-intensive, particularly in

terms of computation, potentially limiting its scalability for larger problem sets. Given this,

ILP has been strategically applied to smaller-scale DNNs in the study. This application is

primarily aimed at achieving optimal solutions within feasible time frames. Furthermore, the

use of ILP in this approach is instrumental in evaluating how closely the results derived from

SA and heuristic methods align with these optimal solutions.

43

Figure 4.3 The impact of alternative node mapping methods on overall communication cost.

4.1.1. ILP-based Neuron Grouping Method

For clarity and ease of understanding, the notations employed in the neuron grouping ILP

formulations are detailed in Table 4.2.

In this ILP model, Γi,j is defined as a binary variable. It is assigned the value 1 (TRUE) if and

only if the neuron Ni is a member of the group Gj . Conversely, it is set to 0 (FALSE) if this

44

Table 4.2 Notations used in the ILP model of the neuron grouping problem.

Input Variable Description
N = {Ni Γ i = 1, . . . , N} Represents the set of N neurons in the DNN.
L = {Li Γ i = 1, . . . , L} Represents the set of L layers in the DNN.
G = {Gi Γ i = 1, . . . , P} Represents the set of P groups of neurons, where P is the

number of available processing elements.
NNi,j N × L binary matrix representation of the DNN, where i ∈

{1, . . . , N} and j ∈ {1, . . . , L}.
Mi,j Adjacency matrix representation of the DNN, where i, j ∈

{1, . . . , N}.
ϵi Number of incoming edges to neuron Ni.
tavg Average execution time of a processing element.
δ Maximum acceptable deviation of a group’s execution time

from the average (e.g., 0.1, 0.2).

Decision Variable Description
Γi,j Binary variable that is TRUE if neuronNi belongs to group

Gj , for i ∈ {1, . . . , N} and j ∈ {1, . . . , P}.
σi,j,k Binary variable that is TRUE if neuronsNi andNj are in the

same group Gk, for i, j ∈ {1, . . . , N} and k ∈ {1, . . . , P}.
κi,j,k,l Binary variable that is TRUE if neuronNi in Gk and neuron

Nj in Gl, for i, j ∈ {1, . . . , N} and k, l ∈ {1, . . . , P}.
φi,l Binary variable that is TRUE if neuron Ni communicates

with at least one other neuron in group Gl.
tGi

Execution time of group Gi, for i ∈ {1, . . . , P}.
ωi,j Communication weight between groups Gi and Gj .
Ω Total communication cost between all groups.

is not the case. The formulation of this binary variable is crucial for accurately representing

the grouping of neurons in the model, as detailed in equations (3) and (4).

The binary nature of Γi,j is formally expressed in (3) as:

∀(i ∈ N , j ∈ G) Γ Γi,j ∈ {0, 1} (3)

The value assignment for Γi,j is based on the grouping condition is expressed in (4) as

follows:

Γi,j =


1, if Ni belongs to Gj

0, otherwise
(4)

45

The ILP model necessitates that each neuron is allocated to one and only one group,

ensuring an exclusive and clear assignment. This requirement is mathematically articulated

in equation (5), ensuring a distinct and singular grouping for each neuron:

∀(i ∈ N) Γ
∑
j∈G

Γi,j = 1 (5)

Moreover, to optimize the use of available processing elements (PEs) and prevent any from

remaining idle, the model includes a constraint mandating that each group must encompass

at least one neuron. This condition is essential for the efficient utilization of computational

resources and is formulated in equation (6):

∀(j ∈ G) Γ
∑
i∈N

Γi,j ≥ 1 (6)

In this ILP framework, σi,j,k is defined as a binary decision variable. It assumes the value 1

(TRUE) when both neuronsNi andNj are assigned to the same group Gk. Conversely, it is set

to 0 (FALSE) if this condition does not hold. This binary variable is crucial for determining

the group composition of neurons and is articulated through the following formulations:

The binary nature of σi,j,k is specified in equation (7) as follows:

∀(i, j ∈ N , k ∈ G) Γ σi,j,k ∈ {0, 1} (7)

The condition under which σi,j,k is assigned a value is defined in equation (8) as:

σi,j,k =


1, if Ni and Nj are both in group Gk

0, otherwise
(8)

46

Moreover, the relationship between σi,j,k and the neuron-to-group assignment variables Γi,k

and Γj,k is expressed in equation (9) as:

∀(i, j ∈ N , k ∈ G) Γ σi,j,k = Γi,k × Γj,k (9)

A crucial aspect of the ILP formulation involves the linearization of the product of the

binary decision variables, as defined in Equation (9). This step is essential for ensuring

the mathematical tractability of the model. To achieve this, σi,j,k is reformulated using a

set of linear inequalities, thereby enabling its integration into the ILP framework without

compromising the model’s integrity. These linear inequalities, detailed below, effectively

encapsulate the interdependencies between the decision variables:

∀(i, j ∈ N , k ∈ G) Γ (10)

σi,j,k ≤ Γi,k (11)

σi,j,k ≤ Γj,k (12)

σi,j,k ≥ Γi,k + Γj,k − 1 (13)

These inequalities are designed to ensure that σi,j,k accurately reflects the group composition

as dictated by the binary variables Γi,k and Γj,k. This linearization step is a key element in the

optimization process, as it allows for the efficient solving of the ILP model while maintaining

the essential relationships between neurons and their respective groups.

In the ILP model, the specific focus is on intra-layer neuron grouping. To enforce this, a

constraint is introduced that prohibits neurons from being grouped if they are not in the same

layer. This constraint is crucial for maintaining the integrity of layer-specific computations

within the DNN. The formulation of this constraint is given in (14):

47

∀(i, j ∈ N , l ∈ L) Γ If NNi,l ̸= NNj,l

∑
k∈G

σi,j,k = 0 (14)

Additionally, tGi
is defined as a decision variable representing the execution time of each

group Gi. This variable is computed by summing the execution times of all neurons in the

group. As the execution times can vary based on the processing elements and their detailed

calculation can be complex, a neuron’s execution time is approximated using the number

of its incoming edges, denoted as ϵj . This approximation aligns with the fact that neuron

execution is proportionate to its incoming connections, as shown in Equation (15):

∀(i ∈ G) Γ tGi
=

∑
j∈N

(
Γj,i × ϵj

)
(15)

The number of incoming edges ϵj for each neuron Nj is calculated as per Equation (16):

∀(j ∈ N) Γ ϵj =
∑
i∈N

Mi,j (16)

To prevent overloading the processing elements, a constraint is imposed on the execution

time of each group. This constraint ensures that the execution time does not exceed the

average execution time of all groups, denoted as tavg, by more than a specified margin δ.

This is expressed in the inequality (17).

∀(i ∈ G) Γ tGi
≤ (1 + δ)× tavg (17)

Lastly, the average execution time tavg is calculated, which is the sum of the execution times

of all neurons divided by the number of available processing elements P , as defined in

Equation (18):

tavg =

∑
i∈N ϵi

P
(18)

48

In the ILP model, the computation of communication weight between neuron groups

necessitates the introduction of additional decision variables: κi,j,k,l and φi,l. The variable

κi,j,k,l, a binary decision variable, is assigned the value 1 (TRUE) when neuron Ni in group

Gk communicates with neuron Nj in group Gl, and 0 (FALSE) otherwise. The formulation

for κi,j,k,l is given in (19).

∀(i, j ∈ N , k, l ∈ G) Γ κi,j,k,l ∈ {0, 1} (19)

The linearization of the product of two decision variables in Equation (20) is achieved using

a similar approach as for σi,j,k.

∀(i, j ∈ N , k, l ∈ G) Γ κi,j,k,l = Γi,k × Γj,l (20)

φi,l, another binary decision variable, is set to 1 (TRUE) if neuronNi communicates with any

neuron in group Gl, and 0 (FALSE) otherwise. The formulation for φi,l is given in (21) and

(22).

∀(i ∈ N , l ∈ G) Γ φi,l ∈ {0, 1} (21)

∀(i ∈ N , l ∈ G) Γ φi,l ≥ κi,j,k,l ×Mi,j (22)

The communication weight between groups Gk and Gl is represented by the decision variable

ωk,l. This weight is calculated by summing all communication links originating from group

Gk intended for neurons in group Gl. Each communication link, irrespective of the number

of recipient neurons in group Gl, is assumed to have a weight of 1. This assumption is based

on the fact that once a neuron’s output information is sent from its group’s PE, it becomes

available to all neurons in the recipient group via shared memory. The calculation of ωk,l,

49

therefore, involves summing all instances of φi,l where neuronNi belongs to group Gk. This

is formulated in equation (23).

∀(k, l ∈ G) Γ ωk,l =
∑
i∈N

(φi,l × Γi,k) (23)

Finally, the objective function seeks to minimize the total communication weight Ω across

all neuron groups, formalized in equation (24):

Minimize Ω =
∑
k,l∈G

ωk,l (24)

4.1.2. ILP-based Node Mapping Method

The notations utilized in the mathematical formulations for node mapping are delineated in

Table 4.3. This table provides a comprehensive overview of the input and decision variables

that are integral to the model.

Table 4.3 Notations used in the mathematical model for node mapping.

