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REZA REZAEI

PROF. DR. GÜLEN GÜLLÜ
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ABSTRACT

SHORT-TERM OZONE FORECASTS AND MODELING OF
LONG-TERM CLIMATE CHANGE IMPACTS ON OZONE

POLLUTION IN THE MARMARA REGION

REZA REZAEI

Doctor of Philosophy, Environmental Engineering
Supervisor: Prof. Dr. Gülen GÜLLÜ

June 2023, 152 pages

Air pollution monitoring and data analysis have been the main components of an air quality

management system. Thanks to advances in atmospheric and computer sciences over

recent decades, air quality simulation models have emerged as powerful new tools for air

quality management. The sophisticated structure of these models not only improves our

understanding of the complex nature of the atmosphere but also enables us to make air quality

forecasts for the near and far future. These capabilities cover a major gap in air quality

management and turn the models into an essential part of the policy-making process. In this

study, the deterministic atmospheric models and deep learning algorithms were employed

to simulate the air quality of the Marmara region for the mid-21st century and near-future,

respectively. The study consists of three parts: (1) investigating the effect of climate change

on the summertime ozone concentration in the Marmara region of Turkey; (2) simulating the

effect of climate change on the concentration of biogenic emissions; and (3) improving the

performance of deep learning models by imposing the temporal characteristics of the daily

ozone cycle on the model.
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The difference between past (2012) and future (2053) ozone concentrations was used to show

how climate change impacts ozone concentration. The past and future (under the SSP2-4.5

and SSP5-8.5 scenarios) ozone forecasting were conducted using the WRF-CMAQ modeling

system. The global bias-corrected CMIP6 data were used to give the meteorological initial

and boundary conditions, and the anthropogenic and biogenic emissions were provided

by the EMEP inventory and the MEGAN model, respectively. The CMIP6 data were

downscaled using three nested domains with a spatial resolution of 36 km, 12 km, and 4km.

Climate and air quality simulations’ results show a significant (P < 0.05) increase in daily

mean temperature and daily mean ozone concentration under future climate scenarios. The

average rates of increase in ozone concentration in the Marmara domain were 13.6% and

16.02%, under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. To answer the second

question, i.e. how climate change impacts the biogenic emissions concentration, the biogenic

emission simulations were performed by the MEGAN model using climate inputs from

the past period and future scenarios. The results show that future climate scenarios cause

a significant increase in biogenic emission concentration. This increase is about 28.2%

and 38.46% for the average isoprene according to the SSP2-4.5 and SSP5-8.5 scenarios,

respectively. Moreover, the rate of increase in the average terpenes concentration is 15.38%

and 21.79% under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The final section

of the thesis is dedicated to the improvement of deep learning models’ performance in the

prediction of hourly ozone concentration by imposing temporal characteristics of the diurnal

ozone cycle on models. The results show that the proposed method significantly increased the

performance of deep models. According to the best of our knowledge, the proposed approach

has not been addressed in the literature. This is also the first study of the impact of climate

change on tropospheric ozone and biogenic emission concentrations in the Marmara region.

The results provide valuable details on how the meteorological parameters and emissions

interact to form tropospheric ozone, depending on regional characteristics.

Keywords: Air quality, climate change, WRF/CMAQ model, MEGAN model, deep

learning.
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ÖZET

MARMARA BÖLGESİNDE KISA DÖNEMLİ OZON TAHMİNİ VE
UZUN DÖNEMLİ İKLİM DEĞİŞİKLİĞİNE BAĞLI OZON

OLUŞUMUNUN MODELLENMESİ

REZA REZAEI

Doktora, Çevre Mühendisliği
Danışman: Prof. Dr. Gülen GÜLLÜ

Haziran 2023, 152 sayfa

Hava kirliliği izleme ve veri analizi, hava kalitesi yönetim sisteminin ana bileşenleri

olmuştur. Son yıllarda atmosfer ve bilgisayar bilimlerindeki gelişmeler sayesinde, hava

kalitesi simülasyon modelleri, hava kalitesi yönetimi için güçlü araçlar olarak ortaya

çıkmıştır. Bu modellerin sofistike yapısı, yalnızca atmosferin karmaşık doğasına ilişkin

anlayışımızı geliştirmekle kalmaz, aynı zamanda yakın ve uzak gelecek için hava kalitesi

tahminleri yapmamızı sağlar. Bu özellikler, hava kalitesi yönetimindeki büyük bir boşluğu

kapatıyor ve modelleri planlama sürecinin önemli bir parçası haline getiriyor. Bu çalışmada,

sırasıyla 21. yüzyılın ortaları ve yakın gelecek için Marmara bölgesinin hava kalitesini

simüle etmek için deterministik atmosferik modeller ve derin öğrenme algoritmaları

kullanılmıştır. Çalışma üç bölümden oluşmaktadır: (1) iklim değişikliğinin Türkiye’nin

Marmara bölgesindeki yaz mevsimi ozon konsantrasyonu üzerindeki etkisinin araştırılması;

(2) iklim değişikliğinin biyojenik emisyon konsantrasyonu üzerindeki etkisinin simülasyonu;

ve (3) günlük ozon döngüsünün zamansal özelliklerini derin öğrenme modellerine empoze

ederek modellerin performansını iyileştirmek.
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Bu çalışmada geçmiş (2012) ve gelecek (2053) dönemlerin ozon konsantrasyonları

arasındaki fark, iklim değişikliğinin ozon konsantrasyonunu nasıl etkilediğini göstermek

için kullanıldı. Geçmiş ve gelecek (SSP2-4.5 ve SSP5-8.5 iklim senaryoları

altında) dönemlerinin ozon tahminleri WRF-CMAQ modelleme sistemi kullanılarak

gerçekleştirilmiştir. Meteorolojik modellemesi için başlangıç ve sınır koşulları küresel

CMIP6 verileri ile sağlandı ve antropojenik ve biyojenik emisyonlar sırasıyla EMEP

envanteri ve MEGAN modeli tarafından sağlandı. Avrupa, Türkiye ve Marmara

domainlerinin meteorologik verilerini elde etmek için CMIP6 verileri sırasıyla 36 km, 12

km ve 4 km uzamsal çözünürlüğe ölçeklendirildi. İklim ve hava kalitesi simülasyonlarının

sonuçları, gelecekteki iklim senaryoları altında günlük ortalama sıcaklık ve günlük ortalama

ozon konsantrasyonunda iststistiksel olarak anlamlı artış olduğunu göstermektedir (P<0.05).

Marmara bölgesindeki ozon konsantrasyonundaki ortalama artış oranları SSP2-4.5 ve

SSP5-8.5 senaryoları altında sırasıyla %13, 6 ve %16, 02 olmuştur. İklim değişikliğinin

biyojenik emisyon konsantrasyonunu nasıl etkilediğini araştırmak için geçmiş döneme ait

iklim verileri ve gelecek iklim senaryoları kullanılarak MEGAN modeli tarafından biyojenik

emisyon simülasyonları gerçekleştirilmiştir. Sonuçlar, kullanılan gelecek dönemine ait

iklim senaryolarının biyojenik emisyon konsantrasyonunda istatistiksel olarak anlamlı bir

artışa neden olduğunu göstermektedir. Bu artış SSP2-4.5 ve SSP5-8.5 senaryolarına göre

ortalama izopren için sırasıyla yaklaşık %28.2 ve %38.46’dır. Ayrıca ortalama terpen

konsantrasyonundaki artış oranı sırasıyla SSP2-4.5 ve SSP5-8.5 senaryolarında %15.38

ve %21.79’dur. Tezin son bölümü, günlük ozon döngüsünün zamansal özelliklerini

modellere empoze ederek, derin öğrenme modellerinin saatlik ozon konsantrasyonu

tahminindeki performansının iyileştirilmesine ayrılmıştır. Sonuçlar, önerilen yöntemin

derin modellerin performansını istatistiksel olarak anlamlı ölçüde artırdığını göstermektedir.

Bildiğimiz kadarıyla, önerilen yaklaşım literatürde ele alınmamıştır. Bu çalışma, aynı

zamanda Marmara bölgesindeki iklim değişikliğinin troposferik ozon ve biyojenik emisyon

konsantrasyonları üzerindeki etkisini inceleyen ilk çalışmadır. Sonuçlar, bölgesel özelliklere

bağlı olarak meteorolojik parametrelerin ve emisyonların troposferik ozon oluşturmak için

nasıl etkileşime girdiğine dair değerli ayrıntılar sağlamaktadır.
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1. INTRODUCTION

The lower atmosphere consists of nitrogen, oxygen, water vapour, argon, and small

percentages of other gases and some atmospheric pollutants. Throughout history, with the

increase in human exploitation of nature and energy consumption, the extent of pollution

caused by human activities also increased. Air pollution in urban areas has a long history,

so much so that reports of poor air quality date back to early Greek and Roman cities. In

the early 12th century, the industrial use of coal in metalworking resulted in extensive air

pollution in the northeast of England [1]. Since the beginning of the Industrial Revolution,

rapid population growth and industrialization have resulted in a rapid increase in atmospheric

pollutant concentration. Analyses of air bubbles in Antarctic ice cores showed a rise in CO2

level from 280 ppmv in the second half of the 18th century to 380 ppmv [2].

The negative impacts of air pollution cover a broad spectrum from biodiversity, ecosystems,

crops and trees’ health and water resources to human health. Moreover, any change in

the balance of atmospheric constituents could impact the climate in the long-term period.

The greenhouse effect and impact of carbon dioxide (CO2) on the greenhouse effect was

illustrated by Joseph Fourier in 1824 and John Tyndall in 1861 [1]. In the late 19th century,

Svante Arrhenius proposed that the fluctuation in the atmospheric concentration of CO2 may

contribute to the global climate variation [3]. Since then, the evidence and extent of such

contribution have become apparent, and over the recent decades, climate change has been

considered as a major global environmental issue. According to the Intergovernmental Panel

on Climate Change (IPCC) 2014 report, the main driving force behind the increasing global

temperature is the excessive greenhouse gas (GHG)1 production rate originating from fossil

fuel consumption. As illustrated in Figure 1.1, an increasing trend in global temperature

anomaly follows the continuing increase in global greenhouse gas concentration [4]. The

greenhouse gases contribute to global warming by re-emitting the longwave radiations

reflected from the earth’s surface to space, which is called radiative forcing. The term

“climate change” is defined by the IPCC as [5]:

1The main greenhouse gases are: H2O (water vapour), CO2, CH4, N2O, O3 and CFCs.

1



“A change in the state of the climate that can be identified (e.g. using statistical

tests) by changes in the mean and/or the variability of its properties, and that

persists for an extended period, typically decades or longer. It refers to any

change in climate over time, whether due to natural variability or as a result of

human activity.”

Figure 1.1 (a): Global land-ocean annual mean temperature anomaly, (b): Global average
concentrations of greenhouse gas (Pachauri et al. (2014), Fig. SPM.1)

The United Nations Framework Convention on Climate Change (UNFCCC) offers a different

definition of climate change from the aforementioned one, referring to both the direct

and indirect effects of human activity [6]. However, whether it’s associated with natural

processes or arising from human activities, it has some significant global impacts. Climate

change contributes to some processes that are related to meteorological factors, including

temperature, precipitation, humidity, wind speed, solar radiation, and planetary boundary

layer height [7]. These factors affect air quality by influencing the rate of air pollutant

formation, dispersion, and other sink processes, particularly when it comes to secondary

pollutants like tropospheric ozone (O3). This happens because there is a mutual interaction

between some atmospheric pollutants and meteorological factors.

The amount of greenhouse gas production is significantly influenced by population and the

level of industrial development of a society. For instance, Figure 1.2 shows the cumulative
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CO2 emissions of countries in 1820, 1920, and 2020 [1]. Following industrialization,

human populations have concentrated in large communities for the past several hundred

years. The world’s urban population first overtook the population of rural areas in 2007 as

a result of accelerating urbanization [8]. The high population and structural characteristics

of urban areas create favourable conditions for generating and maintaining heat. Vehicles,

buildings, and large amounts of energy consumption in urban areas release heat into the

surrounding atmosphere. In addition, the dark surface lowers the albedo (reflectivity) of the

area, which increases heat absorption. Moreover, high-rise buildings and narrow streets lead

to insufficient air circulation and trap heat near the surface, which is known as the canyon

effect. Furthermore, due to the lack of natural surfaces and vegetation cover in urban areas,

the cooling effect resulting from the latent heat of evaporation would be much lower than the

rural areas. Consequently, the mean temperature of urban areas can be higher up to 5.6◦C

than the nearby natural environment [9], and this is why the term heat island applies to urban

areas.

Figure 1.2 Cumulative CO2 emissions by countries (Pearson and Derwent (2022), Fig. 6.2)

Considering the characteristics of urban areas, changes in meteorological variables would

have greater impacts on air quality in these areas than in rural ones. Tropospheric O3 is

one of the atmospheric pollutants that are extremely sensitive to meteorological parameters.

Moreover, some precursors to O3 formation, such as biogenic emissions, are also sensitive to

changes in meteorological conditions. The future emissions and climate projections indicate

an increasing pattern in O3 levels in urban areas [10–12]. This in turn might worsen the

health effects to the point where, by 2050, it will be the leading environmental cause of early

mortality [5].
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This study investigates the near-future and climate change-induced far-future O3 pollution

in the Marmara Region of Turkey. High population density, the presence of large industrial

establishments, being on the route of intercontinental transportation, and an active tourism

industry are the main contributors to air pollution in the region. In the case of O3 pollution,

biogenic emissions also play a determinant role in the formation process. The global trend of

air pollution indicates without the implementation of preventive initiatives, the health issues

associated with air pollution and subsequent economic losses will be raised. Due to the

region’s importance in respect of inhabiting a large population and creating a large amount of

economic value, air pollution management must be a key component of regional sustainable

development initiatives. Developing air pollution forecasting and pre-warning systems and

establishing pollution reduction policies are important components of managerial activities.

Forecasting near-future air pollution allows for the warning of vulnerable groups and helps to

reduce the negative health impacts of air pollution events. Moreover, long-term projections of

air quality help the decision-makers in legislation and implementation of emission reduction

policies.

Considering the requirements of air pollution management, which are described above, this

study focuses on developing a near-future O3 pollution forecasting model using deep learning

methods as well as investigating the climate change impact on mid-century O3 concentration

in the Marmara region. Moreover, because of biogenic emissions’ significant role in O3

formation processes, the climate change impact on biogenic emissions production will be

important in terms of O3 formation. Accordingly, a part of this study is dedicated to

investigating the climate change impact on biogenic emissions.

1.1. Scope of the Thesis

This study investigates mid-century O3 pollution, mid-century biogenic emissions, and

near-future O3 forecasting to address three research questions:

➊ How will climate change impact summertime tropospheric O3 pollution over the

Marmara region?
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➋ How will climate change impact the summertime biogenic emissions formation over

the Marmara region?

➌ Could the imposing diurnal O3 evolution pattern on deep learning models improve the

prediction performance?

To answer the first question, the summertime O3 pollution of a reference period (summer

2012) and a future period (summer 2053) were simulated using the WRF-CMAQ modeling

system. The future simulations were conducted under the SSP2-4.5 and SSP5-8.5 scenarios.

The difference between the O3 pollution of each future scenario and that of the reference

period illustrated the effect of climate change on the O3 level under that climate scenario

over the Marmara region.

As regards the second question, the WRF-MEGAN modeling system was applied to show the

effect of climate change on biogenic emissions concentration. To this end, the meteorological

conditions of the past and future periods, which were generated in the first step of the study,

were used as inputs to the MEGAN model. As same as the first question, the difference

between the concentration of biogenic emissions of each future scenario and that of the

reference period illustrated the effect of climate change on biogenic emissions under that

climate scenario.

Finally, three deep learning models, including CNN, LSTM-CNN, and CNN-LSTM were

used to respond to the third question. Five-year data from air quality monitoring stations

and meteorology stations were used for model training and testing. The models were also

assisted to have a better prediction of O3 concentration over the future 48 hours by imposing

the diurnal O3 evolution pattern on them. The performance of the proposed models was

compared with that of the benchmark models to evaluate the efficiency of the proposed

method.

The above-mentioned research subjects are part of a whole that is called air quality

management. In an air quality management program, conducting an effective air pollution

reduction strategy depends on some parameters including a comprehension of the pollution
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nature. Air quality models are effective tools for understanding the spatiotemporal

characteristics of pollution, pollutant sources and sinks, the effect of environmental factors

such as meteorological and climatic variables on the pollution level, etc. The results of

simulations that are conducted in this study could help us to understand the current air

pollution situation in the Marmara region, and represent the predicted ozone pollution under

climate change scenarios for far-future.

1.2. Contributions

This study aims to address three main questions which were discussed above, and each part

contributes to the literature as follows:

• According to the best of our knowledge, this is the first study that investigates the effect

of climate change on the tropospheric O3 level in the Marmara region.

• This is the first time that the MEGAN model has been implemented to investigate the

effect of climate change on the biogenic emissions in Turkey.

• This study proposes a simple but effective method to improve the performance of deep

learning models in forecasting air pollution.

1.3. Organization

The thesis organization is as follows:

• Chapter 1 presents an introduction to the air quality problem, provides some basic

definitions and concepts, and describes the aim, scope, and contributions of the thesis.

• Chapter 2 provides a background overview of the formation and sink processes of

tropospheric ozone, biogenic emission sources and their contribution to air pollution,

climate projections, and different approaches to air pollution simulation.
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• Chapter 3 presents a review of air quality simulation studies utilizing deterministic

models and deep learning models. In the deterministic approach, the main focus is on

studies of the climate change effect of air pollution, whereas, in the statistical approach,

the studies of near-future air quality simulations are considered.

• Chapter 4 gives detailed information on the study area, data acquisition and processing,

generating some missing input files, simulation conditions, and the applied models.

• Chapter 5 demonstrates and discusses the results of the conducted simulations.

• Chapter 6 states the summary of the thesis and presents our conclusions and suggestion

for future work.

2. BACKGROUND OVERVIEW

2.1. Tropospheric Ozone Chemistry

Atmospheric pollutants are categorized into two groups: (1) primary pollutants and (2)

secondary pollutants. Pollution sources are the origin of the primary pollutants, and

the secondary pollutants are generated from some chemical reactions in the presence of

favourable physical conditions such as solar radiation. As mentioned above, changes in

meteorological variables affect the concentration of some atmospheric pollutants, such as

ozone (O3), which is the most sensitive air pollutant to the meteorological parameters. As

the process that leads to the formation of tropospheric O3 is temperature-dependent, a rise in

temperature would increase the rate of tropospheric O3 formation. In addition, the production

of volatile organic compounds (VOCs), which are O3 precursors, increases at the higher

temperature [13]. Moreover, higher atmospheric stability causes a near-surface accumulation

of O3 precursors, which finally enhances the formation of O3. On the contrary, a rise in

humidity shortens the lifetime of O3 (∼ 20 days [1]) and causes a decrease in the O3 level

through the hydroxyl radical (OH) formation process [14].
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Tropospheric O3, which constitutes about 10% of the total O3, exists in the

troposphere through the stratosphere-to-troposphere transport or formed through a complex

photochemical reaction. The rate of stratosphere-to-troposphere O3 transport is expected to

increase as a result of the rise in stratospheric O3 concentration, following the introduction

of the Montreal Protocol, and the acceleration of stratosphere-to-troposphere air transport as

a result of the increased circulation of the Brewer-Dobson2 [11]. The process of tropospheric

O3 formation, which is the main source of near-surface O3, occurs from the combination of

precursors, including VOCs and NOx, CH4 and CO in the presence of sunlight. However,

because of the high reactivity of CH4, CO is the main contributor of O3 formation in urban

areas [15]. The reaction chain starts with the oxidation of CO or VOCs and is followed by

the oxidation of nitric oxide (NO). VOC oxidation reaction produces peroxy radicals (RO2),

which oxidizes NO. In progress, OH radical is recycled and then reused through the VOC

oxidation reaction. The overall reaction chain is described as [16]:

VOC+OH
O2−→RO2 +H2O (1)

CO+OH
O2−→HO2 + CO2 (2)

RO2 +NO
O2−→ secondaryVOC + HO2 +NO2 (3)

HO2 +NO−→OH+NO2 (4)

The third and fourth reactions are responsible for about 20% and 70% of tropospheric O3

formation, respectively [17].

As indicated above, the O3 formation process depends on the temperature, and that is

why the O3 pollution problem appears during the summertime. As molecular oxygen

photodissociation occurs in the presence of short wavelength (λ < 242 nm), which is not

present in the troposphere, photodissociation of nitrogen dioxide is the only source of the

oxygen atom [3]. Subsequently, in the presence of the third body (M), a recombination

reaction between the atomic and molecular oxygen results in the formation of O3. Oxygen

2Radiative equilibrium is the major factor in determining the longitudinal average summer temperature
distribution. As the radiation is much weaker during the cold months and the transmission of planetary waves
disturbs the equilibrium, a latitudinal circulation is generated which is called Brewer-Dobson circulation.
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and nitrogen can be present as the third body in the reaction and are required to remove the

extra energy from atomic oxygen. The schematic presentation of the O3 formation reaction

chain is shown in Figure 2.1 [3].

NO2 + hν−→NO+O (5)

O+O2 +M−→O3 +M (6)

Figure 2.1 Tropospheric O3 formation reaction chain (Lagzi et al. (2013), Fig. 8.9.)

In NOx-poor conditions, the photochemical reaction (photolysis) decomposes the

tropospheric O3 [15]. During the reaction, ultraviolet radiation destroys the O3 molecule and

the production of excited oxygen O(1D) atoms. Then, Hydroxyl radicals (OH) are created

when excited oxygen reacts with water vapour [3].

