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ABSTRACT 

 

Kuşcuoğlu, E. Image, Sequence, And Interactome Based Prediction of 

Subcellular Localization of Proteins, Hacettepe University Graduate School of 

Health Sciences Bioinformatics Program Master’s Thesis, Ankara, 2024. 

Knowledge of subcellular localization (SL) of proteins is essential for drug 

development, systems biology, proteomics, and functional genomics. Due to the high 

costs associated with experimental studies, it has become crucial to develop 

computational systems to accurately predict proteins’ SLs. With different modes of 

biological data (e.g., biomolecular sequences, biomedical images, unstructured text, 

etc.) becoming readily available to ordinary scientists, it is possible to leverage 

complementary types of data to increase both the performance and coverage of 

predictions. In this study, we propose HoliLoc, a new method for predicting protein 

SLs via multi-modal deep learning. Our approach makes use of three different types 

of data (i.e., 2D confocal microscopy images, amino acid sequences, and protein-

protein interactions – PPIs) to predict SLs of proteins in a multi-label manner for 22 

different cell compartments using protein language models, graph embeddings and 

convolutional and feed forward neural networks. The system was trained in an end-to-

end manner, and the performances were calculated on the unseen hold-out test dataset. 

The average test performance of individual models (each using a single data type) was 

0.18 (macro F1-score) and 0.55 (accuracy), whereas for HoliLoc (the fusion of 3 

modalities) it was observed to be 0.26 (F1-score) and 0.60 (accuracy), indicating the 

effectiveness of the multi-modal learning approach proposed. According to our 

comparison against state-of-the-art SL predictors, HoliLoc displays highly competitive 

performance. HoliLoc is distributed as an open-access programmatic tool, which is 

anticipated to benefit life science researchers by reducing the cost and time required 

for wet-lab experiments by accurately predicting the SLs of the protein of interest in 

advance. 

 

Key words: Protein subcellular localization prediction, deep learning, protein      

AAAAAAAresearch                                          
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ÖZET 

 

Kuşcuoğlu, E. Protei̇nleri̇n Subselüler Yerleşi̇mleri̇ni̇n Görüntü, Sekans ve 

İnteraktom Veri̇si̇  Tabanli Tahmi̇ni̇, Hacettepe Üniversitesi Sağlik Bilimleri 

Enstitüsü Biyoinformatik Programi Yüksek Lisans Tezi, Ankara, 2024. 

Proteinlerin subselüler yerleşimleri (SY) bilgisi, ilaç geliştirme, sistem biyolojisi, 

proteomik ve fonksiyonel genomik alanlarında önemlidir. Deneysel çalışmalarla 

ilişkilendirilen yüksek maliyetler nedeniyle, proteinlerin SY'lerini doğru bir şekilde 

tahmin edecek için hesaplamalı sistemleri geliştirmek gerekli hale gelmiştir. Farklı 

biyolojik veri türlerinin (örneğin, biyomoleküler diziler, biyomedikal görüntüler, 

yapılandırılmamış metinler vb.) araştırmacılar için  kolayca erişilebilir hale gelmesi, 

tahminlerin hem performansını hem de kapsamını artırmak için tamamlayıcı veri 

türlerinden yararlanma olasılığı sunmuştur. Bu çalışmada, protein SY’lerini çok modlu 

derin öğrenme ile tahmin etmek için HoliLoc adlı yeni bir yöntem önerilmiştir. 

Yaklaşımımız, protein dil modellerini, çizge öğrenme tekniklerini ve evrişimli ve ileri 

beslemeli sinir ağlarını kullanarak, 22 farklı  kompartıman için proteinlerin SY'lerini 

tahmin etmek için üç farklı veri türünden yararlanır (2D konfokal mikroskopi 

görüntüleri, amino asit dizileri ve protein-protein etkileşimleri). Sistem, uçtan uca bir 

şekilde eğitildi ve performanslar daha önce görülmeyen test veri setinde hesaplandı. 

Her biri tek bir veri tipini kullanan bireysel modellerin test performansı ortalama 0.18 

makro F1 puanı ve 0.55 doğrulukta iken, HoliLoc'un (3 modalitenin birleşimi) 

gözlemlenen ortalama test performansı 0.26 makro F1 puanı ve 0.60 doğruluk olarak 

tespit edildi. Bu sonuçlar, önerilen çoklu modlu öğrenme yaklaşımının başarısını 

göstermektedir. Literatürde mevcut SY tahmincilerine karşı yaptığımız 

karşılaştırmaya göre, HoliLoc oldukça rekabetçi bir performans sergilemektedir. 

HoliLoc, yaşam bilimleri araştırmacılarına, ilgilendikleri proteinin subselüler 

yerleşimlerini doğru bir şekilde tahmin ederek laboratuvar deneyleri için gereken 

maliyeti ve zamanı azaltacak açık erişimli bir programlama aracı olarak 

sunulmaktadır. 

 

Anahtar kelimeler: Protein subselüler yerleşimlerinin tahmini, derin öğrenme, 

AAAAAAAAAAA  protein bilimi
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1. INTRODUCTION 

 

 

Regions of eukaryotic cells differ both morphologically and functionally. To function 

properly, proteins need to be at the appropriate location. The compartments where 

proteins are found restrict the functionalities since they create a physiological 

environment (Figure 1.1). If a protein localization is improper, its function will be 

damaged and may result in a variety of disorders, including cancer, metabolic 

problems, and neurodegenerative diseases (1). Understanding where proteins are 

located inside the cell not only improves our understanding of the activities of certain 

proteins but also clarifies how cells are structured in general. For domains like drug 

detection, systems biology, and proteomics, understanding protein function is crucial 

knowledge. Both in vitro and in vivo methods can be used to identify proteins' 

subcellular localization. However, experimental techniques such as mass 

spectrometry and fluorescence-tagging methods are expensive and time-consuming. 

These methods, however, might be costly and result in unreliable data. 

 

 

Figure 1.1. Representation of the subcellular locations of a eukaryotic cell. Adapted 

from (2). 
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To reduce cost, it is important to use prior in-silico tools to narrow down the research 

area. In accordance with this need, within the scope of this thesis study it is aimed to 

perform a new method for predicting protein subcellular localization via multi-modal 

deep learning. For this purpose, in this thesis, 3 different types of data are used: 2D 

confocal microscopy images (Human Protein Atlas), amino acid sequences 

(UniProt), and protein-protein interactions - PPIs (IntAct) to predict proteins' 

subcellular localization in a multi-label manner for 22 different cell compartments 

(Figure 1.2). HoliLoc takes protein data from 3 different modalities as input, encodes 

and embeds them, conducts learning separately on each data type, uses joint fusion 

for multi-modality, and transforms them into probabilities for 22 locations via 

another feed forward neural network (FFN). The system was trained in an end-to-end 

manner, and the performances were calculated on the unseen hold-out test dataset, 

which is significantly different from the training dataset.  

 

 

Figure 1.2. The workflow of the proposed protein subcellular localization prediction 

method: HoliLoc.  

 

1.1. Problem Definition and Motivation  

 

Understanding the subcellular locations of proteins is essential for 

investigations in systems biology, proteomics, drug development, and protein 

function. Out of the 20,394 reviewed human proteins, 7,348 have localization 

annotations with experimental verification, according to UniProt (version 2020_05) 
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(3). Additionally, there is very little data on sub-organellar compartment localization. 

The wetlab experimental approaches to studying SL of proteins are costly, and also 

labour and time-intensive. Due to this, new methods are required to aid researchers in 

this endeavour. Approaches based on artificial intelligence have evolved nowadays, 

and the biological data variety has grown, which presents a huge potential to advance 

protein SL-related work. However, existing SL prediction methods in the literature 

lack the necessary accuracy and coverage to be utilised in prospective studies in 

protein science. Therefore, it has become crucial to develop cutting-edge deep 

learning techniques that utilise the available data.  Recently, the approach of 

predicting biological properties of proteins by combining various forms or types of 

data from genomics, proteomics and other omic types started to draw interest. To 

conclude, there is a current need to develop new computational approaches to 

accurately predict the SL of proteins with low resource requirements considering 

time and funds, using available large-scale and complex biological data and suitable 

algorithms from data science and artificial intelligence. 

 

1.2. Aim and Scope 

 

The aim of this thesis is firstly to investigate the effect of utilising multiple 

sources of data on protein subcellular localization prediction task and secondly to 

create a multi-modal deep learning model that would provide high-performance 

protein subcellular location predictions. The main objectives are:  

 

1. To construct a novel dataset combining protein confocal microscopy images, 

sequence embeddings, and protein-protein interaction (PPI) embeddings.  

2. To utilise diverse deep learning methods together: convolutional neural 

networks (CNN), protein language models, graph learning, and feed forward 

neural networks (FFN).  

3. To conduct multi-modular model fusion and observe the model effect of 

holistic data integration.  

4. To predict protein subcellular localization in a multi-label manner for 22 

locations.  
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5. To compare the effect of holistic data integration and multimodularity on the 

most well-known Kaggle challenge benchmark dataset.  

6. To prepare an easy to use programmatic tool for the researchers who are 

investigating unknown localizations of proteins.  

To achieve this aim, image, amino acid sequence, and interactome/ protein-protein 

interaction (PPI) data are utilised together for human proteins, and deep learning 

models are constructed by taking simplicity into account to mainly observe the data 

diversity impact. Hence, three different data types are obtained from the public 

biological data sources and organised according to the scope in which all proteins 

belong to human and containing only one protein from a UniRef50 cluster to ensure 

each protein's uniqueness and mitigate the inclusion of closely related proteins that 

can lead to overfitting. The model architectures were specifically selected as simply 

as possible to observe the effect of a holistic data application approach. Performance 

assessment of HoliLoc was conducted as an inter-studies in which it was compared 

with the state-of-the-art protein subcellular location predictors as well as an intra-

study in which individual models (each using a single data type) were compared with 

HoliLoc (modularly fusing individual models) in both the single-location and multi-

location prediction settings. Therefore, this study allows us to see the effect of using 

different data types together in a challenging task for 22 different subcellular 

locations with extremely unbalanced data in a multi-class and multi-label manner. 

 

1.3. Structure of the Thesis 

 

The “Introduction” section gives information about the protein subcellular 

localization, problem definition, aim and scope of this thesis. “Background 

Information” section describes more comprehensively protein subcellular 

localization and how it is interpreted in laboratories and introduces main databases 

used in this thesis as well as general deep learning information and state of art 

solutions in computational subcellular localization prediction and fusion strategies 

using deep learning. In the “Materials and Methods” section data preparation, dataset 

construction, data preprocessing, splitting and model structure overview is explained. 

There are detailed performance assessments and comparisons with the Kaggle 
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challenge in the “Results” section, as well as inter-study performance comparisons. 

Additionally, a use case study is presented in this section. The thesis' findings are 

analysed in the “Discussion” section in relation to the objectives of the study. 

Finally, potential future work and limitations are provided together with an overall 

summary in the “Conclusion” section. 
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2. BACKGROUND INFORMATION 

 

2.1. Protein Subcellular Localization 

 

Protein subcellular localization describes the particular compartment or area 

inside a cell where a protein is most frequently detected or localised. It is essential to 

how the protein interacts and works inside the cell. Many different compartments, 

including the nucleus, cytoplasm, mitochondria, endoplasmic reticulum, Golgi 

apparatus, lysosomes, peroxisomes, and plasma membrane, can be where proteins 

are located (2). Protein's amino acid sequence contains signals or specific sequences 

that determine where in the cell it will be found. These signals serve as molecular 

tags that point the protein in the direction of the correct cellular location (3). Specific 

protein complexes or machinery that promote the transport of the protein to the 

appropriate compartment can recognize the targeting sequences. Protein subcellular 

localization can be investigated using a variety of approaches, such as 

immunofluorescence microscopy, live-cell imaging, and fractionation procedures (4). 

