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ABSTRACT

f -SUPPLEMENTED LATTICES

Elif CAN

Master of Science, Mathematics
Supervisor: Assoc. Prof. Dr. Sultan Eylem TOKSOY

June 2023, 61 pages

The main purpose of this thesis is to generalize some known results about F -supplemented

modules to lattices. Let L be a complete modular lattice with smallest element 0 and greatest

element 1. A homomorphic image of an f -small element under a lattice homomorphism

need not be f -small unlike the module case. For compactly generated compact lattices

f -supplement elements are compact. For compactly generated lattices, f -radical is the join

of all f -small elements. Moreover for compact lattices, f -radical itself is an f -small element.

Let L be a compactly generated compact lattice. If L is f -supplemented, then the quotient

sublattice 1/ radf (L) of L is semiatomic. A compact lattice L is f -supplemented if and

only if every maximal element m of L with f ≤ m has an f -supplement in L. A join of

f -supplemented lattices containing f is f -supplemented. Let L be a compact lattice and

f ≤ a be an element of L. If a/0 is f -supplemented and 1/a has no maximal element, then

L is f -supplemented. If a lattice L is amply f -supplemented, then the quotient sublattice

1/a is amply (f ∨ a)-supplemented for every element a of L and the sublattice a/0 is amply

f -supplemented for every f -supplement element a of L. L is amply f -supplemented if and

only if for every element a of L, there is an element x ≤ a such that the sublattice x/0 is

f -supplemented and the inequality x ≤ a is f -cosmall in L.
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ÖZET

f -TÜMLENMİŞ KAFESLER

Elif CAN

Yüksek Lisans, Matematik
Danışman: Assoc. Prof. Dr. Sultan Eylem TOKSOY

Mayıs 2022, 61 sayfa

Bu tezde temel olarak f -tümlenmis modüller hakkında bilinen sonuçların kafes teorisine

genelleştirilmesi üzerine çalışılması amaçlanmıştır. L, en büyük elemanı 1 en küçük elemanı

0 olan tam modüler bir kafes olsun. Bir modülün herhangi bir F -küçük alt modülünün bir

modül homomorfizması altındaki görüntüsü de F -küçük alt modüldür. Bu özellik kafeslerde

her zaman doğru değildir. Kompakt üretilmiş kompakt kafeslerde f -tümleyen elemanlar

kompakttır. Kompakt üretilmiş kafeslerin f -radikali f -küçük elemanlarının supremumuna

eşittir. Dahası kompakt kafeslerin f -radikalinin kendisi f -küçük elemandır. Bir L kafesi

f -tümlenmiş kafes ise 1/ radf (L) bölüm alt kafesi yarı atomiktir. Bir kompakt L kafesinin

f -tümlenmiş olması için gerek ve yeter koşul L kafesinin f ≤ m koşulunu sağlayan

her maksimal elemanının L’de bir f -tümleyeninin var olmasıdır. f -tümlenmiş kafeslerin

supremumu da f -tümlenmiştir. L bir kompakt kafes ve f ≤ a ∈ L olsun. a/0 alt

kafesi f -tümlenmiş ve 1/a bölüm alt kafesinin maksimal elemanı yok ise L kafesi de

f -tümlenmiştir. Bol f -tümlenmiş bir L kafesinin her a elemanı için 1/a bölüm alt kafesi

(f ∨ a)-tümlenmiş ve her f -tümleyen a elemanı için a/0 alt kafesi f -tümlenmiştir. Bir

L kafesinin bol f -tümlenmiş olması için gerek ve yeter koşul her a ∈ L için, x/0 alt kafesi

f -tümlenmiş ve x ≤ a içermesi f -eşküçük içerme olacak şekilde L’nin bir x ≤ a elemanının

var olmasıdır.
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ABBREVIATIONS

L A lattice

P A set

P ◦ The dual of P

MaxP The set of maximal elements of P

MinP The set of minimal elements of P

Su The set of all upper bounds

Sl The set of all lower bounds

≤ A partial order

≤P A partial order over P

⊆ subset

x < y x ≤ y and x ̸= y

x|y x divides y

y/x quotient sublattice

x ≺ y y covers x

x ∨ y = sup{x, y} least upper bound of x, y called x join y

x ∧ y = inf{x, y} greatest lower bound of x, y called x meet y∨
X least upper bound of X∧
X greatest lower bound of X

∼= isomorphism

∪ union

∩ intersection

A(L) The set of all atoms in L

≪f f -small

radf (L) f -radical of L

N The set of natural numbers

Z The set of integers
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R The set of real numbers

P(X) The set of the subsets of X

R(A) a section of a relaiton R
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1. INTRODUCTION

An element b of a complete lattice L is said to be pseudo-complement of an element a, if b is

maximal with respect to the property a∧b = 0. If L is a lattice of submodules of a module M ,

then a submodule N of M is called a complement submodule if N is a pseudo-complement in

L. Dually, if N is a pseudo-complement in L◦, then N is said to be a supplement submodule

of M . Since the lattice of submodules of a module is upper continuous, complement

submodules always exist. However, since dual of the lattice of submodules of a module need

not be upper continuous, the existence of supplement submodules can not be guaranteed.