O3 + hν (λ< 320 nm)−→O2 +O(1D) (7)

O(1D) + H2O−→ 2OH +O2 (8)

However, the availability of NO could be a determinant factor in how the loss mechanism

proceeds. In NOx-saturated condition, the NOx titration process controls the sink reaction,

where the tropospheric O3 molecules are reduced by NO (Eq. 9).

NO+O3−→NO2 +O2 (9)

Moreover, in NOx-poor conditions, the oxidation of carbon monoxide starts a reaction chain

which results in the reduction of tropospheric O3.

CO+OH−→H+ CO2 (10)

H+O2 +M−→HO2 +M (11)
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HO2 +O3−→OH+ 2O2 (12)

Another tropospheric O3 sink is the reaction with OH.

OH+O3−→HO2 + 2O2 (13)

Dry deposition is the other tropospheric O3 removal mechanism. Unlike the previously

mentioned processes, which were based on some chemical reactions, deposition refers to

the absorption of O3 by a surface. Wet deposition does not significantly contribute to the

O3 sink due to the negligible water solubility of O3. The global annual tropospheric O3

budget (sources and sinks) from the literature [18] is given in Table 2.1, as Teragram per

year3 (Tga−1). Wet deposition does not significantly contribute to the O3 sink due to the

negligible water solubility of O3.

Table 2.1 A summary of global annual tropospheric O3 budget from the literature (Hu et al. (2017))

As high concentrations of tropospheric O3 have frequently been reported on air quality

observations, together with Pb, PM, CO, SO2 and NO2, it is classified as the criteria

pollutant. Figure 2.2 illustrates the evolution of the global troposphere O3 budget simulated

by the GEOS-Chem model [18].

3 1 Teragram (Tg) = 1 million tons
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Figure 2.2 Global tropospheric O3 budget (Hu et al. (2017), Fig. 1)

2.2. Biogenic Emissions

Biogenic emissions are a group of hydrocarbons which are emitted by plant tissues. These

emissions have been categorized into four classes by Guenther et al. (1995) [19] including

isoprene, monoterpenes, other reactive VOC (ORVOC), and other VOC (OVOC). The rate

and type of biogenic emissions are controlled by some environmental factors like vegetation

thickness, type, coverage, and meteorological parameters. In a study conducted by Aydin

et al., (2014) [20], the specific emission rates of some tree species were determined by field

samplings, in Turkey. The results showed that isoprene is the dominant biogenic emission in

broad-leaved trees, whereas monoterpenes are the dominant emissions in coniferous species.

Another study, which is conducted in Turkey by Yaman et al., (2015) [21] investigated the

biogenic emissions from seven endemic tree species. Among the studied tree species, Ispir

Oak (a broad-leaved species) and Uludag Fir (a coniferous species) showed the highest levels

of isoprene and monoterpene emissions, respectively.

Biogenic emissions are important contributors to air pollution, particularly in the

concentration of secondary pollutants. Isoprene and monoterpenes are key components in

the formation of ground-level O3. These emissions rapidly react with OH and NOx, and

their decomposition process can result in the formation of large amounts of tropospheric O3.

According to studies, the amount of isoprene emissions in the USA exceeds the total amount
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of anthropogenic hydrocarbon emissions [22]. Biogenic emissions are also responsible for

the formation of a large proportion of submicronic aerosols [23].

As aforementioned, the generation of biogenic emissions is influenced by meteorological

factors like temperature and sunlight. A rise in the temperature and the sunlight level

accelerates the formation of these emissions [23–25]. This indicates that an increase in the

formation rate of biogenic emissions and as a result a deterioration in regional air quality

is expected under the changing climate (increase in temperature). Therefore, it is important

to include biogenic emissions in air quality simulations, particularly for tropospheric O3

simulations.

In this study, we applied the Model of Emissions of Gases and Aerosols from Nature

(MEGAN) to calculate the biogenic emissions. The model had been developed by Alex

Guenther in Visual Basic in 2002, and it was later adapted to FORTRAN. It has continuously

improved and was implemented into the regional climate and chemistry transport models.

The model performance analysis has been conducted in the development phase and shows

reasonable results in comparison with the measurements. Ferreira et al. (2010)[26] evaluated

the capability of the MEGAN model in the calculation of isoprene in West Africa. The

authors report a satisfactory agreement between the calculated and observed values at the

grid resolution of 40 km. However, the results of study conducted by Kota et al. (2015)[27]

in Houston area indicated that the concentration of isoprene is significantly overestimated by

MEGANv2.1. To tackle this issue and fill some other gaps, MEGANv3 has been developed

and released [28]. The MEGANv3.0 evaluation results show a considerable reduction in

the isoprene overestimation rate. The estimated values show better agreement with the

observation results than the previous version. The latest version (v3.2) was released in

October 2021, however, the bug in the speciation code was fixed in the August 2022 update.

The model uses land use, meteorological and vegetation data to make a prediction about the

biogenic emission rate (emission released to the atmosphere) using the following equation:

ER = EF × EA (1)
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where, ER, EF , and EA represent emission rate, emission factor, and emission activity,

respectively. The emission rate is associated with the capacity of a vegetation type to

release a biogenic emission compound into the atmosphere. The emission factor gives the

rate of emission at standard conditions, and the emission activity determines the variation

in emission in response to changing environmental factors. The details of the execution

conditions of the model are described in Section 4.1.2.2.. To see how climate change impacts

air quality, the biogenic emissions of 2012 are simulated and used for both simulation periods

(2012 and 2053).

2.3. Climate Projections

Tropospheric O3 pollution may be dispersed over hundreds of kilometres by the air

circulation [29]. Any change in meteorological variables can, therefore, lead to a local

change in the dispersion rate and pattern of the pollutant. Moreover, future climate

projections need to be developed to have a realistic estimation of the pollutant concentration

in the future period. To this end, the contribution of past and future anthropogenic and

natural emission sources to climate change should be determined. As a result of two parallel

studies aimed at developing future emission scenarios, representative concentration pathways

(RCPs) and shared socioeconomic pathways (SSPs) were developed. The RCP and SSP

scenarios are discussed in detail in Sections 2.3.1. and 2.3.2..

2.3.1. Representative Concentration Pathways (RCPs)

The Representative Concentration Pathways (RCPs) are used by the Intergovernmental

Panel on Climate Change (IPCC) to explain four alternative greenhouse gas emission

scenarios for the 21st century. The RCPs include mitigation (RCP2.6), intermediate low

(RCP4.5), intermediate high (RCP6.0), and high emission (RCP8.5) scenarios. The emission

concentration, radiative forcing, and contribution to the temperature increase of each RCPs

are summed up in Table 2.2 [3, 4].
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Table 2.2 Projected representative concentration pathways, by 2100 (from Lagzi et al. (2013) and
Pachauri et al. (2014))

Scenario CO2 equivalent∗

concentration (ppm)
Radiative forcing
(Wm−2)

Change in mean surface
temperature (◦C)

RCP2.6 ∼ 490 ∼ 3 1

RCP4.5 ∼ 650 ∼ 4.5 1.8

RCP6.0 ∼ 850 ∼ 6 2.2

RCP8.5 > 1370 > 8.5 3.7

∗CO2 equivalent is used to describe various greenhouse gas emissions in a
common unit considering their global warming potential (GWP).

In the RCP2.6 scenario, the average global temperature increases by less than 2 2◦C in

comparison to the pre-industrial era. As can be seen in Table 2.2, by the end of the 21st

century there is an increase of 1◦C (0.3◦C to 1.7◦C) in average global surface temperature

under RCP2.6, in comparison to the 1986-2005 period. A reduction of 41% to 72% in

greenhouse gas emission (CO2 equivalent) concentration until 2050 is projected under

RCP2.6. According to this projection, the reduction in emission concentration increases

from 78% to 118% by the year 2100. Simulations in the range of the RCP4.5 scenario

would cause a 1.8◦C (1.1◦C to 2.6◦C) increase in mean surface temperature by 2100. These

projections refer to a maximum 38% decrease to a maximum 24% increase in greenhouse

gas emissions by the year 2050. The same projections show a 21% to 134% reduction in

emission concentration by 2100. The RCP6.0 scenario is on the basis of the 18% to 54%

increase in greenhouse gas emission concentration by 2050. The projections in the range of

RCP6.0 refer to a 7% decrease to a 72% increase in the emission concentration by 2100. This

scenario induces a 2.2◦C (1.4◦C to 3.1◦C) increase in global surface temperature by 2100.

Finally, an increase of 52% to 95% and an increase of 74% to 178% in emission concentration

are projected under RCP8.5 by 2050 and 2100, respectively. The RCP8.5 scenario increases

the global surface temperature by 3.7◦C (2.6◦C to 4.8◦C) in the late 21st century. In general,

climate change causes an increase in the frequency of heat waves and a multiform change in

precipitation.

It should be pointed out that some unexpected changes in emission concentration

14



resulting from some natural issues such as volcanic eruptions are not considered in the

above-mentioned projections. The projected change in CO2 equivalent greenhouse gas

emission in the range of the mentioned RCPs is provided by the Synthesis Report of the

AR5 (Figure 2.3) [4].

Figure 2.3 Change in global GHG emission from 2000 to 2100 (Pachauri et
al. (2014), Fig. SPM.11)

2.3.2. Shared Socioeconomic Pathways (SSPs)

Shared Socioeconomic Pathways (SSPs) were developed to provide comprehensive

perspectives on future conditions. They explain the change in socioeconomic aspects of

society. The SSP1 scenario was designed to represent a sustainable development path

and includes low challenges to adaptation and mitigation of climate change. The major

consideration of the SSP2 scenario is the limited shift in socioeconomic trends compared

to historical patterns. This scenario offers a medium challenge to both adaptation and

mitigation actions. The SSP3 scenario is designed to address regional competition and

issues. In contrast to the SSP1 scenario, the SSP3 scenario predicts a high level of

difficulty in implementing adaptation and mitigation actions. The SSP4 and SSP5 represent

unequal investment and development across and within countries, and fossil fuel-dependent

development, respectively. While the SSP4 scenario has low mitigation challenges and

high adaptation challenges, the SSP5 scenario is expected to have the opposite outcome
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[30–32]. Figure 2.4 shows the combination of the socioeconomic challenges to adaptation

and mitigation actions [30].

Figure 2.4 Socioeconomic challenges to
adaptation and mitigation actions of
SSP scenarios (based on O’Neill et al.
(2014), Fig. 1)

2.4. Modeling Approaches

There are two approaches for air pollution modeling in regional, urban, and station scales:

statistical operations on the data from air quality monitoring stations and pollution simulation

using deterministic models [33, 34]. The statistical models utilize the observed data to

determine the pattern of change in the pollution concentration during the time. Air quality

forecasts using the statistical modeling approach consist of a wide range of models, including

machine learning and deep learning models. These models have drawn a lot of interest

recently because of their enhanced prediction capability and lower computational costs. The

non-linear pattern of atmospheric pollutants’ evolution could be captured by the complex

architecture of the models. Moreover, a specific group of the sequential models, including
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RNN and LSTM, could learn the temporal gradient of the change (i.e. vanishing gradient) in

pollutant concentration. This provides a significant advance in time-series data forecasting.

The deterministic models are divided into numerical (Eulerian and Lagrangian trajectory)

and analytical (Gaussian plume and Gaussian puff) models. Unlike the first approach, the

models which are categorized in the second approach are helpful in process understanding

and impact assessment. Chemical transport models (CTMs), which are considered as

numerical models, have been extensively used in air pollution studies. Since the CTMs use

chemical schemes to simulate the chemical production and loss, deposition, and transport

of the chemicals (Fig. 2.5 [35]), provide a more realistic view of atmospheric pollution.

Hence, the CTMs can be used for the evaluation of the emission scenarios’ impact on climate,

and vice versa, and building new regulations and choosing the right location for air quality

monitoring stations.

Figure 2.5 Schematic illustration of chemical transport models
(Schere and Demerjian (1984), Fig. 1)

The first step to develop an atmospheric chemistry model dates back to the Fabry and

Buisson (1913) studies on the O3 layer at high altitudes [36]. Thereafter, the first studies

concerned with the ground-level O3 simulation were started in the early 1950s, until the

formation of ground-level O3 in the presence of sunlight is proposed by Haagen-Smit et
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al., (1954)[37]. Although the detailed mechanism of the tropospheric O3 formation is

determined by Levy (1971 and 1972)[38, 39]. The increasing interest in climate change

accelerated the atmospheric chemistry model development efforts since the 1980s, and the

early global three-dimensional models were developed by Hiram Levy, Michael Prather, and

Peter Zimmermann [36].

Atmospheric pollution simulation by the chemical transport model is divided into online

and offline simulation methods. In the online method, the CTM is integrated into a

meteorological model and both models work simultaneously and interact with each other.

However, in the offline method, the CTM uses the meteorological fields which are produced

by an external meteorological model, to compute the dispersion and concentration of

pollutants. As the meteorological model does not receive feedback from the CTM, the

possible effect of local air pollution on meteorological variables is ignored in the offline

method (Figure 2.6 [40]). Furthermore, online CTMs reduce the need to provide a

large volume of meteorological data archives. However, online models could be more

computer-intensive than offline models, due to simultaneous computation. The offline

simulation method is commonly used for primary pollutants, whereas the online method

is widely used for the simulation of secondary pollutants like tropospheric O3 [41].

Meteorological 

data input

Emission data 

input

Geographic data 

input

Output
(pollutant conc.)

Online (coupled) Model Offline (standalone) Model 

Meteorological 

model

Chemical 

transport 

model

Meteorological 

model

Chemical 

transport 

model

Output
(pollutant conc.)

Figure 2.6 Online and offline air quality models (based on Baklanov et al. (2014), Fig. 1)
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In general, a CTM consists of a meteorological processor module, a chemistry module, and

an air quality model. The extent of pollution distribution is determined by advective and

diffusive forces, that are simulated in the meteorological processor module. The chemical

component simulation is performed by the aerosol dynamics, aqueous-phase, and gas-phase

chemistry of the chemistry module. Finally, the spatial concentration of the pollutant is

calculated using the meteorological and chemical fields, emission inventory, and terrain data.

The CTM model that has been employed in the current study is described in detail in Chapter

4..

3. RELATED WORK

As was indicated in Section 2.4., there are two approaches for air quality simulations,

including those carried out using deterministic models and those conducted using statistical

methods. Based on these approaches, this section is separated into two subsections to address

the related work associated with both approaches.

3.1. The Climate Change Impact on the Tropospheric Ozone and

Biogenic Emissions’ Formation

Ozone simulation studies are divided into two major groups: O3 episode simulations and

future O3 projections under climate change, some of which will be briefly mentioned in this

section, as well as the climate change impact on biogenic emissions formation.

Colette et al. (2011)[42] studied the tendency of air pollution in Europe over the past 10

years to examine the potential and limitations of models. The authors applied four regional

chemistry models (BOLCHEM, CHIMERE, EMEP and EURAD), and two global chemistry

models (Oslo CTM2 and MOZART). All chemistry transport models were able to predict

the decreasing trend of primary pollutants on background stations (outside the city areas),

a decreasing trend in anthropogenic NO2 concentration over Europe, and PM10 trends.

Although the O3 trend was challenging to predict, it was predicted at most of the stations.
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The effect of different global circulation model (GCM) outputs on regional modeling of

O3 and PM was studied by Manders et al. (2012)[43]. Two global circulation models

(i.e. ECHAM5 and MIROC-hires) were used to produce large-scale climate output, and the

results were reanalyzed using ERA-interim. The GCMs output was downscaled by a regional

climate model (i.e. RACMO2) and then used as the input for a chemical transport model

(LOTOS-EUROS). Both groups (ECHAM5 and MIROC-hires outputs) simulate reference

(1989-2009) and future (2041-2060) atmospheric pollution. The results indicate not only

a significant difference between the current and future meteorological conditions but also

between the meteorology of the two analysis groups, according to the season and location.

There is a considerable rise in temperature and a moderate change in rain and wind patterns.

Furthermore, there is an increase in the mean daily summer maximum concentration due

to the increase in temperature. Moreover, there were some positive and negative changes

in PM10 concentration across the study area. The difference between the output of the

two GCMs has a considerable impact on the modelled O3 and PM10 concentrations. The

difference between the present and future concentrations modelled by ECHAM is smaller

than that of ERA, while The difference in RACMO2 results was as the same magnitude as

ERA. The study result indicates considerable uncertainty in global circulation models.

Hedegaard et al. (2013)[44] simulated tropospheric O3 pollution in the late 21st century

(2090-2099), using six-hourly temperature, humidity, precipitation, and global radiation

data generated by ECHAM5. In this study, DEHM chemistry transport model was applied

to simulate pollution under the RCP4.5 emission scenario. Based on the findings, the

O3 concentration will be decreasing over the Arctic area. Reduction in O3 precursors is

mentioned as the main reason for the decline in O3 level. Contrarily, climate change causes

an increase in O3 concentration, which is a little smaller than the decrease in O3 level

caused by the reduction in the concentration of O3 precursors. There is a decrease in NOx

concentration in northwestern Europe, which is caused by a rise in O3 concentration.

A change in isoprene concentration in Asia under land use and climate change during the

period from 1979 to 2012 was studied by Stavrakou et al. (2014)[45]. The biogenic emission

simulations were conducted by the MEGAN model, while the meteorological inputs were
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provided by the ERA-Interim. They have performed five different simulations to investigate:

(1) land use change, (2) emission factor reduction, (3) change in the distribution of the oil

palm plantation area, (4) the correction in solar radiation based on the measurements, and

(5) simulation with the standard settings of the model. According to the results, a rise in

temperature is the major reason for the rising trend in isoprene concentration in Asia (0.2%

per year), however, the emission trend varies between countries. Moreover, El Niño and

La Niña events significantly impact the increasing and decreasing trends of the isoprene

concentration, respectively.

Markakis et al. (2014)[7] studied the effect of climate change on O3 and PM2.5

concentrations of Paris in the mid-21st century. They have downscaled the global climate

data using WRF in two steps at resolutions of 50 km and 10 km, respectively. The

global chemistry model (LMDz-INCA) output was also downscaled by CHIMERE in two

steps. Then, the result of the local climate model was utilized to simulate the pollution

concentration under the reference and mitigation scenarios. Ten years’ air quality dataset,

including the 29 air quality stations’ hourly dataset, were used to simulate present-day air

quality. The authors stated that this study is the first simulation of 10-year air pollution at the

city level and such fine scale (4× 4 km). According to the results, O3 concentration increases

(+7 ppb) under the reference scenario and decreases (−3.5 ppb) under the mitigation

scenario, with respect to the current values. The analysis of model outputs demonstrated that

O3 appears under VOC-sensitive chemistry in the study area. Furthermore, due to reductions

in primary emissions, a significant decrease was reported in PM2.5 levels in downtown under

both scenarios.

In 2015, Markakis et al. [46] also studied the sensitivity of air quality modeling to model

resolution, emission, and meteorology. The study area and methodology were as same as

their previous study, which is described above [7]. The results show a low to moderate

sensitivity of O3 and high sensitivity of PM2.5 to emission and meteorological inputs. The

highest sensitivity of O3 level was associated with the resolution of the emission inventory

(8.3%). The resultas also indicate that the sensitivity to the annual precursor emissions is very

small (2.5%). Furthermore, the largest sensitivity of PM2.5 was observed in annual emission
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totals (33% in summer and 33.8% in winter). The authors claim that the sensitivity results are

under the influence of the downscaling method and the resolution of the emission inventory.

Wintertime PM2.5 is the only pollutant that is significantly affected by meteorological

conditions. The vertical resolution of the chemical transport model was not a very effective

factor in O3 and PM2.5 concentrations (< 2.2%).

Gupta and Mohan (2015)[17] studied the WRF/Chem permanence in summertime O3

prediction over Delhi. Chemical mechanisms of WRF/Chem including Carbon Bond

Mechanism (CBMZ) and a Regional Atmospheric Chemical Model (RACM) were used for

simulations. Meteorological initial and boundary conditions, terrestrial data, and EDGAR

emission datasets were used as the WRF/Chem inputs, and the chemical initial boundary

conditions were extracted from the Mozart-4 dataset. The model has developed in three

domains that cover India, the North Region of India, and Delhi with a spatial resolution of

90, 30, and 3 km, respectively. Based on the statistical metrics (normalized mean square

error, fractional bias, root mean square error), CBMZ shows a higher performance than the

RACM mechanism. The authors interpreted that the improvement in some input data may

have resulted in better performance of the CBMZ mechanism. Moreover, the change in the

surface O3 concentration was captured by the model.

San José et al. (2016)[47] developed a new approach to simulate the climate change-induced

shift in atmospheric pollutant concentrations in urban areas. The WRF/Chem model is

used to downscale 6-hour global climate data to 25 km resolution, and in the second

step of the downscaling process, the 25 km resolution data were downscaled to 0.2 km

using CALMET. Then, high-resolution urban climate data were imported into the CMAQ

chemical transport model. Anthropogenic, biomass burning, biogenic, and dust emissions

were included in the regional CTM. Climate boundary conditions were the only data that

changed in each simulation. The authors reported good agreement between the simulated

present situation (the year 2011) and the measurements. RCP4.5 climate projection predicts a

rise in precipitation and a decline in temperature, while RCP 8.5 tends to contrary conditions.

Based on the RCP4.5 scenario, O3 concentration decreases by 2100 at the Europe level, while
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there is an increase in O3 concentration in some parts of Europe (e.g. Greece, Bulgaria, and

Romania) and also at the city level (e.g. Milan).

