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ABSTRACT 

 

Cephe, A., Novel Statistical Approaches For Survival Analysis Of Rna-

Sequencing Data, Hacettepe University Graduate School of Health Sciences, 

Department of Biostatistics Doctor of Philosophy Thesis, Ankara, 2024. The 

number of people with cancer is increasing daily, and the mortality for cancer is 

constantly increasing since the biomarkers of many cancer types are unknown. Also, 

cancer doesn’t progress between individuals similarly, and all patients vary in response 

to the same treatment because of genetic differences. At this stage, it is very important 

to apply more effective treatments by making more accurate prognosis predictions 

using personalized medicine strategies. Estimating survival in cancer patients using 

survival time provides essential results. With the development of omics technologies, 

the relationship between survival time and gene expression profiles of patients can 

now be modeled. RNA-sequencing technology has been used in recent years for 

survival analysis omics-based due to its advantages. Although RNA-sequencing has 

many advantages, it differs from classical survival data with high-dimensionality, 

heterogeneity, and highly-correlated genes. Due to these problems, the regularized 

Cox methods and machine learning algorithms adapted to survival data are used 

instead of classical survival algorithms. However, the regularized Cox methods require 

some assumptions to be met using the Cox algorithm. Machine learning algorithms 

that are first created for classification problems and then adapted to survival data 

require additional time and effort. This study aims to develop new approaches that can 

be used in the survival analysis of RNA-sequencing data by combining voom 

transformation, stacking algorithm, and lasso methods with block structure. For this 

purpose, survival data can be converted into binary classification data with the stacking 

algorithm. Using the sample weights obtained after the voom transformation in 

priority-Lasso and IPF-Lasso algorithms, two new approaches are presented: 

voomStackPrio and voomStackIPF. Our approaches were applied to 12 real RNA-

sequencing data from the TCGA database. Performance comparisons were made with 

other survival algorithms in the literature using Harrell’s concordance index. The 

results showed that the performance of the two new approaches was similar or better 

than other survival algorithms. 

 

Key Words: survival, RNA-sequencing, voom, stacking, IPF-Lasso 
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ÖZET 

 

Cephe, A., RNA-Dizileme Verilerinin Sağkalım Analizlerinde Yeni İstatistiksel 

Yaklaşımlar, Hacettepe Üniversitesi Sağlık Bilimleri Enstitüsü Biyoistatistik 

Programı Doktora Tezi, Ankara, 2024. Kansere yakalanan insanların sayısı her 

geçen gün artmaktadır ve birçok kanser türüne ait biyobelirteçler bilinemediği için bu 

hastalıktan ölüm oranları da sürekli artış göstermektedir. Ayrıca, her kanser hastalığı 

her hastada aynı şekilde seyretmemekte ve her hasta aynı tedaviye aynı yanıtı 

vermemektedir. Bu aşamada, bireysel tıp stratejilerinden da yararlanarak daha doğru 

prognoz tahminleri yaparak daha etkili tedaviler uygulamak oldukça önemlidir. 

Kanser hastalarında olay zamanı değişkenlerinden yararlanarak sağkalım 

tahminlemesi yapmak bize çok önemli sonuçlar sağlamaktadır. Omics teknolojilerinin 

de gelişmesiyle birlikte artık sağkalım zamanı ve hastaların gen ifade profilleri 

arasındaki ilişki modellenebilmektedir. Bu çalışmalarda son yıllarda avantajlarından 

dolayı RNA-dizileme verileri kullanılmaktadır. Ancak, RNA-dizileme verileri klasik 

sağkalım verilerinden farklı olarak yüksek-boyutluluk, heterojenlik ve yüksek-

korelasyonlı genleri bulundurma özelliklerine sahiptir. Bu özelliklerinden dolayı 

klasik sağkalım algoritmaları yerine düzenlileştirilmiş Cox yöntemleri ve sağkalım 

verilerine uyarlanmış makine öğrenmesi algoritmaları kullanılmaktadır. Ancak, 

düzenlileştirilmiş Cox yöntemleri Cox algoritmasının kullanımında sağlanması 

gereken bir takım varsayımları gerektirmektedir. Genellikle önce sınıflandırma 

problemleri için oluşturulup daha sonra sağkalım verilerine uyarlanan makine 

öğrenmesi algoritmaları da ek bir zaman ve çaba gerektirmektedir. Bu çalışmada, 

voom dönüşümü, stacking algoritması ve bloklu lasso yöntemlerini birleştirerek RNA-

dizileme verilerinin sağkalım analizlerinde kullanılabilecek yeni yaklaşımlar 

geliştirilmesi amaçlanmıştır. Bu amaçla, stacking algoritması ile sağkalım verileri ikili 

sınıflandırma verilerine dönüştürülebilmektedir. Voom dönüşümü sonrası elde edilen 

gözlem ağırlıkları da priority-Lasso ve IPF-Lasso algoritmalarında kullanılarak 

voomStackPrio ve voomStackIPF adında iki adet yeni yaklaşım sunulmuştur. 

Geliştirdiğimiz bu yaklaşımlar TCGA veritabanından alınan on iki adet gerçek RNA-

dizileme verisinde uygulanmıştır. Harrell’ın Concordance İndeksi kullanılarak 

literatürde yer alan diğer sağkalım algoritmaları ile performans karşılaştırılması 

yapılmıştır. Sonuçlar, çalışma kapsamında geliştirilen iki adet yeni yaklaşımın 

performansının diğer sağkalım algoritmaları ile benzer veya daha iyi olduğunu 

göstermiştir. 

Anahtar Kelimeler: sağkalım, RNA-dizileme, voom, stacking, IPF-Lasso 
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1. INTRODUCTION 

1.1. Problem Overview 

Gene expression profiling measures the actively expressed genes in a cell at a 

specified time. This method produces patterns of genes expressed by a cell, utilizing 

the capability to simultaneously measure the expression level of transcripts (mRNA or 

miRNA) for thousands of genes (1). Gene expression profiling has many goals: (i) it 

evaluates gene activity in particular cell behaviors (e.g., cell division) to determine the 

cell's role in these processes (2), (ii) it identifies active genes that respond to changes 

in the cell's environment, improving our understanding of how different conditions 

affect gene expression, (iii) it studies the role of molecules such as drugs on cell 

response, and explores potential treatment options by targeting genes that are more 

prominent in diseases like cancer (1,3). 

Transcriptomics technologies are pivotal in the extrapolation and analysis of 

gene expression. The main technologies used are DNA microarrays and RNA-

sequencing (RNA-seq). They identify and quantify gene activity (expression) for gene 

expression profiling (4). While both methods can detect RNA transcripts in a sample 

(cells, tissues, etc.), the methods used are distinct. While RNA-seq uses a sequencing 

approach, microarray uses a hybridization approach. For decades, microarray 

technology has been used extensively in gene expression research. However, there are 

limitations to this array technology (5). For instance, the dynamic range for detecting 

transcript levels in microarrays is somewhat limited, influenced by factors like 

background, saturation, spot density, and quality, especially when dealing with 

transcripts found in low abundance (6). In addition, in microarray analyses, cross-

hybridization results in high background levels, and microarray techniques rely on a 

priori knowledge of the reference genome (7,8). Due to its numerous advantages, 

RNA-seq technology, utilizing next-generation sequencing (NGS), has recently 

become the preferred choice over microarrays. RNA-seq has a wider dynamic range 

of expression levels and relatively higher sensitivity, allowing the detection and 

quantification of both highly expressed and low-expressed genes, and contains a very 

low background signal (5). RNA-seq can identify rare transcripts and low-abundance 

RNA molecules such as single nucleotide polymorphisms (SNP) except de novo SNPs 



2 

 

 

for low abundance RNAs, while microarrays cannot detect SNPs. RNA-Seq not only 

identifies transcripts corresponding to known genomic sequences but also sequences 

complex transcriptomes and explores non-model organisms with undetermined 

genomic sequences—capabilities beyond the reach of microarrays, which are limited 

to known sequences. The accuracy of the RNA-seq in detecting the expression of 

extremely abundant genes is high, while the accuracy of the microarray data is 

relatively low (9). Finally, RNA-seq eliminates the necessity for specific probes and 

can sequence without relying on a reference genome (5). 

Three main types of gene expression studies can be distinguished: class 

prediction, class discovery, and differential expression analysis (DE). DE studies are 

goal-oriented. Identification of genes that express differently under various 

experimental conditions is known as differential expression analysis (10). In order to 

treat a gene as differentially expression, the number of reads (or expression levels) 

between these conditions has to be statistically significant. Class discovery is the 

process of classifying data by similarity in behavior or property. This means you can 

discover new classes without using pre-defined labels (11). Class prediction, on the 

other hand, entails the development of decision rules to discriminate samples with 

known class labels and determine the class to which a new sample belongs (11). In this 

thesis, 'survival analysis' of gene expression data will be concentrated, in contrast to 

these three. This thesis aims to bring a new perspective to the literature on the survival 

analysis. Predicting when and with what probability a new sample will experience a 

specific event using gene expression data holds great importance, especially in 

bioinformatics. 

Prediction of survival, especially in cancer patients, is an important factor in 

clinical decision-making (i.e., increasing the frequency of follow-up and prescribing 

specific treatments) for clinicians (12). Survival analyses are employed to identify 

disease-causing factors in cancer patients, estimate the time until death, and predict the 

degree of malignancy and the time of disease progression. Early detection of cancer 

and timely appropriate interventions help prevent over-treatment (e.g., unnecessary 

drug use) and ensure appropriate palliative care is provided to the patient.  

Predicting survival is difficult due to the heterogeneous structure of cancer 

cells. As an illustration, individuals with diffuse large B-cell lymphoma (DLBCL) 

https://tureng.com/tr/turkce-ingilizce/in%20addition%20to%20them
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demonstrate clinical diversity; while 40% respond favorably to treatment and 

experience extended survival, the remaining 60% show resistance and have reduced 

survival prospects. Further investigation revealed significant differences in DLBCL 

survival rates between activated and germinal center B-like DLBCL (13). In DLBCL, 

individuals suffering from germinal center B-like demonstrated markedly better 

overall survival compared to those with activated B-like. In initial cancer survival 

studies, clinical variables such as age, race, and laboratory results (tumor size, tumor 

grade, etc.) served as predictors of outcome (14). Nevertheless, depending solely on 

clinical variables, laboratory results, and clinician experience has proven insufficient 

in predicting cancer survival (15) because each type of cancer progresses uniquely in 

each patient, and individual responses to identical treatments can vary significantly. 

Survival analysis using gene expression data became feasible with the development of 

omics technologies and precision medicine (16). It has been observed that more 

accurate results are achieved when utilizing genetic data alone or in combination with 

clinical data (17,18). 

Unlike regression analysis and other classification methods, survival analysis 

is focused on the time to event outcome. The survival analysis aims to predict 

survival/hazard functions, compare those functions, and identify the relationship 

between survival time and covariates. Binary classification techniques or logistic 

regression, on the other hand, are techniques for predicting the probability of a binary 

outcome (e.g., smoking status). In a survival analysis, the variables and time of an 

event are combined to determine its outcome. Certain observations might be censored 

as a result of this outcome variable. Individuals still alive at the end of the study or lost 

to follow-up during the study period are considered censored since their survival times 

are not precisely known (19). Various statistical models exist to predict survival 

probability in cancer studies. The survival curves between the two groups were 

compared, and survival functions were estimated using non-parametric techniques like 

Kaplan-Meier (20), the log-rank test (21), Nelson-Aalen (22), and life-table (23). To 

account for their effects, semi-parametric models like Cox regression (24) emerged 

because these non-parametric methods do not provide information about the 

contribution of different risk factors to the probability of survival. Several Cox 

regression models have been developed, including penalized Cox regression (25,26), 
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time-dependent Cox models (27), etc. Cox models require some assumptions, such as 

proportional hazards, which are often violated in real-life data. Parametric models have 

been developed that do not require satisfying these assumptions, such as Buckley-

James linear regression (28), penalized regression (29), accelerated failure time models 

(30), etc. 

 Gene expression data, in contrast to traditional clinical data, suffers from a 

high-dimensionality issue because there are substantially more genomic covariates (p 

>> n) than samples. The high-dimensionality issue prevents the 

aforementioned survival analysis techniques from being used with gene expression 

data such as RNA-seq (31). Gene correlations in RNA-seq are frequently very 

strong, which can cause serious problems with collinearity (32). The high 

multicollinearity and high number of genes in the RNA-seq data, in spite of the low 

sample count, lead to overfitting issues. Moreover, the data structure of RNA-seq is 

heterogeneous and complex. Although the Cox regression model, a linear model 

producing risk scores based on covariates, is widely used in survival analysis, it 

struggles to analyze complex nonlinear relationships between logarithmic risk scores 

and covariates (33). To address these challenges, penalized Cox regression algorithms, 

such as lasso (34), ridge (35), and elastic-net (36), perform variable selection on gene 

expression data (37). Although these algorithms reduce computational costs and 

overfitting, their application is restricted by the assumptions required for the Cox 

proportional hazards model. Consequently, recent studies have adopted machine 

learning approaches for survival analysis, offering more effective solutions 

independent of model assumptions. Machine learning methods designed for 

classification problems are powerful and robust. Due to the time-to-event outcome 

variable, these algorithms cannot be directly applied to survival data. However, upon 

examining machine learning algorithms developed for survival problems, it is 

generally observed that they are extensions of machine learning methods originally 

designed for classification problems, adapted to handle survival data. For instance, 

random forest algorithms (38), commonly used in classification, have been adapted for 

survival data, resulting in random survival forest algorithms (39). Other machine 

learning algorithms follow a similar process, including survival trees (40,41), Bayesian 

networks (42), neural networks (43), support vector machines (44), ensemble methods 
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(39,45,46), deep neural networks (47), active learning, transfer learning (48), multi-

task learning (49).  

Survival algorithms employed in analyzing high-dimensional data have been 

compared in multiple studies within the literature. For example, Bovelstad et al.  (50) 

evaluated the performance of the following techniques on high-dimensional datasets: 

univariate feature selection, principal components regression, forward stepwise 

selection, lasso and ridge regression, and partial least squares regression. Similarly, 

Van Wieringen et al. (51) assessed the results of numerous survival analysis 

approaches on high-dimensional genomic data, including univariate Cox regression, 

principal component analysis, tree-based ensemble methods, penalized least squares, 

and penalized Cox regression. Moreover, Witten et al. (31) investigated various 

strategies for survival data analysis of genomic datasets, categorizing them into 

discrete feature selection, shrinkage-based methods, clustering-based methods, and 

variance-based methods. A recent study by Spooner et al., (52) used two datasets to 

test a variety of machine learning (ML) and feature selection algorithms, such as 

penalized, boosting and random forest methods, for survival analysis. Herrmann et al. 

(53) performed a large-scale comparison study of multi-omics data to survival. They 

used eleven survival methods groups: boosting, penalized regression, and random 

forest. 

In some cases, penalized or machine-learning approaches are used to analyze 

RNA-seq data. The Random Survival Forest algorithm was used in the Ma et al. (54) 

study on lung adenocarcinoma (LUAD) to analyze RNA-seq and clinical data. The 

results showed that the RSF model performed better than the classical Cox model. 

Different deep learning models were used to predict survival in cancer patients using 

RNA-seq dataset in a study by Huang et al. (55). Ching et al. (56) utilized Cox 

regression with neural networks (Cox-nnet) to forecast the survival of RNA-seq data. 

Wang et al. (57) used RNA-seq data to develop a new method for predicting lung 

cancer survival using a deep learning model based on a Convolutional Neural Network 

(CNN). Grimes et al. (58) demonstrated that survival analysis results using RNA-seq 

data gave higher accuracy than those based solely on clinical data, with the elastic-net 

algorithm delivering the best performance. Jardillier et al. (59) compared the 

performances of lasso-based penalized Cox Methods (lasso, ridge, elastic-net, adaptive 
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elastic net, etc.) using 16 cancer datasets. Compared to models established using only 

clinical data, this study demonstrated enhanced performance when integrating RNA-

seq data with clinical data. Ding et al. (60) developed a machine-learning survival 

prediction model based on miRNAs. 

The number of machine learning algorithms developed for classification 

problems is continuously increasing. Machine-learning algorithms for survival 

analysis are generally derived from those utilized in the classification problems 

described above. Applying machine learning methods originally designed for 

classification problems to survival data requires additional effort. It is crucial to 

emphasize that all machine learning algorithms developed or yet to be created for 

classification problems can be applied similarly to address survival problems. 

Therefore, the idea of stacking becomes significant, converting survival data into 

classification data and ensuring the use of classification algorithms in survival analysis 

(61). The stacking changes the data structure, transforming the time until the event 

outcome in the survival data into a binary outcome variable suitable for classification 

algorithms. Covariates of RNA-seq gene expression data are presented in two sets: a 

covariate matrix consisting of continuous variables and a risk matrix consisting of 

binary variables. While stacking has proven successful with low-dimensional data, no 

studies in the literature explore applying this stacking concept to high-dimensional 

RNA-seq survival data (61).  

In an RNA-seq experiment, cDNA fragments are assembled by adding 

sequencing adapters, creating a library of cDNA fragments. Then, this library is 

sequenced to generate millions of short sequence reads corresponding to individual 

cDNA fragments (62). Therefore, RNA-seq technology yields data in the form of count 

numbers. Due to the count nature of the data, analyses of RNA-seq data have employed 

either discrete distributions such as Poisson (63) or negative Binomial (64,65). 

However, RNA-seq data has problems with mean-variance dependence, outliers, and 

high skewness (66). Therefore, since modeling them using count distributions is 

difficult and complex, studies employing transformation methods have also been 

applied to apply normal-based approaches by converting discrete count data into 

continuous data. The RNA-seq dataset in these studies was transformed using 

logarithmic transformation (67), variance-stabilizing transformation (VST) (65), 
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regularized logarithm (rlog) transformation (68), and variance modeling at the 

observation level (voom) (69), all of which were based on normal-based statistical 

methods. With the voom transformation, the relationship between mean and variance 

is taken into consideration when modeling discrete count data using a linear modeling 

technique. This method generates logCPM values for each count data and weights 

based on observational/sample. However, in most studies utilizing the voom method 

to analyze RNA-seq data, only the logCPM values obtained are used, and the weights 

created by the voom method are ignored. Very few studies include logCPM values and 

weights obtained after voom transformation in the analysis. These studies achieved 

high accuracy results in differential analysis  (70), classification (71), and clustering 

(72) by utilizing logCPM values and weight values obtained through the voom method 

with RNA-seq data.  However, no survival analysis study was found in the literature 

that explores the joint utilization of the two outputs (logCPM and weights) obtained 

after the voom transformation on RNA-seq data. 

The stacking algorithm and voom transformation are used to generate the 

covariate matrix based on the RNA- seq survival data. The covariate matrix is 

composed of continuous as well as binary variables. In these cases, rather than using 

traditional machine learning techniques for analysis, we have found that using machine 

learning approaches that are able to handle different types of data will yield more 

precise results. The priority-Lasso and Integrative-Penalized Regression with Penalty 

Factors (IPF-Lasso) algorithms can analyze variables of different data types within 

distinct blocks. The priority-Lasso algorithm typically organizes variables into blocks 

based on their types and analyzes them in a prioritized sequence (73). On the other 

hand, the IPF-Lasso algorithm analyzes diverse data types by assigning distinct penalty 

factors to reduce the coefficients (74). Both algorithms can also sample weights in 

their analyses. Employing sample-based weights derived from the voom 

transformation in these algorithms is likely to yield more precise results. No study in 

the literature yet performs survival analysis by taking into account the sample weights 

in the priority-Lasso and IPF-Lasso algorithms on RNA-seq. 

This study aims to transform RNA-seq survival data into classification data by 

combining the powerful voom transform and stacking idea and generate two novel 
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approaches of priority-lasso and IPF-lasso algorithms, which are adept at analyzing 

data within a block structure. 

1.2. Contribution 

This thesis presents two novel algorithms, voom-based priority-Lasso 

(voomStackPrio) and voom-based IPF-Lasso (voomStackIPF). These algorithms 

integrate three powerful methods ‒voom transformation, stacking idea, and lasso with 

block‒ for the survival analysis on RNA-seq data. In both approaches, the process is 

started by transforming raw RNA-seq data with voom. The idea of stacking is then 

applied to the resulting data matrix. Finally, priority-Lasso and IPF-Lasso algorithms 

are run using the sample weights derived from the stacked data matrix and the voom 

transformation. The resulting linear estimators are then utilized to make survival 

predictions. Thus, the main objectives of proposing these approaches are as follows: 

1. to extend the application of voom transformation for survival analysis on 

RNA-seq data, 

2. to adapt the stacking idea for RNA-seq data, 

3. to make the priority-Lasso and IPF-Lasso algorithms available for RNA-

seq data with sample weights. 

1.3. Organization of This Thesis 

 The organization of this thesis is as follows. The 'General Information' section 

discussed survival analysis and RNA-seq technology. It was mentioned which 

methods are used in filtering, normalization, and transformation, leading to the 

preparation of RNA-seq data for analysis. The section also elucidates the fundamental 

concept of survival analysis and outlines the algorithms used for analyzing high-

dimensional RNA-seq data In the 'Material and Methods' section, we explain how 

voomStackPrio and voomStackIPF algorithms were created. We also explain how 

these algorithms are evaluated, and compare them with other algorithms based on real 

data. We also provide information on the R package we developed for this study. The 

'Results' section presents the analysis results from 12 real datasets. The study's findings 

are summarized in the 'Conclusion' section, while the 'Discussion' section delves into 

a comprehensive exploration and interpretation of the results. 
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2. GENERAL INFORMATION 

2.1. Cancer and Survival Analysis 

In 2020, nearly 10 million lives were claimed by cancer, making it the world's 

second leading cause of death, which equates to almost one in six deaths (75). 

Additionally, the 2022 report from the World Health Organization highlights the 

prevalence of certain cancers in 2020, including breast with 2.26 million cases, lung 

with 2.21 million cases, colon and rectum with 1.93 million cases, prostate with 1.41 

million cases, non-melanoma skin with 1.20 million cases, and stomach with 1.09 

million cases. In 2020, the leading causes of cancer-related deaths were lung (1 point 

80 million deaths), stomach (769,000 deaths), liver (830,000 deaths), colon and rectum 

(916,000 deaths), and breast (685,000 deaths). Approximately 400,000 cases of cancer 

are diagnosed in children each year. Cervical cancer is predominant in 23 countries, 

with varying prevalence rates across each nation. 

Early detection is critical to successful cancer treatment. If treatment is 

delayed, it reduces the patient’s chances of survival, exacerbates treatment 

complications, reduces quality of life, and increases treatment expenses (76). Most 

types of cancer can be detected early. When cancer is caught early and treated early, 

the patient's five-year survival rate is significantly higher than when diagnosed later. 

Illustratively, the National Cancer Institute's data indicates that when cervical cancer 

is detected at an early stage, there is a 92% 5-year relative survival rate. On the other 

hand, survival rate over five years is 17% in cases of cervical cancer that is discovered 

after it has spread throughout the body. In addition to significantly impacting survival 

rates, early diagnosis results in significant cost savings. Early cancer diagnosis has 

been shown to save the US economy $26 billion annually, according to a study (77). 

For the reasons mentioned above, developing new treatment methods is very 

important for early diagnosis of diseases like cancer, patient survival prediction, and 

overall survival extension. Utilizing patient data specific to a disease enables the 

prediction of an individual's likelihood of recovery, mortality, or the probability and 

timing of mortality through statistical analysis. The time-to-event of interest is a 

commonly used outcome variable in cancer studies. Different statistical analyses are 

applied when the time-to-event of interest is observed for all samples. Some samples, 
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though, might not have experienced the event by the end of the study in some studies, 

like those on cancer. For these samples, the time until the event is unknown and is 

classified as ‘censored’. Ignoring these censored samples can result in biased and 

inefficient estimates (78). Survival analysis is necessary for datasets of this nature. The 

main goals of survival analysis are to estimate and compare survival/hazard functions 

and evaluate the relationship between explanatory variables and survival time (79). 

Survival analysis stands as one of the most prevalent statistical techniques 

employed to assess a patient's mortality risk and identify prognostic factors influencing 

that risk. These analyses aim to estimate life expectancy by observing individuals with 

a certain disease for a certain period of time, determining the types of treatment, and 

examining the recovery period or relapse period after treatment. Additionally, survival 

analyses are valuable in evaluating the impact of newly produced drugs or a newly 

developed treatment method on patients. It allows comparison of the life expectancy 

of different patient groups and helps determine whether a disease seen in different 

regions and times has epidemic characteristics. 

Survival analyses are essential for modeling a variety of biological events, 

including the time from birth to death, the time from cancer treatment to death, the 

time from the first heart attack to the second, and the time to tumor recurrence. These 

analyses further calculate probabilities such as 2-year survival, 5-year survival, 

disease-free survival, progression-free survival, or overall survival. There are several 

reasons why accurate survival probabilities are important. Over-estimating a patient’s 

survival may result in delayed treatment for patients with severe disease, allowing 

them to progress further. On the other hand, under-estimating can lead to patients 

delaying treatment because they don’t expect to live long enough to see the long-term 

benefits. Accurate forecasts also help patients and their families deal with life-altering 

events, allowing them to plan for the rest of their lives accordingly. In addition, precise 

survival estimates play an important role in the efficient use of scarce healthcare 

resources by avoiding unnecessary medication and treatment (80).  

In medical applications, survival analyses are essential because they can predict 

the prognosis of a disease and, based on those predictions, estimate the probability that 

a patient will recover. Survival models provide answers to questions like, “How likely 

is the patient to survive in 6 years based on the patient’s information?”.  These 
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estimated probabilities are used by clinicians to make important decisions about 

patient care. For example, they may increase the frequency of follow-ups or perform 

specific treatments. Accurate prognosis predictions help clinicians make appropriate 

clinical decisions in treatment and care planning and reduce the risk of over- or under-

treatment. For example, although mandatory rehydration is routinely performed for 

cancer patients with fatal diseases, the importance of stopping or withdrawing 

rehydration is emphasized to avoid distress due to overhydration (81). Similarly, 

though corticosteroids and sedatives often provide relief for symptoms, their long-term 

unnecessary use can lead to undesirable effects such as Cushing's appearance, oral 

candidiasis, and tolerance (82). Consequently, decisions regarding medical 

applications are largely contingent on survival assessments. 

Diagnostic research and application centers are dedicated to investigating the 

genetic causes of diverse diseases, delving into pharmacogenetics and personalized 

medicine, and applying genetic tests using survival analysis. In order to ascertain the 

impact on life expectancy, cancer research centers conduct survival studies on a variety 

of cancer types and other malignancies. In the meantime, survival analyses are used 

by biotech and pharmaceutical companies to assess the efficacy of novel drugs. In 

addition to these applications, researchers from a variety of industries frequently 

employ survival analyses in their scientific investigations. 

2.2. Survival Analysis in Precision Medicine 

Traditionally, pathological exams and symptom observation have been the 

primary methods used by physicians to diagnose cancer. The pathological examination 

method involves looking at the cancerous cell under a microscope. It has been used for 

many years to diagnose cancer. But this method, which is based on a variety of criteria 

and the experience of experts, is by its very nature subjective. Additionally, the 

challenge arises when different tumors share the same DNA, making accurate 

diagnosis challenging. In response, analyses utilizing gene expression data play a vital 

role as the distinct gene expression profiles among various tumors differ (83). Using 

people’s genetic information to diagnose cancer will result in faster, more precise, and 

more sensitive findings. 
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The primary modalities employed in cancer treatment include surgery, 

chemotherapy, and radiation. Additionally, supplementary approaches include 

targeted therapy, immunotherapy, laser treatment, and hormonal therapy. But even the 

same cancer can progress differently in different patients. There are also differences 

in cancer types and types of cancerous cells. These factors limit the effectiveness of 

traditional cancer treatments. Consequently, researchers are increasingly looking for 

personalized approaches in cancer treatment. Precision medicine, alternatively 

referred to as personalized medicine, encapsulates the idea of administering the right 

drug to the right patient at the right dose and time (84). Advancements in high-

dimensional sequencing technology have made obtaining genetic data, including 

genomic, transcriptomic, metabolomic, etc., more accessible. By using this 

genetic information, precision medicine can identify high-risk patients 

before symptoms appear, highlighting the critical role that early detection plays in 

the diagnosis of many cancers. Early diagnosis improves patient survival, maximizes 

financial resources for healthcare, and lowers the risk of severe conditions. As such, 

precision medicine, in its goal of preventing the disease process, minimizes or 

eliminates side effects during treatment, allowing patients to derive maximum benefit 

from the therapy and achieving the ultimate purpose of disease treatment (85). 

In classical survival analysis, patient demographic and clinical data are 

commonly employed, resulting in the calculation of similar survival probabilities for 

individuals sharing similar demographic and clinical characteristics. Now that 

personalized medicine applications are available, we’ve noticed that survival time and 

survival chances can differ greatly from person to person. Distinct molecular and 

patient characteristics can lead to diverse progressions of the same disease, and 

individuals may exhibit different responses to identical treatments (Figure 2.1). 

Despite the physical similarities, the differences in responses are mainly due to genetic 

differences, which is why genetic information is such an important part of precision 

medicine. Precision medicine recognizes that even individuals with the same genetic 

origin may experience distinct progressions of fatal diseases. Consequently, predicting 

survival times using specific biomarkers related to the prognosis of such diseases 

becomes essential. Various biomarkers utilized in personalized treatments for 

predicting survival, identifying high-risk groups, and forecasting benefits from 
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specific treatments have significantly contributed to the diagnosis and prognosis of 

diseases in clinical studies (86). Consequently, alongside classical survival analyses 

utilizing clinical data, recent advancements have led to the development of survival 

models incorporating high-dimensional molecular data from technologies such as 

omics (genomics, transcriptomics, proteomics, metabolomics). 

 

Figure 2.1. Differences in treatment processes and outcomes between traditional and    

                    precision medicine. 

Sequencing technologies are instrumental in establishing the genetic profiles 

of tumors in cancer patients. Gene expression data serves as a snapshot of the diseased 

gene, and the intensity of expression of specific genes within diseased tissue is a good 

biomarker for predicting the probability of patient survival. There is a high correlation 

between gene expression data and survival, and several studies have shown that the 

power of such data is more remarkable than clinical data and other prognostic factors 

(87). Genes expressing cancer cells can be identified and treatment response of a 

patient can be predicted through analysis of genetic profiles using sequencing 

technologies. By using sequencing technologies, cancer patients can now receive more 

individualized and customized treatment plans based on the unique characteristics of 

their cancer, as opposed to the standard application of surgery, chemotherapy, and 

radiation treatments to every patient. 
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2.3. Next Generation Sequencing Technologies 

Next-generation sequencing (NGS) stands as a high-throughput method 

proficient in sequencing vast and complex genomes, suitable for both DNA and RNA 

samples. NGS technology is distinguished by its high-speed capabilities. For instance, 

the process of sequencing the entire human genome, which once took more than a 

decade with the older Sanger sequencing technology, can now be completed in just a 

single day using NGS (88). 

The way NGS works is similar to that of Sanger sequencing; however, there 

are some key differences. NGS can detect genomic variations, which is more sensitive 

and quantitative than Sanger sequencing can. NGS can generate more sequencing data 

on the same set of input sample requirements that Sanger sequencing does. NGS 

employs massive parallel sequencing and simultaneously screens multiple genes 

across multiple samples. It does not require a priori knowledge of the genome. NGS 

is sensitive to tumor heterogeneity, leveraging its capacity to sequence heterogeneous 

genomes within a sample. Additionally, NGS offers a single-nucleotide resolution. It 

also has a higher dynamic range of signal, reproducibility and a lower sequencing cost 

(89). 

Various NGS platforms utilize diverse sequencing technologies, enabling the 

simultaneous sequencing of numerous DNA polymers. Each NGS platforms conducts 

parallel sequencing of millions of small DNA fragments. Illumina is the most widely 

adopted among these platforms, and its workflow is illustrated in Figure 2.2. 

Sample preparation begins with the extraction of DNA for next-generation 

sequencing (90). Before employing NGS technology, the sample must undergo the 

following steps to prepare for sequencing. 

Sample Extraction: This step aims to obtain pure DNA or RNA. DNA or RNA nucleic 

acids are extracted from various biological samples, including blood, cell cultures, 

sputum, bone marrow, tissue selection, bacterial cultures, or urine (90). Different 

extraction methods are employed based on the starting material. The purpose of these 

methods is to obtain the best quality and the highest yield of nucleic acids from the 

sample type. Nuclear acid isolation involves disrupting the cell wall or cell membrane 

disruption through physical, chemical, or enzymatic methods to release the genetic 

material. Subsequently, in nuclear acid isolation, undesirable substances such as 
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proteins and lipids that may interfere with the reaction are eliminated from the cell 

using methods like centrifugation, filtration, or bead-based. Following nucleic acid 

isolation, a purification step is initiated. Various methods, such as silica, ion exchange, 

cellulose, or precipitation-based techniques, are employed to purify nucleic acids. The 

final stage involves assessing the amount of nucleic acid in the sample. Inadequate 

nucleic acid concentration may lead to the amplification of unwanted products during 

polymerase chain reaction (PCR) or the generation of short-read lengths during 

sequencing. An increased background during sequencing procedures may result if the 

nucleic acid concentration is too high. 

Library Preparation: This step transforms the extracted nucleic acids into a format 

suitable for the chosen sequencing technology (90). Generating a sequencing library 

from a DNA or RNA sample involves two main steps: (i) amplification and (ii) the 

addition of sequencing adapters. In the case of RNA as the starting template, an 

additional step is required to convert RNA to cDNA through reverse transcription. 

First, all DNA is fragmented into similar-sized pieces to enhance the reading 

sensitivity of the bases and mitigate enzymatic errors associated with longer DNA 

strands. Various methods, including physical, chemical, or enzymatic approaches, are 

employed for DNA fragmentation. Once the length of the DNA is adjusted, specialized 

adapters are ligated to both ends of the DNA fragments. Adapters, chemically 

synthesized oligonucleotides with predetermined sequences, bind to the ends of DNA 

molecules. These adapters are designed to interact with a specific sequencing platform 

and serve as barcodes, enabling the identification of the initial location of each 

nucleotide. 

Clonal Amplification: The DNA fragments from the libraries are amplified to such an 

extent that fluorescent signals for single-base incorporation are detectable by the 

sequencers in the downstream sequencing reaction. Initially, the library created from 

DNA fragments is fixed to the surface for amplification. The fragments are hybridized 

to the flow cell surface, and each bound fragment is amplified into a clonal cluster 

through a series of amplification reactions known as bridge amplification (91). The 

five steps of bridge amplification include: (i) synthesis of the complementary strand 

of a DNA fragment in the library from the priming oligo of the flow cell, (ii) folding 

of the complementary strand folds and formation of the double-stranded bridge, (iii) 
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creation of two single strands by denaturing the double-stranded bridge, (iv) repeating 

the process of bridge amplification, and (v) generating more clones of double-stranded 

bridges. Subsequently, each fragment forms a cluster of identical molecules known as 

clonal clusters, each representing one primary library molecule. The double-stranded 

clonal bridges are denatured, the reverse strands are removed, and the forward strands 

persist as clusters for sequencing. 

 

Figure 2.2. Workflow of next generation sequencing using Illumina systems. 

DNA Sequencing: NGS platform is used for parallel sequencing. The library is loaded 

onto the sequencer, in which it systematically ‘reads’ the nucleotides individually. The 

DNA sequence obtained by sequencing each piece of DNA is referred to as a read. The 

quantity of reads generated varies based on the sequencing platform and kit. A 

comprehensive comparison table of sequencing platforms is provided in Table 2.1 of 

Zararsiz’s PhD thesis (92).  

The most popular platform is Illumina sequencing. Illumina sequencing uses 

fluorescent dye-labeled dNTPs with a reversible terminator to read fluorescent signals 

in every cycle, using a process called cyclic reversible termination (93). Only one of 

the four fluorescent DNTPs are incorporated into the DNA polymerase in each cycle 
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based on complementarity and then unbound DNTP’s are eliminated. Cluster images 

are taken after each nucleotide has been incorporated; the emission wavelength is 

measured and the fluorescence intensity is measured to determine the base that has 

been incorporated into each cluster during this cycle. The fluorescent dye and 

terminator are then cut and released after imaging. This is followed by another 

synthesis cycle, another imaging cycle, and another deprotection cycle. Because each 

base is read from one cycle to the next, the read length is iteratively repeated ‘n’ cycles. 

Alignment and Data Analysis: Initially, the reads must be filtered based on quality, 

amplicon size, and concordance between paired ends. The reads are then assembled 

and aligned to a reference genome. In the concluding stages, reads can be compared 

with reference sequences or with other samples to detect variants by disease status, 

etc. If reads are aligned with a reference genome, variant annotation can associate 

variants with known genes or regulatory sequences. 

This final step comprises three phases: processing, analyzing, and interpreting the raw 

sequencing data. Various bioinformatics tools, such as TopHat2 (94), STAR (95), 

featureCounts (96), DESeq2 (68), and EdgeR (97), are employed to process, analyze, 

interpret, and transform raw sequencing data into meaningful information. 

2.4. RNA-Sequencing Technique 

A new high-throughput sequencing technique for transcriptome analysis called 

RNA-sequencing (RNA-seq) offers a reliable method for describing and measuring 

transcriptomes. Although microarray technology has been used for gene expression 

profiling studies for many years, RNA-seq offers many advantages over microarray 

technology. Firstly, unlike DNA microarrays, which can only profile predetermined 

transcripts/genes, RNA-seq enables comprehensive sequencing of the entire 

transcriptome (98). Secondly, due to the markedly lower background signals in RNA-

seq compared to DNA microarrays, noise in the experiment is easily eliminated during 

analysis. Third, RNA-seq has a wider dynamic range of expression and does not 

require a large amount of total RNA for quantification (5). Finally, RNA-seq offers 

higher resolution, a better detection range, and reduced technical variability (99). 

RNA-seq is the direct sequencing of transcripts by NGS. All RNA-seq data is 

therefore generated using the libraries preparation and sequencing platforms listed in 
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the ‘Next Generation Sequencing’ section. NGS is capable of generating millions of 

reads. Depending on the sequencing platform you choose, the number of reads may 

differ. There are several steps that need to be completed before statistical analysis can 

be applied to the RNA-seq data and the tools used in these steps are described in detail 

in Table 2.1. 

FASTQ Formats: High-dimensional sequencing results are obtained using next-

generation sequencing technologies (such as Illumina) in FASTQ (100) format, often 

with the .txt extension. This format represents both sequencing data and quality scores 

using a single ASCII character. Each read is presented with four lines stacked one 

below the other in the file (Figure 2.3). 

 

Figure 2.3. FASTQ formats. 

In Figure 2.3, Line 1 starts with the @ character and continues with a sequence 

identifier, typically containing information related to sequencing technology, such as 

flow cell IDs, lane numbers, and information on read pairs. Line 2 consists of the raw 

sequence reading featuring sequence letters. Line 3 starts with + and marks the end of 

the sequence. The sequence identifier on the first line may follow the +. Line 4 displays 

the quality values corresponding to the sequence in Line 2, containing the same 

number of symbols as the letters in the sequence. 

Quality Control: Quality control involves assessing raw sequencing data to identify 

potential problems that may affect downstream analyses. Data quality metrics are 

determined for this, providing information about various aspects such as read length, 

sequencing depth, base quality, and GC content. 

In Figure 2.3, Line 4 of the data in FASTQ format contains the quality code. This code 

indicates the likelihood of a sequencing error at each nucleotide position, and the 

quality score is derived when the probability of such an error is known. For instance, 

if the probability of an ‘x’ error is 0.01, its quality score would be -10*𝑙𝑜𝑔10𝑝=20. 

These characters on Line 4 of the FASTQ file are interpreted based on the ASCII 

character table. 
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The widely used tool for quality metrics is FASTQC (101), which takes the FASTQ 

file as input and generates an HTML file as output. This HTML file comprises several 

sections. For instance, the “Basic statistics” section provides general information about 

the number and length of reads, while the quality of reads of nucleotides is visually 

presented in the “Per base sequence quality” section. 

Filtering/Trimming: Adapter sequences are short oligonucleotides and ligated to DNA 

fragments' ends. When you read the adapter sequence next to the unidentified target 

DNA sequence, remove the adapter sequence to restore the target DNA sequence 

(102). Similarly, low-quality reads containing sequencing errors, such as base-calling 

errors, phasing errors, and insertion-deletion errors, are excluded from the sequencing 

data. The use of adapter sequences and low quality nucleotides may result in false 

positives and lower the accuracy of the downstream analysis.  

Sequence Read Alignment: Alignment identifies the optimal position for each read in 

relation to a reference genome. For organisms that have a reference genome, reads are 

mapped to a genome or to a transcriptome. Two important mapping quality parameters 

are the percentage of mapped reads and the uniformity of read coverage on exons and 

the mapped strand (103). Following alignment, the result file format is Sequencing 

Alignment Map (SAM) or Binary Alignment Map (BAM). 

Expression Quantification: The number of reads from the RNA-seq data that map to 

each transcript sequence is estimated in this step (103). A gene transfer format (GTF) 

file is used to count the number of reads that have been mapped or aligned to each 

gene during the process. GTF files contain gene models illustrating the structure of the 

transcripts produced by each gene. 

De novo Transcriptome Assembly: When an organism's reference genome is either 

incomplete or nonexistent, de novo assembly is utilized. In this step, a reference file 

is created using the available data because there isn't a reference genome yet. 

Following the expression quantification steps, raw count data from RNA-seq 

is acquired. Now, the pre-processing steps for this raw data have been initiated. 
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Table 2.1. Tools for steps of RNA-seq data analysis workspace. 

Steps for RNA-seq data analysis Tools 

Quality Control 

FASTQC (101) 

NGSQC (104) 

RNA-SeQC (105) 

Filtering/Trimming 

Trimmomatic (106) 

PRINSEQ (107) 

Soapnuke (108) 

Read Alignment 

Bowtie (109) 

BWA (110) 

STAR (95) 

Tophat2 (94) 

HISAT2 (111) 

De novo Assembly 

Cufflinks (112) 

StringTie (113) 

Trinity (114) 

SOAPdenovoTrans (115) 

Trans-ABySS (116)  

Expression Quantification 

RSEM (117) 

Kallisto (118) 

Salmon (119) 

FeatureCount (96) 

HTSeq-count (120) 

eXpress (121) 

DEXSeq (122) 

Sailfish (123)  

2.5. RNA-Sequencing Data 

2.5.1. Raw Data 

 The raw RNA-seq data comprises non-negative and integer count data. As 

illustrated in Table 2.2, the rows represent samples, while the columns represent genes. 

Time (t) and status (δ) are variables associated with survival in the RNA-seq data. The 

status variable indicates whether a sample has experienced a specific event. If the 

sample has experienced the event, the status variable is set to 1. If the sample has not 

experienced the event (i.e., if it is censored), the status variable takes the value 0. If a 

sample experienced a specific event, the time variable denotes the duration until the 

occurrence of that event; if the sample was censored, it denotes the time at which 

censoring took place. 
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2.5.2. Filtering 

Low-expressed genes in RNA-seq data may negatively affect analysis results. 

First, RNA-seq inherently contains noise because it is obtained through a natural 

random sampling process, and accurate expression quantification becomes difficult 

because it measures gene expression profiles over a wide dynamic range (5). These 

noise and measurement mistakes are more common in low expression genes in RNA-

seq. Secondly, low expression genes are not biologically significant because genes 

usually need at least a certain amount of expression to turn into proteins or to be 

considered biologically significant. Thirdly, the mean-variance relationship is more 

accurately estimated by excluding low-expressed genes from the dataset. Inadequate 

removal of low-expressed genes adversely affects linear modeling in limma-voom, 

particularly when working with logCPM values assumed to be normally distributed. 

Suppose filtering of low-expressed genes is inadequate for linear modeling in limma-

voom; the mean-variance trend plot generated as part of the voom function will show 

a decrease in variance levels at the lower end of the expression scale. Lastly, from a 

statistical perspective, the sensitivity of detecting differentially expressed genes may 

be reduced when genes have consistently low-expression counts (124). Hence, 

identifying and removing low-expressed genes and insufficiently sequenced fragments 

from each sample's data are biologically and statistically essential. 

Numerous methods are available for filtering low-expression genes, such as 

applying a predefined threshold value (69,97), filtering genes with consistently low-

expression across samples, and filtering genes with low variance across samples. 

The edgeR package (97) is commonly employed in studies to filter low-expressed 

genes. The filterbyExpr() function in this package contributes to more accurate 

analysis by eliminating genes with low-expression from the dataset. This function 

automatically removes unexpressed or low-expressed genes while retaining as many 

genes as possible with valuable counts. A gene to be considered expressed in a library, 

it must have 5-10 counts. By default, this function selects the sample count of the group 

with the smallest sample count as the minimum sample count and keeps genes with at 

least ten or more sequence fragment counts in this sample count. The filtering criterion 

is to remove the gene if the number of genes with less than ten expression counts in 

all samples exceeds the minimum number of samples (125). This function preserves 
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genes with counts per million (CPM) greater than k in the sample of n. Here, n is 

determined by the minimum group sample size, and k is determined by the minimum 

number of samples (dafault:10) at the minimum sample rate (default: 70% of smallest 

group size). Genes with at least a few counts of 10 or more can be selected, but it is 

preferable to use CPM values to account for differences in library sizes. For example, 

if the median library size is 51 million and 10/51 (about 0.2), the function retains genes 

with a CPM of 0.2 or more in at least three samples. The CPM cutoff used is affected 

by sequencing depth and the experimental design. A lower CPM cutoff is preferred 

when library sizes are larger, while a higher CPM is favored in the opposite case. 

logCPM, FPKM, and RPKM can also be employed as scale conversions instead of 

CPM (126). 