Recently several authors have studied different generalizations of supplemented modules.

F -supplemented modules are one of them which have been introduced and studied by

Özdemir in [1]. Namely, a submodule V ⊆ M is called an F -supplement of U ⊆ M in

M if V is minimal in the set {L ⊆ M | U + L = M and F ⊆ L}.

Also it has become quite popular to generalize module theoretic concepts into modular

lattices since the 1970s. Many properties of F -supplemented modules are true for any

lattice and sometimes their proofs can be obtained by arranging their proofs in modules. In

this thesis, generalization of some known properties and results about F -supplemented and

amply F -supplemented modules to modular lattices have been studied. Examples showing

that not every generalization is possible are given. In this study, it was mostly preferred to

present results whose proofs might be different from those in modules. Some proven results

for lattices give new results for modules. In addition, proofs of some results for lattices are

easier to obtain than known proofs of these results for modules.

In Chapter 2 some preliminary information which will be needed in the next sections of the

thesis are recalled.

In Chapter 3 some properties of f -small elements are presented. An example showing that

a homomorphic image of an f -small element under a lattice homomorphism need not be

f -small unlike the module case is given (see Example 3.1.3).
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In Chapter 4 f -supplemented lattices are investigated. It is shown for a compactly generated

lattice L that if a ≤ b and a is an f -supplement in L, then a is an f-supplement in b/0.

Moreover if b is an f -supplement in L, then a is an f -supplement in L if and only if a is an

f -supplement in b/0 (see Theorem 4.1.4). It is proved that if b is an f -supplement of c in a

compactly generated lattice L, then for a ≤ c, (b ∨ a) is an (f ∨ a)-supplement of c in 1/a

(see Proposition 4.1.5). Let a ≤ b be elements of a compactly generated lattice L. If a is

an f -supplement in L and b is an (f ∨ a)-supplement in 1/a, then b is an f -supplement in

L (see Proposition 4.1.8). Let L be a compactly generated lattice and c be an f -supplement

of b in L. It is shown that if a ≤ b and a ∨ c = 1, then c is an f -supplement of a (see

Proposition 4.2.2). It is obtained that an f -supplement element in a compactly generated

lattice L is compact (see Proposition 4.2.3). If c is an f -supplement of b and a ≪f L in

a compactly generated lattice L, then c is an f -supplement of a ∨ b in L (see Proposition

4.2.4). It is proved that if L is a compactly generated lattice, then f -radical of L is the join

of all f -small elements of L (see Theorem 4.2.9). If L is a compact lattice, then f -radical of

L is an f -small element of L (see Proposition 4.2.10). It is shown for a compactly generated

compact lattice L that if c is an f -supplement of b in L and if a ≪f L, then a ∧ c ≪f

c/0 and radf (c/0) = c ∧ radf (L) (see Proposition 4.2.11). It is obtained for a compactly

generated lattice L that L is f -supplemented if and only if the quotient sublattice 1/f is

supplemented (see Corollary 4.2.13). It is proved that the finite join of f -supplemented

principal ideals is also f -supplemented (see Proposition 4.2.15). It is also proved that if

a compactly generated compact lattice L is f -supplemented, then the quotient sublattice

1/ radf (L) of L is semiatomic (see Proposition 4.2.18). It is shown for a compact lattice L

that L is f -supplemented if and only if every maximal element m of L with f ≤ m has an

f -supplement in L (see Theorem 4.2.28). It is also shown for a compact lattice L that if each

sublattice in a collection {ai/0}i∈I of sublattices of L with 1 =
∨
i∈I

ai such that f ≤ ai for

each i ∈ I is f -supplemented, then L is also f -supplemented (see Theorem 4.2.29).

In Chapter 5 amply f -supplemented lattices are investigated. It is proved that if a lattice L is

amply f -supplemented, then the quotient sublattice 1/a is amply (f ∨ a)-supplemented for

every element a of L (see Proposition 5.1.2). It is shown that if L is an amply f -supplemented

2



lattice, then for every f -supplement a in L, a/0 is amply f -supplemented (see Proposition

5.1.3). Let a, b be elements of a lattice L with a ∨ b = 1. It is proved that if a and b have

ample f -supplements in L, then a∧ b has ample f -supplements in L (see Proposition 5.1.5).

