
T.C.
REPUBLIC OF TURKEY

HACETTEPE UNIVERSITY
GRADUATE SCHOOL OF HEALTH SCIENCES

NOVEL STATISTICAL APPROACHES FOR SURVIVAL ANALYSIS

OF RNA-SEQUENCING DATA

Ahu CEPHE

Program of Biostatistics

DOCTOR OF PHILOSOPHY THESIS

ANKARA

2024

T.C.
REPUBLIC OF TURKEY

HACETTEPE UNIVERSITY
GRADUATE SCHOOL OF HEALTH SCIENCES

NOVEL STATISTICAL APPROACHES FOR SURVIVAL ANALYSIS

OF RNA-SEQUENCING DATA

Ahu CEPHE

Program of Biostatistics

DOCTOR OF PHILOSOPHY THESIS

ADVISOR OF THE THESIS

Prof. Dr. Erdem KARABULUT

CO-ADVISOR

Assoc. Prof. Dr. Gökmen ZARARSIZ

ANKARA

2024

iii

iv

YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI

Enstitü tarafından onaylanan lisansüstü tezimin/raporumun tamamını veya herhangi bir kısmını, basılı (kağıt) ve elektronik

formatta arşivleme ve aşağıda verilen koşullarla kullanıma açma iznini Hacettepe Üniversitesine verdiğimi bildiririm. Bu izinle

Üniversiteye verilen kullanım hakları dışındaki tüm fikri mülkiyet haklarım bende kalacak, tezimin tamamının ya da bir

bölümünün gelecekteki çalışmalarda (makale, kitap, lisans ve patent vb.) kullanım hakları bana ait olacaktır.

Tezin kendi orijinal çalışmam olduğunu, başkalarının haklarını ihlal etmediğimi ve tezimin tek yetkili sahibi olduğumu beyan ve

taahhüt ederim. Tezimde yer alan telif hakkı bulunan ve sahiplerinden yazılı izin alınarak kullanılması zorunlu metinlerin yazılı

izin alınarak kullandığımı ve istenildiğinde suretlerini Üniversiteye teslim etmeyi taahhüt ederim.

Yükseköğretim Kurulu tarafından yayınlanan “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime

Açılmasına İlişkin Yönerge” kapsamında tezim aşağıda belirtilen koşullar haricince YÖK Ulusal Tez Merkezi / H.Ü. Kütüphaneleri

Açık Erişim Sisteminde erişime açılır.

o Enstitü / Fakülte yönetim kurulu kararı ile tezimin erişime açılması mezuniyet tarihimden itibaren 2 yıl

ertelenmiştir. (1)

o Enstitü / Fakülte yönetim kurulunun gerekçeli kararı ile tezimin erişime açılması mezuniyet tarihimden

itibaren ... ay ertelenmiştir. (2)

o Tezimle ilgili gizlilik kararı verilmişti

 17/04/2024

 Ahu CEPHE

i

--

1 “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge”

(1) Madde 6. 1. Lisansüstü tezle ilgili patent başvurusu yapılması veya patent alma sürecinin devam etmesi

durumunda, tez danışmanının önerisi ve enstitü anabilim dalının uygun görüşü üzerine enstitü veya fakülte

yönetim kurulu iki yıl süre ile tezin erişime açılmasının ertelenmesine karar verebilir.

(2) Madde 6. 2. Yeni teknik, materyal ve metotların kullanıldığı, henüz makaleye dönüşmemiş veya patent gibi

yöntemlerle korunmamış ve internetten paylaşılması durumunda 3. şahıslara veya kurumlara haksız kazanç

imkanı oluşturabilecek bilgi ve bulguları içeren tezler hakkında tez danışmanının önerisi ve enstitü anabilim

dalının uygun görüşü üzerine enstitü veya fakülte yönetim kurulunun gerekçeli kararı ile altı ayı aşmamak

üzere tezin erişime açılması engellenebilir.

(3) Madde 7. 1. Ulusal çıkarları veya güvenliği ilgilendiren, emniyet, istihbarat, savunma ve güvenlik, sağlık vb.

konulara ilişkin lisansüstü tezlerle ilgili gizlilik kararı, tezin yapıldığı kurum tarafından verilir *. Kurum ve

kuruluşlarla yapılan işbirliği protokolü çerçevesinde hazırlanan lisansüstü tezlere ilişkin gizlilik kararı ise, ilgili

kurum ve kuruluşun önerisi ile enstitü veya fakültenin uygun görüşü üzerine üniversite yönetim kurulu

tarafından verilir. Gizlilik kararı verilen tezler Yükseköğretim Kuruluna bildirilir. Madde 7.2. Gizlilik kararı

verilen tezler gizlilik süresince enstitü veya fakülte tarafından gizlilik kuralları çerçevesinde muhafaza edilir,

gizlilik kararının kaldırılması halinde Tez Otomasyon Sistemine yüklenir

* Tez danışmanının önerisi ve enstitü anabilim dalının uygun görüşü üzerine enstitü veya fakülte

yönetim kurulu tarafından karar verilir.

v

ETHICAL DECLARATION

In this thesis study, I declare that all the information and documents have been

obtained in the base of the academic rules and all audio-visual and written

information and results have been presented according to the rules of scientific

ethics. I did not do any distortion in data set. In case of using other works, related

studies have been fully cited in accordance with the scientific standards. I also declare

that my thesis study is original except cited references. It was produced by myself in

consultation with supervisor Prof. Dr. Erdem Karabulut and written according to the

rules of thesis writing of Hacettepe University Institute of Health Sciences .

 Ahu CEPHE

vi

ACKNOWLEDGMENTS

I am thankful to my supervisor, Prof. Dr. Erdem Karabulut, whose encouragement,

guidance, and support from beginning to end enabled me to understand the subject. I

would like to a special thank my second advisor Assoc. Prof. Dr. Gökmen Zararsız,

has guided me with his experiences and always spared time for me even in his busy

work schedule, not only in performing this study but also in my entire academic

journey.

I would like to thank the other thesis committee members, Asst. Prof. Dr. Sevilay

Karahan and Asst. Prof. Dr. Dinçer Göksülük for providing valuable suggestions and

contribution to the finalization of my thesis. Also, I would like to thank Asst. Prof. Dr.

Dinçer Göksülük shared his knowledge and experience in his work and provided

technical and hardware assistance for me to use the workstations effectively.

I would like to thank Dr. Necla Koçhan for her support and valuable contributions to

many study steps. I would also like to thank them for their support in accessing the

datasets used in the study and making language corrections. Despite the intense and

challenging education process, I would like to thank Ahmet Sezgin for his support and

help while creating the R package. I would like to thank Prof. Dr. Anne-Laure

Boulesteix and Erin Craig for patiently answering my questions when I had problems

with the study.

I would like to thank Prof. Dr. Reha Alpar, Prof. Dr. Ahmet Öztürk, Prof. Dr. Ergün

Karaağaoğlu, Prof. Dr. Pınar Özdemir for making important contributions to me during

my master's and doctorate education. I also would like to thank Assoc. Prof. Gözde

Ertürk Zararsız and Asst. Serra İlayda Yerlitaş for their friendship, encouragement and

motivation. I would like to thank Menekşe Tarla for her support in helping me to carry

out the processes easily during my doctoral education.

Finally, I would like to thank my family and my twins for their endless patience,

without them this journey would not have been possible.

https://pubmed.ncbi.nlm.nih.gov/?term=Boulesteix+AL&cauthor_id=28546826
https://pubmed.ncbi.nlm.nih.gov/?term=Boulesteix+AL&cauthor_id=28546826

vii

ABSTRACT

Cephe, A., Novel Statistical Approaches For Survival Analysis Of Rna-

Sequencing Data, Hacettepe University Graduate School of Health Sciences,

Department of Biostatistics Doctor of Philosophy Thesis, Ankara, 2024. The

number of people with cancer is increasing daily, and the mortality for cancer is

constantly increasing since the biomarkers of many cancer types are unknown. Also,

cancer doesn’t progress between individuals similarly, and all patients vary in response

to the same treatment because of genetic differences. At this stage, it is very important

to apply more effective treatments by making more accurate prognosis predictions

using personalized medicine strategies. Estimating survival in cancer patients using

survival time provides essential results. With the development of omics technologies,

the relationship between survival time and gene expression profiles of patients can

now be modeled. RNA-sequencing technology has been used in recent years for

survival analysis omics-based due to its advantages. Although RNA-sequencing has

many advantages, it differs from classical survival data with high-dimensionality,

heterogeneity, and highly-correlated genes. Due to these problems, the regularized

Cox methods and machine learning algorithms adapted to survival data are used

instead of classical survival algorithms. However, the regularized Cox methods require

some assumptions to be met using the Cox algorithm. Machine learning algorithms

that are first created for classification problems and then adapted to survival data

require additional time and effort. This study aims to develop new approaches that can

be used in the survival analysis of RNA-sequencing data by combining voom

transformation, stacking algorithm, and lasso methods with block structure. For this

purpose, survival data can be converted into binary classification data with the stacking

algorithm. Using the sample weights obtained after the voom transformation in

priority-Lasso and IPF-Lasso algorithms, two new approaches are presented:

voomStackPrio and voomStackIPF. Our approaches were applied to 12 real RNA-

sequencing data from the TCGA database. Performance comparisons were made with

other survival algorithms in the literature using Harrell’s concordance index. The

results showed that the performance of the two new approaches was similar or better

than other survival algorithms.

Key Words: survival, RNA-sequencing, voom, stacking, IPF-Lasso

viii

ÖZET

Cephe, A., RNA-Dizileme Verilerinin Sağkalım Analizlerinde Yeni İstatistiksel

Yaklaşımlar, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Biyoistatistik

Programı Doktora Tezi, Ankara, 2024. Kansere yakalanan insanların sayısı her

geçen gün artmaktadır ve birçok kanser türüne ait biyobelirteçler bilinemediği için bu

hastalıktan ölüm oranları da sürekli artış göstermektedir. Ayrıca, her kanser hastalığı

her hastada aynı şekilde seyretmemekte ve her hasta aynı tedaviye aynı yanıtı

vermemektedir. Bu aşamada, bireysel tıp stratejilerinden da yararlanarak daha doğru

prognoz tahminleri yaparak daha etkili tedaviler uygulamak oldukça önemlidir.

Kanser hastalarında olay zamanı değişkenlerinden yararlanarak sağkalım

tahminlemesi yapmak bize çok önemli sonuçlar sağlamaktadır. Omics teknolojilerinin

de gelişmesiyle birlikte artık sağkalım zamanı ve hastaların gen ifade profilleri

arasındaki ilişki modellenebilmektedir. Bu çalışmalarda son yıllarda avantajlarından

dolayı RNA-dizileme verileri kullanılmaktadır. Ancak, RNA-dizileme verileri klasik

sağkalım verilerinden farklı olarak yüksek-boyutluluk, heterojenlik ve yüksek-

korelasyonlı genleri bulundurma özelliklerine sahiptir. Bu özelliklerinden dolayı

klasik sağkalım algoritmaları yerine düzenlileştirilmiş Cox yöntemleri ve sağkalım

verilerine uyarlanmış makine öğrenmesi algoritmaları kullanılmaktadır. Ancak,

düzenlileştirilmiş Cox yöntemleri Cox algoritmasının kullanımında sağlanması

gereken bir takım varsayımları gerektirmektedir. Genellikle önce sınıflandırma

problemleri için oluşturulup daha sonra sağkalım verilerine uyarlanan makine

öğrenmesi algoritmaları da ek bir zaman ve çaba gerektirmektedir. Bu çalışmada,

voom dönüşümü, stacking algoritması ve bloklu lasso yöntemlerini birleştirerek RNA-

dizileme verilerinin sağkalım analizlerinde kullanılabilecek yeni yaklaşımlar

geliştirilmesi amaçlanmıştır. Bu amaçla, stacking algoritması ile sağkalım verileri ikili

sınıflandırma verilerine dönüştürülebilmektedir. Voom dönüşümü sonrası elde edilen

gözlem ağırlıkları da priority-Lasso ve IPF-Lasso algoritmalarında kullanılarak

voomStackPrio ve voomStackIPF adında iki adet yeni yaklaşım sunulmuştur.

Geliştirdiğimiz bu yaklaşımlar TCGA veritabanından alınan on iki adet gerçek RNA-

dizileme verisinde uygulanmıştır. Harrell’ın Concordance İndeksi kullanılarak

literatürde yer alan diğer sağkalım algoritmaları ile performans karşılaştırılması

yapılmıştır. Sonuçlar, çalışma kapsamında geliştirilen iki adet yeni yaklaşımın

performansının diğer sağkalım algoritmaları ile benzer veya daha iyi olduğunu

göstermiştir.

Anahtar Kelimeler: sağkalım, RNA-dizileme, voom, stacking, IPF-Lasso

ix

INDEX

APPROVAL PAGE iii

YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI iv

ETHICAL DECLARATION v

ACKNOWLEDGMENTS vi

ABSTRACT vii

ÖZET viii

INDEX ix

SYMBOLS and ABBREVIATIONS xi

FIGURES INDEX xiii

TABLES INDEX xv

1. INTRODUCTION 1

1.1. Problem Overview 1

1.2. Contribution 8

1.3. Organization of This Thesis 8

2. GENERAL INFORMATION 9

2.1. Cancer and Survival Analysis 9

2.2. Survival Analysis in Precision Medicine 11

2.3. Next Generation Sequencing Technologies 14

2.4. RNA-Sequencing Technique 17

2.5. RNA-Sequencing Data 20

2.5.1. Raw Data 20

2.5.2. Filtering 21

2.5.3. Normalization 22

2.5.4. Transformation 26

2.5.5. Feature Selection 31

2.6. Survival Modeling 32

2.6.1. Basic Concepts in Survival Analysis 32

2.6.2. Statistical Methods for Survival Analysis 35

2.7. Survival Modeling of High-Dimensional Data 43

2.7.1. Penalized Likelihood Cox Models 43

2.7.2. CoxBoost 45

2.7.3. Survival Trees 45

x

2.7.4. Bagging Survival Trees 47

2.7.5. Random Survival Forests 49

2.7.6. Boosting 50

2.7.7. Survival Support Vector Machine 51

2.8. Stacking Idea 54

2.9. Priority-Lasso and IPF-Lasso 60

3. MATERIAL AND METHODS 62

3.1. Proposed RNA-Seq Survival Approaches 62

3.1.1. Notations 62

3.1.2. DESeq Median Normalization 63

3.1.3. voom Transformation 64

3.1.4. Stacking for Classification 67

3.1.5. voomStackPrio and voomStackLasso Models 68

3.2. Performance Evaluation 73

3.2.1. Transformation of Test Data into Classification Data 73

3.2.2. RNA-Seq Datasets 74

3.2.3. Evaluation Process 75

3.2.4. Performance Evaluation Criteria 94

3.2.5. Computational Infrastructure 96

3.3. MLSeqSurv R Package 99

4. RESULTS 101

4.1. Concordance Index, Integrated Brier Score, and Selected Features for Real RNA-

Seq Datasets 101

4.2. Super Lists 140

4.3. Computational Time 144

5. DISCUSSION 146

6. CONCLUSION 153

7. REFERENCES 154

8. APPENDICES 171

Appendix 1: The codes for analysis and MLSeqSurv R Package, the selected features for

models. 171

Appendix 2: The Originality Report of Thesis Study. 172

9. CURRICULUM VITAE (CV) 174

xi

SYMBOLS and ABBREVIATIONS

AdaBoost Adaptative Boosting Algorithm

ACC Adrenocortical Carcinoma

AFT Accelerated Failure Time

CESC Cervical Squamous Cell Carcinoma and Endocervical

 Adenocarcinoma

CNN Convolutional Neural Network

CPM Counts Per Million

CPU Computer’s Central Processing Unit

DE Differential Expression

EN Elastic-net

ESCA Esophageal Carcinoma

FPKM Fragments per kilobase per million mapped fragments

GBM Glioblastoma Multiforme

GC Guanine-Cytosine

IPF-Lasso Integrative Penalized Regression with Penalty Factors

KIRC Kidney Renal Clear Cell Carcinoma

KIRP Kidney Renal Papillary Cell Carcinoma

LAML Acute Myeloid Leukemia

Lasso Least Absolute Shrinkage and Selection Operator

LGG Brain Lower Grade Glioma

MESO Mesothelioma

xii

MDL Minimum Description Length

NGS Next Generation Sequencing

PAAD Pancreatic Adenocarcinoma

PH Proportional Hazards

RBF Radial Basis Function

RLE Relative Log Expression

rlog Regularized Logarithm

RPKM Reads per Kilobase per Million Mapped Reads

RNA-seq RNA-sequencing

ROS Random Oversampling

RUS Random Undersampling

SARC Sarcoma

SMOTE Synthetic Minority Sampling Technique

SVM Support Vector Machine

voom Variance Modeling at the Observation Level

voomStackIPF voom-based IPF-Lasso

voomStackPrio voom-based Priority-Lasso

VST Variance Stabilizing Transformation

TMM Trimmed Mean of M-values

TPM Transcripts per million

UVM Uveal Melanoma

XGBoost Extreme Gradient Boost

xiii

FIGURES INDEX
Figure Page

2.1. Differences in treatment processes and outcomes between 13

traditional and precision medicine.

2.2. Workflow of next generation sequencing using Illumina systems. 16

2.3. FASTQ formats. 18

2.4. High-dimensionality, heterogeneity, and high-collinearity problems 22

of RNA-seq data.

2.5. Voom mean-variance modeling. 29

2.6. The three types of censoring. 33

2.7. The relationship among functions, which are f(t), F(t), S(t). 34

2.8. Smooth curve and stepped line graphs for survival function. 35

2.9. Hazard functions. 35

2.10. Exponential distribution, when λ=0.25. 37

2.11. Weibull distribution for λ=0.25 and γ =0.5. 37

2.12. Survival analysis methods. 41

2.13. The data structure after the stacking idea. 56

2.14. The figure presentation of risk set – 1. 57

2.15. The figure presentation of risk set – 2. 58

2.16. The figure presentation of risk set – 3. 59

3.1. A flowchart of the steps of voomStackPrio and voomStackIPF algorithms. 66

3.2. Workflow of evaluation process. 78

4.1. The concordance index, integrated Brier score, and the number of 104

 selected features for ACC.

4.2. The concordance index, integrated Brier score, and the number of 107

 selected features for CESC.

4.3. The concordance index, integrated Brier score, and the number of 110

 selected features for ESCA.

4.4. The concordance index, integrated Brier score, and the number of 115

 selected features for GBM.

4.5. The concordance index, integrated Brier score, and the number of 118

 selected features for KIRC.

4.6. The concordance index, integrated Brier score, and the number of 120

 selected features for KIRP.

xiv

4.7. The concordance index, integrated Brier score, and the number of 122

 selected features for LAML.

4.8. The concordance index, integrated Brier score, and the number of 125

 selected features for LGG.

4.9. The concordance index, integrated Brier score, and the number of 129

 selected features for MESO.

4.10. The concordance index, integrated Brier score, and the number of 134

 selected features for PAAD.

4.11. The concordance index, integrated Brier score, and the number of 136

 selected features for SARC.

4.12. The concordance index, integrated Brier score, and the number of 138

 selected features for UVM.

4.13. The ranking of survival algorithms based the concordance index. 141

4.14. The ranking of survival algorithms based the integrated Brier score. 141

4.15. The ranking of survival algorithms based the number of selected 142

 features.

4.16. A Venn diagram illustrating optimal practices concerning concordance 143

 index, integrated Brier score, and the number of selected features.

xv

TABLES INDEX

Table Page

2.1. Tools for steps of RNA-seq data analysis workspace. 20

2.2. An example RNA-seq survival data matrix for ACC data. 23

2.3. Comparison of type of survival approaches. 36

2.4. Splitting and pruning rules in survival trees. 48

2.5. An example survival data matrix. 56

2.6. Survival data matrix ordered by time. 56

2.7. Contribution of each individual to partial likelihood. 57

2.8. Dataset of risk set – 1. 57

2.9. Cumulative classification matrix for risk set – 1. 58

2.10. Dataset of risk set – 2. 58

2.11. Cumulative classification matrix for risk set – 2. 58

2.12. Dataset of risk set – 3. 59

2.13. Cumulative classification matrix for risk set – 3. 60

3.1. RNA-Seq Datasets. 74

3.2. Patient Characteristics. 75

3.3. Model parameters for voomStackPrio models. 82

3.4. Model parameters for voomStackIPF models. 82

3.5. Characteristics of the compared survival models. 97

3.6. Characteristics of the workstations employed for analysis. 99

4.1. The summary statistics of concordance index, integrated Brier score, 105

 and the number of selected features for ACC.

4.2. The summary statistics of concordance index, integrated Brier score, 108

 and the number of selected features for CESC.

4.3. The summary statistics of concordance index, integrated Brier score, 111

 and the number of selected features for ESCA.

4.4. The summary statistics of concordance index, integrated Brier score, 116

 and the number of selected features for GBM.

4.5. The summary statistics of concordance index, integrated Brier score, 119

 and the number of selected features for KIRC.

4.6. The summary statistics of concordance index, integrated Brier score, 121

xvi

 and the number of selected features for KIRP.

4.7. The summary statistics of concordance index, integrated Brier score, 123

 and the number of selected features for LAML.

4.8. The summary statistics of concordance index, integrated Brier score, 126

 and the number of selected features for LGG.

4.9. The summary statistics of concordance index, integrated Brier score, 130

 and the number of selected features for MESO.

4.10. The summary statistics of concordance index, integrated Brier score, 135

 and the number of selected features for PAAD.

4.11. The summary statistics of concordance index, integrated Brier score, 137

 and the number of selected features for SARC.

4.12. The summary statistics of concordance index, integrated Brier score, 139

 and the number of selected features for UVM.

4.13. The summary statistics of the computational time for MESO, SARC, 145

 and LGG.

1

1. INTRODUCTION

1.1. Problem Overview

Gene expression profiling measures the actively expressed genes in a cell at a

specified time. This method produces patterns of genes expressed by a cell, utilizing

the capability to simultaneously measure the expression level of transcripts (mRNA or

miRNA) for thousands of genes (1). Gene expression profiling has many goals: (i) it

evaluates gene activity in particular cell behaviors (e.g., cell division) to determine the

cell's role in these processes (2), (ii) it identifies active genes that respond to changes

in the cell's environment, improving our understanding of how different conditions

affect gene expression, (iii) it studies the role of molecules such as drugs on cell

response, and explores potential treatment options by targeting genes that are more

prominent in diseases like cancer (1,3).

Transcriptomics technologies are pivotal in the extrapolation and analysis of

gene expression. The main technologies used are DNA microarrays and RNA-

sequencing (RNA-seq). They identify and quantify gene activity (expression) for gene

expression profiling (4). While both methods can detect RNA transcripts in a sample

(cells, tissues, etc.), the methods used are distinct. While RNA-seq uses a sequencing

approach, microarray uses a hybridization approach. For decades, microarray

technology has been used extensively in gene expression research. However, there are

limitations to this array technology (5). For instance, the dynamic range for detecting

transcript levels in microarrays is somewhat limited, influenced by factors like

background, saturation, spot density, and quality, especially when dealing with

transcripts found in low abundance (6). In addition, in microarray analyses, cross-

hybridization results in high background levels, and microarray techniques rely on a

priori knowledge of the reference genome (7,8). Due to its numerous advantages,

RNA-seq technology, utilizing next-generation sequencing (NGS), has recently

become the preferred choice over microarrays. RNA-seq has a wider dynamic range

of expression levels and relatively higher sensitivity, allowing the detection and

quantification of both highly expressed and low-expressed genes, and contains a very

low background signal (5). RNA-seq can identify rare transcripts and low-abundance

RNA molecules such as single nucleotide polymorphisms (SNP) except de novo SNPs

2

for low abundance RNAs, while microarrays cannot detect SNPs. RNA-Seq not only

identifies transcripts corresponding to known genomic sequences but also sequences

complex transcriptomes and explores non-model organisms with undetermined

genomic sequences—capabilities beyond the reach of microarrays, which are limited

to known sequences. The accuracy of the RNA-seq in detecting the expression of

extremely abundant genes is high, while the accuracy of the microarray data is

relatively low (9). Finally, RNA-seq eliminates the necessity for specific probes and

can sequence without relying on a reference genome (5).

Three main types of gene expression studies can be distinguished: class

prediction, class discovery, and differential expression analysis (DE). DE studies are

goal-oriented. Identification of genes that express differently under various

experimental conditions is known as differential expression analysis (10). In order to

treat a gene as differentially expression, the number of reads (or expression levels)

between these conditions has to be statistically significant. Class discovery is the

process of classifying data by similarity in behavior or property. This means you can

discover new classes without using pre-defined labels (11). Class prediction, on the

other hand, entails the development of decision rules to discriminate samples with

known class labels and determine the class to which a new sample belongs (11). In this

thesis, 'survival analysis' of gene expression data will be concentrated, in contrast to

these three. This thesis aims to bring a new perspective to the literature on the survival

analysis. Predicting when and with what probability a new sample will experience a

specific event using gene expression data holds great importance, especially in

bioinformatics.

Prediction of survival, especially in cancer patients, is an important factor in

clinical decision-making (i.e., increasing the frequency of follow-up and prescribing

specific treatments) for clinicians (12). Survival analyses are employed to identify

disease-causing factors in cancer patients, estimate the time until death, and predict the

degree of malignancy and the time of disease progression. Early detection of cancer

and timely appropriate interventions help prevent over-treatment (e.g., unnecessary

drug use) and ensure appropriate palliative care is provided to the patient.

Predicting survival is difficult due to the heterogeneous structure of cancer

cells. As an illustration, individuals with diffuse large B-cell lymphoma (DLBCL)

https://tureng.com/tr/turkce-ingilizce/in%20addition%20to%20them

3

demonstrate clinical diversity; while 40% respond favorably to treatment and

experience extended survival, the remaining 60% show resistance and have reduced

survival prospects. Further investigation revealed significant differences in DLBCL

survival rates between activated and germinal center B-like DLBCL (13). In DLBCL,

individuals suffering from germinal center B-like demonstrated markedly better

overall survival compared to those with activated B-like. In initial cancer survival

studies, clinical variables such as age, race, and laboratory results (tumor size, tumor

grade, etc.) served as predictors of outcome (14). Nevertheless, depending solely on

clinical variables, laboratory results, and clinician experience has proven insufficient

in predicting cancer survival (15) because each type of cancer progresses uniquely in

each patient, and individual responses to identical treatments can vary significantly.

Survival analysis using gene expression data became feasible with the development of

omics technologies and precision medicine (16). It has been observed that more

accurate results are achieved when utilizing genetic data alone or in combination with

clinical data (17,18).

Unlike regression analysis and other classification methods, survival analysis

is focused on the time to event outcome. The survival analysis aims to predict

survival/hazard functions, compare those functions, and identify the relationship

between survival time and covariates. Binary classification techniques or logistic

regression, on the other hand, are techniques for predicting the probability of a binary

outcome (e.g., smoking status). In a survival analysis, the variables and time of an

event are combined to determine its outcome. Certain observations might be censored

as a result of this outcome variable. Individuals still alive at the end of the study or lost

to follow-up during the study period are considered censored since their survival times

are not precisely known (19). Various statistical models exist to predict survival

probability in cancer studies. The survival curves between the two groups were

compared, and survival functions were estimated using non-parametric techniques like

Kaplan-Meier (20), the log-rank test (21), Nelson-Aalen (22), and life-table (23). To

account for their effects, semi-parametric models like Cox regression (24) emerged

because these non-parametric methods do not provide information about the

contribution of different risk factors to the probability of survival. Several Cox

regression models have been developed, including penalized Cox regression (25,26),

4

time-dependent Cox models (27), etc. Cox models require some assumptions, such as

proportional hazards, which are often violated in real-life data. Parametric models have

been developed that do not require satisfying these assumptions, such as Buckley-

James linear regression (28), penalized regression (29), accelerated failure time models

(30), etc.

 Gene expression data, in contrast to traditional clinical data, suffers from a

high-dimensionality issue because there are substantially more genomic covariates (p

>> n) than samples. The high-dimensionality issue prevents the

aforementioned survival analysis techniques from being used with gene expression

data such as RNA-seq (31). Gene correlations in RNA-seq are frequently very

strong, which can cause serious problems with collinearity (32). The high

multicollinearity and high number of genes in the RNA-seq data, in spite of the low

sample count, lead to overfitting issues. Moreover, the data structure of RNA-seq is

heterogeneous and complex. Although the Cox regression model, a linear model

producing risk scores based on covariates, is widely used in survival analysis, it

struggles to analyze complex nonlinear relationships between logarithmic risk scores

and covariates (33). To address these challenges, penalized Cox regression algorithms,

such as lasso (34), ridge (35), and elastic-net (36), perform variable selection on gene

expression data (37). Although these algorithms reduce computational costs and

overfitting, their application is restricted by the assumptions required for the Cox

proportional hazards model. Consequently, recent studies have adopted machine

learning approaches for survival analysis, offering more effective solutions

independent of model assumptions. Machine learning methods designed for

classification problems are powerful and robust. Due to the time-to-event outcome

variable, these algorithms cannot be directly applied to survival data. However, upon

examining machine learning algorithms developed for survival problems, it is

generally observed that they are extensions of machine learning methods originally

designed for classification problems, adapted to handle survival data. For instance,

random forest algorithms (38), commonly used in classification, have been adapted for

survival data, resulting in random survival forest algorithms (39). Other machine

learning algorithms follow a similar process, including survival trees (40,41), Bayesian

networks (42), neural networks (43), support vector machines (44), ensemble methods

5

(39,45,46), deep neural networks (47), active learning, transfer learning (48), multi-

task learning (49).

Survival algorithms employed in analyzing high-dimensional data have been

compared in multiple studies within the literature. For example, Bovelstad et al. (50)

evaluated the performance of the following techniques on high-dimensional datasets:

univariate feature selection, principal components regression, forward stepwise

selection, lasso and ridge regression, and partial least squares regression. Similarly,

Van Wieringen et al. (51) assessed the results of numerous survival analysis

approaches on high-dimensional genomic data, including univariate Cox regression,

principal component analysis, tree-based ensemble methods, penalized least squares,

and penalized Cox regression. Moreover, Witten et al. (31) investigated various

strategies for survival data analysis of genomic datasets, categorizing them into

discrete feature selection, shrinkage-based methods, clustering-based methods, and

variance-based methods. A recent study by Spooner et al., (52) used two datasets to

test a variety of machine learning (ML) and feature selection algorithms, such as

penalized, boosting and random forest methods, for survival analysis. Herrmann et al.

(53) performed a large-scale comparison study of multi-omics data to survival. They

used eleven survival methods groups: boosting, penalized regression, and random

forest.

In some cases, penalized or machine-learning approaches are used to analyze

RNA-seq data. The Random Survival Forest algorithm was used in the Ma et al. (54)

study on lung adenocarcinoma (LUAD) to analyze RNA-seq and clinical data. The

results showed that the RSF model performed better than the classical Cox model.

Different deep learning models were used to predict survival in cancer patients using

RNA-seq dataset in a study by Huang et al. (55). Ching et al. (56) utilized Cox

regression with neural networks (Cox-nnet) to forecast the survival of RNA-seq data.

Wang et al. (57) used RNA-seq data to develop a new method for predicting lung

cancer survival using a deep learning model based on a Convolutional Neural Network

(CNN). Grimes et al. (58) demonstrated that survival analysis results using RNA-seq

data gave higher accuracy than those based solely on clinical data, with the elastic-net

algorithm delivering the best performance. Jardillier et al. (59) compared the

performances of lasso-based penalized Cox Methods (lasso, ridge, elastic-net, adaptive

6

elastic net, etc.) using 16 cancer datasets. Compared to models established using only

clinical data, this study demonstrated enhanced performance when integrating RNA-

seq data with clinical data. Ding et al. (60) developed a machine-learning survival

prediction model based on miRNAs.

The number of machine learning algorithms developed for classification

problems is continuously increasing. Machine-learning algorithms for survival

analysis are generally derived from those utilized in the classification problems

described above. Applying machine learning methods originally designed for

classification problems to survival data requires additional effort. It is crucial to

emphasize that all machine learning algorithms developed or yet to be created for

classification problems can be applied similarly to address survival problems.

Therefore, the idea of stacking becomes significant, converting survival data into

classification data and ensuring the use of classification algorithms in survival analysis

(61). The stacking changes the data structure, transforming the time until the event

outcome in the survival data into a binary outcome variable suitable for classification

algorithms. Covariates of RNA-seq gene expression data are presented in two sets: a

covariate matrix consisting of continuous variables and a risk matrix consisting of

binary variables. While stacking has proven successful with low-dimensional data, no

studies in the literature explore applying this stacking concept to high-dimensional

RNA-seq survival data (61).

In an RNA-seq experiment, cDNA fragments are assembled by adding

sequencing adapters, creating a library of cDNA fragments. Then, this library is

sequenced to generate millions of short sequence reads corresponding to individual

cDNA fragments (62). Therefore, RNA-seq technology yields data in the form of count

numbers. Due to the count nature of the data, analyses of RNA-seq data have employed

either discrete distributions such as Poisson (63) or negative Binomial (64,65).

However, RNA-seq data has problems with mean-variance dependence, outliers, and

high skewness (66). Therefore, since modeling them using count distributions is

difficult and complex, studies employing transformation methods have also been

applied to apply normal-based approaches by converting discrete count data into

continuous data. The RNA-seq dataset in these studies was transformed using

logarithmic transformation (67), variance-stabilizing transformation (VST) (65),

7

regularized logarithm (rlog) transformation (68), and variance modeling at the

observation level (voom) (69), all of which were based on normal-based statistical

methods. With the voom transformation, the relationship between mean and variance

is taken into consideration when modeling discrete count data using a linear modeling

technique. This method generates logCPM values for each count data and weights

based on observational/sample. However, in most studies utilizing the voom method

to analyze RNA-seq data, only the logCPM values obtained are used, and the weights

created by the voom method are ignored. Very few studies include logCPM values and

weights obtained after voom transformation in the analysis. These studies achieved

high accuracy results in differential analysis (70), classification (71), and clustering

(72) by utilizing logCPM values and weight values obtained through the voom method

with RNA-seq data. However, no survival analysis study was found in the literature

that explores the joint utilization of the two outputs (logCPM and weights) obtained

after the voom transformation on RNA-seq data.

The stacking algorithm and voom transformation are used to generate the

covariate matrix based on the RNA- seq survival data. The covariate matrix is

composed of continuous as well as binary variables. In these cases, rather than using

traditional machine learning techniques for analysis, we have found that using machine

learning approaches that are able to handle different types of data will yield more

precise results. The priority-Lasso and Integrative-Penalized Regression with Penalty

Factors (IPF-Lasso) algorithms can analyze variables of different data types within

distinct blocks. The priority-Lasso algorithm typically organizes variables into blocks

based on their types and analyzes them in a prioritized sequence (73). On the other

hand, the IPF-Lasso algorithm analyzes diverse data types by assigning distinct penalty

factors to reduce the coefficients (74). Both algorithms can also sample weights in

their analyses. Employing sample-based weights derived from the voom

transformation in these algorithms is likely to yield more precise results. No study in

the literature yet performs survival analysis by taking into account the sample weights

in the priority-Lasso and IPF-Lasso algorithms on RNA-seq.

This study aims to transform RNA-seq survival data into classification data by

combining the powerful voom transform and stacking idea and generate two novel

8

approaches of priority-lasso and IPF-lasso algorithms, which are adept at analyzing

data within a block structure.

1.2. Contribution

This thesis presents two novel algorithms, voom-based priority-Lasso

(voomStackPrio) and voom-based IPF-Lasso (voomStackIPF). These algorithms

integrate three powerful methods ‒voom transformation, stacking idea, and lasso with

block‒ for the survival analysis on RNA-seq data. In both approaches, the process is

started by transforming raw RNA-seq data with voom. The idea of stacking is then

applied to the resulting data matrix. Finally, priority-Lasso and IPF-Lasso algorithms

are run using the sample weights derived from the stacked data matrix and the voom

transformation. The resulting linear estimators are then utilized to make survival

predictions. Thus, the main objectives of proposing these approaches are as follows:

1. to extend the application of voom transformation for survival analysis on

RNA-seq data,

2. to adapt the stacking idea for RNA-seq data,

3. to make the priority-Lasso and IPF-Lasso algorithms available for RNA-

seq data with sample weights.

1.3. Organization of This Thesis

 The organization of this thesis is as follows. The 'General Information' section

discussed survival analysis and RNA-seq technology. It was mentioned which

methods are used in filtering, normalization, and transformation, leading to the

preparation of RNA-seq data for analysis. The section also elucidates the fundamental

concept of survival analysis and outlines the algorithms used for analyzing high-

dimensional RNA-seq data In the 'Material and Methods' section, we explain how

voomStackPrio and voomStackIPF algorithms were created. We also explain how

these algorithms are evaluated, and compare them with other algorithms based on real

data. We also provide information on the R package we developed for this study. The

'Results' section presents the analysis results from 12 real datasets. The study's findings

are summarized in the 'Conclusion' section, while the 'Discussion' section delves into

a comprehensive exploration and interpretation of the results.

9

2. GENERAL INFORMATION

2.1. Cancer and Survival Analysis

In 2020, nearly 10 million lives were claimed by cancer, making it the world's

second leading cause of death, which equates to almost one in six deaths (75).

Additionally, the 2022 report from the World Health Organization highlights the

prevalence of certain cancers in 2020, including breast with 2.26 million cases, lung

with 2.21 million cases, colon and rectum with 1.93 million cases, prostate with 1.41

million cases, non-melanoma skin with 1.20 million cases, and stomach with 1.09

million cases. In 2020, the leading causes of cancer-related deaths were lung (1 point

80 million deaths), stomach (769,000 deaths), liver (830,000 deaths), colon and rectum

(916,000 deaths), and breast (685,000 deaths). Approximately 400,000 cases of cancer

are diagnosed in children each year. Cervical cancer is predominant in 23 countries,

with varying prevalence rates across each nation.

Early detection is critical to successful cancer treatment. If treatment is

delayed, it reduces the patient’s chances of survival, exacerbates treatment

complications, reduces quality of life, and increases treatment expenses (76). Most

types of cancer can be detected early. When cancer is caught early and treated early,

the patient's five-year survival rate is significantly higher than when diagnosed later.

Illustratively, the National Cancer Institute's data indicates that when cervical cancer

is detected at an early stage, there is a 92% 5-year relative survival rate. On the other

hand, survival rate over five years is 17% in cases of cervical cancer that is discovered

after it has spread throughout the body. In addition to significantly impacting survival

rates, early diagnosis results in significant cost savings. Early cancer diagnosis has

been shown to save the US economy $26 billion annually, according to a study (77).

For the reasons mentioned above, developing new treatment methods is very

important for early diagnosis of diseases like cancer, patient survival prediction, and

overall survival extension. Utilizing patient data specific to a disease enables the

prediction of an individual's likelihood of recovery, mortality, or the probability and

timing of mortality through statistical analysis. The time-to-event of interest is a

commonly used outcome variable in cancer studies. Different statistical analyses are

applied when the time-to-event of interest is observed for all samples. Some samples,

10

though, might not have experienced the event by the end of the study in some studies,

like those on cancer. For these samples, the time until the event is unknown and is

classified as ‘censored’. Ignoring these censored samples can result in biased and

inefficient estimates (78). Survival analysis is necessary for datasets of this nature. The

main goals of survival analysis are to estimate and compare survival/hazard functions

and evaluate the relationship between explanatory variables and survival time (79).

Survival analysis stands as one of the most prevalent statistical techniques

employed to assess a patient's mortality risk and identify prognostic factors influencing

that risk. These analyses aim to estimate life expectancy by observing individuals with

a certain disease for a certain period of time, determining the types of treatment, and

examining the recovery period or relapse period after treatment. Additionally, survival

analyses are valuable in evaluating the impact of newly produced drugs or a newly

developed treatment method on patients. It allows comparison of the life expectancy

of different patient groups and helps determine whether a disease seen in different

regions and times has epidemic characteristics.

Survival analyses are essential for modeling a variety of biological events,

including the time from birth to death, the time from cancer treatment to death, the

time from the first heart attack to the second, and the time to tumor recurrence. These

analyses further calculate probabilities such as 2-year survival, 5-year survival,

disease-free survival, progression-free survival, or overall survival. There are several

reasons why accurate survival probabilities are important. Over-estimating a patient’s

survival may result in delayed treatment for patients with severe disease, allowing

them to progress further. On the other hand, under-estimating can lead to patients

delaying treatment because they don’t expect to live long enough to see the long-term

benefits. Accurate forecasts also help patients and their families deal with life-altering

events, allowing them to plan for the rest of their lives accordingly. In addition, precise

survival estimates play an important role in the efficient use of scarce healthcare

resources by avoiding unnecessary medication and treatment (80).

In medical applications, survival analyses are essential because they can predict

the prognosis of a disease and, based on those predictions, estimate the probability that

a patient will recover. Survival models provide answers to questions like, “How likely

is the patient to survive in 6 years based on the patient’s information?”. These

11

estimated probabilities are used by clinicians to make important decisions about

patient care. For example, they may increase the frequency of follow-ups or perform

specific treatments. Accurate prognosis predictions help clinicians make appropriate

clinical decisions in treatment and care planning and reduce the risk of over- or under-

treatment. For example, although mandatory rehydration is routinely performed for

cancer patients with fatal diseases, the importance of stopping or withdrawing

rehydration is emphasized to avoid distress due to overhydration (81). Similarly,

though corticosteroids and sedatives often provide relief for symptoms, their long-term

unnecessary use can lead to undesirable effects such as Cushing's appearance, oral

candidiasis, and tolerance (82). Consequently, decisions regarding medical

applications are largely contingent on survival assessments.

Diagnostic research and application centers are dedicated to investigating the

genetic causes of diverse diseases, delving into pharmacogenetics and personalized

medicine, and applying genetic tests using survival analysis. In order to ascertain the

impact on life expectancy, cancer research centers conduct survival studies on a variety

of cancer types and other malignancies. In the meantime, survival analyses are used

by biotech and pharmaceutical companies to assess the efficacy of novel drugs. In

addition to these applications, researchers from a variety of industries frequently

employ survival analyses in their scientific investigations.

2.2. Survival Analysis in Precision Medicine

Traditionally, pathological exams and symptom observation have been the

primary methods used by physicians to diagnose cancer. The pathological examination

method involves looking at the cancerous cell under a microscope. It has been used for

many years to diagnose cancer. But this method, which is based on a variety of criteria

and the experience of experts, is by its very nature subjective. Additionally, the

challenge arises when different tumors share the same DNA, making accurate

diagnosis challenging. In response, analyses utilizing gene expression data play a vital

role as the distinct gene expression profiles among various tumors differ (83). Using

people’s genetic information to diagnose cancer will result in faster, more precise, and

more sensitive findings.

12

The primary modalities employed in cancer treatment include surgery,

chemotherapy, and radiation. Additionally, supplementary approaches include

targeted therapy, immunotherapy, laser treatment, and hormonal therapy. But even the

same cancer can progress differently in different patients. There are also differences

in cancer types and types of cancerous cells. These factors limit the effectiveness of

traditional cancer treatments. Consequently, researchers are increasingly looking for

personalized approaches in cancer treatment. Precision medicine, alternatively

referred to as personalized medicine, encapsulates the idea of administering the right

drug to the right patient at the right dose and time (84). Advancements in high-

dimensional sequencing technology have made obtaining genetic data, including

genomic, transcriptomic, metabolomic, etc., more accessible. By using this

genetic information, precision medicine can identify high-risk patients

before symptoms appear, highlighting the critical role that early detection plays in

the diagnosis of many cancers. Early diagnosis improves patient survival, maximizes

financial resources for healthcare, and lowers the risk of severe conditions. As such,

precision medicine, in its goal of preventing the disease process, minimizes or

eliminates side effects during treatment, allowing patients to derive maximum benefit

from the therapy and achieving the ultimate purpose of disease treatment (85).

In classical survival analysis, patient demographic and clinical data are

commonly employed, resulting in the calculation of similar survival probabilities for

individuals sharing similar demographic and clinical characteristics. Now that

personalized medicine applications are available, we’ve noticed that survival time and

survival chances can differ greatly from person to person. Distinct molecular and

patient characteristics can lead to diverse progressions of the same disease, and

individuals may exhibit different responses to identical treatments (Figure 2.1).

Despite the physical similarities, the differences in responses are mainly due to genetic

differences, which is why genetic information is such an important part of precision

medicine. Precision medicine recognizes that even individuals with the same genetic

origin may experience distinct progressions of fatal diseases. Consequently, predicting

survival times using specific biomarkers related to the prognosis of such diseases

becomes essential. Various biomarkers utilized in personalized treatments for

predicting survival, identifying high-risk groups, and forecasting benefits from

13

specific treatments have significantly contributed to the diagnosis and prognosis of

diseases in clinical studies (86). Consequently, alongside classical survival analyses

utilizing clinical data, recent advancements have led to the development of survival

models incorporating high-dimensional molecular data from technologies such as

omics (genomics, transcriptomics, proteomics, metabolomics).

Figure 2.1. Differences in treatment processes and outcomes between traditional and

 precision medicine.

Sequencing technologies are instrumental in establishing the genetic profiles

of tumors in cancer patients. Gene expression data serves as a snapshot of the diseased

gene, and the intensity of expression of specific genes within diseased tissue is a good

biomarker for predicting the probability of patient survival. There is a high correlation

between gene expression data and survival, and several studies have shown that the

power of such data is more remarkable than clinical data and other prognostic factors

(87). Genes expressing cancer cells can be identified and treatment response of a

patient can be predicted through analysis of genetic profiles using sequencing

technologies. By using sequencing technologies, cancer patients can now receive more

individualized and customized treatment plans based on the unique characteristics of

their cancer, as opposed to the standard application of surgery, chemotherapy, and

radiation treatments to every patient.

14

2.3. Next Generation Sequencing Technologies

Next-generation sequencing (NGS) stands as a high-throughput method

proficient in sequencing vast and complex genomes, suitable for both DNA and RNA

samples. NGS technology is distinguished by its high-speed capabilities. For instance,

the process of sequencing the entire human genome, which once took more than a

decade with the older Sanger sequencing technology, can now be completed in just a

single day using NGS (88).

The way NGS works is similar to that of Sanger sequencing; however, there

are some key differences. NGS can detect genomic variations, which is more sensitive

and quantitative than Sanger sequencing can. NGS can generate more sequencing data

on the same set of input sample requirements that Sanger sequencing does. NGS

employs massive parallel sequencing and simultaneously screens multiple genes

across multiple samples. It does not require a priori knowledge of the genome. NGS

is sensitive to tumor heterogeneity, leveraging its capacity to sequence heterogeneous

genomes within a sample. Additionally, NGS offers a single-nucleotide resolution. It

also has a higher dynamic range of signal, reproducibility and a lower sequencing cost

(89).

Various NGS platforms utilize diverse sequencing technologies, enabling the

simultaneous sequencing of numerous DNA polymers. Each NGS platforms conducts

parallel sequencing of millions of small DNA fragments. Illumina is the most widely

adopted among these platforms, and its workflow is illustrated in Figure 2.2.

Sample preparation begins with the extraction of DNA for next-generation

sequencing (90). Before employing NGS technology, the sample must undergo the

following steps to prepare for sequencing.

Sample Extraction: This step aims to obtain pure DNA or RNA. DNA or RNA nucleic

acids are extracted from various biological samples, including blood, cell cultures,

sputum, bone marrow, tissue selection, bacterial cultures, or urine (90). Different

extraction methods are employed based on the starting material. The purpose of these

methods is to obtain the best quality and the highest yield of nucleic acids from the

sample type. Nuclear acid isolation involves disrupting the cell wall or cell membrane

disruption through physical, chemical, or enzymatic methods to release the genetic

material. Subsequently, in nuclear acid isolation, undesirable substances such as

15

proteins and lipids that may interfere with the reaction are eliminated from the cell

using methods like centrifugation, filtration, or bead-based. Following nucleic acid

isolation, a purification step is initiated. Various methods, such as silica, ion exchange,

cellulose, or precipitation-based techniques, are employed to purify nucleic acids. The

final stage involves assessing the amount of nucleic acid in the sample. Inadequate

nucleic acid concentration may lead to the amplification of unwanted products during

polymerase chain reaction (PCR) or the generation of short-read lengths during

sequencing. An increased background during sequencing procedures may result if the

nucleic acid concentration is too high.

Library Preparation: This step transforms the extracted nucleic acids into a format

suitable for the chosen sequencing technology (90). Generating a sequencing library

from a DNA or RNA sample involves two main steps: (i) amplification and (ii) the

addition of sequencing adapters. In the case of RNA as the starting template, an

additional step is required to convert RNA to cDNA through reverse transcription.

First, all DNA is fragmented into similar-sized pieces to enhance the reading

sensitivity of the bases and mitigate enzymatic errors associated with longer DNA

strands. Various methods, including physical, chemical, or enzymatic approaches, are

employed for DNA fragmentation. Once the length of the DNA is adjusted, specialized

adapters are ligated to both ends of the DNA fragments. Adapters, chemically

synthesized oligonucleotides with predetermined sequences, bind to the ends of DNA

molecules. These adapters are designed to interact with a specific sequencing platform

and serve as barcodes, enabling the identification of the initial location of each

nucleotide.

Clonal Amplification: The DNA fragments from the libraries are amplified to such an

extent that fluorescent signals for single-base incorporation are detectable by the

sequencers in the downstream sequencing reaction. Initially, the library created from

DNA fragments is fixed to the surface for amplification. The fragments are hybridized

to the flow cell surface, and each bound fragment is amplified into a clonal cluster

through a series of amplification reactions known as bridge amplification (91). The

five steps of bridge amplification include: (i) synthesis of the complementary strand

of a DNA fragment in the library from the priming oligo of the flow cell, (ii) folding

of the complementary strand folds and formation of the double-stranded bridge, (iii)

16

creation of two single strands by denaturing the double-stranded bridge, (iv) repeating

the process of bridge amplification, and (v) generating more clones of double-stranded

bridges. Subsequently, each fragment forms a cluster of identical molecules known as

clonal clusters, each representing one primary library molecule. The double-stranded

clonal bridges are denatured, the reverse strands are removed, and the forward strands

persist as clusters for sequencing.

Figure 2.2. Workflow of next generation sequencing using Illumina systems.

DNA Sequencing: NGS platform is used for parallel sequencing. The library is loaded

onto the sequencer, in which it systematically ‘reads’ the nucleotides individually. The

DNA sequence obtained by sequencing each piece of DNA is referred to as a read. The

quantity of reads generated varies based on the sequencing platform and kit. A

comprehensive comparison table of sequencing platforms is provided in Table 2.1 of

Zararsiz’s PhD thesis (92).

The most popular platform is Illumina sequencing. Illumina sequencing uses

fluorescent dye-labeled dNTPs with a reversible terminator to read fluorescent signals

in every cycle, using a process called cyclic reversible termination (93). Only one of

the four fluorescent DNTPs are incorporated into the DNA polymerase in each cycle

17

based on complementarity and then unbound DNTP’s are eliminated. Cluster images

are taken after each nucleotide has been incorporated; the emission wavelength is

measured and the fluorescence intensity is measured to determine the base that has

been incorporated into each cluster during this cycle. The fluorescent dye and

terminator are then cut and released after imaging. This is followed by another

synthesis cycle, another imaging cycle, and another deprotection cycle. Because each

base is read from one cycle to the next, the read length is iteratively repeated ‘n’ cycles.

Alignment and Data Analysis: Initially, the reads must be filtered based on quality,

amplicon size, and concordance between paired ends. The reads are then assembled

and aligned to a reference genome. In the concluding stages, reads can be compared

with reference sequences or with other samples to detect variants by disease status,

etc. If reads are aligned with a reference genome, variant annotation can associate

variants with known genes or regulatory sequences.

This final step comprises three phases: processing, analyzing, and interpreting the raw

sequencing data. Various bioinformatics tools, such as TopHat2 (94), STAR (95),

featureCounts (96), DESeq2 (68), and EdgeR (97), are employed to process, analyze,

interpret, and transform raw sequencing data into meaningful information.