In immunofluorescence microscopy, proteins are marked with fluorescent antibodies 

that attach to the target protein with high specificity, making it possible to see where 

the protein is located within the cell. Fluorescent protein tags that are genetically 

fused to the protein of interest are employed in live-cell imaging techniques. This 

makes it possible to see the protein's dynamic mobility in real time within the cell. 

Using fractionation procedures, cellular compartments are divided, and proteins from 

each fraction are isolated to ascertain their unique localization (5). Understanding 

protein function, cellular processes, and signalling cascades requires a precise 

understanding of protein subcellular distribution. This enables researchers to 

understand how proteins interact with other molecules and cellular organelles to 

understand their roles in diverse cellular processes and disorders. 

 

2.2. Immunofluorescence  

 

 Immunofluorescence (IF) is a technique for locating and visualizing proteins 

or other antigens in cells. Using antibodies that uniquely recognize the desired target 
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of interest. The reporter fluorophore-conjugated antibodies make possible 

fluorescence detection under confocal fluorescence microscopy (Figure 2.1). Signal 

amplification, specific targeting, resolution, and analytical capabilities are the main 

advantages of the IF method. Different fluorophores sensitive to specific targets can 

be stained simultaneously which makes it ideal for co-localization studies. Cultured 

cells, cell suspensions, tissue samples and entire organisms are available for IF. IF 

can be direct or indirect depending on the usage of a secondary antibody (Figure 

2.2). Indirect IF uses a secondary antibody, has more flexible usage and results in 

greater signal detection (6). IF is widely used in the field of protein subcellular 

localization. IF is used to systematically map the subcellular location of the human 

proteins in the Human Protein Atlas project (7). Target proteins are shown in green, 

nucleus in blue, microtubules in red and ER in yellow (8). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Direct immunofluorescence. Adapted from (8). 
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Figure 2.2. Indirect immunofluorescence. Adapted from. (8). 

 

2.3. Human Protein Atlas Subcellular Section 

 

Human Protein Atlas (HPA), a project that aims to map all the human 

proteins in cells, tissues, and organs using various technologies. The website 

(https://www.proteinatlas.org/humanproteome/subcellular) provides open access to 

data and images for researchers and the public. The database has twelve sections, 

each focusing on a different aspect of the human proteome, such as tissue expression, 

subcellular localization, immune cells, metabolic pathways, and 3D structures. The 

database also describes the methods and sources used to generate and analyse the 

data. The website is a valuable resource for understanding human biology and 

disease. Currently, the subcellular part of the HPA shows where proteins are found in 

different parts of the cells selected from 37 cell-lines. It uses IF and confocal 

microscopy to see the proteins in up to three different cell-lines to show how proteins 

from 13147 genes (65% of the human protein-coding genes) are in one or more of 35 

different organelles and subcellular structures (2). 

 

2.4. Interactome Data and IntAct 

 

Molecular interactions are non-bonding interactions, noncovalent forces, and 

intermolecular forces among molecules (9). Interactome is all molecular interactions 
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in cells, especially protein-protein interaction which is the most prominent branch of 

this field (10). This information is important to understand the relationship between 

biological substances and molecular mechanisms of the cellular apparatuses. 

Organelles and suborganelles create the ideal conditions for their particular functions 

and are the structural units of eukaryotic proteins (11). Proteins must naturally be 

located in the same subcellular location in order to interact (12). Since protein-

protein interactions (PPIs) information is very crucial for protein subcellular location 

prediction, in this thesis, interaction information of human proteins is utilised. There 

are many publicly available databases for interactome data. Some well-known 

examples are STRING, MINT, IntAct, BioGRID and in this thesis the IntAct 

database is utilised since it is one of the most comprehensive databases in terms of 

the number of PPIs for 123071 proteins (13). The IntAct portal is a web-based 

resource for molecular interaction data, curated from literature or user submissions 

(https://www.ebi.ac.uk/intact/home). The IntAct portal provides a free, open-source 

database system and analysis tools for molecular interaction data. Users have access 

to the data in a variety of formats for browsing, downloading, and searching. IntAct 

is a member of the IMEx Consortium, an international collaboration between a group 

of major public interaction data providers who have agreed on sharing curation effort 

and practices (14). 

 

2.5. Protein Sequences, Function and The UniProtKB 

 

  Amino acids link together with covalent peptide bonds, forming a long chain 

that ultimately constructs proteins. For this reason, polypeptides are another name for 

proteins. Despite the fact that nature contains hundreds of different amino acids, only 

20 amino acids are required to synthesise all of the proteins found in the human body 

and the majority of other living forms (15). The 3 primary classes of amino acids are 

hydrophobic, polar, and charged, according to their chemical content. Since they tend 

to repel water, hydrophobic amino acids, which include alanine, valine, leucine, 

isoleucine, methionine, proline, phenylalanine, and tryptophan are frequently found 

inside proteins and help to stabilise their structural integrity. Serine, threonine, 

cysteine, tyrosine, asparagine, and glutamine are examples of polar amino acids that 
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have hydrophilic qualities and can interact with water molecules. Charged amino 

acids are essential for the formation of ionic interactions within proteins. Examples 

of charged amino acids include lysine, arginine, histidine, aspartic acid, and glutamic 

acid. Furthermore, glycine is a special kind of amino acid that is regarded as neutral 

but, because of its small size and distinct structure, can display both hydrophobic and 

polar properties. There are known to be tens of thousands of distinct proteins, each 

with a unique amino acid sequence (16). These amino acids work together to give 

proteins their varied and complex structures, which allow them to perform vital 

biological tasks. The sequence itself and how this chain is folded are 2 of the main 

features of protein functionality. There are many mechanisms affecting protein 

localization in the cell; however, the most important ones are pre-sequences, which 

are found at the N- or C-terminus of a protein sequence and internal signals, whşch 

are found in the middle of the protein sequence. Those sequences are used as part of 

the cell signalling mechanism and bring proteins to their destination (3). Universal 

Protein Resource Knowledge Base (UniProtKB) is a protein database that contains 

information on the sequence and function of proteins (https://www.uniprot.org/). The 

European Bioinformatics Institute, The Protein Information Resource, and the Swiss 

Institute of Bioinformatics collaborate to create UniProt. Over 100 individuals are 

engaged in various roles within all three institutes, including software development, 

support, and database curation. UniProt offers a central repository of reliable, 

extensive, publicly available information on protein sequences and functional 

annotation. It also provides tools and services for searching, analysing, and 

downloading protein data. UniProtKB also provides comprehensive information on 

proteins, such as their interactions, and subcellular locations. UniRef clusters similar 

protein sequences based on sequence identity, and UniRef information can be 

obtained from UniProtKB, which provides clustered sets of all protein sequences 

from the UniProtKB and selected UniProt archive records to obtain complete 

coverage of sequence space at resolutions of 100%, 90%, and 50% identity (17). 

 

2.6. Gene Ontology (GO) Database 
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Ontology is a representation of a community's shared background knowledge 

(18). A framework and a set of concepts for defining the functions of gene products 

from all organisms are provided by the Gene Ontology (GO). The definition of 

"function," however, is more complicated than it first appears. In the context of 

molecular biology, function describes particular and coordinated actions for a 

specific purpose. Molecular function, cellular component, and biological process are 

the three different ways that gene functions can be explained that are considered by 

the GO. The gene product in this representation is responsible for carrying out a 

molecular-level activity (molecular function) at a particular location in relation to the 

cell (cellular component). This molecular process is part of a larger biological 

objective (biological process) that is made up of several molecular-level processes. A 

single macromolecular machine can perform a molecular function by directly 

interacting physically with other molecules. The biological process is the largest of 

those aspects in the GO, and the one with the highest diversity (19). Computational 

representation of the functions fulfilled by proteins and non-coding RNA molecules 

produced by genes from a wide range of organisms, including bacteria and humans, 

can be found in the Gene Ontology knowledgebase (https://geneontology.org/). 

Currently, the GO consists of over 7,648,957 annotations of which 2,862,941belong 

to biological processes, 2,442,438 belong to molecular function and 2,343,578 

belong to cellular components. 951,061 of all annotations experimentally supported 

annotations from over 175,927 published papers (20). 

  

2.7.  Machine Learning and Deep Learning 

 

 Artificial Intelligence (AI) includes any methodology that allows computers 

to imitate human behaviour and go above human decision-making abilities to solve 

complex problems autonomously or with minimal human involvement (21). Machine 

learning (ML) is a subclass of artificial intelligence that is capable of self-learning. 

Without human intervention, ML models gain experience and become more 

intelligent during training. This is achieved through the utilisation of algorithms for 

statistical learning, enabling the models to autonomously learn and improve without 

the need for human assistance. Deep learning (DL), on the other hand, relies on large 



 

 
12 

 

 

 

 

 

datasets or a lot of information provided as input to learn from experience. While 

shallow neural networks only have a maximum of two layers between the input and 

output of the neural network, deep neural networks have multiple layers for multiple 

data transformations between the input and output (22). Typically, deep neural 

networks have multiple hidden layers and advanced neurons, which are mathematical 

representations of connected processing units (23). Some well-known machine 

learning algorithms are support vector machine (SVM), K-nearest neighbour 

algorithm (K-NN) and decision tree (DT) algorithms. K-NN algorithm predicts the 

relationship between the unknown data and the known data for a given dataset. Then, 

it imputes the new data to the existing category that most closely matches it. The 

goal of the SVM algorithm is to create the best hyperplane, or decision limit, that 

divides n-dimensional space into distinct classes and makes it simple to assign a 

different point to the appropriate category. Recursively dividing the data into 

progressively smaller subsets according to the feature values is how the DT 

algorithm works. The algorithm selects the feature at each node that divides the data 

into groups with distinct target values the best (24). For the majority of applications 

where text, image, video, speech, and audio data needs to be processed, deep neural 

networks perform better than shallow ML algorithms because DL is especially 

helpful in domains with large and high-dimensional data (25). Rather than employing 

a straightforward activation function, they might make use of sophisticated 

operations like convolutions or numerous activations in a single neuron. These 

features enable raw input data to be fed into deep neural networks, which then 

automatically identify the representation required for the associated learning task 

(23).   

2.7.1. Feedforward Neural Network (FFN) 

 

Neural units in a feedforward neural network (FFN) are arranged in layers. 

The layers that are between are known as hidden layers, and the topmost layer is 

referred to as the output layer. Information travels through one or more hidden layers 

and the input layer in this architecture, then proceeds in a unidirectional fashion to 

the output layer (Figure 2.3). Activation functions are used by each neuron to process 

input data, and through training, the network adjusts weights and biases to learn the 
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relationships between input and output. FFN is very adaptable and can be used for a 

variety of tasks including classification and regression (26). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3. Architecture of a FFN composed of three layers. Adapted from (26).  

 

2.7.2. Convolutional Neural Network (CNN) 

 

An example of an artificial neural network created especially for computer 

vision applications is the convolutional neural network (CNN), which is used for 

image recognition and classification. Because CNNs can automatically and 

adaptively learn the spatial hierarchies of features from input data, they have been 

shown to be very effective in these tasks. The convolutional layer is the fundamental 

component of CNNs. In convolution, input images are convolved with filters or 

kernels to extract features. When a fXf filter is used to convolve a NxN image, the 

same feature is learned across the board. Following each operation, the window 

slides, and the feature maps learn the features. Using shared weights and biases, the 

feature maps capture the image's local receptive field (27). Convolution, pooling, 

fully connected, and nonlinearity are the four layers that make up CNN (Figure 2.4). 

Following convolution, the output is made simpler by the pooling layers, reducing 

the  amount of computation required and the number of parameters by creating 

downsampling representations. The fully connected layer, also referred to as the 
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convolutional output layer, gets input from the convolutional output layer or final 

pooling and flattens it before sending it to the next layer. In a neural network, every 

neuron node takes the output value from the neuron in the layer above as its input 

value and sends it to the neuron in the layer below. The value of the input attribute 

will be directly passed to the following layer by the input layer neuron node. The 

input of the lower node and the output of the upper node in a multilayer neural 

network are functionally related. The activation function is the name given to this 

function (28). ReLU, Sigmoid, Tanh, and Softmax functions are commonly used by 

CNNs to add non-linearity to the network; hence, it can learn intricate patterns (29). 