 

Figure 2.4. High-dimensionality, heterogeneity, and high-collinearity problems of 

                      RNA-seq data. 

2.5.3. Normalization 

Normalization is an essential step in the preprocessing of RNA-seq data prior 

to analysis. In some cases, there may be technical differences between measurements 

in different samples or unwanted biological effects such as batch effects (127) or 
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general noise (128). Normalization methods take into account this sample variability 

to remove systematic experimental bias as well as technical variations while 

maintaining biological variation. Technical variations limit comparability as there are 

differences in measurement distribution between samples. Therefore, the use of 

standardization algorithms is necessary to eliminate or reduce technical variation. 

Table 2.2. An example RNA-seq survival data matrix for ACC data. 

Samples Genes Time 

(t) 

Status 

(δ) Gene1 Gene2 Gene3 Gene4 Gene5 … Gene19930 Gene19931 

Sample1 5 100 40 987 8 … 532 6 8 1 

Sample2 11 89 6 53 5 … 69 4 17 1 

Sample3 6 67 78 61 14 … 74 10 9 0 

Sample4 8 69 51 99 9 … 78 19 13 1 

… … … … … … … … … … … 

… … … … … … … … … … … 

… … … … … … … … … … … 

Sample79 3 20 12 678 2 … 49 43 20 0 

 

While early RNA-seq studies initially considered normalization unnecessary, 

subsequent analyses demonstrated its significance (129). A gene’s expression level is 

determined by its number of mapped reads. Normalization is necessary to convert the 

raw read count into an informative measure of gene expression by addressing factors 

that affect the number of mapped reads on a gene, such as length (130), GC content 

(131), and sequencing depth (132). Another reason for the necessity of normalization 

is the variation in the proportion of mRNA corresponding to a given gene between 

biological conditions. In the sequenced sample of molecules, the number of molecules 

(reads) corresponding to a given gene depends on the proportion of that gene in the 

population of molecules available for sequencing. Therefore, when a few genes are 

highly expressed in only one of the conditions, these genes will contribute a larger 

share of the total molecules, leaving a smaller portion of the reads for other genes 

(132). It may result in inaccurate differential expression for non-differentiated 

expression genes, which highlights the need for normalization to explain these 

differences. There are many ways to normalize RNA-seq data. 
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Total Count Normalization: Each read count is divided by the total number of reads in 

its corresponding sample to account for differences in library sizes among samples 

(133). 

Upper Quartile Normalization: Initially, genes with zero read counts across all 

samples are removed. Subsequently, the count for each remaining gene is divided by 

the 75th percentile (upper quartile) of the counts for its corresponding sample (129). 

Median Quartile Normalization: Similar to upper quartile normalization, genes with 

zero read counts across all samples are removed. However, the count for a remaining 

gene is divided by the median, rather than the 75th percentile (upper quartile), of the 

counts for its corresponding sample (133). 

Quantile Normalization: It calculates a specific quantile, ensuring uniformity in the 

distribution of normalized data across all samples by replacing each quantile with the 

mean (or median) of that quantile calculated across the entire set of samples (134). 

Trimmed Mean of M-values (TMM) Normalization: Initially, the TMM (132)  

approach selects a sample as the reference sample. Subsequently, it compares the 

counts in each sample to those in the reference sample to estimate the sequencing 

depths ratio between each sample and the reference. Trim the gene based on fold 

change and absolute expression level calculated from the selected sample to remove 

differentially expressing genes. The mean is calculated over genes that do not exhibit 

differential expression (except for differentially expressing genes). Trim the fold 

changes by calculating the trimmed mean for each sample and scaling reads counts 

based on this trimmed mean as well as the number of samples. 

Relative Log Expression (RLE)-DESeq Normalization: The DESeq (65) normalization 

initially computes a ratio, where the numerator is a read count, and the denominator is 

the geometric mean of all read counts across all samples for that gene. The 

denominator in this context represents a pseudo-reference sample. This process is 

applied to every read count. Subsequently, it computes the median of all ratios specific 

to that sample to scale a sample. This calculated value is the size factor for the 

corresponding sample. The ratio of size factors calculated for each sample indicates 

the ratio of their respective sequencing depths. 

By computing a virtual pseudo-reference instance, DESeq corrects for overexpressions 

resulting from gene length and frequency biases. For the dataset with the p gene and n 
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sample, the pseudo-reference sample is calculated as the geometric mean of counts 

across all samples for the gth gene, forming a vector of the gene geometric mean (𝑠𝑔 =

√𝑟𝑔1𝑟𝑔2…𝑟𝑔𝑛
𝑛 = (∏ 𝑟𝑔𝑛

𝑛
𝑔=1 )1/𝑛 g=1,2,…,p). The reason for calculating the geometric 

mean here is that the geometric mean is less sensitive to extreme values than the 

arithmetic mean. 

Subsequently, for each sample, the median of the ratio of the counts of the relevant 

sample to the pseudo-reference sample is defined as the size factor. For the ith sample, 

the size factor is calculated as follows. 

�̂�𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖

(∏ 𝑟𝑔𝑛
𝑛
𝑔=1 )1/𝑛

= 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖
𝑠𝑔
       

The denominator in the equation is an example of a pseudo-reference obtained through 

geometric mean across samples. Therefore, each estimate of size factor denoted as �̂�𝑖, 

is calculated as the median of the ratios of the counts of the ith sample to those of the 

pseudo-reference. The size factor is applied to scale that sample (65). 

Finally, for each sample i, the normalization factor is calculated as the median of the 

𝑟𝑔𝑖 values. Genes with a geometric mean of zero are ignored when calculating this 

median. DESeq median normalization involves dividing each gene value in each 

sample by these median values calculated for the relevant sample (135). 

�̂�.𝑖 =
𝑟.𝑖

�̂�𝑖
, 𝑖 = 1,2,… , 𝑛 

PoissonSeq: A group of genes that are non-differentially expressed (non-DE) are first 

found using the PoissonSeq algorithm (63). It then determines a scaling factor 

to approximate the read counts expected for every sample. Next, the goodness-of-fit 

test is used to see if the predicted values agree well with the associated genes. This 

iterative process is repeated until the algorithm best matches the observed and expected 

values. 

Reads per kilobase per million mapped reads (RPKM), Fragments per kilobase per 

million mapped fragments (FPKM) Normalization, Transcripts per million (TPM): 

RPKM normalization (136) involves dividing each read count by the product of the 

number of reads in the sample (in millions) and the gene length (in kilobases). This 
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accounts for gene lengths and the library size in total count normalization. FPKM 

normalization (112), similar to RPKM, divides each read count by the number of reads 

in the sample and the gene length but uses cDNA molecules instead of RNA reads. 

TPM  (137) is a slight modification of RPKM, converting an RPKM to a TPM using 

the formula TPM = 106 ∗
RPKM

Sum(RPKM)
. 

CuffDiff Normalization (138), an extension of DESeq normalization, is an 

additional method to the ones mentioned above. Both an internal and an external 

size factor are computed as two distinct normalization factors. A more resilient version 

of the TMM approach is the Median Ratio Normalization (139), which is merely an 

extension of TMM normalization. 

2.5.4. Transformation 

The RNA-seq count data matrix exhibits sparsity and skewness (140). Sparsity 

means that many counts in the RNA-seq count matrix are zero. Conversely, skewness 

refers to a skewed distribution when the histogram is plotted for all counts in the RNA-

seq count matrix. Additionally, RNA-seq count matrices are generally heteroskedastic, 

meaning the number of highly expressed genes varies more than low-expressed genes 

(141). Analyzing data with unequal variance using standard statistical methods is very 

difficult. To overcome this problem, various transformation methods can be applied to 

make the data homoskedastic. 

Logarithmic transformation: For data with a skewed distribution, the logarithmic 

transformation is a simple method that is often employed. This transformation helps 

the data distribution approximate a normal distribution. When applying a logarithmic 

transformation to reduce or eliminate the skewness of RNA-seq data, adding a small 

constant, such as 0.5 or 1, to each count is common. This addition 

is required to prevent undefinable outcomes in the log 

transformation, particularly when working with dataset counts that are equal to 0. 

𝑥′𝑖𝑔 = log(𝑥𝑖𝑔 + 0.5) 𝑜𝑟 𝑥′𝑖𝑔 = log (𝑥𝑖𝑔 + 1) 

After applying the log transform to RNA-seq data, the distribution typically doesn't 

become perfectly normal, but it exhibits reduced skewness and fewer extreme values. 



27 

 

 

Variance stabilizing transformation (VST): The purpose of the vst transformation is to 

obtain variables whose variances independent of the mean, thereby eliminating the 

dependence of the variance on the mean. This helps prevent a high variance of the 

logarithm of the count data, especially when the mean is low. This transformation 

method models the relationship between means and variances with a dispersion 

parameter (65). Assume that µ𝑔 is the mean and σ𝑔
2 is the variance for the gth gene. 

When the relationship between the mean and the variance is modeled by σ𝑔
2 = µ𝑔 +

𝛼𝑔µ𝑔
2  and a dispersion parameter is 𝛼𝑔 = 𝛼0 + 𝛼1 µ𝑔⁄ , then vst transformation is 

calculated follows. 

𝑥′𝑖𝑔 = ∫
1

σ𝑔
2

𝑥𝑖𝑔

0

𝑑µ𝑔 

The parameters 𝛼1 and 𝛼0 are estimated using generalized linear models. Following 

the vst transformation, all genes exhibit unequal variances, yet the counts are less 

skewed and show fewer extreme values. 

Regularized logarithm transformation (rlog): The vst transformation may not perform 

optimally with datasets featuring unequal library size (68). To address this issue, the 

rlog transformation is introduced. Like the vst transformation, the rlog transformation 

aims to eliminate the variance dependency on the mean (68). Although many aspects 

of rlog transformation resemble those of the vst transformation, the rlog transformation 

requires more time, especially in datasets with numerous samples. This increased time 

is due to the rlog fitting a shrinkage term for each sample and each gene. The rlog 

transformation is applied as follows. 

𝑥′𝑖𝑔 = 𝑙𝑜𝑔2(𝑞𝑔𝑖) = 𝛽𝑔0 + 𝛽𝑖𝑔 

The parameter 𝑞𝑔𝑖 is proportionate to the expected accurate concentration of fragments 

for the g gene and i sample. The intercept βg0 does not undergo shrinkage and βig is 

the sample-specific effect which is shrunk toward zero based on the dispersion-mean 

trend over the entire dataset. 

Power transformation: As RNA-seq data comprises non-negative counts, modeling 

them with a discrete Poisson distribution is appropriate (9,129). Because of these data 
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with biological replicates, the overdispersion issue arises due to the variance being 

much larger than the mean. However, it cannot cope with this overdispersed problem 

since the mean and variance of the Poisson distribution have the same parameter value. 

An alternative is using the negative Binomial distribution to model RNA-seq data 

instead of the Poisson distribution (65,132). Nevertheless, due to the complexity of the 

negative Binomial distribution, Witten et al. proposed applying a power 

transformation to the RNA-seq data in their study. Although the transformed data is 

not an integer type after the power transformation, it can still be modeled using the 

Poisson distribution (63). 

When 𝛼 ∊ (0,1], the transformed count values are utilized (𝑥′𝑖𝑔 = 𝑥𝑖𝑔
𝛼 ). Using the total 

count size factor estimation, a test is conducted to assess whether the Poisson model 

fits the data well, as expressed by the following formula (142). 

∑∑
(𝑥′𝑖𝑔 −

𝑥′.𝑔𝑥′𝑖.
𝑧..

)

(
𝑥′.𝑔𝑥′𝑖.
𝑥′..

)

≈ (𝑝 − 1)(𝑛 − 1)

𝑛

𝑖=1

𝑝

𝑔=1

 

voom transformation: RNA-seq quantifies the number of sequence reads mapped to 

each gene or other genomic feature (exons, transcripts, etc.), resulting in RNA-seq 

datasets consisting of integer counts (65). Consequently, statistical analyses of such 

data have been approached through methods that analyze log counts after 

normalization by sequencing depth (143–145) or by modeling using discrete data 

distributions such as negative Binomial (65,97,146) and Poisson (147). However, the 

mathematical theory of discrete distributions is less tractable than normal distribution 

approaches and presents more limitations. Most discrete distribution methods applied 

to RNA-seq data yield accurate results for datasets with small sample sizes. 

Additionally, methods based on these distributions are statistical tests treating 

estimated distributions as known parameters. Commonly used normal-distribution 

methods for microarray data analysis are unsuitable for RNA-seq read counts because 

RNA-seq data consists of integer counts, unlike the continuous data format of 

microarrays. Despite log transformation, RNA-seq data retains the issue of unequal 

variance—larger counts with larger standard deviations and smaller counts with 

smaller standard deviations. In order to overcome these difficulties, the voom 
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transformation was designed to model the mean and variance relationship without 

specifying the precise probabilistic distribution of counts (69). By incorporating the 

mean-variance trend into precision weights for each normalized observation, the voom 

transformation enables the application of statistical methods based on normal 

distribution after predicting the mean-variance trend of the data.

 

Figure 2.5. Voom mean-variance modeling. 

If the RNA-seq datasets comprise n samples, each sample's count of reads 

matching with each gene defines the RNA-seq profile. These profiles often involve 

tens of thousands of genes, with the number of samples typically limited. The total 

number of matched reads for each sample, referred to as the library size, may range 

from a few hundred thousand to hundreds of millions. The count of reads for a gene is 

proportional to the gene expression level, the gene transcript length, and the 

sequencing depth of the library. Counts per million (cpm) values are derived by 

dividing each read count by library size, enabling comparison across libraries of 

varying sizes in millions. The differences in logCPM between samples generate the 

log-fold-changes of the expression. logCPM (logarithm of counts per million reads) 

values, akin to log-intensity values in microarrays, were utilized; however, it's 

important to note that logCPM values may not exhibit constant variance. 
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When analyzing the probability distributions of counts, it is seen that larger 

counts exhibit larger variances. So, it was observed that the coefficient of variation in 

RNA-seq should be a decreasing function for small counts and asymptote to a value 

dependent on biological variability for larger counts (148). Studies involving technical 

replications have demonstrated the standard deviation of logCPM continuously 

decreases as a function of the mean. Conversely, in the case of biological replications, 

this decrease is earlier and relatively more asymptotic (Figure 2.5) (69). Consequently, 

logCPM values exhibit a mean-variance relationship that decreases based on count 

size, and the logCPM transformation roughly distorts the variance of RNA-seq counts 

as a function of count size, especially for genes with larger counts. 

logCPM transformation can be analyzed using a trend approach for RNA-seq 

data analysis (149,150). However, this causes the mean-variance trend of low-count 

data to be ignored. Limma-trend models variance at the gene level, but RNA-seq count 

sizes can vary widely from sample to sample for the same gene. Due to different 

samples being sequenced at different depths, different count sizes can yield the same 

cpm values. Therefore, voom models the mean-variance trend of logCPM values at the 

individual observation level rather than applying gene-level variability to all samples 

within the same gene. To achieve this, the mean-variance trend of the logged read 

counts is estimated, and this mean-variance relationship is utilized to estimate the 

variance of each logCPM value. The estimated variance is then retained as an inverse 

weight for the logCPM value. The inverse square estimated standard deviation for each 

sample becomes the weight for that sample. 

The voom method has accurately controlled the type I error rate and false 

discovery rate (69). The voom method produced results that were very close to the 

nominal type I error rate in scenarios considering equal or unequal library sizes. 

Moreover, voom consistently exhibited the lowest false discovery rate across various 

cut points. Notably, voom also showcased faster performance than alternative 

methods. 

In the analysis of RNA-seq data, especially in DE analyses, normalization, and 

batch correction are applied to eliminate systematic biases and reduce variability. 

However, another factor complicating RNA-seq data analysis is the variability in 

sample quality. One strategy to model sample-specific variability involves excluding 
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high-variability samples from the dataset. This approach reduces variability but also 

reduces the power to identify DE genes. Alternatively, retaining all samples in the 

dataset allows for a comprehensive view but may limit the ability to distinguish true 

differences between experimental conditions from noise due to increased variation. To 

address this challenge, the concept of down-weighting observations from samples with 

high variability has been introduced. This approach aims to preserve maximum 

degrees of freedom while minimizing the impact of noisy observations (151). 

Consequently, sample weights, in addition to observational weights, can be determined 

post-voom transformation.  

2.5.5. Feature Selection 

Feature selection, which has several benefits, including removing redundant 

variables, decreasing time complexity, and enhancing the efficiency of many 

algorithms, is one of the most important challenges in high-dimensional data analysis. 

It is not recommended to make predictions using all features due to the possibility of 

overfitting. Given the sparsity assumption, it is important to choose the most important 

features, since most of the features do not influence the result. One of the most 

commonly used methods for feature selection is regularized regression methods, which 

shrinks regression coefficients to zero, leading to economic prediction models and 

dealing with the problem of overfitting (34). 

Boruta algorithm (152) is a wrapper feature selection method derived from the 

Random Forest algorithm. This method tries to determine a threshold by taking 

advantage of the variable importance order used in the Random Forest algorithm. The 

set of variables is doubled with copy variables called ‘shadow variables’ from the copy 

of all variables. Random forest is trained on this new expanded dataset and variable 

importance values are created. A statistical test compares the significance of each real 

variable in the dataset with the maximum values of all dummy variables. Variables 

with significantly larger importance values are labeled important, respectively, while 

variables with smaller importance values are labeled unimportant. Thus, the Boruta 

algorithm checks at each iteration whether a real feature is of higher importance. All 

unimportant variables and shadow variables are removed. The previous steps are 
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repeated until all variables have been classified or a predetermined number of runs 

have been performed. 

Variable selection with the Boruta algorithm has been used in gene expression 

(153) and microbiome (154) studies involving high-dimensional omics datasets. 

Boruta algorithm has been a recommended method for analyzing high-dimensional 

data as well as low-dimensional data (155). 

2.6. Survival Modeling 

The outcome variable is the survival time, which is the time until the event of 

interest occurs in many cancer studies. Various statistical methods can be used for 

analysis when the event of interest occurs in all individuals in the study. However, if 

the outcomes of the event become unobservable for individuals after a specific time 

point due to various reasons, or if individuals have not experienced the event by the 

end of the study, such instances are categorized as censored samples. This data type 

cannot be analyzed with standard statistical methods or machine learning-based 

prediction models developed for classification problems. This is due to the outcome 

variables in these data containing both event and time information (156). Therefore, 

survival algorithms have been developed to address this unique data type. Survival 

algorithms are concerned not only with whether the event of interest occurred but also 

when the event occurred. 

2.6.1. Basic Concepts in Survival Analysis 

Time-to-event variables: The survival data outcome variable comprises ‘status’ and 

‘time’. The status variable represents the status of the individual at the end of the study, 

and the time indicates the duration of the follow-up period. The status variable is 

categorical, reflecting whether the individual experienced the event of interest. In 

cancer studies, this event is typically the time to death. However, events such as the 

time until cancer relapses, response to the treatment, disease development, or tumor 

disappearance can also be considered. The time until these events of interest are always 

continuous, positive, and usually exhibits a skewed distribution. 

Censoring: Censored individuals are those who did not receive follow-up data during 

the study period. The true survival time of these uncensored patients is unknown. 
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Censored samples provide only partial details about the event's timing, leading to 

underestimating or overestimating real survival times (157). Censorship in survival 

studies may occur for a variety of reasons, including: i) individuals may still not have 

experienced the event of interest by the study's end, ii) follow-up may have been lost 

during the study period, iii) another untrackable event, such as death, may have 

occurred, iv) patients may have withdrawn from the study for various reasons. Three 

categories exist for censoring types: interval-, left-, and right-censoring (Figure 2.6). 

The observed survival time in data that has been right-censored is less than or equal to 

the true survival time, whereas the observed survival time in data that has been left-

censored is higher than or equal to the true survival time. Data that has been interval-

censored includes occurrences that take place inside a given time frame. 

 

Figure 2.6. The three types of censoring. 

Survival Data: Survival data, comprising n samples, can be described using a 

minimum of three variables for each sample, denoted as 𝑋 = {(𝑥𝑖 , 𝑇𝑖 , 𝛿𝑖)}, 𝑖 =

1,2, … , 𝑛. Here, 𝑥𝑖 ∊ 𝑅 represents the covariate vector of the ith sample. 𝑇𝑖 is the 

survival time if the ith sample is uncensored, or 𝑇𝑖 is the censoring time if the ith sample 

is censored. T denotes the observed time until an event of interest occurs for 

uncensored data or the observed time to censorship for censored variables. T is non-

negative and continuous. 𝛿𝑖 is the status variable of the ith sample, taking a value of 1 

for uncensored samples and 0 for censored samples. Using various functions, survival 

analysis predicts the time until the event of interest occurs for a new sample using 

covariate variables and estimates the survival probability at predicted survival time.  
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Survival Function (S(t)): The probability density function of T is denoted by 𝑓𝑇(𝑡). 

The cumulative distribution function of T, defined as 𝐹𝑇(𝑡), computes the probability 

that the event of interest (T) occurs before a specified time (t). The cumulative 

distribution function is given as follows. 

𝐹𝑇(𝑡) = ∫ 𝑓𝑇(𝑢)𝑑𝑢
𝑡

−∞

= 𝑃(𝑇 ≤ 𝑡) 

The survival function computes the probability that the time to the event of interest (T) 

is not earlier than a specified time (t). The survival function is given as follows.  

𝑆𝑇(𝑡) = 𝑃(𝑇 ≥ 𝑡) = 1 − 𝐹𝑇(𝑡) = ∫ 𝑓𝑇(𝑢)𝑑𝑢
∞

𝑡

 

The relationship among 𝑓𝑇(𝑡), 𝐹𝑇(𝑡) and 𝑆𝑇(𝑡) are shown in Figure 2.7. Due to 

𝑙𝑖𝑚𝑡→∞𝐹𝑇(𝑡) = ∞, 𝑆𝑇(∞) = 0.  

The survival function is non-increasing and monotonically decreases with t (Figure 

2.8). Since all samples survive at the beginning of the study, having not experienced 

the event of interest, the initial value of the survival function at the origin is 1 when 

t=0. (𝑆𝑇(0) = 1). 

 

Figure 2.7. The relationship among functions, which are f(t), F(t), S(t). 

Probability Density Function (F(t)), or the Cumulative Incidence Function (R(t)): The 

probability that an individual has a survival time equal to or less than t time. 

Hazard Function (h(t)): The hazard function does not calculate a probability. This 

function is the rate of the event at a specified time (t). The hazard function determines 

the instantaneous failure rate at time t, provided an individual has survived until t, and 

is defined by 
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ℎ𝑇(𝑡) =  lim
𝛥𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑡 + 𝛥𝑡|𝑇 ≥ 𝑡)

𝛥𝑡
=

𝑓𝑇(𝑡)

1 − 𝐹𝑇(𝑡)
 

 

Figure 2.8. Smooth curve and stepped line graphs for survival function. 

ℎ𝑇 is non-negative and has no upper bound. If no event happened in 𝛿𝑡, then 

ℎ𝑇(𝑡) = 0. The hazard function may exhibit various graphical shapes, as shown in 

Figure 2.9. 

 

Figure 2.9. Hazard functions. 

Cumulative Hazard Function (H(t)): The cumulative hazard function is the total 

amount of probability accumulated up to time t, where ‘instantaneous probability’ is 

derived from the probability distribution function. It is the integral of the hazard 

function from time 0 to time t and is also equal to the AUC of the h(t) from time 0 to 

time t. 

𝐻(𝑡) = ∫ ℎ𝑇(𝑢)𝑑𝑢
𝑡

0

 

2.6.2. Statistical Methods for Survival Analysis 

When analyzing survival data, three fundamental approaches are employed: 

non-parametric, semi-parametric, and parametric, depending on the research question 

(Figure 2.12). A comparison of these approaches is given in Table 2.3. 
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Parametric Approaches 

Parametric survival models assume that the survival times or the logarithm of 

the survival times for all individuals in the data follow a theoretical survival 

distribution. These models produce survival estimates based on this distribution (158). 

The most common parameter estimation method in these models is the maximum 

likelihood estimation method. Parametric approaches offer an advantage in reliably 

estimating survival times, especially for events occurring long after the observed data. 

Among the various parametric distributions, each employes different hazard functions; 

the most commonly used ones include (i) Exponential, (ii) Weibull, (iii) Gompertz, 

and (iv) Log-logistic. 

Table 2.3. Comparison of type of survival approaches. 

Type of Approaches Advantages Disadvantages 

Non-parametric -It is used when the theoretical 

distribution of survival times 

is unknown or the 

proportional hazard 

assumption does not hold. 

-It’s flexible. 

-Less effective results if 

survival times are 

theoretically distributed. 

-Survival function has 

piecewise constants 

instead of being smooth. It 

can give unrealistic 

estimates with small 

sample sizes. 

Parametric -It is easy to interpret as 

survival times show a 

theoretical distribution. 

-It’s simple, efficient, and 

effective. 

-It may give inaccurate 

results when distribution 

assumptions are not met. 

Semi-parametric - It does not need distribution 

information for survival times. 

-Outcome variable is 

difficult to interpret as its 

distribution is unknown. 
 

Exponential Distribution: The Exponential distribution is the simplest parametric 

model, characterized by a single parameter, λ, where the mean of this distribution is 

also λ. It assumes that the random events of failure and death are time-independent, 

with a constant instantaneous hazard over time. The probability density function is 

given by 𝑓(𝑡) = 𝜆 exp [−𝜆𝑡], the instantaneous hazard function is ℎ(𝑡) = 𝜆, the 

cumulative hazard function is 𝐻(𝑡) = 𝜆𝑡, and the survival function is 𝑆(𝑡) =

exp [−𝜆𝑡] (Figure 2.10). 
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Figure 2.10. Exponential distribution, when λ=0.25. 

Weibull Distribution: The Weibull distribution is characterized by two parameters: a 

scale parameter, λ, and a shape parameter, γ. The probability density function is given 

by 𝑓(𝑡) = 𝜆𝛾𝑡𝛾−1 exp [−𝜆𝑡𝛾], the instantaneous hazard function is ℎ(𝑡) = 𝜆𝛾𝑡𝛾−1, 

the cumulative hazard function is 𝐻(𝑡) = 𝜆𝑡𝛾, and the survival function is 𝑆(𝑡) =

exp [−(𝜆𝑡)𝛾]. The behavior of the instantaneous hazard concerning time depends on 

the value of γ; it monotonically decreases over time when γ <1,  remains constant when 

γ =1, and increases over time when γ >1 (Figure 2.11).  

 

Figure 2.11. Weibull distribution for λ=0.25 and γ =0.5. 

Gompertz Distribution: The probability density function is given by 𝑓(𝑡) =

𝜆 exp[𝛾𝑡] exp [− 𝜆 𝛾⁄ (exp[𝛾𝑡] − 1)], the instantaneous hazard function is ℎ(𝑡) =

𝜆 exp [𝛾𝑡], the cumulative hazard function is 𝐻(𝑡) = 𝜆 𝛾⁄ (exp[𝛾𝑡] − 1), and the 

survival function is 𝑆(𝑡) = exp [− 𝜆 𝛾⁄ (exp[𝛾𝑡] − 1)]. 

Logistic Distribution: For the logistic distribution, the hazard function behaves non-

monotonically. The survival time is denoted by T, µ is the parameter that determines 

the location of the function, and σ is the scale parameter. The probability density 

function is given by  
𝑒−(𝑡−µ)/𝜎

𝜎(1+𝑒−(𝑡−µ)/𝜎)2
, the survival function is 

𝑒−(𝑡−µ)/𝜎

1+𝑒−(𝑡−µ)/𝜎
, and the 

instantaneous hazard function is  
1

𝜎(1+𝑒−(𝑡−µ)/𝜎)
. 
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Log-logistic Distribution: Similar to logistic distribution, the hazard function behaves 

non-monotonically for the log-logistic distribution. The survival time is log(T), and 

γ>0 is the shape parameter. The probability density function is given by 𝑓(𝑡) =

𝜆𝛾𝑡𝛾−1/(1 + 𝜆𝑡𝛾)2, the instantaneous hazard function is ℎ(𝑡) =
(𝜆𝛾𝑡𝑏−1)

1+𝜆𝑡𝛾
, the 

cumulative hazard function is 𝐻(𝑡) = log (1 + 𝜆𝑡𝛾), and the survival function is 

𝑆(𝑡) = (1 + λ𝑡𝛾)−1. 

a. Linear Regression Models 

Tobit regression employs a linear regression with a Gaussian distribution (159). 

The Buckley and James regression utilizes a least-squared estimator for censored 

dependent variables (160). In a particular study, this method was combined with the 

elastic net regularizer (161). Penalized regression selects variables and estimates the 

coefficient simultaneously (162). It addresses challenges related to multicollinearity 

and high dimensionality. Various types of penalized regression include weighted 

regression (163) and structured regularization (164). 

b. Accelerated Failure Time (AFT) Model 

 The accelerated failure time model has some assumptions (165). It assumes the 

linear relationship between the logarithm of the survival time and the covariates. 

Additionally, it assumes that the features have a multiplicative effect on the survival 

time. 

Non-parametric Approaches 

Non-parametric methods offer an alternative to parametric approaches by 

avoiding assumptions about the distribution of event times. These methods typically 

produce descriptive statistics, laying the groundwork for subsequent parametric or 

semi-parametric analyses. Non-parametric techniques are particularly valuable when 

no suitable theoretical distribution adequately fits the data. 

a. Kaplan-Meier (or Product-Limit) Estimator 

The non-parametric, the Kaplan-Meier estimator, is employed to estimate the 

survival distribution function from survival data (20). Kaplan-Meier divides time into 
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intervals, determined by observed event time rather than predefined intervals. 

Individuals who have not yet experienced the event at the interval’s start and have not 

been censored during the interval or earlier ones are considered at risk for each interval. 

These at-risk individuals are estimated to have a survival probability and contribute to 

the prediction of survival probability until the event occurs or they are subject to 

censorship. The number of survivors is divided by the number of at-risk patients to 

calculate the survival probability. The cumulative probability of survival up to time 

interval t is then calculated by multiplying the survival probabilities across all 

preceding time intervals. 

Let 𝑡𝑗 , 𝑗 = 1,2, … , 𝑛 represent the total set of failure times recorded, and T be 

the maximum failure time. The Kaplan-Meier estimator of the survival function, 

denoted as 𝑆(𝑡) = 𝑃(𝑇 ≥ 𝑡), is expressed as follows. 

�̂�(𝑡) = ∏ (1 −
𝑑𝑗
𝑟𝑗
) ,   0 ≤ 𝑡 ≤ 𝑇

𝑗:𝑡𝑗≤𝑡

 

where 𝑑𝑗 is the number of individuals who experienced the event at the time 𝑡𝑗, and 𝑟𝑗 

is the number of individuals in the risk set just before the time 𝑡𝑗.  

Kaplan-Meier curves represent the Kaplan-Meier estimator of survival 

probability over time. These curves start from 1 and decrease over time as a stepped 

line instead of a smooth curve. This is because cumulative survival decreases at the 

precise time a death occurs and remains flat between successive death times (Figure 

2.8). 

The log-rank test, also known as the Mantel log-rank, the Cox Mantel log-rank, 

or the Mantel-Haenszel test, is widely used for comparing the Kaplan-Meier curves of 

two or more samples. This test assesses whether the survival distributions of different 

samples are equal. The underlying assumption is that the hazard functions of the 

samples are parallel. It is a large-sample chi-square test, which calculates observed 

versus expected cell counts over categories of outcomes. The log-rank test takes each 

time point with a failure event, creating 2x2 tables that display the number of 

individuals who experienced the event of interest and the total number of individuals 

under follow-up. For each table, calculations are performed for observed deaths, 

expected deaths, and the variance of the predicted number. These values are then 
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summed across all tables, yielding a chi-square statistic with 1 degree of freedom. The 

null hypothesis for the log-rank test posits that “The samples have identical distribution 

curves.”, while the alternative hypothesis suggest that “The samples have different 

distribution curves.” Alternative tests like Wilcoxon (Breslow), Tarone-Ware, Peto, 

and Flemington-Harrington can be substitutes for the log-rank test.  

b. Life-Table (Actuarial or Cutler-Ederer) Estimator 

The Life-Table estimator approximates the Kaplan-Meier estimator, 

particularly in large-scale population surveys (23). This method assumes that the 

failure rate within a given interval remains consistent across all subjects and is 

independent of the probability of survival in other time periods.  

c. Nelson-Aalen Estimator 

The Nelson-Aalen estimator is based on the counting process approach and 

predicts the cumulative hazard function (22). The cumulative hazard at time t is below. 

�̂�(𝑡) = ∏
𝑑𝑗

𝑟𝑗
,   0 ≤ 𝑡 ≤ 𝑇

𝑗:𝑡𝑗≤𝑡

 

Various equations can be used when converting to a survival function, such as 

𝐻(𝑡) = −𝑙𝑜𝑔[𝑆(𝑡)], 𝑆(𝑡) = 𝑒−𝐻(𝑡). 

Semi-Parametric Approaches 

 Semi-parametric approaches are based on regression analysis approach. 

Therefore, some assumptions exist, like the proportional hazards. Parameter 

estimation is performed using partial likelihood. The reason why these approaches are 

called semi-parametric is that the distribution of the outcome is not known. 

 

a. Cox Proportional Hazard  

The most common model used to analyze survival data is the Cox proportional 

hazards model (157). In this model, all individuals have the same proportion of hazards  
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Figure 2.12. Survival analysis methods. 
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at all times and the hazard ratio is maintained over. The unspecified baseline hazard 

makes this model semi-parametric. The model is based on hazard function, denoted as 

ℎ(𝑡|𝑥), which is the probability that an individual with predictors x will experience an 

event at time t, given that the individual is alive just before t. 

The Cox proportional hazards model relies on several assumptions (157). First, 

there's the proportional hazards assumption, which states that the hazard ratio won't 

change during the course of the follow-up. As an example, a Cox proportional hazard 

model that uses the patient's sex as the predictor variable makes the assumption that 

the risk is the same for males and females over the course of the follow-up. The second 

assumption is the independence of survival times. According to this assumption, the 

survival time of one patient does not depend upon the survival time of another. Thirdly, 

a linear relationship between time-independent covariates and the log hazard should 

exist. Lastly, censoring is assumed to be uninformative about the outcome of interest. 

Those who are censored are exposed to the same risk at the end point of the study as 

those who continue to be monitored (166). 

Cox Proportional Hazards model is described as follows: 

ℎ(𝑡) = ℎ0(𝑡)𝑒
(𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑝𝑋𝑝) 

ℎ(𝑡) is the expected hazard at time t. ℎ0(𝑡), is the baseline hazard function. 

𝑋𝑝 = (𝑋1, 𝑋2, … , 𝑋𝑝) is the covariates. 𝛽𝑇 = (𝛽1, 𝛽2, … , 𝛽𝑝) is the coefficients. 

Cox model models partial likelihood using maximum likelihood: 

𝑝𝑙(𝛽) = ∏ (
𝑒𝑥𝑝𝛽𝑋𝑖

∑ 𝑒𝑥𝑝𝛽𝑋𝑖𝑗∊𝑅𝑖

)𝑛
𝑖=1    (1) 

Although the Cox proportional hazards model is extensively used in survival 

analysis, it has some disadvantages. Firstly, the assumption that hazards are 

proportional over time cannot always hold. Secondly, the model follows a restrictive 

parametric format concerning how variables influence the outcome (167). It also has 

limitations, particularly when dealing with high-dimensional 

data, where model assumptions are frequently broken. Interpreting results becomes 

challenging, particularly in interactions (168). Given these limitations, alternative 

survival approaches have been developed, especially for high-dimensional genetic 

data. 
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2.7. Survival Modeling of High-Dimensional Data  

Cox models are linear models that make assumptions about the hazard ratio, 

and these assumptions may be violated in real-world data. That is, the Cox model can 

only model linear interactions. Semi-parametric methods and parametric methods, rely 

on the likelihood or partial likelihood functions commonly used in clinical studies. 

However, there is a growing need for methods that perform better in more complicated 

data, which may include high dimensional and non-linear relationships, for example, 

in RNA-seq data with a number of features that exceed the number of samples. 

Machine learning algorithms commonly used for survival analysis are 

extensions of those developed for classification problems or traditional survival 

models (Figure 2.12). Several machine learning methods have been adapted to address 

survival analysis problems, offering enhanced prediction performance. These 

approaches can capture complex and nonlinear relationships, and unlike the Cox 

proportional hazards (PH) model or penalized methods, they do not strictly require the 

Cox PH assumption. As a result, machine learning methods can provide more accurate 

survival predictions, especially for high-dimensional and complex datasets. 

2.7.1. Penalized Likelihood Cox Models 

In classical data, when the number of variables (p) is less than the number of 

samples (n), linear regression models perform well; however, when the number of 

variables equals or exceeds the number of samples, they perform poorly. In these 

cases, it becomes challenging to model with all features, and overfitting may result in 

poor results (169). Gene expression data, which measure the expression levels of 

millions of genes, falls into the high-dimensional data category. Therefore, the 

standard Cox partial likelihood method cannot be applied directly to obtain parameter 

estimation in such data with abundant variables. In addition to the high dimensionality, 

the expression levels of some genes are often highly correlated, leading to the problem 

of high collinearity (Figure 2.4). To address these challenges, penalized regression 

models was developed by applying various penalties to the linear regression model. 

The term ‘penalized’ implies adding constraints to the model due to its numerous 

variables. Through penalization, coefficient values are shrunk, and some may be 

reduced to 0. Lambda (λ), a tuning parameter, determines the extent of shrinkage. This 
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process ensures that less-contributing variables have coefficients close to or equal to 

0, revealing the most relevant features for the outcome variable. Penalized methods 

are also known as shrinkage or regularization methods and serve as feature selection 

methods. Various regularized Cox models have been developed. 

Lasso-Cox 

Lasso (Least Absolute Shrinkage and Selection Operator) regression is a linear 

model incorporating a regularization term into the loss function, emphasizing sparse 

coefficient prediction. It predicts regression coefficients through shrinkage and 

performs feature selection simultaneously. The penalty term in Lasso is called the L1-

norm, which denotes the sum of the absolute coefficients. By minimizing this penalty, 

Lasso can yield coefficients that are precisely 0, provided that the sum of the absolute 

values of the coefficients is below a certain constant. Consequently, the model's 

complexity is diminished, making it a viable alternative to subset selection methods 

for variable selection (170). 

The L1-norm penalty term in Lasso regression has been integrated with log-

partial likelihood, making it applicable as a survival algorithm (34). Several studies 

have also existed using Lasso with gene expression data for survival analysis 

(34,171,172). 

Ridge-Cox 

Like Lasso regression, Ridge regression aims to shrink the regression 

coefficients, bringing the coefficients of variables with minimal contribution to the 

outcome close to 0. However, unlike Lasso, which employs the absolute value of 

coefficients in its penalty term, Ridge uses the square of the coefficients.  Ridge's 

penalty term is called the L2-norm, representing the sum of the squared coefficients. 

The magnitude of the penalty, denoted by a constant λ, determines the extent of 

shrinkage. When λ=0, the penalty has no effect, and ridge regression produces classical 

least squares coefficients. As λ increases, the impact of the shrinkage penalty gets 

larger, causing the ridge regression coefficients to approach 0. Ridge regression 

shrinks the coefficients towards zero without precisely setting any of them to zero (35). 
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The L2-norm penalty term in Ridge regression was integrated with log-partial 

likelihood and began to be employed as a survival algorithm (169). 

Elastic net-Cox 

Elastic-net (EN) is a method that combines L1-norm and L2-norms by 

penalizing tuning parameters. It performs the feature selection while simultaneously 

addressing the correlation among features (36). The EN penalty term in the log-partial 

likelihood function has been employed to analyze survival data (25). 

2.7.2. CoxBoost 

CoxBoost is an offset-based boosting approach (173). This approach predicts 

Cox proportional hazard models through flexible penalization of covariates, allowing 

unrestricted estimation of essential covariate parameters.  

2.7.3. Survival Trees 

Decision trees are a non-parametric supervised learning algorithm for 

regression or classification problems (174). Their input and output variables can be 

both categorical and continuous. Decision trees effectively partition complex and 

heterogeneous datasets into homogeneous subgroups (nodes in the tree), utilizing 

simple predefined decision rules based on a specified target variable. The outcome is 

a hierarchical structure of candidate nodes extending from the tree's root to terminal 

nodes, also known as leaves. The root is the initial node at the top of the tree, 

encompassing all samples. Subsequent nodes or internal nodes branch off from the 

root, forming a tree structure with each node contributing to the classification of 

samples. The more nodes, the more complex the model becomes. There are leaf nodes 

or leaves at the end of the decision tree that give the final output. Tree-based methods 

can vary regarding splitting rule, pruning mechanism, ensembles, and randomization. 

Various decision tree algorithms are available, including CART, ID3, and 

C4.5. ID3 and C4.5 are particularly effective tools for both classification and 

regression tasks. The CART (Classification and Regression Tree) algorithm is one of 

the first algorithms developed (174). A CART tree algorithm starts with the root node 

containing all samples, makes a comprehensive search through all potential binary 
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splits based on covariates, and selects the best one according to a splitting rule based 

on an appropriate measure. It recursively partitions the training dataset into smaller 

subsets, predicting a categorical or continuous outcome variable (Y) based on 

covariates 𝑋 = (𝑋1, … , 𝑋𝑝). The splitting rule is based on maximizing intra-node 

homogeneity or inter-node heterogeneity. For an X covariate, a split has the form X<c 

and its indicator function I(F<c) is defined for each sample, where c is a split threshold 

value to divide all samples into two subsets. These two subsets created are the daughter 

nodes of the current node. The best splitting number is maximized by specific splitting 

rules. The result is a disjoint subset (end node = terminal node). The predictions are 

uniquely assigned to the end node that a test sample belongs to. However, in situations 

where noise exceeds true signals or unmeasured factors are present, there is a risk that 

the single tree method may incorrectly split terminal nodes, leading to a large and 

complex tree (175). The algorithm chooses a feature and a threshold at each tree 

node to divide the data in half. Until the sample size of one node is small enough, this 

procedure is repeatedly applied to the two daughter nodes and next nodes. The best 

feature and threshold are chosen using metrics such as the Gini index 

to provide the best possible discrimination. Unlike other tree-based methods, the 

CART algorithm consistently generates a binary tree.  

Another important component of the CART algorithm is the stopping criterion. 

A good selection of the stopping criterion ensures that the final tree is good. 

Excessively small or large trees may fail to generalize to test data, resulting in 

underfitting or overfitting issues in the training dataset. To mitigate overfitting, reduce 

the tree size, and minimize prediction errors in tree-based algorithms, a pruning and 

selection method is employed either during or after the tree creation process. This 

involves removing partitions that do not significantly contribute to classification (174). 

As a result of pruning, selecting a single tree from the subtree array is necessary. 

Various methods, including cross-validation, bootstrap, AIC/BIC, and graphical 

(“kink” in the curve or elbow), can be employed for selection (176). Numerous pruning 

methods in the literature, including cost complexity pruning, critical value pruning, 

pessimistic pruning, Minimum Description Length (MDL) pruning, and many others 

(174,175,177). The tree continues to split into two at each node until the stopping 

criteria are met. 
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For survival analysis, survival trees are an extension of decision trees. 

Regression analysis and predictions based on censored survival are made possible by 

them. Survival trees contract a decision tree by iteratively partitioning it into tree nodes 

based on specific features. Like standard trees, each division utilizes a dissimilarity 

measure that computes the disparity in survival between two new nodes and chooses 

the best partition that maximizes this difference. Various dissimilarity measures, 

including log-rank test statistics, are employed for survival analysis. Different 

approaches to splitting and pruning have been used in methods utilizing tree structures 

for survival data, as outlined in Table 2.4. 

Assume that U represents the true survival time, and C is the censoring time 

for applying tree-based algorithms to survival data. The variable 𝜏 =

min(𝑈, 𝐶) represents the time until the event occurs or the individual is censored. The 

variable δ=I(U≤C) takes the value 1 if the true time-to-event is observed and 0 if the 

individual is censored. 𝑋 = (𝑋1, … , 𝑋𝑝) denotes the vector of covariants. The initial 

concept of applying tree-based algorithms to censored data was introduced by Ciampi 

et al. (178)  and Marubini et al. (179) but was further developed by Gordon & Olshen 

(41).  

Randomness can badly affect tree-based methods as the tree grows with 

randomly selected individuals through bootstrapping. Developing a single tree may 

yield different prediction results. Ensemble methods, on the other hand, treat each tree 

independently, employing a random set of explanatory variables at each node and 

ultimately considering all the results. The basic idea is that combining multiple 

survival tree estimators yields better predictions than a single independent tree. This 

enhances the predictive performance compared to individual decision trees. Growing 

a full-size tree for each bootstrap sample also mitigates issues related to pruning and 

selection. Averaging the results of multiple trees helps reduce overfitting (180). 