Input Variable Description
G = {Gi Γ i = 1, . . . , P} Set of P groups to be mapped.
C = {Ci Γ i = 1, . . . , P} Set of P cores in the topology.
WCTG Communication weight matrix of the DAG.

Decision Variable Description
ψi,j Total communication cost between cores Ci and Cj .
µi,j Indicates if group Gi is mapped to core Cj .
χi,j,r,s True if group Gi is mapped to core Cr and group Gj is

mapped to core Cs.
ΨNoC Total communication cost of the system.

The decision variable µi,j is defined as a binary indicator, true if group Gi is mapped to core

Cj and false otherwise. This binary nature of µi,j is established in Equation (25), while its

conditional assignment is formulated in Equation (26).

50

∀(i ∈ G, j ∈ C) Γ µi,j is binary (25)

µi,j =


1 if Gi is assigned to Cj

0 otherwise
(26)

To ensure a unique mapping of each group to a specific core, a constraint is imposed, as

delineated in Equation (27). This constraint ensures that each group Gi is mapped to exactly

one core in C.

∀i ∈ G Γ
∑
j∈C

µi,j = 1 (27)

The model also incorporates a constraint ensuring that each core in the set C is assigned to

at most one group from the set G. This constraint, applicable even in scenarios where the

number of cores exceeds the number of groups, is articulated in Equation (28).

∀j ∈ C Γ
∑
i∈G

µi,j ≤ 1 (28)

Furthermore, the binary variable χi,j,r,s is introduced to indicate the simultaneous mapping

of group Gi to core Cr and group Gj to core Cs. The binary nature and conditional logic of

χi,j,r,s are defined in Equations (29) and (30).

∀(i, j ∈ G, r, s ∈ C) Γ χi,j,r,s is binary (29)

51

χi,j,r,s =


1 if Gi is assigned to Cr

and Gj is assigned to Cs

0 otherwise

(30)

The calculation of the binary variable χi,j,r,s involves the logical AND operation between µi,r

and µj,s, as delineated in Equation (31).

(31)∀(i, j ∈ G, r, s ∈ C) Γ χi,j,r,s = µi,r × µj,s

To address the non-linear nature of Equation (31), a linearization process is employed,

resulting in the establishment of the following set of inequalities (32).

∀(i, j ∈ G, r, s ∈ C) Γ χi,j,r,s ≤ µi,r (32a)

∀(i, j ∈ G, r, s ∈ C) Γ χi,j,r,s ≤ µj,s (32b)

∀(i, j ∈ G, r, s ∈ C) Γχi,j,r,s ≥ µi,r + µj,s − 1 (32c)

The total communication cost between any two cores, Ci and Cj , is represented by the

variable ψi,j . This cost is articulated in Equation (33). The formulation encapsulates the

communication cost for each pair of communicating groups Gi and Gj within the group graph

DAG, assigned respectively to cores Cr and Cs. The cost computation involves the product

of the communication weight and the Manhattan distance MDr,s between these cores.

(33)∀(r, s ∈ C) Γ
ψr,s =

∑
i,j∈G

MDr,s × χi,j,r,s ×WCTGi,j

The total communication cost within the Network-on-Chip (NoC) architecture, denoted

as ΨNoC , is determined as per Equation (34). This equation accumulates the individual

communication costs across all pairs of cores within the system.

52

(34)ΨNoC =
∑
r,s∈C

ψr,s

The ultimate goal of this mathematical model is to minimize the overall communication cost

across the NoC-based system.

4.2. Proposed Methods For Neuron Grouping

In the ensuing discussion, the methodologies examined for neuron grouping within DNNs,

in the context of 2D-mesh NoC architectures, are delved into.

4.2.1. Improved Heuristic Method

The approach to optimizing neural networks introduces a novel heuristic method that expands

upon the established intra-layer neuron grouping, as delineated in Figure 3.2. At the heart of

this methodological enhancement is the integration of a crucial parameter, denoted as δ. Far

from being just an add-on, this δ parameter is instrumental in refining the neuron grouping

process.

The introduction of δ serves a dual purpose: it not only guides the distribution of processing

loads within a pre-specified margin but also sets the upper and lower limits for the processing

load each mesh node can handle. This strategic implementation of δ is vital in ensuring

that every node is engaged optimally, effectively opposing scenarios where nodes are either

underutilized or burdened with overload.

This heuristic method represents a paradigm shift from traditional, uniform distribution

strategies. By adopting a more nuanced and flexible approach to load distribution, it allows

for a more effective utilization of network nodes. This adaptability in managing processing

loads is essential in maximizing the efficiency and performance of the neural network within

the 2D-mesh NoC architecture.

In the heuristic approach, each neuron threaded in the network as a distinct entity, precisely

evaluating its contribution to the overall communication cost. This method involves

53

a comprehensive calculation of the average communication weight across all neurons,

establishing a pivotal criterion for the subsequent steps.

Central to this approach is the determination of a communication weight margin, delineating

the maximum communication load that can be efficiently managed by each mesh core.

Guided by this margin, a methodical grouping of neurons within each layer is executed.

This sequential grouping, in line with the defined communication weight margin, ensures

that the distribution of neurons across the network is both balanced and efficient.

This strategy, as illustrated in Figure 3.2, is integral to the heuristic method. It allows for a

more nuanced and effective grouping of neurons, taking into account the individual impact

of each neuron on the network’s communication dynamics.

4.2.2. SA-based neuron grouping method

Metaheuristic algorithms represent a sophisticated class of optimization techniques designed

to tackle complex, large-scale optimization problems. These algorithms are characterized by

their strategic fusion of various heuristic methods and advanced techniques to traverse the

solution space. This approach enables the identification of high-quality solutions that, while

not guaranteed to be optimal, often represent significant improvements over local optima.

A key feature of metaheuristics is the incorporation of randomization elements, which play

a pivotal role in the expansive exploration of the solution space. This is achieved through

a blend of deterministic and stochastic processes, with random walks ensuring a globally

diversified set of candidate solutions [57, 58]. Furthermore, random walks serve as a critical

mechanism in broadening the search horizon, enhancing the global reach of the solution

exploration [59].

One of the notable strengths of metaheuristic algorithms lies in their efficiency and

adaptability in managing large and intricate problem domains. Unlike Integer Linear

Programming (ILP), which may face scalability issues, metaheuristics demonstrate a

robust capacity to handle extensive, multifaceted problems. However, it is important to

54

acknowledge that the solutions yielded by metaheuristic approaches may not always attain

optimal status. Additionally, assessing the quality of these solutions can pose a challenge,

given the inherent complexity and breadth of the solution landscape they explore.

SA stands as a prominent metaheuristic optimization technique, drawing inspiration from

the physical process of annealing in metallurgy. This method is particularly adept at

navigating complex optimization landscapes to identify optimal or near-optimal solutions. Its

foundational principle lies in emulating the gradual cooling process of a material, a strategy

aimed at minimizing structural defects and stabilizing the material in its lowest energy state

[60].

The efficacy of SA is rooted in its inherent ability to circumvent the pitfalls of local optima,

a common limitation in deterministic optimization methods. The technique operates by

progressively lowering the system’s ’temperature’, effectively reducing the likelihood of

accepting suboptimal solutions over time. Essential to this process are several key steps:

initiating with an initial state, typically a randomly generated solution; determining an

appropriate starting temperature; and methodically selecting neighboring candidate solutions

for evaluation.

Each candidate is assessed based on its performance against the objective function, with the

subsequent decision to accept or reject the candidate depending on a probability function that

depends on the current temperature of the system. Critical to the success of the SA algorithm

is the customization of implementation specifics, such as the selection of the initial state

and the determination of an effective cooling schedule, tailored to the nuances of the given

optimization problem.

Initial State Generation The initialization of an effective solution state is a critical step in

the Simulated Annealing The initialization of an effective solution state is a critical step in

the SA algorithm. For this purpose, a heuristic approach is adopted that aims to generate a

preliminary random grouping of neurons. The fundamental objective of this approach is to

establish P distinct groups, ensuring that each group comprises neurons from a single layer

55

and adheres to principles of computational load balancing. The specifics of this method are

outlined in Algorithm 1.

This heuristic strategy begins with the application of a greedy bin-packing algorithm, applied

independently to each layer. This algorithm forms the basis of the initial grouping of neurons.

The bin capacity in this context is defined as (1 + δ)× tavg, aligning with the constraints to

accommodate computational loads appropriately. Consequently, this step results in an initial

set of neuron groups that conform to the defined load-balancing criteria.

Furthermore, to ensure the total number of groups does not exceed P , the algorithm

iteratively modifies the group structure. In cases where the number of groups is less than

P , the algorithm strategically splits the largest group into two, in each iteration. This process

continues until the total number of groups precisely matches P . Such a structured approach

to initial state generation lays the groundwork for an efficient and balanced exploration of

the solution space in the subsequent phases of the SA algorithm.

Neighbor State Generation The approach for generating a neighbor solution in the

Simulated Annealing process is detailed in Algorithm 2. This algorithm strategically

modifies the current state to explore the solution space, aiming to find an efficient grouping

of neurons that optimizes communication within the NoC architecture.