Markakis et al. (2016)[48] have studied the air quality conditions of Paris and Stockholm

in the mid-21st century at fine resolution, considering climate change. Different climate

and chemical transport models have been used for the study. In the case of Paris,

IPSL-CM5A-MR and LMDz-INCA were used as GCM and global CTM, respectively. GCM

data were downscaled by WRF, and CTM data were downscaled using CHIMERE at two

steps to the resolutions of 50 km and 4 km, respectively. For climate and air quality modeling

of Stockholm, the EC-EARTH global climate model and LMDz-INCA global chemistry

transport model were used. RCA4 was used for downscaling GCM data, and CTM data

were downscaled by MATCH at two steps to spatial resolutions of 12 and 1 km, respectively.

Analysis of the present-time O3 shows that the O3 level in Stockholm depends on pollution

transportation, while in the case of Paris O3 titration is the main driver of concentration

level. Although there is an increase in surface temperature by 2050, the O3 level decreases in

the Paris area (an eight-department area, including Paris) and Stockholm up to 5% and 2%,

respectively. This reduction is associated with the local climatic conditions of the Paris area.

Furthermore, there is a decreasing trend in PM concentration in Stockholm and Paris due to

the increase in humidity. Although there is an increase in daily mean (8%) and 8-hours (3%)

O3 concentration in the Paris urban area due to changes in emission. The overall changes in

pollutants of Paris are; a 2.3% increase in daily mean O3, a 2.4% reduction in MD8hr O3,

a 33% reduction in PM10, and a 45% reduction in PM2.5. In the case of Stockholm, a 17%

decrease in daily mean O3, a 18% reduction in MD8hr O3, a 20% reduction in PM10, and a

20% reduction in PM2.5 occurred.

The sources of two O3 episodes in the western Mediterranean (Spain, France, Switzerland,

Italy, Malta) during April and May 2008 were studied by Kalabokas et al. (2017)[49].

Temperature anomaly, specific humidity, wind speed, vertical wind velocity, and geopotential

height were selected as the meteorological parameters. Moreover, surface and vertical O3

distribution data were obtained from monitoring stations and satellite IASI measurements.

CHIMERE model was used as the regional chemistry transport model, with a spatial

23



resolution of 0.25◦ × 0.25◦. To provide a spin-up period, the simulations have begun 10 days

prior to the episode period. Furthermore, to analyze the sensitivity of O3 level to emission

concentrations, simulations have been conducted involving and ignoring emissions. The

results indicate the relationships between the O3 episodes and meteorological conditions.

Indeed, the transportation of high concentrations of O3 and atmospheric subsidence are

the major causes of the studied O3 episodes. Tropospheric subsidence has occurred in the

transition regions between low- and high-pressure systems.

Tropospheric O3 mechanism, its causes, frequency, and impacts on the O3 budget over the

Himalayas were investigated by Ojha et al. (2017)[50]. They used the EMAC model as

the global and regional climate and air quality model, with a horizontal resolution of 2.8◦

× 2.8◦. Moreover, the HYSPLIT model was utilized to identify the source and transport

patterns that trigger the tropospheric O3 formation. The simulation result demonstrates the

role of the stratosphere-to-troposphere transport mechanism as the source of the Himalayan

high O3 concentration. Furthermore, long-range emission transport significantly contributes

to the O3 level. According to the results, the frequency of O3 episodes is highest in May.

Ni et al. (2018)[51] have simulated the temporal and spatial O3 evolution for Hangzhou,

China. They developed the WRF/Chem model in two domains with resolutions of 30 and

6 km. The National Centers for Environmental Prediction (NCEP) dataset and MOZART

were used as input for meteorological initial and boundary conditions and chemical initial

and lateral conditions, respectively. Furthermore, dust, biogenic, and primary anthropogenic

emissions (for domain 1) and custom finer emission inventories (for domain 2) were imported

into the model. Vertical distribution of O3 was evaluated by observed LiDAR data and

the modeled O3 and NO2 (in domain 2) were evaluated using hourly surface observed

data. According to the evaluation results, both meteorological and chemical simulations

sufficiently fit the observed data. The results disclosed the importance of tropical cyclones in

O3 concentration of Hangzhou. The north wind resulting from tropical cyclones transports

pollutants from North China over Hangzhou, which is considered as the O3 precursor source

in the area.
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Nolte et al. (2018)[52] studied the US air quality in 2030 under RCP4.5, RCP6.0, and

RCP8.5 scenarios. They used the WRF model to downscale the 6-hour global climate

model (CESM) output to 36 km horizontal grids. Along with the RCM output, chemical

lateral boundary conditions, and biogenic and anthropogenic emissions were imported

into the transport air quality model (CMAQ). Anthropogenic emissions and boundary

conditions were kept constant for future period simulations. According to the results, the

CESM-WRF modeling approach was capable of representing the maximum and minimum

daily temperatures. A positive bias is detected in the eastern US summertime precipitation

and the annual precipitation of the western US. Moreover, air quality simulation results

indicate an increase in O3 concentration in some regions under all climate scenarios. Annual

average change in PM2.5 concentration was in the range of ±1.0 µgm−3. Furthermore, the

decrease in NO3, NH4, and SO4 resulted in PM2.5 reduction.

Chen et al. (2018)[53] applied the coupled WRF/CMAQ model to analyze a high O3

episode over the Pearl River Delta (PRD), China. The model resolution was defined as

27 km and contained 40 vertical layers (up to 50 hPa). Furthermore, the SAPRC07tic

chemistry mechanism is used, which has a more comprehensive structure. To simulate

the contribution of different variables to O3 production and sink mechanisms, advection,

diffusions, deposition, cloud formation, and chemical reactions were included in the process.

Three scenarios are conducted to assess stratospheric O3 transport and explain precursor

sensitivity at vertical layers. The results show that higher O3 concentration near the

tropopause is related to stratospheric O3 transport. Moreover, the surface O3 precursor

sensitivity test indicates the dominance of VOCs-sensitive in suburban areas in the early

afternoon and NOx-sensitive in the late afternoon.

Georgiou et al. (2018)[54] have studied the summertime tropospheric O3 pollution in the

eastern Mediterranean, which includes the July 2014 period. Some high- and low-pressure

systems contribute to the transportation of pollutants to the eastern Mediterranean.

Consequently, the eastern Mediterranean is a part of the region with high background O3

pollution in Europe. Furthermore, the stratosphere-troposphere exchange causes an increase

in surface O3 concentration. The outer domain of simulation covers most parts of Europe and
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northern Africa, while the inner domain focuses on Cyprus. The meteorological processor

module of the model simulates wind profiles (10 m wind speed and wind directions), 2

m temperature, and surface pressure. In this study, the required anthropogenic emissions

are generated by the EDGAR inventory. The physical configuration of the model was kept

constant during all of the simulations. The study results reveal that short-range emissions,

which originated from the island itself, have an impact on the southeastern part of the island.

All three chemistry mechanisms overestimate (up to 23%) the O3 concentration.

Jiang et al. (2018)[55] used the MEGAN3 model’s drought algorithm to simulate the effect

of drought on the isoprene production rate. They conducted single-point simulations by

providing hourly meteorological inputs and site-specific vegetation and soil parameters data

to the model. The results show that short-term drought cannot reduce the isoprene production

rate, however, long-term drought reduces the production of biogenic isoprene.

The origin of O3 episodes over the southeastern Iberian Coast was modelled by

Lopez-Muñoz et al. (2018)[56]. Previous studies show the impacts of local and synoptic

patterns, and some other studies emphasize the importance of land-use effects on O3

concentration in the Iberian regions. The model predictions and hourly concentrations

from eleven monitoring stations were used to describe the highest ten O3 pollution

events over the area. Three domains with grid resolutions of 27, 9, and 3 km were

applied. CHIMERE and WRF models were utilized as chemical transport and regional

climate models. Anthropogenic emission (EDGAR) and biogenic emission (MEGAN)

inventories were applied as emission inputs. The results indicate the eastern transport, local

photochemical production, transport from the Straits of Gibraltar and western transport as

the main O3 episode origins, respectively. Furthermore, high pressure, high temperature, low

pressure (in some regions) and low east winds were the favourable meteorological conditions

for O3 formation, respectively.

In a review study conducted by Holopainen et al. (2018) [24], the formation of biogenic

emissions in the northern hemisphere under climate change conditions was studied. The

positive effect of global warming on increased isoprene and terpene synthesis rates is
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frequently reported among summarized studies. On the other hand, some studies indicate

the inhibitory effect of elevated carbon dioxide on biogenic emissions synthesis.

Lee et al. (2019)[57] have studied the O3 episode in South/Southwest China during spring

2013. Ground-level pollutant measurement data, including NOx, CO, PM2.5, PM10, and

O3 were obtained from air quality monitoring stations. Moreover, temperature, wind

components, and pressure data were used during the study. In this study, the GEOS-Chem

model (a global chemical transport mode) and the HYSPLIT model were employed to

simulate air pollution and determine the pollutant source, respectively. The GEOS-Chem

model has used hourly meteorological variables in a resolution of 2.0◦ × 2.5◦, and in 72

vertical layers. The anthropogenic emissions were provided from EDGAR and MICS-Asia

inventories, and biomass burning data were taken from the GFED4 inventory. Furthermore,

gases, aerosols, and volcanic emissions data were derived from MEGAN and AeroCOM

emission inventories. The model results demonstrate that Indochina, Africa, and South

China had the largest contribution at the CO level of the study area. The O3 precursors were

transported by westerly wind from the above-mentioned sources. Moreover, the analysis of

sub-daily data shows a correlation between the occurrence time of the highest temperature

anomaly and the highest O3 concentration. This shows the importance of temperature in the

O3 formation reaction chain. Atmosphere stability has caused a decline in O3 dispersion

rate, however, it has prepared suitable conditions for the aggregation of O3 precursors.

The ground-level O3 episode which occurred over Beijing from 1 to 10 July 2015 was

studied by Liu et al. (2019)[58]. Previous studies indicate the importance of photochemical

reaction as the dominant factor in O3 formation in Beijing. In this study, the coupled

offline CMAQ-RAMS models were applied as the chemistry transport model and regional

atmospheric model to simulate the O3 concentration through a model domain with a

resolution of 16 km (94× 90 grids) and 15 vertical layers (up to 23 km from the

surface). Some statistical error metrics were applied to compare the simulated and observed

meteorological variables, which show a good agreement between the two data groups. The

results show a gradual increase in O3 concentration from 05 : 00 A.M. to 14 : 00 P.M. The

results indicate a difference in NOx levels in urban and rural areas, whereas in the case of O3
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concentrations, the values are close. In urban areas, NOx concentration reaches its peak value

at 8 : 00 A.M., while in suburban areas the peak time is at 5 : 00 A.M. Boundary conditions

played a dominant role in ground-level O3 concentration during the first two days (July 1

and 2). In terms of tropospheric O3 levels, these days were clean days, and background

O3 concentration in Beijing was low within this period. Furthermore, the favorable wind

direction and high wind speed reduce O3 concentration over this period. The contribution

of Beijing and surrounding areas to background O3 concentration increased significantly

during the rest of the eight days, which shows high pollution levels. The transportation of O3

and its precursors by southern and southeastern winds during this period has increased the

ground-level O3 concentration in Beijing. Therefore, it can be stated that the meteorological

variables have a prominent role in this O3 pollution episode.

Feng et al. (2019)[59] studied the factors affecting O3 pollution in Hangzhou, China,

using WRF-CMAQ coupled model. Hourly pollutant concentration data were provided from

two air quality monitoring stations. The biogenic emission simulations were conducted by

MEGAN model. According to the results, Hangzhou could be classified as a VOC-limited

area, in which an increase in VOCs causes an increase in tropospheric O3 concentration.

Western North Pacific Subtropical High (WNPSH)4 plays a significant role in O3 formation

over the area. Emission transport contributes to less than 20% of O3 pollution, with the

highest contribution in summer. Local industry is responsible for about 59% of the annual

O3 formation, and the emissions from residential areas, traffic, and agricultural activities are

the next important sources for the O3.

Qin et al. (2019)[60] have studied the high O3 levels in the Great Lake Region, and have

attempted to make a better description of the complex interaction between the meteorological

conditions and emissions, and their impacts on ground-level O3 formation. They used WRF

and CMAQ models as the regional climate model and chemical transport model, with the

outer and inner domain resolutions of 12 and 4 km. July 2011 was selected for O3 simulation,

while the WRF simulation began on 15 June, and photochemical simulations were started

4WNPSH is a very important mechanism of circulation in the atmosphere that affects the summer climate
across eastern China.
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on 20 June. NEI anthropogenic emissions, which were handled by SMOKE and EPA

2011v6.2 modeling systems, and BEIS biogenic emissions were utilized in photochemical

simulations. One base simulation and five sensitivity test simulations (for dry deposition,

chemical mechanism, or emissions) were carried out in the context of the study. Emission

sensitivity test results demonstrate that using MEGAN inventory instead of BEIS does not

significantly impact the model performance. Similarly, the replacement of dry deposition

with freshwater or increasing the dry deposition rate of O3 had no significant effect on

model performance. The results of the sensitivity test of chemical mechanisms show an

increase in model performance by the replacement of the CB6 mechanism instead of CB05.

Also, a reduction in NOx emissions from mobile sources improves model performance.

Furthermore, the combination of CB6 chemical mechanism and MEGAN emission inventory

causes an obvious improvement in model performance in some areas.

Lyu et al. (2019) [61] have studied the causes of ground-level O3 pollution during

4–11 August in Jinan, China. The WRF-CMAQ model was applied to simulate regional

meteorology and chemical transport conditions in two nested domains. The MEIC and

INTEX-B anthropogenic emission inventories and the MEGAN biogenic emission inventory

were used in the study. Some physical mechanisms, such as advection, diffusion, deposition,

and cloud formation, were included in O3 forecasting simulations as well as the chemical

mechanisms. According to the simulation results, photochemical O3 formation is the primary

source in the O3 concentration of Jinan. Furthermore, intense organic nitrate formation in the

North China Plain is an O3 precursor source. Based on the study results, the authors suggest

that atmospheric pollution control policies in China are not adequate.

The concentration of ozone in the mid-21st century and at the end of the 21st century in

Malaysia was studied by Kong et al., (2019)[62] under two different climate scenarios. The

WRF and CMAQ models were employed in this work to simulate the climate and air quality,

respectively. Two domains with grid resolutions of 45 and 15 km and 30 vertical levels were

employed to run the WRF simulations. Moreover, the bias-corrected CESM climate data

were used in the past (2010) and future (2050 and 2100) periods’ simulation. Furthermore,

the MICS Asia emission inventory and IPCC emission scenarios were used in this study.
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The CMAQ model had moderate performance in forecasting hourly O3 concentrations. The

model underestimated the CO and NOx concentrations by 69% and 92%. The authors

asserted that the difference between the predicted and observed concentrations originates

from the emission precursors and input climate data. Moreover, the results show a reduction

in future O3 concentration under both scenarios. According to the authors, this decrease in

O3 concentration is a result of a rise in humidity and a decline in the concentration of O3

precursors.

The sources of the summertime O3 episodes in the Sichuan Basin in China were studied

by Yang et al. (2020)[63], using the WRF-CMAQ model. July 2017 was selected for the

analysis, while the simulation period covered July and the last three days of June as spin-up

time. MEIC and MEGAN were used as anthropogenic and biogenic emission inventories.

Four emission sensitivity analysis were performed to determine the contribution of local and

regional emissions to O3 formation. Moreover, the PMF model was used in emission source

identification. The result indicates a local and regional emission contribution to ground-level

O3 concentration. More than 50% of VOCs arise from gasoline vehicle exhaust and solvent

usage. The results indicate that dry deposition is the main sink of the ground-level O3.

Baublitz et al. (2020)[64] studied the sensitivity of ground-level O3 to dry deposition, as the

major O3 sink mechanism. They used the GFDL AM3 model, which simulates the chemistry

of the stratosphere and troposphere and their interactions. Based on the RCP8.5 scenario,

O3 concentration shows a long-term (yearly) response to monthly dry deposition variation.

The sensitivity was tested by comparing the results of a full simulation and the simulations

in which the deposition velocity was set to zero (no deposition) for O3, oxidized nitrogen,

isoprene intermediates, or all of the mentioned species. The result indicates the importance

of any change in the dry deposition for O3 concentration and production efficiency. Turning

off the dry deposition of oxidized nitrogen, O3 and all of the species cause an increase of

5%, 18%, and 25% in O3 concentration.

A total of thirteen summertime O3 episodes during 2013 – 2017 were studied by Shu et

al. (2020)[65] in the Yangtze River Delta (YRD) of China. Records of O3, NO2, and
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CO were used as air quality input data, and temperature, pressure, wind speed, relative

humidity, and precipitation as meteorological input data. The CMAx model, which contained

two nested domains with grid resolutions of 27 and 9 km, and vertical 32 sigma layers,

was used to simulate the photochemical reactions. Two days of the spin-up period are

considered before each episode simulation. In this study, the MEIC anthropogenic emissions

were utilized. Moreover, six large-scale meteorological patterns were identified by the

self-organizing map algorithm (SOM). The result shows the sensitivity of O3 concentration to

the predominant synoptic weather patterns, through the impact of patterns on local chemistry

and regional transport. Furthermore, the results clarify the role of regional transport in

high O3 concentrations. Transportation and industry sectors provide the main source of O3

precursors.

Schuch et al. (2020)[66] studied the change in the concentrations of O3 and PM2.5 in Brazil

under current emissions scenario, mitigation emission scenario, and maximum feasible

emission reduction scenario. The geographical extent of the study area includes two domains

with spatial resolutions of 36 and 9 km. The emission projections for 2020, 2030, 2040,

and 2050 from the ECLIPSE data were utilized to simulate the effect of anthropogenic and

biogenic emissions on the concentrations of O3 and PM2.5. All of the simulations were

conducted using the WRF-Chem and based on the meteorological conditions from July 31

to August 10, 2020 (12 days). The comparison among the reference (2020) and future

model outputs shows a reduction of 3% and 75% in O3 and PM2.5 levels, respectively, under

the maximum feasible emission reduction scenario. Moreover, the simulations that use the

current emissions cause a rise in O3 and PM2.5 concentrations of 1% and 11%.

The effect of change in climate and emissions on mid-century concentrations of O3 in the

USA was studied by Moghani and Archer (2020)[67]. The study aimed to address two

questions: (1) What impact will climate change have on air quality in the future? (2) What

impact will future emissions and climate change have together on air quality? To answer

the first question, the authors simulated the air quality of the reference period (2016) using

the meteorological conditions and emissions from 2016. Moreover, they have simulated the

air quality of the future period using the meteorological conditions from 2050 and emissions
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from 2016. The difference between the air quality of the reference and future periods shows

the impact of climate change on future O3 concentrations in the USA. Moreover, to respond

to the second question, the meteorological conditions and emissions of 2050 were used to

simulate the air quality of the future period. In this study, the CESM and WRF models were

used as the global and regional meteorological models, while the GEOS-Chem and CAMx

models were used as the global and regional atmospheric chemistry models. The simulation

domain encompasses the continental USA with a grid size of 12 km. The RCP8.5 scenario

was chosen for future climate simulation, and the future emissions were selected based on

the RCP8.5 scenario from the US EPA’s NEI emission projections. According to the authors,

a positive correlation between the tropospheric O3 and surface temperature was observed,

while the correlation between the O3 and humidity was negative. The results show that

climate change causes an increase of 3.6 ppb in the maximum daily 8-h average (MDA8) of

O3 concentration. Moreover, the combination of climate change and future emissions leads

to a decrease of 7.2 ppb in MDA8 of O3 concentration.

Gadzhev and Ganev (2021)[68] simulated the Air Quality Index (AQI) for the city of

Sofia using the WRF-CMAQ modeling system. They used the NCEP data with the

spatial resolution of 1◦ × 1◦ to feed the WRF model. In the model configuration, WSM

6-class, CAM, Pleim-Xiu, and ACM2 schemes were chosen as microphysical, longwave

and shortwave radiation, land-surface, and planetary boundary layer parametrizations,

respectively. Five nested domains were designed to downscale the global data with a grid

size of 1◦ × 1◦ to 1 km resolution in the innermost domain. The AQI of each grid (ranging

from 1 to 10) was determined by specifying the index of each pollutant (O3, NO2, SO2,

PM10) by considering the pollutant concentration. The authors used a health descriptor

that assessed each AQI’s potential health risk in accordance with the WHO guidelines.

Moreover, the proposed modeling system determines the heat index, which categorizes the

grid-wise high-temperature conditions into caution, extreme caution, danger, and extreme

danger, groups.

Coelho et al. (2021)[69] investigated the effect of climate change on pollution control

considering the European National Emission Ceilings Directive (NECD) pollution control
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strategy. For simulations of the weather and air quality, they employed the WRF and CAMx

models, respectively. The global meteorological data from the MPI-ESM-LR model with a

spatial resolution of 1.9◦ were utilized to initialize the WRF model. Moreover, the inputs

of the regional chemical model were provided by the global chemical model Mozart, with

a spatial resolution of 1.9◦×2.5◦. The global meteorological data were first analyzed to

determine the representative years for both the past and future periods. Using data from

2010 to 2015 and 2028 to 2032, respectively, the years 2013 and 2031 were chosen as the

representative years. The EMEP inventory of anthropogenic emissions for the year 2015 was

used in the simulation of both representative years. The future (the year 2031) simulation has

been conducted under the RCP8.5 scenario. The comparison of future and past air quality

simulation results shows an increase in NO2, PM10, and PM2.5 concentrations and a decrease

in O3 concentration across Europe under climate change.

The performance of the WRF-CMAQ modeling system in real-time forecasting of PM2.5

concentration was studied in comparison with a proposed bias-correction method by Cheng

et al. (2021)[70]. Outputs from the global circulation model (with a grid resolution of 0.25◦)

supplied by NCEP were used to feed the WRF model. Two nested domains with the grid

sizes of 15 and 3 km were designed to simulate the PM2.5 concentration across Taiwan.