2.7.4. Bagging Survival Trees 

The high variance problem may arise in decision trees since different randomly 

selected train samples are used, and quite different estimates are obtained. Also,  
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Table 2.4. Splitting and pruning rules in survival trees. 

Author(s) Splitting rule Pruning rule 

Gordon and Olshen 

(1985) (41) 

Impurity reduction, using the 

Wasserstein distance between 

Kaplan-Meier survival curves 

Cost-complexity pruning and 

cross-validation 

Ciampi, Thiffault, 

Nakache, and Asselain 

(1986) (181) 

Two-sample test statistics based on 

the weights such as log-rank test 

statistic 

Akaike information criterion 

(AIC) 

Segal (1988) (182) Two-sample test statistics based on 

the weights such as log-rank test 

statistic 

Not available 

Butler, Gilpin, Gordon, 

and Olshen (1989)  

(183)  

Two-sample test statistics based on 

the weights such as log-rank test 

statistic 

A within-node measure  

Davis and Anderson 

(1989) (184) 

Exponential log-likelihood loss Cost-complexity pruning 

Therneau, Grambsch, 

and Fleming (185) 

The martingale residuals from a null 

Cox model 

Cost-complexity pruning and 

crossvalidation 

LeBlanc and Crowley 

(1992) (186) 

The node deviance measure for the 

proportional hazards model 

calculating the full likelihood by the 

Nelson-Aalen estimator 

Cost-complexity pruning and 

crossvalidation 

Keles and Segal (2002) 

(187) 

A survival tree based on the square 

error of  the martingale residuals 

from a null Cox model 

 

LeBlanc and Crowley 

(1993) (188) 

Two-sample test statistics based on 

the weights such as log-rank test 

statistic 

Resampling and permutation 

Intrator and 

Kooperberg (1995) 

(189)  

Two-sample test statistics based on 

the weights such as log-rank test 

statistic 

Cost-complexity pruning 

Zhang and Singer 

(1999) (190) 

A combination of impurity of the 

censored samples and impurity of 

the observed time 

Cost-complexity pruning 

Breiman (2002) (191) Probability .75 to split on time, and 

Probability .25 to split on a 

covariate 

N/A (embedded within the 

survival forest algorithm) 

Molinaro, Dudoit, and 

van der Laan (192) 

An inverse probability of censoring 

weighted (IPCW) loss function 

Cost-complexity pruning and 

crossvalidation 

Jin et al. (2004) (193) A splitting rule based on the 

variance of survival times 

 

Hothorn et al. (2006) 

(194) 

Minimum p value Stop when no p value is below a 

prespecified a-level 

 

allowing decision trees to grow to maximum depth can cause an overfitting problem. 

Bagging improves prediction accuracy and reduces the prediction variance using the 

bootstrap algorithm, which takes the mean from multiple bootstrap samples from the 

training datasets and fits the decision tree to each samples. Breiman (195) created the 

bagging procedure to solve the overfitting and stability problems encountered in single 

decision trees.  
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Bagging survival trees are calculated from survival trees based on bootstrap 

samples. For this, a survival tree is built on each bootstrap sample. For each subsample, 

the bootstrap aggregated estimator of the survival function is the Kaplan-Meier curve. 

Finally, the mean of predictions from those bootstrap samples is calculated. In survival 

analysis, the bagging procedure was applied to the right censored data by Hothorn et 

al. (45). They used bagging with decision trees and predicted ensembling outputs via 

the Kaplan-Meier curve for lymphoma and breast cancer patients. 

The disadvantage of the bagging procedure is that it requires more time and 

resources to create more than one training set. Also, Bagging can improve the accuracy 

of the model by reducing variance, but it cannot solve the problem of highly correlated 

trees. 

2.7.5. Random Survival Forests 

Since trees are created based on the same set of predictions in the bagging 

algorithm, strong predictors are likely to be selected repeatedly. Accordingly, 

averaging these predictions may not reduce the variance much, as bagging can 

generate similar trees that produce highly correlated predictions. Like the bagging 

algorithm, the random forest algorithm produces multiple trees but also considers the 

correlation of predictions from those samples (38). The random forests algorithm takes 

m of estimators to be evaluated in internal nodes and chooses the best instead of 

considering all estimators each time. The number m is usually the square root of the 

features. Thus, the correlation between trees decreases, and hence the variance 

decreases. 

The difference between the random forests algorithm and the bagging 

procedure is that it chooses a random sample among the predictive variables. The 

prediction from the random forests algorithm is obtained by averaging hundreds or 

thousands of trees that differ from each other. Because random forests average many 

trees, they can reduce overfitting over single-decision trees. Thus, it creates a more 

robust and sophisticated mode than a single tree. These algorithms can also capture 

nonlinear effects and interaction terms. It can also deal with multiple interrelated 

variable states in data with collinearity problems.  
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The random survival forests algorithm was created by modifying the random 

forest algorithm for survival data. The random forests algorithm has been adapted to 

the survival responses by Breiman (191), Hothorn et al. (46), and Ishwaran et al. (39). 

This algorithm applies two-step randomization to increase the prediction performance 

according to a single decision tree. First, a bootstrap random sample is taken for the 

growth of each tree. Second, each tree node randomly selects some explanatory 

variables (39). Several independent bootstrap samples are drawn randomly from the 

training set. These samples are the same size and obtained by the substitution method. 

Each bootstrap sample contains an average of approximately two-thirds of the dataset. 

The remaining one-third is called out-of-bag data, which will not appear in the 

bootstrap sample. A separate decision tree grows according to a particular splitting 

rule without pruning from each bootstrap sample. Using bootstrap data prevents 

overfitting. The second randomization is done at the node separation level. At each 

tree node, the p variable is randomly selected. Each node is separated using one of the 

variables that maximizes the difference in survival between daughter nodes. Each tree 

grows under the constraint of a terminal node until a specific stopping rule is met.  

For each tree, the cumulative hazard function is calculated with an estimator 

such as Kaplan-Meier or Nelson-Aalen. All samples in the same node have the same 

cumulative hazard function. The mean of each tree's calculated cumulative hazard 

functions in the forest forms the ensemble cumulative hazard function. The algorithm 

then calculates the estimation error of the cumulative hazard estimation for the out-of-

bag data  (196). 

However, random forests have the disadvantage of being unable to interpret a 

single tree because they average various trees. Also, this algorithm has computational 

and cost problems as too many trees are formed. 

2.7.6. Boosting 

The bagging and random forests algorithms use independent trees, while the 

boosting algorithm builds trees based on previous trees. That is, the residuals at each 

state are used to grow sequential trees. The boosting algorithm iteratively combines 

weak learners to create a strong learner that can predict more accurate outcomes. 

AdaBoost (Adaptative Boosting Algorithm) is one of the most popular boosting 
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applications (197). This method works iteratively, identifying misclassified data points 

and adjusting their weights to minimize training errors. The model iteratively 

optimizes until it produces the most robust predictor. Apart from that, there are 

XGBoost (198), GardientBoost (199), and BrownBoost (200). Gradient boosting 

works by sequentially adding estimators to a collection, each correcting the errors of 

the previous one. Yet, gradient boosting makes use of the residual errors of the prior 

predictor rather than altering the weights of the data points as AdaBoost does. 

Because it combines the boost method with the gradient descent algorithm, it is 

referred to as gradient boost. XGBoost (Extreme gradient boost) is a gradient boosting 

app designed for computation speed and scale. XGBoost takes advantage of multiple 

cores on the CPU, allowing learning to occur in parallel during training. 

The boosting algorithm was applied to censored data, which iteratively 

combines base learners to obtain strong learners (194). 

Since it is necessary to tune the learning rate, the tree depth, and the minimum 

number of observations in terminal nodes in addition to the number of repetitions in 

the boosting algorithm, having too many hyperparameters is a disadvantage.  

2.7.7. Survival Support Vector Machine 

The Support Vector Machine (SVM) is used in classification and regression 

problems (201). SVM works very well with high-dimensional data by avoiding the 

curse of dimensionality problems. The SVM algorithm finds a hyperplane in an N-

dimensional space, and this hyperplane classifies the data points. There are many 

possible hyperplanes to separate the two classes of data points; however, the main 

objective is to find a plane with a maximum distance between the data points of both 

classes. This maximum distance is called a margin. This margin is calculated using 

data points known as support vectors.  

A hyperplane equation is given below 

𝑦 = 𝑤𝑇𝑥 + 𝑏 

In this equation, output y indicates whether it is in a positive or negative class. 

w represents the coefficients, and b is the constant value. The SVM algorithm is an 
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optimization problem; a loss function must be minimized. The problem is formulated 

as follows 

min
𝑤,𝑏,𝜀,𝜀∗

1

2
𝑤𝑇𝑤 + 𝛾∑(휀𝑖 + 휀𝑖

∗),

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 

 
𝑤𝑇𝜑(𝑥𝑖) + 𝑏 ≥ 𝑦𝑖 − 휀𝑖 ,                                               ∀𝑖 = 1, … , 𝑛

−(𝑤𝑇𝜑(𝑥𝑖) + 𝑏) ≥ −𝑦𝑖 − 휀𝑖
∗,                                    ∀𝑖 = 1,… , 𝑛

휀𝑖 ≥ 0,                                                                               ∀𝑖 = 1, … , 𝑛

휀𝑖
∗ ≥ 0,                                                                               ∀𝑖 = 1,… , 𝑛

 

For a new 𝑥∗ point where 𝛼𝑖 and 𝛼𝑖
∗  are Lagrange multipliers, the index is 

found by the formula 

�̂�(𝑥∗) =∑(𝛼𝑖 −

𝑖

𝛼𝑖
∗)𝜑(𝑥𝑖)

𝑇𝜑(𝑥∗) + 𝑏 

If the data has a higher dimensional feature space, a kernel function is used to 

find a classifier to separate the two classes. The main advantage of SVM is that it can 

consider the complex, non-linear relationships between features and survival with the 

kernel trick. A Kernel function is shown as 𝑘(𝑥𝑖 , 𝑥𝑗) = 𝜑(𝑥𝑖)
𝑇𝜑(𝑥𝑗). 𝑘(𝑥, 𝑦) = 𝑥

𝑇𝑧 

is used for the linear kernel, 𝑘(𝑥, 𝑧) = (𝜏 + 𝑥𝑇𝑧)𝑎, 𝜏 ≥ 0 is used for the polynomial 

kernel of degree a, k(x, z) = exp (−
||x−z||2

2

σ2
) is used for the RBF kernel. 

As a result of its successful results in regression and classification problems, 

the SVM algorithm has also been extended for survival data. Different approaches 

have been adopted to use the standard SVM algorithm in survival analyses. 

Shivaswamy et al. (202) adopted the support vector regression approach, while Van 

Belle et al. (203) and Evers & Messow (204) applied SVM based on ranking 

constraints. Since outcomes were uncertain for censored data, all censored samples 

were removed in the earliest support vector regression approaches, or censored 

samples were considered non-events. These situations caused either underestimated 

failure times or biased models. However, the support vector regression model 

proposed by Shivaswamy et al. was formulated as follows 
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min
𝑤,𝑏,𝜀,𝜀∗

1

2
𝑤𝑇𝑤 + 𝛾∑(휀𝑖 + 휀𝑖

∗),

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

{
 

 
𝑤𝑇𝜑(𝑥𝑖) + 𝑏 ≥ 𝑦𝑖 − 휀𝑖 ,                                               ∀𝑖 = 1, … , 𝑛

−𝛿𝑖(𝑤
𝑇𝜑(𝑥𝑖) + 𝑏) ≥ −𝛿𝑖𝑦𝑖 − 휀𝑖

∗,                            ∀𝑖 = 1,… , 𝑛
휀𝑖 ≥ 0,                                                                               ∀𝑖 = 1, … , 𝑛

휀𝑖
∗ ≥ 0,                                                                               ∀𝑖 = 1,… , 𝑛

 

For a new 𝑥∗ point where 𝛼𝑖 and 𝛼𝑖
∗  are Lagrange multipliers, the index is 

found by the formula 

𝑢(𝑥∗) =∑(𝛼𝑖 − 𝛿𝑖
𝑖

𝛼𝑖
∗)𝜑(𝑥𝑖)

𝑇𝜑(𝑥∗) + 𝑏 

Van Belle et al. (203) and Evers & Messow (204) considered and formulated 

the survival data as a ranking problem. In this approach, instead of dealing with the 

prediction of the survival time, it is concerned with whether the patient's risk of the 

event is high or low so that appropriate treatment can be given. The method includes 

a penalty for each pair of comparable data points where the order in the prognostic 

index differs from the observed order. The comparison indicator for 

{(𝑥𝑖 , 𝑦𝑖 , 𝛿𝑖), (𝑥𝑗 , 𝑦𝑗 , 𝛿𝑗)}  sample pairs is as follows 

𝑐𝑜𝑚𝑝(𝑖, 𝑗) = {
1                  𝑖𝑓 𝛿𝑖 = 1 𝑎𝑛𝑑 𝛿𝑗 = 1     𝛿𝑖 = 1 𝑎𝑛𝑑 𝛿𝑗 = 0 𝑎𝑛𝑑 𝑦𝑖 ≤ 𝑦𝑗
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The model is formulated as follows 

min
𝑤,𝜀

1

2
𝑤𝑇𝑤 + 𝛾∑ ∑ 휀𝑖𝑗 ,

𝑗: 𝑦𝑖>𝑦𝑗
𝑐𝑜𝑚𝑝(𝑖,𝑗)=1

𝑛

𝑖=1

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 {
𝑤𝑇(𝜑(𝑥𝑖) − 𝜑(𝑥𝑗) ≥ 1 − 휀𝑖𝑗 ,   ∀𝑖 = 1,… , 𝑛; ∀𝑗 ∶  𝑦𝑖 > 𝑦𝑗  𝑎𝑛𝑑 𝑐𝑜𝑚𝑝(𝑖, 𝑗) = 1    

휀𝑖𝑗 ≥ 0,                                        ∀𝑖 = 1,… , 𝑛; ∀𝑗 ∶  𝑦𝑖 > 𝑦𝑗  𝑎𝑛𝑑 𝑐𝑜𝑚𝑝(𝑖, 𝑗) = 1
 

For a new 𝑥∗ point where 𝛼𝑖𝑗 is Lagrange multipliers, the index is found by the formula 
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𝑢(𝑥∗) =∑ ∑ 𝛼𝑖𝑗(
𝑗: 𝑦𝑖>𝑦𝑗

𝑐𝑜𝑚𝑝(𝑖,𝑗)=1

𝑛

𝑖=1

𝜑(𝑥𝑖) − 𝜑(𝑥𝑗))
𝑇𝜑(𝑥∗) 

2.8. Stacking Idea 

The stacking idea presents mechanisms that can be considered classification 

and regression problems for survival problems (61). This idea converts survival data 

with time and status variables into classification data with binary outcome variables. 

Thus, all regression and classification algorithms can be applied to the new dataset 

because it doesn't include time and status variables. 

There are some advantages of transforming survival data with stacking and 

making it analyzeable with classification algorithms. Firstly, the number of algorithms 

such as boosting, random forests, and deep neural networks developed primarily for 

classification problems is considerably more than those developed for survival 

analysis. Thus, numerous high-performance classification algorithms that cannot be 

directly applied to survival data are also made available for survival analysis. 

Secondly, the algorithms created for classification can also be made available for 

survival data with an additional study due to differences in survival and classification 

data structures during survival analysis. For example, a random survival forest 

algorithm was again adapted to survival data using the random forest algorithm so that 

the random forest algorithm used in classification problems can be used in survival 

problems (205). The stacking idea will be important in adapting existing and future 

classification algorithms to survival analysis. Thirdly, the transformation with the 

stacking idea can be an advantage in providing higher performance than the standard 

linear Cox model in some cases, especially in complex effects such as interactions in 

survival data (168). Finally, the Cox proportional hazards standard survival model is a 

linear model that assumes the relationship between covariates and hazard is constant 

over time, and this assumption is not always possible. 

To consider the survival problem as a classification problem, the sequential in 

time structure of partial likelihood is used. In the standard Cox proportional hazards 

model, the β coefficients are chosen by maximizing the partial likelihood. The reason 

for using the term “partial” likelihood is that only the likelihood of individuals 
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experiencing the relevant event is considered in the probability formula, and the 

likelihood of censored individuals is not fully considered. That is, the Cox model does 

not consider all individuals' likelihood. The partial likelihood can be written as a 

product of probabilities.   

𝐿 = 𝐿1 ∗ 𝐿2 ∗ 𝐿3 ∗ …∗ 𝐿𝑘 =∏𝐿𝑗

𝑘

𝑗=1

 

k is the number of failure times. 𝐿𝑓 gives the likelihood of failure at the fth 

failure time. At the fth failure time, the set of individuals at risk is the risk set and is 

denoted by 𝑅(𝑡(𝑓)). Partial likelihood focuses on individuals who experienced the 

event of interest. Also, it considers the survival time until censored for censored 

individuals. That is, during the calculation of 𝐿𝑓, the contribution of this censored 

individual, who was censored after the fth time of failure,  is also included in this 

calculation (157). Since the partial likelihood is a product of conditional probabilities 

at each time point at which the event of interest occurs, we calculate the probability of 

the individuals experiencing the event at that time point, depending on the risk set at 

that time point. Maximizing the partial likelihood means solving a series of 

classification problems together. To do this, at each time point at which the event of 

interest is observed, we create a binary categorical variable representing the risk set 

and a covariate matrix containing the covariates for each sample in the risk set at that 

time. The binary categorical variable is created as much as the number of risk sets, and 

these created binary variables are placed side by side as columns and form the risk 

matrix. This risk matrix and the covariate matrix together form the prediction matrix 

of the model. We also create a binary vector that shows whether each individual in the 

risk set has experienced the event at the relevant time point. This binary vector is the 

outcome variable of the model. Finally, the prediction matrix and outcome variables 

created for each risk set are combined vertically, and this matrix creates the 

classification data matrix (Figure 2.13). 
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Figure 2.13. The data structure after the stacking idea. 

An explanation of the stacking algorithm is given below to help you better 

understand it. An example survival data matrix with four individuals is shown in Table 

2.5. 

Table 2.5. An example survival data matrix. 

Individuals Time Status Covariate Matrix of RNA-Seq  

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 𝒙𝒊𝟐 … 𝒙𝒊𝒑 

1 9 1 4 10 … 0 

2 8 0 5 14 … 2 

3 6 1 7 18 … 8 

4 10 1 3 9 … 5 

First, the survival data are ordered from smallest to largest according to the time 

variable, shown in Table 2.6. 

Table 2.6. Survival data matrix ordered by time. 

Individuals Time Status Covariate Matrix of RNA-Seq  

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 𝒙𝒊𝟐 … 𝒙𝒊𝒑 

3 6 1 7 18 … 8 

2 8 0 5 14 … 2 

1 9 1 4 10 … 0 

4 10 1 3 9 … 5 

Each individual's contribution to the partial likelihood is calculated in Table 2.7.  

Cox proportional hazard model: 𝜆(𝑡|𝑥) = 𝜆0(𝑡)exp (𝑥
𝑇𝛽) 
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Partial likelihood:  

𝐿𝑝𝑎𝑟𝑡𝑖𝑎𝑙(𝛽) =∏𝑃(𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝑖 𝑒𝑣𝑒𝑛𝑡 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 |𝑅(𝑇𝑖) 𝑟𝑖𝑠𝑘 𝑠𝑒𝑡)

=∏
exp (𝑥𝑖

𝑇𝛽)

∑ exp (𝑥𝑗
𝑇𝛽)𝑗∊𝑅(𝑇𝑗)

 

There will be three risk sets since there are three uncensored individuals in the 

dataset. The first risk set represents the time from the beginning of the study to the 

sixth day and includes all individuals {1, 2, 3, 4} (Figure 2.14). The individuals in the 

first risk set are shown in Table 2.8, and the cumulative classification matrix created 

for this set after stacking is shown in Table 2.9. 

Table 2.7. Contribution of each individual to partial likelihood. 

Individuals Time Sample at 

risk 

Contribution of partial 

likelihood 

i 𝑻𝒊 𝑹(𝑻𝒊) [𝒆𝜷𝒁𝒊 ∑ 𝒆𝜷𝒁𝒋

𝒋∊𝑹(𝑻𝒊)

⁄ ]𝜹𝒊  

3 6 {1,2,3,4} 𝑒𝛽0+7𝛽1+18𝛽2+⋯+8𝛽𝑝/(𝑒𝛽0+7𝛽1+18𝛽2+⋯+8𝛽𝑝 +⋯

+ 𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝) 

2 8 {1,2,4} 1 

1 9 {1,4} 𝑒𝛽0+4𝛽1+10𝛽2+⋯+1𝛽𝑝/(𝑒𝛽0+4𝛽1+10𝛽2+⋯+1𝛽𝑝

+ 𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝) 

4 10 {1} 𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝/𝑒𝛽0+3𝛽1+9𝛽2+⋯+5𝛽𝑝 = 1 

 

Figure 2.14. The figure presentation of risk set – 1 

 

Table 2.8. Dataset of risk set – 1. 

 

Individuals 

Time Status Covariate Matrix of RNA-Seq  

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 𝒙𝒊𝟐 … 𝒙𝒊𝒑 

3 6 1 7 18 … 8 

2 8 0 5 14 … 2 

1 9 1 4 10 … 0 

4 10 1 3 9 … 5 
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The second risk set represents the time from the beginning of the study to the 

ninth day, and there are two individuals {1, 4} in this cluster (Figure 2.15). The 

individuals found in the second risk set are shown in Table 2.10, and the cumulative 

classification matrix created for this set after stacking is in Table 2.11. 

Table 2.9. Cumulative classification matrix for risk set – 1. 

Prediction Matrix (X) Outcome 

Variable 

(Y) 
Covariate Matrix Risk Matrix 

7 18 … 8 1 0 0 1 

5 14 … 2 1 0 0 0 

4 10 … 1 1 0 0 0 

3 9 … 5 1 0 0 0 

 

 

Figure 2.15. The figure presentation of risk set – 2. 

Table 2.10. Dataset of risk set – 2. 

Individuals Time Status Covariate Matrix of RNA-Seq  

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 i 𝑻𝒊 𝜹𝒊 
1 9 1 4 1 9 1 

4 10 1 3 4 10 1 

 

Table 2.11. Cumulative classification matrix for risk set – 2. 

Prediction Matrix (X) Outcome 

Variable 

(Y) 
Covariate Matrix Risk Matrix 

7 18 … 8 1 0 0 1 

5 14 … 2 1 0 0 0 

4 10 … 1 1 0 0 0 

3 9 … 5 1 0 0 0 

4 10 … 1 0 1 0 1 

3 9 … 5 0 1 0 0 
 

The third risk set represents the time from the beginning of the study to the tenth day, 

and there is only one individual {4} in this cluster (Figure 2.16). The individual found 



59 

 

 

in the third risk set is shown in Table 2.12, and the cumulative classification matrix 

created for this set after stacking is in Table 2.13. After the stacking algorithm, the 

survival data matrix in Table 2.5 has been transformed into the binary classification 

data matrix in Table 2.13. 

 

Figure 2.16. The figure presentation of risk set – 3. 

 

Table 2.12. Dataset of risk set – 3. 

Individuals Time Status Covariate Matrix of RNA-Seq  

i 𝑻𝒊 𝜹𝒊 𝒙𝒊𝟏 i 𝑻𝒊 𝜹𝒊 
4 10 1 3 4 10 1 

 

The idea of stacking has been previously applied to logistic regression and 

given good results (206). The Cox proportional hazards model, which makes an 

estimation using the standard partial likelihood approach, is transformed into a 

classification problem using the stacking idea, depending on whether each individual 

experiences the event at each time point at which an event occurs (61). It has been 

shown that the predictions and results obtained from maximizing the partial probability 

in the Cox proportional hazards model are equivalent to the predictions and results 

made over the logistic regression parameters to the data converted by stacking. Also, 

the classification algorithms' performance after the stacking algorithm was higher than 

the Cox proportional hazards model.  

Randomness can badly affect tree-based methods as the tree grows with 

randomly selected individuals through bootstrapping. Developing a single tree may 

yield different prediction results. Ensemble methods, on the other hand, treat each tree 

independently, employing a random set of explanatory variables at each node and 

ultimately considering all the results. The basic idea is that combining multiple 

survival tree estimators yields better predictions than a single independent tree. This 
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enhances the predictive performance compared to individual decision trees. Growing 

a full-size tree for each bootstrap sample also mitigates issues related to pruning and 

selection. Averaging the results of multiple trees helps reduce overfitting (180). 

Table 2.13. Cumulative classification matrix for risk set – 3. 

Prediction Matrix (X) Outcome 

Variable 

(Y) 

Time 

Covariate Matrix Risk Matrix 

7 18 … 8 1 0 0 1 6 

5 14 … 2 1 0 0 0 8 

4 10 … 1 1 0 0 0 9 

3 9 … 5 1 0 0 0 10 

4 10 … 1 0 1 0 1 9 

3 9 … 5 0 1 0 0 10 

3 9 … 5 0 0 1 1 10 

This study will use the stacking idea for survival analysis of RNA-sequencing 

data. Thus, the stacking idea, shown to give better results than the classical Cox 

regression model when applied to clinical data, is expected to yield high-performance 

results when applied to RNA-seq high-dimensional data. 

2.9. Priority-Lasso and IPF-Lasso 

The prediction matrix, which is the result of applying the idea of stacking to 

RNA-seq survival data, contains two different types of data: the covariate matrix, 

which consists of continuous variables, and the risk matrix, which consists of binary 

variables. Priority-lasso and IPF-lasso algorithms allow the analysis of different types 

of variables in different blocks. Thus, it has been shown that the model's prediction 

performance increases (73,74). 

Priority-Lasso algorithm puts variables in different blocks and gives these 

blocks different priority orders. Although the priority-Lasso algorithm has more 

characteristics, many of these characteristics are the same as the Lasso algorithm. 

Variable types are usually considered when creating blocks, such as continuous, 

discrete, binary, etc. Blocks can also be made according to variable contents, for 

example, a block with clinical variables, a block with genetic variables, etc. Blocks 

have a priority order. Accordingly, some blocks may have higher priority, while some 

blocks may not be of high priority. The researcher determines this priority level.  
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However, despite no absolute rule, high priority is given to blocks with easily 

accessible and low-cost variables. The prediction model is fit after applying Lasso 

regression as many as the number of blocks. It has been seen that the priority-lasso 

algorithm gives similar or better results than the standard Lasso algorithm in data such 

as multi-omics data where the variables in the data are of different types (73). 

The IPF-Lasso algorithm was created from the necessity of applying different 

penalty terms to different data types in multi-omics datasets. This algorithm defined 

data types as modalities (data type = data modality). IPF-lasso applied different penalty 

factors to the data modalities in the process of combining the data in order to develop 

a more sparse estimation model for the data consisting of low and high dimensional 

variables. For this, the L1 penalized regression (LASSO) algorithm is used. IPF-

LASSO performs better than the standard LASSO (74). 

In this study, it is thought that the use of priority-Lasso and IPF-Lasso 

algorithms when analyzing the continuous and binary variables that occur after 

applying the stacking algorithms to the RNA-seq data can contribute positively to the 

prediction accuracy. 
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3. MATERIAL AND METHODS 

In this section, the methodologies of the voomStackPrio and voomStackIPF 

approaches will be explained in detail (Figure 3.1). First, details about the structure of 

the RNA-seq survival data matrix will be provided. Second, the step-by-step process 

of developing new survival approaches will be explained. Then, the focus will be on 

elucidating how performance comparisons are conducted with other survival 

algorithms employed in the literature. Finally, the infrastructure of the MLSeqSurv R 

package utilized during the calculations will be mentioned. 

3.1. Proposed RNA-Seq Survival Approaches 

3.1.1. Notations 

The data for survival analysis comprises two sets: covariates and outcome 

variables. Gene expression in RNA-seq data consists of raw counts, and these variables 

create covariates. Survival time and status of samples are the outcome variables. 

Assume that the covariates of RNA-seq gene expression data are a nxp-dimensional 

raw count data matrix representing n (i=1,2,..,n) samples and p (g=1,2,..,p) genes. This 

matrix is called R. 𝑖𝑡ℎ row of the R matrix is denoted by 𝑟𝑖. = (𝑅𝑖1, 𝑅𝑖2, … , 𝑅𝑖𝑝) and 

𝑔𝑡ℎ column of the R matrix is denoted by 𝑟.𝑔 = (𝑅1𝑔, 𝑅2𝑔, … , 𝑅𝑛𝑔)
𝑇. Accordingly, the 

read count of  𝑖𝑡ℎ sample and 𝑔𝑡ℎ gene is denoted by 𝑟𝑖𝑔. The time variable, T (𝑇𝑖 =

𝑇1, 𝑇2, … , 𝑇𝑛), is a survival time. The status variable, δ (𝛿𝑖 = 𝛿1, 𝛿2, … , 𝛿𝑛), indicates 

whether there is censoring. If a sample has experienced the event of interest during the 

study period, the status is denoted by 1 (δ=1); or not, the status is denoted by 0 (δ=0). 

The survival data matrix is as in (Matrix 3.1). 

[

𝑟11 𝑟12 𝑟13 … 𝑟1𝑝
𝑟21 𝑟22 𝑟23 … 𝑟2𝑝
⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑛1 𝑟𝑛2 𝑟𝑛3 … 𝑟𝑛𝑝

]

𝑛𝑥𝑝

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛 𝛿𝑛

]

𝑛𝑥2

  (3.1) 

We extracted the time variable (T) and state variable (δ) from the dataset and 

transposed the remaining matrix to initiate pre-processing. Normalization, 

transformation, and filtering steps were executed using Matrix 3.2. 
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[

𝑟11 𝑟21 𝑟31 … 𝑟𝑛1
𝑟12 𝑟22 𝑟32 … 𝑟𝑛2
⋮ ⋮ ⋮ ⋱ ⋮
𝑟1𝑝 𝑟2𝑝 𝑟3𝑝 … 𝑟𝑛𝑝

]

𝑝𝑥𝑛

            (3.2) 

To obtain the normalization factors for each gene, we then applied DESeq 

median normalization to the remaining dataset. Furthermore, low-expressed genes 

were identified from the nxp-dimensional raw RNA-seq matrix as described in Matrix 

2.1. Following DESeq normalization and logCPM transformation, these identified 

genes will be excluded from the dataset. 

3.1.2. DESeq Median Normalization 

In a comprehensive study that compared various normalization methods, TMM 

and DESeq emerged as the best-performing methods (133). Therefore, we have chosen 

to employ the DESeq median normalization method in this study.  

The geometric mean over all samples is used to calculate the pseudo-reference 

value for each gene. Specifically, the pseudo-reference value is computed as follows 

for the g gene in the dataset with p genes and n sample. 

𝑠𝑔 = √𝑟𝑔1𝑟𝑔2…𝑟𝑔𝑛
𝑛 = (∏ 𝑟𝑔𝑖

𝑛
𝑖=1 )1/𝑛 g=1,2,…,p       (3.3)       

These geometric mean values calculated for each gene generate a new sample 

called the pseudo-reference sample. Subsequently, each gene value in every sample is 

divided by the corresponding pseudo-sample value of that gene. Then, the median 

values for each sample are computed.  

𝑑𝑖 = 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖

(∏ 𝑟𝑔𝑖
𝑛
𝑖=1 )1/𝑛

= 𝑚𝑒𝑑𝑖𝑎𝑛𝑔
𝑟𝑔𝑖

𝑠𝑔
              (3.4) 

These median values calculated for each sample are the normalization factors 

(size factors). The objective of this normalization step was not to derive normalized 

values for each count but solely to compute normalization factors for each sample. 

These normalization factors will be applied in the subsequent step to obtain logCPM 

values. 
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3.1.3. voom Transformation 

The voom transformation yields two distinct outputs: logCPM values and 

sample weights. 

logCPM Values  

The raw RNA-seq count data matrix is denoted as 𝑟𝑔𝑖. To obtain logCPM 

values for the data set, it is necessary to divide the count data by the normalization 

factors (d values in Equation 3.4) and multiply by 1 million. The formula for this 

calculation is presented below 

𝑥𝑔𝑖 = 𝑙𝑜𝑔2 (
𝑟𝑔𝑖+0.5

𝑑𝑖+1
∗ 106)                   (3.5) 

𝑑𝑖 are the values calculated in the normalization step for each sample. 0.5 is 

added to each count value to prevent the logarithm from being 0. In addition, 1 was 

added to 𝑑𝑖 to obtain the equality of 0 ≤
𝑟𝑔𝑖+0.5

𝑑𝑖+1
≤ 1.  

Following the normalization steps, logCPM value generation, and low-

expressed gene filtering, matrices for the dataset is presented in (Matrix 3.6). 

[
 
 
 
 
𝑥11 𝑥21 … 𝑥𝑛1
𝑥12 𝑥22 … 𝑥𝑛2
𝑥13 𝑥23 … 𝑥𝑛3
⋮ ⋮ ⋱ ⋮
𝑥1𝑝′ 𝑥2𝑝′ … 𝑥𝑛𝑝′]

 
 
 
 

𝑝′𝑥𝑛

        (3.6)     

voom Transformation for Observational Weights  

In the second stage of the voom transformation, sample weights are computed 

to take advantage of the sample-specific weighting approach (151). 

A linear model fits the data following logCPM transformation. Specifically, 

the model assumes that 𝐸(𝑥𝑔𝑖) = µ𝑔𝑖 = 𝑎𝑖
𝑇𝛽𝑔, where 𝑎𝑖 is a vector of covariates and 

𝛽𝑔 is a vector of unknown coefficients (69). 

The linear model 𝑥𝑔 = 𝐷𝛽𝑔 + 휀𝑔 and 𝐸(𝑥𝑔) = 𝐷𝛽𝑔 is assumed for each gene. 

𝑥𝑔 = (𝑥𝑔1, … , 𝑥𝑔𝑛)
𝑇 vector of logCPM values for the gene g; D is the design matrix 

and 𝛽𝑔 = (𝛽𝑔1, … , 𝛽𝑔𝐾)
𝑇 is the vector of the regression coefficients for the gene g. 
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휀𝑔 is the error term an 𝐸(휀𝑔) = 0. This yields regression coefficient estimates �̂�𝑔, fitted 

values µ̂𝑔𝑖 = 𝑎𝑖
𝑇�̂�𝑔,  and residual standard deviations 𝑠𝑔 (69). 

Suppose the expected value of a count is 𝐸(𝑟) = 𝜆 and 𝑣𝑎𝑟(𝑟) = 𝜆 + ɸ𝜆2. 

Here ɸ is a dispersion parameter. If r is large enough, the logCPM value of the 

observation; 𝑥 ≈ 𝑙𝑜𝑔2(𝑟) + 𝑙𝑜𝑔2(𝑑) + 6𝑙𝑜𝑔2(10). Since d will behave like a 

constant, it becomes 𝑣𝑎𝑟(𝑥) ≈ 𝑣𝑎𝑟(𝑙𝑜𝑔2(𝑟)). Based on the delta rule and Taylor’s 

theorem (207), if λ is large, 𝑙𝑜𝑔2(𝑟) ≈ 𝜆 + (𝑟 − 𝜆)/𝜆 from 𝑣𝑎𝑟(𝑥) ≈
𝑣𝑎𝑟(𝑟)

𝜆2
=

1

𝜆
+ ɸ. 

The 𝑥𝑔𝑖 values, representing the logCPM values calculated in the 'logCPM 

Values' step for each gene, are subjected to fitting based on the aforementioned linear 

model. The calculation of the mean �̅�𝑔 for each gene is carried out using the �̃� =

�̅�𝑔𝑙𝑜𝑔2(�̃�) − 𝑙𝑜𝑔2(10
6). 

µ𝑔𝑖 is estimated with �̂�𝑔𝑖 = µ̂𝑔, + 𝑙𝑜𝑔2(𝑑𝑖 + 1.0) − 𝑙𝑜𝑔2(10
6)  (µ̂𝑔𝑖

∗ =

𝐸(𝑥𝑔𝑖
∗ )) by fitting a LOWESS curve (208). The piecewise linear function 𝑙𝑜(�̂�𝑔𝑖) 

defined by the LOWESS curve is the estimated square root standard deviation of the 

mean log counts �̃� (𝑠𝑔
(
1

2
)
). 

The voom precision weights are inverse variances of 𝑤𝑔𝑖 = 𝑙𝑜(�̂�𝑔𝑖)
−4. For the 

dataset, 𝑥𝑔𝑖 is the logCPM values and 𝑤𝑔𝑖 is the associated weights for each counts. 

The design matrix D denotes the experimental design and selects the regression 

coefficients and parameterization, presenting the logCPM variability among the RNA 

sources in the experiment. This model assumes 𝑣𝑎𝑟(𝑥𝑔𝑖) = σ𝑔
2/𝑤𝑔𝑖 for gene g in 

sample i, using an observational level weight 𝑤𝑔𝑖 derived from the voom model as 

found above and an unknown factor σ𝑔
2. 

In addition to gene-dependent variance factors (σ𝑔
2) that account for variations 

among genes, there are sample-dependent variance factors (σ𝑔𝑖
2 ) reflecting potential 

differences in quality across all or most genes within a given sample (151). This can 

result in an increase or decrease in their variability, as illustrated below (70). 

𝑣𝑎𝑟(𝑥𝑔𝑖) =
σ𝑔𝑖
2

𝑤𝑔𝑖
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Figure 3.1. A flowchart of the steps of voomStackPrio and voomStackIPF algorithms. 

 

The most straightforward log-linear model, ensuring that variability is 

multiplicatively dependent on sample quality, is expressed as 𝑙𝑜𝑔σ𝑔𝑖
2 = 𝛿𝑔 + 𝛾𝑖. The 

constraint ∑ 𝛾𝑖 = 0
𝑛
𝑖=1  gives σ𝑔

2 = exp (𝛿𝑔) for the variance factors by gene and 𝛾𝑖 

represents the relative variability of each sample. A given sample i is of relatively 

better-than-mean quality if 𝛾𝑖 < 0, or of poorer-than-mean quality if 𝛾𝑖 > 0. Linear 

modeling incorporates ‘voom precision weights’ for each observation, combined with 

sample-specific weights, as described in 𝑤𝑔𝑖
∗ = 𝑤𝑔𝑖/𝑒𝑥𝑝�̂�𝑖, where 𝑤𝑔𝑖 represents the 

observational voom weights (151). 

The weights generated for each sample in the dataset are as follows (Equation 

3.7). These will be the sample weights in the priority-Lasso and IPF-Lasso models 

applied in the 'voomStackPrio and voomStackIPF Models' step. 

𝑤𝑖 = (𝑤1, 𝑤2, … , 𝑤𝑛)         (3.7) 
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Before proceeding to the stacking algorithm, we applied variance filtering and 

feature selection. Following variance filtering, 2000 genes were selected. 

Subsequently, after applying feature selection, p'' features were chosen. Then, the 

matrix was transposed once more to apply the stacking algorithm. Also, the time 

variable (T) and state variable (δ), previously removed from the dataset to apply of 

pre-processing steps, were reintegrated (Matrix 3.8). 

[

𝑥11 𝑥12 𝑥13 … 𝑥1𝑝′′
𝑥21 𝑥22 𝑥23 … 𝑥2𝑝′′
⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑛1 𝑥𝑛2 𝑥𝑛3 … 𝑥𝑛𝑝′′

]

𝑛𝑥𝑝′′

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛 𝛿𝑛

]

𝑛𝑥2

      (3.8) 

3.1.4. Stacking for Classification 

This step involved a conversion process, utilizing the stacking approach, to 

transform RNA-seq survival data into classification data with a binary outcome. 

Let’s consider h as the number of samples that experience the event in the data 

set. Following the stacking algorithm, there will be h risk sets, corresponding to the 

number of columns in the risk matrix, denoting the risk set as S. In each risk set at time 

t, some samples either experienced the event at time t, experienced the event after time 

t, or were censored after time t. 𝑆(𝑡) = {𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑖 |𝑡𝑖 ≥ 𝑡}. Samples that are part of 

the risk set at time t are assigned a value of 1, and samples outside of it are assigned a 

value of 0. This information is displayed in the specific column of the risk set at 

that time. The �̃� covariate matrix is constructed as �̃�(𝑆(𝑖)), where the covariate 

number S(i) is associated with each sample. It has dimensions |S(i)|xp'' for p'' features. 

Let �̃� represent the prediction of the binary outcome variable we will create for the 

classification transformation. For the �̃� binary outcome variable, samples that 

experience the event at the time associated with each risk set are assigned the value 1, 

while others receive the value 0. Thus, �̃�(𝑆(𝑖)) values are defined. The covariate 

matrix, risk matrix, and binary outcome are created as many times as the risk sets 

generated for each uncensored sample. They are then added vertically, one after the 

other. This conversion results in (�̃�, �̃�) data, suitable for applying classification 

algorithms to the survival data.  
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After implementing the stacking algorithm, three components will be obtained 

(i) the covariate matrix, (ii) the risk matrix, and (iii) the outcome variable, as shown in 

(Matrix 3.9). The data matrix 𝑥𝑛𝑝′′ in Matrix 3.8 is initially ordered based on time, 

arranged from smallest to largest. This covariate matrix is then vertically expanded by 

stacking. Hence, the covariate matrix consists of 𝑝′′ columns and 𝑛′ rows denoted by 

𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑡𝑒𝑛′𝑥𝑝′′ . Also, a risk matrix is obtained. The risk matrix expanded 

horizontally and vertically per the number of individuals experiencing the event. As 

the number of risk sets corresponds to the number of samples experiencing the event, 

the columns of the risk matrix at risk are equivalent to the number of samples in which 

the event occurred (h). So, an 𝑛′xh-dimensional risk matrix, denoted as 𝑟𝑖𝑠𝑘𝑛′𝑥ℎ, is 

obtained. There is a generated outcome variable for every risk set that exists at the 

event time point. The variables in question designate samples that encounter the event 

at that particular time point as 1, and samples that do not are defined as 0. As denoted 

by 𝑥𝑛′(𝑝′′+ℎ), the input matrix (�̃�) has now transformed into an 𝑛′x(𝑝′′+h)-dimensional 

matrix, incorporating both the covariate and risk matrices. An 𝑛′x1-dimensional 

outcome variable (�̃�), denoted as 𝑜𝑢𝑡𝑐𝑜𝑚𝑒𝑛′𝑥1, is obtained. 

 

                         Covariate Matrix            Risk Matrix          Outcome  

                                                                                                    Variable             

[
 
 
 
 
 
𝑥11 𝑥12 𝑥13 … 𝑥

1𝑝′′

𝑥21 𝑥22 𝑥23 … 𝑥
2𝑝′′

𝑥31 𝑥32 𝑥33 … 𝑥
3𝑝′′

⋮ ⋮ ⋮ ⋱ ⋮
𝑥𝑛′1 𝑥𝑛′2 𝑥𝑛′3 … 𝑥𝑛′𝑝′′]

 
 
 
 
 

𝑛′𝑥𝑝′′

 

[
 
 
 
 
1 0 0 … 0
1 0 0 … 0
0 1 0 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1]

 
 
 
 

𝑛′𝑥ℎ

       

[
 
 
 
 
1
0
1
⋮
1]
 
 
 
 

𝑛′𝑥1

(3.9)   

 

 

3.1.5. voomStackPrio and voomStackLasso Models 

We have two different types of data in our dataset: a binary risk matrix and a 

continuous covariate matrix. In contrast to conventional classification algorithms, 

our method relies on modeling that takes into account the particular kinds 

of data related to the variables—a tactic that has been shown to produce predictions 

that are more accurate. We employed the priority-Lasso and IPF-Lasso algorithms to 

analyze diverse variable types in multi-omics data organized into blocks. In the 
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subsequent stage, two new approaches‒voomStackPrio and voomStackIPF‒ were 

developed to analyze RNA-seq survival data. 

Lasso and weighted Lasso regression model 

 Assume that 𝑥𝑖𝑔 represents the observed value of the gth variable for the ith 

sample, where g=1, 2,…, (𝑝′′+h), i=1, 2,…, 𝑛′. The outcome of sample i is denoted as 

𝑦𝑖. In the classical Lasso method, estimating regression coefficients 𝛽1, … , 𝛽(𝑝′′+ℎ) for 

the (𝑝′′+h) variables involves minimizing the following objective function with 

respect to 𝛽1, … , 𝛽(𝑝′′+ℎ). 

∑(𝑦𝑖 − ∑ 𝑥𝑖𝑔𝛽𝑔)
2 + 𝜆 ∑ |𝛽𝑔|

(𝑝′′+ℎ)

𝑔=1

(𝑝′′+ℎ)

𝑔=1

 𝑛′

𝑖=1

 

 In this context, 𝜆 represents the penalty parameter, which controls the degree 

of shrinkage applied to the regression coefficient estimates. By tuning the value of 𝜆, 

the Lasso method regularizes these estimates, preventing overfitting and enhancing the 

model’s capacity to generalize effectively to new data. The optimal 𝜆 value is typically 

accomplished through cross-validation, a statistical technique that evaluates the 

model’s performance on an independent dataset. 