2.4. RNA-Sequencing Technique

A new high-throughput sequencing technique for transcriptome analysis called

RNA-sequencing (RNA-seq) offers a reliable method for describing and measuring

transcriptomes. Although microarray technology has been used for gene expression

profiling studies for many years, RNA-seq offers many advantages over microarray

technology. Firstly, unlike DNA microarrays, which can only profile predetermined

transcripts/genes, RNA-seq enables comprehensive sequencing of the entire

transcriptome (98). Secondly, due to the markedly lower background signals in RNA-

seq compared to DNA microarrays, noise in the experiment is easily eliminated during

analysis. Third, RNA-seq has a wider dynamic range of expression and does not

require a large amount of total RNA for quantification (5). Finally, RNA-seq offers

higher resolution, a better detection range, and reduced technical variability (99).

RNA-seq is the direct sequencing of transcripts by NGS. All RNA-seq data is

therefore generated using the libraries preparation and sequencing platforms listed in

18

the ‘Next Generation Sequencing’ section. NGS is capable of generating millions of

reads. Depending on the sequencing platform you choose, the number of reads may

differ. There are several steps that need to be completed before statistical analysis can

be applied to the RNA-seq data and the tools used in these steps are described in detail

in Table 2.1.

FASTQ Formats: High-dimensional sequencing results are obtained using next-

generation sequencing technologies (such as Illumina) in FASTQ (100) format, often

with the .txt extension. This format represents both sequencing data and quality scores

using a single ASCII character. Each read is presented with four lines stacked one

below the other in the file (Figure 2.3).

Figure 2.3. FASTQ formats.

In Figure 2.3, Line 1 starts with the @ character and continues with a sequence

identifier, typically containing information related to sequencing technology, such as

flow cell IDs, lane numbers, and information on read pairs. Line 2 consists of the raw

sequence reading featuring sequence letters. Line 3 starts with + and marks the end of

the sequence. The sequence identifier on the first line may follow the +. Line 4 displays

the quality values corresponding to the sequence in Line 2, containing the same

number of symbols as the letters in the sequence.

Quality Control: Quality control involves assessing raw sequencing data to identify

potential problems that may affect downstream analyses. Data quality metrics are

determined for this, providing information about various aspects such as read length,

sequencing depth, base quality, and GC content.

In Figure 2.3, Line 4 of the data in FASTQ format contains the quality code. This code

indicates the likelihood of a sequencing error at each nucleotide position, and the

quality score is derived when the probability of such an error is known. For instance,

if the probability of an ‘x’ error is 0.01, its quality score would be -10*𝑙𝑜𝑔10𝑝=20.

These characters on Line 4 of the FASTQ file are interpreted based on the ASCII

character table.

19

The widely used tool for quality metrics is FASTQC (101), which takes the FASTQ

file as input and generates an HTML file as output. This HTML file comprises several

sections. For instance, the “Basic statistics” section provides general information about

the number and length of reads, while the quality of reads of nucleotides is visually

presented in the “Per base sequence quality” section.

Filtering/Trimming: Adapter sequences are short oligonucleotides and ligated to DNA

fragments' ends. When you read the adapter sequence next to the unidentified target

DNA sequence, remove the adapter sequence to restore the target DNA sequence

(102). Similarly, low-quality reads containing sequencing errors, such as base-calling

errors, phasing errors, and insertion-deletion errors, are excluded from the sequencing

data. The use of adapter sequences and low quality nucleotides may result in false

positives and lower the accuracy of the downstream analysis.

Sequence Read Alignment: Alignment identifies the optimal position for each read in

relation to a reference genome. For organisms that have a reference genome, reads are

mapped to a genome or to a transcriptome. Two important mapping quality parameters

are the percentage of mapped reads and the uniformity of read coverage on exons and

the mapped strand (103). Following alignment, the result file format is Sequencing

Alignment Map (SAM) or Binary Alignment Map (BAM).

Expression Quantification: The number of reads from the RNA-seq data that map to

each transcript sequence is estimated in this step (103). A gene transfer format (GTF)

file is used to count the number of reads that have been mapped or aligned to each

gene during the process. GTF files contain gene models illustrating the structure of the

transcripts produced by each gene.

De novo Transcriptome Assembly: When an organism's reference genome is either

incomplete or nonexistent, de novo assembly is utilized. In this step, a reference file

is created using the available data because there isn't a reference genome yet.

Following the expression quantification steps, raw count data from RNA-seq

is acquired. Now, the pre-processing steps for this raw data have been initiated.

20

Table 2.1. Tools for steps of RNA-seq data analysis workspace.

Steps for RNA-seq data analysis Tools

Quality Control

FASTQC (101)

NGSQC (104)

RNA-SeQC (105)

Filtering/Trimming

Trimmomatic (106)

PRINSEQ (107)

Soapnuke (108)

Read Alignment

Bowtie (109)

BWA (110)

STAR (95)

Tophat2 (94)

HISAT2 (111)

De novo Assembly

Cufflinks (112)

StringTie (113)

Trinity (114)

SOAPdenovoTrans (115)

Trans-ABySS (116)

Expression Quantification

RSEM (117)

Kallisto (118)

Salmon (119)

FeatureCount (96)

HTSeq-count (120)

eXpress (121)

DEXSeq (122)

Sailfish (123)

2.5. RNA-Sequencing Data

2.5.1. Raw Data

 The raw RNA-seq data comprises non-negative and integer count data. As

illustrated in Table 2.2, the rows represent samples, while the columns represent genes.

Time (t) and status (δ) are variables associated with survival in the RNA-seq data. The

status variable indicates whether a sample has experienced a specific event. If the

sample has experienced the event, the status variable is set to 1. If the sample has not

experienced the event (i.e., if it is censored), the status variable takes the value 0. If a

sample experienced a specific event, the time variable denotes the duration until the

occurrence of that event; if the sample was censored, it denotes the time at which

censoring took place.

21

2.5.2. Filtering

Low-expressed genes in RNA-seq data may negatively affect analysis results.

First, RNA-seq inherently contains noise because it is obtained through a natural

random sampling process, and accurate expression quantification becomes difficult

because it measures gene expression profiles over a wide dynamic range (5). These

noise and measurement mistakes are more common in low expression genes in RNA-

seq. Secondly, low expression genes are not biologically significant because genes

usually need at least a certain amount of expression to turn into proteins or to be

considered biologically significant. Thirdly, the mean-variance relationship is more

accurately estimated by excluding low-expressed genes from the dataset. Inadequate

removal of low-expressed genes adversely affects linear modeling in limma-voom,

particularly when working with logCPM values assumed to be normally distributed.

Suppose filtering of low-expressed genes is inadequate for linear modeling in limma-

voom; the mean-variance trend plot generated as part of the voom function will show

a decrease in variance levels at the lower end of the expression scale. Lastly, from a

statistical perspective, the sensitivity of detecting differentially expressed genes may

be reduced when genes have consistently low-expression counts (124). Hence,

identifying and removing low-expressed genes and insufficiently sequenced fragments

from each sample's data are biologically and statistically essential.

Numerous methods are available for filtering low-expression genes, such as

applying a predefined threshold value (69,97), filtering genes with consistently low-

expression across samples, and filtering genes with low variance across samples.

The edgeR package (97) is commonly employed in studies to filter low-expressed

genes. The filterbyExpr() function in this package contributes to more accurate

analysis by eliminating genes with low-expression from the dataset. This function

automatically removes unexpressed or low-expressed genes while retaining as many

genes as possible with valuable counts. A gene to be considered expressed in a library,

it must have 5-10 counts. By default, this function selects the sample count of the group

with the smallest sample count as the minimum sample count and keeps genes with at

least ten or more sequence fragment counts in this sample count. The filtering criterion

is to remove the gene if the number of genes with less than ten expression counts in

all samples exceeds the minimum number of samples (125). This function preserves

22

genes with counts per million (CPM) greater than k in the sample of n. Here, n is

determined by the minimum group sample size, and k is determined by the minimum

number of samples (dafault:10) at the minimum sample rate (default: 70% of smallest

group size). Genes with at least a few counts of 10 or more can be selected, but it is

preferable to use CPM values to account for differences in library sizes. For example,

if the median library size is 51 million and 10/51 (about 0.2), the function retains genes

with a CPM of 0.2 or more in at least three samples. The CPM cutoff used is affected

by sequencing depth and the experimental design. A lower CPM cutoff is preferred

when library sizes are larger, while a higher CPM is favored in the opposite case.

logCPM, FPKM, and RPKM can also be employed as scale conversions instead of

CPM (126).

Figure 2.4. High-dimensionality, heterogeneity, and high-collinearity problems of

 RNA-seq data.

2.5.3. Normalization

Normalization is an essential step in the preprocessing of RNA-seq data prior

to analysis. In some cases, there may be technical differences between measurements

in different samples or unwanted biological effects such as batch effects (127) or

23

general noise (128). Normalization methods take into account this sample variability

to remove systematic experimental bias as well as technical variations while

maintaining biological variation. Technical variations limit comparability as there are

differences in measurement distribution between samples. Therefore, the use of

standardization algorithms is necessary to eliminate or reduce technical variation.

Table 2.2. An example RNA-seq survival data matrix for ACC data.

Samples Genes Time

(t)

Status

(δ) Gene1 Gene2 Gene3 Gene4 Gene5 … Gene19930 Gene19931

Sample1 5 100 40 987 8 … 532 6 8 1

Sample2 11 89 6 53 5 … 69 4 17 1

Sample3 6 67 78 61 14 … 74 10 9 0

Sample4 8 69 51 99 9 … 78 19 13 1

… … … … … … … … … … …

… … … … … … … … … … …

… … … … … … … … … … …

Sample79 3 20 12 678 2 … 49 43 20 0

While early RNA-seq studies initially considered normalization unnecessary,

subsequent analyses demonstrated its significance (129). A gene’s expression level is

determined by its number of mapped reads. Normalization is necessary to convert the

raw read count into an informative measure of gene expression by addressing factors

that affect the number of mapped reads on a gene, such as length (130), GC content

(131), and sequencing depth (132). Another reason for the necessity of normalization

is the variation in the proportion of mRNA corresponding to a given gene between

biological conditions. In the sequenced sample of molecules, the number of molecules

(reads) corresponding to a given gene depends on the proportion of that gene in the

population of molecules available for sequencing. Therefore, when a few genes are

highly expressed in only one of the conditions, these genes will contribute a larger

share of the total molecules, leaving a smaller portion of the reads for other genes

(132). It may result in inaccurate differential expression for non-differentiated

expression genes, which highlights the need for normalization to explain these

differences. There are many ways to normalize RNA-seq data.

24

Total Count Normalization: Each read count is divided by the total number of reads in

its corresponding sample to account for differences in library sizes among samples

(133).

Upper Quartile Normalization: Initially, genes with zero read counts across all

samples are removed. Subsequently, the count for each remaining gene is divided by

the 75th percentile (upper quartile) of the counts for its corresponding sample (129).

Median Quartile Normalization: Similar to upper quartile normalization, genes with

zero read counts across all samples are removed. However, the count for a remaining

gene is divided by the median, rather than the 75th percentile (upper quartile), of the

counts for its corresponding sample (133).

Quantile Normalization: It calculates a specific quantile, ensuring uniformity in the

distribution of normalized data across all samples by replacing each quantile with the

mean (or median) of that quantile calculated across the entire set of samples (134).

Trimmed Mean of M-values (TMM) Normalization: Initially, the TMM (132)

approach selects a sample as the reference sample. Subsequently, it compares the

counts in each sample to those in the reference sample to estimate the sequencing

depths ratio between each sample and the reference. Trim the gene based on fold

change and absolute expression level calculated from the selected sample to remove

differentially expressing genes. The mean is calculated over genes that do not exhibit

differential expression (except for differentially expressing genes). Trim the fold

changes by calculating the trimmed mean for each sample and scaling reads counts

based on this trimmed mean as well as the number of samples.

Relative Log Expression (RLE)-DESeq Normalization: The DESeq (65) normalization

initially computes a ratio, where the numerator is a read count, and the denominator is

the geometric mean of all read counts across all samples for that gene. The

denominator in this context represents a pseudo-reference sample. This process is

applied to every read count. Subsequently, it computes the median of all ratios specific

to that sample to scale a sample. This calculated value is the size factor for the

corresponding sample. The ratio of size factors calculated for each sample indicates

the ratio of their respective sequencing depths.

By computing a virtual pseudo-reference instance, DESeq corrects for overexpressions

resulting from gene length and frequency biases. For the dataset with the p gene and n

25

sample, the pseudo-reference sample is calculated as the geometric mean of counts

across all samples for the gth gene, forming a vector of the gene geometric mean (𝑠𝑔 =

√𝑟𝑔1𝑟𝑔2…𝑟𝑔𝑛
𝑛 = (∏ 𝑟𝑔𝑛

𝑛
𝑔=1)1/𝑛 g=1,2,…,p). The reason for calculating the geometric

mean here is that the geometric mean is less sensitive to extreme values than the

arithmetic mean.

Subsequently, for each sample, the median of the ratio of the counts of the relevant

sample to the pseudo-reference sample is defined as the size factor. For the ith sample,

the size factor is calculated as follows.

�̂�𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖

(∏ 𝑟𝑔𝑛
𝑛
𝑔=1)1/𝑛

= 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖
𝑠𝑔

The denominator in the equation is an example of a pseudo-reference obtained through

geometric mean across samples. Therefore, each estimate of size factor denoted as �̂�𝑖,

is calculated as the median of the ratios of the counts of the ith sample to those of the

pseudo-reference. The size factor is applied to scale that sample (65).

Finally, for each sample i, the normalization factor is calculated as the median of the

𝑟𝑔𝑖 values. Genes with a geometric mean of zero are ignored when calculating this

median. DESeq median normalization involves dividing each gene value in each

sample by these median values calculated for the relevant sample (135).

�̂�.𝑖 =
𝑟.𝑖

�̂�𝑖
, 𝑖 = 1,2,… , 𝑛

PoissonSeq: A group of genes that are non-differentially expressed (non-DE) are first

found using the PoissonSeq algorithm (63). It then determines a scaling factor

to approximate the read counts expected for every sample. Next, the goodness-of-fit

test is used to see if the predicted values agree well with the associated genes. This

iterative process is repeated until the algorithm best matches the observed and expected

values.

Reads per kilobase per million mapped reads (RPKM), Fragments per kilobase per

million mapped fragments (FPKM) Normalization, Transcripts per million (TPM):

RPKM normalization (136) involves dividing each read count by the product of the

number of reads in the sample (in millions) and the gene length (in kilobases). This

26

accounts for gene lengths and the library size in total count normalization. FPKM

normalization (112), similar to RPKM, divides each read count by the number of reads

in the sample and the gene length but uses cDNA molecules instead of RNA reads.

TPM (137) is a slight modification of RPKM, converting an RPKM to a TPM using

the formula TPM = 106 ∗
RPKM

Sum(RPKM)
.

CuffDiff Normalization (138), an extension of DESeq normalization, is an

additional method to the ones mentioned above. Both an internal and an external

size factor are computed as two distinct normalization factors. A more resilient version

of the TMM approach is the Median Ratio Normalization (139), which is merely an

extension of TMM normalization.

2.5.4. Transformation

The RNA-seq count data matrix exhibits sparsity and skewness (140). Sparsity

means that many counts in the RNA-seq count matrix are zero. Conversely, skewness

refers to a skewed distribution when the histogram is plotted for all counts in the RNA-

seq count matrix. Additionally, RNA-seq count matrices are generally heteroskedastic,

meaning the number of highly expressed genes varies more than low-expressed genes

(141). Analyzing data with unequal variance using standard statistical methods is very

difficult. To overcome this problem, various transformation methods can be applied to

make the data homoskedastic.

Logarithmic transformation: For data with a skewed distribution, the logarithmic

transformation is a simple method that is often employed. This transformation helps

the data distribution approximate a normal distribution. When applying a logarithmic

transformation to reduce or eliminate the skewness of RNA-seq data, adding a small

constant, such as 0.5 or 1, to each count is common. This addition

is required to prevent undefinable outcomes in the log

transformation, particularly when working with dataset counts that are equal to 0.

𝑥′𝑖𝑔 = log(𝑥𝑖𝑔 + 0.5) 𝑜𝑟 𝑥′𝑖𝑔 = log (𝑥𝑖𝑔 + 1)

After applying the log transform to RNA-seq data, the distribution typically doesn't

become perfectly normal, but it exhibits reduced skewness and fewer extreme values.

27

Variance stabilizing transformation (VST): The purpose of the vst transformation is to

obtain variables whose variances independent of the mean, thereby eliminating the

dependence of the variance on the mean. This helps prevent a high variance of the

logarithm of the count data, especially when the mean is low. This transformation

method models the relationship between means and variances with a dispersion

parameter (65). Assume that µ𝑔 is the mean and σ𝑔
2 is the variance for the gth gene.

When the relationship between the mean and the variance is modeled by σ𝑔
2 = µ𝑔 +

𝛼𝑔µ𝑔
2 and a dispersion parameter is 𝛼𝑔 = 𝛼0 + 𝛼1 µ𝑔⁄ , then vst transformation is

calculated follows.

𝑥′𝑖𝑔 = ∫
1

σ𝑔
2

𝑥𝑖𝑔

0

𝑑µ𝑔

The parameters 𝛼1 and 𝛼0 are estimated using generalized linear models. Following

the vst transformation, all genes exhibit unequal variances, yet the counts are less

skewed and show fewer extreme values.

Regularized logarithm transformation (rlog): The vst transformation may not perform

optimally with datasets featuring unequal library size (68). To address this issue, the

rlog transformation is introduced. Like the vst transformation, the rlog transformation

aims to eliminate the variance dependency on the mean (68). Although many aspects

of rlog transformation resemble those of the vst transformation, the rlog transformation

requires more time, especially in datasets with numerous samples. This increased time

is due to the rlog fitting a shrinkage term for each sample and each gene. The rlog

transformation is applied as follows.

𝑥′𝑖𝑔 = 𝑙𝑜𝑔2(𝑞𝑔𝑖) = 𝛽𝑔0 + 𝛽𝑖𝑔

The parameter 𝑞𝑔𝑖 is proportionate to the expected accurate concentration of fragments

for the g gene and i sample. The intercept βg0 does not undergo shrinkage and βig is

the sample-specific effect which is shrunk toward zero based on the dispersion-mean

trend over the entire dataset.

Power transformation: As RNA-seq data comprises non-negative counts, modeling

them with a discrete Poisson distribution is appropriate (9,129). Because of these data

28

with biological replicates, the overdispersion issue arises due to the variance being

much larger than the mean. However, it cannot cope with this overdispersed problem

since the mean and variance of the Poisson distribution have the same parameter value.

An alternative is using the negative Binomial distribution to model RNA-seq data

instead of the Poisson distribution (65,132). Nevertheless, due to the complexity of the

negative Binomial distribution, Witten et al. proposed applying a power

transformation to the RNA-seq data in their study. Although the transformed data is

not an integer type after the power transformation, it can still be modeled using the

Poisson distribution (63).

When 𝛼 ∊ (0,1], the transformed count values are utilized (𝑥′𝑖𝑔 = 𝑥𝑖𝑔
𝛼). Using the total

count size factor estimation, a test is conducted to assess whether the Poisson model

fits the data well, as expressed by the following formula (142).

∑∑
(𝑥′𝑖𝑔 −

𝑥′.𝑔𝑥′𝑖.
𝑧..

)

(
𝑥′.𝑔𝑥′𝑖.
𝑥′..

)

≈ (𝑝 − 1)(𝑛 − 1)

𝑛

𝑖=1

𝑝

𝑔=1

voom transformation: RNA-seq quantifies the number of sequence reads mapped to

each gene or other genomic feature (exons, transcripts, etc.), resulting in RNA-seq

datasets consisting of integer counts (65). Consequently, statistical analyses of such

data have been approached through methods that analyze log counts after

normalization by sequencing depth (143–145) or by modeling using discrete data

distributions such as negative Binomial (65,97,146) and Poisson (147). However, the

mathematical theory of discrete distributions is less tractable than normal distribution

approaches and presents more limitations. Most discrete distribution methods applied

to RNA-seq data yield accurate results for datasets with small sample sizes.

Additionally, methods based on these distributions are statistical tests treating

estimated distributions as known parameters. Commonly used normal-distribution

methods for microarray data analysis are unsuitable for RNA-seq read counts because

RNA-seq data consists of integer counts, unlike the continuous data format of

microarrays. Despite log transformation, RNA-seq data retains the issue of unequal

variance—larger counts with larger standard deviations and smaller counts with

smaller standard deviations. In order to overcome these difficulties, the voom

29

transformation was designed to model the mean and variance relationship without

specifying the precise probabilistic distribution of counts (69). By incorporating the

mean-variance trend into precision weights for each normalized observation, the voom

transformation enables the application of statistical methods based on normal

distribution after predicting the mean-variance trend of the data.

Figure 2.5. Voom mean-variance modeling.

If the RNA-seq datasets comprise n samples, each sample's count of reads

matching with each gene defines the RNA-seq profile. These profiles often involve

tens of thousands of genes, with the number of samples typically limited. The total

number of matched reads for each sample, referred to as the library size, may range

from a few hundred thousand to hundreds of millions. The count of reads for a gene is

proportional to the gene expression level, the gene transcript length, and the

sequencing depth of the library. Counts per million (cpm) values are derived by

dividing each read count by library size, enabling comparison across libraries of

varying sizes in millions. The differences in logCPM between samples generate the

log-fold-changes of the expression. logCPM (logarithm of counts per million reads)

values, akin to log-intensity values in microarrays, were utilized; however, it's

important to note that logCPM values may not exhibit constant variance.

30

When analyzing the probability distributions of counts, it is seen that larger

counts exhibit larger variances. So, it was observed that the coefficient of variation in

RNA-seq should be a decreasing function for small counts and asymptote to a value

dependent on biological variability for larger counts (148). Studies involving technical

replications have demonstrated the standard deviation of logCPM continuously

decreases as a function of the mean. Conversely, in the case of biological replications,

this decrease is earlier and relatively more asymptotic (Figure 2.5) (69). Consequently,

logCPM values exhibit a mean-variance relationship that decreases based on count

size, and the logCPM transformation roughly distorts the variance of RNA-seq counts

as a function of count size, especially for genes with larger counts.

logCPM transformation can be analyzed using a trend approach for RNA-seq

data analysis (149,150). However, this causes the mean-variance trend of low-count

data to be ignored. Limma-trend models variance at the gene level, but RNA-seq count

sizes can vary widely from sample to sample for the same gene. Due to different

samples being sequenced at different depths, different count sizes can yield the same

cpm values. Therefore, voom models the mean-variance trend of logCPM values at the

individual observation level rather than applying gene-level variability to all samples

within the same gene. To achieve this, the mean-variance trend of the logged read

counts is estimated, and this mean-variance relationship is utilized to estimate the

variance of each logCPM value. The estimated variance is then retained as an inverse

weight for the logCPM value. The inverse square estimated standard deviation for each

sample becomes the weight for that sample.

The voom method has accurately controlled the type I error rate and false

discovery rate (69). The voom method produced results that were very close to the

nominal type I error rate in scenarios considering equal or unequal library sizes.

Moreover, voom consistently exhibited the lowest false discovery rate across various

cut points. Notably, voom also showcased faster performance than alternative

methods.

In the analysis of RNA-seq data, especially in DE analyses, normalization, and

batch correction are applied to eliminate systematic biases and reduce variability.

However, another factor complicating RNA-seq data analysis is the variability in

sample quality. One strategy to model sample-specific variability involves excluding

31

high-variability samples from the dataset. This approach reduces variability but also

reduces the power to identify DE genes. Alternatively, retaining all samples in the

dataset allows for a comprehensive view but may limit the ability to distinguish true

differences between experimental conditions from noise due to increased variation. To

address this challenge, the concept of down-weighting observations from samples with

high variability has been introduced. This approach aims to preserve maximum

degrees of freedom while minimizing the impact of noisy observations (151).

Consequently, sample weights, in addition to observational weights, can be determined

post-voom transformation.

2.5.5. Feature Selection

Feature selection, which has several benefits, including removing redundant

variables, decreasing time complexity, and enhancing the efficiency of many

algorithms, is one of the most important challenges in high-dimensional data analysis.

It is not recommended to make predictions using all features due to the possibility of

overfitting. Given the sparsity assumption, it is important to choose the most important

features, since most of the features do not influence the result. One of the most

commonly used methods for feature selection is regularized regression methods, which

shrinks regression coefficients to zero, leading to economic prediction models and

dealing with the problem of overfitting (34).

Boruta algorithm (152) is a wrapper feature selection method derived from the

Random Forest algorithm. This method tries to determine a threshold by taking

advantage of the variable importance order used in the Random Forest algorithm. The

set of variables is doubled with copy variables called ‘shadow variables’ from the copy

of all variables. Random forest is trained on this new expanded dataset and variable

importance values are created. A statistical test compares the significance of each real

variable in the dataset with the maximum values of all dummy variables. Variables

with significantly larger importance values are labeled important, respectively, while

variables with smaller importance values are labeled unimportant. Thus, the Boruta

algorithm checks at each iteration whether a real feature is of higher importance. All

unimportant variables and shadow variables are removed. The previous steps are

32

repeated until all variables have been classified or a predetermined number of runs

have been performed.

Variable selection with the Boruta algorithm has been used in gene expression

(153) and microbiome (154) studies involving high-dimensional omics datasets.

Boruta algorithm has been a recommended method for analyzing high-dimensional

data as well as low-dimensional data (155).

2.6. Survival Modeling

The outcome variable is the survival time, which is the time until the event of

interest occurs in many cancer studies. Various statistical methods can be used for

analysis when the event of interest occurs in all individuals in the study. However, if

the outcomes of the event become unobservable for individuals after a specific time

point due to various reasons, or if individuals have not experienced the event by the

end of the study, such instances are categorized as censored samples. This data type

cannot be analyzed with standard statistical methods or machine learning-based

prediction models developed for classification problems. This is due to the outcome

variables in these data containing both event and time information (156). Therefore,

survival algorithms have been developed to address this unique data type. Survival

algorithms are concerned not only with whether the event of interest occurred but also

when the event occurred.

2.6.1. Basic Concepts in Survival Analysis

Time-to-event variables: The survival data outcome variable comprises ‘status’ and

‘time’. The status variable represents the status of the individual at the end of the study,

and the time indicates the duration of the follow-up period. The status variable is

categorical, reflecting whether the individual experienced the event of interest. In

cancer studies, this event is typically the time to death. However, events such as the

time until cancer relapses, response to the treatment, disease development, or tumor

disappearance can also be considered. The time until these events of interest are always

continuous, positive, and usually exhibits a skewed distribution.

Censoring: Censored individuals are those who did not receive follow-up data during

the study period. The true survival time of these uncensored patients is unknown.

33

Censored samples provide only partial details about the event's timing, leading to

underestimating or overestimating real survival times (157). Censorship in survival

studies may occur for a variety of reasons, including: i) individuals may still not have

experienced the event of interest by the study's end, ii) follow-up may have been lost

during the study period, iii) another untrackable event, such as death, may have

occurred, iv) patients may have withdrawn from the study for various reasons. Three

categories exist for censoring types: interval-, left-, and right-censoring (Figure 2.6).

The observed survival time in data that has been right-censored is less than or equal to

the true survival time, whereas the observed survival time in data that has been left-

censored is higher than or equal to the true survival time. Data that has been interval-

censored includes occurrences that take place inside a given time frame.

Figure 2.6. The three types of censoring.

Survival Data: Survival data, comprising n samples, can be described using a

minimum of three variables for each sample, denoted as 𝑋 = {(𝑥𝑖 , 𝑇𝑖 , 𝛿𝑖)}, 𝑖 =

1,2, … , 𝑛. Here, 𝑥𝑖 ∊ 𝑅 represents the covariate vector of the ith sample. 𝑇𝑖 is the

survival time if the ith sample is uncensored, or 𝑇𝑖 is the censoring time if the ith sample

is censored. T denotes the observed time until an event of interest occurs for

uncensored data or the observed time to censorship for censored variables. T is non-

negative and continuous. 𝛿𝑖 is the status variable of the ith sample, taking a value of 1

for uncensored samples and 0 for censored samples. Using various functions, survival

analysis predicts the time until the event of interest occurs for a new sample using

covariate variables and estimates the survival probability at predicted survival time.

34

Survival Function (S(t)): The probability density function of T is denoted by 𝑓𝑇(𝑡).

The cumulative distribution function of T, defined as 𝐹𝑇(𝑡), computes the probability

that the event of interest (T) occurs before a specified time (t). The cumulative

distribution function is given as follows.

𝐹𝑇(𝑡) = ∫ 𝑓𝑇(𝑢)𝑑𝑢
𝑡

−∞

= 𝑃(𝑇 ≤ 𝑡)

The survival function computes the probability that the time to the event of interest (T)

is not earlier than a specified time (t). The survival function is given as follows.

𝑆𝑇(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹𝑇(𝑡) = ∫ 𝑓𝑇(𝑢)𝑑𝑢
∞

𝑡

The relationship among 𝑓𝑇(𝑡), 𝐹𝑇(𝑡) and 𝑆𝑇(𝑡) are shown in Figure 2.7. Due to

𝑙𝑖𝑚𝑡→∞𝐹𝑇(𝑡) = ∞, 𝑆𝑇(∞) = 0.

The survival function is non-increasing and monotonically decreases with t (Figure

2.8). Since all samples survive at the beginning of the study, having not experienced

the event of interest, the initial value of the survival function at the origin is 1 when

t=0. (𝑆𝑇(0) = 1).

Figure 2.7. The relationship among functions, which are f(t), F(t), S(t).

Probability Density Function (F(t)), or the Cumulative Incidence Function (R(t)): The

probability that an individual has a survival time equal to or less than t time.

Hazard Function (h(t)): The hazard function does not calculate a probability. This

function is the rate of the event at a specified time (t). The hazard function determines

the instantaneous failure rate at time t, provided an individual has survived until t, and

is defined by

35

ℎ𝑇(𝑡) = lim
𝛥𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡|𝑇 ≥ 𝑡)

𝛥𝑡
=

𝑓𝑇(𝑡)

1 − 𝐹𝑇(𝑡)

Figure 2.8. Smooth curve and stepped line graphs for survival function.

ℎ𝑇 is non-negative and has no upper bound. If no event happened in 𝛿𝑡, then

ℎ𝑇(𝑡) = 0. The hazard function may exhibit various graphical shapes, as shown in

Figure 2.9.

Figure 2.9. Hazard functions.

Cumulative Hazard Function (H(t)): The cumulative hazard function is the total

amount of probability accumulated up to time t, where ‘instantaneous probability’ is

derived from the probability distribution function. It is the integral of the hazard

function from time 0 to time t and is also equal to the AUC of the h(t) from time 0 to

time t.

𝐻(𝑡) = ∫ ℎ𝑇(𝑢)𝑑𝑢
𝑡

0

2.6.2. Statistical Methods for Survival Analysis

When analyzing survival data, three fundamental approaches are employed:

non-parametric, semi-parametric, and parametric, depending on the research question

(Figure 2.12). A comparison of these approaches is given in Table 2.3.

36

Parametric Approaches

Parametric survival models assume that the survival times or the logarithm of

the survival times for all individuals in the data follow a theoretical survival

distribution. These models produce survival estimates based on this distribution (158).

The most common parameter estimation method in these models is the maximum

likelihood estimation method. Parametric approaches offer an advantage in reliably

estimating survival times, especially for events occurring long after the observed data.

Among the various parametric distributions, each employes different hazard functions;

the most commonly used ones include (i) Exponential, (ii) Weibull, (iii) Gompertz,

and (iv) Log-logistic.

Table 2.3. Comparison of type of survival approaches.

Type of Approaches Advantages Disadvantages

Non-parametric -It is used when the theoretical

distribution of survival times

is unknown or the

proportional hazard

assumption does not hold.

-It’s flexible.

-Less effective results if

survival times are

theoretically distributed.

-Survival function has

piecewise constants

instead of being smooth. It

can give unrealistic

estimates with small

sample sizes.

Parametric -It is easy to interpret as

survival times show a

theoretical distribution.

-It’s simple, efficient, and

effective.

-It may give inaccurate

results when distribution

assumptions are not met.

Semi-parametric - It does not need distribution

information for survival times.

-Outcome variable is

difficult to interpret as its

distribution is unknown.

Exponential Distribution: The Exponential distribution is the simplest parametric

model, characterized by a single parameter, λ, where the mean of this distribution is

also λ. It assumes that the random events of failure and death are time-independent,

with a constant instantaneous hazard over time. The probability density function is

given by 𝑓(𝑡) = 𝜆 exp [−𝜆𝑡], the instantaneous hazard function is ℎ(𝑡) = 𝜆, the

cumulative hazard function is 𝐻(𝑡) = 𝜆𝑡, and the survival function is 𝑆(𝑡) =

exp [−𝜆𝑡] (Figure 2.10).

37

Figure 2.10. Exponential distribution, when λ=0.25.

Weibull Distribution: The Weibull distribution is characterized by two parameters: a

scale parameter, λ, and a shape parameter, γ. The probability density function is given

by 𝑓(𝑡) = 𝜆𝛾𝑡𝛾−1 exp [−𝜆𝑡𝛾], the instantaneous hazard function is ℎ(𝑡) = 𝜆𝛾𝑡𝛾−1,

the cumulative hazard function is 𝐻(𝑡) = 𝜆𝑡𝛾, and the survival function is 𝑆(𝑡) =

exp [−(𝜆𝑡)𝛾]. The behavior of the instantaneous hazard concerning time depends on

the value of γ; it monotonically decreases over time when γ <1, remains constant when

γ =1, and increases over time when γ >1 (Figure 2.11).

Figure 2.11. Weibull distribution for λ=0.25 and γ =0.5.

Gompertz Distribution: The probability density function is given by 𝑓(𝑡) =

𝜆 exp[𝛾𝑡] exp [− 𝜆 𝛾⁄ (exp[𝛾𝑡] − 1)], the instantaneous hazard function is ℎ(𝑡) =

𝜆 exp [𝛾𝑡], the cumulative hazard function is 𝐻(𝑡) = 𝜆 𝛾⁄ (exp[𝛾𝑡] − 1), and the

survival function is 𝑆(𝑡) = exp [− 𝜆 𝛾⁄ (exp[𝛾𝑡] − 1)].

Logistic Distribution: For the logistic distribution, the hazard function behaves non-

monotonically. The survival time is denoted by T, µ is the parameter that determines

the location of the function, and σ is the scale parameter. The probability density

function is given by
𝑒−(𝑡−µ)/𝜎

𝜎(1+𝑒−(𝑡−µ)/𝜎)2
, the survival function is

𝑒−(𝑡−µ)/𝜎

1+𝑒−(𝑡−µ)/𝜎
, and the

instantaneous hazard function is
1

𝜎(1+𝑒−(𝑡−µ)/𝜎)
.

38

Log-logistic Distribution: Similar to logistic distribution, the hazard function behaves

non-monotonically for the log-logistic distribution. The survival time is log(T), and

γ>0 is the shape parameter. The probability density function is given by 𝑓(𝑡) =

𝜆𝛾𝑡𝛾−1/(1 + 𝜆𝑡𝛾)2, the instantaneous hazard function is ℎ(𝑡) =
(𝜆𝛾𝑡𝑏−1)

1+𝜆𝑡𝛾
, the

cumulative hazard function is 𝐻(𝑡) = log (1 + 𝜆𝑡𝛾), and the survival function is

𝑆(𝑡) = (1 + λ𝑡𝛾)−1.

a. Linear Regression Models

Tobit regression employs a linear regression with a Gaussian distribution (159).

The Buckley and James regression utilizes a least-squared estimator for censored

dependent variables (160). In a particular study, this method was combined with the

elastic net regularizer (161). Penalized regression selects variables and estimates the

coefficient simultaneously (162). It addresses challenges related to multicollinearity

and high dimensionality. Various types of penalized regression include weighted

regression (163) and structured regularization (164).

b. Accelerated Failure Time (AFT) Model

 The accelerated failure time model has some assumptions (165). It assumes the

linear relationship between the logarithm of the survival time and the covariates.

Additionally, it assumes that the features have a multiplicative effect on the survival

time.

Non-parametric Approaches

Non-parametric methods offer an alternative to parametric approaches by

avoiding assumptions about the distribution of event times. These methods typically

produce descriptive statistics, laying the groundwork for subsequent parametric or

semi-parametric analyses. Non-parametric techniques are particularly valuable when

no suitable theoretical distribution adequately fits the data.

a. Kaplan-Meier (or Product-Limit) Estimator

The non-parametric, the Kaplan-Meier estimator, is employed to estimate the

survival distribution function from survival data (20). Kaplan-Meier divides time into

39

intervals, determined by observed event time rather than predefined intervals.

Individuals who have not yet experienced the event at the interval’s start and have not

been censored during the interval or earlier ones are considered at risk for each interval.

These at-risk individuals are estimated to have a survival probability and contribute to

the prediction of survival probability until the event occurs or they are subject to

censorship. The number of survivors is divided by the number of at-risk patients to

calculate the survival probability. The cumulative probability of survival up to time

interval t is then calculated by multiplying the survival probabilities across all

preceding time intervals.

Let 𝑡𝑗 , 𝑗 = 1,2, … , 𝑛 represent the total set of failure times recorded, and T be

the maximum failure time. The Kaplan-Meier estimator of the survival function,

denoted as 𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡), is expressed as follows.

�̂�(𝑡) = ∏ (1 −
𝑑𝑗
𝑟𝑗
) , 0 ≤ 𝑡 ≤ 𝑇

𝑗:𝑡𝑗≤𝑡

where 𝑑𝑗 is the number of individuals who experienced the event at the time 𝑡𝑗, and 𝑟𝑗

is the number of individuals in the risk set just before the time 𝑡𝑗.

Kaplan-Meier curves represent the Kaplan-Meier estimator of survival

probability over time. These curves start from 1 and decrease over time as a stepped

line instead of a smooth curve. This is because cumulative survival decreases at the

precise time a death occurs and remains flat between successive death times (Figure

2.8).

The log-rank test, also known as the Mantel log-rank, the Cox Mantel log-rank,

or the Mantel-Haenszel test, is widely used for comparing the Kaplan-Meier curves of

two or more samples. This test assesses whether the survival distributions of different

samples are equal. The underlying assumption is that the hazard functions of the

samples are parallel. It is a large-sample chi-square test, which calculates observed

versus expected cell counts over categories of outcomes. The log-rank test takes each

time point with a failure event, creating 2x2 tables that display the number of

individuals who experienced the event of interest and the total number of individuals

under follow-up. For each table, calculations are performed for observed deaths,

expected deaths, and the variance of the predicted number. These values are then

40

summed across all tables, yielding a chi-square statistic with 1 degree of freedom. The

null hypothesis for the log-rank test posits that “The samples have identical distribution

curves.”, while the alternative hypothesis suggest that “The samples have different

distribution curves.” Alternative tests like Wilcoxon (Breslow), Tarone-Ware, Peto,

and Flemington-Harrington can be substitutes for the log-rank test.

b. Life-Table (Actuarial or Cutler-Ederer) Estimator

The Life-Table estimator approximates the Kaplan-Meier estimator,

particularly in large-scale population surveys (23). This method assumes that the

failure rate within a given interval remains consistent across all subjects and is

independent of the probability of survival in other time periods.

c. Nelson-Aalen Estimator

The Nelson-Aalen estimator is based on the counting process approach and

predicts the cumulative hazard function (22). The cumulative hazard at time t is below.

�̂�(𝑡) = ∏
𝑑𝑗

𝑟𝑗
, 0 ≤ 𝑡 ≤ 𝑇

𝑗:𝑡𝑗≤𝑡

Various equations can be used when converting to a survival function, such as

𝐻(𝑡) = −𝑙𝑜𝑔[𝑆(𝑡)], 𝑆(𝑡) = 𝑒−𝐻(𝑡).

Semi-Parametric Approaches

 Semi-parametric approaches are based on regression analysis approach.

Therefore, some assumptions exist, like the proportional hazards. Parameter

estimation is performed using partial likelihood. The reason why these approaches are

called semi-parametric is that the distribution of the outcome is not known.

a. Cox Proportional Hazard

The most common model used to analyze survival data is the Cox proportional

hazards model (157). In this model, all individuals have the same proportion of hazards

41

Figure 2.12. Survival analysis methods.

Survival Analysis Methods

Non-parametric
Methods

Kaplan-
Meier

Estimator

Life-Table
Estimator

Nelson-
Aelen

Estimator

Semi-parametric
Methods

Classic Cox
Regression

Regularized
Cox

Regression

Lasso-Cox

Ridge-Cox

Elastic
net-Cox

CoxBoost Time-
Dependent

Cox

Parametric
Methods

Linear
Regression

Tobit Model

Buckley-
James

Regression

Penalized
Regression

Accelerated
Failure
Time

Machine Learning Methods

Survival
Trees

Ensemble
Learning

Random
Survival
Forests

Bagging
Survial
Trees

Boosting

Neural
Networks

Continuous-
Time Models

DeepSurv

Cox-nnet

Coxtime

PCHazard

Discrete-
Time

Models

DeepHit

Logistic-
Hazard

The Neural
Multi-Task

Logistic
Regression

Support
Vector

Machine

42

at all times and the hazard ratio is maintained over. The unspecified baseline hazard

makes this model semi-parametric. The model is based on hazard function, denoted as

ℎ(𝑡|𝑥), which is the probability that an individual with predictors x will experience an

event at time t, given that the individual is alive just before t.

The Cox proportional hazards model relies on several assumptions (157). First,

there's the proportional hazards assumption, which states that the hazard ratio won't

change during the course of the follow-up. As an example, a Cox proportional hazard

model that uses the patient's sex as the predictor variable makes the assumption that

the risk is the same for males and females over the course of the follow-up. The second

assumption is the independence of survival times. According to this assumption, the

survival time of one patient does not depend upon the survival time of another. Thirdly,

a linear relationship between time-independent covariates and the log hazard should

exist. Lastly, censoring is assumed to be uninformative about the outcome of interest.

Those who are censored are exposed to the same risk at the end point of the study as

those who continue to be monitored (166).

Cox Proportional Hazards model is described as follows:

ℎ(𝑡) = ℎ0(𝑡)𝑒
(𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝)

ℎ(𝑡) is the expected hazard at time t. ℎ0(𝑡), is the baseline hazard function.

𝑋𝑝 = (𝑋1, 𝑋2, … , 𝑋𝑝) is the covariates. 𝛽𝑇 = (𝛽1, 𝛽2, … , 𝛽𝑝) is the coefficients.

Cox model models partial likelihood using maximum likelihood:

𝑝𝑙(𝛽) = ∏ (
𝑒𝑥𝑝𝛽𝑋𝑖

∑ 𝑒𝑥𝑝𝛽𝑋𝑖𝑗∊𝑅𝑖

)𝑛
𝑖=1 (1)

Although the Cox proportional hazards model is extensively used in survival

analysis, it has some disadvantages. Firstly, the assumption that hazards are

proportional over time cannot always hold. Secondly, the model follows a restrictive

parametric format concerning how variables influence the outcome (167). It also has

limitations, particularly when dealing with high-dimensional

data, where model assumptions are frequently broken. Interpreting results becomes

challenging, particularly in interactions (168). Given these limitations, alternative

survival approaches have been developed, especially for high-dimensional genetic

data.

43

2.7. Survival Modeling of High-Dimensional Data

Cox models are linear models that make assumptions about the hazard ratio,

and these assumptions may be violated in real-world data. That is, the Cox model can

only model linear interactions. Semi-parametric methods and parametric methods, rely

on the likelihood or partial likelihood functions commonly used in clinical studies.

However, there is a growing need for methods that perform better in more complicated

data, which may include high dimensional and non-linear relationships, for example,

in RNA-seq data with a number of features that exceed the number of samples.

Machine learning algorithms commonly used for survival analysis are

extensions of those developed for classification problems or traditional survival

models (Figure 2.12). Several machine learning methods have been adapted to address

survival analysis problems, offering enhanced prediction performance. These

approaches can capture complex and nonlinear relationships, and unlike the Cox

proportional hazards (PH) model or penalized methods, they do not strictly require the

Cox PH assumption. As a result, machine learning methods can provide more accurate

survival predictions, especially for high-dimensional and complex datasets.

2.7.1. Penalized Likelihood Cox Models

In classical data, when the number of variables (p) is less than the number of

samples (n), linear regression models perform well; however, when the number of

variables equals or exceeds the number of samples, they perform poorly. In these

cases, it becomes challenging to model with all features, and overfitting may result in

poor results (169). Gene expression data, which measure the expression levels of

millions of genes, falls into the high-dimensional data category. Therefore, the

standard Cox partial likelihood method cannot be applied directly to obtain parameter

estimation in such data with abundant variables. In addition to the high dimensionality,

the expression levels of some genes are often highly correlated, leading to the problem

of high collinearity (Figure 2.4). To address these challenges, penalized regression

models was developed by applying various penalties to the linear regression model.

The term ‘penalized’ implies adding constraints to the model due to its numerous

variables. Through penalization, coefficient values are shrunk, and some may be

reduced to 0. Lambda (λ), a tuning parameter, determines the extent of shrinkage. This

44

process ensures that less-contributing variables have coefficients close to or equal to

0, revealing the most relevant features for the outcome variable. Penalized methods

are also known as shrinkage or regularization methods and serve as feature selection

methods. Various regularized Cox models have been developed.

Lasso-Cox

Lasso (Least Absolute Shrinkage and Selection Operator) regression is a linear

model incorporating a regularization term into the loss function, emphasizing sparse

coefficient prediction. It predicts regression coefficients through shrinkage and

performs feature selection simultaneously. The penalty term in Lasso is called the L1-

norm, which denotes the sum of the absolute coefficients. By minimizing this penalty,

Lasso can yield coefficients that are precisely 0, provided that the sum of the absolute

values of the coefficients is below a certain constant. Consequently, the model's

complexity is diminished, making it a viable alternative to subset selection methods

for variable selection (170).

The L1-norm penalty term in Lasso regression has been integrated with log-

partial likelihood, making it applicable as a survival algorithm (34). Several studies

have also existed using Lasso with gene expression data for survival analysis

(34,171,172).

Ridge-Cox

Like Lasso regression, Ridge regression aims to shrink the regression

coefficients, bringing the coefficients of variables with minimal contribution to the

outcome close to 0. However, unlike Lasso, which employs the absolute value of

coefficients in its penalty term, Ridge uses the square of the coefficients. Ridge's

penalty term is called the L2-norm, representing the sum of the squared coefficients.

The magnitude of the penalty, denoted by a constant λ, determines the extent of

shrinkage. When λ=0, the penalty has no effect, and ridge regression produces classical

least squares coefficients. As λ increases, the impact of the shrinkage penalty gets

larger, causing the ridge regression coefficients to approach 0. Ridge regression

shrinks the coefficients towards zero without precisely setting any of them to zero (35).

45

The L2-norm penalty term in Ridge regression was integrated with log-partial

likelihood and began to be employed as a survival algorithm (169).

Elastic net-Cox

Elastic-net (EN) is a method that combines L1-norm and L2-norms by

penalizing tuning parameters. It performs the feature selection while simultaneously

addressing the correlation among features (36). The EN penalty term in the log-partial

likelihood function has been employed to analyze survival data (25).

2.7.2. CoxBoost

CoxBoost is an offset-based boosting approach (173). This approach predicts

Cox proportional hazard models through flexible penalization of covariates, allowing

unrestricted estimation of essential covariate parameters.

2.7.3. Survival Trees

Decision trees are a non-parametric supervised learning algorithm for

regression or classification problems (174). Their input and output variables can be

both categorical and continuous. Decision trees effectively partition complex and

heterogeneous datasets into homogeneous subgroups (nodes in the tree), utilizing

simple predefined decision rules based on a specified target variable. The outcome is

a hierarchical structure of candidate nodes extending from the tree's root to terminal

nodes, also known as leaves. The root is the initial node at the top of the tree,

encompassing all samples. Subsequent nodes or internal nodes branch off from the

root, forming a tree structure with each node contributing to the classification of

samples. The more nodes, the more complex the model becomes. There are leaf nodes

or leaves at the end of the decision tree that give the final output. Tree-based methods

can vary regarding splitting rule, pruning mechanism, ensembles, and randomization.

Various decision tree algorithms are available, including CART, ID3, and

C4.5. ID3 and C4.5 are particularly effective tools for both classification and

regression tasks. The CART (Classification and Regression Tree) algorithm is one of

the first algorithms developed (174). A CART tree algorithm starts with the root node

containing all samples, makes a comprehensive search through all potential binary

46

splits based on covariates, and selects the best one according to a splitting rule based

on an appropriate measure. It recursively partitions the training dataset into smaller

subsets, predicting a categorical or continuous outcome variable (Y) based on

covariates 𝑋 = (𝑋1, … , 𝑋𝑝). The splitting rule is based on maximizing intra-node

homogeneity or inter-node heterogeneity. For an X covariate, a split has the form X<c

and its indicator function I(F<c) is defined for each sample, where c is a split threshold

value to divide all samples into two subsets. These two subsets created are the daughter

nodes of the current node. The best splitting number is maximized by specific splitting

rules. The result is a disjoint subset (end node = terminal node). The predictions are

uniquely assigned to the end node that a test sample belongs to. However, in situations

where noise exceeds true signals or unmeasured factors are present, there is a risk that

the single tree method may incorrectly split terminal nodes, leading to a large and

complex tree (175). The algorithm chooses a feature and a threshold at each tree

node to divide the data in half. Until the sample size of one node is small enough, this

procedure is repeatedly applied to the two daughter nodes and next nodes. The best

feature and threshold are chosen using metrics such as the Gini index

to provide the best possible discrimination. Unlike other tree-based methods, the

CART algorithm consistently generates a binary tree.

Another important component of the CART algorithm is the stopping criterion.

A good selection of the stopping criterion ensures that the final tree is good.

Excessively small or large trees may fail to generalize to test data, resulting in

underfitting or overfitting issues in the training dataset. To mitigate overfitting, reduce

the tree size, and minimize prediction errors in tree-based algorithms, a pruning and

selection method is employed either during or after the tree creation process. This

involves removing partitions that do not significantly contribute to classification (174).

As a result of pruning, selecting a single tree from the subtree array is necessary.

Various methods, including cross-validation, bootstrap, AIC/BIC, and graphical

(“kink” in the curve or elbow), can be employed for selection (176). Numerous pruning

methods in the literature, including cost complexity pruning, critical value pruning,

pessimistic pruning, Minimum Description Length (MDL) pruning, and many others

(174,175,177). The tree continues to split into two at each node until the stopping

criteria are met.

47

For survival analysis, survival trees are an extension of decision trees.

Regression analysis and predictions based on censored survival are made possible by

them. Survival trees contract a decision tree by iteratively partitioning it into tree nodes

based on specific features. Like standard trees, each division utilizes a dissimilarity

measure that computes the disparity in survival between two new nodes and chooses

the best partition that maximizes this difference. Various dissimilarity measures,

including log-rank test statistics, are employed for survival analysis. Different

approaches to splitting and pruning have been used in methods utilizing tree structures

for survival data, as outlined in Table 2.4.

Assume that U represents the true survival time, and C is the censoring time

for applying tree-based algorithms to survival data. The variable 𝜏 =

min(𝑈, 𝐶) represents the time until the event occurs or the individual is censored. The

variable δ=I(U≤C) takes the value 1 if the true time-to-event is observed and 0 if the

individual is censored. 𝑋 = (𝑋1, … , 𝑋𝑝) denotes the vector of covariants. The initial

concept of applying tree-based algorithms to censored data was introduced by Ciampi

et al. (178) and Marubini et al. (179) but was further developed by Gordon & Olshen

(41).

Randomness can badly affect tree-based methods as the tree grows with

randomly selected individuals through bootstrapping. Developing a single tree may

yield different prediction results. Ensemble methods, on the other hand, treat each tree

independently, employing a random set of explanatory variables at each node and

ultimately considering all the results. The basic idea is that combining multiple

survival tree estimators yields better predictions than a single independent tree. This

enhances the predictive performance compared to individual decision trees. Growing

a full-size tree for each bootstrap sample also mitigates issues related to pruning and

selection. Averaging the results of multiple trees helps reduce overfitting (180).

2.7.4. Bagging Survival Trees

The high variance problem may arise in decision trees since different randomly

selected train samples are used, and quite different estimates are obtained. Also,

48

Table 2.4. Splitting and pruning rules in survival trees.