After several convolutional and pooling layers, CNNs usually end with one or more 

fully connected layers, which perform the final classification based on the features 

learned in the preceding layers.Data is flattened into a vector before being passed 

from convolutional and pooling layers to fully connected layers. This is required 

because one-dimensional input is required for fully connected layers. A 

regularisation method called dropout is employed to prevent overfitting, which 

temporarily removes units from a neural network and improves the network's ability 

to generalise to new, untested data (30). The output layer, which is the final layer in 

the CNN architecture, is where the final classification is accomplished. The output 

layer of the CNN model uses loss functions to determine the expected error that was 

generated throughout the training set of data. The selection of hyperparameters 

significantly impacts the performance of CNN. The overall performance of CNN can 

be impacted by even minor adjustments to the hyper-parameter values. Because of 

this, selecting parameters carefully is a very important factor that needs to be taken 

into account when developing an optimization scheme (29). 
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Figure 2.4. Architecture of a CNN. Adapted from (29).  

 

2.7.3. Graph Learning 

 

In computer science, a graph is a fundamental data structure made up of 

nodes and edges. Nodes stand for objects or points, and edges indicate the 

connections or relationships between these objects. A node is essentially a basic unit, 

and an edge is a connection or channel of communication that represents the 

relationships between two nodes (Figure 2.5). Graph representation makes it possible 

to efficiently store and retrieve the relational knowledge of interacting entities. Data 

analysis of graphs can offer important new information about community detection, 

behaviour analysis, as well as additional practical uses like clustering, link 

prediction, and node classification. The goal of graph representation learning, also 

known as graph embedding, is to map each node to a vector while maintaining the 

distance characteristics between nodes. Graph embedding has been studied since the 

early 1900s. Since then, numerous approaches have been proposed. Matrix 

factorization, random walk, and dimensionality reduction are some of the well-

known graph embedding techniques. A graph can be traced by creating multiple 

paths by starting random walks from random initial nodes. These paths show the 

connected edges’ context. By passing through nearby edges, one can explore the 

graph and gather both local and global structural information because of the 

randomness of these walks. Subsequently, random sampling paths are subjected to 

probability models such as skip-gram and bag-of-word to acquire node 

representations (31). 
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Figure 2.5. Illustration of graph representation learning input and output. Adapted 

from (31).  

 

2.7.4. Node2Vec 

 

One of the most well-known random walk-based methods for scalable feature 

learning in networks is Node2Vec. Node2Vec discovers continuous vector 

representations for nodes by utilising stochastic traversal strategies to explore the 

network. To create neighbourhood sets, two extreme sampling techniques are 

typically used. Depth-First Sampling (DFS), in which the neighbourhood is made up 

of nodes that are successively sampled at increasing distances from the source node, 

and Breadth-First Sampling (BFS), in which the neighbourhood is limited to nodes 

that are the source's immediate neighbours (Figure 2.6). The flexible neighbourhood 

sampling strategy of Node2Vec enables seamless interpolation between BFS and 

DFS accomplished by creating a versatile biassed random walk method that can 

investigate neighbourhoods in both a BFS and a DFS manner (32). Hence, 

Node2Vec generates embeddings that function as rich feature representations, 

facilitating enhanced performance and generalisation across various graph-based 

tasks. 
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Figure 2.6. BFS and DFS search strategies. Adapted from (32).  

 

2.7.5 Sequence Embeddings 

 

Natural Language Processing (NLP) gives computers the ability to 

understand text and speak words similar to what humans can. This led to the 

adaptation of language models (LMs) to encode implicit language encoded in protein 

sequences. Protein LMs exhibit great promise in producing descriptive 

representations (embeddings) for proteins based solely on their sequences faster 

compared to earlier methods, while maintaining comparable or enhanced predictive 

capabilities. Many protein LMs that have been trained by researchers are likely to 

shed light on various facets of the protein language. Protein sequences are made up 

of character strings that stand for individual amino acids. LMs are trained to 

represent language by reconstructing corrupted text or by anticipating the next word 

in a sentence based on its preceding context. LM representations, or embeddings, 

have been a source for various techniques (33). Predictions based on embeddings are 

faster than those based on evolutionary information, but they are typically less 

accurate (36). Some of the very well-known LMs are T5 (34), Electra (35), BERT 

(36), Albert (37), Transformer-XL (38) and XLNet (39). The de-facto standard for 

transfer learning in natural language processing, BERT was the first bidirectional 

model in NLP to attempt to reconstruct corrupted tokens. To increase the number of 

attention heads, Albert reduced the complexity of BERT by forcing hard parameter 

sharing between its attention layers. By training two networks, a discriminator and a 

generator, Electra attempts to increase the pre-training task's sampling efficiency. As 
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an alternative to simply reconstructing corrupted input tokens, the discriminator 

(Electra) identifies which tokens were masked, while the generator BERT 

reconstructs masked tokens as well. A transformer model is a type of neural network 

that tracks relationships in sequential data to learn meaning and context. T5 makes 

use of the original transformer architecture for sequence translation, which is made 

up of a decoder that creates a translation to a target language based on the encoder's 

embedding and an encoder that projects a source language into an embedding space. 

For every attention head, T5 learns a positional encoding that is shared by all layers. 

Protein predictions for datasets could be made more quickly and affordably by using 

sequence embeddings as the input to relatively small-size CNN/FNN for secondary 

structure, localization, and classification predictions (40). 

 

2.8. Related Work 

 

2.8.1. MULocDeep 

 

 MULocDeep is a deep learning-based protein localization prediction 

framework that predicts the localization of proteins in both subcellular and 

suborganellar manner. Main MULocDeep model is the bidirectional Long Short 

Term Memory (LSTM) which handles protein sequence information, and the 

multihead self-attention to assign weights to each amino acid of a sequence for 

interpretation. It also provides a web server for users to submit protein sequences and 

visualise the results. A dataset containing eukaryotic species’ proteins in 44 

suborganellar compartments in 10 subcellular localizations with experimental 

evidence from the UniProt database was collected, which they called the UniLoc 

dataset. It is trained and tested with the UniLoc dataset. MULocDeep performs better 

than other major methods at both subcellular and suborganellar levels in most cases. 

MULocDeep also identified some known and novel localization signals from the 

attention weights, which could provide insights into the mechanism of protein sorting 

and localization (3).  
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Figure 2.7. MULocDeep workflow and neural network architecture. Adapted from 

(3). 

 

2.8.2. DeepLoc 

 

DeepLoc is a deep learning method for predicting protein subcellular 

localization from amino acid sequences that uses a recurrent neural network (RNN) 

with an attention mechanism to identify protein regions that are important for 

localization. The method also uses a CNN to detect protein motifs and a hierarchical 

tree to model the protein sorting pathways. The method is trained and tested on a 

new dataset extracted from UniProt, where proteins have experimental evidence for 

their subcellular locations. The method is available as a web server and a code 

example. The method predicts where proteins are in eukaryotic cells based on their 

amino acid sequences. It uses CNNs to find short motifs and RNNs to scan the 

sequence in both directions. It also uses an attention layer to focus on the important 

20 regions and a dense layer to output the location. The method has two outputs: 1 

for membrane-bound and 10 for different locations (41). 
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Figure 2.8. Overview of DeepLoc. Adapted from (41). 

 

2.8.3. MuSIC 

 

 MuSIC is a method to map the cell structure at different scales by combining 

images and interactions of proteins. It uses deep neural networks to create 

embeddings for proteins based on their immunofluorescence and affinity purification 

data, then adjusts and merges the embeddings to show subcellular systems at various 

scales. A matched dataset of immunofluorescence images from HPA and affinity 

purification-mass spectroscopy data from BioPlex is used. MuSIC offers a new way 

to study cell organisation and function across multiple scales. It also explores the 

benefits and challenges of using different kinds of data to map the cell structure and 

proposes future directions to include more data types and deal with cellular diversity 

and dynamics. For image embedding, it uses DenseNet7, a convolutional neural 
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network that performs better than cellular markers in capturing protein locations. 

Also, it uses a node2vec neural network to embed each protein based on its extended 

affinity purification and mass spectroscopy interaction neighbourhood (42). 

 

 

 

 

Figure 2.9. Overview of multi scale integrated map of the cell: MuSIC. Adapted 

from (42). 

 

2.8.4. SLPred 

 

SLPred is a sequence-based multi-view and multi-label protein subcellular 

location prediction ensemble machine-learning system which can predict all possible 

subcellular localizations of a protein for 9 main subcellular locations (cytoplasm, 

nucleus, cell membrane, mitochondrion, endoplasmic reticulum, secreted, Golgi 

apparatus, lysosome, and peroxisome). 9 independent protein sequence-based 

machine learning models using SVM produce a binary prediction for each 

subcellular location and threshold applied, and the weighted mean of votes coming 

from those models is given as the protein’s all possible subcellular localizations (43). 
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Figure 2.10. Schematic representation of the subcellular localization predictor 

SLPred. Adapted from (43). 

 

2.8.5. Human Protein Atlas Image Classification Kaggle Challenge 

This competition was held with the aim of finding deep learning solutions for 

classifying protein subcellular localization patterns in fluorescence microscopy 

images from the Human Protein Atlas (HPA) project. The competition faced two 

main challenges: the multi-label problem, where each image can have multiple 

labels, and the class imbalance problem, where some labels are much more frequent 

than others. Participants were permitted to use any external data, including the 

approximately 78,000 images that are publicly accessible on the HPA Cell Atlas 

(HPAv18), and 42,774 non-public images (44). The performance was measured with 

macro F1. The score for human experts is 0.71 while the winning team has macro F1 

scores 0.59. (Table 2.1). Even though the best model was unable to perform at a 

human expert level, the challenge still provides opportunities for the advancement of 

cell biology. 
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Table 2.1. Models and their performance for top ranking and selected teams of HPA 

Kaggle Challenge. Adapted from (44). 

  

Rank Team Name Score 

1 Team 1: bestfitting 0.593 

2 Team 2: WAIR 0.571 

3 Team 3: pudae 0.570 

4 Team 4: Wienerschnitzelgemeinschaft 0.567 

5 Team 5: vpp 0.566 

8 Team 8: One More Layer (Of Stacking) 0.563 

10 Team 10: conv is all u need 0.557 

16 Team 16: NTU_MiRA 0.553 

39 Team 39: Random Walk 0.540 

 

 

2.8.6. Team 1 (bestfitting)  

 

The labels of each sample were predicted using a CNN multi-label 

classification model, and the closest sample was found for comparison using a metric 

learning model. The HPAv18 dataset and competition data were divided into training 

and validation sets using multi-label stratification. Focal loss over the validation set 

was used to estimate the model's performance. A Densenet121 serves as the model's 

backbone. The final CNN feature map's GlobalMaxPool and GlobalAvgPool layers 

were concatenated before being fed to two fully connected layers, which determined 

the probability of each class. Augmentation implemented. The model was trained 

using a combined loss function consisting of focal loss, Lovasz loss, and log loss. 

The ratio of labels in the training set was used to threshold the output (44). 
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Figure 2.11. Model architecture of team 1: bestfitting. Adapted from (44). 

 

2.8.7. Team 2 (WAIR) 

 

The Kaggle challenge data and the external HPAv18 dataset were used to 

train and assess an ensemble of CNN models with a variety of architectures. To 

address the multi-label classification problem, 7 end-to-end models were developed. 

Throughout the seven models, a total of 5 distinct architectures were used: 3 

instances of densenet121, densenet169, ibn-densenet121, se-resnext50, and Xception 

3,4,5,6. The backbone models were pre-trained ImageNet models. Each model's final 

fully connected layer was swapped out for a fully connected layer consisting of 28 

neurons, and each neuron's sigmoid activation function was connected to produce the 

final predicted probability for each image class (44). 
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Figure 2.12.  Model architecture of team 2: WAIR. Adapted from (44). 