 While sample weights are often ignored in many Lasso regression models,  a 

constructive approach to address this omission is to incorporate sample weights into 

the Lasso regression model. By assigning distinct weights to individual observations, 

the weighted Lasso regression model can attribute greater significance to specific 

observations, potentially enhancing the precision of the estimates. The goal of the 

weighted Lasso regression is to minimize the following objective function concerning 

𝛽1, … , 𝛽(𝑝′′+ℎ) 

∑𝑤𝑖(𝑦𝑖 − ∑ 𝑥𝑖𝑔𝛽𝑔)
2 + 𝜆 ∑ |𝛽𝑔|

(𝑝′′+ℎ)

𝑔=1

(𝑝′′+ℎ)

𝑔=1

𝑛′

𝑖=1

 

where 𝑤𝑖 represents the weight assigned to the ith sample. This study will utilize sample 

weights derived from the voom transformation in Equation 3.7 applied to RNA-seq 

data in block-based Lasso algorithms. 
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voomStackPrio 

The priority-Lasso algorithm was applied to the 𝑛′x(𝑝′′ + ℎ)-dimensional 

prediction matrix X, including the covariate and risk matrices (Matrix 3.9). The 

outcome variable y, a 𝑛′x1-dimensional vector, was obtained after the ‘Stacking for 

Classification’ step (Matrix 3.9). To streamline this process, we organized variables 

into two blocks based on their types: the continuous variables block for those in the 

covariate matrix and the binary variables block for those in the risk matrix. Notably, 

priority was given to the binary variable block. This strategic decision aligns with the 

principle of the priority-Lasso algorithm, where the highest-priority block plays a 

crucial role in explaining variability. Variables in lower-priority blocks are considered 

only if they contribute to variances not already explained by higher-priority blocks. 

Consequently, prioritizing the block with binary risk matrix variables, less complex 

than RNA-seq continuous variables, is considered more suitable. 

The variables in the two blocks for the 𝑖𝑡ℎ sample can be represented as follows  

𝑥𝑖1
(𝑚)
, … , 𝑥

𝑖(𝑝′′+ℎ)𝑚

(𝑚)
          , 𝑖 = 1,… , 𝑛′    𝑚 = 1,2 

The number of blocks is denoted by m, and the number of variables in the block 

is denoted by (𝑝′′ + ℎ)𝑚. The regression coefficients of variable j are shown as follows 

𝛽1
(𝑚)
, … , 𝛽

(𝑝′′+ℎ)𝑚               
(𝑚)

     , 𝑔 = 1, … , (𝑝′′ + ℎ)𝑚 

The vector π=(π1, π2) denotes the blocks descending order of priority. 𝜋1 

represents the first (highest-priority) block, and 𝜋2 represents the second (lower-

priority) block.  

Initially, a Lasso model was applied to the high-priority binary variable block. 

The goal of this step is primarily to capture the variability in the outcome variable 

using variables within this block. The first block consists of h variables, and the 

variables for the 𝑖𝑡ℎ sample are depicted as follows. 

𝑥𝑖1
(1)
, … , 𝑥𝑖ℎ

(1)
          , 𝑖 = 1,… , 𝑛′ 
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The h binary variables in block π1 are employed to fit the initial Lasso 

regression model. The coefficients 𝛽1
(π1), … , 𝛽ℎπ1  

(π1) are estimated by minimizing the 

following formula 

∑𝑤𝑖 (𝑦𝑖 −∑𝑥𝑖𝑔
(π1)𝛽𝑔

(π1)

ℎπ1

𝑔=1

)

𝑛′

𝑖=1

2

+ 𝜆(π1)∑|𝛽𝑔
(π1)|

ℎπ1

𝑔=1

 

𝑤𝑖  represents the weights assigned to the samples, derived from the voom 

transformation. 

The variables in the second block account for the remaining variability in the 

outcome variable after explaining the portion addressed by the variables in the 𝜋1 

block. The linear score obtained from the Lasso model fitted in the first block serves 

as an offset, and a second Lasso model is fitted to the second block, which consists of 

continuous variables. This involves fitting the second Lasso model to the residuals 

from the first Lasso model without incorporating the offset, using the covariates in the 

𝜋2 block. The linear predictor to be employed as an offset in the second Lasso model 

is fitted in the first Lasso model as follows 

�̂�1,𝑖(π) = �̂�1
(π1)𝑥𝑖1

(π1) +⋯+ �̂�ℎπ1
(π1)𝑥𝑖ℎ𝜋1

(π1) 

However, the linear estimation of �̂�1,𝑖(π) can be over-optimistic and may result 

in underestimating the 𝜋2 block. This is because 𝑦𝑖 is part of the data used to estimate 

the β coefficients employed in calculating this linear estimate. To address this issue, 

cross-validation was employed to estimate the offset of �̂�1,𝑖(π). The dataset, 𝑋, was 

divided into K roughly equal-sized portions, denoted as k=1,…,K. The coefficients 

�̂�𝑋/𝑋𝑘,1
(π1) , … , �̂�𝑋/𝑋𝑘,ℎπ1  

(π1)  were estimated, and cross-validated offsets are calculated as 

follows 

�̂�1,𝑖(π)𝐶𝑉 = �̂�𝑋/𝑋𝑘,1
(π1) 𝑥𝑖1

(π1) +⋯+ �̂�𝑋/𝑋𝑘,ℎπ1  
(π1) 𝑥𝑖ℎπ1

(π1) 

The second block (𝜋2) consists of 𝑝′′ variables, and the variables for the 𝑖𝑡ℎ 

sample are shown as follows 

𝑥𝑖1
(2)
, … , 𝑥

𝑖𝑝′′
(2)
          , 𝑖 = 1,… , 𝑛′ 
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The coefficients 𝛽1
(π2), … , 𝛽

𝑝′′π2
 

(π2)  for the second block (𝜋2)  are estimated by 

minimizing the following formula 

∑𝑤𝑖 (𝑦𝑖 − �̂�1,𝑖(π)𝐶𝑉 ∑ 𝑥𝑖𝑔
(π2)𝛽𝑔

(π2)

𝑝′′π2

𝑔=1

)

𝑛′

𝑖=1

2

+ 𝜆(π2) ∑ |𝛽𝑔
(π2)|

𝑝′′π2

𝑔=1

 

voomStackIPF 

As described in the priority-Lasso algorithm, the 𝑛′x(𝑝′′ + ℎ)-dimensional X 

prediction matrix, obtained at the conclusion of the ‘Stacking for Classification’ step, 

encompasses continuous RNA-seq covariate variables and binary variables (Matrix 

3.9). Given the distinct nature of these variables, the data type (or the number of data 

modalities) is designated as two. Let the modality number be denoted by m (m=1, 2). 

Variables in each modality are defined as follows 

𝑥𝑖1
(𝑚)
, … , 𝑥

𝑖(𝑝′′+ℎ)𝑚

(𝑚)
          , 𝑖 = 1,… , 𝑛′    𝑚 = 1,2 

(𝑝′′ + ℎ)𝑚 represents the number of variables in modality m. The gth variable 

is denoted by 𝑥𝑔
(𝑚)

, and its corresponding coefficient is represented by 𝛽𝑔
(𝑚)

. In the 

IPF-lasso algorithm, a weighted sum of the norms of the coefficients vector for each 

modality is employed as a penalty term. To estimate the coefficients, the following 

formula is minimized 

∑𝑤𝑖 (𝑦𝑖 − ∑ ∑ 𝑥𝑖𝑔
(𝑚)
𝛽𝑔
(𝑚)

(𝑝′′+ℎ)𝑚

𝑔=1

2

𝑚=1

)

2

+ ∑ 𝜆𝑚||𝛽𝑔
(𝑚)
||1

2

𝑚=1

𝑛′

𝑖=1

 

𝜆𝑚 represents the penalty for the variables in modality m. The first modality 

(𝜆1 penalty) was treated as the reference modality, and the penalty factor for modality 

m was expressed as 𝜆𝑚/𝜆1. 

In this scenario, the penalty factors were defined as 𝜆1, 𝜆2/𝜆1. Cross-validation 

was applied to improve prediction performance. The various candidate vectors of 

penalty factors are denoted as C and listed below 
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𝑛′
(𝑐)
= (1, 𝜆2/𝜆1)

𝑇           𝑐 = 1,… , 𝐶 

Cross-validation was performed using a performance metric such as AUC to 

determine the optimal 𝜆1.  

3.2. Performance Evaluation 

3.2.1. Transformation of Test Data into Classification Data 

A test matrix containing survival data was employed to evaluate the newly 

developed algorithms for the survival analysis of RNA-seq data in '3.1. Proposed 

RNA-Seq Survival Approaches' step. All pre-processing and stacking algorithm steps 

applied to the training dataset were also executed on the test set, continuing until block-

based Lasso models were applied. The parameters used during normalization for the 

training set were also consistently applied to the test set. However, the test set was 

normalized independently of the training data, ensuring that both the training and test 

sets were on the same scale and exhibited homoscedasticity. Low-expressed genes 

excluded from the training set were also excluded from the test set. The parameters 

used in the training sets during the voom transformation were also used in the test sets, 

similar to the normalization step. The 2000 genes with the highest variance in the 

training set were also selected in the test set. In the feature selection step, the variables 

selected in the training set were also selected in the test set. 

For the stacking algorithm, the same methodology employed to construct the 

risk set for the training dataset was applied to generate risk set variables for the test 

set. Initially, the time values of individuals experiencing the event in the training set 

were arranged in ascending order. Subsequently, a risk matrix vector was created for 

the relevant individual based on the range in which the time variable of each individual 

in the test set falls in this order. To illustrate, suppose the time value of an individual 

in the test set is 1578. Assuming there are ten risk set variables in the training set with 

corresponding time variables (100, 300, 590, 1080, 1432, 1602, 1845, 1936, 2010, 

2036) belonging to individuals who experienced the event in that set. Time 1578 aligns 

with the 5th interval in this list. Consequently, the risk set values for this test set 

observation would be (0, 0, 0, 0, 1, 0, 0, 0, 0, 0). The computation of risk set values is 
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performed individually for each person in the risk set, and collectively, these values 

constitute the risk set for the test set, following the approach used in the training set. 

3.2.2. RNA-Seq Datasets 

Real RNA-seq survival data were used in this study, which concentrated on 

TCGA data that included RNA-seq data for 12 different cancer types. Data on read 

counts were obtained from the TCGA data portal (https://portal.gdc.cancer.gov/), and 

the R program's TCGAbiolinks package (209) was used to carry out the download 

operation. Each dataset comprises 60660 genes, including 19938 protein-coding genes 

and 40722 non-coding genes. However, only protein-coding genes were considered 

for this study. For cancer types other than LAML, the sample type "Primary Tumor" 

was selected, while for LAML, individuals with the sample type "Primary Blood 

Derived Cancer - Peripheral Blood" were included in the analysis. The overall survival 

time and status data associated with RNA-seq count data were extracted from the 

TCGA Clinical Data Resource, resulting from a comprehensive study involving 

11,000 cancer patients across 33 different cancer types in TCGA (210). The 

characteristics of the datasets are summarized in Table 3.1 and Table 3.2. 

Table 3.1. RNA-Seq Datasets. 

Data 

Code 

Cancer Type Sample 

Size (n) 

Zero/Null 

Time 

Filtering 

Censoring 

Rate (0/1) 

ACC Adrenocortical Carcinoma 79 79 51/28 

CESC 
Cervical Squamous Cell Carcinoma and 

Endocervical Adenocarcinoma 
304 291 220/71 

ESCA Esophageal Carcinoma 184 184 107/77 

GBM Glioblastoma Multiforme 155 154 32/122 

KIRC Kidney Renal Clear Cell Carcinoma 529 527 352/175 

KIRP Kidney Renal Papillary Cell Carcinoma 290 287 243/44 

LAML Acute Myeloid Leukemia 151 130 52/78 

LGG Brain Lower Grade Glioma 516 511 386/125 

MESO Mesothelioma 87 85 12/73 

PAAD Pancreatic Adenocarcinoma 178 177 84/93 

SARC Sarcoma 259 259 161/98 

UVM Uveal Melanoma 80 80 57/23 

https://portal.gdc.cancer.gov/
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3.2.3. Evaluation Process 

The procedures applied to the real datasets are detailed in the following step-

by-step manner. Additionally, a visual representation of these steps is presented in 

Figure 3.2 via a flowchart. 

Table 3.2. Patient Characteristics. 

Data 

Code 

Age Gender 

(Female) 

Overall Survival Time 

(days) 

Censoring Rate 

(=0) 

ACC 46.70±15.77 48 (60.76) 1194 (662-2056) 51 (64.6) 

CESC 48.09±13.81 100 (100.00) 699 (410-1345) 220 (75.6) 

ESCA 62.45±11.93 26 (14.13) 396.50 (231.25-675.75) 107 (58.2) 

GBM 59.69±13.60 57 (37.01) 350.00 (153.00-535.50) 30 (19.5) 

KIRC 60.56±12.17 186 (35.23) 1217.00 (551.00-1929.00) 352 (66.8) 

KIRP 61.04±13.00 76 (26.39) 771.00 (428.00-1508.00) 243 (84.7) 

LAML 53.52±16.32 59 (45.38) 366.00 (184.00-861.00) 53 (40.8) 

LGG 43.02±13.36 228 (44.62) 678.00 (405.00-1227.00) 386 (75.5) 

MESO 63.05±9.83 16 (18.82) 527.00 (258.00-852.00) 12 (14.0.) 

PAAD 64.52±10.93 80 (45.20) 466.00 (277.50-680.00) 84 (47.5) 

SARC 60.71±14.59 141 (54.44) 947.00 (485.00-1585.00) 161 (62.2) 

UVM 61.65±13.95 35 (43.75) 784.00 (433.50-1182.50) 57 (71.3) 

 

Splitting datasets: In the first step of the process, the data is split into two: the training 

set and the test set. The training set is designated for developing the voomStackPrio 

and voomStackIPF approaches, while the test set is reserved for evaluating the trained 

model. The RNA-seq survival data matrix with n samples, as illustrated in (Matrix 

3.1), was randomly split into 70% for the training set and 30% for the test set. The 

status variables within the training and test sets are categorized into two groups, 

denoted by values 0 and 1. Because these groups appeared in the status variable a 

certain number of times, they were divided equally between the training and test 

sets during the splitting step to prevent bias. For example, in the training set, there are 

105 samples with status=1 and 35 samples with status=0, while in the test set, there 

are 45 samples with status=1 and 15 samples with status=0. It is assumed that the 
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training set comprises 𝑛1 samples (rows), and the test set comprises 𝑛2 samples (rows), 

where 𝑛1 + 𝑛2 = 𝑛. The matrices representing the training and test sets are depicted 

in (Matrix 3.10) and (Matrix 3.11). 

[
 
 
 
𝑟𝑇𝑟𝑎𝑖𝑛11 𝑟𝑇𝑟𝑎𝑖𝑛12 𝑟𝑇𝑟𝑎𝑖𝑛13 … 𝑟𝑇𝑟𝑎𝑖𝑛1𝑝
𝑟𝑇𝑟𝑎𝑖𝑛21 𝑟𝑇𝑟𝑎𝑖𝑛22 𝑟𝑇𝑟𝑎𝑖𝑛23 … 𝑟𝑇𝑟𝑎𝑖𝑛2𝑝

⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑇𝑟𝑎𝑖𝑛𝑛11 𝑟𝑇𝑟𝑎𝑖𝑛𝑛12 𝑟𝑇𝑟𝑎𝑖𝑛𝑛13 … 𝑟𝑇𝑟𝑎𝑖𝑛𝑛1𝑝]

 
 
 

𝑛1𝑥𝑝

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛1 𝛿𝑛1

]

𝑛1𝑥2

 (3.10) 

[
 
 
 
𝑟𝑇𝑒𝑠𝑡11 𝑟𝑇𝑒𝑠𝑡12 𝑟𝑇𝑒𝑠𝑡13 … 𝑟𝑇𝑒𝑠𝑡1𝑝
𝑟𝑇𝑒𝑠𝑡21 𝑟𝑇𝑒𝑠𝑡22 𝑟𝑇𝑒𝑠𝑡23 … 𝑟𝑇𝑒𝑠𝑡2𝑝

⋮ ⋮ ⋮ ⋱ ⋮
𝑟𝑇𝑒𝑠𝑡𝑛21 𝑟𝑇𝑒𝑠𝑡𝑛22 𝑟𝑇𝑒𝑠𝑡𝑛23 … 𝑟𝑇𝑒𝑠𝑡𝑛2𝑝]

 
 
 

𝑛2𝑥𝑝

[

𝑇1 𝛿1
𝑇2 𝛿2
⋮ ⋮
𝑇𝑛2 𝛿𝑛2

]

𝑛2𝑥2

           (3.11) 

The time variable (T) and the status variable (𝛿) were taken out of the training and test 

matrices in the dataset during the next pre-processing steps. Additionally, the 

transposes of both matrices were obtained. This partitioning process was done using 

the partition() function within the mlr3 package (211). 

Normalization: The next step is to normalize the data for both training and test sets 

after they have been divided. The DESeq median ratio algorithm was utilized in this 

normalization process to obtain normalized values. The normalization process 

involves leveraging the estimateSizeFactors() and 

estimateDispersions() functions from the DESeq2 package (68), as well as 

the calcNormFactors() functions from the edgeR package (97). 

Consistently applied to the test set were the same parameters that were used for 

training set normalization. However, the test set was normalized independently of the 

training data, ensuring that both the training and test sets were on the same scale and 

exhibited homoscedasticity. 

Filtering low-expressed genes: The approach of Chen et al. (212) is applied to remove 

genes that are unexpressed or low-expressed (unchanging or low-variability) across all 

the libraries using the function filterByExpr()from the edgeR package (97). 

This function tries to keep genes with at least minimum count reads in a worthwhile 

number of samples. According to this approach, we keep genes with CPM above the 

minimum count (default k=10) in a minimum proportion of samples in the minimum 
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group sample size (n). The minimum proportion is greater than 70% of the smallest 

group size as default. 

Removing the filtered unexpressed or low-expressed genes from the data before the 

normalization step may change the data's original structure. Therefore, first of all, the 

genes to be filtered were identified in the training set before normalization. Post 

normalization and logCPM transformation on the training set encompassing all genes 

identified were excluded. The excluded genes from the training set were also removed 

from the test set.  

Transformation: In the methods utilized for comparing model performance, we applied 

the variance stabilizing transformation (vst) to the normalized values. For other 

algorithms to compare, this transformation was achieved using the 

varianceStabilizingTransformation() function within the DESeq2 

package (68). For our newly developed algorithms, voomStackPrio and 

voomStackIPF, we implemented the voom transformation on the normalized values. 

We reorganized the code of the voom(), CalcNormFactors(), 

arrayWeights(), and voomWithqualityweights() functions in the 

limma (213) and edgeR (97) packages. The parameters used in the training sets were 

also utilized in the test sets, similar to the normalization step. 

Variance filtering: To improve analysis accuracy, more informative 

genes were prioritized and the genes were sorted in descending order according 

to their coefficients of variation. The studies were conducted using the top 2000 genes 

from this ordered list. However, considering potential variations in the coefficient of 

variation values after transformation, we identified the initial 2000 genes for analysis 

before the transformation step. Following the transformation, a variance filtering 

process was applied. This procedure was implemented in the training set, and 

subsequently, the genes filtered in the training set were also filtered in the test set.  

Feature selection: Two distinct feature selection methods were employed to compare 

model performance. The first method involved model-based feature selection, which 

is implemented differently for each survival model in the mlr3fselect package (214). 

Resampling techniques are used by the algorithms in the mlr3fselect package  (214) 

to assess prediction performance and choose feature subsets. For feature selection, 

resampling was conducted using 5 repeats of 5-fold cross-validation, with the  



78 

 

 

 

Figure 3.2. Workflow of evaluation process. 
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performance measure set to ‘c-index’, and feature selection was completed using the 

‘random search’ algorithm. The features selected in the training set were applied to the 

test set. 

The second method is the Boruta algorithm, which is also used in the feature selection 

for our newly developed lasso-based methods, voomStackPrio and voomStackIPF. In 

the Boruta feature selection from Boruta package (152) process, features labeled as 

both ‘important’ and ‘tentative’ (closely resembling the best shadow features) were 

retained in the dataset, while variables labeled as ‘unimportant’ were subsequently 

removed. The features in the training dataset are also kept in the test dataset. Detailed 

information regarding the number and names of the variables used for each model can 

be found in the Appendix Files. 

Hence, the pre-processing steps for RNA-seq data are now complete. We transposed 

the training and test datasets to facilitate subsequent steps and reintroduced each 

sample's time and status variables.  

Stacking: We developed a function that followed the steps of the stacking algorithm to 

convert the training set from a survival data matrix into a classification data matrix. 

The survival test dataset was similarly transformed into a classification dataset by 

leveraging the risk sets generated during the application of the stacking algorithm to 

the training set. 

Model fitting and parameter optimization: Multiple models with different parameters 

were developed for the new approaches. The specific parameters used for 

voomStackPrio can be found in Table 3.3, while those for voomStackIPF are listed in 

Table 3.4. The ‘weights’ parameter in these tables denotes sample weights obtained 

after the voom transformation. Given that our outcome variable y is binary in 

voomStackPrio, the ‘family’ parameter is selected as ‘binomial’, and the 

‘type.measure’ parameter is set to ‘auc’. The first block is penalized in two 

voomStackPrio models. The ‘lambda.type’ parameter determines the lambda value 

used in predictions. ‘lambda.min’ provides the lambda with minimum cross-validated 

errors, and ‘lambda.1se’ gives the largest lambda value within one standard error of 

the minimum. The ‘standardized’ parameter determines whether estimates would be 

standardized or not. For voomStackIPF, the ‘alpha’ parameter plays a pivotal role. 

When set to 1, it applies an L1-penalty (lasso), and when set to 0, an L2-penalty (ridge) 
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is used. Each model for voomStackPrio and voomStackIPF was run 30 times, 

employing 10 repeats of 5-fold cross-validation.  

The performance of the newly created voomStackPrio and voomStackIPF models was 

compared to other survival analysis methods found in the literature.  

These methods were categorized into four primary groups: (i) penalized Cox 

regression methods, (ii) boosted survival methods, (iii) random survival forests, and 

(iv) support vector machines. Hyperparameters for these machine-learning algorithms 

were carefully selected to optimize model performance. The tuning of these 

hyperparameters was carried out automatically using a 5-fold 10-repeated cross-

validation process. Importantly, optimal hyperparameters were chosen from different 

ranges for different models, and the specific tuning parameters for each model are 

detailed in Table 3.5. To ensure robustness and reliability, each model underwent 25 

iterations, randomly selecting 30 distinct training and test datasets.  

The steps applied to the algorithms for comparison are detailed below. 

blackboost: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.blackboost', 

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.blackboost’ 

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify 

the optimal tuning parameter via the mlr3 package (211). 

coxboost: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.coxboost', 

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.coxboost’ 

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify 

the optimal tuning parameter via the mlr3 package (211). 
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gbm: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.gbm', 

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.gbm’ function 

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the mlr3 package (211). 

glmboost: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.glmboost', 

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.glmboost’ 

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify 

the optimal tuning parameter via the mlr3 package (211). 

xgboost_gbtree: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.xgboost', 

'booster = “gbtree”', 'resampling=rsmp("cv", folds = 5)', 'measure = 

msr("surv.cindex")', and 'evals20 = trm("evals", n_evals = 5)", and 'fselector = 

fs("random_search")' for internal feature selection in the mlr3proba package (215). 

Model parameters and hyper-parameters for tuning were set according to the 

parameters provided for the ‘surv.xgboost’ function and ‘booster = “gbtree”’ model 

parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to 

identify the optimal tuning parameter via the mlr3 package (211). 

xgboost_gblinear: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.xgboost', 

'booster = “gblinear”', 'resampling=rsmp("cv", folds = 5)', 'measure =
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Table 3.3. Model parameters for voomStackPrio models. 

Parameters voomStackPrio1 voomStackPrio2 

weights sampleweights sampleweights 

family binomial binomial 

type.measure auc auc 

block1.penalization TRUE TRUE 

lambda.type lambda.min lambda.1se 

standardize FALSE FALSE 

nfolds 5 5 

cvoffset TRUE TRUE 

cvoffsetnfolds 10 10 

 

Table 3.4. Model parameters for voomStackIPF models. 

Parameters voomStackIPF1 voomStackIPF2 voomStackIPF3 voomStackIPF4 voomStackIPF5 voomStackIPF6 voomStackIPF7 voomStackIPF8 voomStackIPF9 

weights  sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights sampleweights 

family binomial binomial binomial binomial binomial binomial binomial binomial binomial 

standardize FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE 

pf c(1,1) c(1,1) c(1,1) c(1,2) c(1,2) c(1,2) c(2,1) c(2,1) c(2,1) 

nfolds 5 5 5 5 5 5 5 5 5 

ncv 10 10 10 10 10 10 10 10 10 

type.measure auc auc auc auc auc auc auc auc auc 

alpha 0 0.5 1 0 0.5 1 0 0.5 1 
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msr("surv.cindex")', and 'evals20 = trm("evals", n_evals = 5)", and 'fselector = 

fs("random_search")' for internal feature selection in the mlr3proba package (215). 

Model parameters and hyper-parameters for tuning were set according to the 

parameters provided for the ‘surv.xgboost’ function and ‘booster = “gblinear”’ model 

parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to 

identify the optimal tuning parameter via the mlr3 package (211). 

xgboost_dart: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.xgboost', 

'booster = “dart”', 'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', 

and 'evals20 = trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for 

internal feature selection in the mlr3proba package (215). Model parameters and 

hyper-parameters for tuning were set according to the parameters provided for the 

‘surv.xgboost’ function and ‘booster = “dart”’ model parameter in Table 3.5. 10 

repeats of 5-fold cross-validation were performed to identify the optimal tuning 

parameter via the mlr3 package (211). 

elasticnet: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.glmnet',  

'alpha = 0.5', 'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 

'evals20 = trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal 

feature selection in the mlr3proba package (215). Model parameters and hyper-

parameters for tuning were set according to the parameters provided for the 

‘surv.glmnet’ function and ‘alpha = 0.5’ model parameter in Table 3.5. 10 repeats of 

5-fold cross-validation were performed to identify the optimal tuning parameter via 

the mlr3 package (211). 

lasso: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.glmnet',  'alpha = 1', 

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 
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for tuning were set according to the parameters provided for the ‘surv.glmnet’ function 

and ‘alpha = 1’ model parameter in Table 3.5. 10 repeats of 5-fold cross-validation 

were performed to identify the optimal tuning parameter via the mlr3 package (211). 

penalized: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 'learner=surv.penalized',  

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.penalized’ 

function in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify 

the optimal tuning parameter via the mlr3 package (211). 

ridge: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.glmnet',  'alpha = 0', 

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.glmnet’ function 

and ‘alpha = 0’ model parameter in Table 3.5. 10 repeats of 5-fold cross-validation 

were performed to identify the optimal tuning parameter via the mlr3 package (211). 

cforest: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.cforest',  

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.cforest’ function 

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the mlr3 package (211). 

ctree: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 
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feature selection, the parameters used were 'learner=surv.ctree',  

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.ctree’ function 

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the mlr3 package (211). 

obliqueRSF: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. For feature selection, the parameters used were 

'learner=surv.obliqueRSF',  'resampling=rsmp("cv", folds = 5)', 'measure = 

msr("surv.cindex")', and 'evals20 = trm("evals", n_evals = 5)", and 'fselector = 

fs("random_search")' for internal feature selection in the mlr3proba package (215). 

Model parameters and hyper-parameters for tuning were set according to the 

parameters provided for the ‘surv.obliqueRSF’ function in Table 3.5. 10 repeats of 5-

fold cross-validation were performed to identify the optimal tuning parameter via the 

mlr3 package (211). 

ranger: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.ranger',  

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.ranger’ function 

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the mlr3 package (211). 

rfsrc: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.rfsrc',  

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 
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for tuning were set according to the parameters provided for the ‘surv.rfsrc’ function 

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the mlr3 package (211). 

rpart: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.rpart',  

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.rpart’ function 

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the mlr3 package (211). 

svm: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. For 

feature selection, the parameters used were 'learner=surv.svm',  

'resampling=rsmp("cv", folds = 5)', 'measure = msr("surv.cindex")', and 'evals20 = 

trm("evals", n_evals = 5)", and 'fselector = fs("random_search")' for internal feature 

selection in the mlr3proba package (215). Model parameters and hyper-parameters 

for tuning were set according to the parameters provided for the ‘surv.svm’ function 

in Table 3.5. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the mlr3 package (211). 

blackboost_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.blackboost’ function in Table 3.5. 10 repeats 

of 5-fold cross-validation were performed to identify the optimal tuning parameter via 

the mlr3 package (211). 

coxboost_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 
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important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.coxboost’ function in Table 3.5. 10 repeats of 

5-fold cross-validation were performed to identify the optimal tuning parameter via 

the mlr3 package (211). 

gbm_B: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. 

Following that, Boruta feature selection was employed, selecting important features 

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model 

parameters and hyper-parameters for tuning were set according to the parameters 

provided for the ‘surv.gbm’ function in Table 3.5. 10 repeats of 5-fold cross-validation 

were performed to identify the optimal tuning parameter via the mlr3 package (211). 

glmboost_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.glmboost’ function in Table 3.5. 10 repeats of 

5-fold cross-validation were performed to identify the optimal tuning parameter via 

the mlr3 package (211). 

xgboost_gbtree_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “gbtree”’ 

model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to 

identify the optimal tuning parameter via the mlr3 package (211). 

xgboost_gblinear_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 
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package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “gblinear”’ 

model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to 

identify the optimal tuning parameter via the mlr3 package (211). 

xgboost_dart_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.xgboost’ function and ‘booster = “dart”’ 

model parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to 

identify the optimal tuning parameter via the mlr3 package (211). 

elasticnet_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.glmnet’ function and ‘alpha = 0.5’ model 

parameter in Table 3.5. 10 repeats of 5-fold cross-validation were performed to 

identify the optimal tuning parameter via the mlr3 package (211). 

lasso_B: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. 

Following that, Boruta feature selection was employed, selecting important features 

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model 

parameters and hyper-parameters for tuning were set according to the parameters 

provided for the ‘surv.glmnet’ function and ‘alpha = 1’ model parameter in Table 3.5. 

10 repeats of 5-fold cross-validation were performed to identify the optimal tuning 

parameter via the mlr3 package (211). 

penalized_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 
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package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.penalized’ function in Table 3.5. 10 repeats of 

5-fold cross-validation were performed to identify the optimal tuning parameter via 

the mlr3 package (211). 

ridge_B: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. 

Following that, Boruta feature selection was employed, selecting important features 

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model 

parameters and hyper-parameters for tuning were set according to the parameters 

provided for the ‘surv.glmnet’ function and ‘alpha = 0’ model parameter in Table 3.5. 

10 repeats of 5-fold cross-validation were performed to identify the optimal tuning 

parameter via the mlr3 package (211). 

cforest_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.cforest’ function in Table 3.5. 10 repeats of 5-

fold cross-validation were performed to identify the optimal tuning parameter via the 

mlr3 package (211). 

ctree_B: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. 

Following that, Boruta feature selection was employed, selecting important features 

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model 

parameters and hyper-parameters for tuning were set according to the parameters 

provided for the ‘surv.ctree’ function in Table 3.5. 10 repeats of 5-fold cross-validation 

were performed to identify the optimal tuning parameter via the mlr3 package (211). 

obliqueRSF_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 
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to the parameters provided for the ‘surv.obliqueRSF’ function in Table 3.5. 10 repeats 

of 5-fold cross-validation were performed to identify the optimal tuning parameter via 

the mlr3 package (211). 

ranger_B: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, vst transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). Model parameters and hyper-parameters for tuning were set according 

to the parameters provided for the ‘surv.ranger’ function in Table 3.5. 10 repeats of 5-

fold cross-validation were performed to identify the optimal tuning parameter via the 

mlr3 package (211). 

rfsrc_B: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. 

Following that, Boruta feature selection was employed, selecting important features 

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model 

parameters and hyper-parameters for tuning were set according to the parameters 

provided for the ‘surv.rfsrc’ function in Table 3.5. 10 repeats of 5-fold cross-validation 

were performed to identify the optimal tuning parameter via the mlr3 package (211). 

rpart_B: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. 

Following that, Boruta feature selection was employed, selecting important features 

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model 

parameters and hyper-parameters for tuning were set according to the parameters 

provided for the ‘surv.rpart’ function in Table 3.5. 10 repeats of 5-fold cross-validation 

were performed to identify the optimal tuning parameter via the mlr3 package (211). 

svm_B: Filtering was performed for low-expressed genes after DESeq normalization. 

Subsequently, vst transformation and variance filtering were applied sequentially. 

Following that, Boruta feature selection was employed, selecting important features 

with the ‘withTentative = TRUE’ parameter using the Boruta package (152). Model 

parameters and hyper-parameters for tuning were set according to the parameters 

provided for the ‘surv.svm’ function in Table 3.5. 10 repeats of 5-fold cross-validation 

were performed to identify the optimal tuning parameter via the mlr3 package (211). 
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voomStackPrio1: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the 

priority-Lasso algorithm. The model parameters defined for ‘voomStackPrio1’ are 

given in Table 3.3. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the prioritylasso package (73). 

voomStackPrio2: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the 

priority-Lasso algorithm. The model parameters defined for ‘voomStackPrio2’ are 

given in Table 3.3. 10 repeats of 5-fold cross-validation were performed to identify the 

optimal tuning parameter via the prioritylasso package (73). 

voomStackIPF1: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF1’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 

voomStackIPF2: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 
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applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF2’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 

voomStackIPF3: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF3’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 

voomStackIPF4: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF4’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 

voomStackIPF5: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF5’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 
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voomStackIPF6: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF6’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74).  

voomStackIPF7: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF7’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 

voomStackIPF8: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 

applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF8’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 

voomStackIPF9: Filtering was performed for low-expressed genes after DESeq 

normalization. Subsequently, voom transformation and variance filtering were applied 

sequentially. Following that, Boruta feature selection was employed, selecting 

important features with the ‘withTentative = TRUE’ parameter using the Boruta 

package (152). After completing the pre-processing steps, the stacking algorithm was 
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applied, and the dataset was transformed into a format suitable for input into the IPF-

Lasso algorithm. The model parameters defined for ‘voomStackIPF9’ are given in 

Table 3.4. 10 repeats of 5-fold cross-validation were performed to identify the optimal 

tuning parameter via the IPFlasso package (74). 

Prediction and performance evaluation:  The evaluation of survival algorithms 

involved the concordance index (Harrell's c-index) and integrated Brier score. For both 

metrics, the survex package (216) was utilized. The c_index() function was 

employed to calculate Harrell's concordance index, and the 

integrated_brier_score() function was used to assess the integrated Brier 

score metric. 

Three distinct super lists have been generated for the Concordance Index, Integrated 

Brier Score, and the number of selected features by aggregating ordered lists based on 

their ranks. The RankAggreg package (217) was employed for this process,  utilizing 

the RankAggreg() function with the Cross Entropy Monte Carlo method. 

Consequently, all survival algorithms, assessed against three different evaluation 

criteria, are ranked from best to worst performance. The consolidated version of these 

super lists is visually represented in a Venn diagram. 

The performances of the models were also compared in terms of computation times. 

3.2.4. Performance Evaluation Criteria 

Sparsity, accuracy, and computational cost were the three parameters that were 

used to assess the performance of the model. In order to evaluate sparsity, one must 

determine how many features the model uses; models with fewer features are deemed 

to be more sparse. Model accuracy was evaluated using the metrics concordance index 

(Harrell's c-index) and integrated Brier score. Computational costs were computed, 

and models delivering results in the shortest time were highlighted. 

A model in survival analysis predicts the risk of a specific event for each 

patient. The higher risk scores for patients with a shorter time-to-event determine the 

model's effectiveness. The concordance index (c-index) is a metric that measures the 

discriminating power of these risk models in survival analysis (218). When assessing 

this, it calculates the agreement between all pairs of samples. Two patients are 
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considered concordant if the predicted event risk by a model is lower for the patient 

who experiences the event later. 

Let the risk scores of the patients be represented by 𝜑. The concordance 

calculation for each pair of patients is conducted based on three scenarios. For patients 

i and j, the survival times are denoted as 𝑇𝑖 and 𝑇𝑗, and the risk scores are 𝜑𝑖 and 𝜑𝑗.  

1. If both patients i and j are not censored,  

a. If 𝜑𝑖 > 𝜑𝑗 and 𝑇𝑖 < 𝑇𝑗, these patient pair is concordant and 

b. If 𝜑𝑖 > 𝜑𝑗 and 𝑇𝑖 > 𝑇𝑗, these patient pair is discordant. 

2. If both patients i and j are censored, no calculation for this pair since it is 

unknown who first experienced the event. 

3. If one of patients i and j is censored and patient i experience the event at 

time 𝑇𝑖 and patient j is censored, 

a. If 𝑇𝑖 > 𝑇𝑗, no calculation for this pair since it is unknown who first 

experienced the event. 

b. If 𝑇𝑖 < 𝑇𝑗, since patient i experienced the event first 

i. If 𝜑𝑖 > 𝜑𝑗, these patient pair is concordant and 

ii. If 𝜑𝑖 < 𝜑𝑗, these patient pair is discordant. 

𝐻𝑎𝑟𝑟𝑒𝑙𝑙′𝑠 𝑐 − 𝑖𝑛𝑑𝑒𝑥 =
# 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠

# 𝑐𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠 +  # 𝑑𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑡 𝑝𝑎𝑖𝑟𝑠
 

The general formulation of Harrell’s c-index is given below. 

𝐻𝑎𝑟𝑟𝑒𝑙𝑙′𝑠 𝑐 − 𝑖𝑛𝑑𝑒𝑥 =
∑ 𝐼(�̃�𝑖 > �̃�𝑗)𝑖,𝑗 . 𝐼(𝜑𝑗 > 𝜑𝑖).△𝑗

∑ 𝐼(�̃�𝑖 > �̃�𝑗)𝑖,𝑗 .△𝑗
 

△𝑗 is a factor used to exclude non-comparable pairs of samples from the 

calculation, particularly when the shorter survival time is censored. 

The concordance index is equivalent to the Area Under the Receiver Operating 

Characteristic Curve (AUC) in the presence of a binary outcome. This index ranges 

from zero to one. A c-index of 0.5 indicates that the risk model predicts randomly, and 

a c-index close to 1 indicates better discriminating power for the risk model. 
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 The Brier score is used to assess the discrimination abilities of models and 

provide probabilistic results. It computes the mean squared error between the real 

classes and predicted risks for a dataset with binary outcomes. Subsequently, the Brier 

score was adapted for survival data (219). It is calculated as below. 

𝐵𝑟𝑖𝑒𝑟 𝑆𝑐𝑜𝑟𝑒 (𝑡) =
1

𝑛
∑𝑤𝑖(𝑡)

𝑛

𝑖=1

[�̂�𝑖(𝑡) − 𝑦𝑖(𝑡)]
2 

𝑤𝑖(𝑡) = {
𝛿𝑖/𝐶(𝑦𝑖)          𝑦𝑖 ≤ 𝑡

1/𝐶(𝑦𝑖)          𝑦𝑖 > 𝑡
 

The probability of an event predicted for 𝑖𝑡ℎ sample is denoted as �̂�𝑖(𝑡), and 

the observed status outcome in the 𝑖𝑡ℎ sample is represented as 𝑦𝑖(𝑡) at time t. The 

calculation of 𝑤𝑖(𝑡) involves the use of the Kaplan-Meier estimator for the censoring 

distribution C. If the Brier score is close to 0, the predicted model is considered good. 

If it is around 0.25, the predicted model performs at random. 

The Brier score assesses the accuracy of a survival function at a specific time. 

The integrated Brier score, obtained by integrating the Brier score across all follow-up 

times, is utilized, as a particular point of time can not be determined. 

3.2.5. Computational Infrastructure 

All analyses were conducted using the R programming language. We employed 

Version 2023.03.0+386 of the RStudio software for these analyses. Both R and 

RStudio are freely available as open-source software and can be installed on Windows, 

Macintosh, and Linux operating systems. To use RStudio, it is essential first to install 

R. With RStudio, you can easily execute R code, create graphical presentations, and 

access a history of your code. Details about the workstations used for running the 

analyses, including their respective features, can be found in Table 3.6. 
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Table 3.5. Characteristics of the compared survival models. 

Group Function Package Model-Parameters Hyper-Parameters Reference 

Boosted 

survival 

model 

surv.blackboost mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

mboost (221), pracma (222) 

mstop = 100 family = “gehan”, “cindex”,   

mstop= 10 → 1000  

nu= 0 → 0.1  

mtry= 1 → max(feature_counts) 

Bühlmann and 

Yu (2003) (223) 

Random 

survival 

forest 

surv.cforest mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

partykit (224),  

sandwich (225), coin (226) 

ntree = 100 ntree= 250 → 2500,  

mtry= 1 → max(feature_counts) 

Hothorn (2006) 

(194) 

Boosted 

survival 

model 

surv.coxboost mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

CoxBoost (227), pracma (222) 

 stepno= 500 → 1500 Binder (2009) 

(227) 

Random 

survival 

forest 

surv.ctree mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

partykit (224),  

coin (226), sandwich (225) 

 alpha= 0 → 1,  

abseps= 0 → 10,  

maxdepth= 1 → 16 

Hothorn and 

Zeileis (2015) 

(224), Hothorn 

(2006) (194) 

Boosted 

survival 

model 

surv.gbm mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

gbm (228) 

bag.fraction = 0.9 interaction.depth = 1 → 16 Friedman 

(2002) (229) 

Boosted 

survival 

model 

surv.glmboost mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

mboost (221), pracma (222) 

 family = “gehan”, “cindex”,  

mstop= 10 → 1000,  

nu= 0 → 0.1 

Bühlmann and 

Yu (2003) (223) 

Penalised 

Cox 

regression  

surv.glmnet mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

glmnet (230) 

alpha = 1,  

s = 0.01 

lambda.min.ratio= 0 → 1 Friedman 

(2010) (231) 

Penalised 

Cox 

regression 

surv.glmnet mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

glmnet (230) 

alpha = 0,  

s = 0.01 

lambda.min.ratio= 0 → 1 Friedman 

(2010) (231) 

Penalised 

Cox 

regression 

surv.glmnet mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

glmnet (230) 

alpha = 0.5,  

s = 0.01 

 

lambda.min.ratio= 0 → 1 Friedman 

(2010) (231) 

https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=CoxBoost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mboost
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
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Random 

survival 

forest 

surv.obliqueRSF mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

obliqueRSF (232),  

pracma (222) 

 alpha= 0 → 1,  

gamma= 0 → 1 

Jaeger (2019) 

(233) 

Penalised 

Cox 

regression 

surv.penalized mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

penalized (234), pracma (222) 

lambda1 = 10, 

lambda2 = 10 

epsilon= 0 → 1 Goeman (2010) 

(234) 

Random 

survival 

forest 

surv.ranger mlr3 (211),  

mlr3learners (235),  

ranger (236) 

 splitrule= “C”,  

num.trees= 250 → 1000,  

mtry= 1 →max(feature_counts),  

min.node.size= 1 → 20 

Breiman (2001) 

(38) 

Random 

survival 

forest 

surv.rfsrc mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

randomForestSRC 

(237), pracma (222) 

 ntree= 250 → 2500,  

mtry= 1 → 

max(feature_counts),  

nodesize= 1 → 20 

Ishwaran (2008) 

(39), 

Breiman (2001) 

(38) 

Random 

survival 

forest 

surv.rpart mlr3 (211), mlr3proba (215),  

rpart (238), distr6 (239),  

survival (240) 

 minbucket= 1 → 20, 

maxdepth= 2 → 30 

Breiman (1984) 

(174) 

Support 

vector 

machine 

surv.svm mlr3 (211), mlr3proba (215),  

mlr3extralearners (220),  

survivalsvm (241) 

type = “hybrid”, 

diff.meth = “makediff3”, 

kernel = “lin_kernel”, 

gamma.mu = c(100,1000) 

sigf= 2 → 12,  

maxiter= 20 → 50,  

margin= 0.01 → 0.1,  

bound= 5 → 15 

Van Belle 

(2011) (167) 

Boosted 

survival 

model 

surv.xgboost mlr3 (211),  

mlr3learners (235),  

xgboost (242) 

booster = “gbtree” alpha= 0 → 1, eta= 0 → 1,  

gamma=0 → 1,  

lambda=0 → 2,  

nrounds= 1 → 16 

Chen (2016) 

(198) 

Boosted 

survival 

model 

surv.xgboost mlr3 (211),  

mlr3learners (235),  

xgboost (242) 

booster = “gblinear” alpha= 0 → 1, eta= 0 → 1,  

lambda=0 → 2,  

nrounds= 1 → 16 

Chen (2016) 

(198) 

Boosted 

survival 

model 

surv.xgboost mlr3 (211),  

mlr3learners (235),  

xgboost (242) 

booster = “dart” alpha= 0 → 1, eta= 0 → 1,  

gamma=0 → 1,  

lambda=0 → 2,  

nrounds= 1 → 16 

Chen (2016) 

(198) 

https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=obliqueRSF
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=penalized
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=ranger
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=randomForestSRC
https://cran.r-project.org/package=pracma
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=rpart
https://cran.r-project.org/package=distr6
https://cran.r-project.org/package=survival
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3proba
https://cran.r-project.org/package=mlr3extralearners
https://cran.r-project.org/package=survivalsvm
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost
https://cran.r-project.org/package=mlr3
https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=xgboost
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Table 3.6. Characteristics of the workstations employed for analysis. 