Author(s) Splitting rule Pruning rule

Gordon and Olshen

(1985) (41)

Impurity reduction, using the

Wasserstein distance between

Kaplan-Meier survival curves

Cost-complexity pruning and

cross-validation

Ciampi, Thiffault,

Nakache, and Asselain

(1986) (181)

Two-sample test statistics based on

the weights such as log-rank test

statistic

Akaike information criterion

(AIC)

Segal (1988) (182) Two-sample test statistics based on

the weights such as log-rank test

statistic

Not available

Butler, Gilpin, Gordon,

and Olshen (1989)

(183)

Two-sample test statistics based on

the weights such as log-rank test

statistic

A within-node measure

Davis and Anderson

(1989) (184)

Exponential log-likelihood loss Cost-complexity pruning

Therneau, Grambsch,

and Fleming (185)

The martingale residuals from a null

Cox model

Cost-complexity pruning and

crossvalidation

LeBlanc and Crowley

(1992) (186)

The node deviance measure for the

proportional hazards model

calculating the full likelihood by the

Nelson-Aalen estimator

Cost-complexity pruning and

crossvalidation

Keles and Segal (2002)

(187)

A survival tree based on the square

error of the martingale residuals

from a null Cox model

LeBlanc and Crowley

(1993) (188)

Two-sample test statistics based on

the weights such as log-rank test

statistic

Resampling and permutation

Intrator and

Kooperberg (1995)

(189)

Two-sample test statistics based on

the weights such as log-rank test

statistic

Cost-complexity pruning

Zhang and Singer

(1999) (190)

A combination of impurity of the

censored samples and impurity of

the observed time

Cost-complexity pruning

Breiman (2002) (191) Probability .75 to split on time, and

Probability .25 to split on a

covariate

N/A (embedded within the

survival forest algorithm)

Molinaro, Dudoit, and

van der Laan (192)

An inverse probability of censoring

weighted (IPCW) loss function

Cost-complexity pruning and

crossvalidation

Jin et al. (2004) (193) A splitting rule based on the

variance of survival times

Hothorn et al. (2006)

(194)

Minimum p value Stop when no p value is below a

prespecified a-level

allowing decision trees to grow to maximum depth can cause an overfitting problem.

Bagging improves prediction accuracy and reduces the prediction variance using the

bootstrap algorithm, which takes the mean from multiple bootstrap samples from the

training datasets and fits the decision tree to each samples. Breiman (195) created the

bagging procedure to solve the overfitting and stability problems encountered in single

decision trees.

49

Bagging survival trees are calculated from survival trees based on bootstrap

samples. For this, a survival tree is built on each bootstrap sample. For each subsample,

the bootstrap aggregated estimator of the survival function is the Kaplan-Meier curve.

Finally, the mean of predictions from those bootstrap samples is calculated. In survival

analysis, the bagging procedure was applied to the right censored data by Hothorn et

al. (45). They used bagging with decision trees and predicted ensembling outputs via

the Kaplan-Meier curve for lymphoma and breast cancer patients.

The disadvantage of the bagging procedure is that it requires more time and

resources to create more than one training set. Also, Bagging can improve the accuracy

of the model by reducing variance, but it cannot solve the problem of highly correlated

trees.

2.7.5. Random Survival Forests

Since trees are created based on the same set of predictions in the bagging

algorithm, strong predictors are likely to be selected repeatedly. Accordingly,

averaging these predictions may not reduce the variance much, as bagging can

generate similar trees that produce highly correlated predictions. Like the bagging

algorithm, the random forest algorithm produces multiple trees but also considers the

correlation of predictions from those samples (38). The random forests algorithm takes

m of estimators to be evaluated in internal nodes and chooses the best instead of

considering all estimators each time. The number m is usually the square root of the

features. Thus, the correlation between trees decreases, and hence the variance

decreases.

The difference between the random forests algorithm and the bagging

procedure is that it chooses a random sample among the predictive variables. The

prediction from the random forests algorithm is obtained by averaging hundreds or

thousands of trees that differ from each other. Because random forests average many

trees, they can reduce overfitting over single-decision trees. Thus, it creates a more

robust and sophisticated mode than a single tree. These algorithms can also capture

nonlinear effects and interaction terms. It can also deal with multiple interrelated

variable states in data with collinearity problems.

50

The random survival forests algorithm was created by modifying the random

forest algorithm for survival data. The random forests algorithm has been adapted to

the survival responses by Breiman (191), Hothorn et al. (46), and Ishwaran et al. (39).

This algorithm applies two-step randomization to increase the prediction performance

according to a single decision tree. First, a bootstrap random sample is taken for the

growth of each tree. Second, each tree node randomly selects some explanatory

variables (39). Several independent bootstrap samples are drawn randomly from the

training set. These samples are the same size and obtained by the substitution method.

Each bootstrap sample contains an average of approximately two-thirds of the dataset.

The remaining one-third is called out-of-bag data, which will not appear in the

bootstrap sample. A separate decision tree grows according to a particular splitting

rule without pruning from each bootstrap sample. Using bootstrap data prevents

overfitting. The second randomization is done at the node separation level. At each

tree node, the p variable is randomly selected. Each node is separated using one of the

variables that maximizes the difference in survival between daughter nodes. Each tree

grows under the constraint of a terminal node until a specific stopping rule is met.

For each tree, the cumulative hazard function is calculated with an estimator

such as Kaplan-Meier or Nelson-Aalen. All samples in the same node have the same

cumulative hazard function. The mean of each tree's calculated cumulative hazard

functions in the forest forms the ensemble cumulative hazard function. The algorithm

then calculates the estimation error of the cumulative hazard estimation for the out-of-

bag data (196).

However, random forests have the disadvantage of being unable to interpret a

single tree because they average various trees. Also, this algorithm has computational

and cost problems as too many trees are formed.

2.7.6. Boosting

The bagging and random forests algorithms use independent trees, while the

boosting algorithm builds trees based on previous trees. That is, the residuals at each

state are used to grow sequential trees. The boosting algorithm iteratively combines

weak learners to create a strong learner that can predict more accurate outcomes.

AdaBoost (Adaptative Boosting Algorithm) is one of the most popular boosting

51

applications (197). This method works iteratively, identifying misclassified data points

and adjusting their weights to minimize training errors. The model iteratively

optimizes until it produces the most robust predictor. Apart from that, there are

XGBoost (198), GardientBoost (199), and BrownBoost (200). Gradient boosting

works by sequentially adding estimators to a collection, each correcting the errors of

the previous one. Yet, gradient boosting makes use of the residual errors of the prior

predictor rather than altering the weights of the data points as AdaBoost does.

Because it combines the boost method with the gradient descent algorithm, it is

referred to as gradient boost. XGBoost (Extreme gradient boost) is a gradient boosting

app designed for computation speed and scale. XGBoost takes advantage of multiple

cores on the CPU, allowing learning to occur in parallel during training.

The boosting algorithm was applied to censored data, which iteratively

combines base learners to obtain strong learners (194).

Since it is necessary to tune the learning rate, the tree depth, and the minimum

number of observations in terminal nodes in addition to the number of repetitions in

the boosting algorithm, having too many hyperparameters is a disadvantage.

2.7.7. Survival Support Vector Machine

The Support Vector Machine (SVM) is used in classification and regression

problems (201). SVM works very well with high-dimensional data by avoiding the

curse of dimensionality problems. The SVM algorithm finds a hyperplane in an N-

dimensional space, and this hyperplane classifies the data points. There are many

possible hyperplanes to separate the two classes of data points; however, the main

objective is to find a plane with a maximum distance between the data points of both

classes. This maximum distance is called a margin. This margin is calculated using

data points known as support vectors.

A hyperplane equation is given below

𝑦 = 𝑤𝑇𝑥 + 𝑏

In this equation, output y indicates whether it is in a positive or negative class.

w represents the coefficients, and b is the constant value. The SVM algorithm is an

52

optimization problem; a loss function must be minimized. The problem is formulated

as follows

min
𝑤,𝑏,𝜀,𝜀∗

1

2
𝑤𝑇𝑤 + 𝛾∑(휀𝑖 + 휀𝑖

∗),

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{

𝑤𝑇𝜑(𝑥𝑖) + 𝑏 ≥ 𝑦𝑖 − 휀𝑖 , ∀𝑖 = 1, … , 𝑛

−(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ −𝑦𝑖 − 휀𝑖
∗, ∀𝑖 = 1,… , 𝑛

휀𝑖 ≥ 0, ∀𝑖 = 1, … , 𝑛

휀𝑖
∗ ≥ 0, ∀𝑖 = 1,… , 𝑛

For a new 𝑥∗ point where 𝛼𝑖 and 𝛼𝑖
∗ are Lagrange multipliers, the index is

found by the formula

�̂�(𝑥∗) =∑(𝛼𝑖 −

𝑖

𝛼𝑖
∗)𝜑(𝑥𝑖)

𝑇𝜑(𝑥∗) + 𝑏

If the data has a higher dimensional feature space, a kernel function is used to

find a classifier to separate the two classes. The main advantage of SVM is that it can

consider the complex, non-linear relationships between features and survival with the

kernel trick. A Kernel function is shown as 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗). 𝑘(𝑥, 𝑦) = 𝑥

𝑇𝑧

is used for the linear kernel, 𝑘(𝑥, 𝑧) = (𝜏 + 𝑥𝑇𝑧)𝑎, 𝜏 ≥ 0 is used for the polynomial

kernel of degree a, k(x, z) = exp (−
||x−z||2

2

σ2
) is used for the RBF kernel.

As a result of its successful results in regression and classification problems,

the SVM algorithm has also been extended for survival data. Different approaches

have been adopted to use the standard SVM algorithm in survival analyses.

Shivaswamy et al. (202) adopted the support vector regression approach, while Van

Belle et al. (203) and Evers & Messow (204) applied SVM based on ranking

constraints. Since outcomes were uncertain for censored data, all censored samples

were removed in the earliest support vector regression approaches, or censored

samples were considered non-events. These situations caused either underestimated

failure times or biased models. However, the support vector regression model

proposed by Shivaswamy et al. was formulated as follows

53

min
𝑤,𝑏,𝜀,𝜀∗

1

2
𝑤𝑇𝑤 + 𝛾∑(휀𝑖 + 휀𝑖

∗),

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

{

𝑤𝑇𝜑(𝑥𝑖) + 𝑏 ≥ 𝑦𝑖 − 휀𝑖 , ∀𝑖 = 1, … , 𝑛

−𝛿𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏) ≥ −𝛿𝑖𝑦𝑖 − 휀𝑖

∗, ∀𝑖 = 1,… , 𝑛
휀𝑖 ≥ 0, ∀𝑖 = 1, … , 𝑛

휀𝑖
∗ ≥ 0, ∀𝑖 = 1,… , 𝑛

For a new 𝑥∗ point where 𝛼𝑖 and 𝛼𝑖
∗ are Lagrange multipliers, the index is

found by the formula

𝑢(𝑥∗) =∑(𝛼𝑖 − 𝛿𝑖
𝑖

𝛼𝑖
∗)𝜑(𝑥𝑖)

𝑇𝜑(𝑥∗) + 𝑏

Van Belle et al. (203) and Evers & Messow (204) considered and formulated

the survival data as a ranking problem. In this approach, instead of dealing with the

prediction of the survival time, it is concerned with whether the patient's risk of the

event is high or low so that appropriate treatment can be given. The method includes

a penalty for each pair of comparable data points where the order in the prognostic

index differs from the observed order. The comparison indicator for

{(𝑥𝑖 , 𝑦𝑖 , 𝛿𝑖), (𝑥𝑗 , 𝑦𝑗 , 𝛿𝑗)} sample pairs is as follows

𝑐𝑜𝑚𝑝(𝑖, 𝑗) = {
1 𝑖𝑓 𝛿𝑖 = 1 𝑎𝑛𝑑 𝛿𝑗 = 1 𝛿𝑖 = 1 𝑎𝑛𝑑 𝛿𝑗 = 0 𝑎𝑛𝑑 𝑦𝑖 ≤ 𝑦𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The model is formulated as follows

min
𝑤,𝜀

1

2
𝑤𝑇𝑤 + 𝛾∑ ∑ 휀𝑖𝑗 ,

𝑗: 𝑦𝑖>𝑦𝑗
𝑐𝑜𝑚𝑝(𝑖,𝑗)=1

𝑛

𝑖=1

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑤𝑇(𝜑(𝑥𝑖) − 𝜑(𝑥𝑗) ≥ 1 − 휀𝑖𝑗 , ∀𝑖 = 1,… , 𝑛; ∀𝑗 ∶ 𝑦𝑖 > 𝑦𝑗 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝(𝑖, 𝑗) = 1

휀𝑖𝑗 ≥ 0, ∀𝑖 = 1,… , 𝑛; ∀𝑗 ∶ 𝑦𝑖 > 𝑦𝑗 𝑎𝑛𝑑 𝑐𝑜𝑚𝑝(𝑖, 𝑗) = 1

For a new 𝑥∗ point where 𝛼𝑖𝑗 is Lagrange multipliers, the index is found by the formula

54

𝑢(𝑥∗) =∑ ∑ 𝛼𝑖𝑗(
𝑗: 𝑦𝑖>𝑦𝑗

𝑐𝑜𝑚𝑝(𝑖,𝑗)=1

𝑛

𝑖=1

𝜑(𝑥𝑖) − 𝜑(𝑥𝑗))
𝑇𝜑(𝑥∗)

2.8. Stacking Idea

The stacking idea presents mechanisms that can be considered classification

and regression problems for survival problems (61). This idea converts survival data

with time and status variables into classification data with binary outcome variables.

Thus, all regression and classification algorithms can be applied to the new dataset

because it doesn't include time and status variables.

There are some advantages of transforming survival data with stacking and

making it analyzeable with classification algorithms. Firstly, the number of algorithms

such as boosting, random forests, and deep neural networks developed primarily for

classification problems is considerably more than those developed for survival

analysis. Thus, numerous high-performance classification algorithms that cannot be

directly applied to survival data are also made available for survival analysis.

Secondly, the algorithms created for classification can also be made available for

survival data with an additional study due to differences in survival and classification

data structures during survival analysis. For example, a random survival forest

algorithm was again adapted to survival data using the random forest algorithm so that

the random forest algorithm used in classification problems can be used in survival

problems (205). The stacking idea will be important in adapting existing and future

classification algorithms to survival analysis. Thirdly, the transformation with the

stacking idea can be an advantage in providing higher performance than the standard

linear Cox model in some cases, especially in complex effects such as interactions in

survival data (168). Finally, the Cox proportional hazards standard survival model is a

linear model that assumes the relationship between covariates and hazard is constant

over time, and this assumption is not always possible.

To consider the survival problem as a classification problem, the sequential in

time structure of partial likelihood is used. In the standard Cox proportional hazards

model, the β coefficients are chosen by maximizing the partial likelihood. The reason

for using the term “partial” likelihood is that only the likelihood of individuals

55

experiencing the relevant event is considered in the probability formula, and the

likelihood of censored individuals is not fully considered. That is, the Cox model does

not consider all individuals' likelihood. The partial likelihood can be written as a

product of probabilities.

𝐿 = 𝐿1 ∗ 𝐿2 ∗ 𝐿3 ∗ …∗ 𝐿𝑘 =∏𝐿𝑗

𝑘

𝑗=1

k is the number of failure times. 𝐿𝑓 gives the likelihood of failure at the fth

failure time. At the fth failure time, the set of individuals at risk is the risk set and is

denoted by 𝑅(𝑡(𝑓)). Partial likelihood focuses on individuals who experienced the

event of interest. Also, it considers the survival time until censored for censored

individuals. That is, during the calculation of 𝐿𝑓, the contribution of this censored

individual, who was censored after the fth time of failure, is also included in this

calculation (157). Since the partial likelihood is a product of conditional probabilities

at each time point at which the event of interest occurs, we calculate the probability of

the individuals experiencing the event at that time point, depending on the risk set at

that time point. Maximizing the partial likelihood means solving a series of

classification problems together. To do this, at each time point at which the event of

interest is observed, we create a binary categorical variable representing the risk set

and a covariate matrix containing the covariates for each sample in the risk set at that

time. The binary categorical variable is created as much as the number of risk sets, and

these created binary variables are placed side by side as columns and form the risk

matrix. This risk matrix and the covariate matrix together form the prediction matrix

of the model. We also create a binary vector that shows whether each individual in the

risk set has experienced the event at the relevant time point. This binary vector is the

outcome variable of the model. Finally, the prediction matrix and outcome variables

created for each risk set are combined vertically, and this matrix creates the

classification data matrix (Figure 2.13).

56

Figure 2.13. The data structure after the stacking idea.

An explanation of the stacking algorithm is given below to help you better

understand it. An example survival data matrix with four individuals is shown in Table

2.5.

Table 2.5. An example survival data matrix.

Individuals Time Status Covariate Matrix of RNA-Seq

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 𝒙𝒊𝟐 … 𝒙𝒊𝒑

1 9 1 4 10 … 0

2 8 0 5 14 … 2

3 6 1 7 18 … 8

4 10 1 3 9 … 5

First, the survival data are ordered from smallest to largest according to the time

variable, shown in Table 2.6.

Table 2.6. Survival data matrix ordered by time.

Individuals Time Status Covariate Matrix of RNA-Seq

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 𝒙𝒊𝟐 … 𝒙𝒊𝒑

3 6 1 7 18 … 8

2 8 0 5 14 … 2

1 9 1 4 10 … 0

4 10 1 3 9 … 5

Each individual's contribution to the partial likelihood is calculated in Table 2.7.

Cox proportional hazard model: 𝜆(𝑡|𝑥) = 𝜆0(𝑡)exp (𝑥
𝑇𝛽)

57

Partial likelihood:

𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝛽) =∏𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖 𝑒𝑣𝑒𝑛𝑡 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 |𝑅(𝑇𝑖) 𝑟𝑖𝑠𝑘 𝑠𝑒𝑡)

=∏
exp (𝑥𝑖

𝑇𝛽)

∑ exp (𝑥𝑗
𝑇𝛽)𝑗∊𝑅(𝑇𝑗)

There will be three risk sets since there are three uncensored individuals in the

dataset. The first risk set represents the time from the beginning of the study to the

sixth day and includes all individuals {1, 2, 3, 4} (Figure 2.14). The individuals in the

first risk set are shown in Table 2.8, and the cumulative classification matrix created

for this set after stacking is shown in Table 2.9.

Table 2.7. Contribution of each individual to partial likelihood.

Individuals Time Sample at

risk

Contribution of partial

likelihood

i 𝑻𝒊 𝑹(𝑻𝒊) [𝒆𝜷𝒁𝒊 ∑ 𝒆𝜷𝒁𝒋

𝒋∊𝑹(𝑻𝒊)

⁄]𝜹𝒊

3 6 {1,2,3,4} 𝑒𝛽0+7𝛽1+18𝛽2+⋯+8𝛽𝑝/(𝑒𝛽0+7𝛽1+18𝛽2+⋯+8𝛽𝑝 +⋯

+ 𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝)

2 8 {1,2,4} 1

1 9 {1,4} 𝑒𝛽0+4𝛽1+10𝛽2+⋯+1𝛽𝑝/(𝑒𝛽0+4𝛽1+10𝛽2+⋯+1𝛽𝑝

+ 𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝)

4 10 {1} 𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝/𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝 = 1

Figure 2.14. The figure presentation of risk set – 1

Table 2.8. Dataset of risk set – 1.

Individuals

Time Status Covariate Matrix of RNA-Seq

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 𝒙𝒊𝟐 … 𝒙𝒊𝒑

3 6 1 7 18 … 8

2 8 0 5 14 … 2

1 9 1 4 10 … 0

4 10 1 3 9 … 5

58

The second risk set represents the time from the beginning of the study to the

ninth day, and there are two individuals {1, 4} in this cluster (Figure 2.15). The

individuals found in the second risk set are shown in Table 2.10, and the cumulative

classification matrix created for this set after stacking is in Table 2.11.

Table 2.9. Cumulative classification matrix for risk set – 1.

Prediction Matrix (X) Outcome

Variable

(Y)
Covariate Matrix Risk Matrix

7 18 … 8 1 0 0 1

5 14 … 2 1 0 0 0

4 10 … 1 1 0 0 0

3 9 … 5 1 0 0 0

Figure 2.15. The figure presentation of risk set – 2.

Table 2.10. Dataset of risk set – 2.

Individuals Time Status Covariate Matrix of RNA-Seq

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 i 𝑻𝒊 𝜹𝒊
1 9 1 4 1 9 1

4 10 1 3 4 10 1

Table 2.11. Cumulative classification matrix for risk set – 2.

Prediction Matrix (X) Outcome

Variable

(Y)
Covariate Matrix Risk Matrix

7 18 … 8 1 0 0 1

5 14 … 2 1 0 0 0

4 10 … 1 1 0 0 0

3 9 … 5 1 0 0 0

4 10 … 1 0 1 0 1

3 9 … 5 0 1 0 0

The third risk set represents the time from the beginning of the study to the tenth day,

and there is only one individual {4} in this cluster (Figure 2.16). The individual found

59

in the third risk set is shown in Table 2.12, and the cumulative classification matrix

created for this set after stacking is in Table 2.13. After the stacking algorithm, the

survival data matrix in Table 2.5 has been transformed into the binary classification

data matrix in Table 2.13.

Figure 2.16. The figure presentation of risk set – 3.

Table 2.12. Dataset of risk set – 3.

Individuals Time Status Covariate Matrix of RNA-Seq

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 i 𝑻𝒊 𝜹𝒊
4 10 1 3 4 10 1

The idea of stacking has been previously applied to logistic regression and

given good results (206). The Cox proportional hazards model, which makes an

estimation using the standard partial likelihood approach, is transformed into a

classification problem using the stacking idea, depending on whether each individual

experiences the event at each time point at which an event occurs (61). It has been

shown that the predictions and results obtained from maximizing the partial probability

in the Cox proportional hazards model are equivalent to the predictions and results

made over the logistic regression parameters to the data converted by stacking. Also,

the classification algorithms' performance after the stacking algorithm was higher than

the Cox proportional hazards model.

Randomness can badly affect tree-based methods as the tree grows with

randomly selected individuals through bootstrapping. Developing a single tree may

yield different prediction results. Ensemble methods, on the other hand, treat each tree

independently, employing a random set of explanatory variables at each node and

ultimately considering all the results. The basic idea is that combining multiple

survival tree estimators yields better predictions than a single independent tree. This

60

enhances the predictive performance compared to individual decision trees. Growing

a full-size tree for each bootstrap sample also mitigates issues related to pruning and

selection. Averaging the results of multiple trees helps reduce overfitting (180).

Table 2.13. Cumulative classification matrix for risk set – 3.

Prediction Matrix (X) Outcome

Variable

(Y)

Time

Covariate Matrix Risk Matrix

7 18 … 8 1 0 0 1 6

5 14 … 2 1 0 0 0 8

4 10 … 1 1 0 0 0 9

3 9 … 5 1 0 0 0 10

4 10 … 1 0 1 0 1 9

3 9 … 5 0 1 0 0 10

3 9 … 5 0 0 1 1 10

This study will use the stacking idea for survival analysis of RNA-sequencing

data. Thus, the stacking idea, shown to give better results than the classical Cox

regression model when applied to clinical data, is expected to yield high-performance

results when applied to RNA-seq high-dimensional data.

2.9. Priority-Lasso and IPF-Lasso

The prediction matrix, which is the result of applying the idea of stacking to

RNA-seq survival data, contains two different types of data: the covariate matrix,

which consists of continuous variables, and the risk matrix, which consists of binary

variables. Priority-lasso and IPF-lasso algorithms allow the analysis of different types

of variables in different blocks. Thus, it has been shown that the model's prediction

performance increases (73,74).

Priority-Lasso algorithm puts variables in different blocks and gives these

blocks different priority orders. Although the priority-Lasso algorithm has more

characteristics, many of these characteristics are the same as the Lasso algorithm.

Variable types are usually considered when creating blocks, such as continuous,

discrete, binary, etc. Blocks can also be made according to variable contents, for

example, a block with clinical variables, a block with genetic variables, etc. Blocks

have a priority order. Accordingly, some blocks may have higher priority, while some

blocks may not be of high priority. The researcher determines this priority level.

61

However, despite no absolute rule, high priority is given to blocks with easily

accessible and low-cost variables. The prediction model is fit after applying Lasso

regression as many as the number of blocks. It has been seen that the priority-lasso

algorithm gives similar or better results than the standard Lasso algorithm in data such

as multi-omics data where the variables in the data are of different types (73).

The IPF-Lasso algorithm was created from the necessity of applying different

penalty terms to different data types in multi-omics datasets. This algorithm defined

data types as modalities (data type = data modality). IPF-lasso applied different penalty

factors to the data modalities in the process of combining the data in order to develop

a more sparse estimation model for the data consisting of low and high dimensional

variables. For this, the L1 penalized regression (LASSO) algorithm is used. IPF-

LASSO performs better than the standard LASSO (74).

In this study, it is thought that the use of priority-Lasso and IPF-Lasso

algorithms when analyzing the continuous and binary variables that occur after

applying the stacking algorithms to the RNA-seq data can contribute positively to the

prediction accuracy.

62

3. MATERIAL AND METHODS

In this section, the methodologies of the voomStackPrio and voomStackIPF

approaches will be explained in detail (Figure 3.1). First, details about the structure of

the RNA-seq survival data matrix will be provided. Second, the step-by-step process

of developing new survival approaches will be explained. Then, the focus will be on

elucidating how performance comparisons are conducted with other survival

algorithms employed in the literature. Finally, the infrastructure of the MLSeqSurv R

package utilized during the calculations will be mentioned.

3.1. Proposed RNA-Seq Survival Approaches

3.1.1. Notations

The data for survival analysis comprises two sets: covariates and outcome

variables. Gene expression in RNA-seq data consists of raw counts, and these variables

create covariates. Survival time and status of samples are the outcome variables.

Assume that the covariates of RNA-seq gene expression data are a nxp-dimensional

raw count data matrix representing n (i=1,2,..,n) samples and p (g=1,2,..,p) genes. This

matrix is called R. 𝑖𝑡ℎ row of the R matrix is denoted by 𝑟𝑖. = (𝑅𝑖1, 𝑅𝑖2, … , 𝑅𝑖𝑝) and

𝑔𝑡ℎ column of the R matrix is denoted by 𝑟.𝑔 = (𝑅1𝑔, 𝑅2𝑔, … , 𝑅𝑛𝑔)
𝑇. Accordingly, the

read count of 𝑖𝑡ℎ sample and 𝑔𝑡ℎ gene is denoted by 𝑟𝑖𝑔. The time variable, T (𝑇𝑖 =

𝑇1, 𝑇2, … , 𝑇𝑛), is a survival time. The status variable, δ (𝛿𝑖 = 𝛿1, 𝛿2, … , 𝛿𝑛), indicates

whether there is censoring. If a sample has experienced the event of interest during the

study period, the status is denoted by 1 (δ=1); or not, the status is denoted by 0 (δ=0).

The survival data matrix is as in (Matrix 3.1).

[

𝑟11 𝑟12 𝑟13 … 𝑟1𝑝
𝑟21 𝑟22 𝑟23 … 𝑟2𝑝
⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑛1 𝑟𝑛2 𝑟𝑛3 … 𝑟𝑛𝑝

]

𝑛𝑥𝑝

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛 𝛿𝑛

]

𝑛𝑥2

 (3.1)

We extracted the time variable (T) and state variable (δ) from the dataset and

transposed the remaining matrix to initiate pre-processing. Normalization,

transformation, and filtering steps were executed using Matrix 3.2.

63

[

𝑟11 𝑟21 𝑟31 … 𝑟𝑛1
𝑟12 𝑟22 𝑟32 … 𝑟𝑛2
⋮ ⋮ ⋮ ⋱ ⋮
𝑟1𝑝 𝑟2𝑝 𝑟3𝑝 … 𝑟𝑛𝑝

]

𝑝𝑥𝑛

 (3.2)

To obtain the normalization factors for each gene, we then applied DESeq

median normalization to the remaining dataset. Furthermore, low-expressed genes

were identified from the nxp-dimensional raw RNA-seq matrix as described in Matrix

2.1. Following DESeq normalization and logCPM transformation, these identified

genes will be excluded from the dataset.

3.1.2. DESeq Median Normalization

In a comprehensive study that compared various normalization methods, TMM

and DESeq emerged as the best-performing methods (133). Therefore, we have chosen

to employ the DESeq median normalization method in this study.

The geometric mean over all samples is used to calculate the pseudo-reference

value for each gene. Specifically, the pseudo-reference value is computed as follows

for the g gene in the dataset with p genes and n sample.

𝑠𝑔 = √𝑟𝑔1𝑟𝑔2…𝑟𝑔𝑛
𝑛 = (∏ 𝑟𝑔𝑖

𝑛
𝑖=1)1/𝑛 g=1,2,…,p (3.3)

These geometric mean values calculated for each gene generate a new sample

called the pseudo-reference sample. Subsequently, each gene value in every sample is

divided by the corresponding pseudo-sample value of that gene. Then, the median

values for each sample are computed.

𝑑𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖

(∏ 𝑟𝑔𝑖
𝑛
𝑖=1)1/𝑛

= 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖

𝑠𝑔
 (3.4)

These median values calculated for each sample are the normalization factors

(size factors). The objective of this normalization step was not to derive normalized

values for each count but solely to compute normalization factors for each sample.

These normalization factors will be applied in the subsequent step to obtain logCPM

values.

64

3.1.3. voom Transformation

The voom transformation yields two distinct outputs: logCPM values and

sample weights.

logCPM Values

The raw RNA-seq count data matrix is denoted as 𝑟𝑔𝑖. To obtain logCPM

values for the data set, it is necessary to divide the count data by the normalization

factors (d values in Equation 3.4) and multiply by 1 million. The formula for this

calculation is presented below

𝑥𝑔𝑖 = 𝑙𝑜𝑔2 (
𝑟𝑔𝑖+0.5

𝑑𝑖+1
∗ 106) (3.5)

𝑑𝑖 are the values calculated in the normalization step for each sample. 0.5 is

added to each count value to prevent the logarithm from being 0. In addition, 1 was

added to 𝑑𝑖 to obtain the equality of 0 ≤
𝑟𝑔𝑖+0.5

𝑑𝑖+1
≤ 1.

Following the normalization steps, logCPM value generation, and low-

expressed gene filtering, matrices for the dataset is presented in (Matrix 3.6).

[

𝑥11 𝑥21 … 𝑥𝑛1
𝑥12 𝑥22 … 𝑥𝑛2
𝑥13 𝑥23 … 𝑥𝑛3
⋮ ⋮ ⋱ ⋮
𝑥1𝑝′ 𝑥2𝑝′ … 𝑥𝑛𝑝′]

𝑝′𝑥𝑛

 (3.6)

voom Transformation for Observational Weights

In the second stage of the voom transformation, sample weights are computed

to take advantage of the sample-specific weighting approach (151).

A linear model fits the data following logCPM transformation. Specifically,

the model assumes that 𝐸(𝑥𝑔𝑖) = µ𝑔𝑖 = 𝑎𝑖
𝑇𝛽𝑔, where 𝑎𝑖 is a vector of covariates and

𝛽𝑔 is a vector of unknown coefficients (69).

The linear model 𝑥𝑔 = 𝐷𝛽𝑔 + 휀𝑔 and 𝐸(𝑥𝑔) = 𝐷𝛽𝑔 is assumed for each gene.

𝑥𝑔 = (𝑥𝑔1, … , 𝑥𝑔𝑛)
𝑇 vector of logCPM values for the gene g; D is the design matrix

and 𝛽𝑔 = (𝛽𝑔1, … , 𝛽𝑔𝐾)
𝑇 is the vector of the regression coefficients for the gene g.

65

휀𝑔 is the error term an 𝐸(휀𝑔) = 0. This yields regression coefficient estimates �̂�𝑔, fitted

values µ̂𝑔𝑖 = 𝑎𝑖
𝑇�̂�𝑔, and residual standard deviations 𝑠𝑔 (69).

Suppose the expected value of a count is 𝐸(𝑟) = 𝜆 and 𝑣𝑎𝑟(𝑟) = 𝜆 + ɸ𝜆2.

Here ɸ is a dispersion parameter. If r is large enough, the logCPM value of the

observation; 𝑥 ≈ 𝑙𝑜𝑔2(𝑟) + 𝑙𝑜𝑔2(𝑑) + 6𝑙𝑜𝑔2(10). Since d will behave like a

constant, it becomes 𝑣𝑎𝑟(𝑥) ≈ 𝑣𝑎𝑟(𝑙𝑜𝑔2(𝑟)). Based on the delta rule and Taylor’s

theorem (207), if λ is large, 𝑙𝑜𝑔2(𝑟) ≈ 𝜆 + (𝑟 − 𝜆)/𝜆 from 𝑣𝑎𝑟(𝑥) ≈
𝑣𝑎𝑟(𝑟)

𝜆2
=

1

𝜆
+ ɸ.

The 𝑥𝑔𝑖 values, representing the logCPM values calculated in the 'logCPM

Values' step for each gene, are subjected to fitting based on the aforementioned linear

model. The calculation of the mean �̅�𝑔 for each gene is carried out using the �̃� =

�̅�𝑔𝑙𝑜𝑔2(�̃�) − 𝑙𝑜𝑔2(10
6).

µ𝑔𝑖 is estimated with �̂�𝑔𝑖 = µ̂𝑔, + 𝑙𝑜𝑔2(𝑑𝑖 + 1.0) − 𝑙𝑜𝑔2(10
6) (µ̂𝑔𝑖

∗ =

𝐸(𝑥𝑔𝑖
∗)) by fitting a LOWESS curve (208). The piecewise linear function 𝑙𝑜(�̂�𝑔𝑖)

defined by the LOWESS curve is the estimated square root standard deviation of the

mean log counts �̃� (𝑠𝑔
(
1

2
)
).

The voom precision weights are inverse variances of 𝑤𝑔𝑖 = 𝑙𝑜(�̂�𝑔𝑖)
−4. For the

dataset, 𝑥𝑔𝑖 is the logCPM values and 𝑤𝑔𝑖 is the associated weights for each counts.

The design matrix D denotes the experimental design and selects the regression

coefficients and parameterization, presenting the logCPM variability among the RNA

sources in the experiment. This model assumes 𝑣𝑎𝑟(𝑥𝑔𝑖) = σ𝑔
2/𝑤𝑔𝑖 for gene g in

sample i, using an observational level weight 𝑤𝑔𝑖 derived from the voom model as

found above and an unknown factor σ𝑔
2.

In addition to gene-dependent variance factors (σ𝑔
2) that account for variations

among genes, there are sample-dependent variance factors (σ𝑔𝑖
2) reflecting potential

differences in quality across all or most genes within a given sample (151). This can

result in an increase or decrease in their variability, as illustrated below (70).

𝑣𝑎𝑟(𝑥𝑔𝑖) =
σ𝑔𝑖
2

𝑤𝑔𝑖

66

Figure 3.1. A flowchart of the steps of voomStackPrio and voomStackIPF algorithms.

The most straightforward log-linear model, ensuring that variability is

multiplicatively dependent on sample quality, is expressed as 𝑙𝑜𝑔σ𝑔𝑖
2 = 𝛿𝑔 + 𝛾𝑖. The

constraint ∑ 𝛾𝑖 = 0
𝑛
𝑖=1 gives σ𝑔

2 = exp (𝛿𝑔) for the variance factors by gene and 𝛾𝑖

represents the relative variability of each sample. A given sample i is of relatively

better-than-mean quality if 𝛾𝑖 < 0, or of poorer-than-mean quality if 𝛾𝑖 > 0. Linear

modeling incorporates ‘voom precision weights’ for each observation, combined with

sample-specific weights, as described in 𝑤𝑔𝑖
∗ = 𝑤𝑔𝑖/𝑒𝑥𝑝�̂�𝑖, where 𝑤𝑔𝑖 represents the

observational voom weights (151).

The weights generated for each sample in the dataset are as follows (Equation

3.7). These will be the sample weights in the priority-Lasso and IPF-Lasso models

applied in the 'voomStackPrio and voomStackIPF Models' step.

𝑤𝑖 = (𝑤1, 𝑤2, … , 𝑤𝑛) (3.7)

67

Before proceeding to the stacking algorithm, we applied variance filtering and

feature selection. Following variance filtering, 2000 genes were selected.

Subsequently, after applying feature selection, p'' features were chosen. Then, the

matrix was transposed once more to apply the stacking algorithm. Also, the time

variable (T) and state variable (δ), previously removed from the dataset to apply of

pre-processing steps, were reintegrated (Matrix 3.8).

[

𝑥11 𝑥12 𝑥13 … 𝑥1𝑝′′
𝑥21 𝑥22 𝑥23 … 𝑥2𝑝′′
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 … 𝑥𝑛𝑝′′

]

𝑛𝑥𝑝′′

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛 𝛿𝑛

]

𝑛𝑥2

 (3.8)

3.1.4. Stacking for Classification

This step involved a conversion process, utilizing the stacking approach, to

transform RNA-seq survival data into classification data with a binary outcome.

Let’s consider h as the number of samples that experience the event in the data

set. Following the stacking algorithm, there will be h risk sets, corresponding to the

number of columns in the risk matrix, denoting the risk set as S. In each risk set at time

t, some samples either experienced the event at time t, experienced the event after time

t, or were censored after time t. 𝑆(𝑡) = {𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 |𝑡𝑖 ≥ 𝑡}. Samples that are part of

the risk set at time t are assigned a value of 1, and samples outside of it are assigned a

value of 0. This information is displayed in the specific column of the risk set at

that time. The �̃� covariate matrix is constructed as �̃�(𝑆(𝑖)), where the covariate

number S(i) is associated with each sample. It has dimensions |S(i)|xp'' for p'' features.

Let �̃� represent the prediction of the binary outcome variable we will create for the

classification transformation. For the �̃� binary outcome variable, samples that

experience the event at the time associated with each risk set are assigned the value 1,

while others receive the value 0. Thus, �̃�(𝑆(𝑖)) values are defined. The covariate

matrix, risk matrix, and binary outcome are created as many times as the risk sets

generated for each uncensored sample. They are then added vertically, one after the

other. This conversion results in (�̃�, �̃�) data, suitable for applying classification

algorithms to the survival data.

68

After implementing the stacking algorithm, three components will be obtained

(i) the covariate matrix, (ii) the risk matrix, and (iii) the outcome variable, as shown in

(Matrix 3.9). The data matrix 𝑥𝑛𝑝′′ in Matrix 3.8 is initially ordered based on time,

arranged from smallest to largest. This covariate matrix is then vertically expanded by

stacking. Hence, the covariate matrix consists of 𝑝′′ columns and 𝑛′ rows denoted by

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑛′𝑥𝑝′′ . Also, a risk matrix is obtained. The risk matrix expanded

horizontally and vertically per the number of individuals experiencing the event. As

the number of risk sets corresponds to the number of samples experiencing the event,

the columns of the risk matrix at risk are equivalent to the number of samples in which

the event occurred (h). So, an 𝑛′xh-dimensional risk matrix, denoted as 𝑟𝑖𝑠𝑘𝑛′𝑥ℎ, is

obtained. There is a generated outcome variable for every risk set that exists at the

event time point. The variables in question designate samples that encounter the event

at that particular time point as 1, and samples that do not are defined as 0. As denoted

by 𝑥𝑛′(𝑝′′+ℎ), the input matrix (�̃�) has now transformed into an 𝑛′x(𝑝′′+h)-dimensional

matrix, incorporating both the covariate and risk matrices. An 𝑛′x1-dimensional

outcome variable (�̃�), denoted as 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑛′𝑥1, is obtained.

 Covariate Matrix Risk Matrix Outcome

 Variable

[

𝑥11 𝑥12 𝑥13 … 𝑥

1𝑝′′

𝑥21 𝑥22 𝑥23 … 𝑥
2𝑝′′

𝑥31 𝑥32 𝑥33 … 𝑥
3𝑝′′

⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑛′1 𝑥𝑛′2 𝑥𝑛′3 … 𝑥𝑛′𝑝′′]

𝑛′𝑥𝑝′′

[

1 0 0 … 0
1 0 0 … 0
0 1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1]

𝑛′𝑥ℎ

[

1
0
1
⋮
1]

𝑛′𝑥1

(3.9)

3.1.5. voomStackPrio and voomStackLasso Models

We have two different types of data in our dataset: a binary risk matrix and a

continuous covariate matrix. In contrast to conventional classification algorithms,

our method relies on modeling that takes into account the particular kinds

of data related to the variables—a tactic that has been shown to produce predictions

that are more accurate. We employed the priority-Lasso and IPF-Lasso algorithms to

analyze diverse variable types in multi-omics data organized into blocks. In the

69

subsequent stage, two new approaches‒voomStackPrio and voomStackIPF‒ were

developed to analyze RNA-seq survival data.

Lasso and weighted Lasso regression model

 Assume that 𝑥𝑖𝑔 represents the observed value of the gth variable for the ith

sample, where g=1, 2,…, (𝑝′′+h), i=1, 2,…, 𝑛′. The outcome of sample i is denoted as

𝑦𝑖. In the classical Lasso method, estimating regression coefficients 𝛽1, … , 𝛽(𝑝′′+ℎ) for

the (𝑝′′+h) variables involves minimizing the following objective function with

respect to 𝛽1, … , 𝛽(𝑝′′+ℎ).

∑(𝑦𝑖 − ∑ 𝑥𝑖𝑔𝛽𝑔)
2 + 𝜆 ∑ |𝛽𝑔|

(𝑝′′+ℎ)

𝑔=1

(𝑝′′+ℎ)

𝑔=1

 𝑛′

𝑖=1

 In this context, 𝜆 represents the penalty parameter, which controls the degree

of shrinkage applied to the regression coefficient estimates. By tuning the value of 𝜆,

the Lasso method regularizes these estimates, preventing overfitting and enhancing the

model’s capacity to generalize effectively to new data. The optimal 𝜆 value is typically

accomplished through cross-validation, a statistical technique that evaluates the

model’s performance on an independent dataset.

 While sample weights are often ignored in many Lasso regression models, a

constructive approach to address this omission is to incorporate sample weights into

the Lasso regression model. By assigning distinct weights to individual observations,

the weighted Lasso regression model can attribute greater significance to specific

observations, potentially enhancing the precision of the estimates. The goal of the

weighted Lasso regression is to minimize the following objective function concerning

𝛽1, … , 𝛽(𝑝′′+ℎ)

∑𝑤𝑖(𝑦𝑖 − ∑ 𝑥𝑖𝑔𝛽𝑔)
2 + 𝜆 ∑ |𝛽𝑔|

(𝑝′′+ℎ)

𝑔=1

(𝑝′′+ℎ)

𝑔=1

𝑛′

𝑖=1

where 𝑤𝑖 represents the weight assigned to the ith sample. This study will utilize sample

weights derived from the voom transformation in Equation 3.7 applied to RNA-seq

data in block-based Lasso algorithms.

70

voomStackPrio

The priority-Lasso algorithm was applied to the 𝑛′x(𝑝′′ + ℎ)-dimensional

prediction matrix X, including the covariate and risk matrices (Matrix 3.9). The

outcome variable y, a 𝑛′x1-dimensional vector, was obtained after the ‘Stacking for

Classification’ step (Matrix 3.9). To streamline this process, we organized variables

into two blocks based on their types: the continuous variables block for those in the

covariate matrix and the binary variables block for those in the risk matrix. Notably,

priority was given to the binary variable block. This strategic decision aligns with the

principle of the priority-Lasso algorithm, where the highest-priority block plays a

crucial role in explaining variability. Variables in lower-priority blocks are considered

only if they contribute to variances not already explained by higher-priority blocks.

Consequently, prioritizing the block with binary risk matrix variables, less complex

than RNA-seq continuous variables, is considered more suitable.

The variables in the two blocks for the 𝑖𝑡ℎ sample can be represented as follows

𝑥𝑖1
(𝑚)
, … , 𝑥

𝑖(𝑝′′+ℎ)𝑚

(𝑚)
 , 𝑖 = 1,… , 𝑛′ 𝑚 = 1,2

The number of blocks is denoted by m, and the number of variables in the block

is denoted by (𝑝′′ + ℎ)𝑚. The regression coefficients of variable j are shown as follows

𝛽1
(𝑚)
, … , 𝛽

(𝑝′′+ℎ)𝑚
(𝑚)

 , 𝑔 = 1, … , (𝑝′′ + ℎ)𝑚

The vector π=(π1, π2) denotes the blocks descending order of priority. 𝜋1

represents the first (highest-priority) block, and 𝜋2 represents the second (lower-

priority) block.

Initially, a Lasso model was applied to the high-priority binary variable block.

The goal of this step is primarily to capture the variability in the outcome variable

using variables within this block. The first block consists of h variables, and the

variables for the 𝑖𝑡ℎ sample are depicted as follows.

𝑥𝑖1
(1)
, … , 𝑥𝑖ℎ

(1)
 , 𝑖 = 1,… , 𝑛′

71

The h binary variables in block π1 are employed to fit the initial Lasso

regression model. The coefficients 𝛽1
(π1), … , 𝛽ℎπ1

(π1) are estimated by minimizing the

following formula

∑𝑤𝑖 (𝑦𝑖 −∑𝑥𝑖𝑔
(π1)𝛽𝑔

(π1)

ℎπ1

𝑔=1

)

𝑛′

𝑖=1

2

+ 𝜆(π1)∑|𝛽𝑔
(π1)|

ℎπ1

𝑔=1

𝑤𝑖 represents the weights assigned to the samples, derived from the voom

transformation.

The variables in the second block account for the remaining variability in the

outcome variable after explaining the portion addressed by the variables in the 𝜋1

block. The linear score obtained from the Lasso model fitted in the first block serves

as an offset, and a second Lasso model is fitted to the second block, which consists of

continuous variables. This involves fitting the second Lasso model to the residuals

from the first Lasso model without incorporating the offset, using the covariates in the

𝜋2 block. The linear predictor to be employed as an offset in the second Lasso model

is fitted in the first Lasso model as follows

�̂�1,𝑖(π) = �̂�1
(π1)𝑥𝑖1

(π1) +⋯+ �̂�ℎπ1
(π1)𝑥𝑖ℎ𝜋1

(π1)

However, the linear estimation of �̂�1,𝑖(π) can be over-optimistic and may result

in underestimating the 𝜋2 block. This is because 𝑦𝑖 is part of the data used to estimate

the β coefficients employed in calculating this linear estimate. To address this issue,

cross-validation was employed to estimate the offset of �̂�1,𝑖(π). The dataset, 𝑋, was

divided into K roughly equal-sized portions, denoted as k=1,…,K. The coefficients

�̂�𝑋/𝑋𝑘,1
(π1) , … , �̂�𝑋/𝑋𝑘,ℎπ1

(π1) were estimated, and cross-validated offsets are calculated as

follows

�̂�1,𝑖(π)𝐶𝑉 = �̂�𝑋/𝑋𝑘,1
(π1) 𝑥𝑖1

(π1) +⋯+ �̂�𝑋/𝑋𝑘,ℎπ1
(π1) 𝑥𝑖ℎπ1

(π1)

The second block (𝜋2) consists of 𝑝′′ variables, and the variables for the 𝑖𝑡ℎ

sample are shown as follows

𝑥𝑖1
(2)
, … , 𝑥

𝑖𝑝′′
(2)
 , 𝑖 = 1,… , 𝑛′

72

The coefficients 𝛽1
(π2), … , 𝛽

𝑝′′π2

(π2) for the second block (𝜋2) are estimated by

minimizing the following formula

∑𝑤𝑖 (𝑦𝑖 − �̂�1,𝑖(π)𝐶𝑉 ∑ 𝑥𝑖𝑔
(π2)𝛽𝑔

(π2)

𝑝′′π2

𝑔=1

)

𝑛′

𝑖=1

2

+ 𝜆(π2) ∑ |𝛽𝑔
(π2)|

𝑝′′π2

𝑔=1

voomStackIPF

As described in the priority-Lasso algorithm, the 𝑛′x(𝑝′′ + ℎ)-dimensional X

prediction matrix, obtained at the conclusion of the ‘Stacking for Classification’ step,

encompasses continuous RNA-seq covariate variables and binary variables (Matrix

3.9). Given the distinct nature of these variables, the data type (or the number of data

modalities) is designated as two. Let the modality number be denoted by m (m=1, 2).

Variables in each modality are defined as follows

𝑥𝑖1
(𝑚)
, … , 𝑥

𝑖(𝑝′′+ℎ)𝑚

(𝑚)
 , 𝑖 = 1,… , 𝑛′ 𝑚 = 1,2

(𝑝′′ + ℎ)𝑚 represents the number of variables in modality m. The gth variable

is denoted by 𝑥𝑔
(𝑚)

, and its corresponding coefficient is represented by 𝛽𝑔
(𝑚)

. In the

IPF-lasso algorithm, a weighted sum of the norms of the coefficients vector for each

modality is employed as a penalty term. To estimate the coefficients, the following

formula is minimized

∑𝑤𝑖 (𝑦𝑖 − ∑ ∑ 𝑥𝑖𝑔
(𝑚)
𝛽𝑔
(𝑚)

(𝑝′′+ℎ)𝑚

𝑔=1

2

𝑚=1

)

2

+ ∑ 𝜆𝑚||𝛽𝑔
(𝑚)
||1

2

𝑚=1

𝑛′

𝑖=1

𝜆𝑚 represents the penalty for the variables in modality m. The first modality

(𝜆1 penalty) was treated as the reference modality, and the penalty factor for modality

m was expressed as 𝜆𝑚/𝜆1.

In this scenario, the penalty factors were defined as 𝜆1, 𝜆2/𝜆1. Cross-validation

was applied to improve prediction performance. The various candidate vectors of

penalty factors are denoted as C and listed below

73

𝑛′
(𝑐)
= (1, 𝜆2/𝜆1)

𝑇 𝑐 = 1,… , 𝐶

Cross-validation was performed using a performance metric such as AUC to

determine the optimal 𝜆1.

3.2. Performance Evaluation

3.2.1. Transformation of Test Data into Classification Data

A test matrix containing survival data was employed to evaluate the newly

developed algorithms for the survival analysis of RNA-seq data in '3.1. Proposed

RNA-Seq Survival Approaches' step. All pre-processing and stacking algorithm steps

applied to the training dataset were also executed on the test set, continuing until block-

based Lasso models were applied. The parameters used during normalization for the

training set were also consistently applied to the test set. However, the test set was

normalized independently of the training data, ensuring that both the training and test

sets were on the same scale and exhibited homoscedasticity. Low-expressed genes

excluded from the training set were also excluded from the test set. The parameters

used in the training sets during the voom transformation were also used in the test sets,

similar to the normalization step. The 2000 genes with the highest variance in the

training set were also selected in the test set. In the feature selection step, the variables

selected in the training set were also selected in the test set.

For the stacking algorithm, the same methodology employed to construct the

risk set for the training dataset was applied to generate risk set variables for the test

set. Initially, the time values of individuals experiencing the event in the training set

were arranged in ascending order. Subsequently, a risk matrix vector was created for

the relevant individual based on the range in which the time variable of each individual

in the test set falls in this order. To illustrate, suppose the time value of an individual

in the test set is 1578. Assuming there are ten risk set variables in the training set with

corresponding time variables (100, 300, 590, 1080, 1432, 1602, 1845, 1936, 2010,

2036) belonging to individuals who experienced the event in that set. Time 1578 aligns

with the 5th interval in this list. Consequently, the risk set values for this test set

observation would be (0, 0, 0, 0, 1, 0, 0, 0, 0, 0). The computation of risk set values is

74

performed individually for each person in the risk set, and collectively, these values

constitute the risk set for the test set, following the approach used in the training set.

3.2.2. RNA-Seq Datasets

Real RNA-seq survival data were used in this study, which concentrated on

TCGA data that included RNA-seq data for 12 different cancer types. Data on read

counts were obtained from the TCGA data portal (https://portal.gdc.cancer.gov/), and

the R program's TCGAbiolinks package (209) was used to carry out the download

operation. Each dataset comprises 60660 genes, including 19938 protein-coding genes

and 40722 non-coding genes. However, only protein-coding genes were considered

for this study. For cancer types other than LAML, the sample type "Primary Tumor"

was selected, while for LAML, individuals with the sample type "Primary Blood

Derived Cancer - Peripheral Blood" were included in the analysis. The overall survival

time and status data associated with RNA-seq count data were extracted from the

TCGA Clinical Data Resource, resulting from a comprehensive study involving

11,000 cancer patients across 33 different cancer types in TCGA (210). The

characteristics of the datasets are summarized in Table 3.1 and Table 3.2.