 

2.8.8. Team 3 (Pudae) 

 

Both attention-gated CNN models and an ensemble of regular models were 

employed. The ensemble consisted of seven different models: one attention-gated 

inceptionv3, one attention-gated se-resnet50 and five resnet34 models, which served 

as the model's framework. The output from each model is averaged to produce the 

final forecast. Focal loss was used to address the class imbalance, negating the need 

for other techniques like undersampling and oversampling (44). 
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Figure 2.13.  Model architecture of team 3: pudae. Adapted from (44). 

 

 

2.9. Fusion Strategies Using Deep Learning 

 

 Data fusion involves combining information from various sources to enhance 

machine learning models' performance by extracting complementary and more 

comprehensive data, in contrast to relying on a single data modality. This trend is 

evident in the latest medical imaging literature, where the “fusion paradigm" 

integrates both electronic health records and pixel data to address complex tasks 

beyond the capabilities of individual modalities. 3 primary fusion strategies are early, 

joint, and late fusion. Early fusion, also known as feature-level fusion, integrates 

various input modalities into a feature vector before training a ML model. This can 

be achieved through methods like pooling, concatenation or using a gated unit. Early 
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fusion type-1 fuses original features, while early fusion type-2 incorporates features 

extracted from manual processes such as imaging analysis software, or learned 

representations from other neural networks, including predicted probabilities. Joint 

fusion, or intermediate fusion, merges learned feature representations from 

intermediate neural network layers with features from other modalities as input to a 

final model. Joint fusion type-1 involves extracting feature representations from all 

modalities. However, not all input features require the feature extraction step for 

joint fusion in type-2. Late fusion refers to using predictions from multiple models to 

make a final decision, also known as decision-level fusion. Different modalities train 

separate models, and an aggregation function combines their predictions. Examples 

of aggregation functions include averaging, weighted voting, majority voting or a 

meta-classifier based on each model's predictions. The choice of the aggregation 

function is empirical, varying based on the application and input modalities (45).  

 

 

 

Figure 2.14.  Fusion strategies using deep learning. Adapted from (45). 
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3. MATERIALS AND METHODS 

 

3.1. HoliLoc Dataset Construction and Splitting 

 

HoliLoc’s in-house dataset is constructed by using 3 different types of data: 

amino acid sequences extracted from UniProt, 2D confocal microscopy images from 

the HPA, and PPI data obtained from IntAct. It is notable that, due to data volume 

constraints, this integration is restricted to human proteins. Subcellular location data 

is sourced from the Human Protein Atlas, which contributes location insights to the 

dataset. After constructing the main HoliLoc dataset splitting was conducted just 

once to ensure all data preprocessing was conducted on separate train and test data. 

The final dataset, consisting of 9182 proteins, was partitioned, with 10% reserved for 

testing, while the remaining 90% was retained for training to ensure reliable model 

evaluation (Table 3.1). In the final step of dataset construction, GO-based cellular 

component annotations obtained from the HPA are compared with cellular 

component annotations directly from the GO database for each protein. If all cellular 

component annotations for a protein obtained from the HPA are present in the GO 

database's cellular component annotations, it is assumed that the GO database has 

covered the protein's HPA information. However, if at least one cellular component 

annotation from the HPA is not found in the GO database's cellular component 

annotations, the protein is considered uncovered. When the percentage is calculated 

across all HoliLoc proteins, it is observed that GO cellular component annotations 

cover 50% of the proteins in terms of HPA cellular component annotations. 

Therefore, we've chosen to utilise HPA as our source of subcellular localization 

information in HoliLoc’s train and test datasets. This decision aligns with the HPA 

Kaggle challenge conditions, which is a crucial subject of inter-study comparisons 

and ensuring consistency, while avoiding potential issues arising from coverage 

discrepancies.  
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3.1.1 Image Data 

 

The first step of HoliLoc’s data construction was image data collection. 

HoliLoc’s image data is obtained from the Human Protein Atlas version 21.0 Release 

date: 2021.11.18. The subcellular section of HPA in XML format and parsed with 

thePython ElementTree library to obtain desired information, including location, GO 

ID, cell-line, URL of IF images, and converted to a data frame with the Pandas 

library. In the first stage, a mixed and large data set was obtained. This data is 

composed of unique, 12761 proteins, from 2 different organisms and 36 cell-lines. 

The HPA data provides multiple options of cell-lines for each protein. However, all 

cell-line combinations were not possible for each protein; hence, location similarity 

of cell-lines investigated. Similarities between the cell-lines on how many locations 

they shared are investigated and reported with a heatmap (Figure 3.1). Overall 

similarity among cell-lines calculated by determining the percentage of shared 

location information relative to all possible combinations of shared location 

information. The average protein localization similarity was found to be 0.66 among 

all cell-lines. Hence all cell-lines treated the same and only one cell-line was selected 

per protein, which has the highest number of location annotations. Also, more than 

99% of the data belongs to human. Hence, only human proteins are filtered. The 

dataset initially comprised data from the HPA with 12761 unique Uniprot IDs, 

totalling 82439 protein-cell-line pairs, including duplications. Following a cleaning 

and simplification process, the dataset was refined to include 12759 unique proteins.  
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Figure 3.1. Heatmap illustrating the shared subcellular locations among various cell 

lines c1 and c2. Each cell in the heatmap represents the percentage of protein 

localization similarity between corresponding cell lines. 

 

 

3.1.2. Interactome (PPI) Data 

 

 Interactome (PPI) data addition to HoliLoc data was the second step. From 

the IntAct interactome information obtained as tab delimited text file for 19236 

unique human proteins. This file was merged with the image data and 10201 unique 

proteins obtained. Hence, a data frame with the IF image URL and PPI information 

was obtained. In this step a UniRef investigation was also conducted. UniRef50 

information was obtained from UniProtKB 
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(https://www.uniprot.org/help/downloads) and only 1 member of each cluster was 

selected randomly. With this procedure, 9187 unique proteins remained. 

 

3.1.3. Sequence Data 

 

Sequence data addition is the third step of data construction. In this step 

amino acid sequence embeddings produced with the ProtT5 protein language model 

(protein level embeddings) were obtained directly from the UniProtKB protein 

embeddings section (https://www.uniprot.org/help/embeddings) with the instructions 

UniProt provided. Those sequence embeddings were merged with the image and 

interactome data of HoliLoc. This merging leads to the overall unique protein data 

count of HoliLoc 9182, which is the final HoliLoc dataset to be divided to train and 

test. 

 

3.1.4. Arrangement of Location Classes 

 

 Vesicles and Kinetochore are dropped from the study because of low sample 

size and being unable to group with others. The rest is grouped according to their 

biological relevance and the HPA Kaggle Challenge Study's approach. After 

grouping, locations with less than 30 proteins were also dropped. (endosomes, lipid-

droplets, lysosomes, microtubule-ends, peroxisomes, rod-rings). Hence, the location 

classes count dropped from 35 (Figure 3.2) to 22. (Figure 3.3). Approximately 10% 

of each location is allocated to the test dataset, while the rest forms the training data. 

This approach ensures a balanced representation of locations in both datasets. (Figure 

3.4).  
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Figure 3.2. Bar graph displaying the number of proteins associated with each 

subcellular location before arrangement of location classes. 

 

 

 

Figure 3.3. Bar graph displaying the number of proteins associated with each 

subcellular location after arrangement of location classes. 
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Figure 3.4. The bar graph showing the distribution of train and test data with the x-

axis representing subcellular locations and the y-axis indicating the corresponding 

sample sizes in both the training and test datasets. 
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Table 3.1.  HoliLoc’s multi label human protein data summary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Train Test 

Nucleoplasm 4138 421 

Cytosol 3021 339 

Plasma Membrane (PM) 1217 151 

Mitochondria 803 62 

Golgi Apparatus 662 67 

Nucleoli 604 76 

Nuclear Bodies 396 56 

Nuclear Speckles 352 40 

Endoplasmic Reticulum (ER) 343 31 

Centrosome 250 29 

Nucleoli Fibrillar Center 238 29 

Cell Junctions 216 27 

Nuclear Membrane 197 18 

Microtubules 169 18 

Cytokinetic Bridge 159 19 

Actin Filaments 153 20 

Intermediate Filaments 122 7 

Microtubule Organizing 

Center (MTOC) 

116 12 

Focal Adhesion Sites 93 12 

Mitotic Spindle 57 11 

Cytoplasmic Bodies 51 8 

Aggresome 27 8 

Total Unique Protein Count 8459 723 
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Figure 3.5. Data distribution among 22 subcellular locations. 

 

 

3.2. Data Preprocessing 

 

 The data preprocess is necessary to transform raw data into a format that can 

be effectively used by HoliLoc models. Different data preprocessing strategies are 

applied to each data type according to their own needs. 

 

3.2.1. Image Data Preprocessing  

 

The preprocess operations of image data were conducted with the OpenCV 

library. The first preprocess step is converting IF images of proteins from BGR to 

RGB and resizing these immunofluorescence images to a standardised dimension of 

224x224 pixels. Deep learning frameworks like TensorFlow, which is used in this 

thesis, typically expect images to be in RGB (Red-Green-Blue) colour format rather 

than BGR (Blue-Green-Red), which is a common colour format used by many image 

processing libraries, including OpenCV. This standardisation of dimensions not only 
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ensures consistent data input for subsequent analytical procedures but also aids in 

reducing computational complexity. Subsequently, the resized images were 

transformed into numerical arrays. Each pixel within these images is represented as a 

series of numerical values, enabling the application of deep learning techniques. 

Secondly, normalisation of these arrays was carried out by dividing each numerical 

value by 255. The process of dividing pixel values by 255 is a vital step in the 

standardisation of digital images. In a typical 8-bit colour image, pixel values range 

from 0 (no colour) to 255 (full colour intensity) for each colour channel (red, green, 

blue). Dividing by 255 scales these values to a normalised range between 0 and 1, 

which ensures consistent data input and prevents numerical instability in 

mathematical operations, enhances interpretability, and improves the performance of 

deep learning algorithms that rely on consistent, scaled input data. This 

transformation, therefore, is an essential preprocessing step in making images 

convenient for deep learning models. Finally, arrays constructed form images that 

have a consistent size of 224x224x3, where the '3' defines the three primary colour 

channels (Figure 3.6). This multichannel representation allows comprehensive 

exploration of the IF image data and permits the simultaneous investigation of 

protein SL across various cellular structures and regions (Figure 3.7). 

 

 

 

Figure 3.6.  Overview of image data preprocess. 
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Uniprot: P61513 

Cell-Line: MCF7 

Subcellular Locations: Cytosol, ER 

Uniprot: Q96HY6  

Cell-Line: HaCaT 

Subcellular Locations: ER, Nucleoli 

 

 

 

 

 

 

 

 

 

 

 

 

 

Uniprot: O60383  

Cell-Line: JURKAT 

Subcellular Locations: Cytosol, Golgi 

Uniprot: Q96C12  

Cell-Line: MCF7 

Subcellular Locations: Nucleoplasm, 

Focal Adhesion Sites, Cytosol 

 

Figure 3.7. Visual examples of HoliLoc input protein image data. 

 

 

3.2.2. Sequence Data Preprocess 

 

 Sequence embedding information was obtained from the Uniprot Protein 

Embeddings Section (https://www.uniprot.org/help/embeddings) with the 
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instructions of Uniprot, where raw embeddings of protein sequences are present and 

obtained with the ProtT5 protein LM in size 1024 (46). Sequence embeddings were 

merged with the main HoliLoc data by mapping to related proteins and train test split 

was conducted for HoliLoc data. Min-max normalization, scaling numerical features 

to a specified range between 0 and 1, applied to train and test data separately to 

prevent data leakage, and final HoliLoc sequence embeddings in size 1024 obtained 

(Figure 3.8). 

 

 

 

Figure 3.8. Overview of sequence data preprocess. 