The anthropogenic emission inventories of MICS-Asia and TEDS-9.0 were provided for the

outer and inner domains, respectively. Moreover, the biogenic emissions data were simulated

using the MEGAN model, and the boundary conditions were provided by the profile dataset.

In comparison with the CMAQ outputs and observation data, the proposed bias-correction

method underpredicted the PM2.5 concentration.

The tropospheric O3 simulation study conducted by Griffiths et al. (2021)[71] spans a

range of 250 years. They studied the global evolution of O3 from the mid-18th century

to the end of 21 century using the data from CMIP6 outputs. Five models of the CMIP6

models, including GFDL-ESM4, UKESM1-0-LL, CESM2-WACCM, GISS-E2-1-G, and

MRI-ESM2-0, were chosen for the evolution assessment. In this study, the future period

predictions was performed according to the SSP3-7.0 scenario. The analysis of past period

33



O3 data shows a 44% rise in O3 level from 1850 to 2014. For the future period, the O3 burden

will increase from 356± 31 Tg in 2014 to 416± 35 Tg by 2100.

A similar research performed by Shang et al. (2021)[72], investigated the global variation

in O3 level under different climate scenarios. To this aim, the outputs from three CMIP6

models, including IPSL-CM6A, MRI-ESM2, and CESM-WACCM, were used. The study

results demonstrate the non-linearity of the change in column O3 in the tropical stratosphere.

Moreover, the meteorological conditions for stratospheric O3 formation in tropical area is

more favorable under the SSP1-2.6 and SSP3-7.0 scenarios than the SSP2-4.5 and SSP5-8.5

scenarios. Furthermore, under SSP3-7.0 and SSP5-8.5 scenarios, a significant increase in

tropospheric O3 concentration was observed.

Another global analysis of tropospheric O3 change under climate change was carried out by

Zanis et al. (2022)[73]. The climate data for the past and future periods were provided

by five CMIP6 models. The future period analysis was conducted under the SSP3-7.0

scenario. The results show a 0.96 ± 0.07 ppbv ◦C−1 reduction in global O3 concentration.

On the regional scale, an increase of 0.2 to 2 ppbv ◦C−1 was predicted in China and India.

Under the SSP3-7.0 scenario, there will be slight increases or decreases in O3 concentration

over the Europe and US. An increase in O3 concentration is predicted for Africa and

South America, which are close to the source of the natural BVOC emissions. Moreover,

climate change causes a considerable increase in the O3 level, which is associated with the

stratosphere–troposphere exchange process.

In a research conducted by Liu et al. (2022)[74] change in global and regional O3

concentration and sensitivity to emission change under future climate conditions were

investigated. To this aim, the UKESM1 model was used to simulate the O3 concentration

during the past (2004–2014) and future (2045–2055) periods. Three future period

simulations were conducted using CMIP6 data and based on the SSP3-7.0 scenario, reduced

methane SSP3-7.0 scenario, and reduced NOx and VOC emissions SSP3-7.0 scenario. While

the results indicate a rise of 4% in O3 level under the SSP3-7.0 scenario, a reduction of
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7% and 5% was predicted under the reduced NOx and VOC scenario and reduced methane

scenario, respectively.

Extreme O3 events in California under climate change conditions by the mid-21st century

were studied by Wilson et al. (2022)[75]. Based on the extreme-value theory and using a

combination of O3 measuring stations and CMAQ model outputs a model was developed

to predict extreme O3 events. For the reference period, 10 years of air quality simulation

were conducted by CMAQ with a grid size of 12 km, using inputs from CMIP5 data. The

results show an underprediction of O3 concentration by the CMAQ model compared with the

station data. Hence, the grided CMAQ predictions were calibrated using the O3 monitoring

station data. The extreme value model was trained using both observational data and the

results of the CMAQ model. The outputs from the extreme value theory approach were used

to calculate the number of days with extreme O3 events, under climate change conditions

(RCP4.5 scenario). The results show an increase in the frequency of days with high O3

levels under future climate conditions.

Nguyen et al.(2022)[76] studied the mortality rate associated with climate change-induced

air pollution in Southeast Asia. While the baseline simulation included the present period

meteorology and emissions data, the present emissions and future period meteorological

data (under RCP4.5 and RCP8.5) were used for the analysis of the climate change impact

on air pollution. Moreover, two simulations were conducted using the future meteorology

and future emissions (ECLIPSE) to study the projected emissions impact on future period

air quality. In meteorological simulations of the present period, FNL data were used as

the model input, and in the simulations of the future period, the CMIP5 CESM outputs

were employed as the input. To simulate the air quality WRF-CMAQ modelling system

was used, and the BenMAP-CE tool was employed to predict the adverse health impacts

of pollution. The results show a decrease in mortality under RCP4.5 and future emission

scenarios and an increase under the other scenarios. The higher air pollution-related mortality

rate of the dry seasons could be deduced from the results. Moreover, the results indicate that

the contribution of PM2.5 to the mortality rate is higher than the O3.

35



Wang et al. (2022)[77] simulated MDA8 O3 over the southeast US using the WRF/Chem

model. One week of each summer from 2016 to 2018 was chosen for the simulation. Instead

of the single data, the ensemble meteorological inputs were used to feed the model. The

average of twenty-four perturbed ensemble members was calculated to get the ensemble

inputs. Moreover, the NEI inventory and the BEIS model were used to generate the

anthropogenic and biogenic emissions, respectively. The study results indicate an increase

of a minimum 66.7% in MDA8 prediction performance by the ensemble meteorological data

than the single model simulations.

The effect of biogenic emissions on tropospheric O3 was studied by Lou et al. (2023)[78].

The meteorological conditions, biogenic emissions, and O3 simulations were conducted by

the WRF model, MEGAN model, and CMAQ model, respectively. Despite the short lifetime

of isoprene in the atmosphere, the results indicate that isoprene contributes significantly to O3

formation. This finding shows the necessity of biogenic emissions simulation in forecasting

of tropospheric O3.

Zhang et al. (2023)[79] studied the ground-level O3 pollution sources in Beijing using the

WRF-CMAQ modeling system. The input FNL data (NCEP) were downscaled by two nested

domains with grid sizes of 36 and 12 km. The initial and boundary conditions of the outer

domain were provided by the profile data. The CRAES and MEIC emissions inventories

were preprocessed using the SMOKE model to provide anthropogenic emissions data. The

results showed that titration by NO and gas-phase chemistry are the main chemical removal

mechanism of O3 in the ground-level and upper layers, respectively. Moreover, in the outer

urban areas, the dry deposition mechanism is the main O3 removal mechanism as well as

the horizontal advection. Vertical diffusion and gas-phase chemistry are the major sources

of O3 formation in these areas. The gas-phase chemistry is also the major contributor to

O3 formation in the inner urban area. The presence of mountainous regions causes an

accumulation of pollutants in the suburban area and contributes to O3 concentration.

A summary of the described studies is given in Table 3.1.
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Table 3.1 Summary of O3 forecasting studies conducted by the deterministic models

Reference Pollutant Simulation Climate Model Emission Air Quality Model Domain Scenario
Type Global Initial Regional Model Global Initial Regional Resolution

Manders et al.
(2012)[43]

O3, PM Future ECHAM5,
MIROC-hires

RACMO2 MACC LOTOS-EUROS 0.44◦ A1B

Hedegaard et
al. (2013)[44]

O3 Future ECHAM5 GEIA,
RCP

DEHM 0.5◦ RCP4.5

Markakis et
al. (2014)[7]

O3, PM Future IPSL-CM5A-MR WRF AIRPARIF,
MIT/REF

LMDz-INCA CHIMERE 4 km RCP2.6,
RCP8.5

Markakis et
al. (2015)[46]

O3, PM Future IPSL-CM5A-MR WRF ECLIPSE LMDz-INCA CHIMERE 4 km RCP4.5

Gupta&Mohan
(2015)[17]

O3 Past NCEP WRF EDGAR Mozart-4 WRF/Chem 3 km

San José et al.
(2016)[47]

O3 Future CESM WRF,
CALMET

TNO
MACC,
MEGAN

CMAQ 0.2 km RCP4.5,
RCP8.5

Markakis et
al. (2016)[48]

O3, PM Future IPSL-CM5A-MR,
EC-EARTH

WRF, RCA4 AIRPARIF,
ARTEMIS

LMDz-INCA CHIMERE,
MATCH

4 km RCP4.5

Kalabokas et
al. (2017)[49]

O3 Episode ECMWF EMEP CHIMERE 0.25◦

Ojha et al.
(2017)[50]

O3 Episode EMAC EMAC 2.8◦

Ni et al.
(2018)[51]

O3 Episode NCEP WRF MEIC,
MEGAN

MOZART WRF/Chem 6 km

Nolte et al.
(2018)[52]

O3, PM Future CESM WRF Profile,
BEIS

GEOS-Chem CMAQ 36 km RCP4.5,
RCP6.0,
RCP8.5

Chen et al.
(2018)[53]

O3 Episode WRF MEIC,
MEGAN

MOZART4-
GEOS5

CMAQ 27 km

Georgiou et
al. (2018)[54]

O3 Episode NCEP WRF EDGAR,
MEGAN

MOZART-4 WRF/Chem 4 km

Lopez-Muñoz
et al.
(2018)[56]

O3 Episode NCEP WRF EDGAR,
MEGAN

CHIMERE 3 km

Lee et al.
(2019)[57]

O3 Episode NCEP MEGAN,
EDGAR,
MICS-Asia,
GFED4

GEOS-Chem 2.0◦

×
2.5◦

Liu et al.
(2019)[58]

O3 Episode Reanalysis
dataset

RAMS MEIC CMAQ 16 km

Feng et al.
(2019)[59]

O3 Past NCEP WRF MEIC,
MEGAN

CMAQ 4 km

Qin et al.
(2019)[60]

O3 Past NAM-12 WRF NEI,
BEIS,
MEGAN

Profile CMAQ 4 km

Lyu et al.
(2019) [61]

O3 Episode WRF MEIC,
INTEX-B,
MEGAN

CMAQ 12 km

Kong et al.,
(2019)[62]

O3 Future CESM WRF MICS-Asia CMAQ 15 km RCP4.5,
RCP8.5

Yang et al.
(2020)[63]

O3 Episode WRF MEIC,
MEGAN

CMAQ 3 km

Shu et al.
(2020)[65]

O3 Episode NCEP MEIC CMAx 9 km

Schuch et al.
(2020)[66]

O3, PM Episode NCEP WRF ECLIPSE WRF/Chem 9 km

Moghani et al.
(2020)[67]

O3 Future CESM WRF NEI GEOS-Chem CMAx 12 km RCP8.5

Gadzhev et al.
(2021)[68]

AQI Past NCEP WRF TNO Profile CMAQ 1 km
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Table 3.1 Summary of O3 forecasting studies conducted by the deterministic models (continued)

Reference Pollutant Simulation Climate Model Emission Air Quality Model Domain Scenario
Type Global Initial Regional Model Global Initial Regional Resolution

Coelho et al.
(2021)[69]

O3, PM Future MPI-ESM-LR WRF EMEP Mozart CMAx 25 km RCP8.5

Cheng et al.
(2021)[70]

PM Past NCEP WRF MICS-Asia,
TEDS-9.0,
MEGAN

CMAQ 3 km

Nguyen et
al.(2022)[76]

O3, PM Future NCEP, CESM WRF ECLIPSE CMAQ 24 km RCP4.5,
RCP8.5

Wang et al.
(2022)[77]

O3 Past SREF WRF NEI,
BEIS

MOZART-4 WRF/Chem 12 km

Zhang et al.
(2023)[79]

O3 Past NCEP WRF CRAES,
MEIC

Profile CMAQ 12 km

3.2. Near-Future Air Quality Forecasting

The higher prediction performance of deep learning models than that of deterministic models

is reported in some studies [80–82]. As an example, the performance of WRF-CMAQ and

some machine learning models in O3 forecasting was compared by Feng et al. (2019)[81].

Random forest (RF), extreme learning machine (ELM), and multi-layer perceptron (MLP)

were employed as machine learning models. The simulation findings show that the RF and

MLP models outperform the WRF-CMAQ model. The linearity assumption of the ELM

model was the cause of the underperformance of the model.

It has been demonstrated that the MLP model performs reasonably in several air quality

prediction studies [83–89]. MLP outperformed the radial basis function (RBF) model in the

prediction of ground-level O3 concentration [90]. Some other machine learning methods

have also been used successfully in atmospheric pollution forecasting. In a study conducted

by Song et al. (2019)[91], the AQI of Wuhan city was predicted using the principal

component regression (PCR) model. The model was capable of forecasting AQI at the

station level, and the findings indicate a significant role of weather data on model prediction

accuracy. The KELM and SVR models also showed a good performance in O3 forecasting

[92]. The SVR model is widely used in forecasting atmospheric pollution [93–97]

Jumin et al. (2020)[98] research findings show a higher performance of the boosted decision

tree (BDTR) model in O3 forecasting than that of the linear regression (LR) and ANN

models. Due to the linearity assumption of the LR model, it had the worst prediction
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performance. Several machine learning models, including SVR, Tweedie regression (TR),

gradient boosting regression (GBR), Bayesian ridge regression (BRR), k-nearest neighbors

(KNN), and random forest regression (RFR), were applied by Plocoste and Laventure

(2023)[99] to forecast the PM10 concentration. The models were trained using temperature

and daily total precipitation data. According to the simulation results, the GBR model

outperformed the other models, however, there are varying degrees of underestimation in

the models’ predictions.

The complex architecture of deep models increases understanding of the non-linear patterns

and time-depending variation in the target variable. A CNN-LSTM was used by Pak et

al. (2018)[100] for O3 forecasting in Beijing. They designed four architectures using the

CNN and LSTM models, including CNN-Pooling-LSTM-LSTM, CNN-LSTM-LSTM,

and CNN-Pooling-LSTM, CNN-LSTM. The CNN-Pooling-LSTM-LSTM and

CNN-LSTM-LSTM models were the best and worst-performing models. Moreover,

the CNN-Pooling-LSTM-LSTM model had a higher forecasting accuracy than the baseline

models (i.e. LSTM and MLP).

Freeman et al. (2018)[101] applied a decision tree algorithm on LSTM model inputs for

feature selection, in a O3 forecasting study. The feature selection algorithm was applied to

minimize the dimensions of input parameters. The effectiveness of the proposed approach

was shown by comparing the model prediction performance with the performance of the

feed-forward neural network (FFNN) and the autoregressive integrated moving average

(ARIMA) models. The CNN model has been successfully applied in real-time forecasting

of O3 by Eslami et al. (2019)[102]. To make a comparison, the ANN, LSTM, MLP, and

stacked autoencoder (SAE) models were chosen as the baseline models. The results showed

that the highest IOA and lowest MAE values belonged to the proposed CNN model. A similar

result was reported by Sayeed et al, (2020)[103] in a study conducting a CNN model for O3

forecasting. The proposed CNN model consisted of a five-layer architecture, and the MLP,

lasso regression, ridge regression, and gated recurrent unit (GRU) models were chosen as the

baseline models. The study findings indicate that the highest IOA was associated with the
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proposed CNN model, however, the daily maximum O3 concentration was underpredicted

by all of the models.

The high capability of the LSTM model in time series data forecasting is associated with

the model capacity in solving the vanishing gradient problems [104]. In a study conducted

by Liu et al. (2020)[105], a wind-sensitive LSTM model was applied to forecast PM2.5

concentration. According to the results, the proposed approach improved the prediction

accuracy of the model. Chang et al. (2020)[106] proposed an aggregated LSTM model to

forecast the concentration of PM2.5. The proposed model aggregates the input data from

different monitoring stations, including industrial, local, and external stations. To examine

the effectiveness of the proposed approach conventional LSTM, GBTR, and SVR models

were used as the baseline models. The simulation outputs show the reasonable capacity of

the proposed model in learning the weight of station types in PM2.5 concentration.

To make a comprehensive prediction of air quality, the LSTM model was successfully

applied by Navares and Aznarte (2020)[107]. In general, AI-based air quality prediction

models use multiple executions to make station-scale forecasts. This approach proposes

a comprehensive model to enforce the model to learn the effect of the spatial coordinate

on pollutant concentration. Accordingly, four LSTM-based architectures were proposed

to learn the spatiotemporal dependencies between the stations. The simulation results

indicate the positive effect of the suggested approach on the prediction performance. A

semi-supervised BiLSTM model was proposed by Zhang et al. (2021)[108] to predict

the PM2.5 concentration. Comparing the proposed model results with that of the baseline

LSTM model, lower error rates (MAPE, MAE, RMSE, and R2) of the proposed model were

illustrated.

A real-time O3 forecasting model was developed by Jia et al. (2021)[82] using the

sequence-to-sequence model. As well as the meteorological parameters, the hourly

concentrations of NO2, O3, PM2.5, SO2, CO, and PM10 were used for the training and

testing of the model. The model forecasts the future 6 hours based on the last 24 hours’

input data. The data were initially encoded to a GRU layer, while the weights were
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applied to the data by an attention mechanism. Moreover, WRF-Chem was employed as a

benchmark model, to assess the prediction performance of the sequence-to-sequence model.

The evaluation results show a satisfactory and stable performance of the model in predicting

O3 concentration. Zhao et al. (2023)[109] studied the O3 prediction using a backpropagation

(BP) model. The proposed model was optimized by a genetic algorithm and was trained

by the meteorological fields. The evaluation results indicate that the mean relative error

of the proposed algorithm-optimized backpropagation model was smaller than that of the

benchmark models, including the LSTM, multiple linear regression, and BP models. An

algorithm was proposed by Dai et al. (2022) [110] to forecast haze events. The proposed

algorithm (PCA-MEE-ISPO-LightGBM) uses the annual concentration of some atmospheric

pollutants as input. Besides the air pollution data, some socioeconomic, urban, and health

services data were employed during the model training and testing. Five different models

were developed to predict the risk associated with the five different emergent hazards of

haze events. The evaluation findings indicate a satisfactory performance of the models in

forecasting the hazard categories.

In some studies, to use the advantages of deterministic and statistical modeling approaches,

the hybrid of both approaches has been used for prediction. For instance, Nabavi et al.

(2021)[111] used an eXtreme Gradient Boosting Machines (XGBM) model and CAMS-EU

model outputs to forecast O3 concentration. The data from air quality monitoring stations,

meteorology stations, and satellite data were used to train and test the model. The

simulation results indicated the better prediction performance of the proposed model in

comparison with the baseline and regional CTM models. In a study conducted by Sayeed

et al. (2022)[112], the WRF-CMAQ outputs were used as inputs for the CNN model to

predict ozone concentration. The results indicate that the proposed post-processing method

improved the prediction performance. A hybrid CNN-LSTM was applied by Kim et al.

(2022)[113] to predict PM2.5 concentration. Predictions of the global forecast system were

used as well as the air quality monitoring stations data, to train and test the proposed model.

The evaluation results indicated that the proposed model outperformed the baseline CMAQ

model.
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4. MATERIALS AND METHODS

4.1. Study of the Climate Change Impact on Tropospheric Ozone

4.1.1. Meteorological Simulation

4.1.1.1. Study Area

To determine the geographical extent of the study area the WRF Domain Wizard5 tool was

used. Three nested domains as Europe, Turkey, and Marmara were defined, with spatial

resolutions of 36 km, 12 km, and 4 km, respectively (Fig. 4.1). The ratio of spatial

downscaling was adjusted to 1 : 3, which means that the spatial resolution of a grid in a

child domain is 9 times that of its parent domain. As previously stated, the spatial resolution

of the innermost domain (i.e. Marmara domain) is 4 km, which is a common resolution in

air quality modeling studies.

Figure 4.1 Study area (D01: Europe domain, D02: Turkey domain, D03: Marmara domain)

Details of the geographical coordinate system of the defined domains are given in Table 4.1.

5https://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html, accessed on December
21, 2022.
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Table 4.1 Geographical coordinate system of the selected domains

Domains
Europe Turkey Marmara

West-east dimension 127 175 97
South-north dimension 93 97 82
Column number of the LLC∗ 1 65 11
Row number of the LLC 1 5 40

Projection Lambert Conformal Conic
Reference latitude 49
Reference longitude 24
First true latitude 30
Second true latitude 60
Standard longitude 24
∗LLC: Lower Left Corner

4.1.1.2. Global Climate Data

In the dynamical downscaling approach, the regional climate model (RCM) takes the

initial and boundary conditions from a general circulation model (GCM). A number of

organizations provide global meteorological data, generated by the GCMs, that spans the

past, future, or both periods. The World Climate Research Programme (WCRP) is one of

those organizations that produces the Coupled Model Intercomparison Project (CMIP) data.

The first phase of CMIP was released in the mid-1990s, and the most recent phase, CMIP6,

was released in 2016 [114]. CMIP6 includes historical hindcasts (1979–2014) besides the

future scenarios (2015–2100) with 1.25◦×1.25◦ spatial resolution and six-hour temporal

resolution. A combination of the shared socioeconomic pathways and radiative forcing

constitutes the CMIP6 future scenarios (Fig. 4.2 [115]). There are eight scenarios in CMIP6

data, which have been categorized into Tier 1 and Tier 2 groups. Tier 1 scenarios have the

higher priority and are regarded as the core scenarios. The SSP2-4.5 and SSP5-8.5 scenarios

of the CMIP6 data are used in this study. The SSP2-4.5 scenario consists of medium social

sensitivity and moderate radiative forcing conditions. The SSP5-8.5 scenario represents high

social sensitivity and high anthropogenic radiative forcing.

The CMIP6 data were analyzed and compared with the former version (CMIP5) for

Turkey by Bagçaci et al. (2021) [116]. They compared the precipitation and near-surface

temperature data from the CMIP5 and CMIP6 with ERA5 outputs. The results show a higher
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Figure 4.2 Combinations of SSP-RCP scenarios (O’Neill et al. (2016), Fig. 2)

performance of the CMIP6 data than the CMIP5 in predicting the historical temperature.