Table 3.1. RNA-Seq Datasets.

Data

Code

Cancer Type Sample

Size (n)

Zero/Null

Time

Filtering

Censoring

Rate (0/1)

ACC Adrenocortical Carcinoma 79 79 51/28

CESC
Cervical Squamous Cell Carcinoma and

Endocervical Adenocarcinoma
304 291 220/71

ESCA Esophageal Carcinoma 184 184 107/77

GBM Glioblastoma Multiforme 155 154 32/122

KIRC Kidney Renal Clear Cell Carcinoma 529 527 352/175

KIRP Kidney Renal Papillary Cell Carcinoma 290 287 243/44

LAML Acute Myeloid Leukemia 151 130 52/78

LGG Brain Lower Grade Glioma 516 511 386/125

MESO Mesothelioma 87 85 12/73

PAAD Pancreatic Adenocarcinoma 178 177 84/93

SARC Sarcoma 259 259 161/98

UVM Uveal Melanoma 80 80 57/23

https://portal.gdc.cancer.gov/

75

3.2.3. Evaluation Process

The procedures applied to the real datasets are detailed in the following step-

by-step manner. Additionally, a visual representation of these steps is presented in

Figure 3.2 via a flowchart.

Table 3.2. Patient Characteristics.

Data

Code

Age Gender

(Female)

Overall Survival Time

(days)

Censoring Rate

(=0)

ACC 46.70±15.77 48 (60.76) 1194 (662-2056) 51 (64.6)

CESC 48.09±13.81 100 (100.00) 699 (410-1345) 220 (75.6)

ESCA 62.45±11.93 26 (14.13) 396.50 (231.25-675.75) 107 (58.2)

GBM 59.69±13.60 57 (37.01) 350.00 (153.00-535.50) 30 (19.5)

KIRC 60.56±12.17 186 (35.23) 1217.00 (551.00-1929.00) 352 (66.8)

KIRP 61.04±13.00 76 (26.39) 771.00 (428.00-1508.00) 243 (84.7)

LAML 53.52±16.32 59 (45.38) 366.00 (184.00-861.00) 53 (40.8)

LGG 43.02±13.36 228 (44.62) 678.00 (405.00-1227.00) 386 (75.5)

MESO 63.05±9.83 16 (18.82) 527.00 (258.00-852.00) 12 (14.0.)

PAAD 64.52±10.93 80 (45.20) 466.00 (277.50-680.00) 84 (47.5)

SARC 60.71±14.59 141 (54.44) 947.00 (485.00-1585.00) 161 (62.2)

UVM 61.65±13.95 35 (43.75) 784.00 (433.50-1182.50) 57 (71.3)

Splitting datasets: In the first step of the process, the data is split into two: the training

set and the test set. The training set is designated for developing the voomStackPrio

and voomStackIPF approaches, while the test set is reserved for evaluating the trained

model. The RNA-seq survival data matrix with n samples, as illustrated in (Matrix

3.1), was randomly split into 70% for the training set and 30% for the test set. The

status variables within the training and test sets are categorized into two groups,

denoted by values 0 and 1. Because these groups appeared in the status variable a

certain number of times, they were divided equally between the training and test

sets during the splitting step to prevent bias. For example, in the training set, there are

105 samples with status=1 and 35 samples with status=0, while in the test set, there

are 45 samples with status=1 and 15 samples with status=0. It is assumed that the

76

training set comprises 𝑛1 samples (rows), and the test set comprises 𝑛2 samples (rows),

where 𝑛1 + 𝑛2 = 𝑛. The matrices representing the training and test sets are depicted

in (Matrix 3.10) and (Matrix 3.11).

[

𝑟𝑇𝑟𝑎𝑖𝑛11 𝑟𝑇𝑟𝑎𝑖𝑛12 𝑟𝑇𝑟𝑎𝑖𝑛13 … 𝑟𝑇𝑟𝑎𝑖𝑛1𝑝
𝑟𝑇𝑟𝑎𝑖𝑛21 𝑟𝑇𝑟𝑎𝑖𝑛22 𝑟𝑇𝑟𝑎𝑖𝑛23 … 𝑟𝑇𝑟𝑎𝑖𝑛2𝑝

⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑇𝑟𝑎𝑖𝑛𝑛11 𝑟𝑇𝑟𝑎𝑖𝑛𝑛12 𝑟𝑇𝑟𝑎𝑖𝑛𝑛13 … 𝑟𝑇𝑟𝑎𝑖𝑛𝑛1𝑝]

𝑛1𝑥𝑝

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛1 𝛿𝑛1

]

𝑛1𝑥2

 (3.10)

[

𝑟𝑇𝑒𝑠𝑡11 𝑟𝑇𝑒𝑠𝑡12 𝑟𝑇𝑒𝑠𝑡13 … 𝑟𝑇𝑒𝑠𝑡1𝑝
𝑟𝑇𝑒𝑠𝑡21 𝑟𝑇𝑒𝑠𝑡22 𝑟𝑇𝑒𝑠𝑡23 … 𝑟𝑇𝑒𝑠𝑡2𝑝

⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑇𝑒𝑠𝑡𝑛21 𝑟𝑇𝑒𝑠𝑡𝑛22 𝑟𝑇𝑒𝑠𝑡𝑛23 … 𝑟𝑇𝑒𝑠𝑡𝑛2𝑝]

𝑛2𝑥𝑝

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛2 𝛿𝑛2

]

𝑛2𝑥2

 (3.11)

The time variable (T) and the status variable (𝛿) were taken out of the training and test

matrices in the dataset during the next pre-processing steps. Additionally, the

transposes of both matrices were obtained. This partitioning process was done using

the partition() function within the mlr3 package (211).

Normalization: The next step is to normalize the data for both training and test sets

after they have been divided. The DESeq median ratio algorithm was utilized in this

normalization process to obtain normalized values. The normalization process

involves leveraging the estimateSizeFactors() and

estimateDispersions() functions from the DESeq2 package (68), as well as

the calcNormFactors() functions from the edgeR package (97).

Consistently applied to the test set were the same parameters that were used for

training set normalization. However, the test set was normalized independently of the

training data, ensuring that both the training and test sets were on the same scale and

exhibited homoscedasticity.

Filtering low-expressed genes: The approach of Chen et al. (212) is applied to remove

genes that are unexpressed or low-expressed (unchanging or low-variability) across all

the libraries using the function filterByExpr()from the edgeR package (97).

This function tries to keep genes with at least minimum count reads in a worthwhile

number of samples. According to this approach, we keep genes with CPM above the

minimum count (default k=10) in a minimum proportion of samples in the minimum

77

group sample size (n). The minimum proportion is greater than 70% of the smallest

group size as default.

Removing the filtered unexpressed or low-expressed genes from the data before the

normalization step may change the data's original structure. Therefore, first of all, the

genes to be filtered were identified in the training set before normalization. Post

normalization and logCPM transformation on the training set encompassing all genes

identified were excluded. The excluded genes from the training set were also removed

from the test set.

Transformation: In the methods utilized for comparing model performance, we applied

the variance stabilizing transformation (vst) to the normalized values. For other

algorithms to compare, this transformation was achieved using the

varianceStabilizingTransformation() function within the DESeq2

package (68). For our newly developed algorithms, voomStackPrio and

voomStackIPF, we implemented the voom transformation on the normalized values.

We reorganized the code of the voom(), CalcNormFactors(),

arrayWeights(), and voomWithqualityweights() functions in the

limma (213) and edgeR (97) packages. The parameters used in the training sets were

also utilized in the test sets, similar to the normalization step.

Variance filtering: To improve analysis accuracy, more informative

genes were prioritized and the genes were sorted in descending order according

to their coefficients of variation. The studies were conducted using the top 2000 genes

from this ordered list. However, considering potential variations in the coefficient of

variation values after transformation, we identified the initial 2000 genes for analysis

before the transformation step. Following the transformation, a variance filtering

process was applied. This procedure was implemented in the training set, and

subsequently, the genes filtered in the training set were also filtered in the test set.

Feature selection: Two distinct feature selection methods were employed to compare

model performance. The first method involved model-based feature selection, which

is implemented differently for each survival model in the mlr3fselect package (214).

Resampling techniques are used by the algorithms in the mlr3fselect package (214)

to assess prediction performance and choose feature subsets. For feature selection,

resampling was conducted using 5 repeats of 5-fold cross-validation, with the

78

Figure 3.2. Workflow of evaluation process.

79

performance measure set to ‘c-index’, and feature selection was completed using the

‘random search’ algorithm. The features selected in the training set were applied to the

test set.

The second method is the Boruta algorithm, which is also used in the feature selection

for our newly developed lasso-based methods, voomStackPrio and voomStackIPF. In

the Boruta feature selection from Boruta package (152) process, features labeled as

both ‘important’ and ‘tentative’ (closely resembling the best shadow features) were

retained in the dataset, while variables labeled as ‘unimportant’ were subsequently

removed. The features in the training dataset are also kept in the test dataset. Detailed

information regarding the number and names of the variables used for each model can

be found in the Appendix Files.

Hence, the pre-processing steps for RNA-seq data are now complete. We transposed

the training and test datasets to facilitate subsequent steps and reintroduced each

sample's time and status variables.

Stacking: We developed a function that followed the steps of the stacking algorithm to

convert the training set from a survival data matrix into a classification data matrix.

The survival test dataset was similarly transformed into a classification dataset by

leveraging the risk sets generated during the application of the stacking algorithm to

the training set.

Model fitting and parameter optimization: Multiple models with different parameters

were developed for the new approaches. The specific parameters used for

voomStackPrio can be found in Table 3.3, while those for voomStackIPF are listed in

Table 3.4. The ‘weights’ parameter in these tables denotes sample weights obtained

after the voom transformation. Given that our outcome variable y is binary in

voomStackPrio, the ‘family’ parameter is selected as ‘binomial’, and the

‘type.measure’ parameter is set to ‘auc’. The first block is penalized in two

voomStackPrio models. The ‘lambda.type’ parameter determines the lambda value

used in predictions. ‘lambda.min’ provides the lambda with minimum cross-validated

errors, and ‘lambda.1se’ gives the largest lambda value within one standard error of

the minimum. The ‘standardized’ parameter determines whether estimates would be

standardized or not. For voomStackIPF, the ‘alpha’ parameter plays a pivotal role.

When set to 1, it applies an L1-penalty (lasso), and when set to 0, an L2-penalty (ridge)

80

is used. Each model for voomStackPrio and voomStackIPF was run 30 times,

employing 10 repeats of 5-fold cross-validation.

The performance of the newly created voomStackPrio and voomStackIPF models was

compared to other survival analysis methods found in the literature.

These methods were categorized into four primary groups: (i) penalized Cox

regression methods, (ii) boosted survival methods, (iii) random survival forests, and

(iv) support vector machines. Hyperparameters for these machine-learning algorithms

were carefully selected to optimize model performance. The tuning of these

hyperparameters was carried out automatically using a 5-fold 10-repeated cross-

validation process. Importantly, optimal hyperparameters were chosen from different

ranges for different models, and the specific tuning parameters for each model are

detailed in Table 3.5. To ensure robustness and reliability, each model underwent 25

iterations, randomly selecting 30 distinct training and test datasets.

The steps applied to the algorithms for comparison are detailed below.

blackboost: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.blackboost',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.blackboost’

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify

the optimal tuning parameter via the mlr3 package (211).

coxboost: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.coxboost',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.coxboost’

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify

the optimal tuning parameter via the mlr3 package (211).

81

gbm: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.gbm',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.gbm’ function

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the mlr3 package (211).

glmboost: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.glmboost',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.glmboost’

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify

the optimal tuning parameter via the mlr3 package (211).

xgboost_gbtree: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.xgboost',

'booster = “gbtree”', 'resampling=rsmp("cv", folds = 5)', 'measure =

msr("surv.cindex")', and 'evals20 = trm("evals", n_evals = 5)", and 'fselector =

fs("random_search")' for internal feature selection in the mlr3proba package (215).

Model parameters and hyper-parameters for tuning were set according to the

parameters provided for the ‘surv.xgboost’ function and ‘booster = “gbtree”’ model

parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to

identify the optimal tuning parameter via the mlr3 package (211).

xgboost_gblinear: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.xgboost',

'booster = “gblinear”', 'resampling=rsmp("cv", folds = 5)', 'measure =

82

Table 3.3. Model parameters for voomStackPrio models.

Parameters voomStackPrio1 voomStackPrio2

weights sampleweights sampleweights

family binomial binomial

type.measure auc auc

block1.penalization TRUE TRUE

lambda.type lambda.min lambda.1se

standardize FALSE FALSE

nfolds 5 5

cvoffset TRUE TRUE

cvoffsetnfolds 10 10

Table 3.4. Model parameters for voomStackIPF models.

Parameters voomStackIPF1 voomStackIPF2 voomStackIPF3 voomStackIPF4 voomStackIPF5 voomStackIPF6 voomStackIPF7 voomStackIPF8 voomStackIPF9

weights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights

family binomial binomial binomial binomial binomial binomial binomial binomial binomial

standardize FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

pf c(1,1) c(1,1) c(1,1) c(1,2) c(1,2) c(1,2) c(2,1) c(2,1) c(2,1)

nfolds 5 5 5 5 5 5 5 5 5

ncv 10 10 10 10 10 10 10 10 10

type.measure auc auc auc auc auc auc auc auc auc

alpha 0 0.5 1 0 0.5 1 0 0.5 1

83

msr("surv.cindex")', and 'evals20 = trm("evals", n_evals = 5)", and 'fselector =

fs("random_search")' for internal feature selection in the mlr3proba package (215).

Model parameters and hyper-parameters for tuning were set according to the

parameters provided for the ‘surv.xgboost’ function and ‘booster = “gblinear”’ model

parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to

identify the optimal tuning parameter via the mlr3 package (211).

xgboost_dart: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.xgboost',

'booster = “dart”', 'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")',

and 'evals20 = trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for

internal feature selection in the mlr3proba package (215). Model parameters and

hyper-parameters for tuning were set according to the parameters provided for the

‘surv.xgboost’ function and ‘booster = “dart”’ model parameter in Table 3.5. 10

repeats of 5-fold cross-validation were performed to identify the optimal tuning

parameter via the mlr3 package (211).

elasticnet: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.glmnet',

'alpha = 0.5', 'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and

'evals20 = trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal

feature selection in the mlr3proba package (215). Model parameters and hyper-

parameters for tuning were set according to the parameters provided for the

‘surv.glmnet’ function and ‘alpha = 0.5’ model parameter in Table 3.5. 10 repeats of

5-fold cross-validation were performed to identify the optimal tuning parameter via

the mlr3 package (211).

lasso: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.glmnet', 'alpha = 1',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

84

for tuning were set according to the parameters provided for the ‘surv.glmnet’ function

and ‘alpha = 1’ model parameter in Table 3.5. 10 repeats of 5-fold cross-validation

were performed to identify the optimal tuning parameter via the mlr3 package (211).

penalized: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were 'learner=surv.penalized',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.penalized’

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify

the optimal tuning parameter via the mlr3 package (211).

ridge: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.glmnet', 'alpha = 0',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.glmnet’ function

and ‘alpha = 0’ model parameter in Table 3.5. 10 repeats of 5-fold cross-validation

were performed to identify the optimal tuning parameter via the mlr3 package (211).

cforest: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.cforest',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.cforest’ function

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the mlr3 package (211).

ctree: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

85

feature selection, the parameters used were 'learner=surv.ctree',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.ctree’ function

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the mlr3 package (211).

obliqueRSF: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. For feature selection, the parameters used were

'learner=surv.obliqueRSF', 'resampling=rsmp("cv", folds = 5)', 'measure =

msr("surv.cindex")', and 'evals20 = trm("evals", n_evals = 5)", and 'fselector =

fs("random_search")' for internal feature selection in the mlr3proba package (215).

Model parameters and hyper-parameters for tuning were set according to the

parameters provided for the ‘surv.obliqueRSF’ function in Table 3.5. 10 repeats of 5-

fold cross-validation were performed to identify the optimal tuning parameter via the

mlr3 package (211).

ranger: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.ranger',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.ranger’ function

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the mlr3 package (211).

rfsrc: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.rfsrc',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

86

for tuning were set according to the parameters provided for the ‘surv.rfsrc’ function

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the mlr3 package (211).

rpart: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.rpart',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.rpart’ function

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the mlr3 package (211).

svm: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially. For

feature selection, the parameters used were 'learner=surv.svm',

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 =

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature

selection in the mlr3proba package (215). Model parameters and hyper-parameters

for tuning were set according to the parameters provided for the ‘surv.svm’ function

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the mlr3 package (211).

blackboost_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.blackboost’ function in Table 3.5. 10 repeats

of 5-fold cross-validation were performed to identify the optimal tuning parameter via

the mlr3 package (211).

coxboost_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

87

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.coxboost’ function in Table 3.5. 10 repeats of

5-fold cross-validation were performed to identify the optimal tuning parameter via

the mlr3 package (211).

gbm_B: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially.

Following that, Boruta feature selection was employed, selecting important features

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model

parameters and hyper-parameters for tuning were set according to the parameters

provided for the ‘surv.gbm’ function in Table 3.5. 10 repeats of 5-fold cross-validation

were performed to identify the optimal tuning parameter via the mlr3 package (211).

glmboost_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.glmboost’ function in Table 3.5. 10 repeats of

5-fold cross-validation were performed to identify the optimal tuning parameter via

the mlr3 package (211).

xgboost_gbtree_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “gbtree”’

model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to

identify the optimal tuning parameter via the mlr3 package (211).

xgboost_gblinear_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

88

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “gblinear”’

model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to

identify the optimal tuning parameter via the mlr3 package (211).

xgboost_dart_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “dart”’

model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to

identify the optimal tuning parameter via the mlr3 package (211).

elasticnet_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.glmnet’ function and ‘alpha = 0.5’ model

parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to

identify the optimal tuning parameter via the mlr3 package (211).

lasso_B: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially.

Following that, Boruta feature selection was employed, selecting important features

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model

parameters and hyper-parameters for tuning were set according to the parameters

provided for the ‘surv.glmnet’ function and ‘alpha = 1’ model parameter in Table 3.5.

10 repeats of 5-fold cross-validation were performed to identify the optimal tuning

parameter via the mlr3 package (211).

penalized_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

89

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.penalized’ function in Table 3.5. 10 repeats of

5-fold cross-validation were performed to identify the optimal tuning parameter via

the mlr3 package (211).

ridge_B: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially.

Following that, Boruta feature selection was employed, selecting important features

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model

parameters and hyper-parameters for tuning were set according to the parameters

provided for the ‘surv.glmnet’ function and ‘alpha = 0’ model parameter in Table 3.5.

10 repeats of 5-fold cross-validation were performed to identify the optimal tuning

parameter via the mlr3 package (211).

cforest_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.cforest’ function in Table 3.5. 10 repeats of 5-

fold cross-validation were performed to identify the optimal tuning parameter via the

mlr3 package (211).

ctree_B: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially.

Following that, Boruta feature selection was employed, selecting important features

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model

parameters and hyper-parameters for tuning were set according to the parameters

provided for the ‘surv.ctree’ function in Table 3.5. 10 repeats of 5-fold cross-validation

were performed to identify the optimal tuning parameter via the mlr3 package (211).

obliqueRSF_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

90

to the parameters provided for the ‘surv.obliqueRSF’ function in Table 3.5. 10 repeats

of 5-fold cross-validation were performed to identify the optimal tuning parameter via

the mlr3 package (211).

ranger_B: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, vst transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). Model parameters and hyper-parameters for tuning were set according

to the parameters provided for the ‘surv.ranger’ function in Table 3.5. 10 repeats of 5-

fold cross-validation were performed to identify the optimal tuning parameter via the

mlr3 package (211).

rfsrc_B: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially.

Following that, Boruta feature selection was employed, selecting important features

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model

parameters and hyper-parameters for tuning were set according to the parameters

provided for the ‘surv.rfsrc’ function in Table 3.5. 10 repeats of 5-fold cross-validation

were performed to identify the optimal tuning parameter via the mlr3 package (211).

rpart_B: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially.

Following that, Boruta feature selection was employed, selecting important features

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model

parameters and hyper-parameters for tuning were set according to the parameters

provided for the ‘surv.rpart’ function in Table 3.5. 10 repeats of 5-fold cross-validation

were performed to identify the optimal tuning parameter via the mlr3 package (211).

svm_B: Filtering was performed for low-expressed genes after DESeq normalization.

Subsequently, vst transformation and variance filtering were applied sequentially.

Following that, Boruta feature selection was employed, selecting important features

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model

parameters and hyper-parameters for tuning were set according to the parameters

provided for the ‘surv.svm’ function in Table 3.5. 10 repeats of 5-fold cross-validation

were performed to identify the optimal tuning parameter via the mlr3 package (211).

91

voomStackPrio1: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the

priority-Lasso algorithm. The model parameters defined for ‘voomStackPrio1’ are

given in Table 3.3. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the prioritylasso package (73).

voomStackPrio2: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the

priority-Lasso algorithm. The model parameters defined for ‘voomStackPrio2’ are

given in Table 3.3. 10 repeats of 5-fold cross-validation were performed to identify the

optimal tuning parameter via the prioritylasso package (73).

voomStackIPF1: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF1’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

voomStackIPF2: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

92

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF2’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

voomStackIPF3: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF3’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

voomStackIPF4: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF4’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

voomStackIPF5: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF5’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

93

voomStackIPF6: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF6’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

voomStackIPF7: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF7’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

voomStackIPF8: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF8’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

voomStackIPF9: Filtering was performed for low-expressed genes after DESeq

normalization. Subsequently, voom transformation and variance filtering were applied

sequentially. Following that, Boruta feature selection was employed, selecting

important features with the ‘withTentative = TRUE’ parameter using the Boruta

package (152). After completing the pre-processing steps, the stacking algorithm was

94

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF9’ are given in

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal

tuning parameter via the IPFlasso package (74).

Prediction and performance evaluation: The evaluation of survival algorithms

involved the concordance index (Harrell's c-index) and integrated Brier score. For both

metrics, the survex package (216) was utilized. The c_index() function was

employed to calculate Harrell's concordance index, and the

integrated_brier_score() function was used to assess the integrated Brier

score metric.

Three distinct super lists have been generated for the Concordance Index, Integrated

Brier Score, and the number of selected features by aggregating ordered lists based on

their ranks. The RankAggreg package (217) was employed for this process, utilizing

the RankAggreg() function with the Cross Entropy Monte Carlo method.

Consequently, all survival algorithms, assessed against three different evaluation

criteria, are ranked from best to worst performance. The consolidated version of these

super lists is visually represented in a Venn diagram.

The performances of the models were also compared in terms of computation times.

3.2.4. Performance Evaluation Criteria

Sparsity, accuracy, and computational cost were the three parameters that were

used to assess the performance of the model. In order to evaluate sparsity, one must

determine how many features the model uses; models with fewer features are deemed

to be more sparse. Model accuracy was evaluated using the metrics concordance index

(Harrell's c-index) and integrated Brier score. Computational costs were computed,

and models delivering results in the shortest time were highlighted.

A model in survival analysis predicts the risk of a specific event for each

patient. The higher risk scores for patients with a shorter time-to-event determine the

model's effectiveness. The concordance index (c-index) is a metric that measures the

discriminating power of these risk models in survival analysis (218). When assessing

this, it calculates the agreement between all pairs of samples. Two patients are

95

considered concordant if the predicted event risk by a model is lower for the patient

who experiences the event later.

Let the risk scores of the patients be represented by 𝜑. The concordance

calculation for each pair of patients is conducted based on three scenarios. For patients

i and j, the survival times are denoted as 𝑇𝑖 and 𝑇𝑗, and the risk scores are 𝜑𝑖 and 𝜑𝑗.

1. If both patients i and j are not censored,

a. If 𝜑𝑖 > 𝜑𝑗 and 𝑇𝑖 < 𝑇𝑗, these patient pair is concordant and

b. If 𝜑𝑖 > 𝜑𝑗 and 𝑇𝑖 > 𝑇𝑗, these patient pair is discordant.

2. If both patients i and j are censored, no calculation for this pair since it is

unknown who first experienced the event.

3. If one of patients i and j is censored and patient i experience the event at

time 𝑇𝑖 and patient j is censored,

a. If 𝑇𝑖 > 𝑇𝑗, no calculation for this pair since it is unknown who first

experienced the event.

b. If 𝑇𝑖 < 𝑇𝑗, since patient i experienced the event first

i. If 𝜑𝑖 > 𝜑𝑗, these patient pair is concordant and

ii. If 𝜑𝑖 < 𝜑𝑗, these patient pair is discordant.

𝐻𝑎𝑟𝑟𝑒𝑙𝑙′𝑠 𝑐 − 𝑖𝑛𝑑𝑒𝑥 =
𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 + # 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

The general formulation of Harrell’s c-index is given below.

𝐻𝑎𝑟𝑟𝑒𝑙𝑙′𝑠 𝑐 − 𝑖𝑛𝑑𝑒𝑥 =
∑ 𝐼(�̃�𝑖 > �̃�𝑗)𝑖,𝑗 . 𝐼(𝜑𝑗 > 𝜑𝑖).△𝑗

∑ 𝐼(�̃�𝑖 > �̃�𝑗)𝑖,𝑗 .△𝑗

△𝑗 is a factor used to exclude non-comparable pairs of samples from the

calculation, particularly when the shorter survival time is censored.

The concordance index is equivalent to the Area Under the Receiver Operating

Characteristic Curve (AUC) in the presence of a binary outcome. This index ranges

from zero to one. A c-index of 0.5 indicates that the risk model predicts randomly, and

a c-index close to 1 indicates better discriminating power for the risk model.

96

 The Brier score is used to assess the discrimination abilities of models and

provide probabilistic results. It computes the mean squared error between the real

classes and predicted risks for a dataset with binary outcomes. Subsequently, the Brier

score was adapted for survival data (219). It is calculated as below.

𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 (𝑡) =
1

𝑛
∑𝑤𝑖(𝑡)

𝑛

𝑖=1

[�̂�𝑖(𝑡) − 𝑦𝑖(𝑡)]
2

𝑤𝑖(𝑡) = {
𝛿𝑖/𝐶(𝑦𝑖) 𝑦𝑖 ≤ 𝑡

1/𝐶(𝑦𝑖) 𝑦𝑖 > 𝑡

The probability of an event predicted for 𝑖𝑡ℎ sample is denoted as �̂�𝑖(𝑡), and

the observed status outcome in the 𝑖𝑡ℎ sample is represented as 𝑦𝑖(𝑡) at time t. The

calculation of 𝑤𝑖(𝑡) involves the use of the Kaplan-Meier estimator for the censoring

distribution C. If the Brier score is close to 0, the predicted model is considered good.

If it is around 0.25, the predicted model performs at random.

The Brier score assesses the accuracy of a survival function at a specific time.

The integrated Brier score, obtained by integrating the Brier score across all follow-up

times, is utilized, as a particular point of time can not be determined.

3.2.5. Computational Infrastructure

All analyses were conducted using the R programming language. We employed

Version 2023.03.0+386 of the RStudio software for these analyses. Both R and

RStudio are freely available as open-source software and can be installed on Windows,

Macintosh, and Linux operating systems. To use RStudio, it is essential first to install

R. With RStudio, you can easily execute R code, create graphical presentations, and

access a history of your code. Details about the workstations used for running the

analyses, including their respective features, can be found in Table 3.6.

97

Table 3.5. Characteristics of the compared survival models.

Group Function Package Model-Parameters Hyper-Parameters Reference

Boosted

survival

model

surv.blackboost mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

mboost (221), pracma (222)

mstop = 100 family = “gehan”, “cindex”,

mstop= 10 → 1000

nu= 0 → 0.1

mtry= 1 → max(feature_counts)

Bühlmann and

Yu (2003) (223)

Random

survival

forest

surv.cforest mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

partykit (224),

sandwich (225), coin (226)

ntree = 100 ntree= 250 → 2500,

mtry= 1 → max(feature_counts)

Hothorn (2006)

(194)

Boosted

survival

model

surv.coxboost mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

CoxBoost (227), pracma (222)

 stepno= 500 → 1500 Binder (2009)

(227)

Random

survival

forest

surv.ctree mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

partykit (224),

coin (226), sandwich (225)

 alpha= 0 → 1,

abseps= 0 → 10,

maxdepth= 1 → 16

Hothorn and

Zeileis (2015)

(224), Hothorn

(2006) (194)

Boosted

survival

model

surv.gbm mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

gbm (228)

bag.fraction = 0.9 interaction.depth = 1 → 16 Friedman

(2002) (229)

Boosted

survival

model

surv.glmboost mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

mboost (221), pracma (222)

 family = “gehan”, “cindex”,

mstop= 10 → 1000,

nu= 0 → 0.1

Bühlmann and

Yu (2003) (223)

Penalised

Cox

regression

surv.glmnet mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

glmnet (230)

alpha = 1,

s = 0.01

lambda.min.ratio= 0 → 1 Friedman

(2010) (231)

Penalised

Cox

regression

surv.glmnet mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

glmnet (230)

alpha = 0,

s = 0.01

lambda.min.ratio= 0 → 1 Friedman

(2010) (231)

Penalised

Cox

regression

surv.glmnet mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

glmnet (230)

alpha = 0.5,

s = 0.01

lambda.min.ratio= 0 → 1 Friedman

(2010) (231)

https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=CoxBoost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners

98

Random

survival

forest

surv.obliqueRSF mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

obliqueRSF (232),

pracma (222)

 alpha= 0 → 1,

gamma= 0 → 1

Jaeger (2019)

(233)

Penalised

Cox

regression

surv.penalized mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

penalized (234), pracma (222)

lambda1 = 10,

lambda2 = 10

epsilon= 0 → 1 Goeman (2010)

(234)

Random

survival

forest

surv.ranger mlr3 (211),

mlr3learners (235),

ranger (236)

 splitrule= “C”,

num.trees= 250 → 1000,

mtry= 1 →max(feature_counts),

min.node.size= 1 → 20

Breiman (2001)

(38)

Random

survival

forest

surv.rfsrc mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

randomForestSRC

(237), pracma (222)

 ntree= 250 → 2500,

mtry= 1 →

max(feature_counts),

nodesize= 1 → 20

Ishwaran (2008)

(39),

Breiman (2001)

(38)

Random

survival

forest

surv.rpart mlr3 (211), mlr3proba (215),

rpart (238), distr6 (239),

survival (240)

 minbucket= 1 → 20,

maxdepth= 2 → 30

Breiman (1984)

(174)

Support

vector

machine

surv.svm mlr3 (211), mlr3proba (215),

mlr3extralearners (220),

survivalsvm (241)

type = “hybrid”,

diff.meth = “makediff3”,

kernel = “lin_kernel”,

gamma.mu = c(100,1000)

sigf= 2 → 12,

maxiter= 20 → 50,

margin= 0.01 → 0.1,

bound= 5 → 15

Van Belle

(2011) (167)

Boosted

survival

model

surv.xgboost mlr3 (211),

mlr3learners (235),

xgboost (242)

booster = “gbtree” alpha= 0 → 1, eta= 0 → 1,

gamma=0 → 1,

lambda=0 → 2,

nrounds= 1 → 16

Chen (2016)

(198)

Boosted

survival

model

surv.xgboost mlr3 (211),

mlr3learners (235),

xgboost (242)

booster = “gblinear” alpha= 0 → 1, eta= 0 → 1,

lambda=0 → 2,

nrounds= 1 → 16

Chen (2016)

(198)

Boosted

survival

model

surv.xgboost mlr3 (211),

mlr3learners (235),

xgboost (242)

booster = “dart” alpha= 0 → 1, eta= 0 → 1,

gamma=0 → 1,

lambda=0 → 2,

nrounds= 1 → 16

Chen (2016)

(198)

https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=obliqueRSF
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=penalized
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=ranger
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=randomForestSRC
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=distr6
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=survivalsvm
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost

99

Table 3.6. Characteristics of the workstations employed for analysis.

Workstation Operating

System

CPU GPU Memor

y

Number

of Cores

Erciyes

University,

Department of

Biostatistics

Windows 10 Intel i7-4790

3.60GHz

Intel HD

Graphics

4600

16 GB 4 cores

8 logical

processor

s

Erciyes

University, Ziya

Eren Drug

Research and

Application

Center

(ERFARMA)

Ubuntu

20.04 -

Linux

AMD EPYC

7742 (x2) – 256

CPU

2xTesla

V100S

32GB

2 TB 256

Erciyes

University, Dep

artment of

Information

Technology

Windows 10 Intel(R) Xeon(R)

32 CPU E5-2650

V4 @ 2.20 GHz

- 350 GB 30 cores

Personal

Computer

Windows 10 Intel(R) Core™

i5-8265U CPU,

1.60GHz, 1800

Mhz

- 8 GB 4

3.3. MLSeqSurv R Package

The voomStackPrio and voomStackIPF algorithms have a R package called

MLSeqSurv. With the help of this package, researchers can do survival analyses on

RNA-seq data by incorporating both newly created and previously published survival

algorithms. Researcher input datasets (training and test datasets) are required in order

to use the MLSeqSurv R package. These datasets can be submitted in formats such as

.csv, .xlsx, and .txt. Once users input the datasets and chosen survival algorithm and

its parameters, the package automatically trains the model tailored to the training set.

After model training, the package calculates survival probabilities for the test data at

specified time points. Additionally, MLSeqSurv provides users with individual

survival curves for the test data. The source code for this package is available on the

official website at https://github.com/gokmenzararsiz/MLSeqSurv. Following the

transfer of the MLSeqSurv package to the R BIOCONDUCTOR repository,

installation can be achieved using the following code.

https://github.com/gokmenzararsiz/MLSeqSurv

100

if (!require("BiocManager", quietly = TRUE))

 install.packages("BiocManager")

BiocManager::install("MLSeqSurv")

The MLSeqSurv R packages used are mlr3 (211), mlr3proba (215),

mlr3learners (235), mlr3extralearners (220), mlr3verse (243), mlr3tuningspaces

(244), mlr3fselect (214), limma (150), edgeR (97), DESeq2 (68), survival (240),

prioritylasso (73), ipflasso (74), mboost (221), pracma (222), partykit

(224), sandwich (225), coin (226), gbm (228), glmnet (230), CoxBoost (227),

obliqueRSF (232), penalized (234), ranger (236), rpart (238), distr6 (239),

randomForestSRC (237), survivalsvm (241), xgboost (242), survex (216), Boruta

(152).

https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=distr6

101

4. RESULTS

4.1. Concordance Index, Integrated Brier Score, and Selected Features

for Real RNA-Seq Datasets

The results of the 12 real RNA-seq survival cancer datasets, as outlined in

Table 3.9, are depicted graphically in Figures 4.1 through 4.12 and elaborated upon in

tables ranging from Table 4.1 to Table 4.12. The concordance index, integrated Brier

score, and the number of selected features for each dataset are illustrated in boxplots.

The methods compared in these graphs are classified into five main groups: Boosted

survival models (Boosted), Penalized Cox regression models (Penalized), Random

survival forests (RSF), Survival support vector machine (SVM), and voom-based

stacking lasso methods (voomStackLasso).

Boosted survival models (Boosted) consist of algorithms such as blackboost,

coxboost, gamboost, gbm, glmboost, xgboost (including dart, gblinear, and gbtree),

and are represented in light pink. Penalized Cox regression models (Penalized) include

elasticnet, lasso, penalized, ridge algorithms, depicted in dark khaki. Random survival

forests (RSF) comprise cforest, ctree, obliqueRSF, ranger, rfsrc, rpart algorithms,

shown in green. Survival support vector machine (SVM) is represented in blue. Results

from the existing survival algorithms in the literature include outcomes from both the

internal feature selection algorithm, individually applied for each algorithm in the

mlr3proba package (215), and the feature selection process in the Boruta package

(152).

voom-based stacking lasso models (voomStackLasso), developed within the

scope of this study, include voomstackPrio1, voomstackPrio2, voomstackIPF1,

voomstackIPF2, voomstackIPF3, voomstackIPF4, voomstackIPF5, voomstackIPF6,

voomstackIPF7, voomstackIPF8, and voomstackIPF9, depicted in purple.

Summary statistics for the concordance index, integrated Brier score, and the

number of selected features are provided in the tables. The survival algorithms, whose

performance is compared, are listed in the table rows. The columns present the mean,

standard deviation, median, 1st-3rd quartile, minimum, and maximum statistics for the

concordance index, integrated Brier score, and the number of selected features. The

tables are formatted with bold to draw attention to the highest values. The midpoints

102

of the lines in the boxplots stand for the median, the bottom point for the lowest value,

and the top point for the maximum value.

The concordance index, integrated Brier score, and the number of selected

features for Adrenocortical Carcinoma (ACC) data are depicted in Figure 4.1, with

related summary statistics presented in Table 4.1. Upon examination of the graph and

table, it was observed that the cforest algorithm, when applied to internal feature

selection, exhibited the highest mean concordance index for ACC data at 0.866.

Among the methods applied to internal feature selection, the highest mean

concordance index values were observed for cforest (0.866±0.044), blackboost

(0.861±0.050), ridge (0.860±0.042), rfsrc (0.857±0.052), svm (0.857±0.046), and

ranger (0.854±0.073) algorithms. Conversely, the lowest mean concordance index

values were attributed to ctree (0.742±0.090) and rpart (0.758±0.089) algorithms.

Among the methods from the literature employing Boruta feature selection, the cforest

(cforest_B) (0.854±0.062), ridge (ridge_B) (0.856±0.057) and xgboost (with booster=

“gblinear”) (xgboost_gblinear_B) (0.852±0.047) algorithms demonstrated the highest

mean concordance index. On the other hand, the svm (svm_B) algorithm

(0.555±0.245) exhibited the lowest mean concordance index. Among the

voomStackLasso methods, the voomStackIPF1 (0.855±0.054), voomStackIPF4

(0.854±0.053), and voomStackIPF7 (0.854±0.053) algorithms showed the highest

mean concordance index values, while the voomStackPrio2 algorithm (0.737±0.075)

displayed the lowest mean concordance index.

It was observed that the penalized algorithm, when utilized with Boruta feature

selection, resulted in the lowest mean integrated Brier score for ACC data, recorded at

0.131. Within the category of methods applied to internal feature selection, the

penalized (0.142±0.048) and cforest (0.158±0.027) algorithms demonstrated the

lowest mean integrated Brier scores, while gbm (0.375±0.079), lasso (0.366±0.181),

blackboost (0.359±0.064), and svm (0.339±0.069) algorithms displayed the highest

mean integrated Brier scores. In the group of methods from the literature employing

Boruta feature selection, the penalized (penalized_B) (0.131±0.032), ranger

(ranger_B) (0.140±0.031), and cforest (cforest_B) (0.142±0.033) algorithms

showcased the lowest mean integrated Brier scores, while lasso (0.479±0.150) and

elasticnet (0.452±0.159) algorithms presented the highest mean integrated Brier

scores. Among the voomStackLasso methods, voomStackIPF1 (0.134±0.027),

103

voomStackIPF7 (0.134±0.026), and voomStackIPF4 (0.135±0.028) algorithms

demonstrated the lowest mean integrated Brier scores, whereas the voomStackPrio1

algorithm (0.170±0.071) displayed the highest mean integrated Brier score.

voomStackLasso algorithms showed the lowest mean number of selected

features for ACC data (52.50±7.83). These were closely followed by the methods in

the literature that utilized Boruta feature selection (54.07±7.62). Regarding internal

feature selection methods, the algorithm with the lowest mean number of features was

rpart (600.77±427.46), while the algorithm with the highest mean number of features

was obliqueRSF (1137.10±581.78).

The concordance index, Integrated Brier Score, and the number of selected

features for Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma

(CESC) data are depicted in Figure 4.2, with related summary statistics presented in

Table 4.2. Upon examination of both the graph and table, it was observed that the ridge

algorithm, when applied to internal feature selection, exhibited the highest mean

concordance index for CESC data at 0.686. Within the category of methods applied to

internal feature selection, the highest mean concordance index values were observed

for ridge (0.686±0.052), penalized (0.667±0.056), and cforest (0.662±0.054).

Conversely, the lowest mean concordance indices were attributed to ctree

(0.557±0.053) and rpart (0.573±0.073) algorithms. Among the methods from the

literature employing Boruta feature selection, the ranger (ranger_B) (0.643±0.066) and

ridge (ridge_B) (0.632±0.062) algorithms demonstrated the highest mean concordance

index, while the rpart (rpart_B) (0.546±0.082) and ctree (ctree_B) (0.547±0.078)

algorithms exhibited the lowest mean concordance index values. Among the

voomStackLasso methods, the voomStackIPF1 (0.660±0.047) and voomStackIPF7

(0.659±0.047) algorithms showed the highest mean concordance index values, while

the voomStackPrio2 algorithm (0.628±0.055) displayed the lowest mean concordance

index.

Upon reviewing the integrated Brier score results for CESC data, it was evident

that methods from the literature, where both internal feature selection and Boruta

feature selection were applied, consistently yielded high results. The voomStackLasso

methods yield the lowest integrated Brier score results. It was noted that among these

algorithms, the voomStackIPF4 exhibited the lowest mean integrated Brier score for

CESC data, at 0.191. This was followed by voomStackIPF1

104

Figure 4.1. The concordance index, integrated Brier score, and the number of selected

 features for ACC.

105

Table 4.1. The summary statistics of concordance index, integrated Brier score and the number of features selected for ACC.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.861±0.050 0.861 (0.832-0.892) 0.723-0.950 0.359±0.064 0.366 (0.349-0.402) 0.186-0.468 1081.83±570.29 1027.00 (597.75-1644.00) 157-1960

Cforest 0.866±0.044 0.878 (0.851-0.892) 0.755-0.933 0.158±0.027 0.154 (0.138-0.174) 0.119-0.233 1025.27±570.19 1006.50 (541.25-1492.00) 62-1907

Coxboost 0.803±0.075 0.805 (0.773-0.866) 0.614-0.908 0.209±0.081 0.187 (0.144-0.267) 0.079-0.364 867.10±574.20 748.00 (270.00-1332.50) 23-1908

Ctree 0.742±0.090 0.764 (0.686-0.824) 0.543-0.875 0.225±0.090 0.218 (0.156-0.299) 0.067-0.411 806.90±602.60 544.00 (309.75-1359.50) 131-1995

Elasticnet 0.844±0.058 0.856 (0.812-0.887) 0.708-0.936 0.312±0.176 0.255 (0.149-0.473) 0.111-0.639 992.90±522.90 979.00 (540.00-1426.00) 183-1891

Gbm 0.841±0.043 0.848 (0.813-0.865) 0.763-0.933 0.375±0.079 0.373 (0.316-0.441) 0.219-0.508 1089.47±578.86 1063.50 (627.00-1623.25) 93-1943

Glmboost 0.817±0.076 0.830 (0.775-0.880) 0.632-0.930 0.335±0.086 0.363 (0.295-0.390) 0.157-0.468 850.87±481.50 850.50 (454.25-1139.25) 15-1706

Lasso 0.818±0.059 0.828 (0.768-0.866) 0.649-0.914 0.366±0.181 0.364 (0.192-0.508) 0.129-0.662 1021.77±537.09 982.00 (555.00-1480.75) 175-1960

ObliqueRSF 0.780±0.107 0.806 (0.717-0.849) 0.416-0.936 0.184±0.051 0.168 (0.156-0.209) 0.101-0.349 1137.10±581.78 1238.00 (600.25-1631.50) 22-1948

Penalized 0.829±0.058 0.832 (0.798-0.862) 0.692-0.950 0.142±0.048 0.131 (0.110-0.170) 0.057-0.295 776.67±551.31 691.50 (284.75-1274.25) 5-1946

Ranger 0.854±0.073 0.870 (0.822-0.899) 0.597-0.938 0.160±0.030 0.155 (0.138-0.177) 0.119-0.271 815.33±575.74 798.00 (284.25-1278.00) 14-1988

Rfsrc 0.857±0.052 0.870 (0.831-0.884) 0.691-0.958 0.163±0.016 0.164 (0.152-0.174) 0.131-0.198 1050.30±493.23 1043.00 (614.00-1344.75) 97-1959

Ridge 0.860±0.042 0.871 (0.833-0.888) 0.766-0.924 0.218±0.083 0.198 (0.179-0.220) 0.122-0.511 807.27±515.48 683.50 (394.00-1265.00) 84-1728

Rpart 0.758±0.089 0.783 (0.691-0.821) 0.593-0.896 0.241±0.078 0.225 (0.169-0.307) 0.138-0.418 600.77±427.46 489.50 (260.25-928.25) 51-1638

Svm 0.857±0.046 0.853 (0.818-0.893) 0.776-0.930 0.339±0.069 0.339 (0.280-0.374) 0.239-0.532 1116.87±493.32 1124.00 (682.75-1539.00) 250-1935

Xgboost (dart) 0.810±0.082 0.825 (0.783-0.865) 0.611-0.958 0.183±0.074 0.168 (0.132-0.221) 0.065-0.374 817.97±498.17 821.50 (382.25-1195.25) 43-1869

Xgboost (gblinear) 0.842±0.048 0.852 (0.816-0.874) 0.724-0.914 0.194±0.050 0.195 (0.161-0.228) 0.108-0.292 993.07±599.29 1046.00 (362.75-1395.75) 33-1939

Xgboost (gbtree) 0.806±0.075 0.809 (0.770-0.864) 0.601-0.934 0.182±0.056 0.175 (0.131-0.220) 0.090-0.334 835.63±552.05 844.00 (413.50-1155.25) 39-1994

Models

Boruta

Blackboost 0.841±0.062 0.857 (0.825-0.878) 0.633-0.925 0.333±0.089 0.364 (0.214-0.405) 0.180-0.468

54.07±7.62 51.50 (49.00-58.50) 38-73

Cforest 0.854±0.062 0.861 (0.824-0.899) 0.691-0.942 0.142±0.033 0.134 (0.118-0.170) 0.090-0.211

Coxboost 0.800±0.067 0.808 (0.752-0.851) 0.632-0.914 0.167±0.073 0.145 (0.118-0.212) 0.043-0.328

Ctree 0.739±0.086 0.746 (0.674-0.819) 0.576-0.868 0.269±0.101 0.244 (0.200-0.322) 0.117-0.561

Elasticnet 0.831±0.060 0.852 (0.793-0.877) 0.681-0.933 0.452±0.159 0.498 (0.345-0.568) 0.133-0.659

Gbm 0.824±0.049 0.831 (0.781-0.866) 0.723-0.901 0.368±0.102 0.375 (0.314-0.438) 0.141-0.550

Glmboost 0.809±0.062 0.822 (0.765-0.860) 0.681-0.894 0.340±0.089 0.364 (0.322-0.396) 0.169-0.484

Lasso 0.813±0.065 0.833 (0.761-0.867) 0.667-0.898 0.479±0.150 0.513 (0.461-0.573) 0.091-0.656

ObliqueRSF 0.802±0.066 0.817 (0.758-0.844) 0.644-0.934 0.157±0.063 0.134 (0.122-0.203) 0.059-0.320

Penalized 0.845±0.062 0.867 (0.810-0.888) 0.681-0.924 0.131±0.032 0.127 (0.105-0.162) 0.074-0.195

Ranger 0.844±0.067 0.864 (0.822-0.883) 0.649-0.967 0.140±0.031 0.133 (0.113-0.161) 0.099-0.204

Rfsrc 0.842±0.067 0.852 (0.809-0.883) 0.628-0.950 0.147±0.035 0.141 (0.117-0.176) 0.095-0.253

Ridge 0.856±0.057 0.874 (0.821-0.893) 0.681-0.924 0.281±0.124 0.214 (0.202-0.328) 0.182-0.603

Rpart 0.747±0.069 0.758 (0.705-0.802) 0.564-0.838 0.239±0.050 0.234 (0.193-0.277) 0.164-0.346

Svm 0.555±0.245 0.577 (0.314-0.767) 0.174-0.908 0.407±0.149 0.389 (0.286-0.536) 0.110-0.648

Xgboost (dart) 0.800±0.066 0.809 (0.751-0.847) 0.665-0.953 0.194±0.061 0.190 (0.147-0.241) 0.091-0.318

Xgboost (gblinear) 0.852±0.047 0.865 (0.817-0.886) 0.738-0.933 0.164±0.037 0.163 (0.135-0.186) 0.074-0.240

Xgboost (gbtree) 0.800±0.073 0.802 (0.756-0.856) 0.563-0.938 0.199±0.062 0.198 (0.160-0.250) 0.087-0.330

MLSeqSurv

voomStackPrio1 0.771±0.082 0.779 (0.705-0.842) 0.598-0.904 0.170±0.071 0.161 (0.122-0.186) 0.074-0.382

52.50±7.83 52.50 (46.75-58.25) 36-68

voomStackPrio2 0.737±0.075 0.731 (0.688-0.801) 0.551-0.867 0.162±0.028 0.165 (0.140-0.179) 0.103-0.237

voomStackIPF1 0.855±0.054 0.866 (0.823-0.888) 0.702-0.925 0.134±0.027 0.132 (0.113-0.155) 0.087-0.190

voomStackIPF2 0.776±0.070 0.783 (0.727-0.830) 0.636-0.891 0.139±0.029 0.139 (0.118-0.158) 0.070-0.200

voomStackIPF3 0.775±0.081 0.789 (0.711-0.837) 0.617-0.904 0.142±0.031 0.142 (0.118-0.163) 0.072-0.214

voomStackIPF4 0.854±0.053 0.866 (0.821-0.888) 0.702-0.925 0.135±0.028 0.132 (0.113-0.157) 0.087-0.190

voomStackIPF5 0.776±0.070 0.783 (0.727-0.830) 0.636-0.891 0.139±0.029 0.139 (0.118-0.158) 0.070-0.200

voomStackIPF6 0.774±0.081 0.789 (0.711-0.837) 0.617-0.904 0.142±0.031 0.142 (0.118-0.163) 0.072-0.214

voomStackIPF7 0.854±0.053 0.863 (0.823-0.888) 0.702-0.925 0.134±0.026 0.132 (0.113-0.155) 0.087-0.190

voomStackIPF8 0.776±0.070 0.783 (0.727-0.830) 0.636-0.891 0.139±0.029 0.139 (0.118-0.158) 0.070-0.200

voomStackIPF9 0.775±0.081 0.789 (0.711-0.837) 0.617-0.904 0.142±0.031 0.142 (0.118-0.163) 0.072-0.214

106

 (0.192±0.016), voomStackIPF7 (0.192±0.016), voomStackPrio2 (0.195±0.017), and

voomStackIPF5 (0.195±0.020). The voomStackPrio1 algorithm (0.224±0.053)

displayed the highest mean integrated Brier score. Within the category of methods

applied to internal feature selection, the penalized algorithm (0.200±0.023)

demonstrated the lowest mean integrated Brier score, whereas gbm (0.390±0.108),

svm (0.371±0.074), and blackboost (0.366±0.072) algorithms displayed the highest

mean integrated Brier scores. In the group of methods from the literature employing

Boruta feature selection, the ridge (ridge_B) (0.212±0.008), penalized (penalized_B)

(0.214±0.024) and ranger (ranger_B) (0.214±0.016) algorithms showcased the lowest

mean integrated Brier scores, while svm (svm_B) (0.456±0.105), gbm (gbm_B)

(0.411±0.120) and blackboost (blackboost_B) (0.365±0.071) algorithms presented the

highest mean integrated Brier scores.

Among the voomStackLasso algorithms, the mean number of selected features

for CESC data was the lowest (11.70±4.72). These were closely followed by the

methods in the literature that utilized Boruta feature selection (12.63±4.72). In terms

of internal feature selection methods, the algorithm with the lowest mean number of

features was elasticnet (737.30±453.70), while the algorithm with the highest mean

number of features was xgboost (with booster= “gblinear”) (1335.53±491.05).