 

3.2.3. Interactome (PPI) Data Preprocess 

 

PPI data obtained from IntAct was merged with the final HoliLoc data by 

mapping to related proteins. After the train test split process of HoliLoc, PPI 

information was converted to PPI graphs and given into the node2vec algorithm 

separately, and embeddings in size 224 obtained then min-max normalisation was 

then applied to embeddings of train and test data separately to prevent data leakage. 

Finally normalised PPI embeddings obtained in size 224 to be given into FFN 

(Figure 3.9). 
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Figure 3.9. Overview of interactome (PPI) data preprocess. 
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3.3. Classification Models 

 

HoliLoc leverages a diverse range of data modalities to enhance predictive 

accuracy and provide a comprehensive understanding of protein SL. Our approach 

outlined three key modalities: image, sequence, and PPI. In this thesis, the deep 

learning models were constructed using the TensorFlow framework with the Keras. 

Models trained on GPU and data preprocess conducted on CPU with features, HP Z8 

G4 Workstation, 2 x HP Intel Xeon Gold 5215 2.50GHz CPU -40 cores-, HP 128GB 

memory, 2 x NVIDIA GeForce RTX2080, HP Z Turbo Drive G2 512GB SSD, HP 

1TB 7200rpm SATA HDD. For hyperparameter optimization, hyperband algorithm 

from Keras Tuner was employed for each model, image, sequence, PPI and HoliLoc 

separately. The primary objective was to maximise validation accuracy, and the 

optimization process, guided by early stopping with a patience of 10 epochs, 

iteratively explored hyperparameter configurations over a maximum of 30 epochs. 

Investigated parameters include dense layer units and dropout rates. The Hyperband 

algorithm efficiently searches through a large hyperparameter space while using 

resources effectively and sampling many configurations randomly. This helps in 

exploring a diverse range of hyperparameter combinations. This approach is a fine 

choice with limited computational sources. 

 

3.3.1.  Image Model 

 

Image feature vectors were employed as input for CNN, which has a total of 

20 layers, which include convolutional layers, pooling layers, dropout layers, 

flattening layers, and dense layers. The convolutional layers, which played an initial 

role in capturing fine details within the IF images, utilise various filter sizes (16, 32, 

and 64) with a kernel size of (5, 5) and ReLU activation. MaxPooling2D layers 

follow each convolutional layer, employing a pool size of (2, 2) for down-sampling 

and retaining critical image features, which reduces computational expense while 

simultaneously enabling the model to recognize features in various regions of the 

image. Dropout layers with rates of 0.3 and 0.5, along with a specified seed value, 

are incorporated for regularisation. The model flattens the output before progressing 
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through dense layers, including two with 128 and 64 units, respectively, both 

employing ReLU activation. Dropout layers with rates of 0.3 are applied after each 

dense layer in which high-level abstractions and relationships between the detected 

features are recognized. The final dense layer, designated as the output layer, consists 

of 22 units with sigmoid activation, suitable for multi-label classification. The 

architecture is designed for image classification tasks on input data with dimensions 

(224, 224, 3). Sigmoid activation allows each output unit to independently produce 

values in the range [0, 1], which aligns well with multilabel classification, where 

each class can be associated with multiple labels; in this case, it is appropriate for 

proteins’ presence in multiple locations. The model is compiled using the Adam 

optimizer with a binary cross-entropy loss.   
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Figure 3.10.  Image model structure. 
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3.3.2. Sequence Model 

 

 The protein sequence embeddings are given into the FFN model, which is 

composed of 16 layers in total, which include dense layers, batch normalisation 

layers, activation layers (ReLU), and dropout layers. Each is tailored to optimise its 

performance for the classification task. To enhance model stability, batch 

normalisation is applied, followed by the ReLU activation function to introduce non-

linearity. Additionally, dropout regularisation is applied to cope with overfitting 

while increasing the model's robustness (Figure 3.11). The output layer consists of 22 

units with sigmoid activation, designed for multi-label classification tasks. The 

model is designed for sequence embeddings with an input shape of (1024,). The 

model is compiled using the Adam optimizer with a binary cross-entropy loss. 
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Figure 3.11. Sequence model structure. 
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3.3.3. Interactome Model (PPI) 

 

Interactome FFN is composed of 20 layers. The model includes dense layers 

with varying units (128, 64, 64, 32, 32), batch normalisation layers, activation layers 

with ReLU, and dropout layers with different dropout rates (0.4, 0.5, 0.1, 0.1, 0.1). 

Each of these layers collectively enables the model to understand complicated 

patterns within protein interactions. The final dense layer, comprising 22 units with a 

sigmoid activation, serves as the output layer for our classification task (Figure 3.12). 

The architecture is designed for input data with dimensions (224,). The model is 

compiled using the Adam optimizer with a binary cross-entropy loss.  



 

 
46 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12. Interactome (PPI) model structure. 
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3.3.4.  Model Fusion (HoliLoc) 

 

 To harness the synergistic potential of three distinct modalities, HoliLoc 

employs a technique known as joint fusion, also referred to as intermediate fusion. 

This process centres around the combination of feature representations learned from 

intermediate layers of neural networks with data from other modalities. The primary 

objective is to harmonise the variations in dimensionality and information content 

across these diverse modalities. The model incorporates three individual modules- 

image, sequence, and PPI that are fused to construct a powerful multi-modal neural 

network. This feature vector is subsequently fed into a FFN, consisting of 17 layers 

in which 6 dense layers, batch normalisation, activation, and dropout layers exist. 

The final output layer utilises sigmoid activation for multi label classification with 22 

classes (Figure 3.13). The model is compiled using the Adam optimizer and binary 

cross-entropy loss. The model's architecture consists of a total of 4,663,606 

parameters, with 4,654,390 being trainable and an additional 9,216 non-trainable. 
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Figure 3.13. HoliLoc model structure. 
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4. RESULTS 

 

4.1. Evaluation of Performance 

 

The performance evaluation of HoliLoc follows a thorough methodology, 

utilising the macro-F1 score to assess its predictive power in 22 subcellular classes. 

This metric offers a comprehensive understanding of the model's efficacy because it 

treats each class label equally. To understand HoliLoc’s intra-study capabilities, 

comparisons among individual feature based models and HoliLoc were made in 

multi-location and single-location prediction settings. Furthermore, analysis of 

HoliLoc's performance is made by adding the accuracy, recall, and precision metrics 

of single-location models. Weighting metrics according to the sample size metrics 

makes possible the more transparent evaluation despite an unbalanced data 

distribution. Beyond the intra-study performance, the comparative analysis that 

compared the single-location models from HoliLoc with the top 10 teams' scores 

from the HPA Kaggle challenge for each SL was conducted for the inter-study 

investigation. Macro F1 score, precision, recall, and accuracy can be represented by 

the following equations (4.1, 4.2, 4.3, 4.4, 4.5, 4.6). 

 

      Precision =   TP                 

            TP+ FP 

           

(4.1.) 

             

        Recall   =   TP    

                       TP+FN 

                                               

          

 

 

 (4.2.)           

           
     Accuracy=   TP + TN                  

                TP+ TN+ FP+FN 

 

             

 

 

(4.3.)        

        

          P=      1     ∑ Pt 

                T   t∈T 

 

 

 

(4.4.) 
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          R =       1     ∑ Rt 

                            T     t∈T   

 

 

(4.5.) 

       Macro F1=   2PR        

                               P + R 
 

(4.6.) 

 

 

 

In those equations, TP is true positive, TN is true negative, FP is false 

positive, FN is false negative, t is the class label among all labels T, P is average 

precision over all labels, and R is average recall over all labels.  

   

4.2. Comparison of HoliLoc and Individual Feature Based Models 

 

HoliLoc is trained separately in both multi-location and single-location 

settings. In the multi-location setting, the model generates predictions for all 22 SLs 

simultaneously in a multi-label format. While, in the single-location setting, the same 

training procedure is applied independently to each SL. This leads to the 

development of 22 distinct HoliLoc models, each producing a binary output specific 

to its corresponding SL. In summary, for the multi-location setting, a unified HoliLoc 

model is created by training and fusing individual feature-based models (image, 

sequence, and interactome models). This results in a total of 4 models. On the other 

hand, in the single-location setting, individual feature-based models, and HoliLoc are 

trained for each of the 22 SLs. Hence, a total of 88 models are developed for single-

location settings.  

 

4.2.1. Comparison of HoliLoc and Individual Feature Based Models on 

Single Location Prediction Setting 

 

In the context of single-location prediction, HoliLoc demonstrates its most 

substantial performance improvement in PM, ER, mitochondria, and nucleoplasm. A 

comparison of average macro F1 scores between individual feature-based models 

and HoliLoc reveals the following order: PM (0.54 to 0.79), ER (0.55 to 0.74), 

mitochondria (0.59 to 0.79), and nucleoplasm (0.65 to 0.83). Despite the relatively 
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small sample size, the notable enhancement in ER's performance with HoliLoc draws 

attention, highlighting the effectiveness of HoliLoc in significantly improving 

predictive success for these subcellular localizations in a single-location setting 

(Figure 4.1). Despite their relatively large sample sizes within the dataset, nuclear 

speckles, nuclear bodies, and nucleoli fail to demonstrate significant performance 

improvement with HoliLoc. A comparison of average macro F1 scores between 

individual feature-based models’ average and HoliLoc shows moderate increase for 

nuclear speckles (0.52 to 0.55), nuclear bodies (0.53 to 0.55), and nucleoli (0.52 to 

0.54). These findings suggest that HoliLoc's impact on predictive success for nuclear 

speckles, nuclear bodies, and nucleoli in the single-location setting is limited, 

indicating potential complexities or challenges associated with these specific 

subcellular localizations. In single-location prediction settings, the comparative 

analysis presented in Table 4.1 reveals the notable superiority of HoliLoc over single 

feature-based models across various subcellular locations. Specifically, when 

evaluating accuracy, HoliLoc exhibits enhanced performance in 9 out of 22 

locations, including centrosome, cytokinetic bridge, cytoplasmic bodies, cytosol, ER, 

intermediate filaments, mitochondria, nucleoli fibrillar centre, and PM. Moreover, 

HoliLoc exceeds single feature-based models in terms of recall and precision for 17 

out of the 22 subcellular locations. Furthermore, for both average and weighted 

average all accuracy, recall and precision get better scores compared with individual 

feature-based models.  The statistical analyses, conducted through the Wilcoxon 

signed-rank test on the F1 score values, establish HoliLoc's significant superiority 

over individual feature-based models. Upon examining macro F1 scores, significant 

improvements were observed and found to be statistically significant across all 

model comparisons. HoliLoc outperformed image feature based model (p = 1.80e-

04), sequence feature based model (p = 8.73e-05), and PPI feature based model (p = 

2.99e-04), as well as the average of individual feature based models (p = 4.77e-07). 

These results provide compelling evidence, affirming HoliLoc's consistent 

outperformance of individual feature-based models. The graphical representation of 

results in Figure 4.2 serves as visual support for these findings, further establishing 

HoliLoc as an advanced and promising model for single-location prediction 

scenarios in subcellular localization tasks. 
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Table 4.1. Performance comparison of HoliLoc and individual feature-based models 

in the single-location prediction settings. The highest performance results are shown 

in bold font. 