Workstation Operating 

System 

CPU GPU Memor

y 

Number 

of Cores 

Erciyes 

University, 

Department of 

Biostatistics 

Windows 10 Intel i7-4790 

3.60GHz 

Intel HD 

Graphics 

4600 

16 GB 4 cores 

8 logical 

processor

s 

Erciyes 

University,  Ziya 

Eren Drug 

Research and 

Application 

Center 

(ERFARMA) 

Ubuntu 

20.04 - 

Linux 

AMD EPYC 

7742 (x2) – 256 

CPU 

2xTesla 

V100S 

32GB 

2 TB 256 

Erciyes 

University,  Dep

artment of 

Information 

Technology 

Windows 10 Intel(R) Xeon(R) 

32 CPU E5-2650 

V4 @ 2.20 GHz 

- 350 GB 30 cores 

Personal 

Computer 

Windows 10 Intel(R) Core™ 

i5-8265U CPU, 

1.60GHz, 1800 

Mhz 

- 8 GB 4 

 

3.3. MLSeqSurv R Package 

The voomStackPrio and voomStackIPF algorithms have a R package called 

MLSeqSurv. With the help of this package, researchers can do survival analyses on 

RNA-seq data by incorporating both newly created and previously published survival 

algorithms. Researcher input datasets (training and test datasets) are required in order 

to use the MLSeqSurv R package. These datasets can be submitted in formats such as 

.csv, .xlsx, and .txt. Once users input the datasets and chosen survival algorithm and 

its parameters, the package automatically trains the model tailored to the training set. 

After model training, the package calculates survival probabilities for the test data at 

specified time points. Additionally, MLSeqSurv provides users with individual 

survival curves for the test data. The source code for this package is available on the 

official website at https://github.com/gokmenzararsiz/MLSeqSurv. Following the 

transfer of the MLSeqSurv package to the R BIOCONDUCTOR repository, 

installation can be achieved using the following code. 

 

https://github.com/gokmenzararsiz/MLSeqSurv
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if (!require("BiocManager", quietly = TRUE)) 

    install.packages("BiocManager") 

BiocManager::install("MLSeqSurv") 

The MLSeqSurv R packages used are mlr3 (211), mlr3proba (215), 

mlr3learners (235), mlr3extralearners (220), mlr3verse (243), mlr3tuningspaces 

(244), mlr3fselect (214), limma (150), edgeR (97), DESeq2 (68), survival (240), 

prioritylasso (73), ipflasso (74), mboost (221), pracma (222), partykit 

(224), sandwich (225), coin (226), gbm (228), glmnet (230), CoxBoost (227), 

obliqueRSF (232), penalized (234), ranger (236), rpart (238), distr6 (239), 

randomForestSRC (237), survivalsvm (241), xgboost (242), survex (216), Boruta 

(152).

https://cran.r-project.org/package=mlr3learners
https://cran.r-project.org/package=partykit
https://cran.r-project.org/package=sandwich
https://cran.r-project.org/package=coin
https://cran.r-project.org/package=distr6
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4. RESULTS 

4.1. Concordance Index, Integrated Brier Score, and Selected Features 

for Real RNA-Seq Datasets 

The results of the 12 real RNA-seq survival cancer datasets, as outlined in 

Table 3.9, are depicted graphically in Figures 4.1 through 4.12 and elaborated upon in 

tables ranging from Table 4.1 to Table 4.12. The concordance index, integrated Brier 

score, and the number of selected features for each dataset are illustrated in boxplots. 

The methods compared in these graphs are classified into five main groups: Boosted 

survival models (Boosted), Penalized Cox regression models (Penalized), Random 

survival forests (RSF), Survival support vector machine (SVM), and voom-based 

stacking lasso methods (voomStackLasso). 

Boosted survival models (Boosted) consist of algorithms such as blackboost, 

coxboost, gamboost, gbm, glmboost, xgboost (including dart, gblinear, and gbtree), 

and are represented in light pink. Penalized Cox regression models (Penalized) include 

elasticnet, lasso, penalized, ridge algorithms, depicted in dark khaki. Random survival 

forests (RSF) comprise cforest, ctree, obliqueRSF, ranger, rfsrc, rpart algorithms, 

shown in green. Survival support vector machine (SVM) is represented in blue. Results 

from the existing survival algorithms in the literature include outcomes from both the 

internal feature selection algorithm, individually applied for each algorithm in the 

mlr3proba package (215), and the feature selection process in the Boruta package 

(152).  

voom-based stacking lasso models (voomStackLasso), developed within the 

scope of this study, include voomstackPrio1, voomstackPrio2, voomstackIPF1, 

voomstackIPF2, voomstackIPF3, voomstackIPF4, voomstackIPF5, voomstackIPF6, 

voomstackIPF7, voomstackIPF8, and voomstackIPF9, depicted in purple.  

Summary statistics for the concordance index, integrated Brier score, and the 

number of selected features are provided in the tables. The survival algorithms, whose 

performance is compared, are listed in the table rows. The columns present the mean, 

standard deviation, median, 1st-3rd quartile, minimum, and maximum statistics for the 

concordance index, integrated Brier score, and the number of selected features. The 

tables are formatted with bold to draw attention to the highest values. The midpoints 
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of the lines in the boxplots stand for the median, the bottom point for the lowest value, 

and the top point for the maximum value.  

The concordance index, integrated Brier score, and the number of selected 

features for Adrenocortical Carcinoma (ACC) data are depicted in Figure 4.1, with 

related summary statistics presented in Table 4.1. Upon examination of the graph and 

table, it was observed that the cforest algorithm, when applied to internal feature 

selection, exhibited the highest mean concordance index for ACC data at 0.866. 

Among the methods applied to internal feature selection, the highest mean 

concordance index values were observed for cforest (0.866±0.044), blackboost 

(0.861±0.050), ridge (0.860±0.042), rfsrc (0.857±0.052), svm (0.857±0.046), and 

ranger (0.854±0.073) algorithms. Conversely, the lowest mean concordance index 

values were attributed to ctree (0.742±0.090) and rpart (0.758±0.089) algorithms. 

Among the methods from the literature employing Boruta feature selection, the cforest 

(cforest_B) (0.854±0.062), ridge (ridge_B) (0.856±0.057) and xgboost (with booster= 

“gblinear”) (xgboost_gblinear_B) (0.852±0.047) algorithms demonstrated the highest 

mean concordance index. On the other hand, the svm (svm_B) algorithm 

(0.555±0.245) exhibited the lowest mean concordance index. Among the 

voomStackLasso methods, the voomStackIPF1 (0.855±0.054), voomStackIPF4 

(0.854±0.053), and voomStackIPF7 (0.854±0.053) algorithms showed the highest 

mean concordance index values, while the voomStackPrio2 algorithm (0.737±0.075) 

displayed the lowest mean concordance index. 

It was observed that the penalized algorithm, when utilized with Boruta feature 

selection, resulted in the lowest mean integrated Brier score for ACC data, recorded at 

0.131. Within the category of methods applied to internal feature selection, the 

penalized (0.142±0.048) and cforest (0.158±0.027) algorithms demonstrated the 

lowest mean integrated Brier scores, while gbm (0.375±0.079), lasso (0.366±0.181), 

blackboost (0.359±0.064), and svm (0.339±0.069) algorithms displayed the highest 

mean integrated Brier scores. In the group of methods from the literature employing 

Boruta feature selection, the penalized (penalized_B) (0.131±0.032), ranger 

(ranger_B) (0.140±0.031), and cforest (cforest_B) (0.142±0.033) algorithms 

showcased the lowest mean integrated Brier scores, while lasso (0.479±0.150) and 

elasticnet (0.452±0.159) algorithms presented the highest mean integrated Brier 

scores. Among the voomStackLasso methods, voomStackIPF1 (0.134±0.027), 
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voomStackIPF7 (0.134±0.026), and voomStackIPF4 (0.135±0.028) algorithms 

demonstrated the lowest mean integrated Brier scores, whereas the voomStackPrio1 

algorithm (0.170±0.071) displayed the highest mean integrated Brier score. 

voomStackLasso algorithms showed the lowest mean number of selected 

features for ACC data (52.50±7.83). These were closely followed by the methods in 

the literature that utilized Boruta feature selection (54.07±7.62). Regarding internal 

feature selection methods, the algorithm with the lowest mean number of features was 

rpart (600.77±427.46), while the algorithm with the highest mean number of features 

was obliqueRSF (1137.10±581.78). 

The concordance index, Integrated Brier Score, and the number of selected 

features for Cervical Squamous Cell Carcinoma and Endocervical Adenocarcinoma 

(CESC) data are depicted in Figure 4.2, with related summary statistics presented in 

Table 4.2. Upon examination of both the graph and table, it was observed that the ridge 

algorithm, when applied to internal feature selection, exhibited the highest mean 

concordance index for CESC data at 0.686. Within the category of methods applied to 

internal feature selection, the highest mean concordance index values were observed 

for ridge (0.686±0.052), penalized (0.667±0.056), and cforest (0.662±0.054). 

Conversely, the lowest mean concordance indices were attributed to ctree 

(0.557±0.053) and rpart (0.573±0.073) algorithms. Among the methods from the 

literature employing Boruta feature selection, the ranger (ranger_B) (0.643±0.066) and 

ridge (ridge_B) (0.632±0.062) algorithms demonstrated the highest mean concordance 

index, while the rpart (rpart_B) (0.546±0.082) and ctree (ctree_B) (0.547±0.078) 

algorithms exhibited the lowest mean concordance index values. Among the 

voomStackLasso methods, the voomStackIPF1 (0.660±0.047) and voomStackIPF7 

(0.659±0.047) algorithms showed the highest mean concordance index values, while 

the voomStackPrio2 algorithm (0.628±0.055) displayed the lowest mean concordance 

index. 

Upon reviewing the integrated Brier score results for CESC data, it was evident 

that methods from the literature, where both internal feature selection and Boruta 

feature selection were applied, consistently yielded high results. The voomStackLasso 

methods yield the lowest integrated Brier score results. It was noted that among these 

algorithms, the voomStackIPF4 exhibited the lowest mean integrated Brier score for 

CESC data, at 0.191. This was followed by voomStackIPF1 
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Figure 4.1. The concordance index, integrated Brier score, and the number of selected  

                   features for ACC. 
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Table 4.1. The summary statistics of concordance index, integrated Brier score and the number of features selected for ACC. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.861±0.050 0.861 (0.832-0.892) 0.723-0.950 0.359±0.064 0.366 (0.349-0.402) 0.186-0.468 1081.83±570.29 1027.00 (597.75-1644.00) 157-1960 

Cforest 0.866±0.044 0.878 (0.851-0.892) 0.755-0.933 0.158±0.027 0.154 (0.138-0.174) 0.119-0.233 1025.27±570.19 1006.50 (541.25-1492.00) 62-1907 

Coxboost 0.803±0.075 0.805 (0.773-0.866) 0.614-0.908 0.209±0.081 0.187 (0.144-0.267) 0.079-0.364 867.10±574.20 748.00 (270.00-1332.50) 23-1908 

Ctree 0.742±0.090 0.764 (0.686-0.824) 0.543-0.875 0.225±0.090 0.218 (0.156-0.299) 0.067-0.411 806.90±602.60 544.00 (309.75-1359.50) 131-1995 

Elasticnet 0.844±0.058 0.856 (0.812-0.887) 0.708-0.936 0.312±0.176 0.255 (0.149-0.473) 0.111-0.639 992.90±522.90 979.00 (540.00-1426.00) 183-1891 

Gbm 0.841±0.043 0.848 (0.813-0.865) 0.763-0.933 0.375±0.079 0.373 (0.316-0.441) 0.219-0.508 1089.47±578.86 1063.50 (627.00-1623.25) 93-1943 

Glmboost 0.817±0.076 0.830 (0.775-0.880) 0.632-0.930 0.335±0.086 0.363 (0.295-0.390) 0.157-0.468 850.87±481.50 850.50 (454.25-1139.25) 15-1706 

Lasso 0.818±0.059 0.828 (0.768-0.866) 0.649-0.914 0.366±0.181 0.364 (0.192-0.508) 0.129-0.662 1021.77±537.09 982.00 (555.00-1480.75) 175-1960 

ObliqueRSF 0.780±0.107 0.806 (0.717-0.849) 0.416-0.936 0.184±0.051 0.168 (0.156-0.209) 0.101-0.349 1137.10±581.78 1238.00 (600.25-1631.50) 22-1948 

Penalized 0.829±0.058 0.832 (0.798-0.862) 0.692-0.950 0.142±0.048 0.131 (0.110-0.170) 0.057-0.295 776.67±551.31 691.50 (284.75-1274.25) 5-1946 

Ranger 0.854±0.073 0.870 (0.822-0.899) 0.597-0.938 0.160±0.030 0.155 (0.138-0.177) 0.119-0.271 815.33±575.74 798.00 (284.25-1278.00) 14-1988 

Rfsrc 0.857±0.052 0.870 (0.831-0.884) 0.691-0.958 0.163±0.016 0.164 (0.152-0.174) 0.131-0.198 1050.30±493.23 1043.00 (614.00-1344.75) 97-1959 

Ridge 0.860±0.042 0.871 (0.833-0.888) 0.766-0.924 0.218±0.083 0.198 (0.179-0.220) 0.122-0.511 807.27±515.48 683.50 (394.00-1265.00) 84-1728 

Rpart 0.758±0.089 0.783 (0.691-0.821) 0.593-0.896 0.241±0.078 0.225 (0.169-0.307) 0.138-0.418 600.77±427.46 489.50 (260.25-928.25) 51-1638 

Svm 0.857±0.046 0.853 (0.818-0.893) 0.776-0.930 0.339±0.069 0.339 (0.280-0.374) 0.239-0.532 1116.87±493.32 1124.00 (682.75-1539.00) 250-1935 

Xgboost (dart) 0.810±0.082 0.825 (0.783-0.865) 0.611-0.958 0.183±0.074 0.168 (0.132-0.221) 0.065-0.374 817.97±498.17 821.50 (382.25-1195.25) 43-1869 

Xgboost (gblinear) 0.842±0.048 0.852 (0.816-0.874) 0.724-0.914 0.194±0.050 0.195 (0.161-0.228) 0.108-0.292 993.07±599.29 1046.00 (362.75-1395.75) 33-1939 

Xgboost (gbtree) 0.806±0.075 0.809 (0.770-0.864) 0.601-0.934 0.182±0.056 0.175 (0.131-0.220) 0.090-0.334 835.63±552.05 844.00 (413.50-1155.25) 39-1994 

Models 

Boruta 

Blackboost 0.841±0.062 0.857 (0.825-0.878) 0.633-0.925 0.333±0.089 0.364 (0.214-0.405) 0.180-0.468 

54.07±7.62 51.50 (49.00-58.50) 38-73 

Cforest 0.854±0.062 0.861 (0.824-0.899) 0.691-0.942 0.142±0.033 0.134 (0.118-0.170) 0.090-0.211 

Coxboost 0.800±0.067 0.808 (0.752-0.851) 0.632-0.914 0.167±0.073 0.145 (0.118-0.212) 0.043-0.328 

Ctree 0.739±0.086 0.746 (0.674-0.819) 0.576-0.868 0.269±0.101 0.244 (0.200-0.322) 0.117-0.561 

Elasticnet 0.831±0.060 0.852 (0.793-0.877) 0.681-0.933 0.452±0.159 0.498 (0.345-0.568) 0.133-0.659 

Gbm 0.824±0.049 0.831 (0.781-0.866) 0.723-0.901 0.368±0.102 0.375 (0.314-0.438) 0.141-0.550 

Glmboost 0.809±0.062 0.822 (0.765-0.860) 0.681-0.894 0.340±0.089 0.364 (0.322-0.396) 0.169-0.484 

Lasso 0.813±0.065 0.833 (0.761-0.867) 0.667-0.898 0.479±0.150 0.513 (0.461-0.573) 0.091-0.656 

ObliqueRSF 0.802±0.066 0.817 (0.758-0.844) 0.644-0.934 0.157±0.063 0.134 (0.122-0.203) 0.059-0.320 

Penalized 0.845±0.062 0.867 (0.810-0.888) 0.681-0.924 0.131±0.032 0.127 (0.105-0.162) 0.074-0.195 

Ranger 0.844±0.067 0.864 (0.822-0.883) 0.649-0.967 0.140±0.031 0.133 (0.113-0.161) 0.099-0.204 

Rfsrc 0.842±0.067 0.852 (0.809-0.883) 0.628-0.950 0.147±0.035 0.141 (0.117-0.176) 0.095-0.253 

Ridge 0.856±0.057 0.874 (0.821-0.893) 0.681-0.924 0.281±0.124 0.214 (0.202-0.328) 0.182-0.603 

Rpart 0.747±0.069 0.758 (0.705-0.802) 0.564-0.838 0.239±0.050 0.234 (0.193-0.277) 0.164-0.346 

Svm 0.555±0.245 0.577 (0.314-0.767) 0.174-0.908 0.407±0.149 0.389 (0.286-0.536) 0.110-0.648 

Xgboost (dart) 0.800±0.066 0.809 (0.751-0.847) 0.665-0.953 0.194±0.061 0.190 (0.147-0.241) 0.091-0.318 

Xgboost (gblinear) 0.852±0.047 0.865 (0.817-0.886) 0.738-0.933 0.164±0.037 0.163 (0.135-0.186) 0.074-0.240 

Xgboost (gbtree) 0.800±0.073 0.802 (0.756-0.856) 0.563-0.938 0.199±0.062 0.198 (0.160-0.250) 0.087-0.330 

MLSeqSurv 

voomStackPrio1 0.771±0.082 0.779 (0.705-0.842) 0.598-0.904 0.170±0.071 0.161 (0.122-0.186) 0.074-0.382 

52.50±7.83 52.50 (46.75-58.25) 36-68 

voomStackPrio2 0.737±0.075 0.731 (0.688-0.801) 0.551-0.867 0.162±0.028 0.165 (0.140-0.179) 0.103-0.237 

voomStackIPF1 0.855±0.054 0.866 (0.823-0.888) 0.702-0.925 0.134±0.027 0.132 (0.113-0.155) 0.087-0.190 

voomStackIPF2 0.776±0.070 0.783 (0.727-0.830) 0.636-0.891 0.139±0.029 0.139 (0.118-0.158) 0.070-0.200 

voomStackIPF3 0.775±0.081 0.789 (0.711-0.837) 0.617-0.904 0.142±0.031 0.142 (0.118-0.163) 0.072-0.214 

voomStackIPF4 0.854±0.053 0.866 (0.821-0.888) 0.702-0.925 0.135±0.028 0.132 (0.113-0.157) 0.087-0.190 

voomStackIPF5 0.776±0.070 0.783 (0.727-0.830) 0.636-0.891 0.139±0.029 0.139 (0.118-0.158) 0.070-0.200 

voomStackIPF6 0.774±0.081 0.789 (0.711-0.837) 0.617-0.904 0.142±0.031 0.142 (0.118-0.163) 0.072-0.214 

voomStackIPF7 0.854±0.053 0.863 (0.823-0.888) 0.702-0.925 0.134±0.026 0.132 (0.113-0.155) 0.087-0.190 

voomStackIPF8 0.776±0.070 0.783 (0.727-0.830) 0.636-0.891 0.139±0.029 0.139 (0.118-0.158) 0.070-0.200 

voomStackIPF9 0.775±0.081 0.789 (0.711-0.837) 0.617-0.904 0.142±0.031 0.142 (0.118-0.163) 0.072-0.214 



106 

 

 

 (0.192±0.016), voomStackIPF7 (0.192±0.016), voomStackPrio2 (0.195±0.017), and 

voomStackIPF5 (0.195±0.020). The voomStackPrio1 algorithm (0.224±0.053) 

displayed the highest mean integrated Brier score. Within the category of methods 

applied to internal feature selection, the penalized algorithm (0.200±0.023)  

demonstrated the lowest mean integrated Brier score, whereas gbm (0.390±0.108), 

svm (0.371±0.074), and blackboost (0.366±0.072) algorithms displayed the highest 

mean integrated Brier scores. In the group of methods from the literature employing 

Boruta feature selection, the ridge (ridge_B) (0.212±0.008), penalized (penalized_B) 

(0.214±0.024) and ranger (ranger_B) (0.214±0.016) algorithms showcased the lowest 

mean integrated Brier scores, while svm (svm_B) (0.456±0.105), gbm (gbm_B) 

(0.411±0.120) and blackboost (blackboost_B) (0.365±0.071) algorithms presented the 

highest mean integrated Brier scores.  

Among the voomStackLasso algorithms, the mean number of selected features 

for CESC data was the lowest (11.70±4.72). These were closely followed by the 

methods in the literature that utilized Boruta feature selection (12.63±4.72). In terms 

of internal feature selection methods, the algorithm with the lowest mean  number of 

features was elasticnet (737.30±453.70), while the algorithm with the highest mean 

number of features was xgboost (with booster= “gblinear”) (1335.53±491.05). 

The concordance index, integrated Brier score, and the number of selected 

features for Esophageal Carcinoma (ESCA) data are depicted in Figure 4.3, with 

related summary statistics presented in Table 4.3. After examining both the graph and 

the table for ESCA data, it was observed that the ranger algorithm, when applied to 

internal feature selection, achieved the highest mean concordance index at 0.580. The 

second-highest value was recorded by the voomStackIPF7 algorithm, with an average 

of 0.560. Within the category of methods applied to internal feature selection, the 

highest mean concordance indices were observed for ranger (0.580±0.060) and svm 

(0.559±0.057). Conversely, the lowest mean concordance index values were attributed 

to penalized (0.478±0.064) and blackboost (0.493±0.075) algorithms. In the group of 

methods from the literature employing Boruta feature selection, the rpart (rpart_B) 

(0.519±0.076) and obliqueRSF (obliqueRSF_B) (0.517±0.078) algorithms 

demonstrated the highest mean concordance index values, while the xgboost (with 

booster= “gblinear”) (xgboost_gblinear_B) (0.476±0.053) and svm (svm_B)   
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Figure 4.2. The concordance index, integrated Brier score, and the number of selected  

                   features for CESC. 
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Table 4.2. The summary statistics of concordance index, integrated Brier score and the number of features selected for CESC. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.636±0.050 0.647 (0.599-0.672) 0.524-0.732 0.366±0.072 0.381 (0.340-0.411) 0.204-0.494 914.17±530.80 832.50 (472.25-1420.75) 71-1863 

Cforest 0.662±0.054 0.679 (0.623-0.700) 0.535-0.755 0.207±0.019 0.207 (0.197-0.217) 0.164-0.261 935.27±565.19 963.00 (345.50-1410.75) 108-1929 

Coxboost 0.639±0.054 0.651 (0.595-0.684) 0.532-0.738 0.271±0.054 0.254 (0.232-0.316) 0.193-0.417 1038.60±547.91 1128.00 (688.75-1481.75) 88-1858 

Ctree 0.557±0.053 0.559 (0.522-0.584) 0.424-0.696 0.319±0.087 0.323 (0.246-0.386) 0.172-0.463 1053.77±548.88 1055.00 (553.00-1528.75) 152-1959 

Elasticnet 0.651±0.054 0.665 (0.621-0.687) 0.540-0.749 0.304±0.090 0.306 (0.218-0.374) 0.188-0.528 737.30±453.70 603.00 (384.25-1018.75) 105-1896 

Gbm 0.623±0.066 0.624 (0.589-0.665) 0.492-0.743 0.390±0.108 0.370 (0.297-0.499) 0.215-0.592 1066.67±609.77 984.00 (566.50-1635.25) 118-1950 

Glmboost 0.655±0.067 0.657 (0.608-0.706) 0.485-0.768 0.348±0.077 0.376 (0.334-0.401) 0.200-0.443 917.50±599.38 831.00 (428.50-1531.25) 18-1756 

Lasso 0.645±0.061 0.643 (0.609-0.697) 0.494-0.743 0.306±0.102 0.287 (0.213-0.390) 0.147-0.567 1128.70±520.11 1060.50 (786.00-1583.25) 106-1969 

ObliqueRSF 0.597±0.060 0.589 (0.569-0.627) 0.417-0.728 0.241±0.042 0.234 (0.207-0.266) 0.179-0.332 948.03±533.00 841.50 (525.50-1523.00) 24-1812 

Penalized 0.667±0.056 0.675 (0.629-0.710) 0.538-0.759 0.200±0.023 0.199 (0.181-0.211) 0.164-0.261 883.80±581.86 797.00 (470.25-1487.50) 32-1871 

Ranger 0.659±0.056 0.670 (0.627-0.707) 0.538-0.781 0.209±0.009 0.208 (0.204-0.215) 0.186-0.230 768.13±520.49 570.50 (381.25-1094.00) 141-1918 

Rfsrc 0.642±0.056 0.643 (0.606-0.688) 0.496-0.741 0.206±0.009 0.206 (0.199-0.211) 0.183-0.224 758.63±624.16 624.00 (188.50-1322.25) 8-1957 

Ridge 0.686±0.052 0.700 (0.655-0.725) 0.542-0.780 0.241±0.049 0.220 (0.202-0.281) 0.186-0.379 869.97±415.53 851.00 (538.75-1224.25) 203-1691 

Rpart 0.573±0.073 0.581 (0.517-0.620) 0.399-0.696 0.308±0.057 0.302 (0.278-0.355) 0.193-0.424 845.83±584.01 683.00 (327.00-1402.75) 32-1922 

Svm 0.658±0.058 0.652 (0.618-0.706) 0.553-0.781 0.371±0.074 0.374 (0.318-0.410) 0.224-0.556 1123.77±540.47 1091.00 (655.50-1602.75) 19-1972 

Xgboost (dart) 0.607±0.075 0.615 (0.544-0.665) 0.486-0.741 0.275±0.054 0.280 (0.238-0.307) 0.185-0.401 955.90±467.37 877.50 (594.00-1304.75) 156-1984 

Xgboost (gblinear) 0.630±0.081 0.646 (0.591-0.693) 0.500-0.766 0.234±0.022 0.230 (0.219-0.249) 0.189-0.294 1335.53±491.05 1376.50 (837.50-1754.50) 318-1997 

Xgboost (gbtree) 0.607±0.059 0.596 (0.577-0.657) 0.485-0.723 0.285±0.070 0.264 (0.235-0.341) 0.184-0.447 978.17±566.64 1027.00 (437.00-1475.75) 82-1926 

Models 

Boruta 

Blackboost 0.592±0.063 0.593 (0.569-0.631) 0.478-0.730 0.365±0.071 0.379 (0.340-0.405) 0.203-0.494 

12.63±4.72 11.00 (9.00-16.00) 5-23 

Cforest 0.614±0.080 0.610 (0.571-0.658) 0.359-0.767 0.218±0.019 0.218 (0.209-0.230) 0.182-0274 

Coxboost 0.629±0.069 0.638 (0.605-0.670) 0.464-0.753 0.227±0.038 0.219 (0.200-0.248) 0.173-0.309 

Ctree 0.547±0.078 0.540 (0.493-0.600) 0.394-0.684 0.341±0.056 0.334 (0.311-0.394) 0.233-0.428 

Elasticnet 0.617±0.082 0.633 (0.544-0.686) 0.466-0.744 0.309±0.101 0.292 (0.216-0.395) 0.168-0.530 

Gbm 0.621±0.076 0.625 (0.577-0.699) 0.424-0.757 0.411±0.120 0.420 (0.301-0.518) 0.215-0.596 

Glmboost 0.623±0.093 0.644 (0.557-0.694) 0.375-0.769 0.350±0.086 0.379 (0.303-0.411) 0.200-0.494 

Lasso 0.623±0.076 0.642 (0.561-0.679) 0.480-0.749 0.324±0.109 0.318 (0.222-0.384) 0.175-0.545 

ObliqueRSF 0.579±0.075 0.592 (0.541-0.620) 0.399-0.740 0.268±0.061 0.253 (0.226-0.310) 0.180-0.416 

Penalized 0.621±0.067 0.627 (0.565-0.669) 0.481-0.756 0.214±0.024 0.210 (0.198-0.229) 0.176-0.283 

Ranger 0.643±0.066 0.637 (0.600-0.699) 0.460-0.760 0.214±0.016 0.214 (0.207-0.221) 0.186-0.250 

Rfsrc 0.615±0.070 0.621 (0.571-0.672) 0.474-0.750 0.221±0.026 0.218 (0.202-0.236) 0.184-0.294 

Ridge 0.632±0.062 0.632 (0.594-0.660) 0.507-0.769 0.212±0.008 0.210 (0.206-0.217) 0.203-0.237 

Rpart 0.546±0.082 0.557 (0.492-0.614) 0.378-0.741 0.317±0.060 0.315 (0.277-0.336) 0.200-0.471 

Svm 0.563±0.078 0.560 (0.514-0.622) 0.404-0.683 0.456±0.105 0.424 (0.356-0.543) 0.335-0.638 

Xgboost (dart) 0.599±0.078 0.599 (0.531-0.648) 0.465-0.780 0.263±0.039 0.262 (0.235-0.287) 0.188-0.326 

Xgboost (gblinear) 0.558±0.069 0.543 (0.500-0.608) 0.386-0.691 0.244±0.019 0.241 (0.230-0.254) 0.214-0.294 

Xgboost (gbtree) 0.601±0.077 0.599 (0.533-0.670) 0.445-0.756 0.254±0.050 0.265 (0.202-0.292) 0.187-0.338 

MLSeqSurv 

voomStackPrio1 0.645±0.051 0.634 (0.609-0.694) 0.551-0.741 0.224±0.053 0.211 (0.193-0.242) 0.148-0.431 

11.70±4.72 12.00 (8.00-14.00) 4-26 

voomStackPrio2 0.628±0.055 0.627 (0.589-0.675) 0.511-0.748 0.195±0.017 0.195 (0.183-0.206) 0.162-0.232 

voomStackIPF1 0.660±0.047 0.668 (0.619-0.685) 0.566-0.753 0.192±0.016 0.192 (0.184-0.204) 0.145-0.218 

voomStackIPF2 0.639±0.050 0.633 (0.603-0.678) 0.513-0.742 0.197±0.022 0.196 (0.181-0.213) 0.144-0.245 

voomStackIPF3 0.638±0.050 0.633 (0.602-0.678) 0.513-0.741 0.198±0.022 0.197 (0.183-0.212) 0.145-0.247 

voomStackIPF4 0.658±0.049 0.663 (0.616-0.685) 0.558-0.759 0.191±0.016 0.190 (0.183-0.204) 0.145-0.217 

voomStackIPF5 0.640±0.049 0.633 (0.603-0.677) 0.513-0.740 0.195±0.020 0.193 (0.181-0.209) 0.144-0.229 

voomStackIPF6 0.639±0.049 0.632 (0.602-0.677) 0.513-0.744 0.196±0.020 0.195 (0.181-0.210) 0.145-0.231 

voomStackIPF7 0.659±0.047 0.656 (0.619-0.687) 0.568-0.754 0.192±0.016 0.193 (0.184-0.204) 0.145-0.218 

voomStackIPF8 0.638±0.050 0.633 (0.603-0.678) 0.513-0.742 0.198±0.023 0.196 (0.181-0.214) 0.144-0.256 

voomStackIPF9 0.637±0.050 0.633 (0.602-0.678) 0.513-0.742 0.199±0.023 0.197 (0.183-0.213) 0.145-0.257 
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(0.481±0.058) algorithms exhibited the lowest mean concordance index values. 

Among the voomStackLasso methods, the voomStackIPF7 (0.560±0.063) and 

voomStackIPF1 (0.558±0.064) algorithms showed the highest mean concordance 

index values, while the voomStackPrio2 algorithm (0.530±0.122) displayed the lowest 

mean concordance index. 

It was observed that the cforest algorithm, when applied to internal feature 

selection, achieved the lowest mean integrated Brier score at 0.182 for ESCA data. 

Following this, the penalized (penalized_B) and ridge (ridge_B) algorithms, both with 

Boruta feature selection applied, yielded an integrated Brier score of 0.183. Within the 

category of methods applied to internal feature selection, the cforest (0.182±0.025) 

and penalized (0.193±0.025) algorithms demonstrated the lowest mean integrated 

Brier score, whereas svm (0.515±0.085),  glmboost (0.411±0.192), and blackboost 

(0.377±0.201) algorithms displayed the highest mean integrated Brier score. In the 

group of methods from the literature employing Boruta feature selection, penalized 

(penalized_B) (0.183±0.026) and ridge (ridge_B) (0.183±0.028) algorithms 

showcased the lowest mean integrated Brier score, while svm (svm_B) (0.515±0.068), 

glmboost (glmboost_B) (0.448±0.172), ctree (ctree_B) (0.418±0.077) and blackboost 

(blackboost_B) (0.416±0.182) algorithms presented the highest mean integrated Brier 

score. It was noted that among the voomStackLasso algorithms, the voomStackPrio2 

and voomStackIPF4 exhibited the lowest mean integrated Brier score for ESCA data, 

at 0.205. This was followed by voomStackIPF1 (0.206±0.012) and voomStackIPF7 

(0.206±0.013). The voomStackPrio1 algorithm (0.213±0.033) displayed the highest 

mean integrated Brier score.  

Among the methods in the literature that applied Boruta feature selection, the 

mean number of selected features for ESCA data was the lowest (5.77±2.67). These 

were closely followed by the voomStackLasso algorithms (6.10±2.68). In terms of 

internal feature selection methods, the algorithm with the lowest mean number of 

features was obliqueRSF (774.70±585.68), while the algorithm with the highest mean 

number of features was rfsrc (1196.97±501.43). 

The concordance index, integrated Brier score, and the number of selected 

features for Glioblastoma Multiforme (GBM) data are depicted in Figure 4.4, with 

related summary statistics presented in Table 4.4. After examining both the graph and 

the table for GBM data, it was observed that the ranger algorithm, when applied to  
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Figure 4.3. The concordance index, integrated Brier score, and the number of selected  

                   features for ESCA. 
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Table 4.3. The summary statistics of concordance index, integrated Brier score and the number of features selected for ESCA. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.493±0.075 0.503 (0.456-0.535) 0.317-0.625 0.377±0.201 0.408 (0.186-0.539) 0.127-0.702 897.37±528.96 809.00 (457.25-1419.00) 73-1903 

Cforest 0.541±0.074 0.530 (0.508-0.601) 0.374-0.685 0.182±0.025 0.183 (0.173-0.198) 0.126-0.229 1003.17±595.24 963.00 (560.25-1414.00) 38-1995 

Coxboost 0.524±0.062 0.534 (0.477-0.573) 0.392-0.622 0.240±0.047 0.235 (0.201-0.277) 0.163-0.323 910.03±563.47 734.00 (455.00-1351.50) 135-1998 

Ctree 0.500±0.028 0.500 (0.499-0.501) 0.424-0.569 0.211±0.080 0.187 (0.172-0.209) 0.127-0.455 1015.27±570.17 1129.50 (447.75-1501.00) 32-1864 

Elasticnet 0.510±0.068 0.508 (0.482-0.560) 0.325-0.636 0.338±0.113 0.322 (0.233-0.405) 0.172-0.649 962.00±576.62 871.50 (503.25-1588.50) 45-1965 

Gbm 0.540±0.060 0.547 (0.503-0.580) 0.412-0.687 0.356±0.085 0.342 (0.281-0.423) 0.218-0.520 884.97±534.81 808.50 (569.50-1392.50) 109-1933 

Glmboost 0.513±0.066 0.510 (0.472-0.561) 0.374-0.663 0.411±0.192 0.480 (0.201-0.548) 0.127-0.702 827.17±572.71 732.50 (352.00-1264.75) 15-1958 

Lasso 0.507±0.068 0.488 (0.454-0.550) 0.400-0.696 0.334±0.102 0.304 (0.263-0.445) 0.170-0.529 842.03±554.73 790.50 (322.00-1274.50) 68-1981 

ObliqueRSF 0.524±0.064 0.513 (0.480-0.577) 0.425-0.677 0.236±0.054 0.224 (0.204-0.241) 0.150-0.379 774.70±585.68 700.50 (219.75-1267.25) 13-1931 

Penalized 0.478±0.064 0.473 (0.447-0.529) 0.311-0.563 0.193±0.025 0.194 (0.177-0.212) 0.141-0.240 902.90±541.23 849.50 (454.75-1309.00) 59-1904 

Ranger 0.580±0.060 0.573 (0.538-0.617) 0.460-0.765 0.198±0.013 0.197 (0.188-0.205) 0.172-0.231 862.80±662.03 697.00 (237.50-1567.00) 47-1934 

Rfsrc 0.546±0.068 0.549 (0.476-0.591) 0.430-0.731 0.203±0.032 0.196 (0.180-0.215) 0.161-0.280 1196.97±501.43 1127.00 (792.00-1629.75) 181-1951 

Ridge 0.526±0.069 0.519 (0.477-0.569) 0.351-0.661 0.204±0.054 0.201 (0.168-0.225) 0.128-0.382 799.27±456.03 836.50 (412.75-1054.75) 119-1803 

Rpart 0.516±0.068 0.509 (0.466-0.559) 0.404-0.708 0.249±0.050 0.248 (0.208-0.290) 0.144-0.340 983.80±559.49 1058.50 (469.00-1457.00) 15-1922 

Svm 0.559±0.057 0.549 (0.521-0.613) 0.430-0.661 0.515±0.085 0.495 (0.450-0.578) 0.337-0.679 815.43±605.25 754.00 (208.25-1316.25) 12-1948 

Xgboost (dart) 0.520±0.063 0.513 (0.478-0.557) 0.375-0.649 0.272±0.052 0.270 (0.237-0.311) 0.165-0.384 924.87±560.28 972.00 (426.50-1422.00) 28-1908 

Xgboost (gblinear) 0.507±0.063 0.500 (0.495-0.540) 0.318-0.622 0.231±0.029 0.236 (0.200-0.255) 0.179-0.273 1190.40±597.32 1323.00 (682.50-1688.50) 23-1984 

Xgboost (gbtree) 0.529±0.060 0.532 (0.481-0.569) 0.413-0.672 0.276±0.058 0.278 (0.237-0.314) 0.155-0.386 913.70±617.37 746.50 (372.50-1498.25) 47-1969 

Models 

Boruta 

Blackboost 0.495±0.032 0.500 (0.487-0.505) 0.417-0.560 0.416±0.182 0.478 (0.195-0.541) 0.156-0.702 

5.77±2.67 5.00 (4.00-8.00) 2-11 

Cforest 0.498±0.057 0.498 (0.461-0.527) 0.383-0.659 0.243±0.066 0.231 (0.198-0.268) 0.150-0.434 

Coxboost 0.503±0.055 0.498 (0.463-0.531) 0.408-0.625 0.198±0.034 0.196 (0.176-0.214) 0.116-0.295 

Ctree 0.500±0.066 0.492 (0.466-0.540) 0.292-0.629 0.418±0.077 0.425 (0.359-0.469) 0.283-0.575 

Elasticnet 0.501±0.060 0.492 (0.452-0.539) 0.395-0.628 0.323±0.115 0.306 (0.211-0.424) 0.161-0.530 

Gbm 0.502±0.053 0.503 (0.453-0.543) 0.423-0.630 0.324±0.091 0.296 (0.266-0.353) 0.227-0.675 

Glmboost 0.493±0.065 0.496 (0.438-0.540) 0.379-0.630 0.448±0.172 0.494 (0.361-0.548) 0.128-0.675 

Lasso 0.500±0.056 0.496 (0.458-0.545) 0.398-0.605 0.327±0.112 0.306 (0.263-0.427) 0.165-0.529 

ObliqueRSF 0.517±0.078 0.537 (0.460-0.566) 0.344-0.670 0.240±0.046 0.233 (0.203-0.270) 0.180-0.343 

Penalized 0.489±0.055 0.495 (0.438-0.533) 0.381-0.627 0.183±0.026 0.179 (0.168-0.201) 0.132-0.247 

Ranger 0.492±0.062 0.484 (0.443-0.542) 0.403-0.628 0.214±0.019 0.213 (0.200-0.226) 0.177-0.273 

Rfsrc 0.511±0.056 0.517 (0.459-0.550) 0.424-0.634 0.221±0.028 0.223 (0.201-0.236) 0.172-0.299 

Ridge 0.497±0.057 0.495 (0.458-0.528) 0.396-0.624 0.183±0.028 0.182 (0.166-0.201) 0.128-0.276 

Rpart 0.519±0.076 0.501 (0.464-0.599) 0.392-0.653 0.250±0.044 0.243 (0.228-0.277) 0.164-0.329 

Svm 0.481±0.058 0.467 (0.431-0.532) 0.394-0.634 0.515±0.068 0.496 (0.464-0.547) 0.412-0.703 

Xgboost (dart) 0.511±0.075 0.515 (0.457-0.569) 0.365-0.671 0.262±0.051 0.260 (0.221-0.306) 0.155-0.346 

Xgboost (gblinear) 0.476±0.053 0.500 (0.434-0.501) 0.391-0.595 0.227±0.031 0.233 (0.196-0.249) 0.175-0.273 

Xgboost (gbtree) 0.503±0.067 0.484 (0.453-0.558) 0.373-0.668 0.283±0.050 0.279 (0.240-0.319) 0.196-0.384 

MLSeqSurv 

voomStackPrio1 0.550±0.065 0.544 (0.502-0.587) 0.408-0.717 0.213±0.033 0.205 (0.197-0.218) 0.173-0.362 

6.10±2.68 5.00 (4.99-8.00) 2-13 

voomStackPrio2 0.530±0.122 0.548 (0.490-0.601) 0.000-0.717 0.205±0.018 0.201 (0.196-0.210) 0.187-0.283 

voomStackIPF1 0.558±0.064 0.560 (0.509-0.614) 0.428-0.715 0.206±0.012 0.203 (0.200-0.211) 0.189-0.244 

voomStackIPF2 0.552±0.062 0.555 (0.507-0.590) 0.434-0.718 0.210±0.016 0.208 (0.198-0.217) 0.187-0.256 

voomStackIPF3 0.551±0.062 0.553 (0.506-0.589) 0.434-0.718 0.211±0.016 0.209 (0.199-0.218) 0.187-0.257 

voomStackIPF4 0.553±0.065 0.553 (0.505-0.613) 0.424-0.711 0.205±0.011 0.203 (0.200-0.208) 0.187-0.240 

voomStackIPF5 0.552±0.063 0.551 (0.507-0.597) 0.434-0.718 0.209±0.015 0.207 (0.198-0.217) 0.189-0.253 

voomStackIPF6 0.551±0.063 0.551 (0.507-0.591) 0.434-0.718 0.210±0.016 0.208 (0.199-0.217) 0.189-0.254 

voomStackIPF7 0.560±0.063 0.563 (0.513-0.617) 0.428-0.717 0.206±0.013 0.204 (0.199-0.212) 0.189-0.246 

voomStackIPF8 0.551±0.064 0.556 (0.499-0.591) 0.434-0.718 0.211±0.016 0.210 (0.199-0.218) 0.186-0.258 

voomStackIPF9 0.551±0.063 0.551 (0.501-0.588) 0.434-0.718 0.212±0.017 0.210 (0.199-0.219) 0.186-0.259 
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internal feature selection, achieved the highest mean concordance index at 0.600. 

Within the category of methods applied to internal feature selection, the highest mean  

concordance indices were observed for ranger (0.600±0.045), cforest (0.593±0.052), 

gbm (0.590±0.060), penalized (0.585±0.056), elasticnet (0.583±0.060), lasso 

(0.582±0.052), coxboost (0.581±0.064), and rfsrc (0.581±0.050). Conversely, the 

lowest mean concordance index was attributed to the ctree algorithm (0.523±0.045). 

In the group of methods from the literature employing Boruta feature selection, the 

lasso (lasso_B) (0.577±0.040) and xgboost (with booster= “gblinear”) 

(xgboost_gblinear_B) (0.575±0.042) algorithms demonstrated the highest mean 

concordance index, while the obliqueRSF (obliqueRSF_B) (0.528±0.068) and xgboost 

(with booster= “dart”) (xgboost_dart_B) (0.530±0.047) algorithms exhibited the 

lowest mean concordance index. Among the voomStackLasso methods, the 

voomStackIPF1 (0.579±0.034) and voomStackPrio1 (0.576±0.042) algorithms 

showed the highest mean concordance index values, while the voomStackIPF7 

algorithm (0.541±0.151) displayed the lowest mean concordance index. 

It was observed that the cforest algorithm, when applied to internal feature 

selection, achieved the lowest mean integrated Brier score at 0.113 for GBM data. 

Within the category of methods applied to internal feature selection, the cforest 

(0.113±0.020) and penalized (0.115±0.022) algorithms demonstrated the lowest mean 

integrated Brier score, whereas svm (0.628±0.100), glmboost (0.501±0.277), and ctree 

(0.413±0.118) algorithms displayed the highest mean integrated Brier score. In the 

group of methods from the literature employing Boruta feature selection, the penalized 

(penalized_B) algorithm (0.117±0.020) showcased the lowest mean integrated Brier 

score, while the svm algorithm (0.632±0.133) presented the highest mean integrated 

Brier score. It was noted that among the voomStackLasso algorithms, the 

voomStackPrio5 and voomStackIPF6 exhibited the lowest mean integrated Brier score 

for GBM data, at 0.149. This was followed by voomStackIPF1, voomStackIPF2, 

voomStackIPF3, voomStackIPF4, and voomStackIPF7, all with a score of 0.150. The 

voomStackPrio1 algorithm (0.161±0.031) displayed the highest mean integrated Brier 

score.  