The concordance index, integrated Brier score, and the number of selected

features for Esophageal Carcinoma (ESCA) data are depicted in Figure 4.3, with

related summary statistics presented in Table 4.3. After examining both the graph and

the table for ESCA data, it was observed that the ranger algorithm, when applied to

internal feature selection, achieved the highest mean concordance index at 0.580. The

second-highest value was recorded by the voomStackIPF7 algorithm, with an average

of 0.560. Within the category of methods applied to internal feature selection, the

highest mean concordance indices were observed for ranger (0.580±0.060) and svm

(0.559±0.057). Conversely, the lowest mean concordance index values were attributed

to penalized (0.478±0.064) and blackboost (0.493±0.075) algorithms. In the group of

methods from the literature employing Boruta feature selection, the rpart (rpart_B)

(0.519±0.076) and obliqueRSF (obliqueRSF_B) (0.517±0.078) algorithms

demonstrated the highest mean concordance index values, while the xgboost (with

booster= “gblinear”) (xgboost_gblinear_B) (0.476±0.053) and svm (svm_B)

107

Figure 4.2. The concordance index, integrated Brier score, and the number of selected

 features for CESC.

108

Table 4.2. The summary statistics of concordance index, integrated Brier score and the number of features selected for CESC.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.636±0.050 0.647 (0.599-0.672) 0.524-0.732 0.366±0.072 0.381 (0.340-0.411) 0.204-0.494 914.17±530.80 832.50 (472.25-1420.75) 71-1863

Cforest 0.662±0.054 0.679 (0.623-0.700) 0.535-0.755 0.207±0.019 0.207 (0.197-0.217) 0.164-0.261 935.27±565.19 963.00 (345.50-1410.75) 108-1929

Coxboost 0.639±0.054 0.651 (0.595-0.684) 0.532-0.738 0.271±0.054 0.254 (0.232-0.316) 0.193-0.417 1038.60±547.91 1128.00 (688.75-1481.75) 88-1858

Ctree 0.557±0.053 0.559 (0.522-0.584) 0.424-0.696 0.319±0.087 0.323 (0.246-0.386) 0.172-0.463 1053.77±548.88 1055.00 (553.00-1528.75) 152-1959

Elasticnet 0.651±0.054 0.665 (0.621-0.687) 0.540-0.749 0.304±0.090 0.306 (0.218-0.374) 0.188-0.528 737.30±453.70 603.00 (384.25-1018.75) 105-1896

Gbm 0.623±0.066 0.624 (0.589-0.665) 0.492-0.743 0.390±0.108 0.370 (0.297-0.499) 0.215-0.592 1066.67±609.77 984.00 (566.50-1635.25) 118-1950

Glmboost 0.655±0.067 0.657 (0.608-0.706) 0.485-0.768 0.348±0.077 0.376 (0.334-0.401) 0.200-0.443 917.50±599.38 831.00 (428.50-1531.25) 18-1756

Lasso 0.645±0.061 0.643 (0.609-0.697) 0.494-0.743 0.306±0.102 0.287 (0.213-0.390) 0.147-0.567 1128.70±520.11 1060.50 (786.00-1583.25) 106-1969

ObliqueRSF 0.597±0.060 0.589 (0.569-0.627) 0.417-0.728 0.241±0.042 0.234 (0.207-0.266) 0.179-0.332 948.03±533.00 841.50 (525.50-1523.00) 24-1812

Penalized 0.667±0.056 0.675 (0.629-0.710) 0.538-0.759 0.200±0.023 0.199 (0.181-0.211) 0.164-0.261 883.80±581.86 797.00 (470.25-1487.50) 32-1871

Ranger 0.659±0.056 0.670 (0.627-0.707) 0.538-0.781 0.209±0.009 0.208 (0.204-0.215) 0.186-0.230 768.13±520.49 570.50 (381.25-1094.00) 141-1918

Rfsrc 0.642±0.056 0.643 (0.606-0.688) 0.496-0.741 0.206±0.009 0.206 (0.199-0.211) 0.183-0.224 758.63±624.16 624.00 (188.50-1322.25) 8-1957

Ridge 0.686±0.052 0.700 (0.655-0.725) 0.542-0.780 0.241±0.049 0.220 (0.202-0.281) 0.186-0.379 869.97±415.53 851.00 (538.75-1224.25) 203-1691

Rpart 0.573±0.073 0.581 (0.517-0.620) 0.399-0.696 0.308±0.057 0.302 (0.278-0.355) 0.193-0.424 845.83±584.01 683.00 (327.00-1402.75) 32-1922

Svm 0.658±0.058 0.652 (0.618-0.706) 0.553-0.781 0.371±0.074 0.374 (0.318-0.410) 0.224-0.556 1123.77±540.47 1091.00 (655.50-1602.75) 19-1972

Xgboost (dart) 0.607±0.075 0.615 (0.544-0.665) 0.486-0.741 0.275±0.054 0.280 (0.238-0.307) 0.185-0.401 955.90±467.37 877.50 (594.00-1304.75) 156-1984

Xgboost (gblinear) 0.630±0.081 0.646 (0.591-0.693) 0.500-0.766 0.234±0.022 0.230 (0.219-0.249) 0.189-0.294 1335.53±491.05 1376.50 (837.50-1754.50) 318-1997

Xgboost (gbtree) 0.607±0.059 0.596 (0.577-0.657) 0.485-0.723 0.285±0.070 0.264 (0.235-0.341) 0.184-0.447 978.17±566.64 1027.00 (437.00-1475.75) 82-1926

Models

Boruta

Blackboost 0.592±0.063 0.593 (0.569-0.631) 0.478-0.730 0.365±0.071 0.379 (0.340-0.405) 0.203-0.494

12.63±4.72 11.00 (9.00-16.00) 5-23

Cforest 0.614±0.080 0.610 (0.571-0.658) 0.359-0.767 0.218±0.019 0.218 (0.209-0.230) 0.182-0274

Coxboost 0.629±0.069 0.638 (0.605-0.670) 0.464-0.753 0.227±0.038 0.219 (0.200-0.248) 0.173-0.309

Ctree 0.547±0.078 0.540 (0.493-0.600) 0.394-0.684 0.341±0.056 0.334 (0.311-0.394) 0.233-0.428

Elasticnet 0.617±0.082 0.633 (0.544-0.686) 0.466-0.744 0.309±0.101 0.292 (0.216-0.395) 0.168-0.530

Gbm 0.621±0.076 0.625 (0.577-0.699) 0.424-0.757 0.411±0.120 0.420 (0.301-0.518) 0.215-0.596

Glmboost 0.623±0.093 0.644 (0.557-0.694) 0.375-0.769 0.350±0.086 0.379 (0.303-0.411) 0.200-0.494

Lasso 0.623±0.076 0.642 (0.561-0.679) 0.480-0.749 0.324±0.109 0.318 (0.222-0.384) 0.175-0.545

ObliqueRSF 0.579±0.075 0.592 (0.541-0.620) 0.399-0.740 0.268±0.061 0.253 (0.226-0.310) 0.180-0.416

Penalized 0.621±0.067 0.627 (0.565-0.669) 0.481-0.756 0.214±0.024 0.210 (0.198-0.229) 0.176-0.283

Ranger 0.643±0.066 0.637 (0.600-0.699) 0.460-0.760 0.214±0.016 0.214 (0.207-0.221) 0.186-0.250

Rfsrc 0.615±0.070 0.621 (0.571-0.672) 0.474-0.750 0.221±0.026 0.218 (0.202-0.236) 0.184-0.294

Ridge 0.632±0.062 0.632 (0.594-0.660) 0.507-0.769 0.212±0.008 0.210 (0.206-0.217) 0.203-0.237

Rpart 0.546±0.082 0.557 (0.492-0.614) 0.378-0.741 0.317±0.060 0.315 (0.277-0.336) 0.200-0.471

Svm 0.563±0.078 0.560 (0.514-0.622) 0.404-0.683 0.456±0.105 0.424 (0.356-0.543) 0.335-0.638

Xgboost (dart) 0.599±0.078 0.599 (0.531-0.648) 0.465-0.780 0.263±0.039 0.262 (0.235-0.287) 0.188-0.326

Xgboost (gblinear) 0.558±0.069 0.543 (0.500-0.608) 0.386-0.691 0.244±0.019 0.241 (0.230-0.254) 0.214-0.294

Xgboost (gbtree) 0.601±0.077 0.599 (0.533-0.670) 0.445-0.756 0.254±0.050 0.265 (0.202-0.292) 0.187-0.338

MLSeqSurv

voomStackPrio1 0.645±0.051 0.634 (0.609-0.694) 0.551-0.741 0.224±0.053 0.211 (0.193-0.242) 0.148-0.431

11.70±4.72 12.00 (8.00-14.00) 4-26

voomStackPrio2 0.628±0.055 0.627 (0.589-0.675) 0.511-0.748 0.195±0.017 0.195 (0.183-0.206) 0.162-0.232

voomStackIPF1 0.660±0.047 0.668 (0.619-0.685) 0.566-0.753 0.192±0.016 0.192 (0.184-0.204) 0.145-0.218

voomStackIPF2 0.639±0.050 0.633 (0.603-0.678) 0.513-0.742 0.197±0.022 0.196 (0.181-0.213) 0.144-0.245

voomStackIPF3 0.638±0.050 0.633 (0.602-0.678) 0.513-0.741 0.198±0.022 0.197 (0.183-0.212) 0.145-0.247

voomStackIPF4 0.658±0.049 0.663 (0.616-0.685) 0.558-0.759 0.191±0.016 0.190 (0.183-0.204) 0.145-0.217

voomStackIPF5 0.640±0.049 0.633 (0.603-0.677) 0.513-0.740 0.195±0.020 0.193 (0.181-0.209) 0.144-0.229

voomStackIPF6 0.639±0.049 0.632 (0.602-0.677) 0.513-0.744 0.196±0.020 0.195 (0.181-0.210) 0.145-0.231

voomStackIPF7 0.659±0.047 0.656 (0.619-0.687) 0.568-0.754 0.192±0.016 0.193 (0.184-0.204) 0.145-0.218

voomStackIPF8 0.638±0.050 0.633 (0.603-0.678) 0.513-0.742 0.198±0.023 0.196 (0.181-0.214) 0.144-0.256

voomStackIPF9 0.637±0.050 0.633 (0.602-0.678) 0.513-0.742 0.199±0.023 0.197 (0.183-0.213) 0.145-0.257

109

(0.481±0.058) algorithms exhibited the lowest mean concordance index values.

Among the voomStackLasso methods, the voomStackIPF7 (0.560±0.063) and

voomStackIPF1 (0.558±0.064) algorithms showed the highest mean concordance

index values, while the voomStackPrio2 algorithm (0.530±0.122) displayed the lowest

mean concordance index.

It was observed that the cforest algorithm, when applied to internal feature

selection, achieved the lowest mean integrated Brier score at 0.182 for ESCA data.

Following this, the penalized (penalized_B) and ridge (ridge_B) algorithms, both with

Boruta feature selection applied, yielded an integrated Brier score of 0.183. Within the

category of methods applied to internal feature selection, the cforest (0.182±0.025)

and penalized (0.193±0.025) algorithms demonstrated the lowest mean integrated

Brier score, whereas svm (0.515±0.085), glmboost (0.411±0.192), and blackboost

(0.377±0.201) algorithms displayed the highest mean integrated Brier score. In the

group of methods from the literature employing Boruta feature selection, penalized

(penalized_B) (0.183±0.026) and ridge (ridge_B) (0.183±0.028) algorithms

showcased the lowest mean integrated Brier score, while svm (svm_B) (0.515±0.068),

glmboost (glmboost_B) (0.448±0.172), ctree (ctree_B) (0.418±0.077) and blackboost

(blackboost_B) (0.416±0.182) algorithms presented the highest mean integrated Brier

score. It was noted that among the voomStackLasso algorithms, the voomStackPrio2

and voomStackIPF4 exhibited the lowest mean integrated Brier score for ESCA data,

at 0.205. This was followed by voomStackIPF1 (0.206±0.012) and voomStackIPF7

(0.206±0.013). The voomStackPrio1 algorithm (0.213±0.033) displayed the highest

mean integrated Brier score.

Among the methods in the literature that applied Boruta feature selection, the

mean number of selected features for ESCA data was the lowest (5.77±2.67). These

were closely followed by the voomStackLasso algorithms (6.10±2.68). In terms of

internal feature selection methods, the algorithm with the lowest mean number of

features was obliqueRSF (774.70±585.68), while the algorithm with the highest mean

number of features was rfsrc (1196.97±501.43).

The concordance index, integrated Brier score, and the number of selected

features for Glioblastoma Multiforme (GBM) data are depicted in Figure 4.4, with

related summary statistics presented in Table 4.4. After examining both the graph and

the table for GBM data, it was observed that the ranger algorithm, when applied to

110

Figure 4.3. The concordance index, integrated Brier score, and the number of selected

 features for ESCA.

111

Table 4.3. The summary statistics of concordance index, integrated Brier score and the number of features selected for ESCA.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.493±0.075 0.503 (0.456-0.535) 0.317-0.625 0.377±0.201 0.408 (0.186-0.539) 0.127-0.702 897.37±528.96 809.00 (457.25-1419.00) 73-1903

Cforest 0.541±0.074 0.530 (0.508-0.601) 0.374-0.685 0.182±0.025 0.183 (0.173-0.198) 0.126-0.229 1003.17±595.24 963.00 (560.25-1414.00) 38-1995

Coxboost 0.524±0.062 0.534 (0.477-0.573) 0.392-0.622 0.240±0.047 0.235 (0.201-0.277) 0.163-0.323 910.03±563.47 734.00 (455.00-1351.50) 135-1998

Ctree 0.500±0.028 0.500 (0.499-0.501) 0.424-0.569 0.211±0.080 0.187 (0.172-0.209) 0.127-0.455 1015.27±570.17 1129.50 (447.75-1501.00) 32-1864

Elasticnet 0.510±0.068 0.508 (0.482-0.560) 0.325-0.636 0.338±0.113 0.322 (0.233-0.405) 0.172-0.649 962.00±576.62 871.50 (503.25-1588.50) 45-1965

Gbm 0.540±0.060 0.547 (0.503-0.580) 0.412-0.687 0.356±0.085 0.342 (0.281-0.423) 0.218-0.520 884.97±534.81 808.50 (569.50-1392.50) 109-1933

Glmboost 0.513±0.066 0.510 (0.472-0.561) 0.374-0.663 0.411±0.192 0.480 (0.201-0.548) 0.127-0.702 827.17±572.71 732.50 (352.00-1264.75) 15-1958

Lasso 0.507±0.068 0.488 (0.454-0.550) 0.400-0.696 0.334±0.102 0.304 (0.263-0.445) 0.170-0.529 842.03±554.73 790.50 (322.00-1274.50) 68-1981

ObliqueRSF 0.524±0.064 0.513 (0.480-0.577) 0.425-0.677 0.236±0.054 0.224 (0.204-0.241) 0.150-0.379 774.70±585.68 700.50 (219.75-1267.25) 13-1931

Penalized 0.478±0.064 0.473 (0.447-0.529) 0.311-0.563 0.193±0.025 0.194 (0.177-0.212) 0.141-0.240 902.90±541.23 849.50 (454.75-1309.00) 59-1904

Ranger 0.580±0.060 0.573 (0.538-0.617) 0.460-0.765 0.198±0.013 0.197 (0.188-0.205) 0.172-0.231 862.80±662.03 697.00 (237.50-1567.00) 47-1934

Rfsrc 0.546±0.068 0.549 (0.476-0.591) 0.430-0.731 0.203±0.032 0.196 (0.180-0.215) 0.161-0.280 1196.97±501.43 1127.00 (792.00-1629.75) 181-1951

Ridge 0.526±0.069 0.519 (0.477-0.569) 0.351-0.661 0.204±0.054 0.201 (0.168-0.225) 0.128-0.382 799.27±456.03 836.50 (412.75-1054.75) 119-1803

Rpart 0.516±0.068 0.509 (0.466-0.559) 0.404-0.708 0.249±0.050 0.248 (0.208-0.290) 0.144-0.340 983.80±559.49 1058.50 (469.00-1457.00) 15-1922

Svm 0.559±0.057 0.549 (0.521-0.613) 0.430-0.661 0.515±0.085 0.495 (0.450-0.578) 0.337-0.679 815.43±605.25 754.00 (208.25-1316.25) 12-1948

Xgboost (dart) 0.520±0.063 0.513 (0.478-0.557) 0.375-0.649 0.272±0.052 0.270 (0.237-0.311) 0.165-0.384 924.87±560.28 972.00 (426.50-1422.00) 28-1908

Xgboost (gblinear) 0.507±0.063 0.500 (0.495-0.540) 0.318-0.622 0.231±0.029 0.236 (0.200-0.255) 0.179-0.273 1190.40±597.32 1323.00 (682.50-1688.50) 23-1984

Xgboost (gbtree) 0.529±0.060 0.532 (0.481-0.569) 0.413-0.672 0.276±0.058 0.278 (0.237-0.314) 0.155-0.386 913.70±617.37 746.50 (372.50-1498.25) 47-1969

Models

Boruta

Blackboost 0.495±0.032 0.500 (0.487-0.505) 0.417-0.560 0.416±0.182 0.478 (0.195-0.541) 0.156-0.702

5.77±2.67 5.00 (4.00-8.00) 2-11

Cforest 0.498±0.057 0.498 (0.461-0.527) 0.383-0.659 0.243±0.066 0.231 (0.198-0.268) 0.150-0.434

Coxboost 0.503±0.055 0.498 (0.463-0.531) 0.408-0.625 0.198±0.034 0.196 (0.176-0.214) 0.116-0.295

Ctree 0.500±0.066 0.492 (0.466-0.540) 0.292-0.629 0.418±0.077 0.425 (0.359-0.469) 0.283-0.575

Elasticnet 0.501±0.060 0.492 (0.452-0.539) 0.395-0.628 0.323±0.115 0.306 (0.211-0.424) 0.161-0.530

Gbm 0.502±0.053 0.503 (0.453-0.543) 0.423-0.630 0.324±0.091 0.296 (0.266-0.353) 0.227-0.675

Glmboost 0.493±0.065 0.496 (0.438-0.540) 0.379-0.630 0.448±0.172 0.494 (0.361-0.548) 0.128-0.675

Lasso 0.500±0.056 0.496 (0.458-0.545) 0.398-0.605 0.327±0.112 0.306 (0.263-0.427) 0.165-0.529

ObliqueRSF 0.517±0.078 0.537 (0.460-0.566) 0.344-0.670 0.240±0.046 0.233 (0.203-0.270) 0.180-0.343

Penalized 0.489±0.055 0.495 (0.438-0.533) 0.381-0.627 0.183±0.026 0.179 (0.168-0.201) 0.132-0.247

Ranger 0.492±0.062 0.484 (0.443-0.542) 0.403-0.628 0.214±0.019 0.213 (0.200-0.226) 0.177-0.273

Rfsrc 0.511±0.056 0.517 (0.459-0.550) 0.424-0.634 0.221±0.028 0.223 (0.201-0.236) 0.172-0.299

Ridge 0.497±0.057 0.495 (0.458-0.528) 0.396-0.624 0.183±0.028 0.182 (0.166-0.201) 0.128-0.276

Rpart 0.519±0.076 0.501 (0.464-0.599) 0.392-0.653 0.250±0.044 0.243 (0.228-0.277) 0.164-0.329

Svm 0.481±0.058 0.467 (0.431-0.532) 0.394-0.634 0.515±0.068 0.496 (0.464-0.547) 0.412-0.703

Xgboost (dart) 0.511±0.075 0.515 (0.457-0.569) 0.365-0.671 0.262±0.051 0.260 (0.221-0.306) 0.155-0.346

Xgboost (gblinear) 0.476±0.053 0.500 (0.434-0.501) 0.391-0.595 0.227±0.031 0.233 (0.196-0.249) 0.175-0.273

Xgboost (gbtree) 0.503±0.067 0.484 (0.453-0.558) 0.373-0.668 0.283±0.050 0.279 (0.240-0.319) 0.196-0.384

MLSeqSurv

voomStackPrio1 0.550±0.065 0.544 (0.502-0.587) 0.408-0.717 0.213±0.033 0.205 (0.197-0.218) 0.173-0.362

6.10±2.68 5.00 (4.99-8.00) 2-13

voomStackPrio2 0.530±0.122 0.548 (0.490-0.601) 0.000-0.717 0.205±0.018 0.201 (0.196-0.210) 0.187-0.283

voomStackIPF1 0.558±0.064 0.560 (0.509-0.614) 0.428-0.715 0.206±0.012 0.203 (0.200-0.211) 0.189-0.244

voomStackIPF2 0.552±0.062 0.555 (0.507-0.590) 0.434-0.718 0.210±0.016 0.208 (0.198-0.217) 0.187-0.256

voomStackIPF3 0.551±0.062 0.553 (0.506-0.589) 0.434-0.718 0.211±0.016 0.209 (0.199-0.218) 0.187-0.257

voomStackIPF4 0.553±0.065 0.553 (0.505-0.613) 0.424-0.711 0.205±0.011 0.203 (0.200-0.208) 0.187-0.240

voomStackIPF5 0.552±0.063 0.551 (0.507-0.597) 0.434-0.718 0.209±0.015 0.207 (0.198-0.217) 0.189-0.253

voomStackIPF6 0.551±0.063 0.551 (0.507-0.591) 0.434-0.718 0.210±0.016 0.208 (0.199-0.217) 0.189-0.254

voomStackIPF7 0.560±0.063 0.563 (0.513-0.617) 0.428-0.717 0.206±0.013 0.204 (0.199-0.212) 0.189-0.246

voomStackIPF8 0.551±0.064 0.556 (0.499-0.591) 0.434-0.718 0.211±0.016 0.210 (0.199-0.218) 0.186-0.258

voomStackIPF9 0.551±0.063 0.551 (0.501-0.588) 0.434-0.718 0.212±0.017 0.210 (0.199-0.219) 0.186-0.259

112

internal feature selection, achieved the highest mean concordance index at 0.600.

Within the category of methods applied to internal feature selection, the highest mean

concordance indices were observed for ranger (0.600±0.045), cforest (0.593±0.052),

gbm (0.590±0.060), penalized (0.585±0.056), elasticnet (0.583±0.060), lasso

(0.582±0.052), coxboost (0.581±0.064), and rfsrc (0.581±0.050). Conversely, the

lowest mean concordance index was attributed to the ctree algorithm (0.523±0.045).

In the group of methods from the literature employing Boruta feature selection, the

lasso (lasso_B) (0.577±0.040) and xgboost (with booster= “gblinear”)

(xgboost_gblinear_B) (0.575±0.042) algorithms demonstrated the highest mean

concordance index, while the obliqueRSF (obliqueRSF_B) (0.528±0.068) and xgboost

(with booster= “dart”) (xgboost_dart_B) (0.530±0.047) algorithms exhibited the

lowest mean concordance index. Among the voomStackLasso methods, the

voomStackIPF1 (0.579±0.034) and voomStackPrio1 (0.576±0.042) algorithms

showed the highest mean concordance index values, while the voomStackIPF7

algorithm (0.541±0.151) displayed the lowest mean concordance index.

It was observed that the cforest algorithm, when applied to internal feature

selection, achieved the lowest mean integrated Brier score at 0.113 for GBM data.

Within the category of methods applied to internal feature selection, the cforest

(0.113±0.020) and penalized (0.115±0.022) algorithms demonstrated the lowest mean

integrated Brier score, whereas svm (0.628±0.100), glmboost (0.501±0.277), and ctree

(0.413±0.118) algorithms displayed the highest mean integrated Brier score. In the

group of methods from the literature employing Boruta feature selection, the penalized

(penalized_B) algorithm (0.117±0.020) showcased the lowest mean integrated Brier

score, while the svm algorithm (0.632±0.133) presented the highest mean integrated

Brier score. It was noted that among the voomStackLasso algorithms, the

voomStackPrio5 and voomStackIPF6 exhibited the lowest mean integrated Brier score

for GBM data, at 0.149. This was followed by voomStackIPF1, voomStackIPF2,

voomStackIPF3, voomStackIPF4, and voomStackIPF7, all with a score of 0.150. The

voomStackPrio1 algorithm (0.161±0.031) displayed the highest mean integrated Brier

score.

Among the methods in the literature that applied Boruta feature selection, the

mean number of selected features for GBM data was the lowest (7.87±3.16). These

were closely followed by the voomStackLasso algorithms (7.90±4.07). In terms of

113

internal feature selection methods, the algorithm with the lowest mean number of

features was ranger (647.80±478.69), while the algorithm with the highest mean

number of features was xgboost (with booster= “gblinear”) (1330.83±561.83).

The concordance index, integrated Brier score, and the number of selected

features for Kidney Renal Clear Cell Carcinoma (KIRC) data are depicted in Figure

4.5, with related summary statistics presented in Table 4.5. Upon reviewing both the

graph and the table for KIRC data, it was observed that the cforest and ranger

algorithms, when applied to internal feature selection, achieved the highest mean

concordance index at 0.717. Following this, the rfsrc algorithm, with internal feature

selection applied, yielded a mean concordance index of 0.708. Within the category of

methods applied to internal feature selection, the highest mean concordance indices

were observed for cforest (0.717±0.036), ranger (0.717±0.034), rfsrc (0.708±0.034),

ridge (0.707±0.034), and blackboost (0.705±0.033) algorithms. Conversely, the lowest

mean concordance index was attributed to the ctree algorithm (0.624±0.031). In the

group of methods from the literature employing Boruta feature selection, the cforest

(cforest_B) and ranger (ranger_B) algorithms demonstrated the highest mean

concordance index at 0.693, while the svm algorithm (0.601±0.076) exhibited the

lowest mean concordance index. Among the voomStackLasso methods, the

voomStackIPF1, voomStackIPF4, and voomStackIPF7 algorithms showed the highest

mean concordance index at 0.684, while the voomStackPrio2 algorithm (0.663±0.043)

displayed the lowest mean concordance index.

It was observed that the cforest algorithm, when applied to internal feature

selection, achieved the lowest mean integrated Brier score at 0.166 for KIRC data.

Within the category of methods applied to internal feature selection, the cforest

(0.166±0.009), penalized (0.171±0.012), ranger (0.173±0.007), and rfsrc

(0.173±0.008) algorithms demonstrated the lowest mean integrated Brier score,

whereas the svm algorithm (0.334±0.021) displayed the highest mean integrated Brier

score. In the group of methods from the literature employing Boruta feature selection,

penalized (0.168±0.015), ranger (0.173±0.011), coxboost (coxboost_B)

(0.174±0.017), rfsrc (0.175±0.015) and cforest (cforest_B) (0.177±0.012) algorithms

showcased the lowest mean integrated Brier score, while elasticnet (elasticnet_B)

(0.413±0.162), svm (svm_B) (0.409±0.075), and lasso (lasso_B) (0.403±0.154)

algorithms presented the highest mean integrated Brier score. It was noted that among

114

the voomStackLasso algorithms, the voomStackIPF2, voomStackIPF5, and

voomStackIPF8 exhibited the lowest mean integrated Brier score for KIRC data, at

0.178. This was followed by voomStackIPF3, voomStackIPF6, voomStackIPF9, at

0.179. The voomStackPrio1 algorithm (0.193±0.029) displayed the highest mean

integrated Brier score.

Among the methods in the voomStackLasso algorithms, the mean number of

selected features for KIRC data was the lowest (30.03±10.82). These were closely

followed by the methods in the literature that utilized Boruta feature selection

(30.47±10.31). In terms of internal feature selection methods, the algorithm exhibiting

the lowest mean number of features was rpart (763.03±503.42), whereas the algorithm

demonstrating the highest mean number of features was xgboost (with booster=

“gblinear”) (1653.70±291.65).

The concordance index, integrated Brier score, and the number of selected

features for Kidney Renal Papillary Cell Carcinoma (KIRP) data are depicted in Figure

4.6, with related summary statistics presented in Table 4.6. After examining both the

graph and the table for KIRP data, it was observed that the rfsrc (rfsrc_B) algorithm,

when applied to Boruta feature selection, achieved the highest mean concordance

index at 0.818. This is followed by the blackboost (blackboost_B) algorithm, with

Boruta feature selection applied, yielding a mean concordance index of 0.816. Among

the methods employed for internal feature selection, the highest mean concordance

indices were observed for lasso (0.805±0.075), elasticnet (0.804±0.068), and ranger

(0.804±0.069). Conversely, the lowest mean concordance indices were attributed to

ctree (0.719±0.103) and rpart (0.724±0.081) algorithms. In the group of methods from

the literature employing Boruta feature selection, the rfsrc (rfsrc_B) (0.818±0.078),

blackboost (blackboost_B) (0.816±0.072), and gbm (gbm_B) (0.812±0.074)

algorithms demonstrated the highest mean concordance index, while the svm (svm_B)

algorithm (0.607±0.261) exhibited the lowest mean concordance index. Among the

voomStackLasso methods, the voomStackIPF7 algorithm (0.800±0.068) showed the

highest mean concordance index, while the voomStackIPF6 algorithm (0.751±0.099)

displayed the lowest mean concordance index.

 It was noted that for KIRP data, the voomStackIPF8 algorithm attained the

lowest mean integrated Brier score of 0.122. This was followed by voomStackIPF1

115

Figure 4.4. The concordance index, integrated Brier score, and the number of selected

 features for GBM.

116

Table 4.4. The summary statistics of concordance index, integrated Brier score and the number of features selected for GBM.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.561±0.047 0.552 (0.540-0.587) 0.458-0.657 0.283±0.256 0.134 (0.116-0.531) 0.081-0.780 987.83±529.60 910.50 (522.75-1400.25) 68-1990

Cforest 0.593±0.052 0.594 (0.566-0.624) 0.441-0.690 0.113±0.020 0.115 (0.099-0.128) 0.068-0.148 891.90±601.21 819.50 (377.75-1354.00) 67-1941

Coxboost 0.581±0.064 0.585 (0.531-0.625) 0.453-0.711 0.136±0.029 0.135 (0.121-0.160) 0.070-0.203 893.03±588.57 818.00 (290.25-1423.25) 16-1996

Ctree 0.523±0.045 0.522 (0.491-0.559) 0.410-0.632 0.413±0.118 0.427 (0.362-0.499) 0.120-0.589 972.53±605.80 795.00 (516.50-1609.75) 41-1962

Elasticnet 0.583±0.060 0.573 (0.543-0.622) 0.449-0.710 0.254±0.101 0.241 (0.206-0.299) 0.097-0.634 994.77±562.07 985.00 (446.00-1508.25) 130-2000

Gbm 0.590±0.060 0.599 (0.561-0.630) 0.447-0.680 0.272±0.091 0.252 (0.205-0.339) 0.119-0.463 1121.17±545.80 1096.50 (734.00-1588.00) 40-1974

Glmboost 0.568±0.050 0.568 (0.528-0.605) 0.469-0.658 0.501±0.277 0.649 (0.126-0.746) 0.083-0.794 742.83±522.26 709.50 (238.25-1121.25) 86-1764

Lasso 0.582±0.052 0.572 (0.537-0.630) 0.495-0.682 0.259±0.135 0.235 (0.148-0.321) 0.099-0.704 987.37±533.94 926.50 (482.50-1549.25) 116-1898

ObliqueRSF 0.543±0.056 0.541 (0.498-0.580) 0.453-0.684 0.129±0.032 0.132 (0.102-0.149) 0.064-0.197 798.77±543.87 861.50 (311.25-1098.25) 17-1966

Penalized 0.585±0.056 0.591 (0.547-0.622) 0.461-0.679 0.115±0.022 0.115 (0.101-0.132) 0.067-0.155 866.83±502.49 774.00 (473.25-1287.00) 64-1775

Ranger 0.600±0.045 0.598 (0.564-0.641) 0.513-0.662 0.127±0.019 0.126 (0.115-0.140) 0.073-0.162 647.80±478.69 476.50 (294.75-1021.75) 27-1722

Rfsrc 0.581±0.050 0.576 (0.550-0.608) 0.476-0.712 0.126±0.027 0.123 (0.112-0.139) 0.073-0.218 792.90±608.56 632.00 (245.25-1351.25) 5-1927

Ridge 0.578±0.051 0.585 (0.544-0.613) 0.455-0.652 0.201±0.073 0.190 (0.142-0.243) 0.100-0.343 839.80±545.74 814.50 (384.50-1093.75) 33-1864

Rpart 0.544±0.050 0.546 (0.505-0.571) 0.439-0.670 0.165±0.036 0.169 (0.134-0.187) 0.096-0.234 869.53±474.88 804.00 (496.25-1350.50) 107-1853

Svm 0.554±0.061 0.548 (0.509-0.594) 0.461-0.681 0.628±0.100 0.657 (0.583-0.695) 0.323-0.786 937.73±537.22 835.00 (600.50-1366.50) 45-1996

Xgboost (dart) 0.564±0.048 0.570 (0.524-0.600) 0.452-0.673 0.174±0.040 0.170 (0.151-0.207) 0.093-0.240 1025.43±598.77 901.50 (491.25-1624.25) 90-1965

Xgboost (gblinear) 0.555±0.051 0.569 (0.503-0.599) 0.449-0.625 0.153±0.032 0.157 (0.133-0.181) 0.088-0.207 1330.83±561.83 1486.00 (1047.25-1738.50) 2-1988

Xgboost (gbtree) 0.567±0.057 0.573 (0.540-0.594) 0.403-0.675 0.170±0.041 0.165 (0.135-0.193) 0.100-0.271 908.07±466.79 911.00 (528.75-1334.25) 85-1690

Models

Boruta

Blackboost 0.548±0.046 0.556 (0.524-0.576) 0.419-0.626 0.347±0.279 0.145 (0.120-0.700) 0.073-0.794

7.87±3.16 7.00 (6.00-9.00) 3-16

Cforest 0.571±0.043 0.569 (0.537-0.603) 0.494-0.663 0.127±0.024 0.122 (0.109-0.138) 0.094-0.214

Coxboost 0.567±0.045 0.569 (0.546-0.600) 0.443-0.657 0.127±0.024 0.126 (0.109-0.147) 0.085-0.171

Ctree 0.549±0.047 0.548 (0.515-0.587) 0.467-0.667 0.353±0.094 0.349 (0.280-0.409) 0.190-0.587

Elasticnet 0.573±0.043 0.578 (0.551-0.599) 0.479-0.659 0.235±0.079 0.235 (0.178-0.289) 0.092-0.395

Gbm 0.542±0.050 0.546 (0.514-0.575) 0.434-0.644 0.252±0.129 0.215 (0.166-0.304) 0.130-0.705

Glmboost 0.565±0.041 0.565 (0.550-0.594) 0.453-0.636 0.397±0.286 0.390 (0.115-0.688) 0.082-0.780

Lasso 0.577±0.040 0.578 (0.557-0.600) 0.479-0.664 0.234±0.080 0.234 (0.178-0.292) 0.099-0.377

ObliqueRSF 0.528±0.068 0.525 (0.471-0.594) 0.378-0.641 0.137±0.024 0.138 (0.120-0.159) 0.087-0.179

Penalized 0.572±0.040 0.567 (0.547-0.602) 0.486-0.654 0.117±0.020 0.120 (0.101-0.132) 0.073-0.152

Ranger 0.557±0.041 0.551 (0.529-0.589) 0.489-0.680 0.129±0.019 0.131 (0.115-0.144) 0.086-0.162

Rfsrc 0.546±0.044 0.543 (0.523-0.565) 0.457-0.680 0.138±0.036 0.129 (0.116-0.152) 0.083-0.242

Ridge 0.569±0.039 0.575 (0.541-0.599) 0.491-0.646 0.122±0.025 0.119 (0.108-0.134) 0.069-0.189

Rpart 0.543±0.049 0.542 (0.515-0.572) 0.436-0.648 0.165±0.039 0.159 (0.138-0.198) 0.097-0.253

Svm 0.548±0.066 0.561 (0.511-0.596) 0.398-0.639 0.632±0.133 0.679 (0.522-0.731) 0.308-0.796

Xgboost (dart) 0.530±0.047 0.525 (0.495-0.549) 0.455-0.651 0.190±0.041 0.186 (0.162-0.226) 0.119-0.270

Xgboost (gblinear) 0.575±0.042 0.573 (0.542-0.605) 0.500-0.665 0.152±0.036 0.149 (0.118-0.184) 0.105-0.213

Xgboost (gbtree) 0.535±0.047 0.539 (0.500-0.566) 0.441-0.645 0.188±0.045 0.182 (0.156-0.214) 0.105-0.272

MLSeqSurv

voomStackPrio1 0.576±0.042 0.586 (0.554-0.607) 0.469-0.649 0.161±0.031 0.158 (0.133-0.183) 0.106-0.236

7.90±4.07 7.00 (4.75-10.00) 2-21

voomStackPrio2 0.569±0.045 0.566 (0.552-0.593) 0.455-0.654 0.153±0.021 0.154 (0.136-0.166) 0.109-0.193

voomStackIPF1 0.579±0.034 0.581 (0.553-0.605) 0.505-0.643 0.150±0.017 0.152 (0.136-0.160) 0.112-0.190

voomStackIPF2 0.572±0.042 0.567 (0.552-0.605) 0.467-0.632 0.150±0.017 0.147 (0.140-0.163) 0.116-0.191

voomStackIPF3 0.570±0.042 0.565 (0.549-0.605) 0.467-0.642 0.150±0.017 0.148 (0.141-0.163) 0.115-0.191

voomStackIPF4 0.557±0.110 0.575 (0.547-0.601) 0.000-0.641 0.150±0.017 0.152 (0.136-0.160) 0.112-0.190

voomStackIPF5 0.572±0.046 0.565 (0.549-0.613) 0.463-0.663 0.149±0.017 0.147 (0.136-0.161) 0.116-0.191

voomStackIPF6 0.572±0.046 0.564 (0.547-0.613) 0.463-0.665 0.149±0.017 0.148 (0.136-0.161) 0.115-0.191

voomStackIPF7 0.541±0.151 0.581 (0.544-0.602) 0.000-0.643 0.150±0.017 0.152 (0.136-0.160) 0.112-0.190

voomStackIPF8 0.571±0.041 0.567 (0.547-0.602) 0.470-0.632 0.151±0.017 0.149 (0.141-0.163) 0.116-0.191

voomStackIPF9 0.571±0.042 0.568 (0.551-0.602) 0.470-0.642 0.151±0.017 0.150 (0.141-0.163) 0.115-0.191

117

(0.125±0.018) and voomStackIPF7 (0.125±0.018). The voomStackPrio1 algorithm

(0.189±0.087) displayed the highest mean integrated Brier score. Within the category

of methods applied to internal feature selection, the penalized (0.140±0.022), cforest

(0.142±0.022), and ranger (0.143±0.017) algorithms demonstrated the lowest mean

integrated Brier score, whereas the elasticnet algorithm (0.606±0.162) displayed the

highest mean integrated Brier score. In the category of methods from the literature

utilizing Boruta feature selection, the penalized (penalized_B) and ranger (ranger_B)

algorithms showcased the lowest mean integrated Brier score at 0.146, while elasticnet

(elasticnet_B) (0.670±0.060) and lasso (lasso_B) (0.657±0.104) algorithms presented

the highest mean integrated Brier score.

Among the methods in the literature that applied Boruta feature selection, the

mean number of selected features for KIRP data was the lowest (34.40±6.41). These

were closely followed by the voomStackLasso algorithms (38.90±8.30). In terms of

internal feature selection methods, the algorithm with the lowest mean number of

features was rpart (771.13±591.05), while the algorithm with the highest mean number

of features was xgboost (with booster= “gblinear”) (1485.13±534.78).

The concordance index, integrated Brier score, and the number of selected

features for Acute Myeloid Leukemia (LAML) data are depicted in Figure 4.7, with

related summary statistics presented in Table 4.7. After examining both the graph and

the table for LAML data, it was observed that the coxboost and rfsrc algorithms, when

applied to internal feature selection, achieved the highest mean concordance index at

0.667. This is followed by the elasticnet (0.664±0.065), lasso (0.664±0.070), cforest

(0.662±0.063), ranger (0.662±0.055), and ridge (0.660±0.059) algorithms, where

internal feature selection was applied, resulting in a mean concordance index.

Meanwhile, the ctree algorithm (0.554±0.052) exhibited the lowest mean concordance

index. Among the voomStackLasso methods, the voomStackIPF7 algorithm

(0.640±0.052) showed the highest mean concordance index, while the voomStackIPF6

algorithm (0.592±0.086) displayed the lowest mean concordance index. In the group

of methods from the literature employing Boruta feature selection, the ranger

(ranger_B) (0.629±0.048) and rfsrc (rfsrc_B) (0.622±0.058) algorithms demonstrated

the highest mean concordance index, while the svm (svm_B) algorithm (0.527±0.085)

exhibited the lowest mean concordance index.

118

Figure 4.5. The concordance index, integrated Brier score, and the number of selected

 features for KIRC.

119

Table 4.5. The summary statistics of concordance index, integrated Brier score and the number of features selected for KIRC.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.705±0.033 0.708 (0.687-0.721) 0.634-0.769 0.255±0.081 0.203 (0.197-0.359) 0.193-0.413 905.80±471.27 887.50 (459.25-1327.25) 91-1604

Cforest 0.717±0.036 0.722 (0.696-0.740) 0.647-0.802 0.166±0.009 0.165 (0.159-0.171) 0.150-0.187 1086.53±587.94 1175.00 (425.50-1635.50) 125-1983

Coxboost 0.688±0.032 0.685 (0.663-0.715) 0.638-0.759 0.180±0.021 0.178 (0.166-0.193) 0.151-0.234 1047.83±502.49 1135.00 (650.25-1411.00) 21-1879

Ctree 0.624±0.031 0.617 (0.603-0.654) 0.567-0.674 0.279±0.034 0.283 (0.261-0.301) 0.206-0.344 783.13±511.44 746.00 (315.00-1194.75) 89-1781

Elasticnet 0.697±0.034 0.688 (0.672-0.729) 0.629-0.772 0.254±0.096 0.217 (0.185-0.297) 0.163-0.531 1194.97±537.78 1165.50 (720.25-1634.00) 95-1992

Gbm 0.686±0.032 0.689 (0.660-0.711) 0.627-0.754 0.308±0.048 0.305 (0.266-0.348) 0.222-0.397 960.50±509.20 835.50 (528.00-1380.00) 139-1928

Glmboost 0.684±0.033 0.677 (0.657-0.707) 0.640-0.755 0.270±0.086 0.197 (0.189-0.364) 0.187-0.374 882.87±495.71 729.50 (570.00-1396.50) 84-1627

Lasso 0.689±0.044 0.690 (0.667-0.707) 0.577-0.783 0.288±0.104 0.271 (0.206-0.342) 0.166-0.595 984.90±615.60 1035.00 (338.25-1535.50) 2-1984

ObliqueRSF 0.674±0.038 0.681 (0.645-0.703) 0.608-0.761 0.191±0.024 0.189 (0.179-0.200) 0.152-0.269 1111.73±581.12 1250.50 (606.00-1611.25) 152-1996

Penalized 0.701±0.037 0.704 (0.683-0.723) 0.627-0.789 0.171±0.012 0.167 (0.161-0.178) 0.153-0.198 929.70±563.54 876.50 (426.75-1469.25) 91-1797

Ranger 0.717±0.034 0.720 (0.700-0.742) 0.637-0.804 0.173±0.007 0.172 (0.169-0.177) 0.158-0.188 863.50±557.10 814.50 (329.50-1401.50) 44-1761

Rfsrc 0.708±0.034 0.714 (0.692-0.731) 0.636-0.784 0.173±0.008 0.173 (0.165-0.178) 0.162-0.194 1000.00±625.51 929.50 (470.00-1638.50) 63-1948

Ridge 0.707±0.034 0.705 (0.688-0.726) 0.639-0.772 0.197±0.041 0.185 (0.175-0.202) 0.154-0.364 1049.70±496.30 988.50 (674.25-1498.75) 328-1896

Rpart 0.635±0.034 0.632 (0.614-0.654) 0.559-0.705 0.284±0.024 0.285 (0.269-0.299) 0.235-0.347 763.03±503.42 653.50 (362.50-1174.50) 102-1813

Svm 0.655±0.032 0.653 (0.630-0.674) 0.603-0.719 0.334±0.021 0.333 (0.315-0.351) 0.297-0.377 1367.20±484.02 1405.50 (997.25-1850.75) 468-1986

Xgboost (dart) 0.673±0.034 0.673 (0.650-0.693) 0.605-0.740 0.218±0.024 0.218 (0.203-0.232) 0.174-0.295 1131.07±608.32 1282.00 (583.75-1673.75) 167-1985

Xgboost (gblinear) 0.696±0.039 0.695 (0.661-0.722) 0.618-0.792 0.204±0.021 0.201 (0.189-0.227) 0.155-0.240 1653.70±291.65 1649.50 (1536.50-1904.50) 857-1986

Xgboost (gbtree) 0.670±0.042 0.674 (0.636-0.697) 0.589-0.763 0.216±0.025 0.211 (0.195-0.240) 0.180-0.265 1050.07±558.69 1058.50 (705.75-1524.00) 34-1907

Models

Boruta

Blackboost 0.681±0.036 0.687 (0.652-0.708) 0.608-0.751 0.297±0.085 0.352 (0.197-0.369) 0.190-0.392

30.47±10.31 28.00 (24.50-36.25) 12-55

Cforest 0.693±0.030 0.693 (0.669-0.712) 0.644-0.756 0.177±0.012 0.175 (0.169-0.184) 0.158-0.210

Coxboost 0.673±0.034 0.673 (0.648-0.700) 0.603-0.748 0.174±0.017 0.171 (0.160-0.186) 0.152-0.210

Ctree 0.631±0.032 0.633 (0.607-0.651) 0.572-0.722 0.288±0.022 0.292 (0.270-0.304) 0.247-0.335

Elasticnet 0.686±0.032 0.689 (0.665-0.709) 0.615-0.744 0.413±0.162 0.427 (0.237-0.567) 0.169-0.617

Gbm 0.658±0.026 0.661 (0.640-0.676) 0.606-0.721 0.274±0.047 0.270 (0.233-0.322) 0.210-0.367

Glmboost 0.683±0.031 0.682 (0.660-0.701) 0.628-0.750 0.348±0.055 0.364 (0.354-0.371) 0.189-0.412

Lasso 0.685±0.030 0.690 (0.666-0.702) 0.617-0.747 0.403±0.154 0.416 (0.252-0.556) 0.164-0.626

ObliqueRSF 0.658±0.041 0.659 (0.619-0.689) 0.585-0.731 0.196±0.022 0.197 (0.176-0.208) 0.157-0.243

Penalized 0.689±0.036 0.687 (0.662-0.713) 0.626-0.772 0.168±0.015 0.167 (0.156-0.174) 0.148-0.197

Ranger 0.693±0.031 0.699 (0.668-0.716) 0.632-0.758 0.173±0.011 0.174 (0.166-0.179) 0.153-0.195

Rfsrc 0.683±0.030 0.686 (0.651-0.705) 0.637-0.744 0.175±0.015 0.172 (0.164-0.181) 0.152-0.219

Ridge 0.690±0.035 0.685 (0.665-0.713) 0.626-0.774 0.234±0.077 0.203 (0.196-0.225) 0.188-0.534

Rpart 0.630±0.041 0.626 (0.602-0.649) 0.560-0.758 0.289±0.035 0.285 (0.274-0.306) 0.211-0.387

Svm 0.601±0.076 0.623 (0.553-0.663) 0.386-0.697 0.409±0.075 0.373 (0.361-0.467) 0.334-0.617

Xgboost (dart) 0.653±0.032 0.651 (0.632-0.676) 0.600-0.715 0.221±0.029 0.213 (0.200-0.240) 0.175-0.304

Xgboost (gblinear) 0.657±0.082 0.681 (0.632-0.707) 0.500-0.780 0.216±0.021 0.221 (0.196-0.232) 0.181-0.248

Xgboost (gbtree) 0.659±0.032 0.660 (0.648-0.675) 0.561-0.751 0.222±0.022 0.220 (0.201-0.237) 0.191-0.270

MLSeqSurv

voomStackPrio1 0.675±0.035 0.681 (0.654-0.702) 0.584-0.725 0.193±0.029 0.183 (0.176-0.199) 0.159-0.284

30.03±10.82 28.50 (21.25-38.75) 15-52

voomStackPrio2 0.663±0.043 0.669 (0.628-0.688) 0.536-0.727 0.185±0.010 0.186 (0.178-0.192) 0.160-0.206

voomStackIPF1 0.684±0.036 0.685 (0.658-0.710) 0.614-0.767 0.181±0.015 0.176 (0.170-0.198) 0.157-0.209

voomStackIPF2 0.676±0.034 0.682 (0.661-0.703) 0.591-0.730 0.178±0.011 0.176 (0.172-0.187) 0.159-0.200

voomStackIPF3 0.674±0.034 0.679 (0.662-0.703) 0.592-0.726 0.179±0.011 0.176 (0.172-0.185) 0.159-0.202

voomStackIPF4 0.684±0.036 0.685 (0.656-0.708) 0.614-0.766 0.181±0.015 0.176 (0.170-0.198) 0.157-0.209

voomStackIPF5 0.677±0.034 0.682 (0.661-0.705) 0.591-0.730 0.178±0.011 0.176 (0.172-0.187) 0.157-0.200

voomStackIPF6 0.675±0.034 0.679 (0.662-0.704) 0.592-0.726 0.179±0.011 0.176 (0.172-0.185) 0.157-0.202

voomStackIPF7 0.684±0.036 0.686 (0.658-0.713) 0.614-0.768 0.181±0.015 0.176 (0.170-0.198) 0.157-0.209

voomStackIPF8 0.676±0.034 0.682 (0.661-0.703) 0.591-0.730 0.178±0.011 0.176 (0.172-0.187) 0.159-0.200

voomStackIPF9 0.674±0.034 0.679 (0.662-0.703) 0.592-0.726 0.179±0.011 0.176 (0.172-0.185) 0.159-0.202

120

Figure 4.6. The concordance index, integrated Brier score, and the number of selected

 features for KIRP.