Let a, b be elements of a lattice L such that b ≪f L. It is shown that if a ∨ b has ample

f -supplements in L, then a has also ample f -supplements in L (see Proposition 5.1.6). It is

proved that L is amply f -supplemented if and only if every element a of L is of the form

a = x ∨ y with x/0 is f -supplemented and y ≪f L if and only if for every element a of L,

there is an element x ≤ a such that the sublattice x/0 is f -supplemented and the inequality

x ≤ a is f -cosmall in L (see Theorem 5.1.8). It is obtained that if the sublattice a/0 is

f -supplemented for every element a of a lattice L, then L is amply f -supplemented (see

Corollary 5.1.9). Finally a new result for modules is obtained. Namely if every submodule

of a left R-module M is F -supplemented, then M is amply F -supplemented (see Corollary

5.1.10).
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2. PRELIMINARIES

In this chapter, some preliminary information which will be needed is given. Definitions,

examples, propositions and theorems which are not cited here can be found in [2], [3], [4],

[5], [6], [7], [8], [9], [10] and [11].

2.1 Ordered Sets

Definition 2.1.1. Let P be a set. A partial order on P is a binary relation ≤ on P such that,

for all x, y, z ∈ P ,

(i) x ≤ x;

(ii) x ≤ y and y ≤ x imply x = y;

(iii) x ≤ y and y ≤ z imply x ≤ z

These conditions are referred to, respectively, as reflexivity, antisymmetry and transitivity.

Definition 2.1.2. A set P equipped with an order relation ≤ is said to be a partially ordered

set or shortly poset and when it is necessary to specify the order relation it is denoted by

(P,≤). Usually it is simply said that ‘‘let P be an ordered set”.

Definition 2.1.3. Let P be a partially ordered set. Then P is a chain if, for all x, y ∈ P ,

either x ≤ y or y ≤ x.

Definition 2.1.4. A subset P ′ of a poset (P,≤P ) is called a subposet if it is partially ordered

by restriction (i.e., x ≤P ′ x′ by definition if and only if x, x′ ∈ P and x ≤P x′).

Definition 2.1.5. Let P be a partially ordered set and x, y ∈ P . If x ≤ y and x ̸= y, then we

write x < y.

Definition 2.1.6. Let P be a partially ordered set. If for all x, y ∈ P , x < y and x ≤ z < y

means x = z; or equivalently, if x < y in a poset P and there is no element z ∈ P such that

x < z < y, then we say that x is covered by y (or y covers x), which is denoted by x ≺ y.
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Definition 2.1.7. Given any partially ordered set (P,≤) we can form a new partially ordered

set P ◦ by defining x ≤P ◦ y if and only if y ≤ x. The set P ◦ is called the dual of P .

Definition 2.1.8. Let P be a partially ordered set and let Q ⊆ P . Then a ∈ Q is a maximal

element of Q if a ≤ x and x ∈ Q imply a = x. The set of maximal elements of Q is denoted

by MaxQ. Suppose that Q takes an order relation from P : if x, y ∈ Q, then x ≤Q y if and

only if x ≤P y. In this case, Q has an order relation with the order inherited from P . If there

exists an element T of Q such that x ≤ ⊤ with the order inherited from P for all x ∈ Q,

then MaxQ = {⊤}. In this case ⊤ is called the greatest (or maximum) element of Q.

Definition 2.1.9. Let P be a partially ordered set and let Q ⊆ P . Then a ∈ Q is a minimal

element of Q if a ≤ x and x ∈ Q imply a = x. The set of minimal elements of Q is denoted

by MinQ. Suppose that Q takes an order relation from P : if x, y ∈ Q, then x ≤Q y if and

only if x ≤P y. In this case, Q has an order relation with the order inherited from P . If there

exists an element ⊥ of Q satisfying the condition ⊥≤ x with the order inherited from P for

all x ∈ Q, then MinQ = {⊥}. In this case ⊥ is called the least (or minimum) element of Q.

Remark 2.1.10. Maximal elements need not exist. For example in the subset Q of P(N)

consisting of all subsets of N other than N itself, there is no top element, but N\{n} ∈ MaxQ

for each n ∈ N. The subset of P(N) consisting of all finite subsets on N has no maximal

elements.

2.2 Lattices and Complete Lattices

Definition 2.2.1. Let P be a partially ordered set and let S ⊆ P . An element x ∈ P is an

upper bound of S if s ≤ x for all s ∈ S. Similarly, an element x ∈ P is a lower bound of S

if x ≤ s for all s ∈ S. The set of all upper bounds of S is denoted by Su and the set of all

lower bounds by Sl:

Su = {x ∈ P | s ≤ x,∀s ∈ S};

Sl = {x ∈ P | s ≥ x,∀s ∈ S}.

5



Definition 2.2.2. Let P be a partially ordered set and let S ⊆ P . If Su has a least element

x, then x is called the least upper bound of S and denoted by supS=
∨
S. Equivalently, x is

the least upper bound of S if

(i) x is an upper bound of S, and

(ii) x ≤ y for all upper bounds y of S.

If S = {x, y}, then sup{x, y} is denoted by x ∨ y.