In the Simulated Annealing process for neuron grouping, the strategy involves altering the

group assignment of a randomly selected neuron, ensuring adherence to specific criteria for a

viable solution. A solution is deemed acceptable when it forms exactly P groups, with each

group comprising neurons exclusively from a single layer. Layers consisting of a solitary

neuron are exempted from this process due to the immutability of their grouping.

Upon selecting a neuron at random, the algorithm contemplates two primary actions: either

relocating the neuron to an alternate group within its current layer or exchanging it with

another neuron from a different group in the same layer. This decision-making process

encompasses two pivotal scenarios:

56

Algorithm 1 Generation of the Initial Solution
Inputs:

• NNi,j : N × L binary matrix representing the Neural Network (NN)

• Mi,j : Adjacency matrix representation of the NN

• P: Number of processing elements

• ϵ: Number of incoming edges to neuron Ni

Output: G - the randomly generated initial grouping state.
1: for each layer i ∈ L do
2: tmp groups← Bin-pack(NLi, ϵ, (1 + δ)× tavg).
3: Append tmp groups to G.
4: end for
5: NumGroups← length of G.
6: while NumGroups < P do
7: Initialize a new group GNumGroups+1.
8: maxGroup← getGroupIdxWithMaxNeurons().
9: for each neuron i from middle to end of maxGroup.neurons do

10: Add neuron to GNumGroups+1.
11: Remove neuron from GmaxGroup.
12: end for
13: Increment NumGroups.
14: end while
15: return G.

• Empty Original Group Scenario: If transferring the neuron results in an empty original

group, it becomes necessary to re-establish the prescribed number of groups. This is

achieved by dividing an existing group, thereby relocating one of its neurons to form a

new group.

• Single Group Layer Scenario: In cases where the selected neuron resides in a layer with

a singular group, the algorithm identifies a layer with a minimum of two groups, one

of which should ideally contain only one neuron. The lone neuron from this identified

group is then moved to another group within the same layer, thus vacating its original

group. Subsequently, the selected neuron is relocated to this now-available group.

Through these mechanisms, the algorithm dynamically restructures the neuron groups while

maintaining the essential criteria of solution viability.

57

Algorithm 2 Generation of a Neighbor Solution
Inputs:

• G: The current state

• NNi,j : N × L binary matrix representing the Neural Network (NN)

• Mi,j : Adjacency matrix representation of the NN

• P: Number of processing elements

Output: Gn - A randomly generated neighbor state.
1: Nrand ← random(0, N − 1) {Select a random neuron}
2: Lrand ← Nrand.layer
3: assert Lrand.size > 1 {Ensure layer has more than one neuron}
4: Grand ← Nrand.group
5: if other groups exist in layer Lrand then
6: Gtrg ← random group in Lrand different from Grand
7: swap← random(0, 1)
8: if swap = 1 then
9: Ntrg ← random neuron in Gtrg

10: Swap Nrand with Ntrg

11: else
12: Move Nrand to Gtrg
13: if Grand becomes empty then
14: Gvctm ← random group with more than one neuron
15: Nvctm ← random neuron in Gvctm
16: Move Nvctm to Grand
17: end if
18: end if
19: else
20: if Grand has more neurons then
21: Lsrc ← layer with at least two groups
22: Move a neuron from a single-neuron group in Lsrc to another group
23: Move Nrand to the now empty group in Lsrc
24: end if
25: end if
26: return Gn

Annealing Schedule In this approach, the geometric cooling schedule as outlined

previously [61] is adopted, illustrated in Figure 4.4 and mathematically represented in

Equation (35). This schedule is characterized by a constant α, typically ranging from 0.8 to

0.99, whose value is experimentally determined. The constant α is a crucial factor, being less

than one yet proximate to it, influencing the rate of temperature reduction at each iteration k.

58

Tk+1 = Tk × (1− α)k (35)

Step

Te
m
pe
ra
tu
re

1.00E-291

1.00E-226

1.00E-161

1.00E-96

1.00E-31

200 400 600 800 1000 1200

Figure 4.4 Illustration of the cooling schedule with α = 0.999 depicted on a logarithmic scale.

The initial temperature setting is aligned with the energy level of the initial solution specific

to each problem. This configuration permits the system to initially accept suboptimal

solutions with a higher likelihood, thereby facilitating a more exhaustive exploration of the

solution space. The annealing process is designed to persist until the system temperature

effectively reaches zero. Notably, the iteration count is not predetermined but is instead

scaled according to the problem size, guided by the initial energy levels.

The energy calculation of the system leverages Equation (23) from Section 4.1.1.

Additionally, for the computation of acceptance probabilities, the Metropolis–Hastings

algorithm, introduced previously [62], forms the basis of the method.

4.3. Proposed Method for Node Mapping

In this section, a metaheuristic model based on SA is introduced and tailored for the node

mapping process in mesh-based 2D NoC architectures.

59

4.3.1. SA-based Node Mapping Method

The SA-based node mapping method adapts the principles of Simulated Annealing to

efficiently map neuron groups to processing elements (cores) within a 2D mesh NoC

architecture. This approach extends the methodologies discussed in Section 4.2.2.

Initial Configuration Determination The initial configuration for the SA algorithm

consists of a mapping state, represented as a one-dimensional array, S, where each array

element corresponds to a processing element (core) in the NoC topology. The length of this

array is equal to the number of processing elements, P . In this array, the value at each index

indicates the group that is mapped to the corresponding core. Specifically, if S[i] = Gj, it

implies that the neuron group Gj is assigned to the core Ci.

To set up the initial conditions for the simulated annealing process, including the initial

temperature, final temperature, and iteration count, guidelines from [63] are utilized. These

parameters are calibrated to start with a high acceptance probability for new states (98%) and

to reduce to no improvement (0%) by the end of the process.

Neighbor State Generation and Annealing Configuration The generation of a

neighboring state in the SA algorithm is conducted by randomly selecting and swapping

the core assignments of two groups. This swap introduces variability in the mapping

configuration, aiding the exploration of potential solutions.

The cooling schedule, crucial to the annealing process, follows the formulation presented in

Equation (35) from Section 4.2.2. This schedule effectively manages the gradual reduction

of the system’s temperature, which is central to the simulated annealing methodology.

The objective function for this node mapping process remains consistent with that of the

ILP model, aiming to minimize the total communication cost within the NoC architecture.

This cost is calculated using the formula provided in Equation (34). The simulated annealing

60

process iteratively improves the mapping solution by assessing its performance based on this

objective function.

In summary, the SA-based node mapping method strategically utilizes simulated annealing

principles to optimize the distribution of neuron groups across the cores in a 2D mesh NoC,

thereby enhancing overall system performance and efficiency.

61

5. EXPERIMENTAL RESULTS

This section offers a comprehensive evaluation of both the ILP algorithm and SA-based

approach developed for neuron grouping and node mapping. This evaluation compares with

an alternative heuristic approach detailed in literature [38]. The heuristic method, illustrated

in Figure 3.3, strategically groups neurons within the same layer and optimizes the number of

neurons in each group to balance computational demands. This methodical approach is key to

understanding the effectiveness and efficiency of different grouping and mapping strategies

in DNN acceleration. In the mapping phase, a systematic strategy is applied, particularly

designed to align with the unique features of the mesh architecture. The process initiates at

the top-left vertex of the mesh, with neuron groups being sequentially assigned following

their respective layer sequence. This assignment progresses linearly along the X-axis of the

mesh. Upon reaching the end of a row, the mapping seamlessly transitions to the leftmost

position of the next row. This technique ensures a coherent and systematic allocation of

neuron groups throughout the mesh, facilitating efficient data communication and processing

within the network-on-chip (NoC) framework.

For executing the ILP formulations, the Gurobi optimizer framework [64] is utilized. The

SA algorithm, on the other hand, is implemented in the C programming language. The

experimental evaluations were conducted on a computer system equipped with a Ryzen 5

3600 processor, featuring 6 cores and 12 threads, clocked at 3.60GHz. This system is further

complemented by 32GB of RAM and operates under the Windows 10 operating system.

The experimental analysis involved ten distinct DNN models, each characterized by varying

numbers of layers and neurons. These models have been systematically enumerated in

Table 5.1. The first half of the benchmarks, encompassing five models, were sourced from

existing literature. To comprehensively assess the performance of both the ILP and SA

algorithms, especially in scenarios with escalated neuron counts, an additional five DNN

models were constructed. These models were specifically designed with varying neuron

62

quantities, thereby providing a diverse range of test cases to evaluate the scalability and

robustness of the proposed algorithms under different network complexities.

Table 5.1 Summary of the Employed Benchmarks in Experimental Analysis.

Benchmark Name ID Neurons in Layers Total Neurons

Churn Modelling Problem [65] B1 11-6-6-1 24
Design of Galvanized Steels [66] B2 3-9-9-3 24
Modelling of Supercapacitors [67] B3 10-10-10-1 31
Object Recognition Problem [68] B4 5-6-7-7-6-5 36
LeNet (Fully Connected Part) B5 120-84-10 214
Custom Generated 1 C1 14-30-10-3 57
Custom Generated 2 C2 12-36-20-1 69
Custom Generated 3 C3 24-62-16 102
Custom Generated 4 C4 36-48-54-6 144
Custom Generated 5 C5 84-54-38-16 192

5.1. Evaluating the Impact of Pruning on Communication Weight

To assess how the pruning of Deep Neural Networks (DNNs) influences the communication

weight, a series of experiments were conducted. These experiments involved varying the

percentage of pruning applied to the DNNs. The focus was to identify a suitable pruning

percentage that would be used in subsequent experiments. Benchmark B2 was selected for

this analysis.