Among the methods in the literature that applied Boruta feature selection, the 

mean number of selected features for GBM data was the lowest (7.87±3.16). These 

were closely followed by the voomStackLasso algorithms (7.90±4.07). In terms of 
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internal feature selection methods, the algorithm with the lowest mean number of 

features was ranger (647.80±478.69), while the algorithm with the highest mean 

number of features was xgboost (with booster= “gblinear”) (1330.83±561.83). 

The concordance index, integrated Brier score, and the number of selected 

features for Kidney Renal Clear Cell Carcinoma (KIRC) data are depicted in Figure 

4.5, with related summary statistics presented in Table 4.5. Upon reviewing both the 

graph and the table for KIRC data, it was observed that the cforest and ranger 

algorithms, when applied to internal feature selection, achieved the highest mean 

concordance index at 0.717. Following this, the rfsrc algorithm, with internal feature 

selection applied, yielded a mean concordance index of 0.708. Within the category of 

methods applied to internal feature selection, the highest mean concordance indices 

were observed for cforest (0.717±0.036), ranger (0.717±0.034), rfsrc (0.708±0.034), 

ridge (0.707±0.034), and blackboost (0.705±0.033) algorithms. Conversely, the lowest 

mean concordance index was attributed to the ctree algorithm (0.624±0.031). In the 

group of methods from the literature employing Boruta feature selection, the cforest 

(cforest_B) and ranger (ranger_B) algorithms demonstrated the highest mean 

concordance index at 0.693, while the svm algorithm (0.601±0.076) exhibited the 

lowest mean concordance index. Among the voomStackLasso methods, the 

voomStackIPF1, voomStackIPF4, and voomStackIPF7 algorithms showed the highest 

mean concordance index at 0.684, while the voomStackPrio2 algorithm (0.663±0.043) 

displayed the lowest mean concordance index. 

It was observed that the cforest algorithm, when applied to internal feature 

selection, achieved the lowest mean integrated Brier score at 0.166 for KIRC data. 

Within the category of methods applied to internal feature selection, the cforest 

(0.166±0.009), penalized (0.171±0.012), ranger (0.173±0.007), and rfsrc 

(0.173±0.008) algorithms demonstrated the lowest mean integrated Brier score, 

whereas the svm algorithm (0.334±0.021) displayed the highest mean integrated Brier 

score. In the group of methods from the literature employing Boruta feature selection, 

penalized (0.168±0.015), ranger (0.173±0.011), coxboost (coxboost_B) 

(0.174±0.017), rfsrc (0.175±0.015) and cforest (cforest_B) (0.177±0.012) algorithms 

showcased the lowest mean integrated Brier score, while elasticnet (elasticnet_B) 

(0.413±0.162), svm (svm_B) (0.409±0.075), and lasso (lasso_B) (0.403±0.154) 

algorithms presented the highest mean integrated Brier score. It was noted that among 
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the voomStackLasso algorithms, the voomStackIPF2, voomStackIPF5, and 

voomStackIPF8 exhibited the lowest mean integrated Brier score for KIRC data, at 

0.178. This was followed by voomStackIPF3, voomStackIPF6, voomStackIPF9, at 

0.179. The voomStackPrio1 algorithm (0.193±0.029) displayed the highest mean 

integrated Brier score.  

Among the methods in the voomStackLasso algorithms, the mean number of 

selected features for KIRC data was the lowest (30.03±10.82). These were closely 

followed by the methods in the literature that utilized Boruta feature selection 

(30.47±10.31). In terms of internal feature selection methods, the algorithm exhibiting 

the lowest mean number of features was rpart (763.03±503.42), whereas the algorithm 

demonstrating the highest mean number of features was xgboost (with booster= 

“gblinear”) (1653.70±291.65). 

The concordance index, integrated Brier score, and the number of selected 

features for Kidney Renal Papillary Cell Carcinoma (KIRP) data are depicted in Figure 

4.6, with related summary statistics presented in Table 4.6. After examining both the 

graph and the table for KIRP data, it was observed that the rfsrc (rfsrc_B) algorithm, 

when applied to Boruta feature selection, achieved the highest mean concordance 

index at 0.818. This is followed by the blackboost (blackboost_B) algorithm, with 

Boruta feature selection applied, yielding a mean concordance index of 0.816. Among 

the methods employed for internal feature selection, the highest mean concordance 

indices were observed for lasso (0.805±0.075), elasticnet (0.804±0.068), and ranger 

(0.804±0.069). Conversely, the lowest mean concordance indices were attributed to 

ctree (0.719±0.103) and rpart (0.724±0.081) algorithms. In the group of methods from 

the literature employing Boruta feature selection, the rfsrc (rfsrc_B) (0.818±0.078), 

blackboost (blackboost_B) (0.816±0.072), and gbm (gbm_B) (0.812±0.074) 

algorithms demonstrated the highest mean concordance index, while the svm (svm_B) 

algorithm (0.607±0.261) exhibited the lowest mean concordance index. Among the 

voomStackLasso methods, the voomStackIPF7 algorithm (0.800±0.068) showed the 

highest mean concordance index, while the voomStackIPF6 algorithm (0.751±0.099) 

displayed the lowest mean concordance index. 

 It was noted that for KIRP data, the voomStackIPF8 algorithm attained the 

lowest mean integrated Brier score of 0.122. This was followed by voomStackIPF1  
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Figure 4.4. The concordance index, integrated Brier score, and the number of selected  

                   features for GBM. 
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Table 4.4. The summary statistics of concordance index, integrated Brier score and the number of features selected for GBM. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.561±0.047 0.552 (0.540-0.587) 0.458-0.657 0.283±0.256 0.134 (0.116-0.531) 0.081-0.780 987.83±529.60 910.50 (522.75-1400.25) 68-1990 

Cforest 0.593±0.052 0.594 (0.566-0.624) 0.441-0.690 0.113±0.020 0.115 (0.099-0.128) 0.068-0.148 891.90±601.21 819.50 (377.75-1354.00) 67-1941 

Coxboost 0.581±0.064 0.585 (0.531-0.625) 0.453-0.711 0.136±0.029 0.135 (0.121-0.160) 0.070-0.203 893.03±588.57 818.00 (290.25-1423.25) 16-1996 

Ctree 0.523±0.045 0.522 (0.491-0.559) 0.410-0.632 0.413±0.118 0.427 (0.362-0.499) 0.120-0.589 972.53±605.80 795.00 (516.50-1609.75) 41-1962 

Elasticnet 0.583±0.060 0.573 (0.543-0.622) 0.449-0.710 0.254±0.101 0.241 (0.206-0.299) 0.097-0.634 994.77±562.07 985.00 (446.00-1508.25) 130-2000 

Gbm 0.590±0.060 0.599 (0.561-0.630) 0.447-0.680 0.272±0.091 0.252 (0.205-0.339) 0.119-0.463 1121.17±545.80 1096.50 (734.00-1588.00) 40-1974 

Glmboost 0.568±0.050 0.568 (0.528-0.605) 0.469-0.658 0.501±0.277 0.649 (0.126-0.746) 0.083-0.794 742.83±522.26 709.50 (238.25-1121.25) 86-1764 

Lasso 0.582±0.052 0.572 (0.537-0.630) 0.495-0.682 0.259±0.135 0.235 (0.148-0.321) 0.099-0.704 987.37±533.94 926.50 (482.50-1549.25) 116-1898 

ObliqueRSF 0.543±0.056 0.541 (0.498-0.580) 0.453-0.684 0.129±0.032 0.132 (0.102-0.149) 0.064-0.197 798.77±543.87 861.50 (311.25-1098.25) 17-1966 

Penalized 0.585±0.056 0.591 (0.547-0.622) 0.461-0.679 0.115±0.022 0.115 (0.101-0.132) 0.067-0.155 866.83±502.49 774.00 (473.25-1287.00) 64-1775 

Ranger 0.600±0.045 0.598 (0.564-0.641) 0.513-0.662 0.127±0.019 0.126 (0.115-0.140) 0.073-0.162 647.80±478.69 476.50 (294.75-1021.75) 27-1722 

Rfsrc 0.581±0.050 0.576 (0.550-0.608) 0.476-0.712 0.126±0.027 0.123 (0.112-0.139) 0.073-0.218 792.90±608.56 632.00 (245.25-1351.25) 5-1927 

Ridge 0.578±0.051 0.585 (0.544-0.613) 0.455-0.652 0.201±0.073 0.190 (0.142-0.243) 0.100-0.343 839.80±545.74 814.50 (384.50-1093.75) 33-1864 

Rpart 0.544±0.050 0.546 (0.505-0.571) 0.439-0.670 0.165±0.036 0.169 (0.134-0.187) 0.096-0.234 869.53±474.88 804.00 (496.25-1350.50) 107-1853 

Svm 0.554±0.061 0.548 (0.509-0.594) 0.461-0.681 0.628±0.100 0.657 (0.583-0.695) 0.323-0.786 937.73±537.22 835.00 (600.50-1366.50) 45-1996 

Xgboost (dart) 0.564±0.048 0.570 (0.524-0.600) 0.452-0.673 0.174±0.040 0.170 (0.151-0.207) 0.093-0.240 1025.43±598.77 901.50 (491.25-1624.25) 90-1965 

Xgboost (gblinear) 0.555±0.051 0.569 (0.503-0.599) 0.449-0.625 0.153±0.032 0.157 (0.133-0.181) 0.088-0.207 1330.83±561.83 1486.00 (1047.25-1738.50) 2-1988 

Xgboost (gbtree) 0.567±0.057 0.573 (0.540-0.594) 0.403-0.675 0.170±0.041 0.165 (0.135-0.193) 0.100-0.271 908.07±466.79 911.00 (528.75-1334.25) 85-1690 

Models 

Boruta 

Blackboost 0.548±0.046 0.556 (0.524-0.576) 0.419-0.626 0.347±0.279 0.145 (0.120-0.700) 0.073-0.794 

7.87±3.16 7.00 (6.00-9.00) 3-16 

Cforest 0.571±0.043 0.569 (0.537-0.603) 0.494-0.663 0.127±0.024 0.122 (0.109-0.138) 0.094-0.214 

Coxboost 0.567±0.045 0.569 (0.546-0.600) 0.443-0.657 0.127±0.024 0.126 (0.109-0.147) 0.085-0.171 

Ctree 0.549±0.047 0.548 (0.515-0.587) 0.467-0.667 0.353±0.094 0.349 (0.280-0.409) 0.190-0.587 

Elasticnet 0.573±0.043 0.578 (0.551-0.599) 0.479-0.659 0.235±0.079 0.235 (0.178-0.289) 0.092-0.395 

Gbm 0.542±0.050 0.546 (0.514-0.575) 0.434-0.644 0.252±0.129 0.215 (0.166-0.304) 0.130-0.705 

Glmboost 0.565±0.041 0.565 (0.550-0.594) 0.453-0.636 0.397±0.286 0.390 (0.115-0.688) 0.082-0.780 

Lasso 0.577±0.040 0.578 (0.557-0.600) 0.479-0.664 0.234±0.080 0.234 (0.178-0.292) 0.099-0.377 

ObliqueRSF 0.528±0.068 0.525 (0.471-0.594) 0.378-0.641 0.137±0.024 0.138 (0.120-0.159) 0.087-0.179 

Penalized 0.572±0.040 0.567 (0.547-0.602) 0.486-0.654 0.117±0.020 0.120 (0.101-0.132) 0.073-0.152 

Ranger 0.557±0.041 0.551 (0.529-0.589) 0.489-0.680 0.129±0.019 0.131 (0.115-0.144) 0.086-0.162 

Rfsrc 0.546±0.044 0.543 (0.523-0.565) 0.457-0.680 0.138±0.036 0.129 (0.116-0.152) 0.083-0.242 

Ridge 0.569±0.039 0.575 (0.541-0.599) 0.491-0.646 0.122±0.025 0.119 (0.108-0.134) 0.069-0.189 

Rpart 0.543±0.049 0.542 (0.515-0.572) 0.436-0.648 0.165±0.039 0.159 (0.138-0.198) 0.097-0.253 

Svm 0.548±0.066 0.561 (0.511-0.596) 0.398-0.639 0.632±0.133 0.679 (0.522-0.731) 0.308-0.796 

Xgboost (dart) 0.530±0.047 0.525 (0.495-0.549) 0.455-0.651 0.190±0.041 0.186 (0.162-0.226) 0.119-0.270 

Xgboost (gblinear) 0.575±0.042 0.573 (0.542-0.605) 0.500-0.665 0.152±0.036 0.149 (0.118-0.184) 0.105-0.213 

Xgboost (gbtree) 0.535±0.047 0.539 (0.500-0.566) 0.441-0.645 0.188±0.045 0.182 (0.156-0.214) 0.105-0.272 

MLSeqSurv 

voomStackPrio1 0.576±0.042 0.586 (0.554-0.607) 0.469-0.649 0.161±0.031 0.158 (0.133-0.183) 0.106-0.236 

7.90±4.07 7.00 (4.75-10.00) 2-21 

voomStackPrio2 0.569±0.045 0.566 (0.552-0.593) 0.455-0.654 0.153±0.021 0.154 (0.136-0.166) 0.109-0.193 

voomStackIPF1 0.579±0.034 0.581 (0.553-0.605) 0.505-0.643 0.150±0.017 0.152 (0.136-0.160) 0.112-0.190 

voomStackIPF2 0.572±0.042 0.567 (0.552-0.605) 0.467-0.632 0.150±0.017 0.147 (0.140-0.163) 0.116-0.191 

voomStackIPF3 0.570±0.042 0.565 (0.549-0.605) 0.467-0.642 0.150±0.017 0.148 (0.141-0.163) 0.115-0.191 

voomStackIPF4 0.557±0.110 0.575 (0.547-0.601) 0.000-0.641 0.150±0.017 0.152 (0.136-0.160) 0.112-0.190 

voomStackIPF5 0.572±0.046 0.565 (0.549-0.613) 0.463-0.663 0.149±0.017 0.147 (0.136-0.161) 0.116-0.191 

voomStackIPF6 0.572±0.046 0.564 (0.547-0.613) 0.463-0.665 0.149±0.017 0.148 (0.136-0.161) 0.115-0.191 

voomStackIPF7 0.541±0.151 0.581 (0.544-0.602) 0.000-0.643 0.150±0.017 0.152 (0.136-0.160) 0.112-0.190 

voomStackIPF8 0.571±0.041 0.567 (0.547-0.602) 0.470-0.632 0.151±0.017 0.149 (0.141-0.163) 0.116-0.191 

voomStackIPF9 0.571±0.042 0.568 (0.551-0.602) 0.470-0.642 0.151±0.017 0.150 (0.141-0.163) 0.115-0.191 
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(0.125±0.018) and voomStackIPF7 (0.125±0.018). The voomStackPrio1 algorithm 

(0.189±0.087) displayed the highest mean integrated Brier score. Within the category 

of methods applied to internal feature selection, the penalized (0.140±0.022), cforest 

(0.142±0.022), and ranger (0.143±0.017) algorithms demonstrated the lowest mean 

integrated Brier score, whereas the elasticnet algorithm (0.606±0.162) displayed the 

highest mean integrated Brier score. In the category of methods from the literature 

utilizing Boruta feature selection, the penalized (penalized_B) and ranger (ranger_B) 

algorithms showcased the lowest mean integrated Brier score at 0.146, while elasticnet 

(elasticnet_B) (0.670±0.060) and lasso (lasso_B) (0.657±0.104) algorithms presented 

the highest mean integrated Brier score. 

Among the methods in the literature that applied Boruta feature selection, the 

mean number of selected features for KIRP data was the lowest (34.40±6.41). These 

were closely followed by the voomStackLasso algorithms (38.90±8.30). In terms of 

internal feature selection methods, the algorithm with the lowest mean number of 

features was rpart (771.13±591.05), while the algorithm with the highest mean number 

of features was xgboost (with booster= “gblinear”) (1485.13±534.78). 

The concordance index, integrated Brier score, and the number of selected 

features for Acute Myeloid Leukemia (LAML) data are depicted in Figure 4.7, with 

related summary statistics presented in Table 4.7. After examining both the graph and 

the table for LAML data, it was observed that the coxboost and rfsrc algorithms, when 

applied to internal feature selection, achieved the highest mean concordance index at 

0.667. This is followed by the elasticnet (0.664±0.065), lasso (0.664±0.070), cforest 

(0.662±0.063), ranger (0.662±0.055), and ridge (0.660±0.059) algorithms, where 

internal feature selection was applied, resulting in a mean concordance index. 

Meanwhile, the ctree algorithm (0.554±0.052) exhibited the lowest mean concordance 

index. Among the voomStackLasso methods, the voomStackIPF7 algorithm 

(0.640±0.052) showed the highest mean concordance index, while the voomStackIPF6 

algorithm (0.592±0.086) displayed the lowest mean concordance index. In the group 

of methods from the literature employing Boruta feature selection, the ranger 

(ranger_B) (0.629±0.048) and rfsrc (rfsrc_B) (0.622±0.058) algorithms demonstrated 

the highest mean concordance index, while the svm (svm_B) algorithm (0.527±0.085) 

exhibited the lowest mean concordance index.  
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Figure 4.5. The concordance index, integrated Brier score, and the number of selected  

                   features for KIRC. 
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Table 4.5. The summary statistics of concordance index, integrated Brier score and the number of features selected for KIRC. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.705±0.033 0.708 (0.687-0.721) 0.634-0.769 0.255±0.081 0.203 (0.197-0.359) 0.193-0.413 905.80±471.27 887.50 (459.25-1327.25) 91-1604 

Cforest 0.717±0.036 0.722 (0.696-0.740) 0.647-0.802 0.166±0.009 0.165 (0.159-0.171) 0.150-0.187 1086.53±587.94 1175.00 (425.50-1635.50) 125-1983 

Coxboost 0.688±0.032 0.685 (0.663-0.715) 0.638-0.759 0.180±0.021 0.178 (0.166-0.193) 0.151-0.234 1047.83±502.49 1135.00 (650.25-1411.00) 21-1879 

Ctree 0.624±0.031 0.617 (0.603-0.654) 0.567-0.674 0.279±0.034 0.283 (0.261-0.301) 0.206-0.344 783.13±511.44 746.00 (315.00-1194.75) 89-1781 

Elasticnet 0.697±0.034 0.688 (0.672-0.729) 0.629-0.772 0.254±0.096 0.217 (0.185-0.297) 0.163-0.531 1194.97±537.78 1165.50 (720.25-1634.00) 95-1992 

Gbm 0.686±0.032 0.689 (0.660-0.711) 0.627-0.754 0.308±0.048 0.305 (0.266-0.348) 0.222-0.397 960.50±509.20 835.50 (528.00-1380.00) 139-1928 

Glmboost 0.684±0.033 0.677 (0.657-0.707) 0.640-0.755 0.270±0.086 0.197 (0.189-0.364) 0.187-0.374 882.87±495.71 729.50 (570.00-1396.50) 84-1627 

Lasso 0.689±0.044 0.690 (0.667-0.707) 0.577-0.783 0.288±0.104 0.271 (0.206-0.342) 0.166-0.595 984.90±615.60 1035.00 (338.25-1535.50) 2-1984 

ObliqueRSF 0.674±0.038 0.681 (0.645-0.703) 0.608-0.761 0.191±0.024 0.189 (0.179-0.200) 0.152-0.269 1111.73±581.12 1250.50 (606.00-1611.25) 152-1996 

Penalized 0.701±0.037 0.704 (0.683-0.723) 0.627-0.789 0.171±0.012 0.167 (0.161-0.178) 0.153-0.198 929.70±563.54 876.50 (426.75-1469.25) 91-1797 

Ranger 0.717±0.034 0.720 (0.700-0.742) 0.637-0.804 0.173±0.007 0.172 (0.169-0.177) 0.158-0.188 863.50±557.10 814.50 (329.50-1401.50) 44-1761 

Rfsrc 0.708±0.034 0.714 (0.692-0.731) 0.636-0.784 0.173±0.008 0.173 (0.165-0.178) 0.162-0.194 1000.00±625.51 929.50 (470.00-1638.50) 63-1948 

Ridge 0.707±0.034 0.705 (0.688-0.726) 0.639-0.772 0.197±0.041 0.185 (0.175-0.202) 0.154-0.364 1049.70±496.30 988.50 (674.25-1498.75) 328-1896 

Rpart 0.635±0.034 0.632 (0.614-0.654) 0.559-0.705 0.284±0.024 0.285 (0.269-0.299) 0.235-0.347 763.03±503.42 653.50 (362.50-1174.50) 102-1813 

Svm 0.655±0.032 0.653 (0.630-0.674) 0.603-0.719 0.334±0.021 0.333 (0.315-0.351) 0.297-0.377 1367.20±484.02 1405.50 (997.25-1850.75) 468-1986 

Xgboost (dart) 0.673±0.034 0.673 (0.650-0.693) 0.605-0.740 0.218±0.024 0.218 (0.203-0.232) 0.174-0.295 1131.07±608.32 1282.00 (583.75-1673.75) 167-1985 

Xgboost (gblinear) 0.696±0.039 0.695 (0.661-0.722) 0.618-0.792 0.204±0.021 0.201 (0.189-0.227) 0.155-0.240 1653.70±291.65 1649.50 (1536.50-1904.50) 857-1986 

Xgboost (gbtree) 0.670±0.042 0.674 (0.636-0.697) 0.589-0.763 0.216±0.025 0.211 (0.195-0.240) 0.180-0.265 1050.07±558.69 1058.50 (705.75-1524.00) 34-1907 

Models 

Boruta 

Blackboost 0.681±0.036 0.687 (0.652-0.708) 0.608-0.751 0.297±0.085 0.352 (0.197-0.369) 0.190-0.392 

30.47±10.31 28.00 (24.50-36.25) 12-55 

Cforest 0.693±0.030 0.693 (0.669-0.712) 0.644-0.756 0.177±0.012 0.175 (0.169-0.184) 0.158-0.210 

Coxboost 0.673±0.034 0.673 (0.648-0.700) 0.603-0.748 0.174±0.017 0.171 (0.160-0.186) 0.152-0.210 

Ctree 0.631±0.032 0.633 (0.607-0.651) 0.572-0.722 0.288±0.022 0.292 (0.270-0.304) 0.247-0.335 

Elasticnet 0.686±0.032 0.689 (0.665-0.709) 0.615-0.744 0.413±0.162 0.427 (0.237-0.567) 0.169-0.617 

Gbm 0.658±0.026 0.661 (0.640-0.676) 0.606-0.721 0.274±0.047 0.270 (0.233-0.322) 0.210-0.367 

Glmboost 0.683±0.031 0.682 (0.660-0.701) 0.628-0.750 0.348±0.055 0.364 (0.354-0.371) 0.189-0.412 

Lasso 0.685±0.030 0.690 (0.666-0.702) 0.617-0.747 0.403±0.154 0.416 (0.252-0.556) 0.164-0.626 

ObliqueRSF 0.658±0.041 0.659 (0.619-0.689) 0.585-0.731 0.196±0.022 0.197 (0.176-0.208) 0.157-0.243 

Penalized 0.689±0.036 0.687 (0.662-0.713) 0.626-0.772 0.168±0.015 0.167 (0.156-0.174) 0.148-0.197 

Ranger 0.693±0.031 0.699 (0.668-0.716) 0.632-0.758 0.173±0.011 0.174 (0.166-0.179) 0.153-0.195 

Rfsrc 0.683±0.030 0.686 (0.651-0.705) 0.637-0.744 0.175±0.015 0.172 (0.164-0.181) 0.152-0.219 

Ridge 0.690±0.035 0.685 (0.665-0.713) 0.626-0.774 0.234±0.077 0.203 (0.196-0.225) 0.188-0.534 

Rpart 0.630±0.041 0.626 (0.602-0.649) 0.560-0.758 0.289±0.035 0.285 (0.274-0.306) 0.211-0.387 

Svm 0.601±0.076 0.623 (0.553-0.663) 0.386-0.697 0.409±0.075 0.373 (0.361-0.467) 0.334-0.617 

Xgboost (dart) 0.653±0.032 0.651 (0.632-0.676) 0.600-0.715 0.221±0.029 0.213 (0.200-0.240) 0.175-0.304 

Xgboost (gblinear) 0.657±0.082 0.681 (0.632-0.707) 0.500-0.780 0.216±0.021 0.221 (0.196-0.232) 0.181-0.248 

Xgboost (gbtree) 0.659±0.032 0.660 (0.648-0.675) 0.561-0.751 0.222±0.022 0.220 (0.201-0.237) 0.191-0.270 

MLSeqSurv 

voomStackPrio1 0.675±0.035 0.681 (0.654-0.702) 0.584-0.725 0.193±0.029 0.183 (0.176-0.199) 0.159-0.284 

30.03±10.82 28.50 (21.25-38.75) 15-52 

voomStackPrio2 0.663±0.043 0.669 (0.628-0.688) 0.536-0.727 0.185±0.010 0.186 (0.178-0.192) 0.160-0.206 

voomStackIPF1 0.684±0.036 0.685 (0.658-0.710) 0.614-0.767 0.181±0.015 0.176 (0.170-0.198) 0.157-0.209 

voomStackIPF2 0.676±0.034 0.682 (0.661-0.703) 0.591-0.730 0.178±0.011 0.176 (0.172-0.187) 0.159-0.200 

voomStackIPF3 0.674±0.034 0.679 (0.662-0.703) 0.592-0.726 0.179±0.011 0.176 (0.172-0.185) 0.159-0.202 

voomStackIPF4 0.684±0.036 0.685 (0.656-0.708) 0.614-0.766 0.181±0.015 0.176 (0.170-0.198) 0.157-0.209 

voomStackIPF5 0.677±0.034 0.682 (0.661-0.705) 0.591-0.730 0.178±0.011 0.176 (0.172-0.187) 0.157-0.200 

voomStackIPF6 0.675±0.034 0.679 (0.662-0.704) 0.592-0.726 0.179±0.011 0.176 (0.172-0.185) 0.157-0.202 

voomStackIPF7 0.684±0.036 0.686 (0.658-0.713) 0.614-0.768 0.181±0.015 0.176 (0.170-0.198) 0.157-0.209 

voomStackIPF8 0.676±0.034 0.682 (0.661-0.703) 0.591-0.730 0.178±0.011 0.176 (0.172-0.187) 0.159-0.200 

voomStackIPF9 0.674±0.034 0.679 (0.662-0.703) 0.592-0.726 0.179±0.011 0.176 (0.172-0.185) 0.159-0.202 
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Figure 4.6. The concordance index, integrated Brier score, and the number of selected  

                   features for KIRP. 
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Table 4.6. The summary statistics of concordance index, integrated Brier score and the number of features selected for KIRP. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.787±0.070 0.785 (0.735-0.825) 0.631-0.927 0.218±0.046 0.222 (0.179-0.253) 0.143-0.307 1110.47±482.44 1139.50 (709.00-1459.75) 50-1954 

Cforest 0.791±0.072 0.805 (0.739-0.851) 0.659-0.905 0.142±0.022 0.137 (0.128-0.150) 0.113-0.224 846.97±531.93 793.00 (352.00-1186.25) 79-1965 

Coxboost 0.812±0.071 0.835 (0.778-0.859) 0.619-0.893 0.174±0.059 0.173 (0.127-0.197) 0.085-0.321 987.37±469.36 1050.00 (492.50-1340.25) 220-1848 

Ctree 0.719±0.103 0.727 (0.618-0.800) 0.518-0.918 0.199±0.058 0.186 (0.164-0.228) 0.113-0.388 927.80±573.74 794.00 (373.75-1562.25) 100-1916 

Elasticnet 0.804±0.068 0.804 (0.768-0.855) 0.632-0.910 0.606±0.162 0.661 (0.586-0.703) 0.138-0.762 1124.47±524.04 1057.00 (716.25-1684.75) 215-1952 

Gbm 0.797±0.069 0.802 (0.752-0.857) 0.623-0.914 0.282±0.129 0.239 (0.207-0.348) 0.112-0.635 1057.20±519.82 1000.00 (560.75-1523.25) 234-1940 

Glmboost 0.788±0.075 0.789 (0.738-0.846) 0.603-0.910 0.228±0.043 0.232 (0.197-0.253) 0.154-0.339 1245.53±582.77 1189.00 (728.50-1802.00) 119-2000 

Lasso 0.805±0.075 0.813 (0.752-0.858) 0.624-0.927 0.590±0.186 0.670 (0.560-0.707) 0.143-0.762 1053.20±642.58 1229.00 (442.00-1624.75) 23-1997 

ObliqueRSF 0.764±0.087 0.799 (0.684-0.812) 0.574-0.909 0.161±0.036 0.154 (0.137-0.179) 0.106-0.260 957.30±580.57 940.50 (452.50-1431.25) 107-1972 

Penalized 0.774±0.076 0.774 (0.727-0.828) 0.583-0.912 0.140±0.022 0.142 (0.122-0.153) 0.098-0.181 1048.40±526.04 1094.50 (572.50-1486.00) 205-1990 

Ranger 0.804±0.069 0.798 (0.755-0.853) 0.681-0.939 0.143±0.017 0.139 (0.132-0.153) 0.113-0.192 1176.30±550.23 1286.50 (741.50-1738.50) 41-1898 

Rfsrc 0.787±0.077 0.787 (0.735-0.833) 0.618-0.930 0.149±0.022 0.145 (0.134-0.159) 0.113-0.198 1227.97±502.89 1278.50 (819.25-1637.00) 155-1980 

Ridge 0.788±0.078 0.786 (0.729-0.843) 0.642-0.912 0.248±0.145 0.182 (0.152-0.273) 0.128-0.622 1022.23±567.98 1018.50 (495.50-1565.75) 153-1861 

Rpart 0.724±0.081 0.717 (0.678-0.774) 0.524-0.898 0.232±0.057 0.223 (0.190-0.286) 0.133-0.346 771.13±591.05 633.00 (296.75-1080.00) 41-1912 

Svm 0.747±0.077 0.764 (0.688-0.806) 0.542-0.888 0.220±0.036 0.216 (0.199-0.238) 0.162-0.303 1250.50±509.73 1347.00 (738.50-1715.00) 208-1935 

Xgboost (dart) 0.782±0.090 0.790 (0.715-0.857) 0.580-0.918 0.170±0.050 0.159 (0.135-0.184) 0.100-0.332 1020.50±553.27 865.50 (606.75-1544.00) 99-1947 

Xgboost (gblinear) 0.761±0.117 0.788 (0.683-0.842) 0.500-0.928 0.167±0.026 0.164 (0.152-0.183) 0.110-0.223 1485.13±534.78 1644.50 (1323.00-1883.00) 11-1999 

Xgboost (gbtree) 0.785±0.074 0.791 (0.742-0.847) 0.637-0.929 0.162±0.039 0.161 (0.131-0.183) 0.104-0.242 1007.60±605.46 884.00 (493.00-1598.75) 100-1996 

Models 

Boruta 

Blackboost 0.816±0.072 0.837 (0.770-0.860) 0.629-0.907 0.218±0.049 0.216 (0.166-0.250) 0.142-0.339 

34.40±6.41 34.00 (31.00-37.50) 22-50 

Cforest 0.797±0.087 0.802 (0.731-0.868) 0.606-0.917 0.153±0.033 0.154 (0.127-0.175) 0.094-0.244 

Coxboost 0.795±0.070 0.796 (0.749-0.842) 0.632-0.914 0.167±0.054 0.148 (0.131-0.188) 0.102-0.327 

Ctree 0.754±0.092 0.754 (0.692-0.837) 0.574-0.895 0.214±0.067 0.197 (0.174-0.228) 0.123-0.419 

Elasticnet 0.802±0.068 0.815 (0.760-0.844) 0.655-0.917 0.670±0.060 0.683 (0.628-0.712) 0.548-0.762 

Gbm 0.812±0.074 0.832 (0.742-0.870) 0.671-0.917 0.310±0.143 0.273 (0.186-0.421) 0.108-0.596 

Glmboost 0.799±0.059 0.809 (0.770-0.841) 0.670-0.889 0.218±0.046 0.222 (0.184-0.248) 0.126-0.307 

Lasso 0.799±0.074 0.805 (0.767-0.844) 0.624-0.921 0.657±0.104 0.684 (0.624-0.712) 0.199-0.762 

ObliqueRSF 0.789±0.069 0.792 (0.749-0.835) 0.640-0.930 0.162±0.053 0.148 (0.134-0.170) 0.105-0.379 

Penalized 0.804±0.074 0.801 (0.768-0.862) 0.614-0.920 0.146±0.046 0.133 (0.115-0.160) 0.085-0.238 

Ranger 0.803±0.083 0.823 (0.745-0.868) 0.632-0.942 0.146±0.033 0.142 (0.127-0.159) 0.101-0.245 

Rfsrc 0.818±0.078 0.844 (0.762-0.868) 0.619-0.926 0.149±0.035 0.139 (0.127-0.172) 0.097-0.263 

Ridge 0.805±0.082 0.804 (0.766-0.867) 0.616-0.946 0.226±0.126 0.174 (0.157-0.221) 0.145-0.630 

Rpart 0.741±0.079 0.755 (0.681-0.796) 0.574-0.858 0.224±0.057 0.206 (0.183-0.258) 0.138-0.368 

Svm 0.607±0.261 0.717 (0.291-0.807) 0.166-0.920 0.300±0.135 0.225 (0.212-0.412) 0.136-0.602 

Xgboost (dart) 0.797±0.082 0.807 (0.736-0.865) 0.595-0.913 0.167±0.048 0.166 (0.139-0.188) 0.080-0.333 

Xgboost (gblinear) 0.725±0.135 0.754 (0.662-0.823) 0.500-0.918 0.164±0.024 0.167 (0.145-0.182) 0.121-0.224 

Xgboost (gbtree) 0.791±0.080 0.820 (0.715-0.844) 0.641-0.937 0.172±0.046 0.163 (0.140-0.192) 0.113-0.308 

MLSeqSurv 

voomStackPrio1 0.774±0.062 0.779 (0.721-0.817) 0.664-0.890 0.189±0.087 0.152 (0.119-0.232) 0.098-0.402 

38.90±8.30 38.00 (33.00-43.00) 23-62 

voomStackPrio2 0.764±0.075 0.775 (0.719-0.811) 0.599-0.896 0.131±0.017 0.129 (0.118-0.140) 0.109-0.177 

voomStackIPF1 0.799±0.068 0.801 (0.786-0.848) 0.606-0.895 0.125±0.018 0.125 (0.113-0.139) 0.069-0.159 

voomStackIPF2 0.773±0.065 0.778 (0.749-0.809) 0.603-0.888 0.127±0.028 0.120 (0.109-0.141) 0.083-0.212 

voomStackIPF3 0.759±0.095 0.775 (0.756-0.801) 0.413-0.891 0.133±0.043 0.118 (0.110-0.143) 0.086-0.283 

voomStackIPF4 0.799±0.068 0.801 (0.785-0.848) 0.616-0.908 0.127±0.016 0.128 (0.113-0.143) 0.091-0.153 

voomStackIPF5 0.769±0.066 0.778 (0.746-0.799) 0.591-0.888 0.128±0.029 0.120 (0.110-0.141) 0.085-0.222 

voomStackIPF6 0.751±0.099 0.775 (0.713-0.793) 0.413-0.891 0.133±0.042 0.120 (0.110-0.143) 0.087-0.267 

voomStackIPF7 0.800±0.068 0.802 (0.786-0.847) 0.616-0.908 0.125±0.018 0.126 (0.113-0.139) 0.069-0.152 

voomStackIPF8 0.780±0.058 0.783 (0.758-0.817) 0.637-0.888 0.122±0.021 0.119 (0.109-0.135) 0.083-0.183 

voomStackIPF9 0.755±0.097 0.775 (0.742-0.801) 0.417-0.891 0.134±0.042 0.120 (0.110-0.144) 0.085-0.272 
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Figure 4.7. The concordance index, integrated Brier score, and the number of selected  

                   features for LAML. 
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Table 4.7. The summary statistics of concordance index, integrated Brier score and the number of features selected for LAML. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.619±0.065 0.609 (0.589-0.671) 0.505-0.730 0.342±0.195 0.209 (0.196-0.559) 0.177-0.709 889.20±530.61 828.00 (418.25-1385.50) 157-1882 

Cforest 0.662±0.063 0.674 (0.624-0.717) 0.523-0.794 0. 177±0.018 0.177 (0.165-0.190) 0.134-0.211 1164.33±539.96 1193.00 (746.25-1649.00) 92-1935 

Coxboost 0.667±0.065 0.680 (0.610-0.713) 0.515-0.773 0.209±0.032 0.217 (0.184-0.232) 0.152-0.269 884.80±443.94 842.00 (578.00-1121.00) 231-1958 

Ctree 0.554±0.052 0.556 (0.506-0.611) 0.460-0.627 0.314±0.075 0.310 (0.270-0.358) 0.162-0.513 881.20±533.52 896.00 (369.25-1336.00) 13-1930 

Elasticnet 0.664±0.065 0.654 (0.619-0.715) 0.513-0.822 0.350±0.095 0.365 (0.286-0.400) 0.196-0.611 1009.83±485.65 952.50 (611.25-1428.75) 192-1858 

Gbm 0.654±0.062 0.661 (0.590-0.700) 0.542-0.747 0.252±0.052 0.237 (0.223-0.303) 0.146-0.333 978.97±478.17 876.50 (616.75-1363.00) 267-1930 

Glmboost 0.630±0.066 0.639 (0.578-0.684) 0.486-0.755 0.376±0.212 0.206 (0.194-0.611) 0.173-0.709 874.33±498.00 908.50 (452.25-1281.00 ) 140-1875 

Lasso 0.664±0.070 0.671 (0.608-0.724) 0.529-0.793 0.355±0.122 0.382 (0.239-0.423) 0.136-0.611 1116.03±531.38 1120.50 (627.50-1552.50) 64-1976 

ObliqueRSF 0.620±0.078 0.630 (0.569-0.671) 0.421-0.792 0.208±0.041 0.204 (0.179-0.227) 0.140-0.306 1256.43±530.96 1295.00 (858.50-1739.25) 21-1992 

Penalized 0.652±0.069 0.660 (0.619-0.696) 0.490-0.796 0.180±0.019 0.178 (0.165-0.197) 0.145-0.212 1052.33±533.10 1143.50 (567.25-1517.75) 225-1975 

Ranger 0.662±0.055 0.665 (0.626-0.697) 0.555-0.815 0.183±0.011 0.187 (0.173-0.190) 0.160-0.206 892.47±564.06 813.50 (398.75-1316.75) 29-1985 

Rfsrc 0.667±0.057 0.679 (0.645-0.700) 0.536-0.790 0.182±0.015 0.184 (0.171-0.188) 0.148-0.228 872.00±562.09 739.00 (416.75-1275.75) 54-1935 

Ridge 0.660±0.059 0.678 (0.618-0.702) 0.529-0.749 0.275±0.073 0.274 (0.205-0.333) 0.184-0.434 922.30±550.44 935.50 (430.00-1347.00) 92-1909 

Rpart 0.592±0.074 0.605 (0.555-0.642) 0.431-0.722 0.260±0.045 0.260 (0.235-0.286) 0.170-0.363 1044.33±586.72 906.50 (535.25-1625.00) 124-1989 

Svm 0.653±0.062 0.653 (0.604-0.706) 0.540-0.760 0.512±0.066 0.513 (0.473-0.557) 0.359-0.639 965.67±501.62 900.00 (542.75-1355.25) 49-1890 

Xgboost (dart) 0.613±0.053 0.619 (0.583-0.646) 0.496-0.713 0.248±0.047 0.240 (0.210-0.289) 0.173-0.342 852.30±613.65 716.50 (338.00-1438.75) 27-1896 

Xgboost (gblinear) 0.648±0.064 0.651 (0.616-0.710) 0.522-0.745 0.208±0.026 0.208 (0.192-0.224) 0.170-0.274 911.23±558.30 741.50 (481.75-1469.25) 99-1845 

Xgboost (gbtree) 0.604±0.059 0.601 (0.577-0.647) 0.458-0.718 0.247±0.046 0.253 (0.210-0.284) 0.133-0.333 927.73±658.62 864.00 (228.75-1500.50) 25-1956 

Models 

Boruta 

Blackboost 0.606±0.058 0.616 (0.565-0.644) 0.456-0.702 0.367±0.202 0.205 (0.200-0.589) 0.151-0.656 

21.00±8.28 21.50 (14.00-26.25) 7-44 

Cforest 0.618±0.053 0.617 (0.578-0.658) 0.513-0.719 0.182±0.021 0.187 (0.170-0.193) 0.117-0.214 

Coxboost 0.619±0.051 0.621 (0.583-0.655) 0.530-0.734 0.209±0.035 0.206 (0.181-0.234) 0.125-0.291 

Ctree 0.571±0.059 0.580 (0.525-0.603) 0.449-0.692 0.301±0.052 0.298 (0.267-0.337) 0.207-0.414 

Elasticnet 0.616±0.048 0.620 (0.582-0.657) 0.520-0.690 0.353±0.116 0.375 (0.240-0.421) 0.168-0.610 

Gbm 0.618±0.054 0.621 (0.584-0.650) 0.487-0.735 0.278±0.077 0.273 (0.209-0.339) 0.180-0.534 

Glmboost 0.617±0.045 0.621 (0.575-0.653) 0.525-0.681 0.435±0.204 0.557 (0.199-0.610) 0.170-0.708 

Lasso 0.617±0.052 0.623 (0.580-0.661) 0.501-0.690 0.354±0.099 0.370 (0.273-0.425) 0.162-0.543 

ObliqueRSF 0.603±0.066 0.613 (0.543-0.654) 0.497-0.758 0.215±0.046 0.204 (0.183-0.228) 0.162-0.352 

Penalized 0.617±0.047 0.627 (0.591-0.654) 0.524-0.696 0.186±0.023 0.189 (0.168-0.205) 0.130-0.220 

Ranger 0.629±0.048 0.631 (0.603-0.668) 0.531-0.719 0.183±0.017 0.186 (0.171-0.196) 0.135-0.213 

Rfsrc 0.622±0.058 0.626 (0.589-0.651) 0.464-0.743 0.193±0.030 0.194 (0.170-0.202) 0.131-0.267 

Ridge 0.618±0.048 0.623 (0.581-0.653) 0.527-0.716 0.203±0.017 0.205 (0.194-0.214) 0.155-0.234 

Rpart 0.582±0.057 0.583 (0.538-0.621) 0.484-0.688 0.260±0.038 0.262 (0.242-0.279) 0.166-0.343 

Svm 0.527±0.085 0.529 (0.457-0.599) 0.392-0.688 0.543±0.070 0.544 (0.500-0.583) 0.411-0.704 

Xgboost (dart) 0.607±0.067 0.610 (0.565-0.668) 0.472-0.704 0.261±0.043 0.270 (0.228-0.284) 0.171-0.343 

Xgboost (gblinear) 0.604±0.058 0.616 (0.572-0.652) 0.484-0.733 0.229±0.026 0.231 (0.207-0.252) 0.186-0.276 

Xgboost (gbtree) 0.613±0.057 0.615 (0.575-0.648) 0.486-0.709 0.252±0.046 0.256 (0.228-0.281) 0.149-0.357 

MLSeqSurv 

voomStackPrio1 0.615±0.057 0.621 (0.560-0.668) 0.503-0.697 0.209±0.030 0.211 (0.184-0.235) 0.150-0.261 

21.87±7.14 21.00 (17.00-27.50) 7-34 

voomStackPrio2 0.618±0.058 0.625 (0.577-0.661) 0.500-0.736 0.196±0.019 0.196 (0.182-0.212) 0.162-0.231 

voomStackIPF1 0.638±0.051 0.656 (0.656-0.674) 0.534-0.707 0.197±0.014 0.199 (0.185-0.209) 0.162-0.213 

voomStackIPF2 0.611±0.074 0.617 (0.572-0.666) 0.410-0.732 0.195±0.022 0.193 (0.181-0.204) 0.155-0.267 

voomStackIPF3 0.604±0.085 0.615 (0.565-0.662) 0.317-0.727 0.196±0.023 0.194 (0.181-0.205) 0.156-0.269 

voomStackIPF4 0.639±0.052 0.660 (0.603-0.675) 0.527-0.707 0.198±0.012 0.198 (0.186-0.209) 0.174-0.216 

voomStackIPF5 0.606±0.074 0.604 (0.562-0.666) 0.417-0.732 0.195±0.021 0.193 (0.182-0.200) 0.155-0.257 

voomStackIPF6 0.592±0.086 0.591 (0.565-0.653) 0.324-0.727 0.196±0.022 0.193 (0.182-0.202) 0.156-0.263 

voomStackIPF7 0.640±0.052 0.660 (0.604-0.675) 0.534-0.711 0.197±0.014 0.199 (0.183-0.209) 0.162-0.214 

voomStackIPF8 0.617±0.062 0.617 (0.574-0.666) 0.506-0.732 0.195±0.018 0.193 (0.183-0.204) 0.155-0.242 

voomStackIPF9 0.607±0.081 0.615 (0.566-0.662) 0.321-0.727 0.195±0.020 0.194 (0.181-0.205) 0.156-0.239 
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It was noted that for LAML data, the cforest algorithm, when employed for 

internal feature selection, achieved the lowest mean integrated Brier score of 0.177. 