Definition 2.2.3. Let P be an partially ordered set and let S ⊆ P . If Sl has a greatest element

x, then x is called the greatest lower bound of S and denoted by inf S=
∧
S. Equivalently, x

is the least upper bound of S if

(i) x is an lower bound of S, and

(ii) y ≤ x for all lower bounds y of S.

If S = {x, y}, then inf{x, y} is denoted by x ∧ y.

Definition 2.2.4. Let P be a non-empty ordered set.

(i) If x ∨ y and x ∧ y exist for all x, y ∈ P , then P is called a lattice.

(ii) If
∨
S and

∧
S exist for all S ⊆ P , then P is called a complete lattice.

Lemma 2.2.5. [6, 2.8] Let L be a lattice and let a, b ∈ L. Then the following are equivalent:

(i) a ≤ b

(ii) a ∨ b = b

(iii) a ∧ b = a

Theorem 2.2.6. [3, Proposition 3.1.1] Let L be a lattice. Then for any a, b, c ∈ L the

following are satisfied.

6



(i) a ∨ (b ∨ c) = (a ∨ b) ∨ c, a ∧ (b ∧ c) = (a ∧ b) ∧ c;

(ii) a ∨ b = b ∨ a, a ∧ b = b ∧ a;

(iii) a ∧ (a ∨ b) = a, a ∨ (a ∧ b) = a;

(iv) a ∨ a = a, a ∧ a = a.

Conversely, if L is a set with two binary operators ∨,∧ satisfying (i)-(iii), then (iv) also holds

and a partial ordering may be defined on L by the rule

a ≤ b if and only if a ∨ b = b.

Relative to this ordering L is a lattice such that the join of a, b is a ∨ b = sup{a, b} and the

meet is a ∧ b = inf{a, b}.

Proof. (ii) Since sup{a, b} = a ∨ b, we can write a ∨ b as b ∨ a. A similar remark applies

to inf{a, b} = a ∧ b.

(i) Likewise the supremum of {a, b, c} can be written as a ∨ (b ∨ c) or (a ∨ b) ∨ c.

(iii) Since a ∧ b ≤ a ≤ a ∨ b, (iii) holds by Lemma 2.2.5.

(iv) This is a trivial consequence of the definition. Also if we replace b by a∧ a in a∧ (a∨

b) = a, we get

a = a ∧ (a ∨ (a ∧ a)) = a ∧ a by a ∨ (a ∧ b) = a.

Similarly, we get a ∨ a = a.

Now let L be a set with two operators ∨, ∧ satisfying (i)-(iii). Then the operators ∨, ∧

also satisfy (iv) as we just seen in the proof of (iv). Furthermore, a ∨ b = b if and only

if a ∧ b = a. If a ∨ b = b, then by (iii)

a ∧ b = a ∧ (a ∨ b) = a

7



and if a ∧ b = a, again by (iii)

a ∨ b = (a ∧ a) ∨ b = b

holds. If we define the relation ’≤’ by a ≤ b if and only if a ∨ b = b, then the below

property holds:

a ≤ b and b ≤ c ⇒ a ∨ b = b and b ∨ c = c;

hence according to (i)

c = b ∨ c = (a ∨ b) ∨ c = a ∨ (b ∨ c) = a ∨ c

therefore a ≤ c. Moreover a ≤ a by (iv). If a ≤ b, b ≤ a, then

b = a ∨ b = b ∨ a = a

by (ii).

Theorem 2.2.7. [2, Theorem 1.2] A poset (L,≤) is a complete lattice if and only if each

subset of L, including the empty subset, has a meet.

Proof. (⇒) It is clear by the definition of complete lattice.

(⇐) Let B be an arbitrary subset of L and

C = {x ∈ L | ∀b ∈ B, b ≤ x}

be the subset of all the upper bounds of B in L. If we take u = inf C, then u ≤ c for all

c ∈ C and if d ≤ c for all elements c of C and an element l of L, then d ≤ u. Therefore

b ≤ u for all b ∈ B by definition of C. If e ∈ L is an upper bound of B, then by definition

e ∈ C and u ≤ e. Thus u = supB.

8



The dual of this theorem is as follows:

Theorem 2.2.8. A poset L is a complete lattice if and only if every subset of L, including the

empty subset, has a supremum.

In any lattice L, each finite (nonempty) subset F has a sup and an inf, as an easy induction

shows. Explicitly the sup and inf of {a1, . . . , an} are given by a1 ∨ a2 ∨ . . . ∨ an and a1 ∧

a2 ∧ . . . ∧ an, respectively. Here by Theorem 2.2.6 (i), we may omit brackets, by (iv),

omit repetitions, and order of the factors is immaterial, commutativity is given by (ii).

Consequently,
∨

F and
∧

F can be defined for a finite nonempty subset F of a lattice.