 

Model Image Sequence PPI HoliLoc 
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Actin 

Filaments 
0.97 0.49 0.50 0.92 0.52 0.55 0.95 0.53 0.54 0.92 0.56 0.64 

Aggresome 0.93 0.51 0.53 0.99 0.49 0.50 0.97 0.52 0.55 0.96 0.54 0.61 

Cell Junctions 0.96 0.48 0.50 0.95 0.56 0.53 0.95 0.52 0.51 0.89 0.58 0.71 

Centrosome 0.92 0.54 0.55 0.95 0.55 0.53 0.95 0.57 0.53 0.96 0.65 0.55 

Cytokinetic 

Bridge 
0.93 0.56 0.61 0.91 0.54 0.60 0.96 0.52 0.52 0.98 0.99 0.61 

Cytoplasmic 

Bodies 
0.98 0.56 0.56 0.99 0.49 0.50 0.99 0.62 0.56 0.99 0.66 0.62 

Cytosol 0.72 0.72 0.72 0.67 0.67 0.67 0.51 0.50 0.50 0.72 0.72 0.72 

Endoplasmic 

Reticulum 
0.94 0.54 0.52 0.95 0.69 0.61 0.96 0.48 0.50 0.96 0.78 0.72 

Focal 

Adhesion 

Sites 

0.93 0.51 0.55 0.98 0.56 0.54 0.98 0.49 0.50 0.96 0.60 0.69 

Golgi 

Apparatus 
0.91 0.67 0.52 0.77 0.51 0.52 0.89 0.56 0.52 0.88 0.61 0.59 

Intermediate 

Filaments 
0.97 0.53 0.56 0.99 0.66 0.57 0.90 0.52 0.67 0.99 0.75 0.57 

Microtubules 0.98 0.49 0.50 0.98 0.49 0.50 0.94 0.52 0.54 0.97 0.69 0.55 

Mitochondria 0.85 0.53 0.53 0.93 0.77 0.71 0.87 0.52 0.51 0.94 0.87 0.74 

Mitotic 

Spindle 
0.94 0.51 0.52 0.98 0.49 0.50 0.98 0.49 0.50 0.97 0.53 0.54 

MTOC 0.96 0.52 0.53 0.91 0.51 0.55 0.99 0.99 0.58 0.96 0.55 0.57 

Nuclear 

Bodies 
0.84 0.54 0.57 0.88 0.55 0.54 0.89 0.51 0.51 0.86 0.55 0.56 

Nuclear 

Membrane 
0.95 0.52 0.52 0.97 0.57 0.52 0.90 0.52 0.57 0.96 0.54 0.52 

Nuclear 

Speckles 
0.90 0.51 0.51 0.89 0.53 0.54 0.89 0.52 0.52 0.85 0.54 0.58 

Nucleoli 0.79 0.53 0.53 0.80 0.52 0.52 0.79 0.52 0.52 0.79 0.54 0.55 
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Nucleoli 

Fibrillar 

Center 

0.89 0.51 0.53 0.91 0.52 0.53 0.92 0.51 0.51 0.96 0.73 0.52 

Nucleoplasm 0.84 0.84 0.83 0.62 0.65 0.65 0.51 0.49 0.49 0.83 0.83 0.83 

Plasma 

Membrane 
0.69 0.55 0.55 0.72 0.54 0.53 0.66 0.52 0.53 0.85 0.78 0.81 

Average 0.90 0.55 0.56 0.89 0.56 0.55 0.88 0.54 0.53 0.92 0.66 0.63 

Weighted 

Average 
0.82 0.67 0.66 0.74 0.61 0.61 0.67 0.51 0.51 0.83 0.73 0.72 

 

 

 

 

 

Figure 4.1. Performance comparison of HoliLoc and individual models for 

endoplasmic reticulum (ER) single location setting prediction. 
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Figure 4.2. Performance comparison of HoliLoc and individual feature-based 

models’ macro F1 scores in the single-location models per subcellular location and 

multi-location prediction setting. 

 

4.2.2. Comparison of HoliLoc and Individual Feature Based Models on 

Multi Location Prediction Setting 

In the context of predicting multiple locations, an improvement in macro F1 

performance is demonstrated by HoliLoc compared to individual feature-based 

models. The average macro F1 score for individual feature-based models is 0.18, 

while a higher score of 0.26 is achieved by HoliLoc (Figure 4.3). The Wilcoxon 

signed-rank test, conducted on the F1 score values, reveals HoliLoc's superiority over 

individual feature-based models in multi-location prediction setting. HoliLoc 

outperforms the image feature-based model (p = 4.8e-03), the sequence feature-based 

model (p = 1.22e-02), the PPI feature-based model (p = 6.06e-03), and the average of 

individual feature-based models (p = 1.9e-03). Figure 4.3 visually supports these 

statistical findings. Additionally, a difference is observed between average recall 

(0.42) and average precision (0.14) for individual feature-based models. In contrast, a 

more balanced relationship is maintained by HoliLoc between recall (0.29) and 

precision (0.31). This suggests that not only is overall performance enhanced by 
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HoliLoc, but it also achieves a more harmonized trade-off between recall and 

precision compared to individual feature-based models. In specific subcellular 

localizations, the most significant impact of HoliLoc is observed in ER, 

mitochondria, and mitotic spindle SLs. The average macro F1 scores for individual 

feature-based models at these locations, along with HoliLoc, follow this order: ER 

(0.17, 0.46), mitochondria (0.23, 0.55), and mitotic spindle (0.18, 0.53) (Table 4.2). 

Despite their relatively small sample sizes, attention is drawn to both ER and mitotic 

spindle SLs, as illustrated in Figure 3.5, emphasizing the significance of HoliLoc's 

impact on cellular localization, especially in instances where the data may be limited 

in terms of sample size. However, in the multi-location setting, a relatively modest 

impact is observed for cytosol and nucleoplasm SLs, despite their being two of the 

most abundant SLs in the dataset (Figure 3.5). The average F1 scores for individual 

feature-based models are notably high, measuring 0.64 for cytosol and 0.75 for 

nucleoplasm. In comparison, F1 scores of 0.69 for cytosol and 0.83 for nucleoplasm 

are achieved by HoliLoc. These results suggest that while HoliLoc may not 

outperform individual feature-based models for cytosol and nucleoplasm SLs, 

competitive performance is still maintained, considering the high baseline set by the 

individual models. The inconsistency in performance across different subcellular 

localizations underlines the complexity of the multi-location setting and the impact 

of HoliLoc on various cellular structures. Considering the 0 F1 scores in Table 4.2 

for the multi-location prediction models, a comprehensive assessment was 

undertaken with 10-fold analysis. The dataset underwent randomised division into 

training and testing sets, with approximate ratios consistently maintained over 10 

iterations. Each iteration independently evaluated with the F1 score for the multi-

location prediction model, contributing to the averaged results in Table 4.3. This 

analysis was conducted to evaluate the models' performance across different data 

combinations. The results revealed enhancements for some SLs, such as cytokinetic 

bridge, focal adhesion sites, intermediate filaments, mitotic spindle, MTOC, nuclear 

membrane, and nucleoli fibrillar center, showing performance increment from 0 F1 

scores reported in Table 4.2. However, some SLs remained with 0 F1 score for some 

models. For example, the image model had 0 F1 scores for cytoplasmic bodies, the 
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sequence model for aggresome, and the HoliLoc model for both aggresome and 

cytoplasmic bodies. The PPI model demonstrated a notable absence of 0 F1 values. 

 

 

Figure 4.3. Comparison of average prediction performances of HoliLoc and 

individual feature-based models in the multi-location prediction setting. 

 

Table 4.2. F1 score performance comparison of HoliLoc, individual feature-based 

and class-wise score distribution for the top ten teams of HPA Kaggle Challenge. 

Adapted from (44). Comparing mean HPA Kaggle challenge results and HoliLoc 

highest performance results are shown bold. 
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Table 4.3. Comparative analysis of Image, Sequence, PPI, and HoliLoc multi-

location prediction models' average 10-Fold F1 scores across subcellular locations, 

bold entries signify top-performing models within each subcellular location. 

 

 Image Sequence PPI HoliLoc 

Actin Filaments 0.15 0.07 0.06 0.21 

Aggresome 0.02 0.00 0.02 0.00 

Cell Junctions 0.11 0.10 0.07 0.20 

Centrosome 0.06 0.11 0.09 0.12 

Cytokinetic Bridge 0.04 0.11 0.06 0.10 

Cytoplasmic Bodies 0.00 0.02 0.02 0.00 

Cytosol 0.63 0.63 0.63 0.66 

Endoplasmic Reticulum 0.15 0.25 0.08 0.47 

Focal Adhesion Sites 0.04 0.05 0.02 0.17 

Golgi Apparatus 0.18 0.19 0.17 0.26 

Intermediate Filaments 0.05 0.07 0.04 0.13 

Microtubules 0.10 0.15 0.05 0.16 

Mitochondria 0.20 0.23 0.18 0.44 
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Mitotic Spindle 0.05 0.16 0.03 0.16 

MTOC 0.01 0.04 0.04 0.09 

Nuclear Bodies 0.17 0.15 0.13 0.20 

Nuclear Membrane 0.06 0.07 0.07 0.08 

Nuclear Speckles 0.12 0.12 0.09 0.14 

Nucleoli 0.21 0.21 0.19 0.27 

Nucleoli Fibrillar Center 0.09 0.08 0.07 0.05 

Nucleoplasm 0.78 0.74 0.74 0.85 

Plasma Membrane 0.40 0.36 0.33 0.58 

Average 0.16 0.18 0.14 0.24 

 

 

4.3. Comparison With HPA Kaggle Challenge 

 

The outcomes of the HPA Kaggle Challenge have been made accessible to 

the public through the HPA Kaggle challenge article (44). The challenge organisers 

have supplied both training and test data for participants. The metadata for these 

proteins is not included in the provided information. The available details are limited 

to IF images and SL information, with the assurance that all data originates from the 

HPA. In this study, although the challenge initially involved 28 subcellular 

localizations (SLs), only 22 SLs were considered. This reduction resulted from the 

exclusion of SLs with a protein count lower than 30 during the dataset preparation 

process. Hence, in this section, the performance is evaluated by comparing the results 

of 22 SLs. In the challenge’s article, numerous performance results are provided with 

F1 score. To enhance the comprehensiveness of the comparison with the challenge 

results, the performance outcomes of the top 10 teams are considered, information 

can be found in Table 4.2. In this table 3 sets of information are merged which are 

the F1 score results of the top 10 teams in the challenge for each SL, the multi-

location F1 scores and single-location macro F1 scores of HoliLoc, and the 

individual feature-based models displayed for each SL. The performance comparison 

is conducted with the best performer for each SL independently, and the best results 
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are shown in bold. This is a highly challenging comparison since HoliLoc is not 

compared with only one model; it is compared with the best performer for each 

location. For the half of the SLs (centrosome, cytokinetic bridge, cytoplasmic bodies, 

cytosol, ER, focal adhesion sites, mitochondria, mitotic spindle, MTOC, 

nucleoplasm, PM) HoliLoc single-location model had better macro F1 score 

compared to the best performers in each location class in the HPA challenge. The 

Wilcoxon signed-rank test conducted on the F1 score values resulted in a p-value of 

0.61 shows that the observed differences in the F1 scores are not statistically 

significant. This implies the HoliLoc single-location model does not significantly 

differ from the best performers of the challenge and shows a similar performance. 

For the 3/22 of the SLs (cytosol, mitotic spindle, nucleoplasm) HoliLoc multi-

location model had better F1 score compared to the best performers in each location 

class in the HPA challenge. The Wilcoxon signed-rank test, conducted on the F1 

score, resulted in a p-value of 9.06e-06, indicating a statistically significant 

difference between F1 scores of HoliLoc and challenge. While the HoliLoc multi-

location prediction setting model exhibits a performance that is underperforming 

compared to the challenge results, it's crucial to recognize that this comparison is 

conducted against the best performer among the top ten teams for each location, 

rendering it a particularly challenging benchmark. For the cytosol SL both single and 

multi-location prediction models outperformed, while the best competitor in the 

challenge got 0.60 F1 score, all feature based multi-location models got average 0.64 

F1 and HoliLoc 0.69. In the single-location setting both image and HoliLoc models 

have 0.72 macro F1 and sequence have 0.67. For the mitotic spindle SL single and 

multi-location models outperformed, while the best competitor in the challenge got 

0.46 F1 score, multi-location sequence and HoliLoc models had the same 0.53, and 

in the single-location setting all models outperformed in which image 0.51, PPI and 

sequence 0.50, HoliLoc got 0.53 F1 score. For the nucleoplasm SL, while the best 

competitor in the challenge got 0.80 F1 score, both single and multi-location HoliLoc 

models got 0.83 F1 score, and the single-location setting image model got 0.84 F1 

score. For the MTOC SL single-location HoliLoc outperformed the challenge with 

0.56 macro F1 while the best competitor got 0.47 F1. However, the single-location 

PPI model gave a much better result with 0.64 macro F1. 
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4.4. Use Case  

 

In our use case study, we decided to evaluate the HoliLoc multi-location 

model to predict the subcellular localizations of a protein that was neither included in 

our training nor test data sets. The protein that we selected for this analysis is 

“Histone H3.1” of the human (UniProt accession number: P68431). This protein is a 

core component of the nucleosome and plays a key role in regulating transcription, 

repairing DNA, replicating DNA, and maintaining chromosomal stability. Figure 4.4 

displays the confocal microscopy images of “Histone H3.1”, obtained from the 

Human Protein Atlas database. The HoliLoc model predicts the subcellular location 

of Histone H3.1 as actin filaments, cell junctions, cytosol, plasma membrane (PM), 

and nucleoplasm. However, the HPA subcellular section only assigns nucleoplasm as 

the SL of Histone H3.1. Therefore, we decided to conduct a literature-based 

qualitative analysis to judge whether HoliLoc predictions could be 

undocumented/unknown true SLs of the protein or just false positives.  