The results, depicted in Figure 5.1, illustrate the correlation between increased pruning

percentages and the corresponding reduction in overall communication cost. This

relationship is crucial for optimizing the network-on-chip (NoC) performance in DNN

applications.

In subsequent analyses, the focus will be on examining the impacts of different levels of

network pruning, specifically comparing scenarios with 50% pruning and fully connected

structures. For this comparison, benchmarks will undergo random pruning, as referenced

in the previous studies [69]. Effective pruning strategies aim to systematically eliminate

non-essential or redundant connections and neurons, thereby reducing the size of the DNN

without significantly affecting its accuracy.

63

Pruning Percentage

C
o

m
m

u
n

ic
a

ti
o

n
 w

e
ig

h
t

0

20

40

60

0% 15% 25% 50% 60% 75%

HM ILP SA

Figure 5.1 Variation in communication weight for benchmark B2 with different pruning percentages
(δ = 1.0, mesh size = 3x3).

The referenced study successfully implemented pruning at varying levels, including 70% for

Kaldi, 79% for LeNet5, 67% for AlexNet, 48% for ResNet-50, and 51% for the Transformer

model, with minimal impact on accuracy. These results informed the decision to adopt a

50% pruning percentage for the current investigation, providing a balance between network

simplification and performance retention.

5.2. Neuron Grouping Results

The focus of this experimental analysis is on the optimization of neuron grouping, a

critical aspect previously explored in the context of 2D-mesh NoC architectures for DNN

accelerators. The primary objective is to minimize communication weight among neuron

clusters, ensuring balanced computational loads among processing elements, a topic detailed

in earlier sections. For this purpose, a delta value of δ = 1.0 is adopted, aligning with the

optimization approaches discussed in the ’Proposed Method’ section.

To provide a comprehensive overview, Table 5.2 compiles the communication weight

outcomes for fully connected DNNs (with a pruning percentage of 0%). In contrast, Table

5.3 illustrates the results obtained for DNNs pruned by 50%. These tables also feature a

comparative analysis, delineated in the final three columns, which depict the percentage

change (%∆) in communication weights. This change is evaluated as a decrease, offering

insights into the efficiency of different neuron grouping methods.

64

Table 5.2 Neuron grouping communication weight results for pruning percentage of 0%.

Benchmark/Mesh HM ILP SA %∆ ILP/HM %∆ SA/HM %∆ ILP/SA

B1 (3x3) 83 51 51 -38.55 -38.55 0.00
B2 (3x3) 60 42 42 -30.00 -30.00 0.00
B3 (3x3) 80 70 70 -12.50 -12.50 0.00
B4 (3x3) 45 38 44 -15.56 -2.22 -13.64
C1 (3x3) 176 112 126 -36.36 -28.41 -11.11
C2 (4x4) 420 236 272 -43.81 -35.24 -13.24
C3 (4x4) 583 368 368 -36.88 -36.88 0.00

Average %∆ -29.46 -26.26 -5.43

Table 5.3 Neuron grouping communication weight results for pruning percentage of 50%.

Benchmark/Mesh HM ILP SA %∆ ILP/HM %∆ SA/HM %∆ ILP/SA

B1 (3x3) 40 33 33 -17.50 -17.50 0.00
B2 (3x3) 45 33 33 -26.67 -26.67 0.00
B3 (3x3) 66 42 42 -36.36 -36.36 0.00
B4 (3x3) 39 31 31 -20.51 -20.51 0.00
C1 (3x3) 148 101 104 -31.76 -29.73 -2.88
C2 (4x4) 336 205 212 -38.99 -36.90 -3.30
C3 (4x4) 523 321 308 -38.62 -41.11 4.22

Average %∆ -30.06 -29.83 -0.28

These results offer invaluable insights into the impact of different neuron grouping strategies,

particularly the ILP and SA-based methods previously formulated and discussed. The

findings demonstrate the substantial reduction in communication weight achieved by these

methods when compared to heuristic approaches, reinforcing the discussions from the

’Method’ section regarding the potential of ILP and SA in optimizing NoC-based DNN

accelerators.

Figures 5.2 and 5.3 visually articulate these findings. They present a graphical representation

of the neuron grouping communication weights for fully connected and 50% pruned DNNs,

respectively. The graphical illustrations are normalized to a scale of [0, 100] to facilitate a

clearer and more intuitive understanding of the data.

In summary, these experimental results not only validate the theoretical underpinnings

discussed in previous sections but also provide empirical evidence for the effectiveness of

65

Benchmark(Mesh)

N
or

m
al

iz
ed

 C
om

m
. W

ei
gh

t

0

25

50

75

100

B1
(3x3)

B2
(3x3)

B3
(3x3)

B4
(3x3)

C1
(3x3)

C2
(4x4)

C3
(4x4)

HM ILP SA

Figure 5.2 Neuron grouping communication weight results for fully connected DNNs (normalized to
[0, 100]).

Benchmark (Mesh)

N
or

m
al

iz
ed

 C
om

m
. W

ei
gh

t

0

25

50

75

100

B1
(3x3)

B2
(3x3)

B3
(3x3)

B4
(3x3)

C1
(3x3)

C2
(4x4)

C3
(4x4)

HM ILP SA

Figure 5.3 Neuron grouping communication weight results for 50% pruned DNNs (normalized to
[0, 100]).

the proposed neuron grouping methods. The data underscores the significance of strategic

neuron grouping in enhancing the overall performance of NoC-based DNN accelerators,

especially in the context of varying levels of network pruning.

The exploration of neuron grouping methods for large-scale benchmarks is a significant

aspect of this study, particularly in the context of fully connected and 50% pruned

DNNs. Table 5.4 offers a detailed analysis of the communication weight results for

these benchmarks, focusing on the Heuristic Method (HM) and Simulated Annealing (SA)

outcomes. It is noteworthy that the Integer Linear Programming (ILP) model, extensively

discussed in the ’Proposed Method’ section and ’Existing ILP Approaches to Neuron

Grouping and Mapping’ subsection, was not feasible for these larger benchmarks due to its

high computational requirements and memory constraints. This limitation underscores the

66

complexities associated with scaling ILP solutions for larger neural networks, a challenge

that was anticipated in the methodological considerations.

Table 5.4 HM and SA neuron grouping communication weight results for big benchmarks.

Benchmark Fully Connected DNN Results 50% Pruned DNN Results
(Mesh) HM SA %∆ SA/HM HM SA %∆ SA/HM

B5 (8x8) 5376 5292 -1.56 4615 3808 -17.49
C4 (5x5) 1014 726 -28.40 983 573 -41.71
C5 (8x8) 3084 1186 -61.54 2787 2352 -15.61

Average %∆ -30.50 -24.93

The results presented in Table 5.4 are segregated into two categories: Fully Connected DNN

Results and 50% Pruned DNN Results. This forking aligns with the earlier discussion in the

Proposed Method section regarding the impact of pruning on communication efficiency in

NoC architectures. The comparison between HM and SA for these extensive benchmarks

reveals intriguing insights. The percentage change (%∆ SA/HM) column quantitatively

illustrates the relative performance of SA against HM.

For fully connected networks, the SA method demonstrates a noticeable reduction in

communication weight compared to HM. This finding is in line with the hypothesis presented

in the Proposed Method section, where SA’s capability to navigate complex solution spaces

efficiently was highlighted. The reduction in communication weight is more pronounced

in the 50% pruned DNN results, complying the effectiveness of pruning in reducing the

complexity of neuron grouping tasks and enhancing the performance of metaheuristic

methods like SA.

These outcomes are pivotal for understanding the scalability of different neuron grouping

approaches in the context of large DNN models. They provide empirical evidence supporting

the theoretical discussions around the suitability of metaheuristic methods like SA for

large-scale optimization problems in NoC-based DNN accelerators. The results also suggest

a direction for future research, particularly in improving heuristic methods or developing

new metaheuristic strategies that can handle the growing complexity of modern DNNs more

efficiently.

67

The experiments conducted for neuron grouping aimed at minimizing communication weight

among neuron clusters while considering the computational load distribution on processing

elements, with a focus on δ = 1.0. The outcomes for both fully connected DNNs (0%

pruning) and 50% pruned DNNs are summarized in Tables 5.2 and 5.3. These tables

highlight the percentage changes (%∆) in communication weight from one method to

another, revealing a trend of decrease across different benchmarks.

In fully connected DNNs, both ILP and SA methods consistently demonstrated significant

reductions in communication weight compared to HM, with ILP showing a slight advantage

over SA. This trend is noticeable across various DNN models with different sizes and

complexities. The percentage changes range from slight to substantial, reflecting the

complexity and specific characteristics of each benchmark.

For the 50% pruned DNNs, similar patterns are observed. The reduction in communication

weight is even more pronounced, indicating the efficacy of both ILP and SA in optimizing

neuron grouping in pruned networks. The results underline the potential of pruning as a

strategy to enhance the efficiency of NoC-based DNN accelerators.