CMIP6 data predicts a warmer annual near-surface temperature relative to CMIP5, over

Turkey. Moreover, the CMIP6 data show a lower rate of precipitation decline than the

CMIP5 data. In another study, Carvalho et al. (2021) [117] used the CMIP6 data to analyze

the future temperature over Europe. The analysis results indicate that the SSP2-4.5 and

SSP5-8.5 scenarios cause a significant rise in average temperature over Europe. They report

a strong increase in frequency of days with high temperatures under future scenarios in some

countries, including Turkey.

As already stated, regional climate models take the initial and boundary conditions from

GCMs, although, the GCM outputs include considerable biases. These biases are caused

by a variety of factors, including model prediction capabilities, the coarse resolution

of the grids, uncertainty in future emission scenarios, and others. To handle the bias

issue in GCM outputs several methods, including mean bias correction, GCM mean and

variance bias corrections, trend-preserving bias correction, quantile-quantile correction,

nested bias correction and multi-model ensemble (MME) mean-based bias correction has

been developed [118]. However, each correction method has its own limitations. Xu et

al., (2021) [118] constructed a bias-corrected CMIP6 dataset using a novel bias correction
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method. They used 18 CMIP6 models (Table 4.2) to make ensemble datasets for historical

(1979–2014) and future (2015–2100) periods.

Table 4.2 Models included in the bias-corrected CMIP6 dataset

In this study, the meteorological parameters from the bias-corrected CMIP6 data [118] were

employed as input of the regional climate model. Due to the availability of O3 measurement

data and historical (reanalyzed) CMIP6 data (up to the end of 2014), the selection of the

reference year is confined to the 2010-2014 years. To avoid choosing past and future years

with extreme temperature values, the daily average surface temperature of the Marmara

domain was determined using the CMIP6 data. For the simulation, the year with the average

temperature that was closest to the average temperature of the investigated years was chosen.

Table 4.3 shows the average summertime temperature of the Marmara domain during the

investigated past (2010-2014) and future (2050-2055) years.

Table 4.3 Summertime mean temperature (K) of the Marmara domain

Years (past) 2010 2011 2012 2013 2014 Total Mean
Mean 298.93 295.72 297.53 296.39 298.37 297.39

Years (future) 2050 2051 2052 2053 2054 2055 Total Mean
Mean (SSP2-4.5) 299.55 300.29 298.78 299.07 299.85 297.37 299.15
Mean (SSP5-8.5) 301.15 299.41 299.33 300.73 299.57 299.95 300.02

Considering the results presented in Table 4.3, the years 2012 and 2053 were selected as

the past and future periods. The original CMIP6 data had been converted to the intermediate

format prior to the data assimilation. Figure 4.3 represents the Marmara domain’s daily mean

surface temperature during 2012 and 2053 (under SSP2-4.5 and SSP5-8.5 scenarios).

4.1.1.3. Regional Climate Model

To simulate the meteorological conditions of the past (2012) and future (2053) summer
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Figure 4.3 Daily mean surface temperature of past and future periods

periods (June, July, and August), the bias-corrected CMIP6 data of 2012 and 2053

under SSP2-4.5 and SSP5-8.5 scenarios were used. To downscale the data the Weather

Research and Forecasting (WRF) model version 4.1.1 was used. WRF is a mesoscale

numerical atmospheric research and operational forecasting model. The process of the

model development has begun in the 1990s in collaboration with the National Center for

Atmospheric Research (NCAR), the National Oceanic and Atmospheric Administration

(NOAA), the U.S. Air Force, the Naval Research Laboratory, the University of Oklahoma,
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and the Federal Aviation Administration (FAA).

The WRF model process includes preprocessing (WPS) and the main modeling (WRF)

phases (Fig. 4.4 [119]). The WPS process uses three programs, including geogrid, ungrib,

and metgrid to prepare the input data (climate and static geographical data) for the main

simulation program. To create the geographical inputs (soil type, soil temperature, albedo,

etc.) for each domain, the geogrid program uses the WPS GEOG input file (29 GB), and

the data of domains’ map projection and geographical locations from the namelist. The

process generates a file named geo em for each domain in the network common data format

(NetCDF). The ungrib program converts the input climate data into the intermediate format.

As aforementioned in Section 4.1.1.2., the CMIP6 data were converted to the intermediate

format prior to the use in the WRF model. Therefore, it is not necessary to conduct the ungrib

program. The final program in the WPS process is metgrid. This program interpolates the

intermediate data horizontally within the domain boundaries, which are available in geogrid

outputs.

geogridWPS_GEOG

SST, FILE
data

Convert to 
intermediate 

file format
(Fortran code)

CMIP6 data

metgrid

geo_em.nc

met_em*.nc real

wrfinput

wrfbdy

wrfdda

wrf

Output

WRF Preprocessing System (WPS) WRF Model

Process

Input/Output

Figure 4.4 WRF modeling process scheme (based on Wang et al. (2012), Fig. 3.1.)

The outputs from the metgrid program should be vertically interpolated by the real program

before running the main wrf program. For each domain, the program creates WRF boundary

files, nudging option files, and other wrf program inputs. The main wrf program processes

these files to downscale the global climate data both spatially and temporally using some

physical mechanisms. As mentioned in Section 4.1.1.1., the ratio of spatial downscaling was

adjusted to 1 : 3. The model’s outputs for the innermost domain (i.e. Marmara domain)
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have a horizontal resolution of 4 km, 1-hour temporal resolution, and 34 Eta levels. Table

4.4 shows the main physical parameterizations applied in this study.

Table 4.4 WRF physics schemes applied in this study

Physics parameter Applied scheme
Microphysics WRF Single–moment 6–class Scheme [120]
Shortwave radiation RRTMG Shortwave and Longwave Schemes [121]
Longwave radiation RRTMG Shortwave and Longwave Schemes
Land surface Unified Noah Land Surface Model [122]
PBL Mellor–Yamada–Janjic Scheme [123]
Cumulus parameterization Kain–Fritsch Scheme [124]
Surface layer Eta Similarity Scheme

The model generates a separate file for each day of the simulation period, with the first five

days’ outputs being discarded as they were considered as the spin-up period. However, these

files could not be directly assimilated by the CMAQ model. They must be processed by the

Meteorology-Chemistry Interface Processor (MCIP) to convert the format of the data to the

Models-3 I/O API format [125] (Fig. 4.7). Moreover, MCIP creates extra meteorological

fields which are not included in the WRF outputs using scientific algorithms. The process

also defines the computational domain to be used by the CCTM, extracts and processes the

meteorological fields on the computational domain, and generates files containing geospatial

information for the CCTM.

4.1.2. Emissions Data

As this study aimed to investigate the climate change impact on tropospheric O3 level, we

performed the past and future simulations under the same conditions, with the exception of

the weather data. In this context, the anthropogenic and biogenic emissions from 2012 were

employed for both time periods.

The emission inputs of the CMAQ model were provided by the anthropogenic and biogenic

emissions. The daily biogenic and anthropogenic files generated during the simulation of

the biogenic and anthropogenic emissions were combined to create a single emission file for

each day, using a Python script. The steps involved in emission simulations are thoroughly

explained in the sections that follow.
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4.1.2.1. Anthropogenic Emissions

In this study, the anthropogenic emissions of the Europe, Turkey, and Marmara domains were

provided by the European Monitoring and Evaluation Programme/European Environment

Agency (EMEP/EEA) inventory. The inventory has been released by the Center on Emission

Inventories and Projections (CEIP) in spatial resolution of 0.1◦×0.1◦ and the WGS84

geographical coordinate system. The EMEP inventory comprises gridded annual total

concentrations of CO, SOx, NOx, NMVOC, PM10, PM2.5, PMcoarse, and NH3 covering

entire European continent in 13 sectors. These sectors include agricultural livestock,

agricultural other, aviation, fugitive, industry, offroad, other stationary combustion, public

power, road transport, shipping, solvents, waste, and other sectors.

The emission inventory of 2012 was downloaded from the CEIP website6 and was processed

through the emission processing (EPROC). The preprocessing step consists of a series of

functions (in the Python environment) that regrids the pollutant inventory data, performs the

speciation on pollutant data, distributes the species concentrations vertically and temporally,

and calculates the total concentrations of species from the sector-based concentration. The

process uses the MCIP outputs to perform the mentioned operations on the pollutant data

and calculate hourly concentrations of species.

4.1.2.2. Biogenic Emissions

The MEGAN model could be installed and executed in the Linux/Unix operating system.

C-shell/Bash scripting language, FORTRAN 90 compiler, NetCDF=>3.6.0, IOAPI3.1, and

MCIP3.6 are the other requirements of the model. The model codes and input data are

available on the Biosphere-Atmosphere Interactions Group of the University of California,

Irvine website7. The model input data includes (1) land cover data (leaf area index of

vegetation-covered surfaces (LAIv), growth form, and ecotype), (2) soil nitrogen emission

data (if soil nitrogen emission is needed), and (3) weather data (MCIP output). The spatial

resolution of MEGAN inputs is given in Table 4.5.

6https://www.ceip.at/the-emep-grid/gridded-emissions, accessed on 05 Jan. 2023.
7https://bai.ess.uci.edu/megan/data-and-code, accessed on 06 Jan. 2023.
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Table 4.5 The spatial resolution of MEGAN inputs

Data type File name Resolution
(deg.)

Data type File name Resolution
(deg.)

Growth form

GF3aCrop 0.01

Soil NO

soil climate arid 0.5
GF3aGrass 0.01 soil climate non arid 0.5
GF3aShurb 0.01 soil fert 0.5
GF3aTree 0.01 soil land type 0.25
NTfrac 0.01 soil nitrogen 1.25
Tropfrac 0.01 Ecotype EVT3b 0.01

The Biosphere-Atmosphere Interactions Group website also provides access to the global

LAIv data, however, that data is only available for 2003. The most recent versions of the

data only cover the USA. The model developers suggest generating LAIv data using the

Global Land Surface Satellite (GLASS) product of MODIS8 or Copernicus Global Land

Service data9 if the input LAIv files are not available. In this study, as the 2012 data is only

available on the MODIS GLASS products, this dataset was utilized to make the LAIv files.

The GLASS suite includes 14 products that were created using the AVHRR and MODIS

data [126]. From these products, leaf area index (LAI) and fractional vegetation coverage

(FVC) products were employed in this study. To generate the LAI and FVC products,

the bidirectional long short-term memory (Bi-LSTM) and multivariate adaptive regression

splines (MARS) models were used, respectively. The data has been released at 8-day

temporal resolution in the hierarchical data format (HDF). The ground measurements have

demonstrated the high accuracy of GLASS products [126–128]. Figure 4.5 shows the

mosaics of the GLASS LAI and FVC products as examples.

To make the LAIv files, firstly LAI and FVC files of the desired temporal and geographic

scope were obtained from the University of Maryland website10 in 500m spatial resolution.

As the MEGAN was planned to be applied for the innermost domain (Marmara domain)

only, data tiles with the horizontal numbers 19 and 20, and the vertical numbers 4 and 5

were downloaded (i.e. four tiles for each time step). In the second step, a Python script was

8http://www.glass.umd.edu/Download.html, accessed on 06 Jan. 2023.
9https://land.copernicus.eu/global/products/lai, accessed on 06 Jan. 2023.

10http://www.glass.umd.edu/Download.html, accessed on 06 Jan. 2023.
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Figure 4.5 Examples of the mosaic of LAI (left) and FVC (right) tiles from the
GLASS products, 01 June 2012 (Sinusoidal projection)

written to calculate grid-wise LAIv values using the GLASS products and make input files

for the MEGAN. The script generates NetCDF files containing LAIv values in EPSG 4326

projection. Equation 2 was used to calculate the LAIv parameter. The equation gives the leaf

area (m2) per 10 m2 of the surface area.

LAIv(m2/10m2) =
LAI

FV C
× 10 (2)

The MEGAN modeling process has three steps (Figure 4.6) including :

1. Pre-processing of the input data

2. Emission factor processing

3. Emission rate calculation.

The pre-processing step regrids the input files (LAIv, cantype, ecotype, etc.) and converts

the file format from HDF to CSV. The process uses the GRIDDESC file from MCIP outputs

to define the projection and grid structure of the input data. In this step, Fortran codes are

used to perform the necessary conversions on each data. The original make files use Portland

Group Inc. (PGI) or Intel Fortran compilers to compile the Fortran codes (programs). In

this study, the GFortran compiler is utilized for compiling the programs, which caused some
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challenges during the compilation. To solve the issues, the existing flag options were replaced

by the equivalent options of the GFortran compiler.

Figure 4.6 MEGAN modeling process scheme

Preprocessed growth form, ecotype, and four species composition files were used as input

data in emission factor processing. The model developer provided the species composition

files in the input directory. A Python script was used to generate a CSV file containing

vegetation-specific emission factors and light dependence factors of each grid.

Calculating the emission rates is the final step in the biogenic emissions simulation processes.

In this step, Fortran scripts (TXT2IOAPI, MET2MGN, DAYMET, MEGCAN, MEGSEA,

MEGVEA, and MGN2MECH) use output files from the preprocessing and emission factor

processing steps as well as outputs of the MCIP process. TXT2IOAPI and MET2MGN

prepare the input files to use in emission calculation. TXT2IOAPI converts the CSV

output files of the preprocessing and emission factor processing steps to NetCDF format.

MET2MGN converts the data format of MCIP outputs into the MEGAN format, and the daily

average of MET2MGN output files is taken by the DAYMET program. In continuation of the

emission calculation process, the soil moisture activity factor is calculated by the MEGSEA

program. MEGCAN program generates within-canopy meteorology data from MET2MGN

outputs. MEGVEA program executes the main MEGAN model and it calculates emission

activity factors. The last program (MGN2MECH) converts the species from MEGAN to
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other chemical mechanisms. In this study, the Carbon Bond 6 (CB6X) mechanism was

chosen as the chemical mechanism.

4.1.3. Air Quality Simulation

The final air quality simulations of the past and future periods were conducted using the

Community Multi-scale Air Quality model (CMAQ). CMAQ is a public three-dimensional

Eulerian atmospheric chemistry and transport model developed by the U.S. EPA. The model

uses the “one-atmosphere” approach, meaning that the model considers the interactions

between different pollutants at different scales. As an Eulerian model, the CMAQ

model uses the mass conservation principle to calculate the pollutant concentration in a

three-dimensional gridded space. The model applies a mass balance equation for each grid,

considering the source and sink mechanisms of different species. The main mechanisms that

impact the species concentration inside a grid are (1) source emissions, (2) production or loss

through the chemical transformation, (3) transport by advection (long-range) and diffusion

(short-range), and (4) dry and wet deposition. Equation 3 shows the mathematical expression

of the above-mentioned mechanisms’ impact on species’ concentration in a grid [129].

∂C

∂t
= Adv +Diff +Rc + EcSc (3)

where, ∂C
∂t

represents the change in concentration over time, Adv represents the advection,

Diff represents the diffusion, Rc represents the chemical transformation of species c, and

EcSc represents the emissions and losses of species c.

CMAQ modeling system consists of several programs (Figure 4.7) including:

• the meteorology-chemistry interface processor (MCIP),

• initial conditions processor (ICON),

• boundary conditions processor (BCON),
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• and CMAQ chemistry-transport model (CCTM).

MCIP

GRIDCRO

GRIDDOT

GRIDBDY

METCRO

METBDY

METDOT

SOI_CRO

LUFRAC

MEGAN

Output

Emission
Processing

CCTM

GRIDDESC

ICON

BCON

OutputWRFOUT

MCIP Outputs

Process

Input/Output

Figure 4.7 CMAQ modeling process scheme

The meteorology-chemistry interface processor (MCIP) is described in the last paragraph of

Section 4.1.1.3.. MCIP program, in general, prepares outputs of the WRF model to be used

by the CMAQ processors. The CCTM model uses a numerical approach in the estimation

of species concentrations in each grid. To start the numerical calculation, the model needs

initial chemical conditions, which represent the species concentrations in the first hour of

the simulation. The ICON processor generates a NetCDF file containing the gridded species

concentrations for each domain. To this end, the ICON processor could use the outputs

from either a global CTM, a vertically resolved concentration profile, or CCTM outputs of

the mother domain (for inner domains) as input. In this study, the profile data was used

to generate the initial chemical conditions of the Europe domain (D01), the CCTM outputs

of the Europe domain were used to generate the initial chemical conditions of the Turkey

domain (D02), and finally, the CCTM outputs of the Turkey domain were used to generate

the initial chemical conditions of the Marmara domain (D03). The profile data included the

concentrations of 248 chemical compounds in 44 vertical layers.

The BCON processor defines the boundary chemical conditions for CCTM. The processor

generates a NetCDF file for each time step of the simulation period, containing gridded
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species concentrations for cells along the horizontal boundaries of the domain. As same

as the ICON processor, the BCON processor could use input files from a global CTM, a

vertically resolved profile, or CCTM outputs of the mother domain to generate the boundary

conditions files. The boundary chemical conditions of the outermost domain (Europe

domain, D01) were generated using the profile data. Moreover, the CCTM outputs of the

mother domain were used to generate the boundary conditions of the inner domains (Turkey

and Marmara domains).

CCTM is the final and main program of the CMAQ modeling system. The CCTM

version 5.3.211 was employed in air quality forecasting, in this study. The CCTM program

uses some chemical mechanisms to simulate the species’ concentrations throughout the

modeling domains. The gas phase and aerosol mechanisms are the most important chemical

mechanisms. In this study, the “cb6r3 ae7 aq” mechanism was used which included the

carbon bond mechanism version 6 (CB6) [130] and CMAQ aerosol module version 7

(AERO7)12.

4.2. Study of the Climate Change Impact on Biogenic Emissions

As mentioned in Section 4.1.2., O3 simulations of the past and future periods were conducted

using the same emissions. The only difference between the simulations was the climate

inputs. Consequently, we only performed the biogenic (and anthropogenic) emissions

simulation using the past period’s climate conditions. In this section, we aimed to investigate

the climate change impact on biogenic emissions. To this end, the WRF outputs of the past

and future (SSP2-4.5 and SSP5-8.5 scenarios) periods were processed by the MCIP program,

and the MCIP outputs were used to simulate the biogenic emissions under different climate

conditions. Figure 4.8 illustrates a schematic view of the simulation of climate change’s

impact on biogenic emissions. With this approach, the climate change impact on biogenic

11https://github.com/USEPA/CMAQ/blob/5.3.2/DOCS/Users_Guide/README.md,
accessed on 12 February 2023.

12https://github.com/USEPA/CMAQ/blob/main/CCTM/src/MECHS/mechanism_
information/cb6r3_ae7_aq/mech_cb6r3_ae7_aq.md, accessed on 12 February 2023.
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emissions was demonstrated. As the details of the climate and biogenic emission simulations

are described in Sections 4.1.1.3. and 4.1.2.2., they have not been repeated in this section.

Figure 4.8 The schematic view of the simulation process of climate change’s impact on biogenic
emissions.

4.3. Near-Future Forecasting of Tropospheric Ozone

This section provides methodological details of applying deep learning models for the

prediction of near-future O3.

Ground-level O3 synthesis and degradation are influenced by a number of chemical

processes, meteorological parameters, and spatiotemporal variables. The characteristics of

pollutant evolution patterns have not been taken into account in the majority of air quality

forecasting studies, which instead concentrate solely on the model architecture. In this

section, the temporal characteristics of O3 evolution phases were imposed on deep learning

models to improve the prediction performance of the model.

Temperature and sunlight are the environmental parameters that have the largest impact on

the O3 level because ground-level O3 synthesis is a light-dependent reaction. The synthesis,

stationary, and decomposition phases make up the daily ground-level O3 cycle. The temporal

pattern of tropospheric O3 evolution is shown in Figure 4.9. The diurnal O3 evolution

pattern of the monitoring stations’ data was examined to incorporate these properties into the

forecasting models. According to the results, each phase of daytime (synthesis, stationary,
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and decomposition) lasts about 4 hours, and evening and nighttime minimum periods are 12

hours long (a multiple of 4).

Figure 4.9 Theoretical daily O3 evolution pattern

With this setup, we aimed to improve the prediction performance of deep learning models by

assisting them in better understanding the change in the daily pattern of O3 concentration.

The main hypothesis behind the proposed approach is that setting the filter size based on the

diurnal O3 evolution phases helps the model to learn the pattern of change during successive

phases, which results in boosting the prediction performance of the model. Because O3

synthesis and degradation are slow processes, the ground-level O3 concentration gradually

changes over time [22, 131]. Additionally, because feeding the model with hourly-stride

data causes overlapping evolution phases, detecting O3 change will be more difficult. Deep

learning models were fed with multi-stride and not overlapped (stride size equal to kernel

size) samples as well as single-stride and maximum overlapped samples to illustrate the

effect of evolution phases’ overlapping on the model performance. When employing the

multi-stride configuration, the model can distinguish between the different phases of O3

evolution since it generates linear samples. Conversely, with the single-stride configuration,

overlapping the phases results in an increase in sample non-linearity.

4.3.1. Input Data

For train and testing the deep learning models, Istanbul air quality data over the course of

five years (2015–2019) were provided by the Turkish Ministry of Environment, Urbanisation,
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and Climate Change, including hourly NO2, NOx, and O3 concentrations. Only 8 of the 35

monitoring stations that were already in place had five years of O3 measurements. As a result,

the models were developed using these stations’ data. In addition, data on meteorological

parameters, including precipitation, temperature, relative humidity, pressure, wind speed and

direction, and solar radiation from five measurement stations were provided as model inputs.

Figure 4.10. shows the geographic locations of the air quality and meteorological monitoring

station.