121

Table 4.6. The summary statistics of concordance index, integrated Brier score and the number of features selected for KIRP.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.787±0.070 0.785 (0.735-0.825) 0.631-0.927 0.218±0.046 0.222 (0.179-0.253) 0.143-0.307 1110.47±482.44 1139.50 (709.00-1459.75) 50-1954

Cforest 0.791±0.072 0.805 (0.739-0.851) 0.659-0.905 0.142±0.022 0.137 (0.128-0.150) 0.113-0.224 846.97±531.93 793.00 (352.00-1186.25) 79-1965

Coxboost 0.812±0.071 0.835 (0.778-0.859) 0.619-0.893 0.174±0.059 0.173 (0.127-0.197) 0.085-0.321 987.37±469.36 1050.00 (492.50-1340.25) 220-1848

Ctree 0.719±0.103 0.727 (0.618-0.800) 0.518-0.918 0.199±0.058 0.186 (0.164-0.228) 0.113-0.388 927.80±573.74 794.00 (373.75-1562.25) 100-1916

Elasticnet 0.804±0.068 0.804 (0.768-0.855) 0.632-0.910 0.606±0.162 0.661 (0.586-0.703) 0.138-0.762 1124.47±524.04 1057.00 (716.25-1684.75) 215-1952

Gbm 0.797±0.069 0.802 (0.752-0.857) 0.623-0.914 0.282±0.129 0.239 (0.207-0.348) 0.112-0.635 1057.20±519.82 1000.00 (560.75-1523.25) 234-1940

Glmboost 0.788±0.075 0.789 (0.738-0.846) 0.603-0.910 0.228±0.043 0.232 (0.197-0.253) 0.154-0.339 1245.53±582.77 1189.00 (728.50-1802.00) 119-2000

Lasso 0.805±0.075 0.813 (0.752-0.858) 0.624-0.927 0.590±0.186 0.670 (0.560-0.707) 0.143-0.762 1053.20±642.58 1229.00 (442.00-1624.75) 23-1997

ObliqueRSF 0.764±0.087 0.799 (0.684-0.812) 0.574-0.909 0.161±0.036 0.154 (0.137-0.179) 0.106-0.260 957.30±580.57 940.50 (452.50-1431.25) 107-1972

Penalized 0.774±0.076 0.774 (0.727-0.828) 0.583-0.912 0.140±0.022 0.142 (0.122-0.153) 0.098-0.181 1048.40±526.04 1094.50 (572.50-1486.00) 205-1990

Ranger 0.804±0.069 0.798 (0.755-0.853) 0.681-0.939 0.143±0.017 0.139 (0.132-0.153) 0.113-0.192 1176.30±550.23 1286.50 (741.50-1738.50) 41-1898

Rfsrc 0.787±0.077 0.787 (0.735-0.833) 0.618-0.930 0.149±0.022 0.145 (0.134-0.159) 0.113-0.198 1227.97±502.89 1278.50 (819.25-1637.00) 155-1980

Ridge 0.788±0.078 0.786 (0.729-0.843) 0.642-0.912 0.248±0.145 0.182 (0.152-0.273) 0.128-0.622 1022.23±567.98 1018.50 (495.50-1565.75) 153-1861

Rpart 0.724±0.081 0.717 (0.678-0.774) 0.524-0.898 0.232±0.057 0.223 (0.190-0.286) 0.133-0.346 771.13±591.05 633.00 (296.75-1080.00) 41-1912

Svm 0.747±0.077 0.764 (0.688-0.806) 0.542-0.888 0.220±0.036 0.216 (0.199-0.238) 0.162-0.303 1250.50±509.73 1347.00 (738.50-1715.00) 208-1935

Xgboost (dart) 0.782±0.090 0.790 (0.715-0.857) 0.580-0.918 0.170±0.050 0.159 (0.135-0.184) 0.100-0.332 1020.50±553.27 865.50 (606.75-1544.00) 99-1947

Xgboost (gblinear) 0.761±0.117 0.788 (0.683-0.842) 0.500-0.928 0.167±0.026 0.164 (0.152-0.183) 0.110-0.223 1485.13±534.78 1644.50 (1323.00-1883.00) 11-1999

Xgboost (gbtree) 0.785±0.074 0.791 (0.742-0.847) 0.637-0.929 0.162±0.039 0.161 (0.131-0.183) 0.104-0.242 1007.60±605.46 884.00 (493.00-1598.75) 100-1996

Models

Boruta

Blackboost 0.816±0.072 0.837 (0.770-0.860) 0.629-0.907 0.218±0.049 0.216 (0.166-0.250) 0.142-0.339

34.40±6.41 34.00 (31.00-37.50) 22-50

Cforest 0.797±0.087 0.802 (0.731-0.868) 0.606-0.917 0.153±0.033 0.154 (0.127-0.175) 0.094-0.244

Coxboost 0.795±0.070 0.796 (0.749-0.842) 0.632-0.914 0.167±0.054 0.148 (0.131-0.188) 0.102-0.327

Ctree 0.754±0.092 0.754 (0.692-0.837) 0.574-0.895 0.214±0.067 0.197 (0.174-0.228) 0.123-0.419

Elasticnet 0.802±0.068 0.815 (0.760-0.844) 0.655-0.917 0.670±0.060 0.683 (0.628-0.712) 0.548-0.762

Gbm 0.812±0.074 0.832 (0.742-0.870) 0.671-0.917 0.310±0.143 0.273 (0.186-0.421) 0.108-0.596

Glmboost 0.799±0.059 0.809 (0.770-0.841) 0.670-0.889 0.218±0.046 0.222 (0.184-0.248) 0.126-0.307

Lasso 0.799±0.074 0.805 (0.767-0.844) 0.624-0.921 0.657±0.104 0.684 (0.624-0.712) 0.199-0.762

ObliqueRSF 0.789±0.069 0.792 (0.749-0.835) 0.640-0.930 0.162±0.053 0.148 (0.134-0.170) 0.105-0.379

Penalized 0.804±0.074 0.801 (0.768-0.862) 0.614-0.920 0.146±0.046 0.133 (0.115-0.160) 0.085-0.238

Ranger 0.803±0.083 0.823 (0.745-0.868) 0.632-0.942 0.146±0.033 0.142 (0.127-0.159) 0.101-0.245

Rfsrc 0.818±0.078 0.844 (0.762-0.868) 0.619-0.926 0.149±0.035 0.139 (0.127-0.172) 0.097-0.263

Ridge 0.805±0.082 0.804 (0.766-0.867) 0.616-0.946 0.226±0.126 0.174 (0.157-0.221) 0.145-0.630

Rpart 0.741±0.079 0.755 (0.681-0.796) 0.574-0.858 0.224±0.057 0.206 (0.183-0.258) 0.138-0.368

Svm 0.607±0.261 0.717 (0.291-0.807) 0.166-0.920 0.300±0.135 0.225 (0.212-0.412) 0.136-0.602

Xgboost (dart) 0.797±0.082 0.807 (0.736-0.865) 0.595-0.913 0.167±0.048 0.166 (0.139-0.188) 0.080-0.333

Xgboost (gblinear) 0.725±0.135 0.754 (0.662-0.823) 0.500-0.918 0.164±0.024 0.167 (0.145-0.182) 0.121-0.224

Xgboost (gbtree) 0.791±0.080 0.820 (0.715-0.844) 0.641-0.937 0.172±0.046 0.163 (0.140-0.192) 0.113-0.308

MLSeqSurv

voomStackPrio1 0.774±0.062 0.779 (0.721-0.817) 0.664-0.890 0.189±0.087 0.152 (0.119-0.232) 0.098-0.402

38.90±8.30 38.00 (33.00-43.00) 23-62

voomStackPrio2 0.764±0.075 0.775 (0.719-0.811) 0.599-0.896 0.131±0.017 0.129 (0.118-0.140) 0.109-0.177

voomStackIPF1 0.799±0.068 0.801 (0.786-0.848) 0.606-0.895 0.125±0.018 0.125 (0.113-0.139) 0.069-0.159

voomStackIPF2 0.773±0.065 0.778 (0.749-0.809) 0.603-0.888 0.127±0.028 0.120 (0.109-0.141) 0.083-0.212

voomStackIPF3 0.759±0.095 0.775 (0.756-0.801) 0.413-0.891 0.133±0.043 0.118 (0.110-0.143) 0.086-0.283

voomStackIPF4 0.799±0.068 0.801 (0.785-0.848) 0.616-0.908 0.127±0.016 0.128 (0.113-0.143) 0.091-0.153

voomStackIPF5 0.769±0.066 0.778 (0.746-0.799) 0.591-0.888 0.128±0.029 0.120 (0.110-0.141) 0.085-0.222

voomStackIPF6 0.751±0.099 0.775 (0.713-0.793) 0.413-0.891 0.133±0.042 0.120 (0.110-0.143) 0.087-0.267

voomStackIPF7 0.800±0.068 0.802 (0.786-0.847) 0.616-0.908 0.125±0.018 0.126 (0.113-0.139) 0.069-0.152

voomStackIPF8 0.780±0.058 0.783 (0.758-0.817) 0.637-0.888 0.122±0.021 0.119 (0.109-0.135) 0.083-0.183

voomStackIPF9 0.755±0.097 0.775 (0.742-0.801) 0.417-0.891 0.134±0.042 0.120 (0.110-0.144) 0.085-0.272

122

Figure 4.7. The concordance index, integrated Brier score, and the number of selected

 features for LAML.

123

Table 4.7. The summary statistics of concordance index, integrated Brier score and the number of features selected for LAML.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.619±0.065 0.609 (0.589-0.671) 0.505-0.730 0.342±0.195 0.209 (0.196-0.559) 0.177-0.709 889.20±530.61 828.00 (418.25-1385.50) 157-1882

Cforest 0.662±0.063 0.674 (0.624-0.717) 0.523-0.794 0. 177±0.018 0.177 (0.165-0.190) 0.134-0.211 1164.33±539.96 1193.00 (746.25-1649.00) 92-1935

Coxboost 0.667±0.065 0.680 (0.610-0.713) 0.515-0.773 0.209±0.032 0.217 (0.184-0.232) 0.152-0.269 884.80±443.94 842.00 (578.00-1121.00) 231-1958

Ctree 0.554±0.052 0.556 (0.506-0.611) 0.460-0.627 0.314±0.075 0.310 (0.270-0.358) 0.162-0.513 881.20±533.52 896.00 (369.25-1336.00) 13-1930

Elasticnet 0.664±0.065 0.654 (0.619-0.715) 0.513-0.822 0.350±0.095 0.365 (0.286-0.400) 0.196-0.611 1009.83±485.65 952.50 (611.25-1428.75) 192-1858

Gbm 0.654±0.062 0.661 (0.590-0.700) 0.542-0.747 0.252±0.052 0.237 (0.223-0.303) 0.146-0.333 978.97±478.17 876.50 (616.75-1363.00) 267-1930

Glmboost 0.630±0.066 0.639 (0.578-0.684) 0.486-0.755 0.376±0.212 0.206 (0.194-0.611) 0.173-0.709 874.33±498.00 908.50 (452.25-1281.00) 140-1875

Lasso 0.664±0.070 0.671 (0.608-0.724) 0.529-0.793 0.355±0.122 0.382 (0.239-0.423) 0.136-0.611 1116.03±531.38 1120.50 (627.50-1552.50) 64-1976

ObliqueRSF 0.620±0.078 0.630 (0.569-0.671) 0.421-0.792 0.208±0.041 0.204 (0.179-0.227) 0.140-0.306 1256.43±530.96 1295.00 (858.50-1739.25) 21-1992

Penalized 0.652±0.069 0.660 (0.619-0.696) 0.490-0.796 0.180±0.019 0.178 (0.165-0.197) 0.145-0.212 1052.33±533.10 1143.50 (567.25-1517.75) 225-1975

Ranger 0.662±0.055 0.665 (0.626-0.697) 0.555-0.815 0.183±0.011 0.187 (0.173-0.190) 0.160-0.206 892.47±564.06 813.50 (398.75-1316.75) 29-1985

Rfsrc 0.667±0.057 0.679 (0.645-0.700) 0.536-0.790 0.182±0.015 0.184 (0.171-0.188) 0.148-0.228 872.00±562.09 739.00 (416.75-1275.75) 54-1935

Ridge 0.660±0.059 0.678 (0.618-0.702) 0.529-0.749 0.275±0.073 0.274 (0.205-0.333) 0.184-0.434 922.30±550.44 935.50 (430.00-1347.00) 92-1909

Rpart 0.592±0.074 0.605 (0.555-0.642) 0.431-0.722 0.260±0.045 0.260 (0.235-0.286) 0.170-0.363 1044.33±586.72 906.50 (535.25-1625.00) 124-1989

Svm 0.653±0.062 0.653 (0.604-0.706) 0.540-0.760 0.512±0.066 0.513 (0.473-0.557) 0.359-0.639 965.67±501.62 900.00 (542.75-1355.25) 49-1890

Xgboost (dart) 0.613±0.053 0.619 (0.583-0.646) 0.496-0.713 0.248±0.047 0.240 (0.210-0.289) 0.173-0.342 852.30±613.65 716.50 (338.00-1438.75) 27-1896

Xgboost (gblinear) 0.648±0.064 0.651 (0.616-0.710) 0.522-0.745 0.208±0.026 0.208 (0.192-0.224) 0.170-0.274 911.23±558.30 741.50 (481.75-1469.25) 99-1845

Xgboost (gbtree) 0.604±0.059 0.601 (0.577-0.647) 0.458-0.718 0.247±0.046 0.253 (0.210-0.284) 0.133-0.333 927.73±658.62 864.00 (228.75-1500.50) 25-1956

Models

Boruta

Blackboost 0.606±0.058 0.616 (0.565-0.644) 0.456-0.702 0.367±0.202 0.205 (0.200-0.589) 0.151-0.656

21.00±8.28 21.50 (14.00-26.25) 7-44

Cforest 0.618±0.053 0.617 (0.578-0.658) 0.513-0.719 0.182±0.021 0.187 (0.170-0.193) 0.117-0.214

Coxboost 0.619±0.051 0.621 (0.583-0.655) 0.530-0.734 0.209±0.035 0.206 (0.181-0.234) 0.125-0.291

Ctree 0.571±0.059 0.580 (0.525-0.603) 0.449-0.692 0.301±0.052 0.298 (0.267-0.337) 0.207-0.414

Elasticnet 0.616±0.048 0.620 (0.582-0.657) 0.520-0.690 0.353±0.116 0.375 (0.240-0.421) 0.168-0.610

Gbm 0.618±0.054 0.621 (0.584-0.650) 0.487-0.735 0.278±0.077 0.273 (0.209-0.339) 0.180-0.534

Glmboost 0.617±0.045 0.621 (0.575-0.653) 0.525-0.681 0.435±0.204 0.557 (0.199-0.610) 0.170-0.708

Lasso 0.617±0.052 0.623 (0.580-0.661) 0.501-0.690 0.354±0.099 0.370 (0.273-0.425) 0.162-0.543

ObliqueRSF 0.603±0.066 0.613 (0.543-0.654) 0.497-0.758 0.215±0.046 0.204 (0.183-0.228) 0.162-0.352

Penalized 0.617±0.047 0.627 (0.591-0.654) 0.524-0.696 0.186±0.023 0.189 (0.168-0.205) 0.130-0.220

Ranger 0.629±0.048 0.631 (0.603-0.668) 0.531-0.719 0.183±0.017 0.186 (0.171-0.196) 0.135-0.213

Rfsrc 0.622±0.058 0.626 (0.589-0.651) 0.464-0.743 0.193±0.030 0.194 (0.170-0.202) 0.131-0.267

Ridge 0.618±0.048 0.623 (0.581-0.653) 0.527-0.716 0.203±0.017 0.205 (0.194-0.214) 0.155-0.234

Rpart 0.582±0.057 0.583 (0.538-0.621) 0.484-0.688 0.260±0.038 0.262 (0.242-0.279) 0.166-0.343

Svm 0.527±0.085 0.529 (0.457-0.599) 0.392-0.688 0.543±0.070 0.544 (0.500-0.583) 0.411-0.704

Xgboost (dart) 0.607±0.067 0.610 (0.565-0.668) 0.472-0.704 0.261±0.043 0.270 (0.228-0.284) 0.171-0.343

Xgboost (gblinear) 0.604±0.058 0.616 (0.572-0.652) 0.484-0.733 0.229±0.026 0.231 (0.207-0.252) 0.186-0.276

Xgboost (gbtree) 0.613±0.057 0.615 (0.575-0.648) 0.486-0.709 0.252±0.046 0.256 (0.228-0.281) 0.149-0.357

MLSeqSurv

voomStackPrio1 0.615±0.057 0.621 (0.560-0.668) 0.503-0.697 0.209±0.030 0.211 (0.184-0.235) 0.150-0.261

21.87±7.14 21.00 (17.00-27.50) 7-34

voomStackPrio2 0.618±0.058 0.625 (0.577-0.661) 0.500-0.736 0.196±0.019 0.196 (0.182-0.212) 0.162-0.231

voomStackIPF1 0.638±0.051 0.656 (0.656-0.674) 0.534-0.707 0.197±0.014 0.199 (0.185-0.209) 0.162-0.213

voomStackIPF2 0.611±0.074 0.617 (0.572-0.666) 0.410-0.732 0.195±0.022 0.193 (0.181-0.204) 0.155-0.267

voomStackIPF3 0.604±0.085 0.615 (0.565-0.662) 0.317-0.727 0.196±0.023 0.194 (0.181-0.205) 0.156-0.269

voomStackIPF4 0.639±0.052 0.660 (0.603-0.675) 0.527-0.707 0.198±0.012 0.198 (0.186-0.209) 0.174-0.216

voomStackIPF5 0.606±0.074 0.604 (0.562-0.666) 0.417-0.732 0.195±0.021 0.193 (0.182-0.200) 0.155-0.257

voomStackIPF6 0.592±0.086 0.591 (0.565-0.653) 0.324-0.727 0.196±0.022 0.193 (0.182-0.202) 0.156-0.263

voomStackIPF7 0.640±0.052 0.660 (0.604-0.675) 0.534-0.711 0.197±0.014 0.199 (0.183-0.209) 0.162-0.214

voomStackIPF8 0.617±0.062 0.617 (0.574-0.666) 0.506-0.732 0.195±0.018 0.193 (0.183-0.204) 0.155-0.242

voomStackIPF9 0.607±0.081 0.615 (0.566-0.662) 0.321-0.727 0.195±0.020 0.194 (0.181-0.205) 0.156-0.239

124

It was noted that for LAML data, the cforest algorithm, when employed for

internal feature selection, achieved the lowest mean integrated Brier score of 0.177.

This was followed by penalized (0.180±0.019), rfsrc (0.182±0.015), and

ranger(0.183±0.011) algorithms, all with internal feature selection. Meanwhile, the

svm algorithm exhibited the highest score (0.512±0.066). In the category of methods

from the literature utilizing Boruta feature selection, cforest (cforest_B) (0.182±0.021)

and ranger (ranger_B) (0.183±0.017) algorithms showcased the lowest mean

integrated Brier score, while svm (svm_B) (0.543±0.070) and glmboost (glmboost_B)

(0.435±0.204) algorithms presented the highest mean integrated Brier score. The

voomStackIPF2, voomStackIPF5, voomStackIPF8, and voomStackIPF9 algorithms

displayed the lowest mean integrated Brier score, at 0.195. Meanwhile, the

voomStackPrio1 algorithm (0.209±0.030) displayed the highest mean integrated Brier

score.

Among the methods in the literature that applied Boruta feature selection, the

mean number of selected features for LAML data was the lowest (21.00±8.28). These

were closely followed by the voomStackLasso algorithms (21.87±7.14). In terms of

internal feature selection methods, the algorithm with the lowest mean number of

features was xgboost with dart (852.30±613.65), while the algorithm with the highest

mean number of features was obliqueRSF (1256.43±530.96).

The concordance index, integrated Brier score, and the number of selected

features for Brain Lower Grade Glioma (LGG) data are depicted in Figure 4.8, with

related summary statistics presented in Table 4.8. After examining both the graph and

the table for LGG data, it was observed that coxboost, when applied to internal feature

selection, achieved the highest mean concordance index at 0.833. This is followed by

the glmboost algorithm (0.832±0.043), with internal feature selection applied, yielding

a mean concordance index. The ctree (0.759±0.046) and rpart (0.769±0.038)

algorithms exhibited the lowest mean concordance index. In the category of methods

from the literature utilizing Boruta feature selection, the glmboost (glmboost_B)

(0.832±0.032), elasticnet (elasticnet_B) (0.826±0.035), and lasso (lasso_B)

(0.825±0.037) algorithms demonstrated the highest mean concordance index, while

the svm(svm_B) algorithm (0.732±0.126) exhibited the lowest mean concordance

index. Among the voomStackLasso methods, the voomStackIPF1 (0.817±0.038),

voomStackIPF4 (0.816±0.038), and voomStackIPF7 (0.817±0.038) algorithms

125

Figure 4.8. The concordance index, integrated Brier score, and the number of selected

 features for LGG.

126

Table 4.8. The summary statistics of concordance index, integrated Brier score and the number of features selected for LGG.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.814±0.032 0.812 (0.793-0.835) 0.745-0.880 0.434±0.139 0.492 (0.422-0.526) 0.167-0.587 984.33±524.46 918.50 (544.00-1381.00) 21-1999

Cforest 0.817±0.037 0.818 (0.788-0.847) 0.736-0.872 0.189±0.037 0.182 (0.162-0.203) 0.145-0.313 989.97±543.63 975.00 (598.00-1408.50) 87-1992

Coxboost 0.833±0.030 0.841 (0.810-0.859) 0.769-0.874 0.151±0.028 0.153 (0.129-0.167) 0.094-0.225 1153.07±525.55 1219.50 (716.75-1548.00) 152-1973

Ctree 0.759±0.046 0.769 (0.738-0.790) 0.645-0.833 0.377±0.076 0.395 (0.303-0.432) 0.197-0.514 852.27±586.12 655.50 (414.00-1389.00) 71-1892

Elasticnet 0.823±0.037 0.832 (0.788-0.854) 0.732-0.874 0.411±0.104 0.438 (0.330-0.488) 0.163-0.570 864.73±540.15 799.50 (378.75-1328.25) 41-1790

Gbm 0.821±0.027 0.826 (0.809-0.839) 0.768-0.882 0.309±0.084 0.286 (0.248-0.378) 0.173-0.469 924.47±559.52 839.50 (371.50-1314.00) 209-1998

Glmboost 0.832±0.043 0.842 (0.808-0.858) 0.701-0.900 0.480±0.091 0.501 (0.455-0.527) 0.171-0.587 1102.50±501.33 1117.00 (739.00-1515.50) 221-1917

Lasso 0.819±0.045 0.826 (0.792-0.858) 0702-0.884 0.422±0.108 0.443 (0.373-0.490) 0.140-0.577 831.60±522.56 760.50 (419.00-1278.75) 32-1911

ObliqueRSF 0.783±0.047 0.784 (0.761-0.813) 0.645-0.870 0.180±0.031 0.181 (0.155-0.201) 0.134-0.244 1244.77±484.69 1274.00 (861.00-1678.50) 249-1986

Penalized 0.796±0.036 0.795 (0.771-0.821) 0.713-0.862 0.158±0.019 0.153 (0.145-0.169) 0.128-0.204 1126.27±562.60 1023.50 (593.50-1666.25) 219-1957

Ranger 0.819±0.033 0.811 (0.791-0.852) 0.760-0.887 0.170±0.012 0.169 (0.161-0.181) 0.151-0.195 815.87±549.94 680.00 (363.25-1253.00) 38-1759

Rfsrc 0.820±0.035 0.815 (0.787-0.849) 0.764-0.883 0.186±0.026 0.181 (0.162-0.210) 0.152-0.254 889.73±521.20 771.00 (426.00-1313.50) 198-1942

Ridge 0.819±0.035 0.824 (0.788-0.852) 0.756-0.873 0.329±0.103 0.325 (0.247-0.400) 0.184-0.525 1492.83±335.76 1504.00 (1250.75-1842.75) 698-1991

Rpart 0.769±0.038 0.772 (0.741-0.798) 0.705-0.869 0.217±0.029 0.216 (0.200-0.235) 0.160-0.286 903.37±484.52 793.50 (475.75-1328.50) 110-1786

Svm 0.801±0.042 0.798 (0.763-0.839) 0.711-0.865 0.389±0.054 0.387 (0.365-0.419) 0.288-0.533 1367.03±380.29 1432.00 (1087.00-1665.50) 509-1955

Xgboost (dart) 0.791±0.041 0.786 (0.760-0.832) 0.714-0.866 0.236±0.047 0.248 (0.202-0.267) 0.158-0.330 795.23±535.48 711.50 (350.75-1295.25) 14-1731

Xgboost (gblinear) 0.805±0.068 0.805 (0.786-0.852) 0.500-0.884 0.194±0.026 0.195 (0.181-0.212) 0.128-0.238 1682.07±285.01 1179.50 (1587.50-1899.25) 962-1968

Xgboost (gbtree) 0.804±0.036 0.801 (0.781-0.825) 0.722-0.894 0.220±0.046 0.212 (0.183-0.240) 0.164-0.339 1115.03±492.22 1193.50 (681.00-1445.25) 247-1989

Models

Boruta

Blackboost 0.816±0.034 0.812 (0.796-0.834) 0.729-0.902 0.403±0.159 0.492 (0.182-0.521) 0.147-0.587

63.53±8.16 63.50 (58.75-69.25) 46-86

Cforest 0.813±0.039 0.807 (0.788-0.839) 0.735-0.887 0.298±0.045 0.288 (0.275-0.324) 0.202-0.395

Coxboost 0.817±0.034 0.818 (0.798-0.839) 0.735-0.887 0.155±0.020 0.160 (0.138-0.169) 0.112-0.196

Ctree 0.763±0.053 0.770 (0.723-0.807) 0.645-0.854 0.423±0.057 0.424 (0.389-0.471) 0.278-0.506

Elasticnet 0.826±0.035 0.824 (0.815-0.849) 0.726-0.894 0.376±0.103 0.400 (0.313-0.463) 0.145-0.533

Gbm 0.794±0.040 0.790 (0.770-0.816) 0.722-0.890 0.317±0.086 0.299 (0.255-0.362) 0.216-0.545

Glmboost 0.832±0.032 0.831 (0.810-0.850) 0.742-0.897 0.453±0.123 0.498 (0.437-0.526) 0.146-0.587

Lasso 0.825±0.037 0.825 (0.814-0.837) 0.735-0.899 0.362±0.116 0.371 (0.262-0.467) 0.160-0.529

ObliqueRSF 0.769±0.058 0.778 (0.757-0.810) 0.631-0.846 0.187±0.032 0.184 (0.160-0.206) 0.148-0.288

Penalized 0.817±0.036 0.816 (0.796-0.840) 0.717-0.876 0.155±0.019 0.152 (0.142-0.165) 0.126-0.196

Ranger 0.820±0.032 0.815 (0.798-0.845) 0.751-0.885 0.168±0.012 0.167 (0.161-0.179) 0.147-0.190

Rfsrc 0.810±0.038 0.812 (0.783-0.840) 0.741-0.889 0.189±0.048 0.171 (0.157-0.211) 0.135-0.338

Ridge 0.813±0.037 0.815 (0.794-0.835) 0.710-0.880 0.246±0.083 0.220 (0.191-0.275) 0.154-0.485

Rpart 0.766±0.037 0.768 (0.738-0.789) 0.668-0.858 0.215±0.027 0.215 (0.199-0.238) 0.150-0.267

Svm 0.732±0.126 0.768 (0.715-0.795) 0.246-0.835 0.450±0.048 0.451 (0.410-0.482) 0.366-0.538

Xgboost (dart) 0.797±0.037 0.797 (0.770-0.817) 0.730-0.884 0.229±0.041 0.226 (0.201-0.249) 0.163-0.332

Xgboost (gblinear) 0.805±0.035 0.808 (0.773-0.838) 0.739-0.867 0.192±0.018 0.189 (0.178-0.209) 0.163-0.231

Xgboost (gbtree) 0.789±0.035 0.784 (0.766-0.800) 0.735-0.875 0.230±0.044 0.219 (0.203-0.252) 0.178-0.368

MLSeqSurv

voomStackPrio1 0.793±0.048 0.791 (0.774-0.827) 0.648-0.863 0.172±0.015 0.172 (0.160-0.181) 0.136-0.204

66.40±9.97 65.50 (57.00-73.25) 50-91

voomStackPrio2 0.775±0.053 0.779 (0.743-0.815) 0.594-0.861 0.194±0.033 0.189 (0.172-0.211) 0.143-0.290

voomStackIPF1 0.817±0.038 0.821 (0.797-0.841) 0.708-0.884 0.205±0.026 0.203 (0.186-0.224) 0.150-0.261

voomStackIPF2 0.808±0.040 0.811 (0.787-0.836) 0.671-0.871 0.195±0.019 0.193 (0.186-0.208) 0.159-0.234

voomStackIPF3 0.802±0.048 0.812 (0.782-0.835) 0.663-0.869 0.197±0.023 0.193 (0.185-0.210) 0.160-0.254

voomStackIPF4 0.816±0.038 0.820 (0.797-0.841) 0.708-0.884 0.205±0.026 0.203 (0.186-0.224) 0.150-0.261

voomStackIPF5 0.808±0.040 0.811 (0.787-0.836) 0.671-0.871 0.195±0.019 0.193 (0.186-0.208) 0.159-0.234

voomStackIPF6 0.802±0.049 0.812 (0.782-0.835) 0.663-0.869 0.197±0.023 0.193 (0.185-0.210) 0.159-0.254

voomStackIPF7 0.817±0.038 0.821 (0.797-0.841) 0.708-0.884 0.205±0.026 0.201 (0.186-0.224) 0.150-0.261

voomStackIPF8 0.808±0.040 0.811 (0.787-0.836) 0.671-0.871 0.195±0.019 0.193 (0.186-0.208) 0.159-0.234

voomStackIPF9 0.802±0.048 0.812 (0.782-0.835) 0.663-0.869 0.197±0.023 0.193 (0.185-0.210) 0.160-0.254

127

showed the highest mean concordance index, while the voomStackPrio2 algorithm

(0.775±0.053) displayed the lowest mean concordance index.

It was observed that for LGG data, the coxboost algorithm, when utilized for

internal feature selection, attained the lowest mean integrated Brier score of 0.151.

This was followed by penalized algorithm (0.158±0.019), with internal feature

selection. The glmboost algorithm, with internal feature selection, presented the

highest mean integrated Brier score, at 0.480. In the category of methods from the

literature utilizing Boruta feature selection, coxboost (coxboost_B) (0.155±0.020) and

penalized (penalized_B) (0.155±0.019) algorithms showcased the lowest mean

integrated Brier score, while glmboost (glmboost_B) (0.453±0.123) and svm

(0.450±0.048) algorithms presented the highest mean integrated Brier score. The

voomStackPrio1 algorithm displayed the lowest integrated mean Brier score, at 0.172.

Meanwhile, the voomStackIPF1, voomStackIPF4, and voomStackIPF7 algorithms

displayed the highest mean integrated Brier score, at 0.205.

Among the methods in the literature that applied Boruta feature selection, the

mean number of selected features for LGG data was the lowest (63.53±8.16). These

were closely followed by the voomStackLasso algorithms (66.40±9.97). In terms of

internal feature selection methods, the algorithm with the lowest mean number of

features was xgboost (with booster= “dart”) (795.23±535.48), while the algorithm with

the highest mean number of features was xgboost (with booster= “gblinear”)

(1682.07±285.01).

The concordance index, integrated Brier score, and the number of selected

features for Mesothelioma (MESO) data are depicted in Figure 4.9, with related

summary statistics presented in Table 4.9. After examining both the graph and the table

for MESO data, it was observed that voomStackIPF1 and voomStackIPF7 algorithms

achieved the highest mean concordance index at 0.731. This is followed by the

voomStackIPF4 algorithm (0.730±0.066), yielding a mean concordance index. The

voomStackPrio2 algorithm exhibited the lowest mean concordance index within the

voomStackLasso group, at 0.662±0.065. In the category of methods from the literature

utilizing Boruta feature selection, the ridge (ridge_B) (0.729±0.062) and penalized

(penalized_B) (0.724±0.060) algorithms demonstrated the highest mean concordance

index, while the svm (svm_B) algorithm (0.509±0.185) exhibited the lowest mean

concordance index. In the category of methods from the literature utilizing internal

128

feature selection, the elasticnet (0.728±0.057) and xgboost (with booster= “gblinear”)

(0.723±0.058) algorithms demonstrated the highest mean concordance index, while

the rpart algorithm(0.609±0.076) exhibited the lowest mean concordance index.

It was observed that the penalized (penalized_B) algorithm, with Boruta feature

selection, achieved the lowest mean the integrated Brier score of 0.114 for MESO data.

This was followed closely by the cforest (cforest_B) and ranger (ranger_B) algorithms,

both employing internal feature selection, with a score of 0.123. The svm (svm_B)

algorithm, with the literature employing Boruta feature selection, presented the highest

mean integrated Brier score, at 0.624. In the category of methods from the literature

utilizing internal feature selection, the penalized algorithm (0.115±0.018) showcased

the lowest mean integrated Brier score, while the svm algorithm (0.634±0.058)

presented the highest mean integrated Brier score. Among voomStackLasso group, the

voomStackIPF6, voomStackIPF8, and voomStackIPF9 algorithms displayed the

lowest mean integrated Brier score, at 0.154. The voomStackIPF1, voomStackIPF4,

and voomStackIPF7 algorithms displayed the highest mean integrated Brier score, at

0.174.

Among the methods in the literature that applied Boruta feature selection, the

mean number of selected features for MESO data was the lowest (26.27±10.03). These

were closely followed by the voomStackLasso algorithms (31.57±8.81). In terms of

internal feature selection methods, the algorithm with the lowest mean number of

features was ranger (637.63±457.30), while the algorithm with the highest mean

number of features was obliqueRSF (1195.60±567.02).

The concordance index, integrated Brier score, and the number of selected

features for Pancreatic Adenocarcinoma (PAAD) data are depicted in Figure 4.10, with

related summary statistics presented in Table 4.10. After examining both the graph and

the table for PAAD data, it was observed that voomStackIPF7 and ridge algorithms,

with internal feature selection, achieved the highest mean concordance index at 0.640.

This is followed by the xgboost (with booster= “gblinear”), with both internal feature

selection and Boruta feature selection, yielding a mean concordance index, at 0.639.

Among voomStackLasso group, the voomStackIPF7 (0.640±0.052) and

voomStackIPF1 (0.637±0.057) algorithms displayed the highest mean concordance

index, while voomStackPrio1 algorithm (0.609±0.054) displayed the lowest

concordance index. In the category of methods from the literature utilizing Boruta

129

Figure 4.9. The concordance index, integrated Brier score, and the number of selected

 features for MESO.

130

Table 4.9. The summary statistics of concordance index, integrated Brier score and the number of features selected for MESO.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.704±0.061 0.704 (0.669-0.732) 0.569-0.848 0.440±0.267 0.583 (0.142-0.676) 0.128-0.741 1084.43±529.90 1129.50 (692.75-1465.25) 27-1906

Cforest 0.712±0.061 0.718 (0.683-0.753) 0.582-0.822 0.129±0.019 0.129 (0.117-0.140) 0.087-0.172 843.67±510.99 693.00 (438.75-1196.25) 135-1990

Coxboost 0.699±0.068 0.704 (0.636-0.749) 0.587-0.809 0.134±0.035 0.130 (0.107-0.155) 0.085-0.226 1163.30±574.48 1246.00 (583.75-1678.50) 204-1983

Ctree 0.620±0.059 0.618 (0.589-0.682) 0.478-0.702 0.282±0.091 0.279 (0.192-0.335) 0.157-0.497 699.40±635.02 474.50 (242.00-1169.25) 11-1939

Elasticnet 0.728±0.057 0.743 (0.696-0.768) 0.571-0.817 0.287±0.190 0.238 (0.135-0.343) 0.090-0.729 1073.77±553.66 1010.50 (599.50-1598.50) 153-1900

Gbm 0.684±0.064 0.694 (0.627-0.731) 0.542-0.788 0.308±0.088 0.307 (0.239-0.371) 0.142-0.546 852.40±500.67 780.50 (463.25-1255.25) 78-1771

Glmboost 0.702±0.051 0.711 (0.660-0.735) 0.588-0.788 0.337±0.267 0.153 (0.131-0.660) 0.101-0.730 1045.40±567.91 1063.00 (494.25-1567.25) 109-1998

Lasso 0.702±0.056 0.716 (0.683-0.737) 0.579-0.810 0.297±0.179 0.241 (0.159-0.369) 0.087-0.697 1075.67±505.07 1032.00 (740.00-1570.50) 186-1838

ObliqueRSF 0.622±0.082 0.634 (0.583-0.676) 0.436-0.761 0.137±0.030 0.133 (0.124-0.162) 0.073-0.213 1195.60±567.02 1321.00 (810.50-1715.50) 184-1899

Penalized 0.713±0.055 0.721 (0.685-0.751) 0.611-0.810 0.115±0.018 0.118 (0.103-0.130) 0.077-0.153 910.47±526.21 749.00 (517.00-1443.75) 202-1977

Ranger 0.700±0.064 0.716 (0.641-0.746) 0.515-0.802 0.134±0.019 0.137 (0.120-0.149) 0.091-0.170 637.63±457.30 594.50 (245.50-919.25) 5-1572

Rfsrc 0.699±0.060 0.710 (0.668-0.736) 0.577-0.803 0.136±0.018 0.136 (0.125-0.147) 0.098-0.181 647.37±553.53 637.50 (143.75-934.50) 17-1951

Ridge 0.718±0.053 0.726 (0.695-0.756) 0.594-0.813 0.198±0.147 0.143 (0.131-0.171) 0.105-0.659 881.00±536.39 698.50 (466.75-1350.50) 78-1951

Rpart 0.609±0.076 0.623 (0.554-0.651) 0.462-0.761 0.200±0.030 0.202 (0.183-0.223) 0.141-0.263 750.03±488.10 700.00 (360.25-1021.00) 34-1971

Svm 0.715±0.053 0.714 (0.680-0.732) 0.602-0.830 0.634±0.058 0.644 (0.605-0.673) 0.490-0.743 1080.63±503.17 1125.00 (684.75-1524.50) 185-1967

Xgboost (dart) 0.657±0.065 0.657 (0.612-0.700) 0.457-0.769 0.167±0.046 0.162 (0.133-0.197) 0.079-0.280 715.23±470.47 622.00 (327.75-1120.75) 116-1948

Xgboost (gblinear) 0.723±0.058 0.742 (0.685-0.766) 0.555-0.823 0.139±0.026 0.139 (0.124-0.147) 0.096-0.230 1094.50±517.51 933.00 (688.00-1538.50) 87-1926

Xgboost (gbtree) 0.629±0.073 0.626 (0.596-0.668) 0.483-0.774 0.177±0.042 0.176 (0.141-0.211) 0.109-0.258 820.23±550.03 769.00 (318.75-1409.25) 8-1761

Models

Boruta

Blackboost 0.697±0.065 0.706 (0.668-0.749) 0.562-0.818 0.385±0.268 0.164 (0.137-0.673) 0.106-0.719

26.27±10.03 24.00 (20.50-28.25) 13-59

Cforest 0.712±0.060 0.726 (0.678-0.758) 0.588-0.797 0.123±0.017 0.124 (0.110-0.135) 0.082-0.160

Coxboost 0.684±0.063 0.688 (0.652-0.717) 0.551-0.830 0.131±0.025 0.134 (0.111-0.145) 0.074-0.212

Ctree 0.648±0.072 0.666 (0.590-0.705) 0.457-0.737 0.211±0.060 0.198 (0.186-0.223) 0.127-0.465

Elasticnet 0.705±0.058 0.712 (0.681-0.736) 0.581-0.830 0.226±0.084 0.246 (0.149-0.294) 0.076-0.369

Gbm 0.683±0.062 0.691 (0.645-0.724) 0.562-0.852 0.251±0.093 0.228 (0.185-0.297) 0.143-0.508

Glmboost 0.706±0.059 0.725 (0.671-0.756) 0.568-0.787 0.316±0.259 0.157 (0.129-0.657) 0.098-0.741

Lasso 0.699±0.061 0.702 (0.661-0.739) 0.568-0.849 0.268±0.098 0.270 (0.198-0.313) 0.110-0.540

ObliqueRSF 0.660±0.086 0.670 (0.611-0.734) 0.404-0.785 0.140±0.032 0.134 (0.120-0.163) 0.085-0.218

Penalized 0.724±0.060 0.733 (0.699-0.765) 0.565-0.810 0.114±0.020 0.113 (0.100-0.125) 0.069-0.178

Ranger 0.713±0.061 0.731 (0.690-0.751) 0.562-0.807 0.123±0.016 0.124 (0.110-0.135) 0.086-0.158

Rfsrc 0.711±0.065 0.727 (0.691-0.746) 0.569-0.810 0.133±0.026 0.130 (0.113-0.147) 0.083-0.189

Ridge 0.729±0.062 0.745 (0.699-0.772) 0.572-0.807 0.162±0.033 0.156 (0.142-0.176) 0.108-0.266

Rpart 0.654±0.068 0.666 (0.621-0.691) 0.460-0.770 0.191±0.026 0.191 (0.178-0.208) 0.137-0.252

Svm 0.509±0.185 0.508 (0.312-0.689) 0.237-0.780 0.624±0.079 0.642 (0.585-0.683) 0.428-0.742

Xgboost (dart) 0.673±0.067 0.684 (0.638-0.713) 0.525-0.808 0.179±0.037 0.181 (0.149-0.208) 0.096-0.258

Xgboost (gblinear) 0.717±0.065 0.727 (0.684-0.764) 0.552-0.820 0.157±0.030 0.152 (0.132-0.174) 0.111-0.228

Xgboost (gbtree) 0.660±0.068 0.671 (0.603-0.705) 0.535-0.767 0.181±0.037 0.177 (0.152-0.216) 0.098-0.240

MLSeqSurv

voomStackPrio1 0.691±0.072 0.699 (0.660-0.743) 0.492-0.808 0.160±0.028 0.154 (0.143-0.169) 0.118-0.241

31.57±8.81 30.00 (24.75-39.00) 18-51

voomStackPrio2 0.662±0.065 0.662 (0.622-0.712) 0.478-0.792 0.170±0.023 0.165 (0.156-0.183) 0.122-0.220

voomStackIPF1 0.731±0.066 0.740 (0.705-0.782) 0.535-0.864 0.174±0.020 0.173 (0.159-0.185) 0.141-0.220

voomStackIPF2 0.669±0.092 0.695 (0.641-0.723) 0.351-0.832 0.157±0.029 0.154 (0.139-0.168) 0.101-0.258

voomStackIPF3 0.668±0.093 0.687 (0.644-0.729) 0.351-0.824 0.157±0.029 0.154 (0.139-0.168) 0.103-0.262

voomStackIPF4 0.730±0.066 0.740 (0.705-0.781) 0.535-0.864 0.174±0.020 0.173 (0.159-0.186) 0.142-0.220

voomStackIPF5 0.669±0.092 0.695 (0.641-0.723) 0.351-0.832 0.157±0.029 0.154 (0.139-0.167) 0.102-0.261

voomStackIPF6 0.675±0.072 0.674 (0.642-0.729) 0.478-0.824 0.154±0.022 0.154 (0.139-0.168) 0.103-0.207

voomStackIPF7 0.731±0.067 0.740 (0.705-0.782) 0.532-0.864 0.174±0.020 0.173 (0.159-0.185) 0.141-0.220

voomStackIPF8 0.678±0.070 0.695 (0.642-0.723) 0.492-0.832 0.154±0.022 0.154 (0.139-0.167) 0.101-0.209

voomStackIPF9 0.677±0.072 0.687 (0.644-0.729) 0.478-0.824 0.154±0.022 0.154 (0.139-0.168) 0.103-0.207

131

feature selection, the xgboost (xgboost_gblinear_B) (with booster= “gblinear”)

algorithm (0.639±0.032) demonstrated the highest mean concordance index, while the

svm (svm_B) algorithm (0.528±0.110) exhibited the lowest mean concordance index.

In the group of methods from the literature employing internal feature selection, the

ridge (0.640±0.050) and xgboost (with booster= “gblinear”) (0.639±0.040) algorithms

demonstrated the highest mean concordance index, while the ctree algorithm

(0.553±0.050) exhibited the lowest mean concordance index.

It was observed that the penalized algorithm, with both internal feature

selection and Boruta feature selection, achieved the lowest mean integrated Brier score

at 0.162 for PAAD data. In the category of methods from the literature utilizing

internal feature selection, the penalized (0.162±0.021) and cforest (0.166±0.019)

algorithms showcased the lowest mean integrated Brier score, while the svm

(0.520±0.057), blackboost (0.505±0.139) and ctree (0.419±0.076) algorithms

presented the highest mean integrated Brier score. In the category of methods from the

literature employing Boruta feature selection, the penalized (penalized_B)

(0.162±0.024), coxboost (coxboost_B) (0.176±0.035), and ranger (ranger_B)

(0.177±0.020) algorithms showcased the lowest mean integrated Brier score, while

svm (svm_B) (0.540±0.062), glmboost (glmboost_B) (0.477±0.158), and blackboost

(blackboost_B) (0.462±0.172) algorithms presented the highest mean integrated Brier

score. Among voomStackLasso group, the voomStackPrio2 (0.172±0.021) and

voomStackIPF5 (0.175±0.017) algorithms displayed the lowest mean integrated Brier

score. Conversely, the voomStackPrio1 algorithm displayed the highest mean

integrated Brier score, at 0.187.

Among the voomStackLasso algorithms, the mean number of selected features

for PAAD data was the lowest (8.70±3.25). These were closely followed by the

methods in the literature that utilized Boruta feature selection (9.20±3.39). In terms of

internal feature selection methods, the algorithm with the lowest mean number of

features was rfsrc (578.70±465.45), while the algorithm with the highest mean number

of features was obliqueRSF (1062.10±515.55).

The concordance index, integrated Brier score, and the number of selected

features for Sarcoma (SARC) data are depicted in Figure 4.11, with related summary

statistics presented in Table 4.11. After examining both the graph and the table for

SARC data, it was observed that the ridge algorithm, when applied for internal feature

132

selection, achieved the highest mean concordance index at 0.650. In the group of

methods from the literature employing internal feature selection, the ridge

(0.650±0.042), cforest (0.635±0.042), penalized (0.634±0.041) and rfsrc

(0.634±0.032) algorithms demonstrated the highest mean concordance index, while

the rpart algorithm (0.557±0.054) exhibited the lowest mean concordance index. In the

group of methods from the literature employing Boruta feature selection, the ranger

(ranger_B) algorithm (0.619±0.052) demonstrated the highest mean concordance

index, while the svm (svm_B) algorithm (0.553±0.055) exhibited the lowest mean

concordance index. Among voomStackLasso group, the voomStackIPF7 algorithm

(0.615±0.032) displayed the highest mean concordance index, while voomStackPrio2

algorithm (0.597±0.043) displayed the lowest mean concordance index.

It was observed that for SARC data, the voomStackIPF4 and voomStackIPF7

algorithms achieved the lowest mean integrated Brier score of 0.192. This is followed

by voomStackIPF1, voomStackIPF2, and voomStackIPF8 resulting in an integrated

Brier score of 0.193. In the category of methods from the literature utilizing internal

feature selection, the cforest and ranger algorithms showcased the lowest mean

integrated Brier score at 0.206, while the svm algorithm (0.437±0.062) presented the

highest mean integrated Brier score. In the category of methods from the literature

utilizing Boruta feature selection, ridge (ridge_B) (0.207±0.008) and ranger

(0.209±0.017) algorithms showcased the lowest mean integrated Brier score, while

svm (svm_B) (0.450±0.062) and blackboost (blackboost_B) (0.418±0.111) algorithms

presented the highest mean integrated Brier score. Among voomStackLasso group,

the voomStackIPF4 (0.192±0.010), voomStackIPF7 (0.192±0.011), voomStackIPF1

(0.193±0.011), voomStackIPF2 (0.193±0.012), and voomStackIPF8 (0.193±0.013)

algorithms displayed the lowest mean integrated Brier score. Conversely, the

voomStackPrio1 algorithm displayed the highest mean integrated Brier score, at 0.202.

Among the methods in the literature that applied Boruta feature selection, the

mean number of selected features for SARC data was the lowest (14.87±4.33). These

were closely followed by the voomStackLasso algorithms (16.27±4.81). In terms of

internal feature selection methods, the algorithm with the lowest mean number of

features was ranger (703.37±511.13), while the algorithm with the highest mean

number of features was xgboost (with booster= “gblinear”) (1184.37±519.21).

133

The concordance index, integrated Brier score, and the number of selected

features for Uveal Melanoma (UVM) data are depicted in Figure 4.12, with related

summary statistics presented in Table 4.12. After examining both the graph and the

table for UVM data, it was observed that voomStackIPF3 and voomStackIPF9

achieved the highest mean concordance index at 0.841. In the group of methods from

the literature employing internal feature selection, the elasticnet (0.819±0.056),

xgboost (with booster= “gblinear”) (0.816±0.056), and glmboost (0.815±0.068)

algorithms demonstrated the highest mean concordance index, while the rpart

algorithm (0.698±0.106) exhibited the lowest mean concordance index. In the group

of methods from the literature employing Boruta feature selection, the xgboost (with

booster= “gblinear”) (xgboost_gblinear_B) algorithm (0.839±0.061) demonstrated the

highest mean concordance index, while the rpart (rpart_B) algorithm (0.721±0.090)

exhibited the lowest mean concordance index. Among voomStackLasso group, the

voomStackIPF3 and voomStackIPF9 algorithm (0.841±0.059) displayed the highest

mean concordance index while voomStackIPF1, voomStackIPF4, and

voomStackIPF7 algorithms displayed the lowest mean concordance index, at 0.817.

It was observed that for UVM data, the voomStackIPF3 and voomStackIPF9

algorithms achieved the lowest mean integrated Brier score of 0.108. This is followed

voomStackIPF2, voomStackIPF5, voomStackIPF6, and voomStackIPF8 yielding an

integrated Brier score of 0.111. The voomStackIPF1, voomStackIPF4, and

voomStackIPF7 algorithms displayed the highest mean integrated Brier score, at

0.144. In the category of methods from the literature utilizing internal feature selection,

the penalized algorithm showcased the lowest mean integrated Brier score at 0.122,

while the svm algorithm (0.303±0.071) presented the highest mean integrated Brier

score. In the category of methods from the literature employing Boruta feature

selection, penalized (penalized_B) algorithm (0.119±0.019) showcased the lowest

mean integrated Brier score, while gbm algorithm (0.312±0.086) presented the highest

mean integrated Brier score.

Among the voomStackLasso algorithms, the mean number of selected features

for UVM data was the lowest (42.20±12.95). These were closely followed by the

methods in the literature that utilized Boruta feature selection (43.57±12.03). In terms

of internal feature selection methods, the algorithm with the lowest mean number of

134

Figure 4.10. The concordance index, integrated Brier score, and the number of

 selected features for PAAD.