The normalized results, depicted in Figures 5.2 and 5.3, further illustrate the effectiveness

of both ILP and SA in reducing communication weight. These visual representations offer a

clear comparison between the methods, with the improvements brought by ILP and SA being

evident at a glance.

An interesting observation from the experiments is the performance of ILP and SA in

large-scale benchmarks. While ILP is constrained by its computational demand, particularly

regarding memory, SA demonstrates a robust performance across all benchmarks. This

is evident from the results for large-scale benchmarks in Table 5.4, where SA not only

outperforms HM but also presents feasible solutions for all tested models.

These findings highlight the practical implications of using SA for neuron grouping

in NoC-based DNN accelerators, especially when dealing with large networks. The

68

scalability and efficiency of SA make it a suitable choice for real-world applications, where

computational resources and memory are critical constraints.

In the exploration of neuron grouping methods for DNN accelerators, a critical observation

was made in the case of the C3 benchmark, where the Simulated Annealing (SA) method

demonstrated superior performance over the Integer Linear Programming (ILP) approach.

This outcome can be traced back to the inherent limitations of ILP in dealing with large-scale

problems. Specifically, ILP’s failure to derive the optimal result within an eight-hour running

time constraint underscores its high computational complexity, which becomes increasingly

pronounced as the problem size escalates. Consequently, the practicality of employing ILP

in large benchmarks is significantly hampered by these computational challenges.

The evaluation of neuron grouping methods in this study adopted a novel approach, focusing

on the communication weight of the mesh topology. This perspective diverges from

traditional methods that primarily consider the number of neurons. By integrating the

communication effects into the grouping strategy, the proposed methods optimize not just

the distribution of neurons, but also the processing load across the network. This approach

ensures a more balanced and efficient utilization of processing elements, contributing to a

reduction in overall system latency and potentially enhancing energy efficiency.

Such a holistic evaluation strategy is particularly relevant in the context of NoC-based DNN

accelerators, where the interplay between computational load and communication overhead

is crucial. The results from this study, therefore, provide valuable insights into optimizing

neuron grouping for DNN accelerators, paving the way for more effective NoC architectures.

This is especially pertinent in large-scale DNNs, where traditional methods may fail to

address the complex dynamics of neuron interactions and communication pathways.

In summary, the insights gleaned from these experiments offer a comprehensive

understanding of neuron grouping dynamics in DNN accelerators. The findings underscore

the importance of considering communication weights and load distribution in the

grouping process, especially for large-scale applications where computational efficiency and

practicality are paramount.

69

5.3. Node Mapping Results

The experimental section dedicated to node mapping results delves into the implementation

and evaluation of the proposed Simulated Annealing (SA) and Integer Linear

Programming (ILP)-based methods. These methods, designed for application mapping on

Network-on-Chip (NoC) architectures with a 2D-mesh topology, aim to minimize the total

communication cost. The logic underpinning the SA and ILP approaches for mapping

follows the principles outlined in the earlier sections of this study.

For a comprehensive analysis, all possible combinations of ILP and SA for both the grouping

and mapping phases of the problem were examined. These combinations have been precisely

tested to determine their effectiveness in reducing communication costs within the NoC

framework. The performance of these combinations was then benchmarked against results

obtained using a heuristic method (HM-DirX), which serves as a standard comparison in the

field.

This accurate testing approach, encompassing various combinations of grouping and

mapping strategies, was crucial to providing a holistic understanding of the optimization

potential in NoC architectures. The results obtained from these experiments were

instrumental in identifying the most efficient methods in terms of communication cost

reduction.

By comparing the SA and ILP methods with the HM-DirX approach, the experiments were

designed to highlight each method’s relative advantages and potential drawbacks. This

comparison was especially pivotal in determining the practicality and scalability of the

proposed methods for real-world applications.

In the realm of NoC architectures, where the optimization of communication pathways is of

predominant importance, these results offer critical insights. They demonstrate the proposed

methods’ feasibility and provide a benchmark for future improvements and innovations in

NoC mapping strategies.

70

Furthermore, these results contribute significantly to the broader discourse on NoC-based

DNN acceleration. By providing experimental evidence on the effectiveness of different

mapping strategies, this research aids in the development of more efficient and cost-effective

NoC systems. This is particularly relevant as the complexity of DNN models and the demand

for more efficient hardware accelerators continue to grow.

In summary, the node mapping results section presents key findings that advance the

understanding of application mapping in NoC architectures. It underscores the importance

of choosing the right combination of grouping and mapping strategies to optimize

communication costs, a critical factor in the performance of NoC-based systems. The

comparative analysis with HM-DirX further enriches these insights, offering valuable

benchmarks for current and future research in NoC mapping strategies.

In the study, a comprehensive analysis of node mapping strategies for DNNs on mesh-based

NoC architectures was undertaken. The approaches encompassed both metaheuristic

Simulated Annealing (SA) and Integer Linear Programming (ILP) methodologies. Table

5.5 collates the results, providing insights into the total communication costs incurred

under various methodological combinations. These include heuristic mapping (HM-DirX),

ILP-based grouping and mapping (ILP-ILP), and combinations of ILP and SA in both

grouping and mapping phases (ILP-SA, SA-ILP, SA-SA). The analysis spans different

benchmarks, offering a comparative view under two specific scenarios: Fully Connected

DNN Mapping Results and 50% Pruned DNN Mapping Results.

This table format is instrumental in evaluating the effectiveness of each method in reducing

communication costs, a critical factor in the performance of NoC systems. The data present

a clear comparison between heuristic methods and the proposed ILP and SA approaches,

underlining the superior performance of the latter in most cases.

The detailed assessment presented in Table 5.5 is critical in understanding the nuances of

node mapping in DNN accelerators. It provides a clear demonstration of how strategic

methodological choices can significantly influence the efficiency of NoC systems. The

results reinforce the concept that a well-optimized node mapping strategy, particularly in

71

Table 5.5 Communication cost results for mapping of DNNs onto mesh-based NoCs.

Fully Connected DNN Mapping Results 50% Pruned DNN Mapping Results

Benchmark HM-DirX ILP-ILP ILP-SA SA-ILP SA-SA HM-DirX ILP-ILP ILP-SA SA-ILP SA-SA

B1 (3x3) 145 79 79 77 77 85 25 25 41 41
B2 (3x3) 125 62 62 63 63 81 44 44 44 44
B3 (3x3) 150 107 107 111 111 120 60 60 60 60
B4 (3x3) 71 41 41 54 54 61 32 32 33 33
C1 (3x3) 344 177 177 206 206 306 152 152 154 154
C2 (4x4) 1224 436 436 600 586 949 373 373 578 561
C3 (4x4) 1406 778 778 776 776 1213 685 681 631 625

large-scale DNN models, is imperative for achieving reduced communication costs and,

consequently, enhanced overall system performance.

The effectiveness of these methodologies is visually represented in Figures 5.4 and 5.5,

where the results from Table 5.5 are normalized for a more comprehensible comparison.

It is evident from these graphical analyses that the combinations of grouping and mapping

strategies devised in this research consistently surpass the performance of the HM-DirX

benchmark across all evaluated scenarios.

A notable trend is the superior efficacy of configurations where ILP-based grouping is

integrated with either SA or ILP mapping methodologies. These combinations consistently

demonstrate enhanced performance in comparison to those involving SA-based grouping.

This pattern underscores the robustness of ILP in constructing optimal groupings, which

subsequently contributes to more efficient mapping outcomes. However, the limitations

of ILP, particularly in terms of computational time, become apparent in more extensive

benchmarks. This is illustrated in the 50% pruned C3 benchmark, as depicted in Figure 5.5,

where ILP fails to converge to an optimal result within the stipulated eight-hour timeframe.

In scenarios involving larger benchmarks, such as the C3 model, SA emerges as a more

viable and effective solution. The flexibility and scalability of SA, especially under the

constraints of time and computational resources, make it an advantageous approach for

large-scale applications. This finding aligns with the earlier observations in the neuron

grouping experiments, reinforcing the notion that SA’s adaptability to diverse and complex

problem spaces makes it a robust choice for NoC-based DNN accelerator optimization.

72

Benchmark (Mesh)

N
o

rm
a

li
z
e

d
 C

o
m

m
.
C

o
s

t

0

25

50

75

100

B1 (3x3) B2 (3x3) B3 (3x3) B4 (3x3) C1 (3x3) C2 (4x4) C3 (4x4)

HM-DirX ILP-ILP ILP-SA SA-ILP SA-SA

Figure 5.4 Communication cost results for mapping of fully connected DNNs (normalized to
[0, 100]).

Benchmark (Mesh)

N
o

rm
a

li
z
e

d
 C

o
m

m
.
C

o
s

t

0

25

50

75

100

B1 (3x3) B2 (3x3) B3 (3x3) B4 (3x3) C1 (3x3) C2 (4x4) C3 (4x4)

HM-DirX ILP-ILP ILP-SA SA-ILP SA-SA

Figure 5.5 Communication cost results for mapping of 50% pruned DNNs (normalized to [0, 100]).