Definition 2.2.9. Let L be a lattice. We say L has a one if there exists 1 ∈ L such that

a ∧ 1 = a for all a ∈ L. Dually, L is said to have a zero if there exists 0 ∈ L such that

a ∨ 0 = a for all a ∈ L. A lattice possessing 0 and 1 is called a bounded lattice.

For any subset S of a poset L is a poset. But even if L is a lattice, S need not be a lattice.

Definition 2.2.10. If a subset S of a lattice L is closed under the operators ∨, ∧ in L, in other

words if given any a, b ∈ S, a ∨ b, a ∧ b ∈ S, then S is called a sublattice of L. In this case,

S is also a lattice (see [3, p.54] or [2, p.6]).

2.3 Lattice Homomorphisms

Definition 2.3.1. Let P and Q be two partially ordered sets. A map φ : P → Q is said to be

(i) order-preserving (or monotone) if x ≤ y in P implies φ(x) ≤ φ(y) in Q for all

x, y ∈ P ;

(ii) an order-embedding if for all x, y ∈ P , x ≤ y in P if and only if φ(x) ≤ φ(y) in Q;

(iii) an order-isomorphism if it is an order-embedding which maps P onto Q. If there is an

order-isomorphism defined on P onto Q, P and Q are called ordered isomorphic sets.
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Theorem 2.3.2. [6, 1.17] Let P and Q be finite ordered sets and φ : P −→ Q be a bijective

map. Then the following are equivalent:

(i) φ is an order-isomorphism;

(ii) x < y in P if and only if φ(x) < φ(y) in Q;

(iii) x ≺ y in P if and only if φ(x) ≺ φ(y) in Q.

Proof. (i) ⇔ (ii) Clear by definition.

(ii) ⇒ (iii) Let x ≺ y ∈ P . Then x < y and therefore φ(x) < φ(y) ∈ Q by (ii). Now

assume that there exists w ∈ Q such that φ(x) < w < φ(y). Since φ is onto, there exists

u ∈ P such that w = φ(u). So x < u < y by (ii). This is a contradiction. Therefore

φ(x) ≺ φ(y) ∈ Q. Suppose conversely φ(x) ≺ φ(y) ∈ Q. Then φ(x) < φ(y) and therefore

x < y ∈ P by (ii). Now suppose that there exists u ∈ P such that x < u < y. Since φ is

one-to-one, φ(x) < φ(u) < φ(y). This contradicts with the fact that φ(x) ≺ φ(y). Thus

x ≺ y.

(iii) ⇒ (ii) Let x < y in P . Then there exist elements such that

x = x0 ≺ x1 ≺ . . . ≺ xn = y

By (iii)

φ(x) = φ(x0) ≺ φ(x1) ≺ . . . ≺ φ(xn) = φ(y).

Hence φ(x) < φ(y). The other hand can be proved by using surjectivity of φ.

Definition 2.3.3. Let L and K be lattices. A map f : L −→ K is said to be a lattice

homomorphism if f is join-preserving and meet-preserving, that is, for all a, b ∈ L the

following holds:

(i) f(a ∨ b) = f(a) ∨ f(b)

(ii) f(a ∧ b) = f(a) ∧ f(b)
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A bijective lattice homomorphism is said to be a lattice isomorphism. If f : L −→ K is a

one-to-one homomorphism, then the sublattice f(L) of K is isomorphic to L and we refer to

f as an embedding homomorphism of L into K.

Proposition 2.3.4. [2, Remark 1.3] The inverse of a lattice isomorphism is also a lattice

isomorphism.

Proof. Let f : L −→ K be a lattice isomorphism and a, b ∈ L. Since

f(f−1(a ∨ b)) = a ∨ b = f(f−1(a)) ∨ f(f−1(b)) and

f(f−1(a ∧ b)) = a ∧ b = f(f−1(a)) ∧ f(f−1(b)) , then

f−1(a ∨ b) = f−1(a) ∨ f−1(b) and f−1(a ∧ b) = f−1(a) ∧ f−1(b).

Proposition 2.3.5. [2, Remark 1.4] Each lattice homomorphism is an order homomorphism.

The converse is not true.

Proof. Let f : L −→ K be a lattice homomorphism. Then for all a, b ∈ L the following

equalities hold:

f(a ∨ b) = f(a) ∨ f(b) and f(a ∧ b) = f(a) ∧ f(b).

Now we know by Lemma 2.2.5 that a ≤ b if and only if a ∨ b = b and a ∨ b = b if and only

if a ∧ b = a. Thus f(b) = f(a ∨ b) = f(a) ∨ f(b) if and only if f(a) ≤ f(b).