This was followed by penalized (0.180±0.019), rfsrc (0.182±0.015), and 

ranger(0.183±0.011) algorithms, all with internal feature selection. Meanwhile, the 

svm algorithm exhibited the highest score (0.512±0.066). In the category of methods 

from the literature utilizing Boruta feature selection, cforest (cforest_B) (0.182±0.021) 

and ranger (ranger_B) (0.183±0.017) algorithms showcased the lowest mean 

integrated Brier score, while svm (svm_B) (0.543±0.070) and glmboost (glmboost_B) 

(0.435±0.204) algorithms presented the highest mean integrated Brier score. The 

voomStackIPF2, voomStackIPF5, voomStackIPF8, and voomStackIPF9  algorithms 

displayed the lowest mean integrated Brier score, at 0.195. Meanwhile, the 

voomStackPrio1 algorithm (0.209±0.030) displayed the highest mean integrated Brier 

score. 

Among the methods in the literature that applied Boruta feature selection, the 

mean number of selected features for LAML data was the lowest (21.00±8.28). These 

were closely followed by the voomStackLasso algorithms (21.87±7.14). In terms of 

internal feature selection methods, the algorithm with the lowest mean number of 

features was xgboost with dart (852.30±613.65), while the algorithm with the highest 

mean number of features was obliqueRSF (1256.43±530.96). 

The concordance index, integrated Brier score, and the number of selected 

features for Brain Lower Grade Glioma (LGG) data are depicted in Figure 4.8, with 

related summary statistics presented in Table 4.8. After examining both the graph and 

the table for LGG data, it was observed that coxboost, when applied to internal feature 

selection, achieved the highest mean concordance index at 0.833. This is followed by 

the glmboost algorithm (0.832±0.043), with internal feature selection applied, yielding 

a mean concordance index. The ctree (0.759±0.046) and rpart (0.769±0.038) 

algorithms exhibited the lowest mean concordance index. In the category of methods 

from the literature utilizing Boruta feature selection, the glmboost (glmboost_B) 

(0.832±0.032), elasticnet (elasticnet_B) (0.826±0.035), and lasso (lasso_B) 

(0.825±0.037) algorithms demonstrated the highest mean concordance index, while 

the svm(svm_B) algorithm (0.732±0.126) exhibited the lowest mean  concordance 

index. Among the voomStackLasso methods, the voomStackIPF1 (0.817±0.038), 

voomStackIPF4 (0.816±0.038), and voomStackIPF7 (0.817±0.038) algorithms  
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Figure 4.8. The concordance index, integrated Brier score, and the number of selected  

                   features for LGG. 
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Table 4.8. The summary statistics of concordance index, integrated Brier score and the number of features selected for LGG. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.814±0.032 0.812 (0.793-0.835) 0.745-0.880 0.434±0.139 0.492 (0.422-0.526) 0.167-0.587 984.33±524.46 918.50 (544.00-1381.00) 21-1999 

Cforest 0.817±0.037 0.818 (0.788-0.847) 0.736-0.872 0.189±0.037 0.182 (0.162-0.203) 0.145-0.313 989.97±543.63 975.00 (598.00-1408.50) 87-1992 

Coxboost 0.833±0.030 0.841 (0.810-0.859) 0.769-0.874 0.151±0.028 0.153 (0.129-0.167) 0.094-0.225 1153.07±525.55 1219.50 (716.75-1548.00) 152-1973 

Ctree 0.759±0.046 0.769 (0.738-0.790) 0.645-0.833 0.377±0.076 0.395 (0.303-0.432) 0.197-0.514 852.27±586.12 655.50 (414.00-1389.00) 71-1892 

Elasticnet 0.823±0.037 0.832 (0.788-0.854) 0.732-0.874 0.411±0.104 0.438 (0.330-0.488) 0.163-0.570 864.73±540.15 799.50 (378.75-1328.25) 41-1790 

Gbm 0.821±0.027 0.826 (0.809-0.839) 0.768-0.882 0.309±0.084 0.286 (0.248-0.378) 0.173-0.469 924.47±559.52 839.50 (371.50-1314.00) 209-1998 

Glmboost 0.832±0.043 0.842 (0.808-0.858) 0.701-0.900 0.480±0.091 0.501 (0.455-0.527) 0.171-0.587 1102.50±501.33 1117.00 (739.00-1515.50) 221-1917 

Lasso 0.819±0.045 0.826 (0.792-0.858) 0702-0.884 0.422±0.108 0.443 (0.373-0.490) 0.140-0.577 831.60±522.56 760.50 (419.00-1278.75) 32-1911 

ObliqueRSF 0.783±0.047 0.784 (0.761-0.813) 0.645-0.870 0.180±0.031 0.181 (0.155-0.201) 0.134-0.244 1244.77±484.69 1274.00 (861.00-1678.50) 249-1986 

Penalized 0.796±0.036 0.795 (0.771-0.821) 0.713-0.862 0.158±0.019 0.153 (0.145-0.169) 0.128-0.204 1126.27±562.60 1023.50 (593.50-1666.25) 219-1957 

Ranger 0.819±0.033 0.811 (0.791-0.852) 0.760-0.887 0.170±0.012 0.169 (0.161-0.181) 0.151-0.195 815.87±549.94 680.00 (363.25-1253.00) 38-1759 

Rfsrc 0.820±0.035 0.815 (0.787-0.849) 0.764-0.883 0.186±0.026 0.181 (0.162-0.210) 0.152-0.254 889.73±521.20 771.00 (426.00-1313.50) 198-1942 

Ridge 0.819±0.035 0.824 (0.788-0.852) 0.756-0.873 0.329±0.103 0.325 (0.247-0.400) 0.184-0.525 1492.83±335.76 1504.00 (1250.75-1842.75) 698-1991 

Rpart 0.769±0.038 0.772 (0.741-0.798) 0.705-0.869 0.217±0.029 0.216 (0.200-0.235) 0.160-0.286 903.37±484.52 793.50 (475.75-1328.50) 110-1786 

Svm 0.801±0.042 0.798 (0.763-0.839) 0.711-0.865 0.389±0.054 0.387 (0.365-0.419) 0.288-0.533 1367.03±380.29 1432.00 (1087.00-1665.50) 509-1955 

Xgboost (dart) 0.791±0.041 0.786 (0.760-0.832) 0.714-0.866 0.236±0.047 0.248 (0.202-0.267) 0.158-0.330 795.23±535.48 711.50 (350.75-1295.25) 14-1731 

Xgboost (gblinear) 0.805±0.068 0.805 (0.786-0.852) 0.500-0.884 0.194±0.026 0.195 (0.181-0.212) 0.128-0.238 1682.07±285.01 1179.50 (1587.50-1899.25) 962-1968 

Xgboost (gbtree) 0.804±0.036 0.801 (0.781-0.825) 0.722-0.894 0.220±0.046 0.212 (0.183-0.240) 0.164-0.339 1115.03±492.22 1193.50 (681.00-1445.25) 247-1989 

Models 

Boruta 

Blackboost 0.816±0.034 0.812 (0.796-0.834) 0.729-0.902 0.403±0.159 0.492 (0.182-0.521) 0.147-0.587 

63.53±8.16 63.50 (58.75-69.25) 46-86 

Cforest 0.813±0.039 0.807 (0.788-0.839) 0.735-0.887 0.298±0.045 0.288 (0.275-0.324) 0.202-0.395 

Coxboost 0.817±0.034 0.818 (0.798-0.839) 0.735-0.887 0.155±0.020 0.160 (0.138-0.169) 0.112-0.196 

Ctree 0.763±0.053 0.770 (0.723-0.807) 0.645-0.854 0.423±0.057 0.424 (0.389-0.471) 0.278-0.506 

Elasticnet 0.826±0.035 0.824 (0.815-0.849) 0.726-0.894 0.376±0.103 0.400 (0.313-0.463) 0.145-0.533 

Gbm 0.794±0.040 0.790 (0.770-0.816) 0.722-0.890 0.317±0.086 0.299 (0.255-0.362) 0.216-0.545 

Glmboost 0.832±0.032 0.831 (0.810-0.850) 0.742-0.897 0.453±0.123 0.498 (0.437-0.526) 0.146-0.587 

Lasso 0.825±0.037 0.825 (0.814-0.837) 0.735-0.899 0.362±0.116 0.371 (0.262-0.467) 0.160-0.529 

ObliqueRSF 0.769±0.058 0.778 (0.757-0.810) 0.631-0.846 0.187±0.032 0.184 (0.160-0.206) 0.148-0.288 

Penalized 0.817±0.036 0.816 (0.796-0.840) 0.717-0.876 0.155±0.019 0.152 (0.142-0.165) 0.126-0.196 

Ranger 0.820±0.032 0.815 (0.798-0.845) 0.751-0.885 0.168±0.012 0.167 (0.161-0.179) 0.147-0.190 

Rfsrc 0.810±0.038 0.812 (0.783-0.840) 0.741-0.889 0.189±0.048 0.171 (0.157-0.211) 0.135-0.338 

Ridge 0.813±0.037 0.815 (0.794-0.835) 0.710-0.880 0.246±0.083 0.220 (0.191-0.275) 0.154-0.485 

Rpart 0.766±0.037 0.768 (0.738-0.789) 0.668-0.858 0.215±0.027 0.215 (0.199-0.238) 0.150-0.267 

Svm 0.732±0.126 0.768 (0.715-0.795) 0.246-0.835 0.450±0.048 0.451 (0.410-0.482) 0.366-0.538 

Xgboost (dart) 0.797±0.037 0.797 (0.770-0.817) 0.730-0.884 0.229±0.041 0.226 (0.201-0.249) 0.163-0.332 

Xgboost (gblinear) 0.805±0.035 0.808 (0.773-0.838) 0.739-0.867 0.192±0.018 0.189 (0.178-0.209) 0.163-0.231 

Xgboost (gbtree) 0.789±0.035 0.784 (0.766-0.800) 0.735-0.875 0.230±0.044 0.219 (0.203-0.252) 0.178-0.368 

MLSeqSurv 

voomStackPrio1 0.793±0.048 0.791 (0.774-0.827) 0.648-0.863 0.172±0.015 0.172 (0.160-0.181) 0.136-0.204 

66.40±9.97 65.50 (57.00-73.25) 50-91 

voomStackPrio2 0.775±0.053 0.779 (0.743-0.815) 0.594-0.861 0.194±0.033 0.189 (0.172-0.211) 0.143-0.290 

voomStackIPF1 0.817±0.038 0.821 (0.797-0.841) 0.708-0.884 0.205±0.026 0.203 (0.186-0.224) 0.150-0.261 

voomStackIPF2 0.808±0.040 0.811 (0.787-0.836) 0.671-0.871 0.195±0.019 0.193 (0.186-0.208) 0.159-0.234 

voomStackIPF3 0.802±0.048 0.812 (0.782-0.835) 0.663-0.869 0.197±0.023 0.193 (0.185-0.210) 0.160-0.254 

voomStackIPF4 0.816±0.038 0.820 (0.797-0.841) 0.708-0.884 0.205±0.026 0.203 (0.186-0.224) 0.150-0.261 

voomStackIPF5 0.808±0.040 0.811 (0.787-0.836) 0.671-0.871 0.195±0.019 0.193 (0.186-0.208) 0.159-0.234 

voomStackIPF6 0.802±0.049 0.812 (0.782-0.835) 0.663-0.869 0.197±0.023 0.193 (0.185-0.210) 0.159-0.254 

voomStackIPF7 0.817±0.038 0.821 (0.797-0.841) 0.708-0.884 0.205±0.026 0.201 (0.186-0.224) 0.150-0.261 

voomStackIPF8 0.808±0.040 0.811 (0.787-0.836) 0.671-0.871 0.195±0.019 0.193 (0.186-0.208) 0.159-0.234 

voomStackIPF9 0.802±0.048 0.812 (0.782-0.835) 0.663-0.869 0.197±0.023 0.193 (0.185-0.210) 0.160-0.254 
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showed the highest mean concordance index, while the voomStackPrio2 algorithm 

(0.775±0.053) displayed the lowest mean concordance index. 

It was observed that for LGG data, the coxboost algorithm, when utilized for 

internal feature selection, attained the lowest mean integrated Brier score of 0.151. 

This was followed by penalized algorithm (0.158±0.019), with internal feature 

selection. The glmboost algorithm, with internal feature selection, presented the 

highest mean integrated Brier score, at 0.480.  In the category of methods from the 

literature utilizing Boruta feature selection, coxboost (coxboost_B) (0.155±0.020) and 

penalized (penalized_B) (0.155±0.019) algorithms showcased the lowest mean 

integrated Brier score, while glmboost (glmboost_B) (0.453±0.123) and svm 

(0.450±0.048) algorithms presented the highest mean integrated Brier score. The 

voomStackPrio1 algorithm displayed the lowest integrated mean Brier score, at 0.172. 

Meanwhile, the voomStackIPF1, voomStackIPF4, and voomStackIPF7 algorithms 

displayed the highest mean integrated Brier score, at 0.205. 

Among the methods in the literature that applied Boruta feature selection, the 

mean number of selected features for LGG data was the lowest (63.53±8.16). These 

were closely followed by the voomStackLasso algorithms (66.40±9.97). In terms of 

internal feature selection methods, the algorithm with the lowest mean number of 

features was xgboost (with booster= “dart”) (795.23±535.48), while the algorithm with 

the highest mean number of features was xgboost (with booster= “gblinear”) 

(1682.07±285.01). 

The concordance index, integrated Brier score, and the number of selected 

features for Mesothelioma (MESO) data are depicted in Figure 4.9, with related 

summary statistics presented in Table 4.9. After examining both the graph and the table 

for MESO data, it was observed that voomStackIPF1 and voomStackIPF7 algorithms 

achieved the highest mean concordance index at 0.731. This is followed by the 

voomStackIPF4 algorithm (0.730±0.066), yielding a mean concordance index. The 

voomStackPrio2 algorithm exhibited the lowest mean concordance index within the 

voomStackLasso group, at 0.662±0.065. In the category of methods from the literature 

utilizing Boruta feature selection, the ridge (ridge_B) (0.729±0.062) and penalized 

(penalized_B) (0.724±0.060) algorithms demonstrated the highest mean concordance 

index, while the svm (svm_B) algorithm (0.509±0.185) exhibited the lowest mean 

concordance index. In the category of methods from the literature utilizing internal 
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feature selection, the elasticnet (0.728±0.057) and xgboost (with booster= “gblinear”) 

(0.723±0.058) algorithms demonstrated the highest mean concordance index, while 

the rpart algorithm(0.609±0.076) exhibited the lowest mean concordance index. 

It was observed that the penalized (penalized_B) algorithm, with Boruta feature 

selection, achieved the lowest mean the integrated Brier score of 0.114 for MESO data. 

This was followed closely by the cforest (cforest_B) and ranger (ranger_B) algorithms, 

both employing internal feature selection, with a score of 0.123. The svm (svm_B) 

algorithm, with the literature employing Boruta feature selection, presented the highest 

mean integrated Brier score, at 0.624.  In the category of methods from the literature 

utilizing internal feature selection, the penalized algorithm (0.115±0.018) showcased 

the lowest mean integrated Brier score, while the svm algorithm (0.634±0.058) 

presented the highest mean integrated Brier score. Among voomStackLasso group, the 

voomStackIPF6, voomStackIPF8, and voomStackIPF9 algorithms displayed the 

lowest mean integrated Brier score, at 0.154. The voomStackIPF1, voomStackIPF4, 

and voomStackIPF7 algorithms displayed the highest mean integrated Brier score, at 

0.174. 

Among the methods in the literature that applied Boruta feature selection, the 

mean number of selected features for MESO data was the lowest (26.27±10.03). These 

were closely followed by the voomStackLasso algorithms (31.57±8.81). In terms of 

internal feature selection methods, the algorithm with the lowest mean number of 

features was ranger (637.63±457.30), while the algorithm with the highest mean 

number of features was obliqueRSF (1195.60±567.02). 

The concordance index, integrated Brier score, and the number of selected 

features for Pancreatic Adenocarcinoma (PAAD) data are depicted in Figure 4.10, with 

related summary statistics presented in Table 4.10. After examining both the graph and 

the table for PAAD data, it was observed that voomStackIPF7 and ridge algorithms, 

with internal feature selection, achieved the highest mean concordance index at 0.640. 

This is followed by the xgboost (with booster= “gblinear”), with both internal feature 

selection and Boruta feature selection, yielding a mean concordance index, at 0.639. 

Among voomStackLasso group, the voomStackIPF7 (0.640±0.052) and 

voomStackIPF1 (0.637±0.057) algorithms displayed the highest mean concordance 

index, while voomStackPrio1 algorithm (0.609±0.054) displayed the lowest 

concordance index. In the category of methods from the literature utilizing Boruta  
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Figure 4.9. The concordance index, integrated Brier score, and the number of selected  

                   features for MESO. 
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Table 4.9. The summary statistics of concordance index, integrated Brier score and the number of features selected for MESO. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.704±0.061 0.704 (0.669-0.732) 0.569-0.848 0.440±0.267 0.583 (0.142-0.676) 0.128-0.741 1084.43±529.90 1129.50 (692.75-1465.25) 27-1906 

Cforest 0.712±0.061 0.718 (0.683-0.753) 0.582-0.822 0.129±0.019 0.129 (0.117-0.140) 0.087-0.172 843.67±510.99 693.00 (438.75-1196.25) 135-1990 

Coxboost 0.699±0.068 0.704 (0.636-0.749) 0.587-0.809 0.134±0.035 0.130 (0.107-0.155) 0.085-0.226 1163.30±574.48 1246.00 (583.75-1678.50) 204-1983 

Ctree 0.620±0.059 0.618 (0.589-0.682) 0.478-0.702 0.282±0.091 0.279 (0.192-0.335) 0.157-0.497 699.40±635.02 474.50 (242.00-1169.25) 11-1939 

Elasticnet 0.728±0.057 0.743 (0.696-0.768) 0.571-0.817 0.287±0.190 0.238 (0.135-0.343) 0.090-0.729 1073.77±553.66 1010.50 (599.50-1598.50) 153-1900 

Gbm 0.684±0.064 0.694 (0.627-0.731) 0.542-0.788 0.308±0.088 0.307 (0.239-0.371) 0.142-0.546 852.40±500.67 780.50 (463.25-1255.25) 78-1771 

Glmboost 0.702±0.051 0.711 (0.660-0.735) 0.588-0.788 0.337±0.267 0.153 (0.131-0.660) 0.101-0.730 1045.40±567.91 1063.00 (494.25-1567.25) 109-1998 

Lasso 0.702±0.056 0.716 (0.683-0.737) 0.579-0.810 0.297±0.179 0.241 (0.159-0.369) 0.087-0.697 1075.67±505.07 1032.00 (740.00-1570.50) 186-1838 

ObliqueRSF 0.622±0.082 0.634 (0.583-0.676) 0.436-0.761 0.137±0.030 0.133 (0.124-0.162) 0.073-0.213 1195.60±567.02 1321.00 (810.50-1715.50) 184-1899 

Penalized 0.713±0.055 0.721 (0.685-0.751) 0.611-0.810 0.115±0.018 0.118 (0.103-0.130) 0.077-0.153 910.47±526.21 749.00 (517.00-1443.75) 202-1977 

Ranger 0.700±0.064 0.716 (0.641-0.746) 0.515-0.802 0.134±0.019 0.137 (0.120-0.149) 0.091-0.170 637.63±457.30 594.50 (245.50-919.25) 5-1572 

Rfsrc 0.699±0.060 0.710 (0.668-0.736) 0.577-0.803 0.136±0.018 0.136 (0.125-0.147) 0.098-0.181 647.37±553.53 637.50 (143.75-934.50) 17-1951 

Ridge 0.718±0.053 0.726 (0.695-0.756) 0.594-0.813 0.198±0.147 0.143 (0.131-0.171) 0.105-0.659 881.00±536.39 698.50 (466.75-1350.50) 78-1951 

Rpart 0.609±0.076 0.623 (0.554-0.651) 0.462-0.761 0.200±0.030 0.202 (0.183-0.223) 0.141-0.263 750.03±488.10 700.00 (360.25-1021.00) 34-1971 

Svm 0.715±0.053 0.714 (0.680-0.732) 0.602-0.830 0.634±0.058 0.644 (0.605-0.673) 0.490-0.743 1080.63±503.17 1125.00 (684.75-1524.50) 185-1967 

Xgboost (dart) 0.657±0.065 0.657 (0.612-0.700) 0.457-0.769 0.167±0.046 0.162 (0.133-0.197) 0.079-0.280 715.23±470.47 622.00 (327.75-1120.75) 116-1948 

Xgboost (gblinear) 0.723±0.058 0.742 (0.685-0.766) 0.555-0.823 0.139±0.026 0.139 (0.124-0.147) 0.096-0.230 1094.50±517.51 933.00 (688.00-1538.50) 87-1926 

Xgboost (gbtree) 0.629±0.073 0.626 (0.596-0.668) 0.483-0.774 0.177±0.042 0.176 (0.141-0.211) 0.109-0.258 820.23±550.03 769.00 (318.75-1409.25) 8-1761 

Models 

Boruta 

Blackboost 0.697±0.065 0.706 (0.668-0.749) 0.562-0.818 0.385±0.268 0.164 (0.137-0.673) 0.106-0.719 

26.27±10.03 24.00 (20.50-28.25) 13-59 

Cforest 0.712±0.060 0.726 (0.678-0.758) 0.588-0.797 0.123±0.017 0.124 (0.110-0.135) 0.082-0.160 

Coxboost 0.684±0.063 0.688 (0.652-0.717) 0.551-0.830 0.131±0.025 0.134 (0.111-0.145) 0.074-0.212 

Ctree 0.648±0.072 0.666 (0.590-0.705) 0.457-0.737 0.211±0.060 0.198 (0.186-0.223) 0.127-0.465 

Elasticnet 0.705±0.058 0.712 (0.681-0.736) 0.581-0.830 0.226±0.084 0.246 (0.149-0.294) 0.076-0.369 

Gbm 0.683±0.062 0.691 (0.645-0.724) 0.562-0.852 0.251±0.093 0.228 (0.185-0.297) 0.143-0.508 

Glmboost 0.706±0.059 0.725 (0.671-0.756) 0.568-0.787 0.316±0.259 0.157 (0.129-0.657) 0.098-0.741 

Lasso 0.699±0.061 0.702 (0.661-0.739) 0.568-0.849 0.268±0.098 0.270 (0.198-0.313) 0.110-0.540 

ObliqueRSF 0.660±0.086 0.670 (0.611-0.734) 0.404-0.785 0.140±0.032 0.134 (0.120-0.163) 0.085-0.218 

Penalized 0.724±0.060 0.733 (0.699-0.765) 0.565-0.810 0.114±0.020 0.113 (0.100-0.125) 0.069-0.178 

Ranger 0.713±0.061 0.731 (0.690-0.751) 0.562-0.807 0.123±0.016 0.124 (0.110-0.135) 0.086-0.158 

Rfsrc 0.711±0.065 0.727 (0.691-0.746) 0.569-0.810 0.133±0.026 0.130 (0.113-0.147) 0.083-0.189 

Ridge 0.729±0.062 0.745 (0.699-0.772) 0.572-0.807 0.162±0.033 0.156 (0.142-0.176) 0.108-0.266 

Rpart 0.654±0.068 0.666 (0.621-0.691) 0.460-0.770 0.191±0.026 0.191 (0.178-0.208) 0.137-0.252 

Svm 0.509±0.185 0.508 (0.312-0.689) 0.237-0.780 0.624±0.079 0.642 (0.585-0.683) 0.428-0.742 

Xgboost (dart) 0.673±0.067 0.684 (0.638-0.713) 0.525-0.808 0.179±0.037 0.181 (0.149-0.208) 0.096-0.258 

Xgboost (gblinear) 0.717±0.065 0.727 (0.684-0.764) 0.552-0.820 0.157±0.030 0.152 (0.132-0.174) 0.111-0.228 

Xgboost (gbtree) 0.660±0.068 0.671 (0.603-0.705) 0.535-0.767 0.181±0.037 0.177 (0.152-0.216) 0.098-0.240 

MLSeqSurv 

voomStackPrio1 0.691±0.072 0.699 (0.660-0.743) 0.492-0.808 0.160±0.028 0.154 (0.143-0.169) 0.118-0.241 

31.57±8.81 30.00 (24.75-39.00) 18-51 

voomStackPrio2 0.662±0.065 0.662 (0.622-0.712) 0.478-0.792 0.170±0.023 0.165 (0.156-0.183) 0.122-0.220 

voomStackIPF1 0.731±0.066 0.740 (0.705-0.782) 0.535-0.864 0.174±0.020 0.173 (0.159-0.185) 0.141-0.220 

voomStackIPF2 0.669±0.092 0.695 (0.641-0.723) 0.351-0.832 0.157±0.029 0.154 (0.139-0.168) 0.101-0.258 

voomStackIPF3 0.668±0.093 0.687 (0.644-0.729) 0.351-0.824 0.157±0.029 0.154 (0.139-0.168) 0.103-0.262 

voomStackIPF4 0.730±0.066 0.740 (0.705-0.781) 0.535-0.864 0.174±0.020 0.173 (0.159-0.186) 0.142-0.220 

voomStackIPF5 0.669±0.092 0.695 (0.641-0.723) 0.351-0.832 0.157±0.029 0.154 (0.139-0.167) 0.102-0.261 

voomStackIPF6 0.675±0.072 0.674 (0.642-0.729) 0.478-0.824 0.154±0.022 0.154 (0.139-0.168) 0.103-0.207 

voomStackIPF7 0.731±0.067 0.740 (0.705-0.782) 0.532-0.864 0.174±0.020 0.173 (0.159-0.185) 0.141-0.220 

voomStackIPF8 0.678±0.070 0.695 (0.642-0.723) 0.492-0.832 0.154±0.022 0.154 (0.139-0.167) 0.101-0.209 

voomStackIPF9 0.677±0.072 0.687 (0.644-0.729) 0.478-0.824 0.154±0.022 0.154 (0.139-0.168) 0.103-0.207 
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feature selection, the xgboost (xgboost_gblinear_B) (with booster= “gblinear”) 

algorithm (0.639±0.032) demonstrated the highest mean concordance index, while the 

svm (svm_B) algorithm (0.528±0.110) exhibited the lowest mean concordance index. 

In the group of methods from the literature employing internal feature selection, the 

ridge (0.640±0.050) and xgboost (with booster= “gblinear”) (0.639±0.040) algorithms 

demonstrated the highest mean concordance index, while the ctree algorithm 

(0.553±0.050) exhibited the lowest mean concordance index. 

It was observed that the penalized algorithm, with both internal feature 

selection and Boruta feature selection, achieved the lowest mean integrated Brier score 

at 0.162 for PAAD data. In the category of methods from the literature utilizing 

internal feature selection, the penalized (0.162±0.021) and cforest (0.166±0.019) 

algorithms showcased the lowest mean integrated Brier score, while the svm 

(0.520±0.057), blackboost (0.505±0.139) and ctree (0.419±0.076) algorithms 

presented the highest mean integrated Brier score. In the category of methods from the 

literature employing Boruta feature selection, the penalized (penalized_B) 

(0.162±0.024), coxboost (coxboost_B) (0.176±0.035), and ranger (ranger_B) 

(0.177±0.020) algorithms showcased the lowest mean integrated Brier score, while 

svm (svm_B) (0.540±0.062), glmboost (glmboost_B) (0.477±0.158), and blackboost 

(blackboost_B) (0.462±0.172) algorithms presented the highest mean integrated Brier 

score.  Among voomStackLasso group, the voomStackPrio2 (0.172±0.021) and 

voomStackIPF5 (0.175±0.017) algorithms displayed the lowest mean integrated Brier 

score. Conversely, the voomStackPrio1 algorithm displayed the highest mean 

integrated Brier score, at 0.187. 

Among the voomStackLasso algorithms, the mean number of selected features 

for PAAD data was the lowest (8.70±3.25). These were closely followed by the 

methods in the literature that utilized Boruta feature selection (9.20±3.39). In terms of 

internal feature selection methods, the algorithm with the lowest mean number of 

features was rfsrc (578.70±465.45), while the algorithm with the highest mean number 

of features was obliqueRSF (1062.10±515.55). 

The concordance index, integrated Brier score, and the number of selected 

features for Sarcoma (SARC) data are depicted in Figure 4.11, with related summary 

statistics presented in Table 4.11. After examining both the graph and the table for 

SARC data, it was observed that the ridge algorithm, when applied for internal feature 
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selection, achieved the highest mean concordance index at 0.650. In the group of 

methods from the literature employing internal feature selection, the ridge 

(0.650±0.042), cforest (0.635±0.042), penalized (0.634±0.041) and rfsrc 

(0.634±0.032) algorithms demonstrated the highest mean concordance index, while 

the rpart algorithm (0.557±0.054) exhibited the lowest mean concordance index. In the 

group of methods from the literature employing Boruta feature selection, the ranger 

(ranger_B) algorithm (0.619±0.052) demonstrated the highest mean concordance 

index, while the svm (svm_B) algorithm (0.553±0.055) exhibited the lowest mean 

concordance index. Among voomStackLasso group, the voomStackIPF7 algorithm 

(0.615±0.032) displayed the highest mean concordance index, while voomStackPrio2 

algorithm (0.597±0.043) displayed the lowest mean concordance index.  

It was observed that for SARC data, the voomStackIPF4 and voomStackIPF7 

algorithms achieved the lowest mean integrated Brier score of 0.192. This is followed 

by voomStackIPF1, voomStackIPF2, and voomStackIPF8 resulting in an integrated 

Brier score of 0.193. In the category of methods from the literature utilizing internal 

feature selection, the cforest and ranger algorithms showcased the lowest mean 

integrated Brier score at 0.206, while the svm algorithm (0.437±0.062) presented the 

highest mean integrated Brier score. In the category of methods from the literature 

utilizing Boruta feature selection, ridge (ridge_B) (0.207±0.008) and ranger 

(0.209±0.017) algorithms showcased the lowest mean integrated Brier score, while 

svm (svm_B) (0.450±0.062) and blackboost (blackboost_B) (0.418±0.111) algorithms 

presented the highest mean integrated Brier score.  Among voomStackLasso group, 

the voomStackIPF4 (0.192±0.010), voomStackIPF7 (0.192±0.011), voomStackIPF1 

(0.193±0.011), voomStackIPF2 (0.193±0.012), and voomStackIPF8 (0.193±0.013) 

algorithms displayed the lowest mean integrated Brier score. Conversely, the 

voomStackPrio1 algorithm displayed the highest mean integrated Brier score, at 0.202. 

Among the methods in the literature that applied Boruta feature selection, the 

mean number of selected features for SARC data was the lowest (14.87±4.33). These 

were closely followed by the voomStackLasso algorithms (16.27±4.81). In terms of 

internal feature selection methods, the algorithm with the lowest mean number of 

features was ranger (703.37±511.13), while the algorithm with the highest mean 

number of features was xgboost (with booster= “gblinear”) (1184.37±519.21). 
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The concordance index, integrated Brier score, and the number of selected 

features for Uveal Melanoma (UVM) data are depicted in Figure 4.12, with related 

summary statistics presented in Table 4.12. After examining both the graph and the 

table for UVM data, it was observed that voomStackIPF3 and voomStackIPF9 

achieved the highest mean concordance index at 0.841. In the group of methods from 

the literature employing internal feature selection, the elasticnet (0.819±0.056), 

xgboost (with booster= “gblinear”) (0.816±0.056), and glmboost (0.815±0.068) 

algorithms demonstrated the highest mean concordance index, while the rpart  

algorithm (0.698±0.106) exhibited the lowest mean concordance index. In the group 

of methods from the literature employing Boruta feature selection, the xgboost (with 

booster= “gblinear”) (xgboost_gblinear_B) algorithm (0.839±0.061) demonstrated the 

highest mean concordance index, while the rpart (rpart_B) algorithm (0.721±0.090) 

exhibited the lowest mean concordance index. Among voomStackLasso group, the 

voomStackIPF3 and voomStackIPF9 algorithm (0.841±0.059) displayed the highest 

mean concordance index while voomStackIPF1, voomStackIPF4, and 

voomStackIPF7 algorithms displayed the lowest mean concordance index, at 0.817.  

It was observed that for UVM data, the voomStackIPF3 and voomStackIPF9 

algorithms achieved the lowest mean integrated Brier score of 0.108. This is followed 

voomStackIPF2, voomStackIPF5, voomStackIPF6, and voomStackIPF8 yielding an 

integrated Brier score of 0.111. The voomStackIPF1, voomStackIPF4, and 

voomStackIPF7 algorithms displayed the highest mean integrated Brier score, at 

0.144. In the category of methods from the literature utilizing internal feature selection, 

the penalized algorithm showcased the lowest mean integrated Brier score at 0.122, 

while the svm algorithm (0.303±0.071) presented the highest mean integrated Brier 

score. In the category of methods from the literature employing Boruta feature 

selection, penalized (penalized_B) algorithm (0.119±0.019) showcased the lowest 

mean integrated Brier score, while gbm algorithm (0.312±0.086) presented the highest 

mean integrated Brier score.   

Among the voomStackLasso algorithms, the mean number of selected features 

for UVM data was the lowest (42.20±12.95). These were closely followed by the 

methods in the literature that utilized Boruta feature selection (43.57±12.03). In terms 

of internal feature selection methods, the algorithm with the lowest mean number of  

 



134 

 

 

 

 

Figure 4.10. The concordance index, integrated Brier score, and the number of  

                      selected features for PAAD. 
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Table 4.10. The summary statistics of concordance index, integrated Brier score and the number of features selected for PAAD. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.637±0.044 0.632 (0.613-0.675) 0.548-0.713 0.505±0.139 0.563 (0.485-0.582) 0.165-0.622 963.83±583.64 883.00 (486.50-1549.50) 82-1913 

Cforest 0.618±0.050 0.613 (0.578-0.658) 0.538-0.736 0.166±0.019 0.164 (0.154-0.184) 0.129-0.210 800.27±523.94 746.50 (319.75-1266.50) 42-1703 

Coxboost 0.611±0.056 0.612 (0.575-0.655) 0.478-0.696 0.201±0.039 0.200 (0.165-0.228) 0.144-0.277 860.90±588.22 782.00 (291.00-1436.25) 58-1898 

Ctree 0.553±0.050 0.556 (0.516-0.580) 0.427-0.666 0.419±0.076 0.420 (0.372-0.464) 0.221-0.551 717.90±443.08 663.00 (355.25-1032.00) 38-1620 

Elasticnet 0.613±0.050 0.617 (0.576-0.650) 0.486-0.707 0.283±0.077 0.283 (0.214-0.348) 0.156-0.424 985.90±455.34 925.50 (682.75-1315.75) 41-1986 

Gbm 0.616±0.041 0.610 (0.584-0.644) 0.556-0.714 0.282±0.088 0.259 (0.235-0.327) 0.146-0.536 705.63±541.56 554.50 (320.75-930.25) 79-1973 

Glmboost 0.627±0.053 0.622 (0.591-0.679) 0.515-0.711 0.360±0.187 0.304 (0.180-0.550) 0.163-0.615 772.63±586.42 652.00 (280.75-1229.25) 49-1952 

Lasso 0.609±0.049 0.613 (0.581-0.639) 0.492-0.699 0.275±0.084 0.261 (0.205-0.343) 0.133-0.446 883.93±530.35 764.50 (480.50-1334.50) 30-1743 

ObliqueRSF 0.577±0.050 0.577 (0.540-0.608) 0.496-0.700 0.205±0.052 0.194 (0.167-0.241) 0.136-0.322 1062.10±515.55 1267.00 (688.50-1448.50) 14-1849 

Penalized 0.636±0.062 0.661 (0.581-0.682) 0.525-0.749 0.162±0.021 0.166 (0.146-0.181) 0.120-0.198 774.13±549.19 621.00 (294.50-1275.75) 54-1776 

Ranger 0.631±0.049 0.629 (0.588-0.663) 0.555-0.719 0.172±0.015 0.173 (0.165-0.181) 0.132-0.200 673.80±448.33 553.50 (262.50-923.75) 83-1742 

Rfsrc 0.611±0.048 0.606 (0.580-0.643) 0.519-0.730 0.172±0.021 0.171 (0.160-0.184) 0.139-0.234 578.70±465.45 442.00 (182.75-990.00) 34-1764 

Ridge 0.640±0.050 0.643 (0.601-0.681) 0.541-0.733 0.201±0.061 0.181 (0.168-0.190) 0.158-0.424 776.73±583.27 591.00 (313.50-1258.75) 2-1929 

Rpart 0.566±0.060 0.563 (0.533-0.603) 0.376-0.697 0.255±0.027 0.249 (0.236-0.275) 0.211-0.314 760.67±533.97 734.50 (295.00-1136.50) 51-1982 

Svm 0.588±0.055 0.587 (0.560-0.622) 0.456-0.684 0.520±0.057 0.528 (0.480-0.561) 0.402-0.649 988.83±496.60 901.50 (603.00-1330.75) 224-1988 

Xgboost (dart) 0.587±0.049 0.582 (0.551-0.621) 0.482-0.694 0.245±0.042 0.245 (0.208-0.280) 0.159-0.336 918.40±548.36 908.50 (401.25-1299.50) 137-1981 

Xgboost (gblinear) 0.639±0.040 0.637 (0.613-0.666) 0.566-0.710 0.206±0.021 0.202 (0.190-0.222) 0.173-0.247 1037.30±586.67 1140.50 (529.00-1540.50) 52-1897 

Xgboost (gbtree) 0.583±0.059 0.580 (0.531-0.631) 0.467-0.722 0.252±0.050 0.249 (0.213-0.293) 0.177-0.361 842.60±500.42 872.50 (439.75-1257.25) 107-1751 

Models 

Boruta 

Blackboost 0.614±0.051 0.617 (0.588-0.642) 0.467-0.716 0.462±0.172 0.552 (0.198-0.579) 0.174-0.622 

9.20±3.39 9.00 (6.75-11.00) 5-18 

Cforest 0.613±0.048 0.611 (0.576-0.646) 0.516-0.712 0.189±0.027 0.191 (0.168-0.206) 0.135-0.263 

Coxboost 0.626±0.046 0.624 (0.602-0.656) 0.481-0.733 0.176±0.035 0.174 (0.155-0.202) 0.089-0.254 

Ctree 0.582±0.037 0.579 (0.564-0.613) 0.483-0.655 0.358±0.057 0.371 (0.315-0.398) 0.211-0.468 

Elasticnet 0.632±0.044 0.630 (0.614-0.659) 0.479-0.721 0.340±0.083 0.339 (0.292-0.396) 0.154-0.538 

Gbm 0.593±0.056 0.601 (0.541-0.624) 0.492-0.732 0.310±0.112 0.273 (0.244-0.336) 0.168-0.564 

Glmboost 0.626±0.041 0.624 (0.603-0.653) 0.493-0.702 0.477±0.158 0.552 (0.437-0.577) 0.169-0.622 

Lasso 0.631±0.045 0.633 (0.608-0.657) 0.477-0.712 0.338±0.081 0.351 (0.285-0.396) 0.179-0.478 

ObliqueRSF 0.586±0.052 0.576 (0.551-0.608) 0.481-0.701 0.209±0.041 0.217 (0.179-0.238) 0.126-0.282 

Penalized 0.633±0.039 0.630 (0.608-0.662) 0.556-0.735 0.162±0.024 0.163 (0.145-0.182) 0.114-0.203 

Ranger 0.610±0.047 0.611 (0.581-0.633) 0.525-0.740 0.177±0.020 0.178 (0.165-0.196) 0.131-0.212 

Rfsrc 0.589±0.056 0.591 (0.550-0.635) 0.471-0.688 0.192±0.035 0.183 (0.168-0.217) 0.131-0.267 

Ridge 0.630±0.042 0.628 (0.598-0.659) 0.552-0.745 0.192±0.024 0.188 (0.184-0.194) 0.170-0.313 

Rpart 0.561±0.061 0.557 (0.520-0.593) 0.427-0.689 0.252±0.026 0.247 (0.232-0.280) 0.189-0.297 

Svm 0.528±0.110 0.521 (0.422-0.611) 0.349-0.736 0.540±0.062 0.560 (0.496-0.577) 0.402-0.639 

Xgboost (dart) 0.571±0.061 0.580 (0.513-0.618) 0.482-0.730 0.274±0.060 0.275 (0.226-0.315) 0.179-0.427 

Xgboost (gblinear) 0.639±0.032 0.635 (0.616-0.662) 0.581-0.702 0.197±0.028 0.195 (0.178-0.220) 0.147-0.259 

Xgboost (gbtree) 0.572±0.041 0.566 (0.534-0.609) 0.505-0.680 0.264±0.049 0.255 (0.222-0.311) 0.199-0.352 

MLSeqSurv 

voomStackPrio1 0.609±0.054 0.611 (0.570-0.660) 0.476-0.692 0.187±0.042 0.171 (0.158-0.222) 0.128-0.280 

8.70±3.25 8.00 (6.00-11.25) 4-16 

voomStackPrio2 0.620±0.064 0.636 (0.578-0.676) 0.484-0.702 0.172±0.021 0.172 (0.164-0.180) 0.125-0.223 

voomStackIPF1 0.637±0.057 0.643 (0.607-0.680) 0.513-0.722 0.182±0.014 0.183 (0.172-0.191) 0.150-0.210 

voomStackIPF2 0.615±0.058 0.617 (0.567-0.666) 0.486-0.704 0.177±0.019 0.178 (0.162-0.188) 0.140-0.211 

voomStackIPF3 0.614±0.058 0.616 (0.566-0.669) 0.499-0.704 0.177±0.019 0.178 (0.162-0.188) 0.140-0.212 

voomStackIPF4 0.641±0.054 0.642 (0.613-0.678) 0.538-0.736 0.182±0.014 0.183 (0.173-0.192) 0.142-0.210 

voomStackIPF5 0.617±0.061 0.627 (0.567-0.673) 0.486-0.704 0.175±0.017 0.179 (0.161-0.187) 0.145-0.211 

voomStackIPF6 0.616±0.062 0.633 (0.569-0.666) 0.498-0.704 0.177±0.017 0.179 (0.165-0.186) 0.144-0.212 

voomStackIPF7 0.640±0.052 0.643 (0.613-0.680) 0.538-0.722 0.181±0.015 0.183 (0.172-0.191) 0.144-0.209 

voomStackIPF8 0.614±0.058 0.615 (0.567-0.664) 0.486-0.704 0.177±0.019 0.178 (0.162-0.189) 0.140-0.211 

voomStackIPF9 0.615±0.058 0.617 (0.566-0.669) 0.499-0.704 0.177±0.019 0.178 (0.162-0.188) 0.141-0.212 
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Figure 4.11. The concordance index, integrated Brier score, and the number of  

                     selected features for SARC. 
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Table 4.11. The summary statistics of concordance index, integrated Brier score and the number of features selected for SARC. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.624±0.039 0.633 (0.601-0.643) 0.536-0.719 0.395±0.121 0.448 (0.215-0.473) 0.195-0.527 1136.70±681.49 1352.00 (443.00-1798.75) 37-1965 

Cforest 0.635±0.042 0.638 (0.603-0.666) 0.553-0.707 0.206±0.018 0.207 (0.193-0.214) 0.176-0.263 1065.40±630.42 1151.00 (496.00-1696.00) 48-1978 

Coxboost 0.617±0.050 0.619 (0.577-0.649) 0.531-0.723 0.264±0.046 0.271 (0.239-0.294) 0.151-0.345 824.57±607.83 661.00 (286.25-1373.50) 34-1811 

Ctree 0.574±0.044 0.577 (0.534-0.608) 0.510-0.664 0.308±0.066 0.319 (0.242-0.351) 0.214-0.435 766.70±486.35 670.00 (352.00-1053.00) 195-1848 

Elasticnet 0.611±0.040 0.616 (0.583-0.629) 0.531-0.709 0.305±0.075 0.290 (0.247-0.349) 0.200-0.513 1138.87±585.43 1349.00 (682.50-1634.50) 4-1904 

Gbm 0.614±0.052 0.619 (0.587-0.647) 0.473-0.717 0.378±0.066 0.383 (0.342-0.425) 0.218-0.476 892.43±507.18 825.00 (606.00-1168.00) 43-1992 

Glmboost 0.617±0.046 0.621 (0.592-0.647) 0.512-0.709 0.371±0.130 0.446 (0.209-0.468) 0.189-0.527 1016.47±519.40 1027.00 (601.25-1518.00) 164-1798 

Lasso 0.609±0.044 0.610 (0.571-0.644) 0.536-0.689 0.343±0.085 0.344 (0.281-0.397) 0.203-0.549 1010.20±521.46 899.00 (584.75-1442.50) 40-1911 

ObliqueRSF 0.599±0.051 0.601 (0.559-0.639) 0.491-0.697 0.240±0.041 0.233 (0.223-0.249) 0.169-0.388 1153.10±524.79 1222.50 (839.00-1561.75) 129-1929 

Penalized 0.634±0.041 0.635 (0.603-0.664) 0.555-0.730 0.225±0.029 0.221 (0.203-0.244) 0.159-0.308 916.27±554.06 813.00 (436.25-1271.75) 82-1951 

Ranger 0.629±0.036 0.635 (0.609-0.656) 0.527-0.695 0.206±0.012 0.205 (0.197-0.214) 0.185-0.243 703.37±511.13 625.00 (302.75-936.50) 35-1962 