Newly synthesised histones must traverse the cytosol before being 

incorporated into the chromatin (47). Despite the absence of explicit mentions of 

cytosol in the HPA, UniProt, or Gene Ontology (GO) databases, the observation of 

the green-coloured target protein indicators surrounding the nucleus from confocal 

microscopy images in Figure 4.4 panel E supports the likelihood that this protein is 

present in the cytosol. Histones establish a strong binding with F-actin through robust 

electrostatic and hydrophobic interactions, influencing actin structure. Additionally, 

H1 histone has been observed to polymerize G-actin, while the H2A-H2B histone 

dimer has been found to bundle F-actin filaments (48). The presence of cell-surface 

proteins capable of binding to advanced glycation end products has been researched, 

and histone has been identified as a previously unrecognised binding protein for 

advanced glycation end products. Histone serves as a cell-surface receptor for 

advanced glycation end products (49), which could explain the PM prediction of 

HoliLoc. Moreover, the GO database supports this observation, as the information 

page for this protein includes the “GO:0016020; membrane” cellular component 

annotation 

(https://www.ebi.ac.uk/QuickGO/annotations?geneProductId=P68431&aspect=cellul 



 

 
63 

 

 

 

 

 

ar_component). Our investigation showed it is highly probable that HoliLoc SL 

predictions of cytosol, plasma membrane are true localizations that are not 

documented yet in HPA. Additional analysis is required to evaluate actin filaments 

and cell junctions predictions.   
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Figure 4.4. Confocal microscopy images of target protein P68431, obtained from 

Human Protein Atlas database in which green is target protein, blue is nucleus, red is 

microtubules and yellow is ER. A: all channels are visible, B: red and green channels 

are visible, C: blue and green channels are visible, D: yellow and green channels are 

visible, E: Only green channel is visible. 
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5. DISCUSSION 

 

The subcellular localization of proteins holds great importance in explaining 

protein functions and roles within cellular processes. Understanding the subcellular 

distribution of proteins is crucial for unravelling complex mechanisms in systems 

biology, facilitating drug development, and advancing our understanding of protein-

protein interactions. Despite the significant importance, the lack of experimentally 

verified annotations of subcellular localization is still a great challenge, which 

emphasises the necessity for advanced computational models that can effectively 

predict protein subcellular localization and facilitate protein subcellular localization 

studies by reducing the cost and time of lab experiments and imaging techniques. In 

response to this challenge, this thesis introduces HoliLoc, a holistic approach to 

protein subcellular localization prediction with deep learning utilising various 

information about proteins. This multi-modal learning strategy aims to exploit 

synergies among diverse features, providing a more comprehensive understanding of 

the factors influencing subcellular localization without using costly and resource-

intensive AI models. HoliLoc's simple model architecture enables a clear and 

comprehensive examination of the effects of holistic data integration. HoliLoc is 

positioned as an option for problems related to subcellular localization prediction 

because of its simple model architecture and comprehensive data integration. 

Uniref50 clusters similar proteins according to their sequence similarity; hence, the 

inclusion of only one protein from each Uniref50 cluster in the HoliLoc dataset 

ensures the uniqueness of each protein, thereby preventing highly similar proteins 

from influencing the training and testing phases and mitigates the risk of the model 

overfitting, which could lead to falsely high-performance metrics. Moreover, with 

this diversity in the dataset, HoliLoc can generalise better on novel data. However, 

there is a notable class imbalance that presents a challenge to the task. Deep learning 

algorithms face a great challenge when dealing with the skew in the class 

distribution, which adds another level of complexity to the classification task.  

The performance of HoliLoc is evaluated using the macro-F1 score at 22 

subcellular locations, which demonstrates how well it handles the challenge of multi-

class and multi-label prediction with an unbalanced data distribution. These 
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comparative analyses extend across both single-location prediction and multi-

location prediction scenarios. In the single-location prediction setting, models are 

trained to provide prediction for specific locations individually. Meanwhile, in the 

multi-location prediction setting, these models exhibit their capability by 

simultaneously predicting for all 22 locations. Figure 4.3 illustrates a notable shift in 

the performance metrics of individual feature-based models. The average precision 

has improved, rising from 0.14 to 0.31. However, this improvement comes at the 

expense of a decrease in recall, dropping from 0.42 to 0.29. The distinctive feature of 

the HoliLoc model lies in its design for reducing false positives, emphasising its 

practical usage in assisting researchers to focus their efforts during wet lab 

experiments. 

According to the comparative analysis results of the single-location setting, 

presented in Table 4.1, HoliLoc demonstrates the most significant performance 

improvement in PM, ER, mitochondria, and nucleoplasm. Comparing the average 

macro F1 scores of individual feature-based models to those achieved by HoliLoc 

reveals the following order: PM (0.54 to 0.79), ER (0.55 to 0.74), mitochondria (0.59 

to 0.79), and nucleoplasm (0.65 to 0.83). Notably, despite the relatively small sample 

size, the enhancement in ER's performance with HoliLoc attracts attention, 

highlighting the effectiveness of HoliLoc in significantly improving predictive 

accuracy for these subcellular localizations in a single-location setting. It is observed 

that mitochondria demonstrate significant potential with a macro F1 score of 0.74 for 

the sequence model, exceeded by HoliLoc model, which achieved an even higher 

macro F1 score of 0.79. This accomplishment may be influenced by the presence of 

specific signal sequences in the regions of mitochondrial proteins (50). Despite their 

relatively large sample sizes within the dataset, nuclear speckles and nucleoli fail to 

demonstrate significant performance improvement with HoliLoc. Comparing the 

average macro F1 scores of individual feature-based models with HoliLoc, for 

nuclear speckles, the average macro F1 score increases from 0.52 to 0.55, for nuclear 

bodies from 0.53 to 0.55 and for nucleoli, from 0.52 to 0.54. These findings suggest 

that HoliLoc's impact on predictive accuracy for nuclear speckles, nuclear bodies and 

nucleoli in the single-location setting is limited, indicating potential complexities or 

challenges associated with these specific subcellular localizations such as; nucleoli 



 

 
67 

 

 

 

 

 

are dynamic structure can vary in size and number, and their appearance can be 

influenced by the cell's metabolic state (51), nuclear bodies can change in number 

and size. Their appearance can be influenced by the cell cycle and cellular stress 

(52), nuclear speckles are dynamic structures that can vary in size, number, and 

distribution (53). The notable superiority of HoliLoc over single feature-based 

models across various subcellular locations is observed. Specifically, when 

evaluating accuracy, HoliLoc exhibits enhanced performance in 9 out of 22 

locations, including centrosome, cytokinetic bridge, cytoplasmic bodies, cytosol, ER, 

intermediate filaments, mitochondria, nucleoli fibrillar centre, and PM. Moreover, 

HoliLoc exceeds single feature-based models in terms of recall for 17 out of the 22 

subcellular locations, indicating a heightened ability to correctly identify instances of 

interest. Furthermore, precision analysis corroborates the robustness of HoliLoc, 

showing its superior precision in 17 out of the 22 locations. These findings 

collectively underscore the effectiveness of HoliLoc in single-location prediction 

scenarios, positioning it as a promising and advanced model for subcellular 

localization tasks.  

The optimization of deep learning models involves automatically distributing 

weights to PPI, image, and sequence modalities in an optimal manner. This 

optimization becomes particularly visible when assessing the performance of single-

location prediction models, as demonstrated in Table 4.2. In this context, the 

evaluation is unaffected by the sample sizes of other localizations, offering a clearer 

perspective on individual model capabilities. Notably, HoliLoc demonstrates a 

performance pattern mirroring that of the best-performing model of individual 

feature based models in terms of macro F1 score. This alignment underscores the 

efficacy of HoliLoc in leveraging the strengths of each modality, affirming its 

competence in subcellular localization prediction. Particular examples such as 

mitochondria (Image: 0.53, Sequence: 0.74, PPI: 0.51, HoliLoc: 0.79) and 

microtubules (Image: 0.49, Sequence: 0.49, PPI: 0.53, HoliLoc: 0.58), further 

substantiates HoliLoc's ability to seamlessly integrate information from multiple 

sources. 

According to the Table 4.2 multi-location setting section, HoliLoc 

demonstrates a notable improvement in macro F1 performance compared to 
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individual feature-based models. The average macro F1 score for individual feature-

based models is 0.18, whereas HoliLoc achieves a higher score of 0.26. Furthermore, 

in the same setting, the individual feature-based models show a significant difference 

between average recall (0.42) and average precision (0.14). In contrast, HoliLoc 

shows a more balanced relationship between recall (0.29) and precision (0.31). This 

suggests that HoliLoc not only enhances overall performance but also achieves a 

more harmonised trade-off between recall and precision compared to the individual 

feature-based models. HoliLoc demonstrates its most significant impact on ER, 

mitochondria, and mitotic spindle SLs. The average F1 scores for individual feature-

based models at these locations, along with HoliLoc, follow this order: ER (0.17, 

0.46), mitochondria (0.23, 0.55), and mitotic spindle (0.18, 0.53). Despite their 

relatively small sample sizes, both ER and mitotic spindle SLs get attention which 

can be observed in Figure 3.5, emphasising the significance of HoliLoc's impact on 

cellular localization, especially in instances where the data may be limited in terms 

of sample size. Although HoliLoc couldn’t manage to get better performance in 

multi-location prediction setting compared with challenge winners in multi-location 

prediction setting, despite its relatively small sample size, HoliLoc's performance 

improvement draws attention while comparing with single feature-based models. 

This success can be the result of ER protein’s characteristic, often they contain 

specific subcellular localization signals or motifs that help target them to the ER 

(54). Detecting these signals can aid in differentiation, and IF images of HPA have 

colours such that target proteins are shown in green, nucleus in blue, microtubules in 

red and ER in yellow. This specific colour advantage can be fused with differentiable 

sequence signal information and boost performance in HoliLoc. Also, HoliLoc 

exhibits a relatively modest impact on the performance success of cytosol and 

nucleoplasm SLs, despite these being two of the most abundant SLs in the dataset 

(Figure 3.5). The average F1 scores for individual feature-based models are notably 

high, measuring 0.64 for cytosol and 0.75 for nucleoplasm. In comparison, HoliLoc 

achieves F1 scores of 0.69 for cytosol and 0.83 for nucleoplasm. These results 

suggest that while HoliLoc may not outperform individual feature-based models for 

cytosol and nucleoplasm SLs, it still maintains competitive performance, considering 

the high baseline set by the individual models. The inconsistency in performance 



 

 
69 

 

 

 

 

 

across different subcellular localizations underlines the complexity of the 

multilocation environment and the nuanced impact of HoliLoc on various cellular 

structures. 