Example 2.3.6. For a nonempty set X and a relation (X,X;R) consider f : P(X) −→

P(X) defined by f(A) = R(A) where R(A) = {x ∈ X | ∃a ∈ A : (a, x) ∈ R} (also called

the section of R after A) for each subset A ∈ P(X). f is an order morphism but not a lattice

morphism. Notice that

f(A ∪ A′) = R(A ∪ A′) = R(A) ∪R(A′) = f(A) ∪ f(A′)
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holds but only

f(A ∩ A′) = R(A ∩ A′) ⊆ R(A) ∩R(A′) = f(A) ∩ f(A′)

holds in general. If we take X = R and R = {(x, y) ∈ R2 | y = x2}. The middle equality

fails for A = (−1, 0] and A′ = [0, 1].

Proposition 2.3.7. [2, Remark 1.5] A function between two lattices is an order-isomorphism

if and only if it is a lattice isomorphism.

Proof. (⇒) Let f : L −→ K be a lattice isomorphism. Since a ∧ b ≤ a and a ∧ b ≤ b,

f(a ∧ b) ≤ f(a) and f(a ∧ b) ≤ f(b)

Therefore, f(a∧ b) is a lower bound for f(a) and f(b). If c′ is another lower bound for f(a)

and f(b), c′ ≤ f(a) and c′ ≤ f(b). Now suppose there exists c ∈ L such that f(c) = c′.

Since f−1 is also an order-isomorphism,

c = f−1(c′) ≤ f−1(f(a)) = a and c = f−1(c′) ≤ f−1(f(b)) = b

therefore a ∧ b ≤ c. Since f is an order-isomorphism,

f(a ∧ b) ≤ f(c) = c′.

Hence

f(a ∧ b) = inf{f(a), f(b)}.

Similarly, since a ≤ a ∨ b and b ≤ a ∨ b,

f(a) ≤ f(a ∨ b) and f(b) ≤ f(a ∨ b).

Therefore f(a ∨ b) is an upper bound for f(a) and f(b). If d′ is another upper bound for

f(a) and f(b), then f(a) ≤ d′ and f(b) ≤ d′. Now suppose there exists d ∈ L such that
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f(d) = d′. Since f−1 is also an order-isomorphism,

a = f−1(a) ≤ f−1(d′) = d and b = f−1(b) ≤ f−1(d′) = d

thus d ≤ a ∨ b. Since f is an order-isomorphism,

d′ = f(d) ≤ f(a ∨ b).

Hence

f(a ∨ b) = sup {f(a), f(b)}.

(⇐) It is clear by Proposition 2.3.5.

2.4 Modular Lattices

Lemma 2.4.1. [6, Lemma 4.1] Let L be a lattice and let a, b, c ∈ L. Then the following

properties hold:

(i) a ∧ (b ∨ c) ≥ (a ∧ b) ∨ (a ∧ c), and dually;

(ii) a ≥ c implies a ∧ (b ∨ c) ≥ (a ∧ b) ∨ c, and dually;

(iii) (a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

Proof. (i) a ∧ b ≤ b ∨ c and a ∧ c ≤ b ∨ c. On the other hand a ∧ b ≤ a and a ∧ c ≤ a.

Hence the following inequalities can be written:

(a ∧ b) ∨ (a ∧ c) ≤ b ∧ c,

(a ∧ b) ∨ (a ∧ c) ≤ a.

13



Then by these two inequalities we get

(a ∧ b) ∨ (a ∧ c) ≤ a ∧ (b ∨ c).

(ii) Let c ≤ a. Since c ≤ b ∨ c, (a ∧ b) ≤ a and (a ∧ c) ≤ b ≤ b ∨ c, the following

inequalities can be written:

c ≤ a ∧ (b ∨ c),

a ∧ b ≤ a ∧ (b ∨ c).

Then by these two inequalities we get

(a ∧ b) ∨ c ≤ a ∧ (b ∨ c).

(iii) Since a ∧ b ≤ a ∨ b, a ∧ b ≤ b ∨ c and a ∧ b ≤ a ∨ c, we have

a ∧ b ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

Since b ∧ c ≤ a ∨ b, b ∧ c ≤ b ∨ c and b ∧ c ≤ a ∨ c, we have

b ∧ c ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

Similarly since c ∧ a ≤ a ∨ b, c ∧ a ≤ b ∨ c and c ∧ a ≤ c ∨ a, we have

c ∧ a ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).

Therefore by these three inequalities, we get

(a ∧ b) ∨ (b ∧ c) ∨ (c ∧ a) ≤ (a ∨ b) ∧ (b ∨ c) ∧ (c ∨ a).
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Definition 2.4.2. Let L be a lattice. If L satisfies the modular law, then L is called a modular

lattice.

Modular Law: If for all a, b, c ∈ L, a ≥ c implies a ∧ (b ∨ c) = (a ∧ b) ∨ c.

Example 2.4.3. Let M be a left R-module and S(M) be the set of all submodules of M . The

set (S(M),≤) is a poset where ≤ is shown as being submodule. For N,K ∈ S(M), S(M)

is a complete modular lattice defined by the operators ∨ and ∧ with

N ∨K = N +K,N ∧K = N ∩K.