In Table 5.6, the relative performance enhancements offered by the SA and ILP

methodologies over the heuristic HM-DirX approach are quantified. Notably, when different

mapping strategies are applied in conjunction with identical grouping techniques, the

observed variance in performance is marginal, approximately 0.2%. This subtle deviation

underscores the efficacy of the SA-based mapping approach that has been developed.

Conversely, a more pronounced improvement, approximately 6%, is observed when ILP

grouping is employed in tandem with a consistent mapping strategy. This finding highlights

the superior efficiency of the ILP grouping method in this context.

Table 5.6 Percentage improvements of communication load when SA and ILP methods are used
versus heuristic HM-dirX.

Pruning Percentage Grouping: ILP Mapping: ILP Grouping: ILP Mapping: SA Grouping: SA Mapping: ILP Grouping: SA Mapping: SA

0% Pruned Benchmarks 46.35% 46.35% 40.34% 40.51%
50% Pruned Benchmarks 52.63% 52.68% 47.17% 47.49%

73

As delineated in Table 5.6, the amalgamation of the proposed methods manifests a

substantial performance boost, ranging from 40% to 50%, compared to established heuristic

techniques. More specifically, the results for benchmarks with 50% pruning exhibit an

approximate 7% enhancement over those of fully connected networks. This finding aligns

with the expectations and is attributable to the inherent characteristics of the ILP and SA

grouping methodologies. The differential performance between pruned and fully connected

benchmarks accentuates the adaptability and effectiveness of the methods in varying network

configurations.

5.3.1. Analysis of the Proposed Methods on Scaled and Pruned CNN Architectures:

Insights from LeNet and AlexNet Evaluation

Convolutional Neural Networks (CNNs), which are at the leading edge of deep learning

advancements, have been instrumental in revolutionizing the field of computer vision.

Unlike traditional neural network architectures, CNNs are designed with a specific focus

on processing and learning from the complex spatial hierarchies that are inherent in image

data. Prominent examples of CNNs, such as LeNet and AlexNet, are tailored to efficiently

handle tasks such as image recognition and classification, demonstrating their specialized

capabilities in these areas.

LeNet, developed in the 1990s, was a pioneering model primarily focused on recognizing

handwritten digits. It set the groundwork for subsequent, more sophisticated models.

AlexNet, introduced in 2012, represented a significant evolution in the field with its

deeper structure and expanded parameter set, leading to a remarkable level of accuracy

on benchmark image datasets. To adapt these architectures to computational limitations

and to facilitate a thorough experimental analysis, both were subject to scaling and pruning

adjustments. Specifically, LeNet underwent a scale-down by a factor of 16, while AlexNet

was scaled down by a factor of 512. In addition, versions of these models with 50%

pruning were evaluated with care to assess the balance between network complexity and

74

computational efficiency. Table 5.7 encapsulates a comparative overview of these benchmark

models.

The decision to scale down these architectures was not merely a response to computational

constraints but also a deliberate strategy to investigate the behavior of CNNs in

resource-limited settings. This process was conducted with careful consideration of the

distinctive neural connectivity patterns in CNNs, which are notably different from those

in traditional Artificial Neural Networks (ANNs). This approach was vital to preserve the

structural and functional essence of the original designs.

Table 5.7 CNN benchmarks.

Benchmark Name Scale-Down Factor ID Neurons in Layers Total Neurons

LeNet 16 B6 294-74-100-25-8-6-10 517
AlexNet 512 B7 301-567-136-364-84-126-126-84-18-8-8-1 1823

The use of Integer Linear Programming (ILP) methods, commonly employed in network

optimization, was found to be impractical for the scaled dimensions of the study, primarily

due to their inherent computational intensity. As a result, the methodology shifted towards

employing Simulated Annealing (SA) for the network mapping process. This strategic

decision was influenced by the ability of SA to effectively explore extensive solution spaces,

a quality that remains advantageous even in scaled-down scenarios.

In the experimental analysis, as depicted in Table 5.8 and Figure 5.6, a comparative

assessment of communication costs using various mapping strategies on CNN benchmarks

was conducted. These benchmarks included both fully connected and 50% pruned network

configurations. The study considered two distinct grouping-mapping methodologies:

HM-SA and SA-SA.

For the fully connected networks, the findings indicate a substantial reduction in

communication costs using the SA-SA mapping methodology, especially when compared

to the HM-SA mapping. This trend is exemplified in the B6 benchmark, where the SA-SA

mapping significantly outperforms the HM-SA approach. A similar pattern is observed

in the B7 benchmark, with the SA-SA mapping reducing costs by nearly half relative to

75

Table 5.8 Communication cost results for mapping of CNNs onto mesh-based NoCs.

Fully Connected Mapping Results 50% Pruned Mapping Results

Benchmark HM-SA SA-SA HM-SA SA-SA

B6 (6x6) 584 192 422 192
B7 (9x9) 11133 5629 9856 5377

Benchmark

N
o

r
m

a
li
z
e
d

 C
o

m
m

.
C

o
s
t

0

25

50

75

100

B6 (6x6) Pruned B6 (6x6) B7 (9x9) Pruned B7 (9x9)

HM-SA SA-SA

Figure 5.6 Communication cost results for mapping of CNNs (normalized to [0, 100]).

HM-SA. In the context of the 50% pruned networks, the communication cost for benchmark

B6 remains consistent for the SA-SA mapping but exhibits a notable decrease under the

HM-SA approach. Conversely, for the larger B7 benchmark, both mapping methodologies

demonstrate a significant reduction in communication costs.

These results underscore the superiority of the SA-SA mapping approach in optimizing

communication costs, particularly in more complex network benchmarks. Furthermore, the

data highlights the impact of network pruning on communication efficiency, with a marked

cost reduction in the HM-SA mapping approach for pruned networks.

76

6. CONCLUSION

In this study, an enhanced model incorporating Simulated Annealing (SA) for neuron

grouping and mapping, along with a heuristic method for neuron grouping, has been

introduced. Additionally, an Integer Linear Programming (ILP) approach was employed

for comparative analysis. All methodologies have been customized for Deep Neural

Network (DNN) accelerators within 2D-mesh-based Network-on-Chip (NoC) architectures,

emphasizing the reduction of communication load as a primary objective. This model

distinguishes between the communication load among individual neurons, indicative of

single-neuron processing, and that among neuron clusters, representing processing within

a group of neurons.

Existing neuron grouping heuristics, commonly referenced in the literature, were enhanced

to aim for an equitable distribution of workload across the chip. This enhancement was

integrated with the well-established Dir-X NoC mapping method to formulate the final

model. The proposed SA-based approaches are designed to minimize communication

costs while ensuring a balanced processing load like ILP. While the ILP methods yield

optimal results, their computational and spatial demands limit their practicality for larger

benchmarks and IoT devices. However, they serve as a valuable baseline for evaluating the

metaheuristic approaches on smaller-scale benchmarks. As evidenced by the experiments,

the SA-based methods deliver near-optimal results swiftly, with minimal performance

discrepancies compared to the ILP outcomes, irrespective of the benchmark size. On average,

the approaches led to a 40-50% improvement in communication cost efficiency.

The methodologies proposed are adaptable to any mesh-based NoC architecture used in DNN

acceleration. Future research will extend to developing grouping and mapping strategies

for other NoC topologies, particularly those with irregular, application-specific designs.

Additionally, there is a plan to tailor these methods to suit various types of neural networks.

77

REFERENCES

[1] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[2] Ajeet Ram Pathak, Manjusha Pandey, and Siddharth Rautaray. Application of

deep learning for object detection. Procedia Computer Science, 132:1706–1717,

2018. ISSN 1877-0509. doi:https://doi.org/10.1016/j.procs.2018.05.144.

International Conference on Computational Intelligence and Data Science.

[3] Shashi Pal Singh, Ajai Kumar, Hemant Darbari, Lenali Singh, Anshika Rastogi,

and Shikha Jain. Machine translation using deep learning: An overview. In

2017 International Conference on Computer, Communications and Electronics

(Comptelix), pages 162–167. 2017. doi:10.1109/COMPTELIX.2017.8003957.

[4] Nhan Cach Dang, Marı́a N. Moreno-Garcı́a, and Fernando De la Prieta.

Sentiment analysis based on deep learning: A comparative study. Electronics,

9(3), 2020. ISSN 2079-9292. doi:10.3390/electronics9030483.

[5] Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso

Setio, and Et al. Ciompi. A survey on deep learning in medical image analysis.

Medical image analysis, 42:60–88, 2017.

[6] Thibaut Théate and Damien Ernst. An application of deep reinforcement learning

to algorithmic trading. Expert Systems with Applications, 173:114632, 2021.

ISSN 0957-4174. doi:https://doi.org/10.1016/j.eswa.2021.114632.

[7] Louis Marceau, Lingling Qiu, Nick Vandewiele, and Eric Charton. A comparison

of deep learning performances with other machine learning algorithms on credit

scoring unbalanced data. 2020. doi:1907.12363.

[8] Jiankun Wang, Tianyi Zhang, Nachuan Ma, Zhaoting Li, Han Ma, Fei Meng,

and Max Q-H Meng. A survey of learning-based robot motion planning. IET

Cyber-Systems and Robotics, 3(4):302–314, 2021.