Figure 4.10 The geographic locations of the stations whose data are used in
developing the proposed deep learning models.

The statistical overviews of the meteorological and air quality monitoring stations’ data are

presented in Tables 4.6 and 4.7. The missing values of input meteorological and air quality

datasets were treated. Three approaches are frequently used to deal with missing values:

(1) using mean values instead of the missing values or mean imputation, (2) removing data

lines with the missing values, and (3) and filling the missing data lines using interpolation.

Since the input data has a high temporal resolution, using the mean imputation technique

for missing value treatment results in filling the missing points with a constant value.

Considering the fact that in forecasting the time series data, the accuracy of the model is

highly sensitive to the gradual change in variable magnitude, this method negatively affects

forecasting accuracy. Applying the interpolation method is also problematic, especially

at both ends of the dataset, and it may lead to extrapolation. Applying the missing data

elimination is not also an appropriate solution, because this disturbs the sequential nature of

time series data.
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Table 4.6 Statistical summary of the air quality monitoring stations’ data

Station NO2

(µm3)
NOx

(µm3)
O3

(µm3)
Station NO2

(µm3)
NOx

(µm3)
O3

(µm3)

A
lib

ey
kö

y
(U

rb
an

)∗

Mean 45.583 100.627 22.802

B
aş

ak
şe

hi
r

(I
nd

us
tr

ia
l)

Mean 31.681 56.149 55.013
Std. 30.603 134.910 23.088 Std. 25.632 70.125 28.306
Q1∗∗ 25.900 30.400 4.000 Q1 14.376 19.265 34.245
Q2 39.000 56.400 15.400 Q2 23.740 33.124 57.900
Q3 57.290 109.900 34.200 Q3 40.734 60.993 75.680
Miss.(%)∗∗∗ 14.13 14.13 14.13 Miss.(%) 5.85 5.85 5.85

B
eş

ik
ta

ş
(T

ra
ffi

c)

Mean 73.898 182.003 27.330

E
se

ny
ur

t
(U

rb
an

)

Mean 25.762 88.345 35.030
Std. 35.057 127.797 17.759 Std. 17.922 116.479 26.203
Q1 48.600 88.900 12.900 Q1 12.850 30.631 13.743
Q2 68.200 145.869 24.000 Q2 21.250 53.107 32.100
Q3 92.588 241.900 39.000 Q3 34.335 93.976 51.130
Miss.(%) 7.67 7.67 7.67 Miss.(%) 5.45 5.45 5.45

K
ad

ık
öy

(U
rb

an
)

Mean 56.129 153.261 20.158

K
ağ

ıth
an

e
(U

rb
an

)

Mean 36.530 101.051 44.949
Std. 31.364 224.346 14.927 Std. 28.642 120.980 30.859
Q1 35.800 49.500 9.600 Q1 16.670 37.239 20.650
Q2 49.434 85.900 16.200 Q2 28.901 62.552 42.500
Q3 68.800 156.100 28.600 Q3 48.630 115.374 65.872
Miss.(%) 7.36 7.36 7.36 Miss.(%) 4.27 4.27 4.27

Su
lta

nb
ey

li
(U

rb
an

)

Mean 19.497 45.148 58.245

Su
lta

ng
az

i
(U

rb
an

-T
ra

ffi
c) Mean 35.068 75.146 35.329

Std. 20.942 75.336 33.931 Std. 22.142 81.717 23.783
Q1 4.802 8.059 30.800 Q1 20.610 33.527 14.390
Q2 10.819 17.473 61.600 Q2 30.925 55.171 34.050
Q3 27.755 47.033 83.700 Q3 44.690 88.654 52.941
Miss.(%) 3.15 3.15 3.15 Miss.(%) 3.69 3.69 3.69

∗ The word inside the parentheses denotes the station type.
∗∗ Q1, Q2, and Q3: Denotes the first quartile, the second quartile, and the third quartile, respectively.
∗∗∗ Miss.(%): Missing values percentage

Table 4.7 Statistical summary of the meteorological stations’ data

In this study, a local regression method was used to minimize the deviation rate from the

actual value. To replace the missing values in the air quality dataset, a correlation between
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different pollutants’ data from the same station or a correlation between the same pollutant’s

data from the closest neighbouring stations has been applied. The meteorology and air

quality monitoring stations are spread out throughout the study region, which contains

different topographic features such as altitude, land use, etc. Considering the extent and

complexity of the area, the existence of a correlation between all stations’ data isn’t possible.

The regression coefficients show a strong relationship (R2 > 0.9) between different pollutants

of the same station, such as O3 and NOx. Moreover, there was a good correlation between

the identical pollutants of the nearby stations (mostly R2 > 0.7). The missing values in the

meteorological dataset were also filled using a similar approach.

The input datasets were finally normalized by the MinMax scaler (Eq. 4), to scale the data

between 0 to 1.

x
′
=

x−min(X)

max(X)−min(X)
(4)

where x′ denotes the scaled value, x is the original value, X denotes all values of the variable

(pollutant or meteorological parameter), and min(X) and max(X) are the minimum and

maximum values of the variable, respectively.

4.3.2. Proposed Neural Networks Models

The proposed models forecast the O3 level at time t+k based on the observed data that spans

the time period from t−240 (past 10 days) to t, where k = 1, 2, 3, ..., 48 (up to future 2 days).

Ten variables, including seven meteorological variables and three air-quality variables, are

used as the input data. The mean and maximum levels of NOx over the previous eight hours

are also added to the input dataset. The models were fed with 240×12 matrix, to generate

prediction vectors with a size of 48.

4.3.2.1. MLP Model

Time-series inputs are utilized to train MLP using a variety of methods such as flattening the
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data. Data flattening creates inputs, with a size of 2880 (240×12), for the hidden layer with a

size of 100 units. The model finally forecasts the O3 concentration for the next 48 hours. The

MLP model was used as the benchmark model in this study to assess how well the suggested

approach performed.

4.3.2.2. CNN Model

A convolutional neural network is proposed based on the diurnal change in O3 concentration

with m-hour stride and kernel sizes to extract features describing the pattern of change.

According to the proposed theory, large kernel sizes and small stride sizes cause overlapping

O3 evolution phases. Therefore, the stride size was set to be the same as the kernel sizes. The

details of the suggested approach are shown in Figure 4.11. In the experiments, m was set

to 2, 4, 8, 16, and 24, and the corresponding models were represented by CNN2,..., CNN24.

Following Sayeed et al. (2020)[103] and to assess the efficacy of the proposed strategy, a

CNN model with a kernel size of 2 and stride size of 1 was also employed. A MaxPooling

layer with a pool and stride size of 2 was also used. In the experiments, this model is referred

to as CNN-base.

Figure 4.11 Architecture of the CNN model with a stride and kernel size of 4
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4.3.2.3. LSTM-CNN Model

A recurrent neural network (RNN) variant known as long-short-term memory (LSTM) can

handle the vanishing gradient problem. Unlike RNN, LSTM is effective at processing time

series data with uncertain time lags [132, 133]. However, as was already noted, depending

on seasonal and environmental factors, O3 concentrations tend to follow a fairly predictable

pattern. This study aims to use 10-day input data as input for deep learning models for

predicting the O3 concentration for the following 48 hours. As seen in Figure 4.12, a CNN

layer follows the LSTM layer to boost the prediction performance. The model can better

comprehend the phase changes in the diurnal O3 evolution pattern thanks to the usage of the

CNN layer following the LSTM.

Figure 4.12 Architecture of the LSTM-CNN model with stride and kernel size of 4

A benchmark LSTM model was also applied to evaluate the impact of the CNN layer on the

prediction performance of the LSTM-CNN model, which is presented in Figure 4.13.

4.3.2.4. CNN-LSTM Model

The CNN layer of the LSTM-CNN model, proposed in Section 4.3.2.3., could learn the

phase change in the diurnal O3 evolution pattern from the LSTM layer output. To evaluate the

model performance in case the CNN layer is applied before the LSTM layer, the CNN-LSTM

model is also implemented. In the proposed CNN-LSTM model, the features extracted by the
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Figure 4.13 Architecture of the baseline LSTM model

CNN layer provide input for the LSTM layer. Figure 4.14 displays the details of this model’s

architecture. In the experiments, it is also evaluated how the applied feature engineering

method affects the CNN-LSTM model’s prediction performance.

Figure 4.14 Architecture of the CNN-LSTM model with stride and kernel size of 4

4.3.3. Model Evaluation Metrics

The most frequently employed model evaluation measures, including mean absolute error

(MAE), mean square error (MSE), and root mean square error (RMSE) were used to assess

the prediction performance of deep learning models. The differences in evaluation metrics
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formulations have both benefits and drawbacks. Consequently, it is necessary to use a variety

of evaluation metrics to cover the disadvantages of the metrics. For instance, MAE is a useful

option in situations where the error distribution is not Gaussian [134], whereas the RMSE

is sensitive to outliers and extreme values [135]. In contrast, because the absolute value is

often not preferred in mathematical computations, using absolute values in MAE calculations

could be considered a disadvantage against RMSE [134].

MAE =
Σn

i=1 | yi − ŷi |
n

(5)

MSE =
Σn

i=1(yi − ŷi)
2

n
(6)

RMSE =

√
Σn

i=1(yi − ŷi)2

n
(7)

where n is the sample number, ŷi is the observed value, and yi is the predicted value.

4.3.4. Implementation Details

The simulations were performed by Keras13 with the TensorFlow backend. The Adam

optimizer was applied to train models over 20 iterations (epochs) using the MAE metric

as the loss function. The dropout method [136] with a rate of 0.2 was applied to prevent

over-fitting during the model’s training step.

4.3.5. Experiments

This study used two different simulation types to show how including daily O3 evolution

patterns in deep-learning models impact the prediction performance. Firstly, we assessed

13https://keras.io/
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how well three groups of models (CNN, LSTM-CNN, and CNN-LSTM) perform when using

the feature engineering method, which included adjusting the kernel and stride sizes based

on the diurnal O3 evolution pattern. The top-performing multi-stride models and related

single-stride models were then selected for further in-depth analysis. Lastly, the baseline and

top-performing models were subjected to a monthly evaluation. A paired t-test is applied

to the monthly performance results to assess the significance of the feature engineering

approach’s impact on the performance of models. The schematic diagram of the study is

displayed in Figure 4.15.

The following protocol is followed to describe models and settings in the experiments:

<model name><kernel size>−<stride size>. If the last element (stride size) doesn’t

exist, it means that the stride and kernel sizes are equal. For instance, CNN4 is as same

as CNN4-4, but CNN4-1 denotes a CNN model with kernel and stride sizes of 4 and 1,

respectively.

Figure 4.15 Schematic diagram of the study
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5. RESULTS AND DISCUSSION

5.1. Simulations of Climate Change Impact on Ozone Level

5.1.1. Meteorological Simulation Results

Meteorological simulation is the first step in atmospheric pollution simulations. In this

study, a separate meteorological simulation was performed for each scenario using the

WRF model. This section reports the results of the statistical analysis of the outputs of the

meteorological simulation. It should be noted that, as the aim of this research is to investigate

the atmospheric pollution in the surface layer, the meteorological and air quality data analysis

is limited to the surface layer of the model outputs. Table 5.1 shows the statistical summary

of the conducted meteorological simulations for different periods and climate scenarios.

Table 5.1 Statistical summary of daily MCIP outputs for the Marmara domain

Temperature at 2m (◦C) PBL height (m)
2012 2053

SSP2-4.5
2053
SSP5-8.5

2012 2053
SSP2-4.5

2053
SSP5-8.5

Ave. 23.809 25.017 25.426 547.173 562.434 560.156
Min. 7.533 9.244 6.982 20.372 20.451 20.436
Max. 38.875 39.191 39.453 2403.166 2406.080 2601.455
St.Dev. 4.053 4.093 4.559 399.523 417.726 434.157
25%∗ 20.177 21.270 21.289 180.486 178.627 173.921
50% 23.878 24.801 25.632 520.141 528.156 489.984
75% 26.840 28.279 29.093 836.200 867.012 872.448

Wind sp. at 10m (m s−1) Total precipitation (cm)
2012 2053

SSP2-4.5
2053
SSP5-8.5

2012 2053
SSP2-4.5

2053
SSP5-8.5

Ave. 4.831 5.013 5.029 0.014 0.002 0.007
Min. 0.820 1.014 0.858 0.000 0.000 0.000
Max. 18.202 16.080 16.580 6.511 4.434 7.028
St.Dev. 1.721 1.667 1.621 0.117 0.039 0.091
25% 3.690 3.880 3.913 0.000 0.000 0.000
50% 4.517 4.721 4.795 0.000 0.000 0.000
75% 5.575 5.821 5.899 0.000 0.000 0.000
25%∗: 25th percentile

The results indicate a 1.21◦C (5%) and 1.62◦C (6.8%) increase in the Marmara domain’s

mean summertime temperature in 2053 under SSP2-4.5 and SSP5-8.5 scenarios than the

past period (2012), respectively. Moreover, the statistical significance (t-test results) of the

difference between the analyzed variables under various climate conditions is presented in

Table 5.2. According to the significance test results presented in Table 5.2, the increases in
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mean summer temperature under both future climate scenarios are statistically significant

(P < 0.05). The simulation under the SPP5-8.5 scenario resulted in a higher average

temperature than the SSP2-4.5 scenario, nonetheless, the difference between the two values

is not statistically significant. Moreover, there is a rise in the maximum and percentile values

of the temperature under future climate conditions compared to the past period. The 75th

percentile values of the temperature indicate a considerable increase in the peak temperatures

under the SPP5-8.5 scenario compared to the past period and SSP2-4.5.

Table 5.2 P-values associated with the statistical significance of the difference between the
meteorological parameters under different climate conditions

Temperature (2053) PBL height (2053) Wind speed (2053) Precipitation (2053)
SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5

2012 0.0003 0.0000 0.3483 0.4579 0.2789 0.2144 0.000 0.000
2053 (SSP2-4.5) - 0.2321 - 0.8857 - 0.9076 - 0.000

It is predictable that the increase in temperature causes a rise in the PBL. The statistical

analysis results show an increase in the mean PBL height under both future climate scenarios;

however, the differences are not statistically meaningful. A similar result is observed in the

change in wind speed under future climate conditions. Although climate change causes an

increase in seasonal mean wind speed in the Marmara domain under both scenarios, the

increase rate is not significant. The results also show a significant decrease in seasonal

average precipitation under both future scenarios. These reductions are about 85.7% and

50% for the SSP2-4.5 and SPP5-8.5 scenarios, respectively. To have a better view of the

spatial distribution of the meteorological parameters, the grid-wise monthly mean values of

the parameters were plotted on the map (Figures 5.1, 5.2, and 5.3).

In all of the conducted simulations, the visualized average temperature maps indicate a

greater mean temperature value in urban areas like Bursa, Istanbul, and Gebze than in rural

areas (Fig. 5.1). The higher temperature in urban areas is associated with the heat island

phenomenon. The results show that the heat island effect will be intensified under future

climate conditions, which will in turn contribute to air pollution in urban areas. Moreover, the

climate change-induced temperature rise under future scenarios shows a nonuniform pattern

throughout the domain. While the northwest region of the Marmara domain experiences

the highest rise in mean temperature values, the northeast region experiences the minimum
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Figure 5.1 The gridded monthly averaged temperature at 2m for the past (2012) and future (2053)
periods.

increase. The difference in the rate of temperature change in different regions of the domain

will be discussed later in this section.

Within the terrain, the minimum PBL height is associated with the coastal areas, especially

Istanbul province and surrounding areas (Fig. 5.2). This area is surrounded by the Black

Sea from the north and the Marmara Sea from the south. Because water bodies have a

high heat capacity and vertical mixing occurs often, there is little surface heating and, as a

result, little increase in the PBL height. Moreover, as the PBL height is directly influenced

by surface temperature, a climate change-induced rise in temperature (Fig. 5.1) causes
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Figure 5.2 The gridded monthly averaged PBL height for the past (2012) and future (2053) periods.

an increase in PBL height in terrain (Fig. 5.2). Figure 5.3 shows the gridded monthly

total precipitation under past and future climate conditions. The mapped data indicate a

considerable reduction in total precipitation under climate change scenarios. This reduction

is statistically significant, according to the significance test results presented in Table 5.2.

Barcikowska et al. (2020) [137] used a global model output to analyze the future summertime

climate conditions in the Mediterranean. According to their findings, Turkey will be subject

to the highest reduction in summertime precipitation under future climate conditions among

the eastern Mediterranean countries.
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Figure 5.3 The gridded monthly total precipitation for the past (2012) and future (2053) periods.

Figures 5.4 and 5.5 show the cumulative distribution function (CDF) and box plots of daily

mean temperature, PBL height, wind speed at 10m, and precipitation. The CDF plots were

used to demonstrate the difference in daily mean values of the parameters under different

climate conditions. The results show an obvious difference in the mean temperature curves of

the future scenarios from the past period’s curve. Under both future scenarios, a higher daily

mean temperature was observed than in the past period. The results of the t-test presented

in Table 5.2 indicate that the difference between past and future period temperatures is

statistically significant.
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Figure 5.4 Cumulative distribution function plots of the daily average of the meteorological fields.

Figure 5.5 Box and whisker plots of the daily average of the meteorological fields.
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Moreover, except for the lower proportions, the SSP5-8.5 scenario has a higher mean

temperature than the SSP2-4.5 scenario, however, the difference is not statistically

significant. The SSP2-4.5 scenario has a higher minimum average temperature than the

SSP5-8.5 scenario. According to Figure 5.5, despite the very close minimum temperature

values (Quartile 1 − 1.5 × Interquartile Range) of the future scenarios, the presence

of some extremely low values in the SSP5-8.5 data, which are indicated as outliers in the

associated box plot, raises the values of lower proportions in the SSP2-4.5 scenario’s CDF

curve. The CDF curves and box plots of the PBL height and wind speed indicate a slight

difference between the daily average values of the past and future periods. Moreover, Figures

5.4 and 5.5 illustrate an obvious difference between the precipitation of the past period and

future scenarios.

As discussed earlier, the climate change-induced temperature rise under future scenarios

shows a nonuniform pattern throughout the domain. Therefore, to conduct a more detailed

analysis of the meteorological simulation results, the Marmara domain was divided into

four quadrants, and the temperature and wind parameters were analyzed for each quadrant

separately (Fig. 5.6).

Figure 5.6 Map of the Marmara domain divided into four quadrants

The statistical summary of the mean temperature of the above-mentioned quadrants is

presented in Table 5.3. The results show that in all of the simulations, the maximum and

minimum average seasonal temperatures belong to the northwest and northeast quadrants,

72



respectively. Moreover, the northeast quadrant has the minimum standard deviation of

the daily mean temperature. As the majority of the northeast quadrant is covered by

water bodies, the lower standard deviation of temperature data is related to the higher heat

capacity of water bodies compared to land. The maximum temperature rise also belongs to

the southwest quadrant under the SSP2-4.5 scenario and the southeast quadrant under the

SSP5-8.5 scenario, with 1.418◦C and 2.051◦C, respectively.

Table 5.3 Statistical summary of daily mean temperature (in ◦C) in quadrants under different
meteorological conditions

To examine the statistical significance of the difference between temperature values of each

quadrant under different climate conditions, the t-test was performed on the daily mean

values (Table 5.4). The results indicate a significant difference between daily average

temperatures under future climate scenarios and the past period in all quadrants. The same

result was observed for the future and past periods’ daily mean temperature of the whole

domain (see Table 5.2). Moreover, the higher mean temperature under the SSP5-8.5 scenario

than the SSP2-4.5 scenario is not statistically significant in none of the quadrants, except the

northeast quadrant. The difference between the mean temperature of the northeast quadrant

under the SSP2-4.5 and SSP5-8.5 scenarios is statistically significant, with a higher mean

temperature under the SSP5-8.5 scenario.
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Table 5.4 P-values associated with the statistical significance of the difference between temperature
values under different climate conditions

Since the wind parameters are highly influenced by some micro- and mesoscale factors

such as topography and temperature gradient in coastal areas, the gridded (2D) hourly wind

parameters (wind speed at 10m and wind direction) were used for the analysis instead of the

domain or quadrant mean values. Using the gridded hourly wind speed and wind direction

data, the wind rose plots of the quadrants are depicted in Figures 5.7, 5.8, 5.9, and 5.10.

According to the wind rose plots of the northeast quadrant (Fig. 5.7), the dominant wind

directions during the July and August are northeast and north, in all simulated scenarios.

During June, in addition to the mentioned directions, wind flow from the southwest of the

quadrant is also common. The mentioned dominant wind directions also correspond to the

direction of the highest wind speeds. These patterns of wind speed and direction could be

generalized to the northwest and southwest quadrants. The wind rose plots illustrated in

Figure 5.9 indicate that the southeast quadrant is dominated by northeast and north winds

during the summer under all of the simulated climate conditions.

The results of the simulated meteorological conditions of the past period and future

scenarios were presented in this section. From the analyzed meteorological parameters,

the temperature is the most influential parameter in the formation process of tropospheric

O3. A significant increase in temperature under future climate scenarios accelerates the O3

formation reaction chain. A significant rise in temperature of future scenarios accelerates

the O3 formation reaction chain. Consequently, the climate change-induced temperature rise

provides favourable conditions for O3 formation. Some other parameters, however, have

also a determinant role in the magnitude of change in O3 concentration. An increase in
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Figure 5.7 Wind rose plots of the northeast quadrant under different climate conditions, which are
depicted using hourly gridded data.

Figure 5.8 Wind rose plots of the northwest quadrant under different climate conditions, which are
depicted using hourly gridded data.
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Figure 5.9 Wind rose plots of the southeast quadrant under different climate conditions, which are
depicted using hourly gridded data.