It is known by Lemma 2.4.1 (i) that if a ≥ c for all a, b, c ∈ L, then the following inequality

holds:

a ∧ (b ∨ c) ≥ (a ∧ b) ∨ c.

Therefore if for every a, b, c ∈ L, a ≥ c implies a∧ (b∨ c) ≤ (a∧ b)∨ c, then L is a modular

lattice.

Proposition 2.4.4. [8, Theorem 85 and Theorem 89] Let L be a modular lattice.

(i) Every sublattice of L is also a modular lattice.

(ii) The image of L under a lattice homomorphism is also a modular lattice.

Proof. (i) Let S be a sublattice of a modular lattice L and a, b, c ∈ S such that b ≤ a.

Since L is modular, the following equality holds:

a ∧ (b ∨ c) = b ∨ (a ∧ c).

Since S is the sublattice, for every element a, b, c taken from S

a ∧ (b ∨ c) = b ∨ (a ∧ c) ∈ S.
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Therefore, modular law is also provided in S. Thus S is also a modular lattice.

(ii) Let K be the image of L under a lattice homomorphism f and x, y, z ∈ K. It is enough

to show that

x ∧ (y ∨ z) = (x ∧ z) ∨ y

while x ≥ y. Let f(a) = x and f(c) = z for some a, c ∈ L. Then by [8, Theorem 82],

there exists at least one b ∈ L such that f(b) = y and a ≥ b. Since L is modular, the

following inequality holds:

a ∧ (b ∨ c) ≤ b ∨ (a ∧ c).

Therefore

f(a ∧ (b ∨ c)) = f((a ∧ c) ∨ b).

Now

f(a ∧ (b ∨ c)) = f(a) ∧ (f(b) ∨ f(c)) ≤ (f(a) ∧ f(c)) ∨ f(b) = f((a ∧ c) ∨ b).

This means that x ∧ (y ∨ z) ≤ (x ∧ z) ∨ y. Hence K is also modular.

Lemma 2.4.5. [2, Lemma 12.3] In any modular lattice

[(c ∨ d) ∧ b] ≤ [c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)]

holds for every b, c, d ∈ L.

Proof. Since c ∧ (b ∨ d) ≤ b ∨ c, the following equation can be written by modular law:

[c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)] = [(c ∧ (b ∨ d)) ∨ d] ∧ (b ∨ c).
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If we apply the modular law again using that d ≤ b ∨ d, we can write the equality

[(c ∧ (b ∨ d)) ∨ d] = (c ∨ d) ∧ (b ∨ d)

By the two equality above, we obtain

[c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)] = [(c ∧ (b ∨ d)) ∨ d] ∧ (b ∨ c) = [(c ∨ d) ∧ (b ∨ d)] ∧ (b ∨ c).

Since b ≤ (b ∨ d) ∧ (b ∨ c), the following inequality holds:

(c ∨ d) ∧ b ≤ [(c ∨ d) ∧ (b ∨ d)] ∧ (b ∨ c).

Thus we obtain the conclusion that

[(c ∨ d) ∧ b] ≤ [c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)].

Definition 2.4.6. A sublattice {x ∈ L | a ≤ x ≤ b} of a lattice L is called a quotient

sublattice and it is denoted by b/a.

Theorem 2.4.7. [2, Theorem 1.5] Let a and b be elements in a modular lattice L. Then the

quotient sublattices (a ∨ b)/b and a/(a ∧ b) are isomorphic.

Proof. Let

f : (a ∨ b)/b → a/(a ∧ b)

be defined by f(x) = x ∧ a for all x ∈ (a ∨ b)/b and

g : a/(a ∧ b) → (a ∨ b)/b
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be defined by g(y) = y ∨ b for all y ∈ a/(a ∧ b). In this case, f and g are mutually inverse

lattice homomorphisms. Therefore

(a ∨ b)/b ∼= a/(a ∧ b).

2.5 Compactly Generated Lattices

Definition 2.5.1. If an element p of a complete lattice L covers 0, i.e. (0 ≺ p), p is called an

atom. The set of all atoms in a lattice L is denoted by A(L) (see [11]).

Definition 2.5.2. If 1 is the supremum of atoms in a complete lattice L, then L is called a

semiatomic lattice.

Definition 2.5.3. [11] A complete lattice L is said to be upper continuous, if for every a ∈ L

and for every chain C ⊆ L,

a ∨ (
∨
x∈C

x) =
∨
x∈C

(a ∧ x).

Definition 2.5.4. Let c be an element of a lattice L. If every subset S of L that satisfies

the condition c ≤
∨

S has a finite subset F such that c ≤
∨
F , then c is called a compact

element (see [10]).

Lemma 2.5.5. Let L be a complete lattice, c1 and c2 be two compact elements of L. Then

c1 ∨ c2 ∈ L is also compact (see [7]).