78

[9] Ratheesh Ravindran, Michael J Santora, and Mohsin M Jamali. Multi-object

detection and tracking, based on dnn, for autonomous vehicles: A review. IEEE

Sensors Journal, 21(5):5668–5677, 2020.

[10] Amrita S Tulshan and Sudhir Namdeorao Dhage. Survey on virtual assistant:

Google assistant, siri, cortana, alexa. In International symposium on signal

processing and intelligent recognition systems, pages 190–201. Springer, 2019.

[11] Ali Bou Nassif, Ismail Shahin, Imtinan Attili, Mohammad Azzeh, and Khaled

Shaalan. Speech recognition using deep neural networks: A systematic review.

IEEE access, 7:19143–19165, 2019.

[12] Weiting Zhang, Dong Yang, and Hongchao Wang. Data-driven methods for

predictive maintenance of industrial equipment: A survey. IEEE Systems Journal,

13(3):2213–2227, 2019. doi:10.1109/JSYST.2019.2905565.

[13] Javier Villalba-Diez, Daniel Schmidt, Roman Gevers, and Et al. Ordieres-Meré.

Deep learning for industrial computer vision quality control in the printing

industry 4.0. Sensors, 19(18), 2019. ISSN 1424-8220. doi:10.3390/s19183987.

[14] Udit Gupta, Carole-Jean Wu, Xiaodong Wang, Maxim Naumov, Brandon

Reagen, and Et al. Brooks. The architectural implications of facebook’s

dnn-based personalized recommendation. In 2020 IEEE International

Symposium on High Performance Computer Architecture (HPCA), pages

488–501. 2020. doi:10.1109/HPCA47549.2020.00047.

[15] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing

of deep neural networks: A tutorial and survey. Proceedings of the IEEE,

105(12):2295–2329, 2017. doi:1703.09039.

[16] Jinsu Lee, Sanghoon Kang, Jinmook Lee, Dongjoo Shin, and Et al. Han.

The hardware and algorithm co-design for energy-efficient dnn processor on

edge/mobile devices. IEEE Transactions on Circuits and Systems I: Regular

Papers, 67(10):3458–3470, 2020.

79

[17] Ananda Samajdar, Jan Moritz Joseph, Yuhao Zhu, and Et al. Whatmough. A

systematic methodology for characterizing scalability of dnn accelerators using

scale-sim. In 2020 IEEE International Symposium on Performance Analysis of

Systems and Software (ISPASS), pages 58–68. IEEE, 2020.

[18] William J Dally, Yatish Turakhia, and Song Han. Domain-specific hardware

accelerators. Communications of the ACM, 63(7):48–57, 2020. doi:10.1145/

3361682.

[19] Jose Duato, Sudhakar Yalamanchili, and Lionel Ni. Interconnection networks.

Morgan Kaufmann, 2003.

[20] L. Benini and G. De Micheli. Networks on chips: a new soc paradigm. Computer,

35(1):70–78, 2002. doi:10.1109/2.976921.

[21] S. Kumar, A. Jantsch, J.-P. Soininen, M. Forsell, and Et al. Millberg. A network

on chip architecture and design methodology. In Proceedings IEEE Computer

Society Annual Symposium on VLSI. New Paradigms for VLSI Systems Design.

ISVLSI 2002, pages 117–124. 2002. doi:10.1109/ISVLSI.2002.1016885.

[22] Tobias Bjerregaard and Shankar Mahadevan. A survey of research and practices

of network-on-chip. 38(1):1–es, 2006. ISSN 0360-0300. doi:10.1145/1132952.

1132953.

[23] Md Farhadur Reza and Paul Ampadu. Energy-efficient and high-performance

noc architecture and mapping solution for deep neural networks. In Proceedings

of the 13th IEEE/ACM International Symposium on Networks-on-Chip, NOCS

’19. Association for Computing Machinery, New York, NY, USA, 2019. ISBN

9781450367004. doi:10.1145/3313231.3352377.

[24] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, and Et al. Bates. In-datacenter performance analysis of a tensor

processing unit. In Proceedings of the 44th Annual International Symposium

on Computer Architecture, ISCA ’17, page 1–12. Association for Computing

80

Machinery, New York, NY, USA, 2017. ISBN 9781450348928. doi:10.1145/

3079856.3080246.

[25] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A. Alemi.

Inception-v4, inception-resnet and the impact of residual connections on learning.

In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence,

AAAI’17, page 4278–4284. AAAI Press, 2017. doi:10.5555/3298023.3298188.

[26] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. In 2016 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 770–778. 2016. doi:10.1109/CVPR.

2016.90.

[27] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,

and William J. Dally. Eie: Efficient inference engine on compressed deep

neural network. SIGARCH Comput. Archit. News, 44(3):243–254, 2016. ISSN

0163-5964. doi:10.1145/3007787.3001163.

[28] Seyedeh Yasaman Hosseini Mirmahaleh and Amir Masoud Rahmani.

Dnn pruning and mapping on noc-based communication infrastructure.

Microelectronics Journal, 94:104655, 2019. ISSN 0026-2692. doi:https://doi.

org/10.1016/j.mejo.2019.104655.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. Commun. ACM, 60(6):84–90, 2017.

ISSN 0001-0782. doi:10.1145/3065386.

[30] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. Eyeriss v2: A flexible

accelerator for emerging deep neural networks on mobile devices. IEEE Journal

on Emerging and Selected Topics in Circuits and Systems, 9(2):292–308, 2019.

[31] Song Han, Huizi Mao, and William J Dally. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149, 2015. doi:10.1145/3065386.

81

[32] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv, and Yoshua

Bengio. Quantized neural networks: Training neural networks with low

precision weights and activations. The Journal of Machine Learning Research,

18(1):6869–6898, 2017. doi:1609.07061.

[33] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong Zhang.

Pruning and quantization for deep neural network acceleration: A survey.

Neurocomputing, 461:370–403, 2021. ISSN 0925-2312. doi:https://doi.org/10.

1016/j.neucom.2021.07.045.

[34] Adam Santoro, Sergey Bartunov, Matthew M. Botvinick, Daan Wierstra, and

Timothy P. Lillicrap. One-shot learning with memory-augmented neural

networks. CoRR, abs/1605.06065, 2016. doi:1605.06065.

[35] Snaider Carrillo, Jim Harkin, Liam J McDaid, Fearghal Morgan, Sandeep Pande,

Seamus Cawley, and Brian McGinley. Scalable hierarchical network-on-chip

architecture for spiking neural network hardware implementations. IEEE

Transactions on Parallel and Distributed Systems, 24(12):2451–2461, 2012.

[36] Ali Yasoubi, Reza Hojabr, Hengameh Takshi, Mehdi Modarressi, and Masoud

Daneshtalab. Cupan – high throughput on-chip interconnection for neural

networks. In Neural Information Processing, pages 559–566. Springer

International Publishing, Cham, 2015. ISBN 978-3-319-26555-1. doi:10.1007/

978-3-319-26555-1 63.

[37] Hardik Sharma, Jongse Park, Naveen Suda, Liangzhen Lai, and Et al. Chau.

Bit fusion: Bit-level dynamically composable architecture for accelerating deep

neural network. In 2018 ACM/IEEE 45th Annual International Symposium on

Computer Architecture (ISCA), pages 764–775. 2018. doi:10.1109/ISCA.2018.

00069.

[38] Kun-Chih (Jimmy) Chen, Masoumeh Ebrahimi, Ting-Yi Wang, and Yuch-Chi

Yang. Noc-based dnn accelerator: A future design paradigm. In Proceedings of

82

the 13th IEEE/ACM International Symposium on Networks-on-Chip. Association

for Computing Machinery, New York, NY, USA, 2019. ISBN 9781450367004.

doi:10.1145/3313231.3352376.

[39] A. Jenasamanta and S. Mohapatra. Classification of juvenile delinquency using

bayesian network learning: a comparative analysis. Atlantis Highlights in Social

Sciences, Education and Humanities, 2022. doi:10.2991/ahsseh.k.220105.013.

[40] X. Duan and P. Hou. Research on teaching quality evaluation model of physical

education based on simulated annealing algorithm. Mobile Information Systems,

2021:1–8, 2021. doi:10.1155/2021/4407512.

[41] R. Sivapuram and R. Picelli. Topology optimization of binary structures using

integer linear programming. Finite Elements in Analysis and Design, 139:49–61,

2018. ISSN 0168-874X. doi:https://doi.org/10.1016/j.finel.2017.10.006.

[42] Stratos Papadomanolakis and Anastassia Ailamaki. An integer linear

programming approach to database design. In 2007 IEEE 23rd International

Conference on Data Engineering Workshop, pages 442–449. 2007. doi:10.1109/

ICDEW.2007.4401027.

[43] Xiaoxiao Liu, Wei Wen, Xuehai Qian, Hai Li, and Yiran Chen. Neu-noc: A

high-efficient interconnection network for accelerated neuromorphic systems. In

23rd Asia and South Pacific Design Automation Conference, pages 141–146.

2018. doi:10.1109/ASPDAC.2018.8297296.

[44] Kun-Chih Chen and Ting-Yi Wang. Nn-noxim: High-level cycle-accurate

noc-based neural networks simulator. In 2018 11th International Workshop

on Network on Chip Architectures (NoCArc), pages 1–5. 2018. doi:10.1109/

NOCARC.2018.8541173.