135

Table 4.10. The summary statistics of concordance index, integrated Brier score and the number of features selected for PAAD.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.637±0.044 0.632 (0.613-0.675) 0.548-0.713 0.505±0.139 0.563 (0.485-0.582) 0.165-0.622 963.83±583.64 883.00 (486.50-1549.50) 82-1913

Cforest 0.618±0.050 0.613 (0.578-0.658) 0.538-0.736 0.166±0.019 0.164 (0.154-0.184) 0.129-0.210 800.27±523.94 746.50 (319.75-1266.50) 42-1703

Coxboost 0.611±0.056 0.612 (0.575-0.655) 0.478-0.696 0.201±0.039 0.200 (0.165-0.228) 0.144-0.277 860.90±588.22 782.00 (291.00-1436.25) 58-1898

Ctree 0.553±0.050 0.556 (0.516-0.580) 0.427-0.666 0.419±0.076 0.420 (0.372-0.464) 0.221-0.551 717.90±443.08 663.00 (355.25-1032.00) 38-1620

Elasticnet 0.613±0.050 0.617 (0.576-0.650) 0.486-0.707 0.283±0.077 0.283 (0.214-0.348) 0.156-0.424 985.90±455.34 925.50 (682.75-1315.75) 41-1986

Gbm 0.616±0.041 0.610 (0.584-0.644) 0.556-0.714 0.282±0.088 0.259 (0.235-0.327) 0.146-0.536 705.63±541.56 554.50 (320.75-930.25) 79-1973

Glmboost 0.627±0.053 0.622 (0.591-0.679) 0.515-0.711 0.360±0.187 0.304 (0.180-0.550) 0.163-0.615 772.63±586.42 652.00 (280.75-1229.25) 49-1952

Lasso 0.609±0.049 0.613 (0.581-0.639) 0.492-0.699 0.275±0.084 0.261 (0.205-0.343) 0.133-0.446 883.93±530.35 764.50 (480.50-1334.50) 30-1743

ObliqueRSF 0.577±0.050 0.577 (0.540-0.608) 0.496-0.700 0.205±0.052 0.194 (0.167-0.241) 0.136-0.322 1062.10±515.55 1267.00 (688.50-1448.50) 14-1849

Penalized 0.636±0.062 0.661 (0.581-0.682) 0.525-0.749 0.162±0.021 0.166 (0.146-0.181) 0.120-0.198 774.13±549.19 621.00 (294.50-1275.75) 54-1776

Ranger 0.631±0.049 0.629 (0.588-0.663) 0.555-0.719 0.172±0.015 0.173 (0.165-0.181) 0.132-0.200 673.80±448.33 553.50 (262.50-923.75) 83-1742

Rfsrc 0.611±0.048 0.606 (0.580-0.643) 0.519-0.730 0.172±0.021 0.171 (0.160-0.184) 0.139-0.234 578.70±465.45 442.00 (182.75-990.00) 34-1764

Ridge 0.640±0.050 0.643 (0.601-0.681) 0.541-0.733 0.201±0.061 0.181 (0.168-0.190) 0.158-0.424 776.73±583.27 591.00 (313.50-1258.75) 2-1929

Rpart 0.566±0.060 0.563 (0.533-0.603) 0.376-0.697 0.255±0.027 0.249 (0.236-0.275) 0.211-0.314 760.67±533.97 734.50 (295.00-1136.50) 51-1982

Svm 0.588±0.055 0.587 (0.560-0.622) 0.456-0.684 0.520±0.057 0.528 (0.480-0.561) 0.402-0.649 988.83±496.60 901.50 (603.00-1330.75) 224-1988

Xgboost (dart) 0.587±0.049 0.582 (0.551-0.621) 0.482-0.694 0.245±0.042 0.245 (0.208-0.280) 0.159-0.336 918.40±548.36 908.50 (401.25-1299.50) 137-1981

Xgboost (gblinear) 0.639±0.040 0.637 (0.613-0.666) 0.566-0.710 0.206±0.021 0.202 (0.190-0.222) 0.173-0.247 1037.30±586.67 1140.50 (529.00-1540.50) 52-1897

Xgboost (gbtree) 0.583±0.059 0.580 (0.531-0.631) 0.467-0.722 0.252±0.050 0.249 (0.213-0.293) 0.177-0.361 842.60±500.42 872.50 (439.75-1257.25) 107-1751

Models

Boruta

Blackboost 0.614±0.051 0.617 (0.588-0.642) 0.467-0.716 0.462±0.172 0.552 (0.198-0.579) 0.174-0.622

9.20±3.39 9.00 (6.75-11.00) 5-18

Cforest 0.613±0.048 0.611 (0.576-0.646) 0.516-0.712 0.189±0.027 0.191 (0.168-0.206) 0.135-0.263

Coxboost 0.626±0.046 0.624 (0.602-0.656) 0.481-0.733 0.176±0.035 0.174 (0.155-0.202) 0.089-0.254

Ctree 0.582±0.037 0.579 (0.564-0.613) 0.483-0.655 0.358±0.057 0.371 (0.315-0.398) 0.211-0.468

Elasticnet 0.632±0.044 0.630 (0.614-0.659) 0.479-0.721 0.340±0.083 0.339 (0.292-0.396) 0.154-0.538

Gbm 0.593±0.056 0.601 (0.541-0.624) 0.492-0.732 0.310±0.112 0.273 (0.244-0.336) 0.168-0.564

Glmboost 0.626±0.041 0.624 (0.603-0.653) 0.493-0.702 0.477±0.158 0.552 (0.437-0.577) 0.169-0.622

Lasso 0.631±0.045 0.633 (0.608-0.657) 0.477-0.712 0.338±0.081 0.351 (0.285-0.396) 0.179-0.478

ObliqueRSF 0.586±0.052 0.576 (0.551-0.608) 0.481-0.701 0.209±0.041 0.217 (0.179-0.238) 0.126-0.282

Penalized 0.633±0.039 0.630 (0.608-0.662) 0.556-0.735 0.162±0.024 0.163 (0.145-0.182) 0.114-0.203

Ranger 0.610±0.047 0.611 (0.581-0.633) 0.525-0.740 0.177±0.020 0.178 (0.165-0.196) 0.131-0.212

Rfsrc 0.589±0.056 0.591 (0.550-0.635) 0.471-0.688 0.192±0.035 0.183 (0.168-0.217) 0.131-0.267

Ridge 0.630±0.042 0.628 (0.598-0.659) 0.552-0.745 0.192±0.024 0.188 (0.184-0.194) 0.170-0.313

Rpart 0.561±0.061 0.557 (0.520-0.593) 0.427-0.689 0.252±0.026 0.247 (0.232-0.280) 0.189-0.297

Svm 0.528±0.110 0.521 (0.422-0.611) 0.349-0.736 0.540±0.062 0.560 (0.496-0.577) 0.402-0.639

Xgboost (dart) 0.571±0.061 0.580 (0.513-0.618) 0.482-0.730 0.274±0.060 0.275 (0.226-0.315) 0.179-0.427

Xgboost (gblinear) 0.639±0.032 0.635 (0.616-0.662) 0.581-0.702 0.197±0.028 0.195 (0.178-0.220) 0.147-0.259

Xgboost (gbtree) 0.572±0.041 0.566 (0.534-0.609) 0.505-0.680 0.264±0.049 0.255 (0.222-0.311) 0.199-0.352

MLSeqSurv

voomStackPrio1 0.609±0.054 0.611 (0.570-0.660) 0.476-0.692 0.187±0.042 0.171 (0.158-0.222) 0.128-0.280

8.70±3.25 8.00 (6.00-11.25) 4-16

voomStackPrio2 0.620±0.064 0.636 (0.578-0.676) 0.484-0.702 0.172±0.021 0.172 (0.164-0.180) 0.125-0.223

voomStackIPF1 0.637±0.057 0.643 (0.607-0.680) 0.513-0.722 0.182±0.014 0.183 (0.172-0.191) 0.150-0.210

voomStackIPF2 0.615±0.058 0.617 (0.567-0.666) 0.486-0.704 0.177±0.019 0.178 (0.162-0.188) 0.140-0.211

voomStackIPF3 0.614±0.058 0.616 (0.566-0.669) 0.499-0.704 0.177±0.019 0.178 (0.162-0.188) 0.140-0.212

voomStackIPF4 0.641±0.054 0.642 (0.613-0.678) 0.538-0.736 0.182±0.014 0.183 (0.173-0.192) 0.142-0.210

voomStackIPF5 0.617±0.061 0.627 (0.567-0.673) 0.486-0.704 0.175±0.017 0.179 (0.161-0.187) 0.145-0.211

voomStackIPF6 0.616±0.062 0.633 (0.569-0.666) 0.498-0.704 0.177±0.017 0.179 (0.165-0.186) 0.144-0.212

voomStackIPF7 0.640±0.052 0.643 (0.613-0.680) 0.538-0.722 0.181±0.015 0.183 (0.172-0.191) 0.144-0.209

voomStackIPF8 0.614±0.058 0.615 (0.567-0.664) 0.486-0.704 0.177±0.019 0.178 (0.162-0.189) 0.140-0.211

voomStackIPF9 0.615±0.058 0.617 (0.566-0.669) 0.499-0.704 0.177±0.019 0.178 (0.162-0.188) 0.141-0.212

136

Figure 4.11. The concordance index, integrated Brier score, and the number of

 selected features for SARC.

137

Table 4.11. The summary statistics of concordance index, integrated Brier score and the number of features selected for SARC.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.624±0.039 0.633 (0.601-0.643) 0.536-0.719 0.395±0.121 0.448 (0.215-0.473) 0.195-0.527 1136.70±681.49 1352.00 (443.00-1798.75) 37-1965

Cforest 0.635±0.042 0.638 (0.603-0.666) 0.553-0.707 0.206±0.018 0.207 (0.193-0.214) 0.176-0.263 1065.40±630.42 1151.00 (496.00-1696.00) 48-1978

Coxboost 0.617±0.050 0.619 (0.577-0.649) 0.531-0.723 0.264±0.046 0.271 (0.239-0.294) 0.151-0.345 824.57±607.83 661.00 (286.25-1373.50) 34-1811

Ctree 0.574±0.044 0.577 (0.534-0.608) 0.510-0.664 0.308±0.066 0.319 (0.242-0.351) 0.214-0.435 766.70±486.35 670.00 (352.00-1053.00) 195-1848

Elasticnet 0.611±0.040 0.616 (0.583-0.629) 0.531-0.709 0.305±0.075 0.290 (0.247-0.349) 0.200-0.513 1138.87±585.43 1349.00 (682.50-1634.50) 4-1904

Gbm 0.614±0.052 0.619 (0.587-0.647) 0.473-0.717 0.378±0.066 0.383 (0.342-0.425) 0.218-0.476 892.43±507.18 825.00 (606.00-1168.00) 43-1992

Glmboost 0.617±0.046 0.621 (0.592-0.647) 0.512-0.709 0.371±0.130 0.446 (0.209-0.468) 0.189-0.527 1016.47±519.40 1027.00 (601.25-1518.00) 164-1798

Lasso 0.609±0.044 0.610 (0.571-0.644) 0.536-0.689 0.343±0.085 0.344 (0.281-0.397) 0.203-0.549 1010.20±521.46 899.00 (584.75-1442.50) 40-1911

ObliqueRSF 0.599±0.051 0.601 (0.559-0.639) 0.491-0.697 0.240±0.041 0.233 (0.223-0.249) 0.169-0.388 1153.10±524.79 1222.50 (839.00-1561.75) 129-1929

Penalized 0.634±0.041 0.635 (0.603-0.664) 0.555-0.730 0.225±0.029 0.221 (0.203-0.244) 0.159-0.308 916.27±554.06 813.00 (436.25-1271.75) 82-1951

Ranger 0.629±0.036 0.635 (0.609-0.656) 0.527-0.695 0.206±0.012 0.205 (0.197-0.214) 0.185-0.243 703.37±511.13 625.00 (302.75-936.50) 35-1962

Rfsrc 0.634±0.032 0.633 (0.615-0.652) 0.543-0.697 0.207±0.011 0.206 (0.200-0.213) 0.183-0.239 750.80±502.84 710.50 (253.25-1137.50) 33-1752

Ridge 0.650±0.042 0.650 (0.626-0.674) 0.558-0.743 0.325±0.076 0.306 (0.269-0.378) 0.194-0.505 939.20±514.37 871.50 (492.75-1352.50) 150-1831

Rpart 0.557±0.054 0.555 (0.526-0.588) 0.443-0.683 0.298±0.040 0.294 (0.270-0.337) 0.229-0.366 792.70±542.19 800.50 (297.00-1072.25) 44-1829

Svm 0.609±0.066 0.606 (0.577-0.656) 0.416-0.748 0.437±0.062 0.434 (0.389-0.469) 0.291-0.560 1061.53±500.87 1034.50 (710.00-1451.75) 108-1968

Xgboost (dart) 0.597±0.048 0.592 (0.570-0.633) 0.499-0.698 0.278±0.053 0.267 (0.244-0.299) 0.192-0.413 910.90±635.97 718.00 (260.50-1455.50) 31-1985

Xgboost (gblinear) 0.617±0.056 0.626 (0.570-0.656) 0.500-0.699 0.253±0.021 0.247 (0.239-0.267) 0.214-0.304 1184.37±519.21 1133.50 (887.75-1709.25) 33-1911

Xgboost (gbtree) 0.595±0.054 0.593 (0.551-0.642) 0.503-0.684 0.297±0.055 0.291 (0.249-0.353) 0.216-0.404 815.33±499.45 741.00 (435.00-1271.50) 47-1944

Models

Boruta

Blackboost 0.583±0.053 0.579 (0.540-0.613) 0.497-0.706 0.418±0.111 0.453 (0.425-0.485) 0.197-0.527

14.87±4.33 14.00 (12.00-17.50) 8-24

Cforest 0.610±0.055 0.616 (0.568-0.640) 0.485-0.738 0.211±0.022 0.209 (0.196-0.225) 0.174-0.265

Coxboost 0.601±0.054 0.614 (0.552-0.643) 0.496-0.696 0.252±0.038 0.246 (0.224-0.290) 0.188-0.321

Ctree 0.558±0.047 0.555 (0.521-0.585) 0.481-0.698 0.365±0.057 0.372 (0.318-0.416) 0.250-0.481

Elasticnet 0.593±0.048 0.594 (0.551-0.629) 0.496-0.673 0.329±0.095 0.307 (0.257-0.384) 0.204-0.552

Gbm 0.596±0.059 0.596 (0.555-0.620) 0.502-0.746 0.386±0.077 0.388 (0.330-0.452) 0.215-0.552

Glmboost 0.598±0.050 0.597 (0.568-0.636) 0.509-0.710 0.397±0.116 0.447 (0.231-0.480) 0.199-0.527

Lasso 0.597±0.053 0.606 (0.551-0.641) 0.483-0.687 0.353±0.100 0.339 (0.273-0.454) 0.176-0.559

ObliqueRSF 0.588±0.069 0.592 (0.532-0.664) 0.469-0.700 0.242±0.048 0.239 (0.211-0.267) 0.148-0.361

Penalized 0.605±0.046 0.605 (0.568-0.637) 0.508-0.716 0.231±0.032 0.225 (0.204-0.255) 0.171-0.297

Ranger 0.619±0.052 0.622 (0.589-0.654) 0.488-0.722 0.209±0.017 0.208 (0.198-0.217) 0.176-0.251

Rfsrc 0.608±0.051 0.599 (0.579-0.639) 0.485-0.739 0.220±0.021 0.216 (0.202-0.232) 0.184-0.278

Ridge 0.608±0.046 0.612 (0.574-0.641) 0.517-0.697 0.207±0.008 0.205 (0.200-0.215) 0.192-0.221

Rpart 0.563±0.059 0.553 (0.524-0.605) 0.465-0.739 0.302±0.044 0.305 (0.271-0.333) 0.231-0.391

Svm 0.553±0.055 0.557 (0.525-0.590) 0.407-0.640 0.450±0.062 0.452 (0.395-0.499) 0.355-0.566

Xgboost (dart) 0.588±0.054 0.578 (0.555-0.613) 0.501-0.709 0.285±0.054 0.273 (0.241-0.334) 0.198-0.406

Xgboost (gblinear) 0.586±0.055 0.604 (0.545-0.623) 0.487-0.677 0.254±0.030 0.250 (0.234-0.271) 0.211-0.335

Xgboost (gbtree) 0.589±0.061 0.572 (0.554-0.625) 0.486-0.751 0.295±0.066 0.285 (0.240-0.354) 0.195-0.428

MLSeqSurv

voomStackPrio1 0.613±0.037 0.612 (0.587-0.637) 0.524-0.675 0.202±0.014 0.199 (0.194-0.209) 0.176-0.239

16.27±4.81 16.00 (13.00-19.25) 7-30

voomStackPrio2 0.597±0.043 0.594 (0.556-0.635) 0.528-0.676 0.197±0.010 0.199 (0.191-0.204) 0.175-0.213

voomStackIPF1 0.613±0.035 0.613 (0.591-0.637) 0.524-0.694 0.193±0.011 0.192 (0.185-0.202) 0.166-0.214

voomStackIPF2 0.610±0.042 0.601 (0.577-0.651) 0.530-0.692 0.193±0.012 0.195 (0.187-0.201) 0.168-0.210

voomStackIPF3 0.609±0.042 0.603 (0.581-0.650) 0.527-0.687 0.194±0.012 0.196 (0.187-0.202) 0.168-0.212

voomStackIPF4 0.613±0.033 0.610 (0.591-0.636) 0.553-0.695 0.192±0.010 0.192 (0.186-0.201) 0.166-0.208

voomStackIPF5 0.608±0.044 0.601 (0.577-0.647) 0.527-0.692 0.194±0.012 0.196 (0.187-0.202) 0.168-0.213

voomStackIPF6 0.607±0.045 0.603 (0.581-0.642) 0.522-0.687 0.194±0.012 0.197 (0.187-0.203) 0.168-0.213

voomStackIPF7 0.615±0.032 0.613 (0.592-0.637) 0.561-0.696 0.192±0.011 0.192 (0.185-0.203) 0.165-0.210

voomStackIPF8 0.609±0.045 0.601 (0.577-0.653) 0.527-0.692 0.193±0.013 0.196 (0.187-0.203) 0.162-0.213

voomStackIPF9 0.608±0.045 0.603 (0.581-0.652) 0.522-0.687 0.194±0.012 0.197 (0.187-0.203) 0.168-0.213

138

Figure 4.12. The concordance index, integrated Brier score, and the number of

 selected features for UVM.

139

Table 4.12. The summary statistics of concordance index, integrated Brier score and the number of features selected for UVM.
Groups of

Algorithms Models

Concordance Index Integrated Brier Score The Number of Features Selected

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation

Median (1st-3rd

Quartile)
Min-Max

Mean±Sd.

Deviation
Median (1st-3rd Quartile) Min-Max

Models

Blackboost 0.789±0.068 0.802 (0.752-0.840) 0.633-0.900 0.258±0.096 0.253 (0.162-0.340) 0.140-0.450 882.90±583.12 817.50 (331.25-1406.00) 113-1981

Cforest 0.798±0.071 0.811 (0.738-0.842) 0.608-0.972 0.131±0.024 0.129 (0.120-0.141) 0.079-0.200 916.10±468.87 940.50 (570.75-1368.75) 4-1678

Coxboost 0.786±0.086 0.800 (0.715-0.858) 0.591-0.933 0.176±0.051 0.164 (0.135-0.208) 0.093-0.311 777.53±578.15 610.50 (320.75-1434.75) 26-1860

Ctree 0.731±0.053 0.738 (0.689-0.768) 0.639-0.829 0.189±0.074 0.171 (0.135-0.231) 0.103-0.375 772.93±607.28 720.50 (218.25-1143.00) 56-1939

Elasticnet 0.819±0.056 0.818 (0.789-0.851) 0.701-0.920 0.132±0.032 0.129 (0.114-0.152) 0.060-0.200 823.77±419.77 868.50 (414.00-1082.25) 81-1679

Gbm 0.780±0.069 0.779 (0.722-0.846) 0.636-0.897 0.269±0.098 0.242 (0.203-0.309) 0.132-0.584 735.80±601.25 595.50 (201.75-1234.75) 32-1984

Glmboost 0.815±0.068 0.813 (0.777-0.871) 0.636-0.935 0.218±0.094 0.168 (0.150-0.271) 0.130-0.450 1009.93±566.02 994.00 (478.25-1403.75) 18-1972

Lasso 0.799±0.070 0.799 (0.755-0.854) 0.589-0.923 0.135±0.030 0.134 (0.113-0.148) 0.075-0.207 854.50±545.62 789.50 (458.75-1273.75) 57-1932

ObliqueRSF 0.772±0.079 0.774 (0.721-0.836) 0.562-0.911 0.151±0.045 0.142 (0.127-0.162) 0.086-0.298 1116.40±560.43 1140.50 (553.50-1709.75) 54-1827

Penalized 0.808±0.076 0.833 (0.765-0.853) 0.500-0.886 0.122±0.022 0.122 (0.105-0.142) 0.083-0.163 892.07±495.71 853.50 (494.50-1353.00) 102-1848

Ranger 0.808±0.070 0.822 (0.757-0.852) 0.659-0.921 0.134±0.016 0.134 (0.127-0.143) 0.100-0.169 783.00±612.29 463.50 (266.75-1383.75) 21-1819

Rfsrc 0.811±0.064 0.818 (0.781-0.850) 0.648-0.953 0.140±0.018 0.139 (0.129-0.147) 0.107-0.185 1102.63±534.90 1171.00 (661.00-1524.00) 186-1976

Ridge 0.808±0.056 0.814 (0.769-0.842) 0.682-0.894 0.145±0.020 0.143 (0.133-0.154) 0.115-0.200 722.47±540.51 719.00 (229.00-1043.50) 57-1971

Rpart 0.698±0.106 0.696 (0.596-0.794) 0.522-0.867 0.224±0.072 0.231 (0.162-0.258) 0.102-0.359 842.43±545.78 894.00 (244.50-1250.50) 11-1871

Svm 0.759±0.117 0.785 (0.717-0.837) 0.322-0.902 0.303±0.071 0.279 (0.252-0.352) 0.198-0.524 834.00±572.32 737.50 (298.50-1230.00) 105-1920

Xgboost (dart) 0.752±0.091 0.777 (0.682-0.813) 0.528-0.874 0.169±0.033 0.165 (0.149-0.186) 0.116-0.278 820.17±536.59 744.00 (391.25-1134.50) 14-1801

Xgboost (gblinear) 0.816±0.056 0.817 (0.786-0.866) 0.670-0.897 0.154±0.032 0.158 (0.135-0.175) 0.081-0.226 830.43±447.23 780.50 (511.25-1218.75) 107-1611

Xgboost (gbtree) 0.746±0.102 0.761 (0.689-0.834) 0.483-0.920 0.181±0.039 0.179 (0.162-0.201) 0.082-0.270 617.87±407.24 524.00 (278.25-932.75) 15-1496

Models

Boruta

Blackboost 0.804±0.063 0.808 (0.747-0.865) 0.704-0.926 0.260±0.085 0.265 (0.182-0.336) 0.142-0.450

43.57±12.03 41.50 (34.75-52.25) 15-69

Cforest 0.810±0.058 0.823 (0.784-0.848) 0.659-0.920 0.127±0.026 0.124 (0.104-0.142) 0.087-0.199

Coxboost 0.821±0.051 0.815 (0.786-0.853) 0.708-0.933 0.146±0.039 0.141 (0.125-0.174) 0.068-0.224

Ctree 0.736±0.066 0.740 (0.677-0.806) 0.629-0.843 0.183±0.036 0.190 (0.154-0.209) 0.105-0.247

Elasticnet 0.829±0.055 0.828 (0.783-0.881) 0.744-0.920 0.128±0.033 0.127 (0.103-0.147) 0.066-0.197

Gbm 0.776±0.069 0.778 (0.733-0.832) 0.625-0.953 0.312±0.086 0.290 (0.261-0.343) 0.191-0.572

Glmboost 0.825±0.060 0.825 (0.770-0.869) 0.733-0.944 0.185±0.085 0.150 (0.138-0.177) 0.122-0.450

Lasso 0.819±0.056 0.816 (0.773-0.868) 0.731-0.933 0.134±0.040 0.131 (0.106-0.158) 0.065-0.228

ObliqueRSF 0.769±0.088 0.775 (0.729-0.821) 0.505-0.911 0.155±0.047 0.143 (0.131-0.171) 0.079-0.302

Penalized 0.830±0.065 0.827 (0.787-0.882) 0.714-0.953 0.119±0.019 0.122 (0.103-0.135) 0.084-0.153

Ranger 0.818±0.063 0.820 (0.775-0.865) 0.711-0.941 0.129±0.018 0.127 (0.116-0.141) 0.100-0.183

Rfsrc 0.811±0.075 0.797 (0.766-0.866) 0.663-0.965 0.134±0.025 0.130 (0.117-0.145) 0.086-0.193

Ridge 0.818±0.059 0.826 (0.775-0.857) 0.704-0.929 0.157±0.018 0.161 (0.146-0.166) 0.112-0.203

Rpart 0.721±0.090 0.722 (0.657-0.803) 0.534-0.880 0.203±0.053 0.192 (0.165-0.239) 0.124-0.332

Svm 0.770±0.146 0.796 (0.728-0.845) 0.128-0.947 0.269±0.080 0.261 (0.218-0.314) 0.129-0.511

Xgboost (dart) 0.767±0.092 0.763 (0.718-0.819) 0.577-0.947 0.181±0.039 0.178 (0.153-0.207) 0.095-0.270

Xgboost (gblinear) 0.839±0.061 0.834 (0.797-0.883) 0.721-0.953 0.155±0.035 0.157 (0.130-0.179) 0.066-0.219

Xgboost (gbtree) 0.766±0.074 0.757 (0.717-0.821) 0.592-0.929 0.190±0.049 0.180 (0.161-0.216) 0.100-0.309

MLSeqSurv

voomStackPrio1 0.827±0.063 0.828 (0.777-0.880) 0.644-0.926 0.133±0.033 0.127 (0.108-0.158) 0.086-0.212

42.20±12.95 40.00 (33.00-50.50) 19-72

voomStackPrio2 0.828±0.070 0.849 (0.766-0.887) 0.655-0.926 0.123±0.015 0.123 (0.114-0.131) 0.088-0.157

voomStackIPF1 0.817±0.063 0.810 (0.764-0.864) 0.698-0.937 0.144±0.013 0.143 (0.135-0.152) 0.120-0.183

voomStackIPF2 0.840±0.055 0.839 (0.807-0.883) 0.655-0.916 0.111±0.016 0.112 (0.099-0.121) 0.083-0.150

voomStackIPF3 0.841±0.059 0.851 (0.810-0.888) 0.655-0.926 0.108±0.018 0.107 (0.095-0.119) 0.077-0.151

voomStackIPF4 0.817±0.062 0.810 (0.763-0.859) 0.698-0.937 0.144±0.013 0.143 (0.134-0.153) 0.126-0.183

voomStackIPF5 0.840±0.055 0.839 (0.807-0.883) 0.655-0.916 0.111±0.016 0.112 (0.099-0.121) 0.083-0.150

voomStackIPF6 0.830±0.072 0.836 (0.798-0.885) 0.600-0.926 0.111±0.020 0.110 (0.097-0.123) 0.077-0.165

voomStackIPF7 0.817±0.062 0.810 (0.764-0.859) 0.698-0.937 0.144±0.012 0.143 (0.135-0.152) 0.126-0.183

voomStackIPF8 0.840±0.055 0.839 (0.807-0.883) 0.655-0.916 0.111±0.016 0.112 (0.099-0.121) 0.083-0.150

voomStackIPF9 0.841±0.059 0.851 (0.810-0.888) 0.655-0.926 0.108±0.018 0.107 (0.095-0.119) 0.077-0.151

140

features was xgboost (with booster= “gbtree”) (617.87±407.24), while the algorithm

with the highest mean number of features was obliqueRSF (1116.40±560.43).

4.2. Super Lists

Within the study's scope is a plan to compare the model performances of 47

algorithms, including the newly developed ones. Due to the extensive number of

methods, diverse datasets, and multiple performance measures, determining the best

methods in every aspect is challenging. Therefore, the rank aggregation method was

employed. Rank aggregation is an optimization method capable of combining ordered

lists. Utilizing this approach, separate assessments were conducted based on the

number of selected features, concordance index, and integrated Brier score. As a result

of these evaluations, super lists were generated for each performance measure, ranking

methods from the best-performing to the worst-performing (Figure 4.13, Figure 4.14,

and Figure 4.15). Super lists have been generated based on the colors and numbers

assigned to the compared methods:

voomStackPrio1 1 blackboost 1 blackboost_B 1

voomStackPrio2 2 coxboost 2 coxboost_B 2

voomStackIPF1 3 gbm 3 gbm_B 3

voomStackIPF2 4 glmboost 4 glmboost_B 4

voomStackIPF3 5 xgboost_gbtree 5 xgboost_gbtree_B 5

voomStackIPF4 6 xgboost_gblinear 6 xgboost_gblinear_B 6

voomStackIPF5 7 xgboost_dart 7 xgboost_dart_B 7

voomStackIPF6 8 elasticnet 1 elasticnet_B 1

voomStackIPF7 9 lasso 2 lasso_B 2

voomStackIPF8 10 penalized 3 penalized_B 3

voomStackIPF9 11 ridge 4 ridge_B 4
 cforest 1 cforest_B 1
 ctree 2 ctree_B 2
 obliqueRSF 3 obliqueRSF_B 3
 ranger 4 ranger_B 4
 rfsrc 5 rfsrc_B 5
 rpart 6 rpart_B 6
 svm 1 svm_B 1

In Figure 4.13, a super list has been compiled based on the concordance index.

Initially, the concordance index results for each dataset were arranged in descending

order on separate lines. Running the rank aggregation algorithm across these 12

datasets formed the super list displayed in the bottom row. Among the top 20 methods

141

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

ACC 1 1 4 5 1 4 3 1 9 4 6 6 3 4 1 6 5 3 1 1 3 3 2 4 2 7 4 5 2 3 7 5 2 3 4 7 10 5 11 8 1 6 6 2 2 2 1

CESC 4 3 1 3 4 9 1 6 4 1 2 1 4 5 7 4 2 8 10 5 11 1 4 6 2 2 3 2 4 3 3 1 5 1 5 7 5 7 3 1 3 6 1 6 2 2 6

ESCA 4 9 1 3 6 7 4 5 10 8 11 1 5 1 3 2 5 4 2 3 7 6 3 6 4 7 5 1 2 6 5 2 3 1 2 2 2 1 4 1 1 4 4 3 1 3 6

GBM 4 1 3 3 1 2 5 2 3 4 2 1 6 1 3 4 7 8 1 10 11 5 2 4 4 2 5 4 7 1 4 6 6 1 2 1 1 5 6 3 6 3 9 5 7 3 2

KIRC 1 4 5 4 1 3 1 6 4 1 4 3 2 2 1 3 2 3 6 9 4 5 4 1 7 4 10 8 1 11 5 3 7 2 5 2 5 3 3 6 1 7 6 2 6 2 1

KIRP 1 3 2 5 4 2 4 3 1 4 1 9 2 6 4 3 3 1 7 2 1 5 3 4 4 5 1 5 7 10 1 3 4 7 2 3 6 5 11 2 8 1 6 6 6 2 1

LAML 2 5 2 1 4 1 4 3 1 3 6 9 6 3 4 4 5 3 2 1 3 4 2 1 10 3 4 2 1 1 7 5 4 7 11 7 1 6 5 5 3 8 6 6 2 2 1

LGG 2 4 4 1 2 1 3 4 5 4 2 4 3 9 1 3 2 6 1 1 4 1 5 4 7 10 6 6 5 8 5 11 1 7 3 3 1 7 5 3 2 6 3 6 2 2 1

MESO 3 9 6 4 1 3 6 4 6 1 4 3 1 1 5 4 1 1 2 4 4 5 2 2 1 1 3 2 3 10 11 8 7 7 4 5 2 5 3 7 6 2 5 3 2 6 1

PAAD 6 9 4 6 6 3 1 3 3 1 2 4 4 4 2 4 2 1 7 3 8 11 4 10 5 1 1 1 5 2 4 1 2 3 5 1 7 3 5 2 3 5 7 6 6 2 1

SARC 4 1 5 3 4 1 4 6 4 2 9 3 1 3 6 1 1 4 1 5 2 10 5 4 7 11 8 3 2 3 4 2 7 2 3 5 1 5 7 3 6 1 2 6 2 6 1

UVM 5 11 4 7 10 6 8 3 1 2 1 4 2 2 1 4 4 3 6 9 6 4 5 5 1 3 4 4 1 2 1 1 2 3 3 3 1 3 7 5 1 7 5 2 2 6 6

Super

List

4 4 1 1 3 5 9 6 4 2 4 2 3 3 1 4 3 1 2 6 5 1 4 10 7 4 8 5 2 1 11 5 7 2 1 5 3 7 3 1 6 3 6 6 2 2 1

ra
n
g

er

ri
d
g

e

el
as

ti
cn

et

cf
o

re
st

v
o
o

m
S

ta
ck

IP
F

1

rf
sr

c

v
o
o

m
S

ta
ck

IP
F

7

v
o
o

m
S

ta
ck

IP
F

4

ra
n
g

er
_

B

co
x

b
o
o

st

ri
d
g

e_
B

la
ss

o

p
en

al
iz

ed
_

B

g
b
m

el
as

ti
cn

et
_

B

g
lm

b
o
o

st

p
en

al
iz

ed

b
la

ck
b
o

o
st

la
ss

o
_
B

x
g
b
o

o
st

_
g
b

li
n
ea

r

rf
sr

c_
B

cf
o

re
st

_
B

v
o
o

m
S

ta
ck

IP
F

2

v
o
o

m
S

ta
ck

IP
F

8

v
o
o

m
S

ta
ck

IP
F

5

g
lm

b
o
o

st
_
B

v
o
o

m
S

ta
ck

IP
F

6

v
o
o

m
S

ta
ck

IP
F

3

co
x

b
o
o

st
_
B

v
o
o

m
S

ta
ck

P
ri

o
1

v
o
o

m
S

ta
ck

IP
F

9

x
g
b
o

o
st

_
g
b

tr
ee

x
g
b
o

o
st

_
d

ar
t

v
o
o

m
S

ta
ck

P
ri

o
2

b
la

ck
b
o

o
st

_
B

x
g
b
o

o
st

_
g
b

tr
ee

_
B

o
b
li

q
u

eR
S

F

x
g
b
o

o
st

_
d

ar
t_

B

o
b
li

q
u

eR
S

F
_

B

sv
m

x
g
b
o

o
st

_
g
b

li
n
ea

r_
B

_
B

g

b
m

_
B

rp
ar

t_
B

rp
ar

t

ct
re

e_
B

ct
re

e

sv
m

_
B

Figure 4.13. The ranking of survival algorithms based the concordance index.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

ACC 3 9 3 6 4 10 7 4 3 1 5 11 8 5 3 1 4 2 5 6 2 1 5 7 3 7 6 5 2 4 2 6 6 2 4 1 1 4 1 4 1 2 3 3 1 1 2

CESC 6 3 9 7 2 8 4 5 10 11 3 5 1 4 4 3 4 1 5 1 2 6 4 3 6 5 7 3 2 7 5 1 2 6 1 6 2 2 2 4 4 1 1 1 3 3 1

ESCA 1 3 4 3 4 2 5 4 2 6 3 9 7 8 4 5 2 10 11 1 4 5 6 6 3 3 2 1 6 6 7 7 5 5 1 3 2 2 1 3 1 4 1 2 4 1 1

GBM 1 3 3 4 5 1 4 2 4 3 2 3 5 7 8 3 9 4 6 5 10 11 6 2 6 1 6 6 5 7 5 7 4 2 1 3 1 2 3 1 1 2 4 2 4 1 1

KIRC 1 3 3 4 5 4 2 5 1 7 4 10 8 11 5 2 3 6 9 2 3 1 3 4 6 5 6 7 7 5 4 1 1 4 3 2 6 2 2 6 1 3 1 4 2 1 1

KIRP 10 3 9 4 6 7 2 5 8 11 3 1 4 4 3 5 5 1 3 5 3 6 2 6 7 7 5 2 1 2 2 1 4 1 1 6 4 4 6 4 3 1 3 2 1 2 1

LAML 1 3 1 5 4 4 3 5 10 7 4 11 8 5 2 9 3 6 4 3 1 2 2 6 3 6 5 7 3 5 6 6 7 4 3 2 2 1 1 1 2 2 1 4 4 1 1

LGG 2 2 3 3 4 4 1 3 5 3 1 5 6 6 2 4 7 10 8 5 11 9 6 3 6 6 5 7 5 7 4 1 3 3 4 2 1 2 1 1 1 2 2 1 1 4 4

MESO 3 3 4 1 1 2 5 2 4 5 3 6 3 10 8 11 6 4 7 5 1 4 7 2 6 9 3 5 7 5 6 4 6 2 1 3 2 2 1 2 3 4 4 1 1 1 1

PAAD 3 3 1 4 2 5 7 2 5 8 4 11 10 4 9 3 6 1 1 4 5 6 2 4 3 6 3 7 6 5 6 5 7 2 3 1 3 2 1 2 4 2 1 4 1 1 1

SARC 6 9 3 4 5 10 7 8 11 2 1 1 4 4 5 4 1 5 3 3 3 3 2 6 6 2 7 7 5 5 6 6 1 2 4 1 2 2 2 4 3 3 1 4 1 1 1

UVM 5 11 7 4 10 8 3 3 2 1 1 4 1 1 1 2 5 4 2 5 9 3 6 4 2 3 6 6 3 4 7 2 7 5 2 4 2 5 6 4 6 1 1 1 3 1 3

Super

List

3 1 3 4 7 8 4 4 5 10 5 11 5 2 9 3 6 1 2 3 6 2 6 7 5 7 4 6 4 6 1 2 2 1 1 2 2 4 3 3 3 1 1 4 1 1 5

p
en

al
iz

ed
_

B

cf
o

re
st

p
en

al
iz

ed

v
o
o

m
S

ta
ck

IP
F

2

v
o
o

m
S

ta
ck

IP
F

5

v
o
o

m
S

ta
ck

IP
F

6

ra
n
g

er

ra
n
g

er
_

B

rf
sr

c

v
o
o

m
S

ta
ck

IP
F

8

v
o
o

m
S

ta
ck

IP
F

3

v
o
o

m
S

ta
ck

IP
F

9

rf
sr

c_
B

v
o
o

m
S

ta
ck

P
ri

o
2

v
o
o

m
S

ta
ck

IP
F

7

v
o
o

m
S

ta
ck

IP
F

1

v
o
o

m
S

ta
ck

IP
F

4

v
o
o

m
S

ta
ck

P
ri

o
1

co
x

b
o
o

st
_
B

o
b
li

q
u

eR
S

F

x
g
b
o

o
st

_
g
b

li
n
ea

r_
B

co
x

b
o
o

st

x
g
b
o

o
st

_
g
b

li
n
ea

r

x
g
b
o

o
st

_
d

ar
t_

B

x
g
b
o

o
o
st

_
g

b
tr

ee

x
g
b
o

o
o
st

_
d

ar
t

ri
d
g

e

rp
ar

t_
B

ri
d
g

e_
B

rp
ar

t

el
as

ti
cn

et

ct
re

e_
B

la
ss

o
_
B

el
as

ti
cn

et
_

B

cf
o

re
st

_
B

la
ss

o

ct
re

e

g
lm

b
o
o

st

g
b
m

g
b
m

_
B

o
b
li

q
u

eR
S

F
_

B

b
la

ck
b
o

o
st

b
la

ck
b
o

o
st

_
B

g
lm

b
o
o

st
_
B

sv
m

sv
m

_
B

x
g
b
o

o
st

_
g
b

tr
ee

_
B

Figure 4.14. The ranking of survival algorithms based the integrated Brier score.

142

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

ACC MLSeqSurv Models_Boruta 6 3 2 4 4 7 5 4 2 1 6 2 1 5 1 3 1 3

CESC MLSeqSurv Models Boruta 1 5 4 6 4 3 1 4 1 3 7 5 2 2 3 1 2 6

ESCA Models Boruta MLSeqSurv 3 4 1 4 2 4 3 1 3 2 5 7 1 6 1 2 6 5

GBM Models Boruta MLSeqSurv 4 4 5 3 4 3 6 1 2 5 1 2 2 1 1 7 3 6

KIRC MLSeqSurv Models Boruta 6 2 4 4 1 3 3 2 5 2 4 5 1 3 7 1 1 6

KIRP Models Boruta MLSeqSurv 6 1 2 3 2 5 7 4 3 2 3 1 1 4 5 4 1 6

LAML Models Boruta MLSeqSurv 7 5 4 2 2 1 4 6 4 5 1 3 1 6 3 2 1 3

LGG Models Boruta MLSeqSurv 7 4 2 2 1 5 6 3 1 1 4 5 3 2 3 1 4 6

MESO Models Boruta MLSeqSurv 4 5 2 7 6 5 1 3 4 3 4 1 2 1 1 6 2 3

PAAD MLSeqSurv Models Boruta 5 4 3 2 6 4 3 4 1 5 2 2 7 1 1 1 6 3

SARC Models Boruta MLSeqSurv 4 5 2 6 5 2 3 7 3 4 2 4 1 1 1 1 3 6

UVM MLSeqSurv Models Boruta 5 4 3 2 2 4 7 1 6 1 6 2 1 3 1 4 5 3

Super

List

Models Boruta MLSeqSurv 4 2 6 4 4 3 7 5 2 2 5 1 1 1 3 1 3 6

Models Boruta MLSeqSurv

ra
n

g
er

ct
re

e

rp
ar

t

ri
d

g
e

g
lm

b
o
o
st

p
en

al
iz

ed

x
g
b
o
o
st

_
d

ar
t

x
g
b
o
o
st

_
g

b
tr

ee

co
x

b
o

o
st

la
ss

o

rf
sr

c

cf
o

re
st

el
as

ti
cn

et

b
la

ck
b
o
o
st

g
b
m

sv
m

o
b
li

q
u
eR

S
F

x
g
b
o
o
st

_
g

b
li

n
ea

r

Figure 4.15. The ranking of survival algorithms based the number of selected

 features.

according to the concordance index in this list are the following: ranger, ridge,

elasticnet, cforest, voomStackIPF1, rfsrc, voomStackIPF7, voomStackIPF4,

ranger_B, coxboost, ridge_B, lasso, penalized_B, gbm, elasticnet_B, glmboost,

penalized, blackboost, lasso_B, xgboost (gblinear).

In Figure 4.14, a super list has been compiled based on the integrated Brier

score. Initially, the integrated Brier score results for each dataset were arranged on

separate lines from smallest to largest. Running the rank aggregation algorithm across

these 12 datasets formed the super list displayed in the bottom row. Among the top 20

methods according to the integrated Brier score in this list are the following, listed in

order: penalized_b, cforest, gbm, voomStackIPF2, voomStackIPF5, voomStackIPF6,

ranger, ranger_B, rfsrc, voomStackIPF8, voomStackIPF3, voomStackIPF9, rfsrc_B,

voomStackPrio2, voomStackIPF7, voomStackIPF1, voomStackIPF4,

voomStackPrio1, coxboost_b, obliqueRSF.

In Figure 4.15, a super list has been generated based on the number of selected

features. Initially, lists were created for each dataset, ranging from using the least

143

features to using the most features. In the resulting super list, it was chosen the least

number of features.

Upon scrutinizing the survival models in this study solely based on a high

concordance index, it was evident that the lasso, elastic net, ridge, xgboost (gblinear),

gbm, glmboost, and blackboost algorithms, employing internal feature selection,

exhibited commendable performance. The obliqueRSF, which also utilizes internal

feature selection, was the sole model displaying a low integrated Brier score. Models

with both a high concordance index and a low integrated Brier score include cforest,

ranger, rfsrc, and penalized—each utilizing internal feature selection. Nevertheless,

despite their high performance in concordance index and integrated Brier score, these

models tend to incorporate excessive features. Elastic net and lasso models utilizing

Boruta feature selection exhibited low features and a high concordance index value.

However, their integrated Brier scores were also high. On the other hand,

voomStackIPF2, voomStackIPF3, voomStackIPF5, voomStackIPF6, voomStackIPF8,

voomStackIPF9, voomStackPrio1, voomStackPrio2, rfsrc, and coxboost algorithms,

when employing Boruta feature selection, displayed a low feature count and a low

integrated Brier score value. Despite this, their concordance index values were not

notably high. Methods striking a balance between a high concordance index, low

Figure 4.16. A Venn diagram illustrating optimal practices concerning concordance

 index, integrated Brier score, and the number of selected features.

144

integrated Brier score, and a modest feature count include voomStackIPF1,

voomStackIPF4, voomStackIPF7, ranger, and penalized algorithms—all utilizing

Boruta feature selection (Figure 4.16).

4.3. Computational Time

The execution times of the algorithms for MESO, SARC, and LGG data are

presented in minutes in Table 4.13. Upon examination, it is evident that

voomStackLasso algorithms typically complete calculations in significantly less time

than existing algorithms. This characteristic enhances the practical utility of the newly

developed algorithms.

145

Table 4.13. The summary statistics of the computational time for MESO, SARC, and

LGG.

Groups of

Algorithms
Models MESO SARC LGG

Models

Blackboost 60.69 55.94 102.08

Cforest 195.91 201.36 456.48

Coxboost 49.73 90.32 192.55

Ctree 18.23 24.9 39.9

Elasticnet 1.54 2.79 3.51

Gbm 5.01 23.4 48.37

Glmboost 18.56 55.71 109.59

Lasso 1.76 2.75 3.58

ObliqueRSF 58.84 509.18 1064.64

Penalized 2.69 6.39 8.33

Ranger 2.17 72.07 419.81

Rfsrc 2.19 11.05 22.17

Ridge 1.35 2.89 5.00

Rpart 1.54 3.44 4.01

Svm 2.01 52.58 155.51

Xgboost (dart) 1.06 4.54 5.7

Xgboost (gblinear) 0.97 3.07 3.7

Xgboost (gbtree) 1.1 4.31 7.1

Models

Boruta

Blackboost 12.12 16.40 202.12

Cforest 25.37 85.65 1052.77

Coxboost 5.5 7.65 52.99

Ctree 0.93 0.92 6.35

Elasticnet 0.78 0.54 2.06

Gbm 0.71 0.63 5.31

Glmboost 6.97 11.48 104.63

Lasso 0.72 0.55 2.06

ObliqueRSF 26.21 66.44 243.68

Penalized 0.39 0.52 1.47

Ranger 5.85 99.52 544.57

Rfsrc 2.2 17.71 31.12

Ridge 0.75 0.54 2.03

Rpart 1.18 2.01 2.08

Svm 6.94 51.86 193.7

Xgboost (dart) 2.39 4.13 3.71

Xgboost (gblinear) 2.21 3.77 3.24

Xgboost (gbtree) 2.41 4.02 3.7

MLSeqSurv

voomStackPrio1 0.59 0.94 13.48

voomStackPrio2 0.58 0.85 13.36

voomStackIPF1 0.41 0.56 5.73

voomStackIPF2 0.72 0.45 9.82

voomStackIPF3 1.36 0.48 48.88

voomStackIPF4 0.42 0.53 7.24

voomStackIPF5 0.77 0.51 11.86

voomStackIPF6 0.99 0.44 50.64

voomStackIPF7 0.43 0.53 5.40

voomStackIPF8 0.66 0.41 4.56

voomStackIPF9 1.13 0.34 37.78

The values in the table are calculated in minutes. Mean values are given.

146

5. DISCUSSION

Previously conducted with low-dimensional clinical data in earlier studies,

survival analyses have undergone a transformative shift toward integrating large-

dimensional gene expression data, such as RNA-seq. This shift reflects the advancing

landscape of precision medicine, emphasizing personalized diagnoses and treatments

over-generalized approaches applied uniformly to all patients. Researchers are

using genetic data to diagnose and treat diseases because they have realized that

different people respond differently to the same treatments and that diseases progress

differently in different ways in the same individuals. This paradigm shift towards

leveraging genetic information underscores the significance of tailoring medical

interventions based on an individual's unique genetic makeup, ushering in a new era

of targeted and more effective healthcare strategies.

 Machine learning methods have been devised for survival analyses on high-

dimensional RNA-seq data. In the context of this thesis, we compared these established

methods in the literature with novel approaches we developed ourselves. The criteria

employed for model comparisons encompassed the concordance index and integrated

Brier score. Performance evaluation in survival analyses typically involves two main

aspects: discrimination and calibration.

In survival analyses, the concordance index is the most widely

used discrimination metric. Listing anticipated risk scores and actual results is the first

step, and then the alignment of these rankings is compared. Concordance occurs when

an individual who experiences an event at the start of the study period is given a greater

predicted risk score than an individual who experiences the event at the end of the

study period or never during the study period. This index represents the probability

that two randomly chosen subjects have correctly ranked risk estimates. Despite its

common use, the concordance index has drawbacks. It relies solely on the ranks of

predicted values, potentially inflating the index for models with inaccurate predictions

compared to competing models with more accurate predictions (245). Furthermore,

when introducing new statistically and clinically significant variables to the model, the

concordance index becomes less reliable, as it is insensitive to such additions (246).

Additionally, its interpretation is limited due to the amalgamation of sensitivity and

selectivity concepts (247).

147

Alternatively, the Brier score shows up as a complete performance measure

that includes both calibration and discrimination. With respect to the predicted

survival probability, this score measures the mean squared error. It can calculate a

general error measurement over all time points and be applied to a particular time point

(t). But in order to compute the Brier score, baseline estimation is required, and

different approaches can produce different scores. In this study, we employed the Brier

score developed by Graf et al. (219), eliminating the need for baseline estimation. This

method categorizes test data into two groups based on the training model, estimating

the risk-free probability for each sample from the Kaplan-Meier estimate relevant to

the group.

Models were additionally assessed based on the number of features they

selected. For models beyond the approaches we devised, analyses conducted using the

mlr3proba package (215) revealed that the internal feature selection algorithms

needed to be sufficiently sparse in their selection, encompassing a broad array of

features. Consequently, the Boruta feature selection algorithm was applied in

subsequent analyses, addressing the need for more focused feature selection. In this

case, although models were created with fewer features, it has been observed that there

is little difference in model performances. Moreover, previous studies experimenting

with various feature selection methods for survival data have also indicated no

difference in model performance (52,248).

Upon reviewing the concordance index results, it is noteworthy that while the

internal feature selection and Boruta feature selection outcomes of algorithms in the

literature generally yield similar results, distinct algorithms exhibit higher

performance on different datasets. For instance, in evaluations based on concordance

index results for methods in the literature employing internal feature selection, the

ranger algorithm demonstrated superior performance in ESCA and GBM data, the

ridge algorithm excelled in PAAD and SARC data, and the elastic net algorithm

outperformed in MESO data. Notably, in the LAML data, the coxboost

algorithm performed the best, while in the ACC data, the cforest algorithm performed

exceptionally well. After scrutinizing the literature's approaches, it became evident

that ctree and rpart methods generally yielded lower accuracy across all datasets.

Comparative studies utilizing these algorithms concluded that different methods

performed better in diverse studies despite generating similar performance results. In

148

a study encompassing ten different cancer datasets, Cox Proportional Hazards with

Ridge penalty, Random Survival Forests, Gradient Boosting for Survival Analysis

with a CoxPh loss function, linear and kernel Support Vector Machines generally

delivered comparable concordance index results, particularly in higher-dimensional

data. Cox proportional hazards demonstrated suboptimal performance in some high-

dimensional sets (249). Numerous studies have consistently showcased the high-

performance outcomes of the random survival forest algorithm (250–252). While

xgboost and random survival forest algorithms demonstrated similar performance in

certain studies (253), the xgboost algorithm outperformed in others (254,255).

Furthermore, studies are highlighting the high performance of the elasticnet algorithm

(256), the gbm algorithm (257), and the blackboost algorithm (53). In comparisons of

survival algorithms, the svm algorithm either showed results comparable to other

methods or exhibited lower performance outcomes (258).

When scrutinizing the results of the integrated Brier score, it is observed that

penalized, ranger, rfsrc, and cforest algorithms, among the survival algorithms in the

literature, consistently yield high-performance outcomes. Conversely, blackboost,

elasticnet, gbm, lasso, and svm algorithms tend to exhibit notably lower performances.

It's important to note that while algorithms with low integrated Brier score often

demonstrate high concordance index performances, relying solely on the concordance

index for model performance evaluation may not suffice for a comprehensive

assessment. This issue was also highlighted by Hermann et al., (53) in their article,

which argues that the selection of a performance measure can have a significant effect

on the assessment of the performance of a method. While many studies traditionally

measure survival model performances with the concordance index, Hermann et al. (53)

argued that the cindex is not an ideal measure as it solely assesses discrimination. They

proposed that the integrated Brier score is a more accurate measure. Additionally,

Hermann et al. (50) highlighted that if the study's goal is risk classification, using the

concordance index for interpretability is more accurate, whereas for prognostic

accuracy, the integrated Brier score is the preferred metric.

When assessed in terms of the number of variables incorporated into the model,

it becomes evident that the means and standard deviations of the selected variables in

algorithms employing internal feature selection methods are notably high, indicating

a lack of sparsity in these methods. However, upon applying Boruta feature selection

149

to these algorithms, models could be constructed with significantly fewer variables. In

addition, Spooner et al. (52)compared model performance with survival algorithms

and with feature selection methods and found that feature selection did not result in

significant changes in model performance. This study observed that when both Boruta

feature selection and internal feature selection were applied to survival algorithms in

the literature, the model's performance was not significantly altered based on the

concordance index and integrated Brier score. It can be stated that, in some datasets,

model performances with Boruta feature selection are relatively lower than those with

integrated feature selection. However, it is noteworthy that, in models where Boruta

feature selection is applied, the mean and standard deviation of the selected feature

numbers are considerably lower.

When the models are evaluated in terms of calculation times, it is noteworthy

that boosting methods such as blackboost take a very long time to model. In addition,

it has been observed that penalized Cox regression models such as lasso, ridge,

elasticnet can model very quickly.

A comprehensive study was carried out, utilizing 12 real RNA-seq survival

datasets, to assess the proposed methodologies' efficacy and compare their

performance with that of other survival algorithms. Remarkably good results were

achieved when applied to real data. Notably, three of the recently formulated

voomStackIPF approaches (voomStackIPF1, voomStackIPF4, and voomStackIPF7)

demonstrated comparable or slightly superior results compared to the most favorable

results attained by established methods documented in the literature for the analysis of

RNA-seq survival data. These models demonstrated a high concordance index and a

low Brier score, showcasing the capability to generate models swiftly with minimal

variables. In addition, the models were also evaluated for how long it took to achieve

results. Upon further analysis, it became clear that the proposed algorithms delivered

results in a fraction of the time as the existing algorithms described in the literature.

The new algorithms used in this study are the first to integrate logCPM and

voom transformation-derived sample weights into survival algorithms for the first

time. While voom transformation has previously been used in differential expression

(69), classification (71), and clustering (72) analysis of RNA-seq data, this is the first

study to use voom transform in survival algorithms. This study shows impressive

performance and provides sparse results.The accuracy of the voom transformation to

150

model the mean-variance relationship in RNA seq data is thought to be critical to the

success of our novel survival algorithms. Additionally, the weights obtained through

the voom transformation confer advantages, such as accommodating samples with

varying sorting depths and mitigating the impact of low-quality samples.

The stacking algorithm can alter the structure of survival data, converting it

into a classification data format. Consequently, all algorithms designed for

classification issues can be extended to address survival problems. Hence, the stacking

algorithm, renowned for its high-performance outcomes when applied to low-

dimensional data (61), was introduced for the first time to RNA-seq data in this study.