Figure 5.10 Wind rose plots of the southwest quadrant under different climate conditions, which are
depicted using hourly gridded data.
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wind speed could result in an increase or decrease in O3 concentration by the transportation

of the O3 precursors from the neighbouring areas or dispersion of O3 and its precursors

from the area, respectively. Since the summertime O3 was simulated in this study, the

precipitation could not have a large impact on O3 concentration. However, the simulation

results reveal a decreasing trend in precipitation, which suggests that under future climate

conditions, there will be fewer O3 precursors eliminated by the wet deposition process. This

will contribute to the formation of tropospheric O3 in the study area. Furthermore, the slight

change in PBL height under future climate scenarios could not have a determining role in

ozone concentration.

5.1.2. Emission Simulation Results

Anthropogenic and biogenic emission data were generated to be used in the CMAQ model

as input. As mentioned in Section 4., the EMEP emission inventory was used to generate the

anthropogenic emissions data, and the MEGAN model was employed to provide the biogenic

emissions. At the end of the emission processing, the generated daily anthropogenic and

biogenic emission files were combined in a single NetCDF file to feed the CMAQ model.

This section presents the results of the biogenic and anthropogenic emissions processing.

5.1.2.1. Biogenic Emissions Simulation Results

As discussed in Section 4.1.2.2., the MEGAN model inputs include three groups of data,

and land cover data is one of them. All of the required input data are provided by the

model developer, except the MCIP outputs and the LAIv files from the land cover data

sets. Therefore, generating the input LAIv files is the first and an important step of running

the MEGAN model. The input LAIv files were generated using a Python script in 500 m

resolution and in 8-days intervals. Figure 5.11 shows an example of the generated LAIv files

for the Marmara domain.

After generating the input LAIv files, all of the input data sets were processed to apply the

domain projection on the data sets and regrid them. The data preprocessing generates a CSV
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Figure 5.11 Example of the generated LAIv file for the MEGAN
model, June 1, 2012 (Sinusoidal projection)

file for each data. Figure 5.12 shows the visualized example of the preprocessed growthform

data (in the CSV format), which specifies the growth form fraction of each grid. As can

be seen from the figure, there are four types of growth forms including crop, tree, herb,

and shrub. Moreover, Figure 5.13 displays an example of the preprocessed LAIv files, as

well as the classification of land use in the Marmara region. The land use classification was

created using the unsupervised classification tool of the ERDAS IMAGINE program from the

mosaic of 14 Landsat 8 images14 from the summer of 2012, with a resolution of 30m. The

classification was performed to provide a comparison of the MEGAN preprocess outputs

(LAIv and growth forms) and the land use categories. As seen in the figure, the highest

LAIv values are corresponding to the forest areas in the land use classification. Moreover,

the residential areas, such as Istanbul and Bursa, show the minimum LAIv values. The

preprocessed input files were used in the emission factor processor step.

Figure 5.14 shows the simulated daily mean time series of the biogenic emissions in the

Marmara domain for the summer of 2012, as well as the time series of the meteorological

variables, generated by the WRF model. The time series plots illustrate a resemblance

between the patterns of the change in the concentration of the isoprene and monoterpene.

Furthermore, the results show that the biogenic emissions concentration is highly influenced

by the average daily temperature. To see how the plants respond to the change in

14https://www.usgs.gov/, accessed on 06 March 2023.
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Figure 5.12 MEGAN preprocessing outputs for the growth forms in the Marmara domain.

Waterbody Forest area

Agricultural land Residential area

Other

Figure 5.13 Classification of land use in the Marmara region (summer 2012)(Left), visualized
example of the preprocessed LAIv input file (June 1, 2012), generated from the
MODIS products (Right).
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Figure 5.14 Marmara domain’s daily mean time series of the meteorological fields and biogenic
emission from the MCIP and MEGAN simulations of 2012 (summer), respectively.
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meteorological fields in terms of biogenic emission production, a regression analysis

was conducted between the meteorological variables and the concentrations of biogenic

emissions (Figures 5.15 and 5.16).

Figure 5.15 The relationship between the meteorological fields and isoprene concentration.

Figure 5.16 The relationship between the meteorological fields and monoterpenes concentration.

The regression plots indicate that the biogenic emissions concentration has a reverse

relationship with both wind speed and precipitation. This can be explained by the higher
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emission dispersion rate with an increase in the wind speed, and wet deposition of the

emissions when precipitation occurs. There is a very strong relationship between temperature

and biogenic emissions concentration. High R2 values of the associated plots indicate a

dominant role of temperature in the biosynthesis and release of biogenic emissions. This

finding is in accordance with Holopainen et al. (2018)[24], which emphasised the dominant

role of temperature as an abiotic environmental factor in the formation of biogenic emissions.

The plots show the positive impact of the PBL height in the biogenic emissions formation,

but, the increase in concentration is related to temperature, indeed. In other words, the

increase in both PBL height and emission concentration originates from the increase in

temperature.

5.1.2.2. Anthropogenic Emissions

The EMEP emission inventory was used to provide the anthropogenic emissions inputs to

the CMAQ model. The emission processing generates a single NetCDF file containing

horizontal and vertically distributed hourly concentrations of 52 chemical compounds for

each day of the simulation period. The statistical summary of some chemical compounds

is given in Table 5.5. These compounds are chosen considering their contribution to

tropospheric O3 formation or their high concentrations.

Table 5.5 Statistical summary of daily mean anthropogenic emissions (in mole/s) for the Marmara
domain

BENZ ETOH FORM CO NO NO2 CH4 SO2

Ave. 2.23E-05 0.000111 0.00026 0.01113 0.001421 0.000075 0.002718 0.00194
Min. 2.11E-05 0.000105 0.000247 0.009913 0.001194 0.000063 0.002577 0.001912
Max. 2.38E-05 0.000118 0.000277 0.01246 0.001546 0.000081 0.002895 0.001988
St.Dev. 6.42E-07 0.000003 0.000007 0.000724 0.000111 0.000006 0.000078 0.00003
25% 2.19E-05 0.000108 0.000256 0.010461 0.001332 0.00007 0.002667 0.001919
50% 2.21E-05 0.00011 0.000258 0.011265 0.001466 0.000077 0.002692 0.001922
75% 2.28E-05 0.000113 0.000266 0.011579 0.001496 0.000079 0.002778 0.001982

As seen in Table 5.5, the highest average concentration is associated with methane. Methane

is an important emission in terms of climate change and tropospheric O3 formation (see

Section 2.1.). Moreover, the statistical summary of the anthropogenic emissions shows

that the highest standard deviation belongs to CO, which denotes the high variability of
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CO concentration in the atmosphere. The short half-life of CO in the atmosphere [138]

rises the fluctuation of the concentration. The lowest standard deviation is associated with

benzene, which denotes the stability and low reactivity of benzene molecule, with a half-life

period of 7–22 days [139]. At the end of the emission processing, the generated biogenic and

anthropogenic emission files were combined using a Python script. The combined emission

files were used as input for the CMAQ model. The graph below (Fig. 5.17) shows the total

concentration of some species in the Marmara domain for the summer of 2012.

Figure 5.17 The total of some anthropogenic and biogenic emission species produced during the
simulation period (01 June 2012 - 31 August 2012) in the Marmara domain. BENZ:
Benzene, ETOH: Ethanol, FORM: Formaldehyde, ACET: Acetone, ISOP: Isoperne,
TERP: Terpenes, MEOH: Methanol.

Figure 5.18 displays the grid-wise total concentration of some species in the final emission

data set for the summer of 2012. The figure illustrates the gridded total emissions of the

domain for the simulation period. The isoprene and monoterpene distribution maps show that

the highest concentrations are associated with the forest area. As was discussed in Section

2.2., the biogenic emissions are emitted by stressed plant tissues. The results presented

in Figure 5.17 show that the anthropogenic sources have contributed to isoprene emission

as well as biogenic emissions. The figure also shows that formaldehyde is emitted over

a vast area of the Marmara domain. Anthropogenic emissions are considered important

sources of formaldehyde in the atmosphere (see Figure 5.17). Human activities such as

biomass and fuel combustion, and industrial processes release a considerable amount of
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formaldehyde in indoor and outdoor environments. Moreover, formaldehyde forms in the

atmosphere by oxidation of reactive organic gasses and wildfires, which explains the high

concentration of formaldehyde in forest areas [140–142]. Figure 5.18 also indicates that

the highest acetone concentrations are related to the forest areas. The results presented

in Figure 5.17 indicate that the biogenic sources are responsible for almost all of the

acetone emissions in the Marmara domain. Acetone could be found in large amounts in

the atmosphere as a result of natural and anthropogenic processes. Direct release from

plants, decomposition of organic materials, wildfires, and generation through the oxidation of

biogenic hydrocarbons are examples of natural acetone production [143]. Traffic emissions

and solvents are also anthropogenic sources of acetone [144–146]. Moreover, Figure

5.17 shows that anthropogenic emissions are the main source of ethanol in the Marmara

domain, whereas methanol is released by the biogenic sources. Methanol and ethanol are

also emitted into the atmosphere from natural sources like the direct release from plants

and decomposition of organic materials as well as anthropogenic sources such as solvents

[147, 148]. As can be seen from Figure 5.17, benzene occurs in the atmosphere mainly from

anthropogenic sources such as vehicular traffic, petroleum refineries, the chemical industry,

heating, and solvent use. Furthermore, sulfur dioxide occurs in the atmosphere as a result of

organic materials’ degradation and fossil fuel combustion. As can be seen in Figure 5.18, the

maritime transportation sector has a large contribution to the sulfur dioxide emission of the

Marmara domain. The sector is responsible for about 11% of global sulphur oxide emissions

[149]. NOX emissions (NO and NO2) are also released into the atmosphere by some natural

processes and biogenic and anthropogenic sources like agricultural fertilizers, combustion

processes, lightning, and microbial processes in soils. Figure 5.18 shows the contribution of

agricultural and maritime transportation to the NOX emissions of the Marmara domain. The

figure also illustrates some local high methane concentrations. In addition to natural sources,

some anthropogenic sources such as industrial processes, coal transportation, livestock, and

landfills have a significant contribution to the atmospheric concentration of methane. Lastly,

as seen in Figure 5.18, Road transportation is the main source of CO pollution in the Marmara

domain. Also, Figure 5.17 shows that the main portion of CO emissions originated from

anthropogenic sources.
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Figure 5.18 The gridded total concentrations of anthropogenic and biogenic emission species for the
simulation period (June 1, 2012—August 31, 2012).
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5.1.3. Air Quality Simulation Results

Air quality simulations were conducted for the past period and future scenarios following

the meteorological and emission simulations. This section presents the results of air quality

simulations and addresses the climate change impact on air quality of the Marmara domain

under the SSP2-4.5 and SSP5-8.5 scenarios. The statistical summary of the air quality

simulation outputs was calculated for the whole domain as well as for the quadrants depicted

in Figure 5.6, and presented in Table 5.6.

Table 5.6 Statistical summary of daily mean O3 concentration (mol/s) in quadrants and whole of the
Marmara domain

The statistical summaries presented in Table 5.6 show that climate change results in an

increase in the mean O3 concentration of all quadrants. Under the SSP2-4.5 scenario,

increases in mean concentration are 14.3%, 8.47%, 15.07%, 16.58%, and 13.6% in

the northwest quadrant, northeast quadrant, southwest quadrant, southeast quadrant, and

domain whole, respectively. The SSP5-8.5 scenario causes a higher increase in mean O3
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concentration than the SSP2-4.5 scenario, with a rate of 17.25%, 9.93%, 17.48%, 19.49%,

and 16.02% for the northwest quadrant, northeast quadrant, southwest quadrant, southeast

quadrant, and domain whole, respectively. The highest mean O3 concentration of the past

and future periods belongs to the southeast quadrant. Moreover, the O3 concentration of the

southeast quadrant has the smallest standard deviation values under the future scenarios due

to the spread of O3 pollution over the quadrant, which resulted in a more uniform pattern. A

t-test was conducted to show the statistical significance of the difference between the mean

O3 concentration of each quadrant under the simulated conditions (Table 5.7).

Table 5.7 P-values associated with the statistical significance of the difference between O3

concentrations under different climate conditions

The significance test results (Table 5.7) show that the increases in mean O3 concentration

of the future scenarios compared to the past period are statistically significant. Moreover,

except for the southeast quadrant, the higher mean O3 concentration of the SSP5-8.5 scenario

than that of the SSP2-4.5 scenario is not statistically significant. These results indicate

a higher sensitivity of the southeast quadrant to climate change in terms of atmospheric

pollution. Being partially distant from the sea, compared to the other quadrants, results in a

lower water vapour content in the southeast quadrant, which in turn reduces O3 removal. A

decrease in precipitation in future climate conditions could also contribute to the increase in

O3 concentration. Despite a very limited solubility of O3 in water, a decrease in precipitation

increases the accumulation of O3 precursors in the atmosphere, which enhances ground-level

O3 formation. Moreover, the area is predicted to experience a significant rise in summertime

temperature under the future scenarios (see Table 5.3). An increase in temperature is
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considered the main cause of the elevated O3 level under future climate conditions. A climate

change-related rise in temperature over the US was mentioned as the main cause of increased

O3 levels in 2030 in an air quality projection conducted by Nolte et al. (2018) [52]. Tong

et al. (2018) [150] reported a 9.5%–9.6% and 6.4%–9.2% increase in the frequency of high

O3 levels during the winter and spring over the Pearl River Delta region under the RCP8.5

scenario. They claimed that the rise in temperature is the major factor in elevated O3 levels.

Gao et al. (2019) [151] reported an increase in summertime O3 concentration in the northern

parts of the Yangtze River Delta Region of China by the mid-21st century under the RCP4.5

scenario. According to the authors, the mentioned increase is related to the increase in solar

radiation and temperature. Sa et al. (2016)[152] performed future air quality forecasting

over Portugal under the RCP8.5 scenario. They found that a rise of 2◦C in the average

temperature and a decrease in precipitation will cause a 5% increase in the maximum 8-hr

daily O3 concentration. Hauglustaine et al. (2005)[153] reported a 10 ppm increase in

average O3 concentration in parts of the US, Europe, China, and the tropics. They found a

strong correlation between the rise in O3 levels and the increase in temperature. In a study

of climate change’s impact on tropospheric O3 using a statistical downscaling technique an

increase of 5K in daily maximum temperature was observed in the months from April to

September under the RCP8.5 scenario in Bavaria [154]. The findings indicate an increase of

17 µg/m3 in the daily maximum O3 level as a result of temperature rise.

The spatial distributions of the monthly average O3 concentration under different climate

conditions are illustrated in Figure 5.19. As can be seen from the figure, Istanbul and

its surrounding area (in the northeast quadrant) show a low average O3 concentration in

the past period simulation and experience a limited change in the concentration under the

future climate scenarios, even though climate change results in a significant increase in the

mean temperature of the region and the region is a major source of the O3 precursors (see

Figure 5.18). In a study conducted by Mentese and Ogurtan (2021) [155], a relatively low

concentration of O3 in Istanbul was observed through the analysis of 10-year O3 data. The

simulated O3 concentrations in this study are in the concentration range reported by Im et al.

(2013) [156] for Istanbul.
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Figure 5.19 The spatial distribution of monthly mean O3 concentrations under different climate
conditions.

As Istanbul and Bursa are two major cities in the region, a more detailed analysis was

conducted to indicate the climate change impact on air pollution in these cities. After

preparing the data subset for the cities, the statistical analysis and wind patterns were

investigated. Figure 5.20 represents the areas including the city-scale data subsets.

Table 5.8 shows the summertime average O3 concentration in Istanbul and Bursa cities

under different climate conditions. The statistical significance of the difference between

the concentration of the future and past periods simulations is also presented in Table 5.9.
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Figure 5.20 The rectangles indicate areas including the city scale data subsets.

Table 5.8 Daily mean O3 (mol/s) concentration in Istanbul and Bursa cities under different
climate scenarios

2012 2053
(SSP2-4.5)

2053
(SSP5-8.5)

Istanbul 0.0236 0.0242 0.0245
Bursa 0.0244 0.0275 0.0281

Table 5.9 P-values associated with the statistical significance of the difference between the
biogenic emissions concentrations under different climate conditions

Istanbul Bursa
SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5

2012 0.1122 0.0156 0.0000 0.0000
2053 (SSP2-4.5) - 0.4450 - 0.0880

The statistical analysis of results indicates an insignificant (P > 0.05) rise in the average

O3 concentration of Istanbul under the SSP2-4.5 scenario. The difference between the

Istanbul O3 concentration under the past period climate condition and the SSP5-8.5 scenario

is statistically significant. Moreover, the difference between O3 concentrations of Istanbul

under the SSP2-4.5 and SSP5-8.5 is not statistically significant. The results show a significant

rise in the average summertime O3 concentration under both future climate scenarios in

Bursa. However, the difference between the concentration under the SSP2-4.5 and SSP5-8.5

scenarios is insignificant.

As atmospheric circulation has a decisive role in air quality, the wind rose plots were depicted

for Istanbul and Bursa. Figure 5.21 indicates that northeast and southwest are the dominant
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wind directions in Istanbul, under the past period simulations. The same finding was reported

by İm et al. (2008) [157] in a simulation study conducted by the HYSPLIT model. High

wind speed contributed to a decrease in the O3 concentration of Istanbul under past climate

conditions. An increase in wind speed could physically reduce the O3 level by increasing the

rate of pollutants dispersion. The future climate scenarios indicate that climate change will

cause a decrease in the speed and frequency of the southwest wind. This change is especially

obvious under the SSP5-8.5 scenario. This decrease could occur as a result of the decrease

in the pressure gradient between the Marmara Sea and the landscape caused by a climate

change-induced rise in the Marmara Sea temperature (see Table 5.3 and Figure 5.1), or a

change in synoptic scale (large scale) meteorology.

Figure 5.21 Wind rose plots of Istanbul and Bursa cities under different climate conditions, which
are depicted using hourly gridded data.

The surface temperature of the terrain exceeds the temperature of the sea surface because the

terrain has a lower heat capacity than water bodies. The temperature difference between the

sea surface and terrain creates a pressure gradient during the daytime, which in turn forms

wind circulation from the sea to the land called sea breeze. A rise in the temperature of

the Marmara Sea could weaken the mentioned pressure gradient and lower the speed of the

southwest wind, which is a disadvantage in terms of air quality. The importance of wind

speed in air pollution is reported in studies performed in different geographical conditions.
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For instance, it is predicted that the strengthening of the southerly wind will cause a decrease

in summertime O3 concentration in the southern parts of the Yangtze River Delta Region

of China by the mid-21st century under the RCP4.5 scenario [151]. Sa et al. (2016) [152]

showed that the strengthening of the southerly wind under the RCP8.5 scenario will cause a

decrease in the maximum 8-hr daily O3 concentration over the southern areas of Portugal.

Moreover, the climate change-induced increase in the water vapour content of the atmosphere

causes a reduction in O3 concentration and its precursors through the OH radical formation

process (Equations 10 – 13). Ozone photolysis in the presence of water vapour is the main

source of OH radicals in the atmosphere (see Section 2.1.). Accordingly, the concentration

of OH radical could be used as an indicator of the O3 reduction process. Figure 5.22 shows

the grid-wise seasonal mean concentration of OH radicals in the Marmara region under

different climate conditions. The higher concentration of OH radicals over the sea surface

and coastlines denotes a continuous O3 reduction process in the presence of water vapour.

Moreover, the generated OH radicals increase the oxidizing capacity of the lower atmosphere

in turn, which decreases the concentration of O3 precursors including CO and CH4 and

improves the air quality. Studies show that the future climate provides a favorable condition

for OH radical formation by an increase in water vapour [158]. The presence of water vapour

contributes to the decomposition of O3 in the southwest quadrant. The determining role of

water vapour in O3 concentration under future climate conditions has been addressed in the

literature [159]. Kong et al., (2019)[62] found a 15.2% and 25.8% reduction in summertime

O3 concentration under the RCP8.5 and RCP4.5 scenarios by 2100 in Malaysia as a result

of a rise in water vapour. An increase in tropospheric O3 destruction by an increase in water

vapour under future climate scenarios, especially in the tropical region, is reported in the

literature [160, 161]. In a study conducted by Hauglustaine et al. (2005)[153], a maximum

8 ppb decrease in O3 concentration over oceans due to an increase in water vapour under

future climate conditions was reported. Racherla and Adams (2006)[162] reported a rise of

1.7◦C in average global temperature and a rise in humidity by 0.9 g H2O/kg air under the

A2 scenario for the 2050s decade. The results show that climate change will cause a rise

of 3.6% in the global mean O3 concentration. The results also indicate that the increase in
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humidity will decrease the O3 lifetime from 27.8 to 25.3 days. Stevenson et al. (2005)[163]

showed that a climate change-induced rise in water vapour will result in a 3.6% decrease in

global average O3 concentration.

Figure 5.22 The spatial distribution of seasonal mean OH concentrations under different climate
conditions.

Furthermore, Figure 5.18 reveals the contribution of maritime transportation to the elevated

concentrations of NOx emissions in the region, especially in Istanbul and the surrounding

area. As mentioned in Section 2.1., in NOx-saturated conditions, the NOx titration process

controls the sink reaction, where the tropospheric O3 molecules are reduced by NO (see

Equation 9). This process could also contribute to the restricted increase in O3 concentration

in Istanbul under future climate conditions compared to Bursa. The overall outcome of

the reduction in the speed and frequency of southwest air flows and the increase in water

vapour content of the atmosphere under future climate scenarios is a limited rise in the

O3 concentration in Istanbul and the surrounding area compared to the expected level for

a megacity.