[45] Kun-Chih Jimmy Chen, Masoumeh Ebrahimi, Ting-Yi Wang, Yuch-Chi Yang,

and Yuan-Hao Liao. A noc-based simulator for design and evaluation of deep

neural networks. Microprocessors and Microsystems, 77:103145, 2020.

83

[46] Yao Xiao, Yuankun Xue, Shahin Nazarian, and Paul Bogdan. A load

balancing inspired optimization framework for exascale multicore systems: A

complex networks approach. In 2017 IEEE/ACM International Conference on

Computer-Aided Design (ICCAD), pages 217–224. 2017. doi:10.1109/ICCAD.

2017.8203781.

[47] Kun-Chih Jimmy Chen, Chun-Chuan Wang, Cheng-Kang Tsai, and Jing-Wen

Liang. Dynamic mapping mechanism to compute dnn models on a

resource-limited noc platform. In 2021 International Symposium on VLSI

Design, Automation and Test (VLSI-DAT), pages 1–4. 2021. doi:10.1109/

VLSI-DAT52063.2021.9427320.

[48] Ali Yasoubi, Reza Hojabr, and Mehdi Modarressi. Power-efficient accelerator

design for neural networks using computation reuse. IEEE Computer

Architecture Letters, 16(1):72–75, 2017. doi:10.1109/LCA.2016.2521654.

[49] Arash Firuzan, Mehdi Modarressi, and Masoud Daneshtalab. Reconfigurable

communication fabric for efficient implementation of neural networks. In

2015 10th International Symposium on Reconfigurable Communication-centric

Systems-on-Chip (ReCoSoC), pages 1–8. 2015. doi:10.1109/ReCoSoC.2015.

7238097.

[50] Jan Moritz Joseph, Murat Sezgin Baloglu, and Et al. Pan. Newromap:

Mapping cnns to noc-interconnected self-contained data-flow accelerators for

edge-ai. In Proceedings of the 15th IEEE/ACM International Symposium

on Networks-on-Chip, NOCS ’21, page 15–20. Association for Computing

Machinery, New York, NY, USA, 2021. ISBN 9781450390835. doi:10.1145/

3479876.3481591.

[51] Seyedeh Yasaman Hosseini Mirmahaleh, Midia Reshadi, and Et al.

Shabani. Flow mapping and data distribution on mesh-based deep learning

accelerator. In Proceedings of the 13th IEEE/ACM International Symposium

84

on Networks-on-Chip, NOCS ’19. Association for Computing Machinery, New

York, NY, USA, 2019. ISBN 9781450367004. doi:10.1145/3313231.3352378.

[52] S. Murali and G. De Micheli. Bandwidth-constrained mapping of cores onto noc

architectures. In Proceedings Design, Automation and Test in Europe Conference

and Exhibition, volume 2, pages 896–901 Vol.2. 2004. doi:10.1109/DATE.2004.

1269002.

[53] Md Farhadur Reza, Dan Zhao, and Hongyi Wu. Task-resource co-allocation for

hotspot minimization in heterogeneous many-core nocs. In 2016 International

Great Lakes Symposium on VLSI, pages 137–140. 2016. doi:10.1145/2902961.

2903003.

[54] Salih Bayar and Arda Yurdakul. An efficient mapping algorithm on 2-d mesh

network-on-chip with reconfigurable switches. In 2016 International Conference

on Design and Technology of Integrated Systems in Nanoscale Era (DTIS), pages

1–4. 2016. doi:10.1109/DTIS.2016.7483808.

[55] Chi-Hong Hwang and Allen C-H Wu. A predictive system shutdown method

for energy saving of event-driven computation. ACM Transactions on Design

Automation of Electronic Systems (TODAES), 5(2):226–241, 2000.

[56] Trevor Pering, Tom Burd, and Robert Brodersen. The simulation and evaluation

of dynamic voltage scaling algorithms. In Proceedings. 1998 International

Symposium on Low Power Electronics and Design (IEEE Cat. No. 98TH8379),

pages 76–81. IEEE, 1998.

[57] Xin-She Yang. Chapter 1 - introduction to algorithms. In Xin-She Yang, editor,

Nature-Inspired Optimization Algorithms, pages 1–21. Elsevier, Oxford, 2014.

ISBN 978-0-12-416743-8. doi:https://doi.org/10.1016/B978-0-12-416743-8.

00001-4.

85

[58] Christian Blum and Andrea Roli. Metaheuristics in combinatorial optimization:

Overview and conceptual comparison. ACM Computing Surveys, 35(3):268–308,

2003. ISSN 0360-0300. doi:10.1145/937503.937505.

[59] Xin-She Yang. Chapter 3 - random walks and optimization. In Xin-She

Yang, editor, Nature-Inspired Optimization Algorithms, pages 45–65. Elsevier,

Oxford, 2014. ISBN 978-0-12-416743-8. doi:https://doi.org/10.1016/

B978-0-12-416743-8.00003-8.

[60] Dimitris Bertsimas and John Tsitsiklis. Simulated annealing. Statistical Science,

8, 1993. doi:10.1214/ss/1177011077.

[61] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated

annealing. Science, 220(4598):671–680, 1983. doi:10.1126/science.220.4598.

671.

[62] Nicholas Metropolis, Arianna W. Rosenbluth, Marshall N. Rosenbluth,

Augusta H. Teller, and Edward Teller. Equation of state calculations by fast

computing machines. The Journal of Chemical Physics, 21(6):1087–1092, 1953.

doi:10.1063/1.1699114.

[63] Richard J. Wagner Matthew Perry. Python module for simulated annealing.

https://github.com/perrygeo/simanneal, 2019.

[64] Gurobi optimizer. https://www.gurobi.com/.

[65] Amir Ali. Artificial neural network (ann) with practical implementation.

https://medium.com/machine-learning-researcher/

artificial-neural-network-ann-4481fa33d85a. Accessed:

3-Nov-2022.

[66] Edgar O. Reséndiz-Flores, Gerardo Altamirano-Guerrero, Patricia S. Costa,

Antonio E. Salas-Reyes, Armando Salinas-Rodrı́guez, and Frank Goodwin.

Optimal design of hot-dip galvanized dp steels via artificial neural networks and

86

https://github.com/perrygeo/simanneal
https://www.gurobi.com/
https://medium.com/machine-learning-researcher/artificial-neural-network-ann-4481fa33d85a
https://medium.com/machine-learning-researcher/artificial-neural-network-ann-4481fa33d85a

multi-objective genetic optimization. Metals, 11(4), 2021. ISSN 2075-4701.

doi:10.3390/met11040578.

[67] Jiashuai Wang, Zhe Li, Shaocun Yan, Xue Yu, Yanqing Ma, and Lei Ma.

Modifying the microstructure of algae-based active carbon and modelling

supercapacitors using artificial neural networks. RSC Adv., 9:14797–14808, 2019.

doi:10.1039/C9RA01255A.

[68] Sugiarto, Indar and Pasila, Felix. Understanding a deep learning technique

through a neuromorphic system a case study with spinnaker neuromorphic

platform. MATEC Web Conf., 164:01015, 2018. doi:10.1051/matecconf/

201816401015.

[69] Marc Riera, José Marı́a Arnau, and Antonio González. Dnn pruning with

principal component analysis and connection importance estimation. J. Syst.

Archit., 122(C), 2022. ISSN 1383-7621. doi:10.1016/j.sysarc.2021.102336.

87

	ABSTRACT
	ÖZET
	ACKNOWLEDGEMENTS
	CONTENTS
	TABLES
	FIGURES
	ABBREVIATIONS
	1. INTRODUCTION
	1.1. Scope Of The Thesis
	1.2. Contributions
	1.3. Organization

	2. BACKGROUND OVERVIEW
	2.1. Hardware Accelerators
	2.2. Network-on-Chip
	2.2.1. NoC Topology Alternatives

	2.3. Neural Networks
	2.4. Challenges in Accelerating DNNs
	2.5. Previous Approaches to DNN Acceleration
	2.6. Justification for Using NoC to Accelerate DNNs
	2.7. Optimization Techniques for NoC-based DNN Accelerators
	2.7.1. Simulated Annealing (SA)
	2.7.2. Integer Linear Programming (ILP)

	3. RELATED WORK
	3.1. Neuron Grouping (Clustering)
	3.2. Neuron Mapping

	4. PROPOSED METHOD
	4.1. Existing ILP Approaches to Neuron Grouping and Mapping
	4.1.1. ILP-based Neuron Grouping Method
	4.1.2. ILP-based Node Mapping Method

	4.2. Proposed Methods For Neuron Grouping
	4.2.1. Improved Heuristic Method
	4.2.2. SA-based neuron grouping method

	4.3. Proposed Method for Node Mapping
	4.3.1. SA-based Node Mapping Method

	5. EXPERIMENTAL RESULTS
	5.1. Evaluating the Impact of Pruning on Communication Weight
	5.2. Neuron Grouping Results
	5.3. Node Mapping Results
	5.3.1. Analysis of the Proposed Methods on Scaled and Pruned CNN Architectures: Insights from LeNet and AlexNet Evaluation

	6. CONCLUSION