Rfsrc 0.634±0.032 0.633 (0.615-0.652) 0.543-0.697 0.207±0.011 0.206 (0.200-0.213) 0.183-0.239 750.80±502.84 710.50 (253.25-1137.50) 33-1752 

Ridge 0.650±0.042 0.650 (0.626-0.674) 0.558-0.743 0.325±0.076 0.306 (0.269-0.378) 0.194-0.505 939.20±514.37 871.50 (492.75-1352.50) 150-1831 

Rpart 0.557±0.054 0.555 (0.526-0.588) 0.443-0.683 0.298±0.040 0.294 (0.270-0.337) 0.229-0.366 792.70±542.19 800.50 (297.00-1072.25) 44-1829 

Svm 0.609±0.066 0.606 (0.577-0.656) 0.416-0.748 0.437±0.062 0.434 (0.389-0.469) 0.291-0.560 1061.53±500.87 1034.50 (710.00-1451.75) 108-1968 

Xgboost (dart) 0.597±0.048 0.592 (0.570-0.633) 0.499-0.698 0.278±0.053 0.267 (0.244-0.299) 0.192-0.413 910.90±635.97 718.00 (260.50-1455.50) 31-1985 

Xgboost (gblinear) 0.617±0.056 0.626 (0.570-0.656) 0.500-0.699 0.253±0.021 0.247 (0.239-0.267) 0.214-0.304 1184.37±519.21 1133.50 (887.75-1709.25) 33-1911 

Xgboost (gbtree) 0.595±0.054 0.593 (0.551-0.642) 0.503-0.684 0.297±0.055 0.291 (0.249-0.353) 0.216-0.404 815.33±499.45 741.00 (435.00-1271.50) 47-1944 

Models 

Boruta 

Blackboost 0.583±0.053 0.579 (0.540-0.613) 0.497-0.706 0.418±0.111 0.453 (0.425-0.485) 0.197-0.527 

14.87±4.33 14.00 (12.00-17.50) 8-24 

Cforest 0.610±0.055 0.616 (0.568-0.640) 0.485-0.738 0.211±0.022 0.209 (0.196-0.225) 0.174-0.265 

Coxboost 0.601±0.054 0.614 (0.552-0.643) 0.496-0.696 0.252±0.038 0.246 (0.224-0.290) 0.188-0.321 

Ctree 0.558±0.047 0.555 (0.521-0.585) 0.481-0.698 0.365±0.057 0.372 (0.318-0.416) 0.250-0.481 

Elasticnet 0.593±0.048 0.594 (0.551-0.629) 0.496-0.673 0.329±0.095 0.307 (0.257-0.384) 0.204-0.552 

Gbm 0.596±0.059 0.596 (0.555-0.620) 0.502-0.746 0.386±0.077 0.388 (0.330-0.452) 0.215-0.552 

Glmboost 0.598±0.050 0.597 (0.568-0.636) 0.509-0.710 0.397±0.116 0.447 (0.231-0.480) 0.199-0.527 

Lasso 0.597±0.053 0.606 (0.551-0.641) 0.483-0.687 0.353±0.100 0.339 (0.273-0.454) 0.176-0.559 

ObliqueRSF 0.588±0.069 0.592 (0.532-0.664) 0.469-0.700 0.242±0.048 0.239 (0.211-0.267) 0.148-0.361 

Penalized 0.605±0.046 0.605 (0.568-0.637) 0.508-0.716 0.231±0.032 0.225 (0.204-0.255) 0.171-0.297 

Ranger 0.619±0.052 0.622 (0.589-0.654) 0.488-0.722 0.209±0.017 0.208 (0.198-0.217) 0.176-0.251 

Rfsrc 0.608±0.051 0.599 (0.579-0.639) 0.485-0.739 0.220±0.021 0.216 (0.202-0.232) 0.184-0.278 

Ridge 0.608±0.046 0.612 (0.574-0.641) 0.517-0.697 0.207±0.008 0.205 (0.200-0.215) 0.192-0.221 

Rpart 0.563±0.059 0.553 (0.524-0.605) 0.465-0.739 0.302±0.044 0.305 (0.271-0.333) 0.231-0.391 

Svm 0.553±0.055 0.557 (0.525-0.590) 0.407-0.640 0.450±0.062 0.452 (0.395-0.499) 0.355-0.566 

Xgboost (dart) 0.588±0.054 0.578 (0.555-0.613) 0.501-0.709 0.285±0.054 0.273 (0.241-0.334) 0.198-0.406 

Xgboost (gblinear) 0.586±0.055 0.604 (0.545-0.623) 0.487-0.677 0.254±0.030 0.250 (0.234-0.271) 0.211-0.335 

Xgboost (gbtree) 0.589±0.061 0.572 (0.554-0.625) 0.486-0.751 0.295±0.066 0.285 (0.240-0.354) 0.195-0.428 

MLSeqSurv 

voomStackPrio1 0.613±0.037 0.612 (0.587-0.637) 0.524-0.675 0.202±0.014 0.199 (0.194-0.209) 0.176-0.239 

16.27±4.81 16.00 (13.00-19.25) 7-30 

voomStackPrio2 0.597±0.043 0.594 (0.556-0.635) 0.528-0.676 0.197±0.010 0.199 (0.191-0.204) 0.175-0.213 

voomStackIPF1 0.613±0.035 0.613 (0.591-0.637) 0.524-0.694 0.193±0.011 0.192 (0.185-0.202) 0.166-0.214 

voomStackIPF2 0.610±0.042 0.601 (0.577-0.651) 0.530-0.692 0.193±0.012 0.195 (0.187-0.201) 0.168-0.210 

voomStackIPF3 0.609±0.042 0.603 (0.581-0.650) 0.527-0.687 0.194±0.012 0.196 (0.187-0.202) 0.168-0.212 

voomStackIPF4 0.613±0.033 0.610 (0.591-0.636) 0.553-0.695 0.192±0.010 0.192 (0.186-0.201) 0.166-0.208 

voomStackIPF5 0.608±0.044 0.601 (0.577-0.647) 0.527-0.692 0.194±0.012 0.196 (0.187-0.202) 0.168-0.213 

voomStackIPF6 0.607±0.045 0.603 (0.581-0.642) 0.522-0.687 0.194±0.012 0.197 (0.187-0.203) 0.168-0.213 

voomStackIPF7 0.615±0.032 0.613 (0.592-0.637) 0.561-0.696 0.192±0.011 0.192 (0.185-0.203) 0.165-0.210 

voomStackIPF8 0.609±0.045 0.601 (0.577-0.653) 0.527-0.692 0.193±0.013 0.196 (0.187-0.203) 0.162-0.213 

voomStackIPF9 0.608±0.045 0.603 (0.581-0.652) 0.522-0.687 0.194±0.012 0.197 (0.187-0.203) 0.168-0.213 
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Figure 4.12. The concordance index, integrated Brier score, and the number of  

                     selected features for UVM. 
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Table 4.12. The summary statistics of concordance index, integrated Brier score and the number of features selected for UVM. 
Groups of 

Algorithms Models 

Concordance Index Integrated Brier Score The Number of Features Selected 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 

Median (1st-3rd 

Quartile) 
Min-Max 

Mean±Sd. 

Deviation 
Median (1st-3rd Quartile) Min-Max 

Models 

Blackboost 0.789±0.068 0.802 (0.752-0.840) 0.633-0.900 0.258±0.096 0.253 (0.162-0.340) 0.140-0.450 882.90±583.12 817.50 (331.25-1406.00) 113-1981 

Cforest 0.798±0.071 0.811 (0.738-0.842) 0.608-0.972 0.131±0.024 0.129 (0.120-0.141) 0.079-0.200 916.10±468.87 940.50 (570.75-1368.75) 4-1678 

Coxboost 0.786±0.086 0.800 (0.715-0.858) 0.591-0.933 0.176±0.051 0.164 (0.135-0.208) 0.093-0.311 777.53±578.15 610.50 (320.75-1434.75) 26-1860 

Ctree 0.731±0.053 0.738 (0.689-0.768) 0.639-0.829 0.189±0.074 0.171 (0.135-0.231) 0.103-0.375 772.93±607.28 720.50 (218.25-1143.00) 56-1939 

Elasticnet 0.819±0.056 0.818 (0.789-0.851) 0.701-0.920 0.132±0.032 0.129 (0.114-0.152) 0.060-0.200 823.77±419.77 868.50 (414.00-1082.25) 81-1679 

Gbm 0.780±0.069 0.779 (0.722-0.846) 0.636-0.897 0.269±0.098 0.242 (0.203-0.309) 0.132-0.584 735.80±601.25 595.50 (201.75-1234.75) 32-1984 

Glmboost 0.815±0.068 0.813 (0.777-0.871) 0.636-0.935 0.218±0.094 0.168 (0.150-0.271) 0.130-0.450 1009.93±566.02 994.00 (478.25-1403.75) 18-1972 

Lasso 0.799±0.070 0.799 (0.755-0.854) 0.589-0.923 0.135±0.030 0.134 (0.113-0.148) 0.075-0.207 854.50±545.62 789.50 (458.75-1273.75) 57-1932 

ObliqueRSF 0.772±0.079 0.774 (0.721-0.836) 0.562-0.911 0.151±0.045 0.142 (0.127-0.162) 0.086-0.298 1116.40±560.43 1140.50 (553.50-1709.75) 54-1827 

Penalized 0.808±0.076 0.833 (0.765-0.853) 0.500-0.886 0.122±0.022 0.122 (0.105-0.142) 0.083-0.163 892.07±495.71 853.50 (494.50-1353.00) 102-1848 

Ranger 0.808±0.070 0.822 (0.757-0.852) 0.659-0.921 0.134±0.016 0.134 (0.127-0.143) 0.100-0.169 783.00±612.29 463.50 (266.75-1383.75) 21-1819 

Rfsrc 0.811±0.064 0.818 (0.781-0.850) 0.648-0.953 0.140±0.018 0.139 (0.129-0.147) 0.107-0.185 1102.63±534.90 1171.00 (661.00-1524.00) 186-1976 

Ridge 0.808±0.056 0.814 (0.769-0.842) 0.682-0.894 0.145±0.020 0.143 (0.133-0.154) 0.115-0.200 722.47±540.51 719.00 (229.00-1043.50) 57-1971 

Rpart 0.698±0.106 0.696 (0.596-0.794) 0.522-0.867 0.224±0.072 0.231 (0.162-0.258) 0.102-0.359 842.43±545.78 894.00 (244.50-1250.50) 11-1871 

Svm 0.759±0.117 0.785 (0.717-0.837) 0.322-0.902 0.303±0.071 0.279 (0.252-0.352) 0.198-0.524 834.00±572.32 737.50 (298.50-1230.00) 105-1920 

Xgboost (dart) 0.752±0.091 0.777 (0.682-0.813) 0.528-0.874 0.169±0.033 0.165 (0.149-0.186) 0.116-0.278 820.17±536.59 744.00 (391.25-1134.50) 14-1801 

Xgboost (gblinear) 0.816±0.056 0.817 (0.786-0.866) 0.670-0.897 0.154±0.032 0.158 (0.135-0.175) 0.081-0.226 830.43±447.23 780.50 (511.25-1218.75) 107-1611 

Xgboost (gbtree) 0.746±0.102 0.761 (0.689-0.834) 0.483-0.920 0.181±0.039 0.179 (0.162-0.201) 0.082-0.270 617.87±407.24 524.00 (278.25-932.75) 15-1496 

Models 

Boruta 

Blackboost 0.804±0.063 0.808 (0.747-0.865) 0.704-0.926 0.260±0.085 0.265 (0.182-0.336) 0.142-0.450 

43.57±12.03 41.50 (34.75-52.25) 15-69 

Cforest 0.810±0.058 0.823 (0.784-0.848) 0.659-0.920 0.127±0.026 0.124 (0.104-0.142) 0.087-0.199 

Coxboost 0.821±0.051 0.815 (0.786-0.853) 0.708-0.933 0.146±0.039 0.141 (0.125-0.174) 0.068-0.224 

Ctree 0.736±0.066 0.740 (0.677-0.806) 0.629-0.843 0.183±0.036 0.190 (0.154-0.209) 0.105-0.247 

Elasticnet 0.829±0.055 0.828 (0.783-0.881) 0.744-0.920 0.128±0.033 0.127 (0.103-0.147) 0.066-0.197 

Gbm 0.776±0.069 0.778 (0.733-0.832) 0.625-0.953 0.312±0.086 0.290 (0.261-0.343) 0.191-0.572 

Glmboost 0.825±0.060 0.825 (0.770-0.869) 0.733-0.944 0.185±0.085 0.150 (0.138-0.177) 0.122-0.450 

Lasso 0.819±0.056 0.816 (0.773-0.868) 0.731-0.933 0.134±0.040 0.131 (0.106-0.158) 0.065-0.228 

ObliqueRSF 0.769±0.088 0.775 (0.729-0.821) 0.505-0.911 0.155±0.047 0.143 (0.131-0.171) 0.079-0.302 

Penalized 0.830±0.065 0.827 (0.787-0.882) 0.714-0.953 0.119±0.019 0.122 (0.103-0.135) 0.084-0.153 

Ranger 0.818±0.063 0.820 (0.775-0.865) 0.711-0.941 0.129±0.018 0.127 (0.116-0.141) 0.100-0.183 

Rfsrc 0.811±0.075 0.797 (0.766-0.866) 0.663-0.965 0.134±0.025 0.130 (0.117-0.145) 0.086-0.193 

Ridge 0.818±0.059 0.826 (0.775-0.857) 0.704-0.929 0.157±0.018 0.161 (0.146-0.166) 0.112-0.203 

Rpart 0.721±0.090 0.722 (0.657-0.803) 0.534-0.880 0.203±0.053 0.192 (0.165-0.239) 0.124-0.332 

Svm 0.770±0.146 0.796 (0.728-0.845) 0.128-0.947 0.269±0.080 0.261 (0.218-0.314) 0.129-0.511 

Xgboost (dart) 0.767±0.092 0.763 (0.718-0.819) 0.577-0.947 0.181±0.039 0.178 (0.153-0.207) 0.095-0.270 

Xgboost (gblinear) 0.839±0.061 0.834 (0.797-0.883) 0.721-0.953 0.155±0.035 0.157 (0.130-0.179) 0.066-0.219 

Xgboost (gbtree) 0.766±0.074 0.757 (0.717-0.821) 0.592-0.929 0.190±0.049 0.180 (0.161-0.216) 0.100-0.309 

MLSeqSurv 

voomStackPrio1 0.827±0.063 0.828 (0.777-0.880) 0.644-0.926 0.133±0.033 0.127 (0.108-0.158) 0.086-0.212 

42.20±12.95 40.00 (33.00-50.50) 19-72 

voomStackPrio2 0.828±0.070 0.849 (0.766-0.887) 0.655-0.926 0.123±0.015 0.123 (0.114-0.131) 0.088-0.157 

voomStackIPF1 0.817±0.063 0.810 (0.764-0.864) 0.698-0.937 0.144±0.013 0.143 (0.135-0.152) 0.120-0.183 

voomStackIPF2 0.840±0.055 0.839 (0.807-0.883) 0.655-0.916 0.111±0.016 0.112 (0.099-0.121) 0.083-0.150 

voomStackIPF3 0.841±0.059 0.851 (0.810-0.888) 0.655-0.926 0.108±0.018 0.107 (0.095-0.119) 0.077-0.151 

voomStackIPF4 0.817±0.062 0.810 (0.763-0.859) 0.698-0.937 0.144±0.013 0.143 (0.134-0.153) 0.126-0.183 

voomStackIPF5 0.840±0.055 0.839 (0.807-0.883) 0.655-0.916 0.111±0.016 0.112 (0.099-0.121) 0.083-0.150 

voomStackIPF6 0.830±0.072 0.836 (0.798-0.885) 0.600-0.926 0.111±0.020 0.110 (0.097-0.123) 0.077-0.165 

voomStackIPF7 0.817±0.062 0.810 (0.764-0.859) 0.698-0.937 0.144±0.012 0.143 (0.135-0.152) 0.126-0.183 

voomStackIPF8 0.840±0.055 0.839 (0.807-0.883) 0.655-0.916 0.111±0.016 0.112 (0.099-0.121) 0.083-0.150 

voomStackIPF9 0.841±0.059 0.851 (0.810-0.888) 0.655-0.926 0.108±0.018 0.107 (0.095-0.119) 0.077-0.151 
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features was xgboost (with booster= “gbtree”) (617.87±407.24), while the algorithm 

with the highest mean number of features was obliqueRSF (1116.40±560.43). 

4.2. Super Lists 

Within the study's scope is a plan to compare the model performances of 47 

algorithms, including the newly developed ones. Due to the extensive number of 

methods, diverse datasets, and multiple performance measures, determining the best 

methods in every aspect is challenging. Therefore, the rank aggregation method was 

employed. Rank aggregation is an optimization method capable of combining ordered 

lists. Utilizing this approach, separate assessments were conducted based on the 

number of selected features, concordance index, and integrated Brier score. As a result 

of these evaluations, super lists were generated for each performance measure, ranking 

methods from the best-performing to the worst-performing (Figure 4.13, Figure 4.14, 

and Figure 4.15). Super lists have been generated based on the colors and numbers 

assigned to the compared methods: 

voomStackPrio1 1   blackboost 1   blackboost_B 1 

voomStackPrio2 2   coxboost 2   coxboost_B 2 

voomStackIPF1 3   gbm 3   gbm_B 3 

voomStackIPF2 4   glmboost 4   glmboost_B 4 

voomStackIPF3 5   xgboost_gbtree 5   xgboost_gbtree_B 5 

voomStackIPF4 6   xgboost_gblinear 6   xgboost_gblinear_B 6 

voomStackIPF5 7   xgboost_dart 7   xgboost_dart_B 7 

voomStackIPF6 8   elasticnet 1   elasticnet_B 1 

voomStackIPF7 9   lasso 2   lasso_B 2 

voomStackIPF8 10   penalized 3   penalized_B 3 

voomStackIPF9 11   ridge 4   ridge_B 4 
    cforest 1   cforest_B 1 
    ctree 2   ctree_B 2 
    obliqueRSF 3   obliqueRSF_B 3 
    ranger 4   ranger_B 4 
    rfsrc 5   rfsrc_B 5 
    rpart 6   rpart_B 6 
    svm 1   svm_B 1 

 

In Figure 4.13, a super list has been compiled based on the concordance index. 

Initially, the concordance index results for each dataset were arranged in descending 

order on separate lines. Running the rank aggregation algorithm across these 12 

datasets formed the super list displayed in the bottom row. Among  the top 20 methods 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

ACC 1 1 4 5 1 4 3 1 9 4 6 6 3 4 1 6 5 3 1 1 3 3 2 4 2 7 4 5 2 3 7 5 2 3 4 7 10 5 11 8 1 6 6 2 2 2 1 

CESC 4 3 1 3 4 9 1 6 4 1 2 1 4 5 7 4 2 8 10 5 11 1 4 6 2 2 3 2 4 3 3 1 5 1 5 7 5 7 3 1 3 6 1 6 2 2 6 

ESCA 4 9 1 3 6 7 4 5 10 8 11 1 5 1 3 2 5 4 2 3 7 6 3 6 4 7 5 1 2 6 5 2 3 1 2 2 2 1 4 1 1 4 4 3 1 3 6 

GBM 4 1 3 3 1 2 5 2 3 4 2 1 6 1 3 4 7 8 1 10 11 5 2 4 4 2 5 4 7 1 4 6 6 1 2 1 1 5 6 3 6 3 9 5 7 3 2 

KIRC 1 4 5 4 1 3 1 6 4 1 4 3 2 2 1 3 2 3 6 9 4 5 4 1 7 4 10 8 1 11 5 3 7 2 5 2 5 3 3 6 1 7 6 2 6 2 1 

KIRP 1 3 2 5 4 2 4 3 1 4 1 9 2 6 4 3 3 1 7 2 1 5 3 4 4 5 1 5 7 10 1 3 4 7 2 3 6 5 11 2 8 1 6 6 6 2 1 

LAML 2 5 2 1 4 1 4 3 1 3 6 9 6 3 4 4 5 3 2 1 3 4 2 1 10 3 4 2 1 1 7 5 4 7 11 7 1 6 5 5 3 8 6 6 2 2 1 

LGG 2 4 4 1 2 1 3 4 5 4 2 4 3 9 1 3 2 6 1 1 4 1 5 4 7 10 6 6 5 8 5 11 1 7 3 3 1 7 5 3 2 6 3 6 2 2 1 

MESO 3 9 6 4 1 3 6 4 6 1 4 3 1 1 5 4 1 1 2 4 4 5 2 2 1 1 3 2 3 10 11 8 7 7 4 5 2 5 3 7 6 2 5 3 2 6 1 

PAAD 6 9 4 6 6 3 1 3 3 1 2 4 4 4 2 4 2 1 7 3 8 11 4 10 5 1 1 1 5 2 4 1 2 3 5 1 7 3 5 2 3 5 7 6 6 2 1 

SARC 4 1 5 3 4 1 4 6 4 2 9 3 1 3 6 1 1 4 1 5 2 10 5 4 7 11 8 3 2 3 4 2 7 2 3 5 1 5 7 3 6 1 2 6 2 6 1 

UVM 5 11 4 7 10 6 8 3 1 2 1 4 2 2 1 4 4 3 6 9 6 4 5 5 1 3 4 4 1 2 1 1 2 3 3 3 1 3 7 5 1 7 5 2 2 6 6 

Super 

List 
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Figure 4.13. The ranking of survival algorithms based the concordance index. 

  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

ACC 3 9 3 6 4 10 7 4 3 1 5 11 8 5 3 1 4 2 5 6 2 1 5 7 3 7 6 5 2 4 2 6 6 2 4 1 1 4 1 4 1 2 3 3 1 1 2 

CESC 6 3 9 7 2 8 4 5 10 11 3 5 1 4 4 3 4 1 5 1 2 6 4 3 6 5 7 3 2 7 5 1 2 6 1 6 2 2 2 4 4 1 1 1 3 3 1 

ESCA 1 3 4 3 4 2 5 4 2 6 3 9 7 8 4 5 2 10 11 1 4 5 6 6 3 3 2 1 6 6 7 7 5 5 1 3 2 2 1 3 1 4 1 2 4 1 1 

GBM 1 3 3 4 5 1 4 2 4 3 2 3 5 7 8 3 9 4 6 5 10 11 6 2 6 1 6 6 5 7 5 7 4 2 1 3 1 2 3 1 1 2 4 2 4 1 1 

KIRC 1 3 3 4 5 4 2 5 1 7 4 10 8 11 5 2 3 6 9 2 3 1 3 4 6 5 6 7 7 5 4 1 1 4 3 2 6 2 2 6 1 3 1 4 2 1 1 

KIRP 10 3 9 4 6 7 2 5 8 11 3 1 4 4 3 5 5 1 3 5 3 6 2 6 7 7 5 2 1 2 2 1 4 1 1 6 4 4 6 4 3 1 3 2 1 2 1 

LAML 1 3 1 5 4 4 3 5 10 7 4 11 8 5 2 9 3 6 4 3 1 2 2 6 3 6 5 7 3 5 6 6 7 4 3 2 2 1 1 1 2 2 1 4 4 1 1 

LGG 2 2 3 3 4 4 1 3 5 3 1 5 6 6 2 4 7 10 8 5 11 9 6 3 6 6 5 7 5 7 4 1 3 3 4 2 1 2 1 1 1 2 2 1 1 4 4 

MESO 3 3 4 1 1 2 5 2 4 5 3 6 3 10 8 11 6 4 7 5 1 4 7 2 6 9 3 5 7 5 6 4 6 2 1 3 2 2 1 2 3 4 4 1 1 1 1 

PAAD 3 3 1 4 2 5 7 2 5 8 4 11 10 4 9 3 6 1 1 4 5 6 2 4 3 6 3 7 6 5 6 5 7 2 3 1 3 2 1 2 4 2 1 4 1 1 1 

SARC 6 9 3 4 5 10 7 8 11 2 1 1 4 4 5 4 1 5 3 3 3 3 2 6 6 2 7 7 5 5 6 6 1 2 4 1 2 2 2 4 3 3 1 4 1 1 1 

UVM 5 11 7 4 10 8 3 3 2 1 1 4 1 1 1 2 5 4 2 5 9 3 6 4 2 3 6 6 3 4 7 2 7 5 2 4 2 5 6 4 6 1 1 1 3 1 3 
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Figure 4.14. The ranking of survival algorithms based the integrated Brier score. 
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  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

ACC MLSeqSurv Models_Boruta 6 3 2 4 4 7 5 4 2 1 6 2 1 5 1 3 1 3 

CESC MLSeqSurv Models Boruta 1 5 4 6 4 3 1 4 1 3 7 5 2 2 3 1 2 6 

ESCA Models Boruta MLSeqSurv 3 4 1 4 2 4 3 1 3 2 5 7 1 6 1 2 6 5 

GBM Models Boruta MLSeqSurv 4 4 5 3 4 3 6 1 2 5 1 2 2 1 1 7 3 6 

KIRC MLSeqSurv Models Boruta 6 2 4 4 1 3 3 2 5 2 4 5 1 3 7 1 1 6 

KIRP Models Boruta MLSeqSurv 6 1 2 3 2 5 7 4 3 2 3 1 1 4 5 4 1 6 

LAML Models Boruta MLSeqSurv 7 5 4 2 2 1 4 6 4 5 1 3 1 6 3 2 1 3 

LGG Models Boruta MLSeqSurv 7 4 2 2 1 5 6 3 1 1 4 5 3 2 3 1 4 6 

MESO Models Boruta MLSeqSurv 4 5 2 7 6 5 1 3 4 3 4 1 2 1 1 6 2 3 

PAAD MLSeqSurv Models Boruta 5 4 3 2 6 4 3 4 1 5 2 2 7 1 1 1 6 3 

SARC Models Boruta MLSeqSurv 4 5 2 6 5 2 3 7 3 4 2 4 1 1 1 1 3 6 

UVM MLSeqSurv Models Boruta 5 4 3 2 2 4 7 1 6 1 6 2 1 3 1 4 5 3 

Super  

List 

Models Boruta MLSeqSurv 4 2 6 4 4 3 7 5 2 2 5 1 1 1 3 1 3 6 
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Figure 4.15. The ranking of survival algorithms based the number of selected 

                            features. 

according to the concordance index in this list are the following:  ranger, ridge, 

elasticnet, cforest, voomStackIPF1, rfsrc, voomStackIPF7, voomStackIPF4, 

ranger_B, coxboost, ridge_B, lasso, penalized_B, gbm, elasticnet_B, glmboost, 

penalized, blackboost, lasso_B, xgboost (gblinear). 

In Figure 4.14, a super list has been compiled based on the integrated Brier 

score. Initially, the integrated Brier score results for each dataset were arranged on 

separate lines from smallest to largest. Running the rank aggregation algorithm across 

these 12 datasets formed the super list displayed in the bottom row. Among the top 20 

methods according to the integrated Brier score in this list are the following, listed in 

order: penalized_b, cforest, gbm, voomStackIPF2, voomStackIPF5, voomStackIPF6, 

ranger, ranger_B, rfsrc, voomStackIPF8, voomStackIPF3, voomStackIPF9, rfsrc_B, 

voomStackPrio2, voomStackIPF7, voomStackIPF1, voomStackIPF4, 

voomStackPrio1, coxboost_b, obliqueRSF. 

In Figure 4.15, a super list has been generated based on the number of selected 

features. Initially, lists were created for each dataset, ranging from using the least 
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features to using the most features. In the resulting super list, it was chosen the least 

number of features. 

  

Upon scrutinizing the survival models in this study solely based on a high 

concordance index, it was evident that the lasso, elastic net, ridge, xgboost (gblinear), 

gbm, glmboost, and blackboost algorithms, employing internal feature selection, 

exhibited commendable performance. The obliqueRSF, which also utilizes internal 

feature selection, was the sole model displaying a low integrated Brier score. Models 

with both a high concordance index and a low integrated Brier score include cforest, 

ranger, rfsrc, and penalized—each utilizing internal feature selection. Nevertheless, 

despite their high performance in concordance index and integrated Brier score, these 

models tend to incorporate excessive features. Elastic net and lasso models utilizing 

Boruta feature selection exhibited low features and a high concordance index value. 

However, their integrated Brier scores were also high. On the other hand, 

voomStackIPF2, voomStackIPF3, voomStackIPF5, voomStackIPF6, voomStackIPF8, 

voomStackIPF9, voomStackPrio1, voomStackPrio2, rfsrc, and coxboost algorithms, 

when employing Boruta feature selection, displayed a low feature count and a low 

integrated Brier score value. Despite this, their concordance index values were not 

notably high. Methods striking a balance between a high concordance index, low 

Figure 4.16. A Venn diagram illustrating optimal practices concerning concordance     

                      index, integrated Brier score, and the number of selected features. 
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integrated Brier score, and a modest feature count include voomStackIPF1, 

voomStackIPF4, voomStackIPF7, ranger, and penalized algorithms—all utilizing 

Boruta feature selection (Figure 4.16).   

4.3. Computational Time 

The execution times of the algorithms for MESO, SARC, and LGG data are 

presented in minutes in Table 4.13. Upon examination, it is evident that 

voomStackLasso algorithms typically complete calculations in significantly less time 

than existing algorithms. This characteristic enhances the practical utility of the newly 

developed algorithms. 
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Table 4.13. The summary statistics of the computational time for MESO, SARC, and 

LGG. 

Groups of 

Algorithms 
Models MESO SARC LGG 

Models 

Blackboost 60.69 55.94 102.08 

Cforest 195.91 201.36 456.48 

Coxboost 49.73 90.32 192.55 

Ctree 18.23 24.9 39.9 

Elasticnet 1.54 2.79 3.51 

Gbm 5.01 23.4 48.37 

Glmboost 18.56 55.71 109.59 

Lasso 1.76 2.75 3.58 

ObliqueRSF 58.84 509.18 1064.64 

Penalized 2.69 6.39 8.33 

Ranger 2.17 72.07 419.81 

Rfsrc 2.19 11.05 22.17 

Ridge 1.35 2.89 5.00 

Rpart 1.54 3.44 4.01 

Svm 2.01 52.58 155.51 

Xgboost (dart) 1.06 4.54 5.7 

Xgboost (gblinear) 0.97 3.07 3.7 

Xgboost (gbtree) 1.1 4.31 7.1 

Models 

Boruta 

Blackboost 12.12 16.40 202.12 

Cforest 25.37 85.65 1052.77 

Coxboost 5.5 7.65 52.99 

Ctree 0.93 0.92 6.35 

Elasticnet 0.78 0.54 2.06 

Gbm 0.71 0.63 5.31 

Glmboost 6.97 11.48 104.63 

Lasso 0.72 0.55 2.06 

ObliqueRSF 26.21 66.44 243.68 

Penalized 0.39 0.52 1.47 

Ranger 5.85 99.52 544.57 

Rfsrc 2.2 17.71 31.12 

Ridge 0.75 0.54 2.03 

Rpart 1.18 2.01 2.08 

Svm 6.94 51.86 193.7 

Xgboost (dart) 2.39 4.13 3.71 

Xgboost (gblinear) 2.21 3.77 3.24 

Xgboost (gbtree) 2.41 4.02 3.7 

MLSeqSurv 

voomStackPrio1 0.59 0.94 13.48 

voomStackPrio2 0.58 0.85 13.36 

voomStackIPF1 0.41 0.56 5.73 

voomStackIPF2 0.72 0.45 9.82 

voomStackIPF3 1.36 0.48 48.88 

voomStackIPF4 0.42 0.53 7.24 

voomStackIPF5 0.77 0.51 11.86 

voomStackIPF6 0.99 0.44 50.64 

voomStackIPF7 0.43 0.53 5.40 

voomStackIPF8 0.66 0.41 4.56 

voomStackIPF9 1.13 0.34 37.78 

The values in the table are calculated in minutes. Mean values are given. 
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5. DISCUSSION 

Previously conducted with low-dimensional clinical data in earlier studies, 

survival analyses have undergone a transformative shift toward integrating large-

dimensional gene expression data, such as RNA-seq. This shift reflects the advancing 

landscape of precision medicine, emphasizing personalized diagnoses and treatments 

over-generalized approaches applied uniformly to all patients. Researchers are 

using genetic data to diagnose and treat diseases because they have realized that 

different people respond differently to the same treatments and that diseases progress 

differently in different ways in the same individuals. This paradigm shift towards 

leveraging genetic information underscores the significance of tailoring medical 

interventions based on an individual's unique genetic makeup, ushering in a new era 

of targeted and more effective healthcare strategies. 

 Machine learning methods have been devised for survival analyses on high-

dimensional RNA-seq data. In the context of this thesis, we compared these established 

methods in the literature with novel approaches we developed ourselves. The criteria 

employed for model comparisons encompassed the concordance index and integrated 

Brier score. Performance evaluation in survival analyses typically involves two main 

aspects: discrimination and calibration. 

In survival analyses, the concordance index is the most widely 

used discrimination metric. Listing anticipated risk scores and actual results is the first 

step, and then the alignment of these rankings is compared. Concordance occurs when 

an individual who experiences an event at the start of the study period is given a greater 

predicted risk score than an individual who experiences the event at the end of the 

study period or never during the study period. This index represents the probability 

that two randomly chosen subjects have correctly ranked risk estimates. Despite its 

common use, the concordance index has drawbacks. It relies solely on the ranks of 

predicted values, potentially inflating the index for models with inaccurate predictions 

compared to competing models with more accurate predictions (245). Furthermore, 

when introducing new statistically and clinically significant variables to the model, the 

concordance index becomes less reliable, as it is insensitive to such additions (246). 

Additionally, its interpretation is limited due to the amalgamation of sensitivity and 

selectivity concepts (247).  
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Alternatively, the Brier score shows up as a complete performance measure 

that includes both calibration and discrimination. With respect to the predicted 

survival probability, this score measures the mean squared error. It can calculate a 

general error measurement over all time points and be applied to a particular time point 

(t). But in order to compute the Brier score, baseline estimation is required, and 

different approaches can produce different scores. In this study, we employed the Brier 

score developed by Graf et al. (219), eliminating the need for baseline estimation. This 

method categorizes test data into two groups based on the training model, estimating 

the risk-free probability for each sample from the Kaplan-Meier estimate relevant to 

the group. 

Models were additionally assessed based on the number of features they 

selected. For models beyond the approaches we devised, analyses conducted using the 

mlr3proba package (215) revealed that the internal feature selection algorithms 

needed to be sufficiently sparse in their selection, encompassing a broad array of 

features. Consequently, the Boruta feature selection algorithm was applied in 

subsequent analyses, addressing the need for more focused feature selection. In this 

case, although models were created with fewer features, it has been observed that there 

is little difference in model performances. Moreover, previous studies experimenting 

with various feature selection methods for survival data have also indicated no 

difference in model performance (52,248). 

Upon reviewing the concordance index results, it is noteworthy that while the 

internal feature selection and Boruta feature selection outcomes of algorithms in the 

literature generally yield similar results, distinct algorithms exhibit higher 

performance on different datasets. For instance, in evaluations based on concordance 

index results for methods in the literature employing internal feature selection, the 

ranger algorithm demonstrated superior performance in ESCA and GBM data, the 

ridge algorithm excelled in PAAD and SARC data, and the elastic net algorithm 

outperformed in MESO data. Notably, in the LAML data, the coxboost 

algorithm performed the best, while in the ACC data, the cforest algorithm performed 

exceptionally well. After scrutinizing the literature's approaches, it became evident 

that ctree and rpart methods generally yielded lower accuracy across all datasets. 

Comparative studies utilizing these algorithms concluded that different methods 

performed better in diverse studies despite generating similar performance results. In 
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a study encompassing ten different cancer datasets, Cox Proportional Hazards with 

Ridge penalty, Random Survival Forests, Gradient Boosting for Survival Analysis 

with a CoxPh loss function, linear and kernel Support Vector Machines generally 

delivered comparable concordance index results, particularly in higher-dimensional 

data. Cox proportional hazards demonstrated suboptimal performance in some high-

dimensional sets (249). Numerous studies have consistently showcased the high-

performance outcomes of the random survival forest algorithm (250–252). While 

xgboost and random survival forest algorithms demonstrated similar performance in 

certain studies (253), the xgboost algorithm outperformed in others (254,255). 

Furthermore, studies are highlighting the high performance of the elasticnet algorithm 

(256), the gbm algorithm (257), and the blackboost algorithm (53). In comparisons of 

survival algorithms, the svm algorithm either showed results comparable to other 

methods or exhibited lower performance outcomes (258). 

When scrutinizing the results of the integrated Brier score, it is observed that 

penalized, ranger, rfsrc, and cforest algorithms, among the survival algorithms in the 

literature, consistently yield high-performance outcomes. Conversely, blackboost, 

elasticnet, gbm, lasso, and svm algorithms tend to exhibit notably lower performances. 

It's important to note that while algorithms with low integrated Brier score often 

demonstrate high concordance index performances, relying solely on the concordance 

index for model performance evaluation may not suffice for a comprehensive 

assessment. This issue was also highlighted by Hermann et al., (53) in their article, 

which argues that the selection of a performance measure can have a significant effect 

on the assessment of the performance of a method. While many studies traditionally 

measure survival model performances with the concordance index, Hermann et al. (53) 

argued that the cindex is not an ideal measure as it solely assesses discrimination. They 

proposed that the integrated Brier score is a more accurate measure. Additionally, 

Hermann et al. (50) highlighted that if the study's goal is risk classification, using the 

concordance index for interpretability is more accurate, whereas for prognostic 

accuracy, the integrated Brier score is the preferred metric.  

When assessed in terms of the number of variables incorporated into the model, 

it becomes evident that the means and standard deviations of the selected variables in 

algorithms employing internal feature selection methods are notably high, indicating 

a lack of sparsity in these methods. However, upon applying Boruta feature selection 
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to these algorithms, models could be constructed with significantly fewer variables. In 

addition, Spooner et al. (52)compared model performance with survival algorithms 

and with feature selection methods and found that feature selection did not result in 

significant changes in model performance. This study observed that when both Boruta 

feature selection and internal feature selection were applied to survival algorithms in 

the literature, the model's performance was not significantly altered based on the 

concordance index and integrated Brier score. It can be stated that, in some datasets, 

model performances with Boruta feature selection are relatively lower than those with 

integrated feature selection. However, it is noteworthy that, in models where Boruta 

feature selection is applied, the mean and standard deviation of the selected feature 

numbers are considerably lower.  

When the models are evaluated in terms of calculation times, it is noteworthy 

that boosting methods such as blackboost take a very long time to model. In addition, 

it has been observed that penalized Cox regression models such as lasso, ridge, 

elasticnet can model very quickly. 

A comprehensive study was carried out, utilizing 12 real RNA-seq survival 

datasets, to assess the proposed methodologies' efficacy and compare their 

performance with that of other survival algorithms. Remarkably good results were 

achieved when applied to real data. Notably, three of the recently formulated 

voomStackIPF approaches (voomStackIPF1, voomStackIPF4, and voomStackIPF7) 

demonstrated comparable or slightly superior results compared to the most favorable 

results attained by established methods documented in the literature for the analysis of 

RNA-seq survival data. These models demonstrated a high concordance index and a 

low Brier score, showcasing the capability to generate models swiftly with minimal 

variables. In addition, the models were also evaluated for how long it took to achieve 

results. Upon further analysis, it became clear that the proposed algorithms delivered 

results in a fraction of the time as the existing algorithms described in the literature. 

The new algorithms used in this study are the first to integrate logCPM and 

voom transformation-derived sample weights into survival algorithms for the first 

time. While voom transformation has previously been used in differential expression 

(69), classification (71), and clustering (72) analysis of RNA-seq data, this is the first 

study to use voom transform in survival algorithms. This study shows impressive 

performance and provides sparse results.The accuracy of the voom transformation to 
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model the mean-variance relationship in RNA seq data is thought to be critical to the 

success of our novel survival algorithms. Additionally, the weights obtained through 

the voom transformation confer advantages, such as accommodating samples with 

varying sorting depths and mitigating the impact of low-quality samples. 

The stacking algorithm can alter the structure of survival data, converting it 

into a classification data format. Consequently, all algorithms designed for 

classification issues can be extended to address survival problems. Hence, the stacking 

algorithm, renowned for its high-performance outcomes when applied to low-

dimensional data (61), was introduced for the first time to RNA-seq data in this study. 

In the context of this thesis, the stacking algorithm facilitated the utilization of priority-

Lasso and IPF-Lasso classification algorithms, incorporating sample weights, for the 

inaugural analysis of RNA-seq survival data. Integration with various classification 

algorithms is achievable through the stacking algorithm. Rather than being confined 

to a restricted set of survival algorithms, researchers can now employ numerous 

classification algorithms, numbering in the hundreds drawn from existing literature 

and incorporating newly developed methods for enhanced analysis. Thus, the stacking 

algorithm and other established classification algorithms in the literature can now be 

applied in the survival data analysis. 

In this thesis study, several key factors contributed to the success of the new 

algorithms used to analyze the survival data for RNA-seq: (i) the application of the 

potent voom transformation algorithm to the data, (ii) the transformation of the 

intricate structure of survival data into a simplified classification data structure through 

stacking algorithms, (iii) the utilization of priority-Lasso and IPF Lasso algorithms 

capable of analyzing the block structure of variables with diverse data structures 

obtained through stacking, leading to more precise results, (iv) the modeling approach 

involves applying distinct weights to individual samples in the RNA-seq data, and (v) 

the Boruta algorithm, known for its effectiveness in selecting important variables, has 

been integrated into newly developed algorithms. The combination of these robust 

approaches has led to the development of two different survival algorithms: high 

performance, sparse, and efficient modeling algorithms, which have made significant 

contributions to the literature. 

The developed algorithms extend beyond conventional survival analysis; they 

also demonstrate exceptional proficiency in biomarker discovery. Their ability to 
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perform both survival assays and biomarker assays using gene expression data at the 

same time is of great importance to healthcare professionals, helping them to better 

diagnose patients. Creating a decision support system for clinical diagnosis, driven by 

identifying the most pertinent genes associated with a disease, empowers clinicians to 

make more accurate diagnoses promptly. This, in turn, facilitates the development of 

personalized treatments, enhances patients' quality of life, and positively contributes 

to the country's economy. 

MLSeqSurv, which was created for this thesis, allows researchers to perform 

survival assays on the RNA-seq dataset using existing survival algorithms in the 

literature as well as new algorithms. This package makes it easy to create individual 

survival graphs so you can perform your own analysis without having to spend a lot of 

time coding. 

The newly developed algorithms, voomStackPrio, and voomStackIPF, 

introduced within the context of this study, were implemented on RNA-seq data. 

However, these algorithms can be extended for future investigations to analyze other 

high-dimensional datasets such as microarray, proteomics, and metabolomics by 

customizing the pre-processing steps. It is anticipated that in other high-dimensional 

data settings, similar to RNA-seq, these algorithms would yield high-performance 

results, particularly in the context of survival analyses. Additionally, in this study, only 

protein-coding genes have been considered. However, in future studies, non-coding 

genes may also be included in the analysis. Similarly, this study utilized bulk RNA-

seq data; however, the pre-processing step can be adapted and implemented for 

survival analyses of single-cell RNA-seq data. 

In this study, survival prediction was achieved by looking at data with 

heterogeneous structures due to stacking through block structured lasso algorithms. 

Future survival algorithms could be created using multiple kernel algorithms where 

different types of data are evaluated in different cores. Moreover, studies have 

demonstrated performance improvements when combining RNA-seq data with 

clinical data or other omics data like microarray, metabolomics, and proteomics. This 

situation aligns well with the voomStackIPF and voomStackPrio algorithms developed 

in this study, which were designed to evaluate different data types in distinct blocks. 

For instance, in scenarios involving clinical + RNA-seq data, post voom 

transformation, and stacking, clinical data could be analyzed in one block while RNA-
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seq data is assessed in another. Similarly, for RNA-seq + metabolomics + proteomic 

data, each data type could be processed and stacked separately according to its 

structure, allowing for analysis in individual blocks—one for RNA-seq data, another 

for metabolomics data, and a third for proteomic data. 
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6. CONCLUSION 

In this paper, we introduced two new algorithms to the literature: voom 

transformation and stacking algorithm, as well as block-based lasso algorithms for 

RNA-seq survival analysis. These algorithms solve problems such as high 

dimensionality, high collinearity, and heterogeneity in RNA-seq data, tackling 

survival problems by conceptualizing them as classification problems. The algorithms 

developed have comparable or better model performance compared to other techniques 

described in the literature, showing their efficiency in building models with minimal 

features. In addition, these algorithms are much faster than existing algorithms in terms 

of computational time, delivering results in a fraction of the time. 

On the basis of these results, voomStackLasso algorithms serve as a viable 

alternative to other survival algorithms used in the analysis of RNA-seq datasets. 
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8. APPENDICES

Appendix 1: The codes for analysis and MLSeqSurv R Package, the selected 

features for models. 

The codes for analysis and selected features for models are available at 

https://github.com/gokmenzararsiz/voomStackLasso. 

The codes for MLSeqSurv R Package is available at 

https://github.com/gokmenzararsiz/MLSeqSurv. 

https://github.com/gokmenzararsiz/voomStackLasso
https://github.com/gokmenzararsiz/MLSeqSurv
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Appendix 2: The Originality Report of Thesis Study. 



173 



174 

9. CURRICULUM VITAE (CV)



175 