In the context of this thesis, the stacking algorithm facilitated the utilization of priority-

Lasso and IPF-Lasso classification algorithms, incorporating sample weights, for the

inaugural analysis of RNA-seq survival data. Integration with various classification

algorithms is achievable through the stacking algorithm. Rather than being confined

to a restricted set of survival algorithms, researchers can now employ numerous

classification algorithms, numbering in the hundreds drawn from existing literature

and incorporating newly developed methods for enhanced analysis. Thus, the stacking

algorithm and other established classification algorithms in the literature can now be

applied in the survival data analysis.

In this thesis study, several key factors contributed to the success of the new

algorithms used to analyze the survival data for RNA-seq: (i) the application of the

potent voom transformation algorithm to the data, (ii) the transformation of the

intricate structure of survival data into a simplified classification data structure through

stacking algorithms, (iii) the utilization of priority-Lasso and IPF Lasso algorithms

capable of analyzing the block structure of variables with diverse data structures

obtained through stacking, leading to more precise results, (iv) the modeling approach

involves applying distinct weights to individual samples in the RNA-seq data, and (v)

the Boruta algorithm, known for its effectiveness in selecting important variables, has

been integrated into newly developed algorithms. The combination of these robust

approaches has led to the development of two different survival algorithms: high

performance, sparse, and efficient modeling algorithms, which have made significant

contributions to the literature.

The developed algorithms extend beyond conventional survival analysis; they

also demonstrate exceptional proficiency in biomarker discovery. Their ability to

151

perform both survival assays and biomarker assays using gene expression data at the

same time is of great importance to healthcare professionals, helping them to better

diagnose patients. Creating a decision support system for clinical diagnosis, driven by

identifying the most pertinent genes associated with a disease, empowers clinicians to

make more accurate diagnoses promptly. This, in turn, facilitates the development of

personalized treatments, enhances patients' quality of life, and positively contributes

to the country's economy.

MLSeqSurv, which was created for this thesis, allows researchers to perform

survival assays on the RNA-seq dataset using existing survival algorithms in the

literature as well as new algorithms. This package makes it easy to create individual

survival graphs so you can perform your own analysis without having to spend a lot of

time coding.

The newly developed algorithms, voomStackPrio, and voomStackIPF,

introduced within the context of this study, were implemented on RNA-seq data.

However, these algorithms can be extended for future investigations to analyze other

high-dimensional datasets such as microarray, proteomics, and metabolomics by

customizing the pre-processing steps. It is anticipated that in other high-dimensional

data settings, similar to RNA-seq, these algorithms would yield high-performance

results, particularly in the context of survival analyses. Additionally, in this study, only

protein-coding genes have been considered. However, in future studies, non-coding

genes may also be included in the analysis. Similarly, this study utilized bulk RNA-

seq data; however, the pre-processing step can be adapted and implemented for

survival analyses of single-cell RNA-seq data.

In this study, survival prediction was achieved by looking at data with

heterogeneous structures due to stacking through block structured lasso algorithms.

Future survival algorithms could be created using multiple kernel algorithms where

different types of data are evaluated in different cores. Moreover, studies have

demonstrated performance improvements when combining RNA-seq data with

clinical data or other omics data like microarray, metabolomics, and proteomics. This

situation aligns well with the voomStackIPF and voomStackPrio algorithms developed

in this study, which were designed to evaluate different data types in distinct blocks.

For instance, in scenarios involving clinical + RNA-seq data, post voom

transformation, and stacking, clinical data could be analyzed in one block while RNA-

152

seq data is assessed in another. Similarly, for RNA-seq + metabolomics + proteomic

data, each data type could be processed and stacked separately according to its

structure, allowing for analysis in individual blocks—one for RNA-seq data, another

for metabolomics data, and a third for proteomic data.

153

6. CONCLUSION

In this paper, we introduced two new algorithms to the literature: voom

transformation and stacking algorithm, as well as block-based lasso algorithms for

RNA-seq survival analysis. These algorithms solve problems such as high

dimensionality, high collinearity, and heterogeneity in RNA-seq data, tackling

survival problems by conceptualizing them as classification problems. The algorithms

developed have comparable or better model performance compared to other techniques

described in the literature, showing their efficiency in building models with minimal

features. In addition, these algorithms are much faster than existing algorithms in terms

of computational time, delivering results in a fraction of the time.

On the basis of these results, voomStackLasso algorithms serve as a viable

alternative to other survival algorithms used in the analysis of RNA-seq datasets.

154

7. REFERENCES

1. Fielden MR, Zacharewski TR. Challenges and limitations of gene expression profiling

in mechanistic and predictive toxicology. Toxicol Sci. 2001;60(1):6–10.

2. Richard C. Analysis of cell division parameters and cell cycle gene expression during

the cultivation of Arabidopsis thaliana cell suspensions. J Exp Bot.

2001;52(361):1625–33.

3. Bertucci F, Finetti P, Rougemont J, Charafe-Jauffret E, Nasser V, Loriod B, et al. Gene

expression profiling for molecular characterization of inflammatory breast cancer and

prediction of response to chemotherapy. Cancer Res. 2004;64(23):8558–65.

4. Lowe R, Shirley N, Bleackley M, Dolan S, Shafee T. Transcriptomics technologies.

PLoS Comput Biol. 2017;13(5):1–23.

5. Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics.

Nat Rev | Genet. 2009;VOLUME 10(jANUARy 2009):57–63.

6. Van Vliet AHM. Next generation sequencing of microbial transcriptomes: Challenges

and opportunities. FEMS Microbiol Lett. 2010;302(1):1–7.

7. Raz T, Kapranov P, Lipson D, Letovsky S, Milos PM, Thompson JF. Protocol

dependence of sequencing-based gene expression measurements. PLoS One.

2011;6(5).

8. Hurd PJ, Nelson CJ. Advantages of next-generation sequencing versus the microarray

in epigenetic research. Briefings Funct Genomics Proteomics. 2009;8(3):174–83.

9. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: An assessment of

technical reproducibility and comparison with gene expression arrays. Genome Res.

2008;18(9):1509–17.

10. O’Connell M. Differential expression, class discovery and class prediction using S-

PLUS and S+ArrayAnalyzer. ACM SIGKDD Explor Newsl. 2003;5(2):38–47.

11. Slonim DK, Tamayo P, Mesirov JP, Golub TR, Lander ES. Class prediction and

discovery using gene expression data. Proc Annu Int Conf Comput Mol Biol

RECOMB. 2000;263–72.

12. Hajizadeh N, Zhang M, Akerman M, Kohn N, Mathew A, Hadjiliadis D, et al. Survival

models to support shared decision-making about advance care planning for people with

advanced stage cystic fibrosis. BMJ Open Respir Res. 2021;8(1):1–14.

13. Alizadeh AA, Elsen MB, Davis RE, Ma CL, Lossos IS, Rosenwald A, et al. Distinct

types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature.

2000;403(6769):503–11.

14. Rosenberg J, Chia YL, Plevritis S. The effect of age, race, tumor size, tumor grade, and

disease stage on invasive ductal breast cancer survival in the U.S. SEER database.

Breast Cancer Res Treat. 2005;89(1):47–54.

15. Zhu B, Song N, Shen R, Arora A, Machiela MJ, Song L, et al. Integrating Clinical and

155

Multiple Omics Data for Prognostic Assessment across Human Cancers. Sci Rep

[Internet]. 2017;7(1):1–13. Available from: http://dx.doi.org/10.1038/s41598-017-

17031-8

16. Wang C, Machiraju R, Huang K. Breast cancer patient stratification using a molecular

regularized consensus clustering method. Methods [Internet]. 2014;67(3):304–12.

Available from: http://dx.doi.org/10.1016/j.ymeth.2014.03.005

17. Rafiq S, Tapper W, Collins A, Khan S, Politopoulos I, Gerty S, et al. Identification of

inherited genetic variations influencing prognosis in early-onset breast cancer. Cancer

Res. 2013;73(6):1883–91.

18. Silveira DRA, Quek L, Santos IS, Corby A, Coelho-Silva JL, Pereira-Martins DA, et

al. Integrating clinical features with genetic factors enhances survival prediction for

adults with acute myeloid leukemia. Blood Adv. 2020;4(10):2339–50.

19. Klein PJ, Moeschberger ML. SURVIVAL ANALYSIS Techniques for Censored and

Truncated Data. Springer; 2003.

20. E.L. Kaplan PM. Nonparametric Estimation from Incomplete Observations Author (s

): E . L . Kaplan and Paul Meier Source : Journal of the American Statistical

Association , Vol . 53 , No . 282 (Jun ., 1958), pp . 457- Published by : American

Statistical Association Sta. Am Stat Assoc. 1958;53(282):457–81.

21. Society RS, Society RS. Asymptotically Efficient Rank Invariant Test Procedures

Author (s): Richard Peto and Julian Peto Reviewed work (s): Source : Journal of the

Royal Statistical Society . Series A (General), Vol . 135 , No . 2 (1972), pp . Published

by : Wiley for th. 2013;135(2):185–207.

22. KLEIN J. Small sample moments of some estimators of the variance of the Kaplan-

Meier and Nelson-Aalen estimators. Scand J Stat. 1991;18(4):333–40.

23. Cutler SJ, Ederer F, Bethesd L. MAXIMUM UTILIZATION ANALYZING

SURVIVAL OF THE LIFE TABLE METHOD the method and its uses have been

admirably described by a number of authors , 2-6. Survival (Lond) [Internet]. 1958;

Available from: file:///E:/Todas as coisas da Tali/Leituras/Artigos/Cutler and Ederer

1958.pdf

24. Cox DR. Regression Models and Life-Tables Authors (s): D . R . Cox Source : Journal

of the Royal Statistical Society . Series B (Methodological), Vol . 34 , No . 2 Published

by : Wiley for the Royal Statistical Society Stable URL : http://www.jstor.org/stable. J

R Stat Soc. 1972;34(2):187–220.

25. Simon N, Friedman J, Hastie T, Tibshirani R. Regularization paths for Cox’s

proportional hazards model via coordinate descent. J Stat Softw. 2011;39(5):1–13.

26. Hesterberg T, Choi NH, Meier L, Fraley C. Least angle and ℓ 1 penalized regression:

A review. Stat Surv. 2008;2:61–93.

27. Fisher LD, Lin DY. Time-dependent covariates in the cox proportional-hazards

regression model. Annu Rev Public Health. 1999;20(6):145–57.

28. Wang Z, Wang CY. Statistical Applications in Genetics and Molecular Biology

Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker

156

Data Buckley-James Boosting for Survival Analysis with High-Dimensional

Biomarker Data ∗ . Stat Appl Genet Mol Biol. 2010;9(1).

29. Wood SN, Augustin NH. GAMs with integrated model selection using penalized

regression splines and applications to environmental modelling. Ecol Modell.

2002;157(2–3):157–77.

30. Schmid M, Hothorn T. Flexible boosting of accelerated failure time models. BMC

Bioinformatics. 2008;9:1–13.

31. Witten DM, Tibshirani R. Survival Analysis with high-dimensional covariates. Stat

Methods Med Res. 2010;19(1):29–51.

32. Jia M, Yuan DY, Lovelace TC, Hu M, Benos P V. Causal discovery in high-

dimensional, multicollinear datasets. Front Epidemiol. 2022;2(5).

33. Ma B, Yan G, Chai B, Hou X. XGBLC: an improved survival prediction model based

on XGBoost. Bioinformatics. 2022;38(2):410–8.

34. Tibshirani R. The lasso method for variable selection in the cox model. Stat Med.

1997;16(4):385–95.

35. Hoerl AE, Kennard RW. Ridge Regression: Biased Estimation for Nonorthogonal

Problems. Technometrics. 1970;12(1):55–67.

36. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc

Ser B Stat Methodol. 2005;67(2):301–20.

37. Lee S, Lim H. Review of statistical methods for survival analysis using genomic data.

Genomics and Informatics. 2019;17(4).

38. Breiman LEO. Random Forests. 2001;5–32.

39. Ishwaran H, Kogalur UB, Blackstone EH, Lauer MS. Random survival forests. Ann

Appl Stat. 2008;2(3):841–60.

40. Kwak LW, Halpern J, Olshen RA, Horning SJ. Prognostic significance of actual dose

intensity in diffuse large-cell lymphoma: Results of a tree-structured survival analysis.

J Clin Oncol. 1990;8(6):963–77.

41. Gordon L, Olshen RA. Tree-structured survival analysis. Cancer Treat Rep.

1985;69(10):1065–9.

42. Landoni G, Greco T, Biondi-Zoccai G, Neto CN, Febres D, Pintaudi M, et al.

Anaesthetic drugs and survival: A bayesian network meta-analysis of randomized trials

in cardiac surgery. Br J Anaesth [Internet]. 2013;111(6):886–96. Available from:

http://dx.doi.org/10.1093/bja/aet231

43. Biganzoli E, Boracchi P, Mariani L, Marubini E. Feed forward neural networks for the

analysis of censored survival data: A partial logistic regression approach. Stat Med.

1998;17(10):1169–86.

44. Lee YJ, Mangasarian O, Wolberg W. Breast cancer survival and chemotherapy: A

support vector machine analysis. 2000;0000(December):1–10.

157

45. Hothorn T, Lausen B, Benner A, Radespiel-Tröger M. Bagging survival trees. Stat

Med. 2004;23(1):77–91.

46. Hothorn T, Bühlmann P, Dudoit S, Molinaro A, Van Der Laan MJ. Survival ensembles.

Biostatistics. 2006;7(3):355–73.

47. Faraggi D, Simon R. A neural network model for survival data. Stat Med.

1995;14(1):73–82.

48. Paul R, Hawkins S, Balagurunathan Y, Schabath M, Gillies R, Hall L, et al. Deep

Feature Transfer Learning in Combination with Traditional Features Predicts Survival

among Patients with Lung Adenocarcinoma. Tomography. 2016;2(4):388–95.

49. Li Y, Wang J, Ye J, Reddy CK. A multi-task learning formulation for survival analysis.

Proc ACM SIGKDD Int Conf Knowl Discov Data Min. 2016;13-17-Augu:1715–24.

50. Bøvelstad HM, Nygård S, Borgan Ø. Survival prediction from clinico-genomic models

- a comparative study. BMC Bioinformatics. 2009;10:1–9.

51. van Wieringen WN, Kun D, Hampel R, Boulesteix AL. Survival prediction using gene

expression data: A review and comparison. Comput Stat Data Anal [Internet].

2009;53(5):1590–603. Available from: http://dx.doi.org/10.1016/j.csda.2008.05.021

52. Spooner A, Chen E, Sowmya A, Sachdev P, Kochan NA, Trollor J, et al. A comparison

of machine learning methods for survival analysis of high-dimensional clinical data for

dementia prediction. Sci Rep [Internet]. 2020;10(1):1–10. Available from:

https://doi.org/10.1038/s41598-020-77220-w

53. Herrmann M, Probst P, Hornung R, Jurinovic V, Boulesteix AL. Large-scale

benchmark study of survival prediction methods using multi-omics data. Brief

Bioinform. 2021;22(3):1–15.

54. Ma B, Geng Y, Meng F, Yan G, Song F. Identification of a sixteen-gene prognostic

biomarker for lung adenocarcinoma using a machine learning method. J Cancer.

2020;11(5):1288–98.

55. Huang Z, Johnson TS, Han Z, Helm B, Cao S, Zhang C, et al. Deep learning-based

cancer survival prognosis from RNA-seq data: Approaches and evaluations. BMC Med

Genomics [Internet]. 2020;13(Suppl 5):1–12. Available from:

http://dx.doi.org/10.1186/s12920-020-0686-1

56. Ching T, Zhu X, Garmire LX. Cox-nnet: An artificial neural network method for

prognosis prediction of high-throughput omics data. PLoS Comput Biol. 2018;14(4):1–

18.

57. Wang L. Deep Learning Techniques to Diagnose Lung Cancer. Cancers (Basel).

2022;14(22).

58. Grimes T, Walker AR, Datta S, Datta S. Predicting survival times for neuroblastoma

patients using RNA-seq expression profiles. Biol Direct. 2018;13(1):1–15.

59. Jardillier R, Koca D, Chatelain F, Guyon L. Prognosis of lasso-like penalized Cox

models with tumor profiling improves prediction over clinical data alone and benefits

from bi-dimensional pre-screening. BMC Cancer [Internet]. 2022;22(1):1–16.

158

Available from: https://doi.org/10.1186/s12885-022-10117-1

60. Ding D, Lang T, Zou D, Tan J, Chen J, Zhou L, et al. Machine learning-based

prediction of survival prognosis in cervical cancer. BMC Bioinformatics [Internet].

2021;22(1):1–17. Available from: https://doi.org/10.1186/s12859-021-04261-x

61. Craig E, Zhong C, Tibshirani R. Survival stacking: casting survival analysis as a

classification problem. 2021;1–17. Available from: http://arxiv.org/abs/2107.13480

62. Nguyen T, Bhatti A, Yang S, Nahavandi S. RNA-seq count data modelling by grey

relational analysis and nonparametric Gaussian process. PLoS One. 2016;11(10):1–18.

63. Witten DM. Classification and clustering of sequencing data using a poisson model.

Ann Appl Stat. 2011;5(4):2493–518.

64. Robinson MD, Smyth GK. Small-sample estimation of negative binomial dispersion,

with applications to SAGE data. Biostatistics. 2008;9(2):321–32.

65. Anders S, Huber W. Differential expression analysis for sequence count data. Nat

Preced. 2010;

66. Eling N, Richard AC, Richardson S, Marioni JC, Vallejos CA. Correcting the Mean-

Variance Dependency for Differential Variability Testing Using Single-Cell RNA

Sequencing Data. Cell Syst [Internet]. 2018;7(3):284-294.e12. Available from:

https://doi.org/10.1016/j.cels.2018.06.011

67. Zwiener I, Frisch B, Binder H. Transforming RNA-Seq data to improve the

performance of prognostic gene signatures. PLoS One. 2014;9(1):1–13.

68. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for

RNA-seq data with DESeq2. Genome Biol. 2014;15(12):1–21.

69. Law CW, Chen Y, Shi W, Smyth GK. Voom: Precision weights unlock linear model

analysis tools for RNA-seq read counts. Genome Biol. 2014;15(2):1–17.

70. Ritchie ME, Diyagama D, Neilson J, van Laar R, Dobrovic A, Holloway A, et al.

Empirical array quality weights in the analysis of microarray data. BMC

Bioinformatics. 2006;7.

71. Zararsiz G, Goksuluk D, Klaus B, Korkmaz S, Eldem V, Karabulut E, et al. voomDDA:

Discovery of diagnostic biomarkers and classification of RNA-seq data. PeerJ.

2017;2017(10):1–27.

72. Cephe A, Koçhan N, Zararsız GE, Eldem V, Coşgun E, Karabulut E, et al. voomSOM:

voom-based Self-Organizing Maps for Clustering RNASequencing Data. Curr

Bioinform. 2022;18(2):154–69.

73. Klau S, Jurinovic V, Hornung R, Herold T, Boulesteix AL. Priority-Lasso: A simple

hierarchical approach to the prediction of clinical outcome using multi-omics data.

BMC Bioinformatics. 2018;19(1):1–14.

74. Boulesteix AL, De Bin R, Jiang X, Fuchs M. IPF-LASSO: Integrative L1-Penalized

Regression with Penalty Factors for Prediction Based on Multi-Omics Data. Comput

Math Methods Med. 2017;2017.

159

75. Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, et al. Cancer

statistics for the year 2020: An overview. Int J Cancer. 2021;149(4):778–89.

76. Neal RD, Tharmanathan P, France B, Din NU, Cotton S, Fallon-Ferguson J, et al. Is

increased time to diagnosis and treatment in symptomatic cancer associated with poorer

outcomes? Systematic review. Br J Cancer. 2015;112:S92–107.

77. Kakushadze Z, Raghubanshi R, Yu W. Estimating cost savings from early cancer

diagnosis. Data. 2017;2(3):1–16.

78. Kattan MW, Kantoff PW, Nelson JB, Carroll PR, Roach M, Higano CS. Comparison

of Cox regression with other methods for determining prediction models and

nomograms. J Urol. 2003;170(6):6–10.

79. Singh R, Mukhopadhyay K. Survival analysis in clinical trials: Basics and must know

areas. Perspect Clin Res. 2011;2(4):145.

80. Henderson R. Problems and prediction in survival‐ data analysis. Stat Med.

1995;14(2):161–84.

81. McCann RM. Comfort Care for Terminally III Patients. Jama. 1994;272(16):1263.

82. Waljee AK, Rogers MAM, Lin P, Singal AG, Stein JD, Marks RM, et al. Short term

use of oral corticosteroids and related harms among adults in the United States:

population based cohort study. BMJ. 2017;357:j1415.

83. Sotiriou C, Wirapati P, Loi S, Harris A, Fox S, Smeds J, et al. Gene expression profiling

in breast cancer: Understanding the molecular basis of histologic grade to improve

prognosis. J Natl Cancer Inst. 2006;98(4):262–72.

84. Bielinski SJ, Olson JE, Pathak J, Weinshilboum RM, Wang L, Lyke KJ, et al.

Preemptive genotyping for personalized medicine: Design of the right drug, right dose,

right timedusing genomic data to individualize treatment protocol. Mayo Clin Proc.

2014;89(1):25–33.

85. Williamson R, Anderson W, Duckett S, Frazer I, Hillyard C, Kowal E, et al. The Future

of Precision Medicine in Australia. Report for the Australian Council of Learned

Academies. 2018. 1–196 p.

86. Ravina B, Tanner C, DiEuliis D, Eberly S, Flagg E, Galpern WR, et al. A longitudinal

program for biomarker development in Parkinson’s disease: A feasibility study. Mov

Disord. 2009;24(14):2081–90.

87. Pennathur A, Farkas A, Krasinskas AM, Ferson PF, Gooding WE, Gibson MK, et al.

Esophagectomy for T1 Esophageal Cancer: Outcomes in 100 Patients and Implications

for Endoscopic Therapy. Ann Thorac Surg [Internet]. 2009;87(4):1048–55. Available

from: http://dx.doi.org/10.1016/j.athoracsur.2008.12.060

88. Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pract

Ed. 2013;98(6):236–8.

89. Serratì S, de Summa S, Pilato B, Petriella D, Lacalamita R, Tommasi S, et al. Next-

generation sequencing: Advances and applications in cancer diagnosis. Onco Targets

Ther. 2016;9:7355–65.

160

90. Hess JF, Kohl TA, Kotrová M, Rönsch K, Paprotka T, Mohr V, et al. Library

preparation for next generation sequencing: A review of automation strategies.

Biotechnol Adv [Internet]. 2020;41(March):107537. Available from:

https://doi.org/10.1016/j.biotechadv.2020.107537

91. Illumina Inc. Illumina sequencing introduction. Illumina Seq Introd [Internet].

2017;(October):1–8. Available from:

https://www.illumina.com/documents/products/illumina_sequencing_introduction.pdf

92. Zararsiz G. Development and application of novel machine learning approaches for

rna-seq data classification. 2015.

93. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, et al.

Accurate whole human genome sequencing using reversible terminator chemistry.

Nature. 2008;456(7218):53–9.

94. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. TopHat2: accurate

alignment of transcriptomes in the presence of insertions, deletions and gene fusions.

Genome Biol. 2013;14(R36).

95. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: Ultrafast

universal RNA-seq aligner. Bioinformatics. 2013;29(1):15–21.

96. Liao Y, Smyth GK, Shi W. FeatureCounts: An efficient general purpose program for

assigning sequence reads to genomic features. Bioinformatics. 2014;30(7):923–30.

97. Robinson MD, McCarthy DJ, Smyth GK. edgeR: A Bioconductor package for

differential expression analysis of digital gene expression data. Bioinformatics.

2009;26(1):139–40.

98. Rao MS, Van Vleet TR, Ciurlionis R, Buck WR, Mittelstadt SW, Blomme EAG, et al.

Comparison of RNA-Seq and microarray gene expression platforms for the

toxicogenomic evaluation of liver from short-term rat toxicity studies. Front Genet.

2019;10(JAN):1–16.

99. Zhao S, Fung-Leung WP, Bittner A, Ngo K, Liu X. Comparison of RNA-Seq and

microarray in transcriptome profiling of activated T cells. PLoS One. 2014;9(1).

100. Cock PJA, Fields CJ, Goto N, Heuer ML, Rice PM. The Sanger FASTQ file format for

sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids

Res. 2009;38(6):1767–71.

101. S A. FastQC: a quality control tool for high throughput sequence data [Internet]. 2010.

Available from: http://www.bioinformatics.babraham.ac.uk/projects/fastqc

102. Jiang H, Lei R, Ding SW, Zhu S. Skewer: A fast and accurate adapter trimmer for next-

generation sequencing paired-end reads. BMC Bioinformatics. 2014;15(1):1–12.

103. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et

al. Erratum: A survey of best practices for RNA-seq data analysis [Genome Biol.

(2016), 17, 13] doi: 10.1186/s13059-016-0881-8. Genome Biol. 2016;17(1):16–7.

104. Patel RK, Jain M. NGS QC toolkit: A toolkit for quality control of next generation

sequencing data. PLoS One. 2012;7(2).

161

105. Deluca DS, Levin JZ, Sivachenko A, Fennell T, Nazaire MD, Williams C, et al. RNA-

SeQC: RNA-seq metrics for quality control and process optimization. Bioinformatics.

2012;28(11):1530–2.

106. Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina

sequence data. Bioinformatics. 2014;30(15):2114–20.

107. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets.

Bioinformatics. 2011;27(6):863–4.

108. Chen Y, Chen Y, Shi C, Huang Z, Zhang Y, Li S, et al. SOAPnuke: A MapReduce

acceleration-supported software for integrated quality control and preprocessing of

high-throughput sequencing data. Gigascience. 2018;7(1):1–6.

109. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3).

110. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics. 2009;25(14):1754–60.

111. Kim D, Langmead B, Salzberg SL. HISAT: A fast spliced aligner with low memory

requirements. Nat Methods. 2015;12(4):357–60.

112. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, Van Baren MJ, et al.

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts

and isoform switching during cell differentiation. Nat Biotechnol. 2010;28(5):511–5.

113. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie

enables improved reconstruction of a transcriptome from RNA-seq reads. Nat

Biotechnol. 2015;33(3):290–5.

114. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I, et al. Full-length

transcriptome assembly from RNA-Seq data without a reference genome. Nat

Biotechnol. 2011;29(7):644–52.

115. Hurgobin B. Short Read Alignment Using SOAP2. In: Plant Bioinformatics. Humana

Press, New York, NY; 2016. p. 241–252.

116. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, et al. De novo

assembly and analysis of RNA-seq data. Nat Methods. 2010;7(11):909–12.

117. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with

or without a reference genome. BMC Bioinformatics. 2011;12(323).

118. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq

quantification. Nat Biotechnol. 2016;34(5):525–7.

119. Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-

aware quantification of transcript expression. Nat Methods. 2017;14(4):417–9.

120. Anders S, Pyl PT, Huber W. HTSeq-A Python framework to work with high-

throughput sequencing data. Bioinformatics. 2015;31(2):166–9.

121. Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of

162

sequencing experiments. Nat Methods. 2013;10(1):71–3.

122. Anders S, Reyes A, Huber W. Detecting differential usage of exons from RNA-seq

data. Genome Res. 2012;22(10):2008–17.

123. Patro R, Mount SM, Kingsford C. Sailfish enables alignment-free isoform

quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol.

2014;32(5):462–4.

124. Chen HM, MacDonald JA. Network analysis of TCGA and GTEx gene expression

datasets for identification of trait-associated biomarkers in human cancer. STAR Protoc

[Internet]. 2022;3(1):101168. Available from:

https://doi.org/10.1016/j.xpro.2022.101168

125. Chen HM, MacDonald JA. Network analysis of TCGA and GTEx gene expression

datasets for identification of trait-associated biomarkers in human cancer. STAR

Protoc. 2022 Mar 18;3(1).

126. Law CW, Alhamdoosh M, Su S, Dong X, Tian L, Smyth GK, et al. RNA-seq analysis

is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research. 2018;5(1):1–29.

127. Park G, Park JK, Shin SH, Jeon HJ, Kim NKD, Kim YJ, et al. Characterization of

background noise in capture-based targeted sequencing data. Genome Biol.

2017;18(1):1–13.

128. Soneson C, Gerster S, Delorenzi M. Batch effect confounding leads to strong bias in

performance estimates obtained by cross-validation. PLoS One. 2014;9(6):1–12.

129. Bullard JH, Purdom E, Hansen KD, Dudoit S. Evaluation of statistical methods for

normalization and differential expression in mRNA-Seq experiments. 2010;

130. Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds systems

biology. Biol Direct. 2009;4:1–10.

131. Risso D, Schwartz K, Sherlock G, Dudoit S. GC-Content Normalization for RNA-Seq

Data. BMC Bioinformatics. 2011;

132. Robinson MD, Oshlack A. A scaling normalization method for differential expression

analysis of RNA-seq data. Genome Biol [Internet]. 2010;11(3):1–9. Available from:

http://genomebiology.com/2010/11/3/R25

133. Dillies MA, Rau A, Aubert J, Hennequet-Antier C, Jeanmougin M, Servant N, et al. A

comprehensive evaluation of normalization methods for Illumina high-throughput

RNA sequencing data analysis. Brief Bioinform. 2013;14(6):671–83.

134. Bolstad BM, Irizarry RA, Åstrand M, Speed TP. A comparison of normalization

methods for high density oligonucleotide array data based on variance and bias.

Bioinformatics. 2003;19(2):185–93.

135. Han H, Men K. How does normalization impact RNA-seq disease diagnosis? J Biomed

Inform [Internet]. 2018;85(July):80–92. Available from:

https://doi.org/10.1016/j.jbi.2018.07.016

136. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying

163

mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5(7):621–8.

137. Wagner P, Kin K, Lynch VJ. Measurement of mRNA abundance using RNA-seq data :

RPKM measure is inconsistent among samples. 2012;281–5.

138. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L. Differential

analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol.

2013;31(1):46–53.

139. Maza E, Frasse P, Senin P, Bouzayen M, Zouine M. Comparison of normalization

methods for differential gene expression analysis in RNA-Seq experiments: A matter

of relative size of studied transcriptomes. Commun Integr Biol. 2013;6(6).

140. Zhang Z, Yu D, Seo M, Hersh CP, Weiss ST, Qiu W. Novel Data Transformations for

RNA-seq Differential Expression Analysis. Sci Rep. 2019;9(1):1–12.

141. Ahlmann-Eltze C, Huber W. Comparison of Transformations for Single-Cell RNA-

Seq Data. bioRxiv [Internet]. 2022;20(May):2021.06.24.449781. Available from:

http://biorxiv.org/content/early/2022/11/12/2021.06.24.449781.abstract

142. Agresti A. 3Rd-Ed-Alan_Agresti_Categorical_Data_Analysis.Pdf. Vol. 47,

International encyclopedia of statistical science. 2013. p. 755–8.

143. Cloonan N, Forrest ARR, Kolle G, Gardiner BBA, Faulkner GJ, Brown MK, et al.

Stem cell transcriptome profiling via massive-scale mRNA sequencing. Nat Methods.

2008;5(7):613–9.

144. Perkins TT, Kingsley RA, Fookes MC, Gardner PP, James KD, Yu L, et al. A strand-

specific RNA-seq analysis of the transcriptome of the typhoid bacillus Salmonella

typhi. PLoS Genet. 2009;5(7).

145. Parikh A, Miranda ER, Katoh-Kurasawa M, Fuller D, Rot G, Zagar L, et al. Conserved

developmental transcriptomes in evolutionarily divergent species. Genome Biol.

2010;11(3).

146. Zhou YH, Xia K, Wright FA. A powerful and flexible approach to the analysis of RNA

sequence count data. Bioinformatics. 2011;27(19):2672–8.

147. Srivastava S, Chen L. A two-parameter generalized Poisson model to improve the

analysis of RNA-seq data. Nucleic Acids Res. 2010;38(17):1–15.

148. McCarthy DJ, Chen Y, Smyth GK. Differential expression analysis of multifactor

RNA-Seq experiments with respect to biological variation. Nucleic Acids Res.

2012;40(10):4288–97.

149. Smyth GK. Linear models and empirical bayes methods for assessing differential

expression in microarray experiments. Stat Appl Genet Mol Biol. 2004;3(1):1–26.

150. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. Limma powers

differential expression analyses for RNA-sequencing and microarray studies. Nucleic

Acids Res. 2015;43(7):e47.

151. Liu R, Holik AZ, Su S, Jansz N, Chen K, Leong HS, et al. Why weight? Modelling

sample and observational level variability improves power in RNA-seq analyses.

164

Nucleic Acids Res. 2015;43(15).

152. Kursa MB, Rudnicki WR. Feature selection with the boruta package. J Stat Softw.

2010;36(11):1–13.

153. Guo P, Luo Y, Mai G, Zhang M, Wang G, Zhao M, et al. Gene expression profile based

classification models of psoriasis. Genomics. 2014;103(1):48–55.

154. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, et al.

Gastrointestinal microbiome signatures of pediatric patients with irritable bowel

syndrome. Gastroenterology [Internet]. 2011;141(5):1782–91. Available from:

http://dx.doi.org/10.1053/j.gastro.2011.06.072

155. Degenhardt F, Seifert S, Szymczak S. Evaluation of variable selection methods for

random forests and omics data sets. Brief Bioinform. 2019;20(2):492–503.

156. Kvamme H, Borgan O, Scheel I. Time-to-event prediction with neural networks and

cox regression. J Mach Learn Res. 2019;20:1–30.

157. Kleinbaum DG, Mitchel K. Survival Analysis: A Self-Learning Text. Vol. 39,

Technometrics. 1997. 228–229 p.

158. Lee ET, Wang JW. Statistical Methods for Survival Data Analysis. John Wiley & Sons,

Inc.; 2003. 243–255 p.

159. Tobin BYJ. Estimation of Relationships for Limited Dependent Variables Author (s):

James Tobin Published by : The Econometric Society Stable URL :

http://www.jstor.org/stable/1907382 . OF RELATIONSHIPS FOR LIMITED

DEPENDENT VARIABLES ’. Econometrica. 1985;26(1):24–36.

160. Buckley J, James I. Linear regression with censored data. Biometrika. 1979;66(3):429–

36.

161. Wang S, Nan B, Zhu J, Beer DG. Doubly penalized Buckley-James method for survival

data with high-dimensional covariates. Biometrics. 2008;64(1):132–40.

162. Kyung M, Gilly J, Ghoshz M, Casellax G. Penalized regression, standard errors, and

Bayesian lassos. Bayesian Anal. 2010;5(2):369–412.

163. Li Y, Vinzamuri B, Reddy CK. Regularized weighted linear regression for high-

dimensional censored data. 16th SIAM Int Conf Data Min 2016, SDM 2016.

2016;1(c):45–53.

164. Bach F, Jenatton R, Mairal J, Obozinski G. Structured sparsity through convex

optimization. Stat Sci. 2012;27(4):450–68.

165. Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. John Wiley

& Sons, Inc. All rights reserved.; 2002.

166. Deo SV, Deo V, Sundaram V. Survival analysis—part 2: Cox proportional hazards

model. Indian J Thorac Cardiovasc Surg. 2021;37(2):229–33.

167. van Belle V, Pelckmans K, van Huffel S, Suykens JAK. Improved performance on

high-dimensional survival data by application of survival-SVM. Bioinformatics.

165

2011;27(1):87–94.

168. Radespiel-Tröger M, Rabenstein T, Schneider HT, Lausen B. Comparison of tree-

based methods for prognostic stratification of survival data. Artif Intell Med.

2003;28(3):323–41.

169. Verweij PJM, Van Houwelingen HC. Penalized likelihood in Cox regression. Stat Med.

1994;13:2427–36.

170. Shrinkage R. Regression Shrinkage and Selection via the Lasso Author (s): Robert

Tibshirani Source : Journal of the Royal Statistical Society . Series B (Methodological

), Vol . 58 , No . 1 (1996), Published by : Wiley for the Royal Statistical Society Stable

URL. 2016;58(1):267–88.

171. Gui J, Li H. Penalized Cox regression analysis in the high-dimensional and low-sample

size settings, with applications to microarray gene expression data. Bioinformatics.

2005;21(13):3001–8.

172. Ternès N, Rotolo F, Michiels S. Empirical extensions of the lasso penalty to reduce the

false discovery rate in high-dimensional Cox regression models. Stat Med.

2016;35(15):2561–73.

173. Binder H, Schumacher M. Allowing for mandatory covariates in boosting estimation

of sparse high-dimensional survival models. BMC Bioinformatics. 2008;9:1–10.

174. Breiman L. Classification and Regression Trees. Taylor & Francis Group; 1984.

175. Mingers J. An empirical comparison of selection measures for decision-tree induction.

Mach Learn. 1989;3(4):319–42.

176. Bou-Hamad I, Larocque D, Ben-Ameur H. A review of survival trees. Stat Surv.

2011;5(2011):44–71.

177. Quinlan JR. Induction of decision trees. Mach Learn. 1986;1(1):81–106.

178. Ciampi A, Negassa A, Lou Z. Tree-structured prediction for censored survival data and

the cox model. J Clin Epidemiol. 1995;48(5):675–89.

179. Marubini E, Morabito A, Valsecchi MG. Prognostic factors and risk groups: Some

results given by using an algorithm suitable for censored survival data. Stat Med.

1983;2(2):295–303.

180. Dietterich TG. Ensemble methods in machine learning. Lect Notes Comput Sci

(including Subser Lect Notes Artif Intell Lect Notes Bioinformatics). 2000;1857

LNCS:1–15.

181. Ciampi A, Thiffault J, Nakache JP, Asselain B. Stratification by stepwise regression,

correspondence analysis and recursive partition. Comput Stat Data Anal. 1986;4:185–

204.

182. Segal MR. Regression Trees for Censored Data. 1988;44(1):35–47.

183. Jefrey H. Butler, Elzabeth A. Gilpin LG and RAO. Tree-structured survival analysis,

II. 1989.

166

184. Davis RB, Anderson JR. Exponential survival trees. Stat Med. 1989;8(8):947–61.

185. Therneau TM, Grambsch PM, Fleming TR. Biometrika Trust Martingale-Based

Residuals for Survival Models Published by : Oxford University Press on behalf of

Biometrika Trust Stable URL : http://www.jstor.org/stable/2336057 REFERENCES

Linked references are available on JSTOR for this article : Yo. 2016;77(1):147–60.

186. LeBlanc M, Crowley J. Relative Risk Trees for Censored Survival Data. Biometrics.

1992;48(2):411–25.

187. Kele S, Segal MR. Residual-based tree-structured survival analysis. Stat Med.

2002;21(2):313–26.

188. LeBlanc M, Crowley J. Survival trees by goodness of split. J Am Stat Assoc.

1993;88(422):457–67.

189. Intrator O, Kooperberg C. Trees and splines in survival analysis. Stat Methods Med

Res. 1995;4(3):237–61.

190. Zhang HP, Singer B. Recursive partitioning in the health sciences. New York, NY:

Springer; 1999.

191. Breiman L. Software for the masses. 2002.

192. Molinaro AM, Dudoit S, Van Der Laan MJ. Tree-based multivariate regression and

density estimation with right-censored data. J Multivar Anal. 2004;90(1 SPEC.

ISS.):154–77.

193. Jin H, Lu Y, Stone K, Black DM. Alternative tree-structured survival analysis based

on variance of survival time. Med Decis Mak. 2004;24(6):670–80.

194. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: A conditional

inference framework. J Comput Graph Stat. 2006;15(3):651–74.

195. Breiman L. Bagging predictors. Mach Learn. 1996;24:123–40.

196. Wang H, Li G. A Selective Review on Random Survival Forests for High Dimensional

Data. Quant Biosci. 2017;36(2):85–96.

197. Freund Y, Schapire RE. Experiments with a New Boosting Algorithm. Proc 13th Int

Conf Mach Learn [Internet]. 1996;148–156. Available from:

http://www.public.asu.edu/~jye02/CLASSES/Fall-2005/PAPERS/boosting-icml.pdf

198. Chen T, Guestrin C. XGBoost : A Scalable Tree Boosting System. 2016;785–94.

199. Friedman JH. Greedy function approximation: A gradient boosting machine. Ann Stat.

2001;29(5):1189–232.

200. Freund Y. An adaptive version of the boost by majority algorithm. Mach Learn.

2001;43(3):293–318.

201. Cortes C, Vapnik V. Support-Vector Networks. Mach Learn. 1995;20:273–97.

202. Shivaswamy PK, Chu W, Jansche M. A support vector approach to censored targets.

167

Proc - IEEE Int Conf Data Mining, ICDM. 2007;655–60.

203. Van Belle V, Pelckmans K, Van Huffel S, Suykens JAK. Support vector methods for

survival analysis: A comparison between ranking and regression approaches. Artif

Intell Med [Internet]. 2011;53(2):107–18. Available from:

http://dx.doi.org/10.1016/j.artmed.2011.06.006

204. Evers L, Messow CM. Sparse kernel methods for high-dimensional survival data.

Bioinformatics. 2008;24(14):1632–8.

205. Statistical Analysis - 2011 - Ishwaran - Random survival forests for high‐ dimensional

data.pdf.

206. D’Agostino RB, Lee M ‐ L, Belanger AJ, Cupples LA, Anderson K, Kannel WB.

Relation of pooled logistic regression to time dependent cox regression analysis: The

framingham heart study. Stat Med. 1990;9(12):1501–15.

207. Oehlert GW. A Note on the Delta Method Author (s): Gary W . Oehlert Source : The

American Statistician , Feb ., 1992 , Vol . 46 , No . 1 (Feb ., 1992), pp . 27-29 Published

by : Taylor & Francis , Ltd . on behalf of the American Statistical Association Stable

URL. 1992;46(1):27–9.

208. Cleveland WS. Robust Locally Weighted Regression and Smoothing Scatterplots. J

Am Stat Assoc. 1979;74(368):829.

209. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks:

An R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res.

2016;44(8):e71.

210. Liu J, Lichtenberg T, Hoadley KA, Poisson LM, Lazar AJ, Cherniack AD, et al. An

Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival

Outcome Analytics. Cell [Internet]. 2018;173(2):400–16. Available from:

https://doi.org/10.1016/

211. Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, et al. mlr3: A modern

object-oriented machine learning framework in R. J Open Source Softw.

2019;4(44):1903.

212. Chen Y, Lun ATL, Smyth GK. From reads to genes to pathways: Differential

expression analysis of RNA-Seq experiments using Rsubread and the edgeR quasi-

likelihood pipeline. F1000Research. 2016;5:1–51.

213. Smyth GK. limma: Linear Models for Microarray Data. Bioinforma Comput Biol Solut

Using R Bioconductor. 2005;(2005):397–420.

214. Becker M, Schratz P, Lang M, Bischl B. Package ‘mlr3fselect’ [Internet]. 2024.

Available from:

http://ftp2.de.freebsd.org/pub/misc/cran/web/packages/mlr3fselect/mlr3fselect.pdf

215. Sonabend R, Lang M, Kira FJ, Bender A, Bischl B. Data and text mining mlr3proba :

an R package for machine learning in survival analysis. 2021;37(February):2789–91.

216. Laj Spytek M, Krzyzi´nski MK, Langbein SH, Baniecki H, Wright MN, Law Biecek

P. survex: an R package for explaining machine learning survival models. 2023;1–4.

168

Available from: https://arxiv.org/abs/2308.16113v1

217. Pihur V, Datta S, Datta S. RankAggreg, an R package for weighted rank aggregation.

BMC Bioinformatics. 2009;10:1–10.

218. Harrell FE, Califf RM, Pryor DB, Lee KL, Rosati RA. Evaluating the yield of medical

tests. Jama. 1982;247(18):2543–6.

219. Graf E, Schmoor C, Sauerbrei W, Schumacher M. Assessment and comparison of

prognostic classification schemes for survival data. Stat Med. 1999;18(17–18):2529–

45.

220. mlr3extralearners [Internet]. Available from: https://github.com/mlr-

org/mlr3extralearners

221. Boosting TM based, Matrix I. Package ‘ mboost ’ [Internet]. 2023. Available from:

https://cran.r-project.org/web/packages/mboost/index.html

222. Hans A, Borchers W, Borchers MHW. Package ‘ pracma .’ 2023; Available from:

https://cran.r-project.org/web/packages/pracma/index.html

223. Bühlmann P, Yu B. Boosting With the L 2 Loss Regression and Classification Boosting

With the L 2 Loss : Regression and Classi cation. 2011;1459.

224. Date RP, Xml S, Lazydata F, Gpl- L, Hothorn AT, Seibold H, et al. Package ‘ partykit

’ [Internet]. 2023. Available from: https://cran.r-

project.org/web/packages/partykit/index.html

225. Graham N. Package ‘ sandwich .’ 2023; Available from: https://cran.r-

project.org/web/packages/sandwich/index.html

226. Conditional T, Procedures I, Test P, Description F, Utf- E, Gpl- L, et al. Package ‘ coin

’ [Internet]. 2023. Available from: https://cran.r-

project.org/web/packages/coin/index.html

227. Binder H, Allignol A, Schumacher M, Beyersmann J. Boosting for high-dimensional

time-to-event data with competing risks. 2009;25(7):890–6.

228. Generalized T, Regression B, Adaboost S. Package ‘ gbm ’ [Internet]. 2024. Available

from: https://cran.r-project.org/web/packages/gbm/index.html

229. Friedman JH. Stochastic gradient boosting. Comput Stat Data Anal. 2002;38(4):367–

78.

230. Jerome A, Hastie T, Tibshirani R, Tay K, Simon N, Yang J, et al. Package ‘ glmnet ’

R topics documented : 2023; Available from: https://cran.r-

project.org/web/packages/glmnet/index.html

231. Friedman J, Hastie T, Tibshirani R. Regularization Paths for Generalized Linear

Models via Coordinate Descent. J Stat Softw. 2010;33(1):1–20.

232. Rcpp I, Rcpp L. Package ‘ obliqueRSF .’ 2022; Available from: https://cran.r-

project.org/web/packages/obliqueRSF/index.html

169

233. Orsf T, Cox R, Study JH, Cvd A, Risk PC, November R, et al. Oblique random survival

forests 1. 2019;13(3):1847–83.

234. Goeman AJ, Meijer R, Chaturvedi N, Lueder M, Rcpp I, Rcpp L. Package ‘ penalized

.’ 2022;1. Available from: https://cran.r-

project.org/web/packages/penalized/index.html

235. Dicekriging S. Package ‘mlr3learners’ [Internet]. 2024. Available from: https://cran.r-

project.org/web/packages/mlr3learners/index.html

236. Marvin A, Wright N, Wager S, Probst P, Wright MMN. Package ‘ ranger .’ 2023;

Available from: https://cran.r-project.org/web/packages/ranger/index.html

237. Fast T, Random U, Ishwaran AH, Kogalur UB, Kogalur MUB, Suggests D, et al.

Package ‘ randomForestSRC .’ 2023; Available from: https://cran.r-

project.org/web/packages/randomForestSRC/index.html

238. Partitioning TR, Trees R. Package ‘ rpart .’ 2023; Available from: https://cran.r-

project.org/web/packages/rpart/index.html

239. Sonabend R, Király FJ. distr6 : R6 Object-Oriented Probability Distributions Interface

in R. 2021;13(June):470–92.

240. Lumley T, S- R, Elizabeth A, Cynthia C, Therneau MTM. Package ‘ survival .’ 2024;

Available from: https://cran.r-project.org/web/packages/sandwich/index.html

241. Package T, Survival T, Vector S, Fouodo ACJK. Package ‘ survivalsvm .’ 2022;

Available from: https://cran.r-project.org/web/packages/survivalsvm/index.html

242. Chen K, Mitchell R, Cano I, Lin M. Package ‘ xgboost ’ R topics documented : 2024;

Available from: https://cran.r-project.org/web/packages/xgboost/index.html

243. Install TE. Package ‘mlr3verse.’ 2023;1–4. Available from: https://cran.r-

project.org/web/packages/mlr3verse/index.html

244. Spaces TS, Collection D, Lgpl- L, Utf- E, Becker AM, Lang M, et al. Package

‘mlr3tuningspaces.’ 2024; Available from: https://cran.r-

project.org/web/packages/mlr3tuningspaces/index.html

245. Vickers AJ, Cronin AM. Traditional Statistical Methods for Evaluating Prediction

Models Are Uninformative as to Clinical Value: Towards a Decision Analytic

Framework. Semin Oncol [Internet]. 2010;37(1):31–8. Available from:

http://dx.doi.org/10.1053/j.seminoncol.2009.12.004

246. Cook NR. Use and misuse of the receiver operating characteristic curve in risk

prediction. Circulation. 2007;115(7):928–35.

247. Halligan S, Altman DG, Mallett S. Disadvantages of using the area under the receiver

operating characteristic curve to assess imaging tests: A discussion and proposal for an

alternative approach. Eur Radiol. 2015;25(4):932–9.

248. Karovic H. Comparison of Pre-processing Methods and Various Machine Learning

Models for Survival Analysis on Cancer Data.

170

249. Tizi W, Berrado A. Machine learning for survival analysis in cancer research: A

comparative study. Sci African [Internet]. 2023;21(August):e01880. Available from:

https://doi.org/10.1016/j.sciaf.2023.e01880

250. Xiao J, Mo M, Wang Z, Zhou C, Shen J, Yuan J, et al. The Application and Comparison

of Machine Learning Models for the Prediction of Breast Cancer Prognosis:

Retrospective Cohort Study. JMIR Med Informatics. 2022;10(2):1–11.

251. Hadanny A, Shouval R, Wu J, X CPG, Unger R, Zahger D, et al. This is a repository

copy of Machine learning-based prediction of 1-year mortality for acute coronary

syndrome . White Rose Research Online URL for this paper : Version : Published

Version Article : Hadanny , A , Shouval , R , Wu , J orcid . org / 0000-00. 2022;

252. Hao Y, Liang D, Zhang S, Wu S, Li D, Wang Y, et al. Machine learning for predicting

the survival in osteosarcoma patients: Analysis based on American and Hebei Province

cohort. Biomol Biomed. 2023;23(5):883–93.

253. Jin X, Sun Y, Zhou T, Leng Y, Guan S, Zhang K, et al. Machine Learning and

Prediction of All-Cause Mortality among Chinese Older Adults. 2021;

254. Haynatzki R. Prediction of survival models: A comparison between machine learning

and cox regression. AIP Conf Proc. 2022;2522(September).

255. Moncada-Torres A, van Maaren MC, Hendriks MP, Siesling S, Geleijnse G.

Explainable machine learning can outperform Cox regression predictions and provide

insights in breast cancer survival. Sci Rep [Internet]. 2021;11(1):1–13. Available from:

https://doi.org/10.1038/s41598-021-86327-7

256. Linden T, Hanses F, Domingo-Fernández D, DeLong LN, Kodamullil AT, Schneider

J, et al. Machine Learning Based Prediction of COVID-19 Mortality Suggests

Repositioning of Anticancer Drug for Treating Severe Cases. Artif Intell Life Sci

[Internet]. 2021;1(November):100020. Available from:

https://doi.org/10.1016/j.ailsci.2021.100020

257. Lynch CM, Abdollahi B, Fuqua JD, de Carlo AR, Bartholomai JA, Balgemann RN, et

al. Prediction of lung cancer patient survival via supervised machine learning

classification techniques. Int J Med Inform [Internet]. 2017;108(April 2016):1–8.

Available from: http://dx.doi.org/10.1016/j.ijmedinf.2017.09.013

258. Kim H, Park T, Jang J, Lee S. Comparison of survival prediction models for pancreatic

cancer: Cox model versus machine learning models. Genomics and Informatics.

2022;20(2):1–9.

171

8. APPENDICES

Appendix 1: The codes for analysis and MLSeqSurv R Package, the selected

features for models.

The codes for analysis and selected features for models are available at

https://github.com/gokmenzararsiz/voomStackLasso.

The codes for MLSeqSurv R Package is available at

https://github.com/gokmenzararsiz/MLSeqSurv.

https://github.com/gokmenzararsiz/voomStackLasso
https://github.com/gokmenzararsiz/MLSeqSurv

172

Appendix 2: The Originality Report of Thesis Study.

173

174

9. CURRICULUM VITAE (CV)

175