Some subcellular locations consistently yielded 0 F1 performance across the 

individual models: aggresome, cytokinetic bridge, cytoplasmic bodies, intermediate 

filaments, mitotic spindle, MTOC scored 0 F1 from the image model. Additionally, 

aggresome, cytoplasmic bodies, MTOC, and nuclear membrane obtained 0 from the 

sequence model. The PPI model registered 0 F1 for aggresome, cytoplasmic bodies, 

focal adhesion sites, intermediate filaments, and mitotic spindle. In the HoliLoc 

model, aggresome, cytoplasmic bodies, nuclear membrane, and nucleoli fibrillar 

centre showed 0 F1 performance. Locations with 0 performance in the HoliLoc 

model also exhibited 0 or very close to 0 F1 scores in their individual image, 

sequence, and PPI models. This suggests that the challenge lies in the inherent 

difficulty of predicting these particular locations. Considering the imbalanced 

distribution of localizations, zero performers are closely biologically related to more 

abundant sample size localizations which demonstrate notably better performance. 

For instance, cytoplasmic bodies, receiving 0 F1 for all models, and cytokinetic 

bridge, obtaining 0 from the image model, contrast with the high-performing cytosol 

(F1=0.69 for HoliLoc), showcasing the impact of ample sample size on prediction. 

Similarly, while the nuclear membrane and nucleoli fibrillar centre received 0 from 

the HoliLoc model, nucleoplasm emerged as the top performer among all locations 

(F1=0.83). Following the identification of consistent 0 F1 performances across 

diverse subcellular locations and models, a comprehensive evaluation through 10-

fold analysis was conducted. According to the comparison between 10-fold analysis 

results on Table 4.3 and Table 4.2 multi location prediction part, some 0 F1 score 

performed SLs (cytokinetic bridge, focal adhesion sites, intermediate filaments, 

mitotic spindle, MTOC, nuclear membrane and nucleoli fibrillar center) obtained 

better performance different than 0. This pattern suggests a correlation between these 

0 performers and the characteristics of the data. The observed drop in 0 performers 

across subcellular locations, highlights the impact of data characteristics on model 

performance and emphasises that 0 performances are more likely a consequence of 

chance in the data split process rather than deficiencies in the models’ themselves.  
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The comparison with the HPA Kaggle Challenge in Table 4.2 was conducted 

among the top 10 scoring teams in the competition. The results reveal superior 

performance for our approach compared to the maximum score achieved by any of 

the top 10 teams, which is highlighted in bold for emphasis. HoliLoc demonstrates 

superior performance in comparison to half of the single-location models and 3/22 of 

SLs (nucleoplasm, mitotic spindle, cytosol) in the multi-location setting. In the 

context of simpler model designs and limited computational resources, achieving 

superior performance in half of the single-location models and 3 out of the 22 SLs in 

the multi-location model indicates the effectiveness of the holistic approach. These 

outcomes underline HoliLoc's capability to capture complicated relationships among 

diverse data types, demonstrating its effectiveness in challenging scenarios with 

unbalanced data. This highlights the robustness and adaptability of HoliLoc in 

addressing complex tasks within resource constraints. There could be several reasons 

why nucleoplasm, mitotic spindle and cytosol show better performance compared 

with challenge in multi-location prediction setting. Firstly, cytosol and nucleoplasm 

are the most abundant SLs in the dataset in which HoliLoc’s potential could be 

observed fully. In addition, these SLs demonstrate comparable performance in 

single-feature-based models. Specifically, the average F1 score for cytosol in feature-

based models is 0.64, while HoliLoc achieves 0.69. Similarly, for nucleoplasm, the 

scores are 0.75 for feature-based models and 0.84 for HoliLoc. Despite its relatively 

small sample size, the mitotic spindle exhibits high performance in both the 

sequence-based model and HoliLoc, with identical F1 scores of 0.53. This could be 

because of the localization of proteins related to mitosis on the mitotic spindle is 

likely an evolutionarily conserved mechanism, ensuring timely mitotic events. In sea 

urchin embryos and mammalian cells, RNA transcripts encoding mitosis-related 

proteins were identified at the spindle. Disruption of microtubule processes or motor 

proteins led to loss of spindle localization. Notably, the cytoplasmic polyadenylation 

element within Aurora B's 3’UTR, a cytoplasmic polyadenylation element binding 

protein recognition site, is crucial for RNA localization to the mitotic spindle, 

highlighting the significance of a specific sequence in proteins' spatial distribution 

(55). In the context of single-location prediction, nucleoplasm image model exhibits 

comparable performance to HoliLoc with F1 scores of 0.84 and 0.83, respectively. 
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Similarly, cytosol demonstrates similar performance to HoliLoc with F1 scores of 

0.72 for both. These SLs either show better or equivalent performance compared to 

HoliLoc when integrated with image feature-based models. The colour scheme used 

by HPA, where target proteins are represented in green, the nucleus in blue, and 

microtubules in red in the nucleoplasm, contributes to the anatomical association of 

nucleoplasm with the nucleus and cytosol with microtubules. This strong anatomical 

correlation could provide an advantage to image feature-based models. MTOC is the 

only SL, in single-location prediction setting, with the best performing interactome 

feature-based model with a significant difference model (F1: 0.64) while image, 

sequence feature-based models and HoliLoc underperform (F1 scores: 0.52, 0.51, 

0.56) and best performer of the challenge gets 0.47. MTOC plays a significant role in 

mediating protein-protein interactions and is involved in various cellular processes 

such as cell division, intracellular transport, and cell shape maintenance. Microtubule 

anchoring factors serve to anchor or bind microtubules to MTOC. Hence, PPI 

information could have very distinctive features for MTOC located proteins (56). 

In the development of the PPI model, a critical consideration was the 

generation of protein-protein interaction (PPI) embeddings. To prevent leakage 

between the training and testing phases, we adopted a cautious approach, obtaining 

node2vec embeddings separately for the training and test datasets. However, it is 

crucial to note that in real-life scenarios, proteins interact, and their embeddings 

should ideally be influenced by the broader context of the entire human protein 

interactome. Hence, it should be noted that potential limitation in our approach, 

wherein the model is trained and tested on embeddings that may not fully capture the 

intricate relationships within the complete protein-protein interaction network. To 

enhance the usability and robustness of our inference system which is available at 

GitHub (https://github.com/huBioDataLab/HoliLoc), we have taken a proactive step 

by providing users with a more comprehensive set of embeddings. These 

embeddings, derived from the entire human protein interactome, offer a broader 

representation of protein relationships. In the upcoming versions of HoliLoc trains 

and tests will be conducted by using this more comprehensive PPI embeddings 

covering the entire human protein interactome.  
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Researchers can employ the HoliLoc tool to analyse images acquired under 

optimal conditions in which cells should be fixed in 4% formaldehyde and 

permeabilized with Triton X-100. Co-application of the antibody targeting the 

protein of interest with markers for microtubules (gamma tubulin) and the 

endoplasmic reticulum (calreticulin) is essential. Nuclei should be counterstained 

using 4',6-diamidino-2-phenylindole (DAPI). Primary antibody detection involves 

species-specific secondary antibodies labelled with distinct fluorophores (Alexa 

Fluor 488 for the protein of interest, Alexa Fluor 555 for microtubules, and Alexa 

Fluor 647 for the ER). Imaging should be performed with a laser scanning confocal 

microscope (63X objective). Images, in PNG or JPG format of any size, can be 

integrated into the system. In multicolour images, fluorophores are represented as 

different channels, with the protein of interest in green, the nucleus in blue, 

microtubules in red, and the ER in yellow. By comparing the results with existing 

literature on subcellular localization, researchers can identify potential novel 

subcellular localizations of proteins. This capability not only enhances the 

understanding of cellular dynamics but also serves as a catalyst for generating new 

research topics. Researchers can leverage the system to uncover previously 

unexplored aspects, thereby creating opportunities for groundbreaking investigations 

and contributing to the expansion of protein subcellular localization knowledge. 
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6. CONCLUSION 

 

Protein subcellular localization is an important data source in biology and 

bioinformatics studies, playing a key role in various areas such as, protein function 

and mechanism, drug discovery and development, disease mechanism, cell 

signalling, and structural biology. This study introduces HoliLoc, a novel approach 

for predicting protein subcellular localization through multi-modal deep learning. 

Our method incorporates 2D confocal microscopy images, amino acid sequences, 

and protein-protein interactions. The first purpose of this study is to explore the 

impact of employing various types of data on the prediction of protein subcellular 

localization and secondly, to develop a high-performance multi-modal deep learning 

model for accurate predictions in this task. The source code of this thesis and 

HoliLoc’s dataset are publicly available at GitHub 

(https://github.com/huBioDataLab/HoliLoc) where it can be used as a programmatic 

tool for reproducibility in version 0.1.0.  

HoliLoc stands as a significant study in predicting protein subcellular 

localization, making a valuable contribution to the field. Its unique strength lies in a 

holistic approach that integrates data from various sources, including image, amino 

acid sequences, and protein-protein interactions. HoliLoc's observed improvements 

in predictive performance, especially in difficult scenarios with unbalanced data, 

demonstrate its practical usage. These outcomes not only confirm the model's 

efficacy but also demonstrate how flexible it is in managing complex situations in the 

real world. The success of HoliLoc inspires an important change in the way we 

address complex biological problems, like subcellular protein location prediction.  

Several limitations should be acknowledged in the context of this thesis. The 

most important one arises from the inherent nature of the protein subcellular 

localization data, leading to potential imbalances in the dataset. The distribution of 

proteins across different cellular locations is not uniform because of their various 

functionalities, which introduces bias into the generalizability of the models. Also, 

limitations in computational resources made it difficult to construct large models or 

conduct a more comprehensive hyperparameter search. Furthermore, the lack of 

protein IDs in the train and test splits of the HPA Kaggle challenge dataset made it 
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impossible to directly compare HoliLoc and the participating methods on the 

challenge dataset. Finally, issues regarding the public availability of confocal 

microscopy image data for proteins limit the usability of our methods for new 

proteins. 

As future work, we plan to provide HoliLoc as a stand-alone, online tool for 

predicting human proteins’ subcellular localization. Researchers will be able to 

utilise confocal microscopy images of their proteins, receiving predictions regarding 

the proteins' subcellular localizations. Active learning techniques will drive the 

model's continual enhancement by securing permissions from collaborating 

researchers to share the images they submit. Hence, augmenting the existing small 

image dataset continuously, ensuring a more robust and comprehensive training 

environment. Also, different strategies adopted by the winning teams in the HPA 

Kaggle challenge such as more advanced loss functions, augmenting data and using 

pretrained networks will be applied. The performance of HoliLoc will be enhanced 

using these strategies, while considering cost, resource-intensity, and usability. In 

this thesis, we did not utilise any of these approaches not to overshadow the 

transparent observation of the impact of holistic data integration. Certain subcellular 

locations, including aggresome, cytoplasmic bodies, mitotic spindle, nucleoli fibrillar 

centre, nuclear membrane, MTOC, and cytokinetic bridge, achieved a 0 F1 score in 

the multi-localization prediction setting. These locations are notably part of the 

smallest sample-sized group within the HoliLoc data, with the largest among them, 

nucleoli fibrillar centre, having a sample size of 238. In contrast, the largest sample-

sized location in the entire HoliLoc dataset, nucleoplasm, boasts 4138 samples. The 

evident discrepancy in sample sizes highlights an opportunity for future exploration, 

particularly zero-shot and few-shot learning techniques, which involve leveraging 

unseen classes during training and learning from a minimal set of examples. By 

addressing the data shortage issue, through these innovative learning approaches, 

there exists potential to enhance the predictive performance of the model for 

subcellular locations with limited training samples. This strategic consideration 

underscores the importance of ongoing efforts to mitigate data imbalances and 

improve the model's accuracy, particularly for locations represented by smaller 

sample sizes. Finally, adding new modalities using language models with text data 
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from scientific articles as well as GO annotations and enzyme commission numbers 

appears as promising options for future research. 
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EK-1: Tez Çalişmasi ile İlgili Etik Kurul İzinleri 
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EK-2: Tez Çalişmasi Orijinallik Raporu 
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