Figure 5.21 illustrates that the northwest (from the Marmara Sea) was the dominant wind

direction in Bursa under the past period’s climate conditions. This wind has a high water

vapour content and could contribute to the decomposition of O3 through the above-mentioned

process. The meteorological simulations under the future climate scenarios indicate a shift

in the dominant wind direction from northwest to northeast, in Bursa. This may potentially

reduce the water vapour concentration in the region and lowers O3 degradation. The wind
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rose plot also reveals that the presence of the Uludağ Mountain in the south of Bursa has a

large impact on the wind pattern in the region. The restricted air circulation above the city

restricts the mechanical dispersion process and could result in the accumulation of pollutants

in the region. A significant increase in temperature (see Table 5.4) of the region under future

climate conditions besides the above-mentioned factors provides favoured conditions for the

formation of O3.

The cumulative distribution functions of daily mean O3 concentrations of each quadrant and

whole domain are presented in Figure 5.23. The results presented in Table 5.7 indicate

the difference between the CDF curves of the future scenarios and the past period’s CDF

curve is statistically significant. Moreover, there is a considerable difference between the

lower bound of the SSP5-8.5 and SSP2-4.5 scenarios’ CDF curves. The SSP5-8.5 scenario

results in an increase in the minimum O3 concentration. Also, the CDF curves of the future

scenarios show that the proportion of high O3 concentration under the SSP2-4.5 scenario

slightly exceeds that of the SSP5-8.5 scenario. The box plots of daily O3 concentration

(Figure 5.24) show an increase in the minimum and average values of the SSP5-8.5 scenario

than in the SSP2-4.5 scenario. Also, there are obvious differences between the minimum,

median, and maximum O3 concentration under future scenarios and the past period.

According to the simulations, climate change causes a significant increase in the daily

average summertime temperature in the Marmara domain under both climate scenarios

(SSP2-4.5 and SSP5-8.5), which in turn enhances the formation of tropospheric O3.

On the other hand, an increase in temperature rises the water vapour content of the

atmosphere, especially in the Marmara domain, which is surrounded by a large water

volume. As discussed earlier in this section, the presence of water vapour accelerates

the O3 decomposition process. Moreover, OH radicals, which are byproducts of the O3

decomposition process, have an important role in the oxidation of some O3 precursors. CO

and CH4 are the first and second main sinks of OH radicals, respectively [22]. So, the rise in

temperature plays a dual role in terms of O3 concentration: (1) providing the required energy

in the formation process, and (2) accelerating the decomposition process by increasing

the water vapour content in the atmosphere, where enough water volume is available, and
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(a) (b)

(d)(c)

(e)

Figure 5.23 Cumulative distribution function plots of daily mean O3 concentration at (a) north-west
quadrant, (b) north-east quadrant, (c) south-west quadrant, (d) south-east quadrant, and
(e) whole of the Marmara domain.

contributing to the removal processes of O3 precursors. The results show that the overall

outcome of these two processes is to increase the concentration of tropospheric O3. In

summary, the results of the air quality simulations under future climate scenarios indicate,

in accordance with the literature [164], that future climate conditions provide favourable

conditions for tropospheric O3 formation.
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Figure 5.24 Box plots of daily mean O3 concentration at (a) north-west quadrant, (b) north-east
quadrant, (c) south-west quadrant, (d) south-east quadrant, and (e) whole of the
Marmara domain.

5.2. Simulations of Climate Change Impact on Biogenic Emissions

As mentioned in Section 2.2. a change in climate could result in a change in the biogenic

emission rate. To study how the future climate scenarios impact the biogenic emission

concentrations in the Marmara domain, the MEGAN model was executed using the WRF

outputs of each future scenario, as well as the past period outputs. This section presents the

results of the MEGAN outputs conducted by different climate conditions.

Table 5.10 shows the statistical summary of the simulated isoprene and terpenes

concentration under different climate conditions. The results indicate an increase in the

average and maximum concentration of biogenic emissions under future climate than in the

past period. This increase is about 28.2% and 38.46% for the average isoprene according

to the SSP2-4.5 and SSP5-8.5 scenarios, respectively. Moreover, the rate of increase in the
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average terpenes concentration is 15.38% and 21.79% under the SSP2-4.5 and SSP5-8.5

scenarios, respectively.

Table 5.10 Statistical summary of daily mean MEGAN outputs for the Marmara domain

ISOP (mol/s/grid) TERP (mol/s/grid)
2012 2053

SSP2-4.5
2053
SSP5-8.5

2012 2053
SSP2-4.5

2053
SSP5-8.5

Ave. 0.039 0.050 0.054 0.078 0.090 0.095
Min. 0.012 0.016 0.011 0.035 0.042 0.032
Max. 0.105 0.118 0.119 0.159 0.167 0.161
St.Dev. 0.017 0.022 0.022 0.023 0.027 0.027
25% 0.029 0.033 0.039 0.067 0.071 0.078
50% 0.036 0.048 0.052 0.077 0.089 0.095
75% 0.044 0.059 0.067 0.087 0.107 0.112

The t-test was conducted to check if the differences between the biogenic emissions under

different scenarios are statistically significant (Table 5.11). The results show that the

difference between the biogenic emissions concentration under the future climate scenarios

and past climate conditions is statistically significant. The results also indicate that the higher

emission concentration under the SSP5-8.5 scenario than in the SSP2-4.5 scenario is not

statistically significant.

Table 5.11 P-values associated with the statistical significance of the difference between
the biogenic emissions concentrations under different climate conditions

ISOP (2053) TERP (2053)
SSP2-4.5 SSP5-8.5 SSP2-4.5 SSP5-8.5

2012 0.0002 0.0000 0.0017 0.0000
2053 (SSP2-4.5) - 0.2027 - 0.1847

The increase in biogenic emissions under future climate conditions is addressed in the

literature. Xie et al. (2017)[165] showed a 25.5% increase in the biogenic emissions

concentration in the Yangtze River Delta region of China under the IPCC A1B scenario,

in 2050. The results of the biogenic emissions simulation conducted by Zhang et al.

(2022)[166] indicate a 60% increase in the concentration of biogenic emissions over China’s

Sichuan Basin as a result of a heat wave. A decrease in isoprene during the wet season and

an increase in the sesquiterpene to isoprene ratio during the dry season were found in a study

that investigated the impact of climate change on Amazonian biogenic emissions [167]. The

authors expressed the decreasing trend in isoprene by the forest biomass loss, and an increase

in the sesquiterpene to isoprene ratio was expressed by increasing temperature stress under
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climate change. Saunier et al. (2020)[168] showed that a long-term drought scenario causes a

decrease in isoprene concentration in the French Mediterranean area by 270 g day−1 in June,

by 170 g day−1 in July, and by 290 g day−1 in August. The reduction in the production of

biogenic isoprene during the long-term drought is mentioned also by Jiang et al. (2018)[55].

In order to visually illustrate the difference between the spatial distribution of the biogenic

emission concentration under different climate scenarios, monthly averaged concentrations

of the past and future periods were plotted on the map (Figures 5.25 and 5.27). The results

indicate that executing the MEGAN model with the same vegetation data but different

climate inputs results in different emission rates. An increase in temperature under future

climate scenarios causes an increase in the release rate of biogenic emissions. The figures

also show that the areas that are dominated by tree and shrub growth forms have a higher

emission concentration than areas that are dominated by herbs and crops (see Figure 5.12).

Moreover, the box and CDF plots (Figures 5.26 and 5.28) indicate a distinct increase in

biogenic emissions concentration under future climate scenarios. The plots also show that

the SSP5-8.5 scenario results in a higher biogenic emission concentration than the SSP2-4.5

scenario, however, the difference is not statistically significant (Table 5.11).

The presence of VOCs is important in the formation of tropospheric O3 and secondary

organic aerosols, as discussed in Section 2.2.. The biogenic VOCs constitute a large share

of the global VOCs compared with anthropogenic VOCs. On a global scale, biogenic VOC

emissions are tenfold more than anthropogenic VOCs [169]. Moreover, the magnitude of the

released biogenic emissions into the atmosphere is highly influenced by climatic parameters

such as temperature, solar radiation, and water stress. Consequently, climate change impacts

the magnitude of biogenic emissions, and a change in the biogenic emissions could in turn

influence air quality. The results show that climate change under the SSP2-4.5 and SSP5-8.5

scenarios causes a significant increase in biogenic emissions of summertime in the mid-21st

century. The maximum increases were observed in areas with a high vegetation coverage,

especially in forests. This significant increase in the concentration of biogenic emissions will

contribute to the formation of tropospheric O3 in the Marmara domain.
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Figure 5.25 Monthly mean isoprene (ISOP) concentration

Figure 5.26 Cumulative distribution function plot (left) and box plot (right) of daily mean isoprene
concentration in the Marmara domain.
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Figure 5.27 Monthly mean monoterpenes (TERP) concentration

Figure 5.28 Cumulative distribution function plot (left) and box plot (right) of daily mean
monoterpenes concentration in the Marmara domain.
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5.3. Forecasting of Ozone Concentration for Near-Future Using Deep

Learning

This section addresses the prediction capability of deep neural network models in forecasting

near-future air quality. Some experiments, which were described in Section 4.3.5., were

conducted to show the effectiveness of deep learning models in the prediction of O3

concentration. In the first experiment, deep learning models with different kernel and stride

sizes were executed to show the effect of these parameters on the prediction accuracy

and chose the best-performing model of each group, namely CNN, CNN-LSTM, and

LSTM-CNN. The mean absolute error (MAE) values of the conducted O3 forecasting models

are given in Figure 5.29.
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Figure 5.29 MAE of deep learning models with different kernel and stride sizes

The results presented in Figure 5.29a indicate a better prediction performance of the CNN

models with equal stride and kernel sizes, which are called multi-stride models, than the

single-stride models. Moreover, the CNN model with stride and kernel sizes equal to 4

(CNN4) had the minimum MAE compared to the CNN models with the other settings.

On the other hand, the CNN models with high (24) or low (1) stride and kernel sizes

were the worst-performing models. The main hypothesis of the proposed approach, as

stated in Section 4.3., is that by setting the kernel size based on the diurnal O3 evolution

phases, the model is better able to learn the pattern of change that occurs over time. This

ultimately improves the model’s prediction performance. The high performance of the

CNN4 model, which is consistent with the length of O3 evolution phases (4 or a multiple

of 4, see Section 4.3.), confirms the proposed hypothesis. In single-stride CNN-LSTM

models, an increase in kernel size causes a decrease in the model performance (Figure
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5.29b). The best performance of the single-stride CNN-LSTM model is associated with

the CNN4-1-LSTM setting (CNN-LSTM model with a kernel size of 4 and stride size equal

to 1). Conversely, a rise in the kernel (and stride) size of the multi-stride CNN-LSTM model

results in an improvement in the model’s prediction performance. Among the multi-stride

CNN-LSTM models, the best prediction performance was achieved by the CNN24-LSTM

setting (CNN-LSTM model with a kernel and stride size of 24). This setting outperformed

all of the multi- and single-stride CNN-LSTM models. This different outcome arises from

the order of the applied hidden layers. Since the LSTM layer is fed by the outputs of the

CNN layer, a larger kernel size presents a better view of the temporal characteristics of O3

concentration for the LSTM layer. Among the LSTM-CNN models, the best prediction

performance is achieved by the model with a kernel size equal to 4 (Figure 5.29c), which

supports the proposed hypothesis.

The second experiment includes the comparison of the yearly and monthly performances

of the best-performing models, which were identified in the first experiment, and their

equivalent single-stride models as well as the baseline models. The aim of this experiment

is to find the best O3 forecasting deep model using MAE, MSE, and RMSE as the error

metrics. Figure 5.30 displays the comparison of the performance of the above-mentioned

model groups. The comparison of the error metric of the models presented in Figure 5.30

illustrates that imposing the O3 evolution phases on deep learning models has a positive

impact on the prediction performance of models, especially in the CNN model group. The

results also indicate that the CNN24-LSTM model has the smallest error measures (MAE,

MSE, and RMSE) than the other models. Moreover, because of the high sensitivity of the O3

concentration to the meteorological parameters, a detailed monthly performance analysis was

conducted using the predicted and observed values. The results of the monthly performance

analysis are presented in Table 5.12.

Furthermore, a paired t-test was conducted using monthly errors of the models’ predictions

to examine if the differences between the performance of models are statistically significant.

According to the results given in Table 5.13, the multi-stride models significantly outperform

the corresponding single-stride models, regarding all evaluation measures. The proposed
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Figure 5.30 MAE, MSE, and RMSE of the baseline models, best-performing models and their
equivalent single-stride models based on the yearly analysis

Table 5.12 MAE, MSE, and RMSE of the baseline models, best-performing models and their
equivalent single-stride models based on the monthly analysis
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CNN4 model exhibits a better performance than the MLP-base, LSTM-base, CNN-base,

and some single-stride models. In general, the proposed approach improved the forecasting

performance of deep models.

Table 5.13 The results of the statistical significance test for differences in the monthly performance
of deep models

Figure 5.31 demonstrates a 48-hour prediction of the O3 concentration by the baseline

and proposed models, associated with the Esenyurt station. The MLP model was the

worst-performing model, whereas, CNN4 and LSTM-CNN4 had a better prediction of ozone

concentration, which entirely supports our hypothesis.

Figure 5.32 presents the O3 concentration for 2019 at the Esenyurt station and the predicted

values by the proposed models. In the prediction of O3 concentration throughout the winter

season (days 0 to 100), the CNN24-LSTM model performed better than the CNN4 and

LSTM-CNN4 models. The CNN24-LSTM model also had a better prediction of the peak

O3 levels, despite the fact that all models underpredicted these levels. On the contrary, the

proposed models overpredicted the minimum O3 levels.

The results of the performed experiments indicate that training deep learning models with

feature maps extracted from hourly data lowers the model performance. Moreover, setting
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Figure 5.31 A 48-hour O3 prediction performed by the benchmark and proposed models associated
with the Esenyurt air quality monitoring station (16 April 2019 8:00 a.m.–18 April 2019
8:00 a.m.).

Figure 5.32 Observations and the concatenated predictions of O3 for 2019 at the Esenyurt station
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the kernel and stride size of the models considering the length of O3 evolution phases, which

is equal to 4, boosts the performance of the model. These findings are in accordance with the

main hypothesis of this section.

Monthly error metrics show that applying the suggested setting for kernel and stride sizes

improved the performance of the CNN4, LSTM-CNN4, and CNN24-LSTM models by

3.58%, 1.68%, and 3.37% compared to the corresponding single-stride models. The

models’ performance shows the largest improvements in March, February, July, and August,

respectively. However, the prediction of the maximum and minimum points is a challenge

for deep learning models, as also can be seen in the results of this research. This issue is

reported frequently in air quality simulation studies [97, 103, 170].

6. CONCLUSIONS

The sophisticated deterministic and deep learning models provide a valuable tool for

constructing emission reduction plans on regional or even national scales. As well as

near-future forecasting, these models also make it possible to perform far-future forecasting

with the inclusion of climate change scenarios. In this way, these models could give an

idea about the effectiveness of the plans prior to their implementation. This study aimed to

use these tools to answer three research questions: (1) How will climate change impact

summertime tropospheric O3 pollution over the Marmara region? (2) How will climate

change impact the summertime biogenic emissions formation over the Marmara region? and

(3) Could imposing the diurnal O3 evolution pattern on deep learning models improve the

prediction performance? According to the best of our knowledge, this is the first study that

investigates the effect of climate change on air quality in the Marmara region. Moreover,

as far as we know, this is the first time that the MEGAN model has been implemented to

investigate the effect of climate change on the biogenic emissions in Turkey. Furthermore,

improving the performance of deep learning models by imposing diurnal O3 evolution

patterns on the models has not been addressed in the literature.
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The Marmara region is chosen for simulations because of its large population, extensive

industrial and economic activity, and being on a major transportation route. These

characteristics bold the air pollution issue in the region. Moreover, the existence of vast

water bodies increases the complexity of the atmospheric events in the region. To answer the

first research question, first, the meteorological conditions for a representative past period

(2012) were simulated, as were those for the future period (2053) under the SSP2-4.5 and

SSP5-8.5 scenarios, using the WRF model. The bias-corrected CMIP6 global meteorological

files were used to provide the initial and boundary conditions of the WRF model. The

simulations’ results indicate a 1.21◦C (5%) and 1.62◦C (6.8%) increases in summertime daily

average temperature over the Marmara domain under the SSP2-4.5 and SSP5-8.5 scenarios

in comparison with the past period, which are statistically significant (P < 0.05). Then, the

past period’s emission data was prepared to be used in past and future periods’ simulations.

For preparing the anthropogenic emission files, the EMEP emission inventory was used,

and the MEGAN model was employed to generate the biogenic emission files. The lack

of LAIv data is the major challenge in applying the MEGAN model for the simulation of

biogenic emissions. In this study, the LAI and FVC files of the MODIS GLASS product

were utilized to prepare the input LAIv data of the MEGAN model. A Python script was

written to calculate the grid-wise LAIv parameter for each time step and create the NetCDF

files in the desired format to save the calculated values. Moreover, another Python script was

used to combine the daily anthropogenic and biogenic emissions into a single NetCDF file.

Lastly, the concentration of O3 in the Marmara domain was simulated by the CMAQ model

under the meteorological conditions of the past period and the future climate scenarios. The

simulation results illustrate that climate change causes an increase of 13.6% and 16.02% in

O3 concentration under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. However, the rate

of increase is not homogeneously distributed over the Marmara domain. The southeastern

region of the Marmara domain will experience the largest increase in O3 concentration with

a rise of 16.58% and 19.49% under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The

increase in O3 concentration under future climate scenarios was predicted in spite of an

increase in water vapour, which has an important role in the O3 sink process. The water

vapour was especially influential in restricting the O3 accumulation in Istanbul, where the rise
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in O3 concentration was less than the expected level. As a result, an insignificant increase in

summertime O3 concentration in Istanbul is predicted under the SSP2-4.5 scenario, however,

the O3 increase under the SSP5-8.5 scenario is statistically significant. It seems that a

climate change-induced decline in southwest winds played an important role in this increase.

Moreover, the elevated concentrations of NOx emissions in the region may be contributed to

the decomposition of O3, as in NOx-saturated conditions the NOx titration process controls

the sink reaction. In contrast with Istanbul, Bursa is predicted to experience a significant

increase in O3 concentration under the SSP2-4.5 scenario. The results show an increase in

temperature causes a significant rise in O3 concentration in Bursa. Moreover, the presence of

the Uludağ Mountain restricts airflow over the city and causes an accumulation of O3 and its

precursors in the area. In this section of the study, the past period’s emissions (anthropogenic

and biogenic) were used for both the past and future periods, ignoring any change in the

emissions. Therefore, the results of air quality simulations do not represent the actual O3

concentration under future climate conditions; rather, they show how climate change impacts

the concentration. Moreover, due to the lack of a national emission inventory, anthropogenic

emissions were provided by the EMEP emission inventory. This is another limitation of

the study because it rises the uncertainty of the simulations. Furthermore, the abundance of

indigenous plant species in Turkey rises the uncertainty in the biogenic emission simulations.

Because the emission factor and emission activity data of these species do not exist in the

model’s database.

To find out how climate change will impact biogenic emissions formation in the Marmara

region, the WRF/MEGAN modeling system was used for the past and future periods. To

achieve this aim, any change in the vegetation type and density over time is ignored, and

the vegetation inputs of the past period are used for both the past and future periods. The

meteorological simulation results of the past and future periods were utilized by the MEGAN

model as well as the vegetation inputs. The biogenic emission simulations illustrate a

significant increase in the biogenic emission concentrations of the Marmara domain under

future climate conditions (SSP2-4.5 and SSP5-8.5 scenarios) than in the past period. The

increase rates are about 28.2% and 15.38% under the SSP2-4.5 scenario for isoprene and
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terpenes, respectively. Moreover, under the SSP5-8.5 scenario, there is a 38.46% and 21.79%

increase in the average isoprene and terpenes concentrations, respectively. Also, the results

indicated that biogenic emissions are dominated by isoprene and terpenes.

The last section of the study deals with improving the performance of deep models in

forecasting O3 concentration by imposing the temporal characteristics of the O3 evolution

phases on the model. According to the proposed approach, splitting the input data into

samples by adjustment of the stride and kernel sizes based on the length of the O3 evolution

phases creates a linear change pattern in O3 concentration within the samples. Using samples

with a linear change pattern improves the prediction performance of deep learning models.

The simulation results show a significant improvement in the performance of deep models

with the implementation of the proposed method.

The research findings give us valuable information about the current O3 pollution situation

in the region and variations in O3 concentrations under future climate conditions. The results

improved our understanding of the spatiotemporal characteristics of O3 pollution as well as

the processes which are influential in the pollution formation of sink reactions. These could

be used in conducting some preventive actions in the near-future timeframe or designing

long-term strategies.

6.1. Recommendations For Future Work

As mentioned earlier in this section, a part of this study deals with the effect of climate

change on O3 concentration in the Marmara region. Moreover, as discussed above, all of the

air quality simulations were conducted using the past period’s emission data, which means

ignoring any change in emission in future simulations. However, in real-world conditions,

emissions are changing with changes in technology and managerial decisions. The study of

the cumulative effect of changes in climate and anthropogenic and biogenic emissions on

air quality could provide valuable information from the perspective of conducting emission

reduction policies, which will be the subject of our future work.
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[155] Sibel Mentese and Seda Özgur Ogurtani. Spatial and temporal look at ten-years

air quality of Istanbul city. International Journal of Environmental Science and

Technology, pages 1–14, 2021.

[156] Ulas Im, Selahattin Incecik, Meltem Guler, Adil Tek, Sema Topcu, Yurdanur S

Unal, Orhan Yenigun, Tayfun Kindap, M Talat Odman, and Mete Tayanc.

Analysis of surface ozone and nitrogen oxides at urban, semi-rural and rural

sites in Istanbul, Turkey. Science of the Total Environment, 443:920–931, 2013.
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