Proof. Let c1 ∨ c2 ≤
∨

S for every subset S in L. Then c1 ≤
∨

S and c2 ≤
∨
S. Since c1

and c2 are compact, there exist finite subsets F1, F2 of S such that c1 ≤
∨
F1 and c2 ≤

∨
F2.

Therefore

c1 ∨ c2 ≤
(∨

F1

)
∨
(∨

F2

)
=

∨
(F1 ∨ F2).

Here clearly F1 ∨ F2 ⊆ S is finite.

Corollary 2.5.6. [7, Lemma 2.1] Each finite join of compact elements is a compact element.

18



Definition 2.5.7. ([2, p.22]) If 1 ∈ L is compact in a complete lattice L, then L is said to be

compact.

Lemma 2.5.8. [2, Lemma 2.4] Let L be a compact lattice and 1 ̸= a ∈ L. Then the sublattice

1/a has at least one maximal element which is different from 1.

Proof. S = 1/a− {1} ≠ by hypothesis. Moreover, since 1 is compact, S contains the joins

of the chains in S and therefore Zorn’s Lemma can be applied. If C ⊆ S is any chain, then∨
C = 1. Assume that

∨
C = 1. Therefore, since 1 is compact, there exists at least one

element c0 ∈ C such that 1 ≤ c0 or 1 = c0 and this is a contradiction. Thus there exists at

least one maximal element in 1/a which is different from 1.

Definition 2.5.9. If every element in a complete lattice L is a join of compact elements, then

L is called a compactly generated lattice (see [10]).

Proposition 2.5.10. [4, Lemma 2] Every compactly generated lattice is upper continuous.

Proof. For any lattice L and for every chain C in L, the following inequality holds

∨
x∈C

(a ∧ x) ≤ a ∧
(∨

C
)
.

Let us obtain inverse of this inequality for compactly generated lattices by using special way:

if for every compact element c and any two elements x, y in L, c ≤ x requires c ≤ y, then

x ≤ y, because every element is a join of compact elements. Let c be a compact element

satisfying the condition c ≤ a ∧
(∨

C
)

in L. Then c ≤
∨

C and thus for a proper x0 ∈ C,

c ≤ x0. Moreover, c ≤ a. Hence

c ≤ a ∧ x0 ≤
∨
x∈C

(a ∧ x).

Lemma 2.5.11. [2, Exercise 2.6] Let a be an element of an upper continuous complete lattice

L. Then the compact elements in a/0 are exactly the compact elements of L that belong to

a/0.
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Proof. Let c ∈ a/0 be compact in L. Therefore it is also compact in a/0. Suppose now that

c ∈ a/0 be compact only in a/0. If c ≤
∨
C for a chain C ⊆ L, then

c = a ∧ c ≤ a ∧
(∨

C
)
=

∨
x∈C

(a ∧ x).

So
∨
x∈C

(a ∧ x) is also a cover of c in a/0. Thus there exists a finite chain F ⊆ C such that

c ≤ a ∧
∨
x∈F

(a ∧ x).

Therefore ∨
x∈F

(a ∧ x) = a ∧ (
∨
x∈F

x) = a ∧ x0

for an x0 ∈ F , i.e. c ≤ a ∧ x0.

Lemma 2.5.12. [2, Exercise 2.7] Let L be a compactly generated lattice and a be an element

of L. Then a/0 is also compactly generated.

Proof. Every compactly generated lattice is upper continuous by Proposition 2.5.10.

Therefore, we know that for all a ∈ L, the compact elements in a/0 are exactly the compact

elements of L that belong to a/0 by Lemma 2.5.11. Therefore a/0 is also compactly

generated.

Lemma 2.5.13. [2, Exercise 2.9]

(i) If c is a compact element in a complete lattice L and a ∈ L, then c ∨ a is compact in

1/a.

(ii) If L is a compact lattice and a ∈ L, then 1/a is also a compact lattice.

(iii) If L is a compactly generated lattice, then the quotient sublattice 1/a is also compactly

generated for every element a of L.
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Proof. (i) Let c ∈ L be compact and c ∨ a ≤
∨
i∈I

ai for {ai}i∈I ⊆ 1/a. Then c ≤
∨
i∈I

ai.

Since c is compact in L, there exists a finite subset F ⊆ I such that c ≤
∨
i∈F

ai.

Therefore

c ∨ a ≤ (
∨
i∈F

ai) ∨ a =
∨
i∈F

(ci ∨ a).

(ii) Taking c = 1 it is the special case of (i).

(iii) Let x ∈ 1/a. Since L is a compactly generated lattice and x ∈ L, x =
∨
i∈I

ci for some

compact elements {ci}i∈I ⊆ L. Therefore, we can write

x = x ∨ a = (
∨
i∈I

ci) ∨ a =
∨
i∈I

(ci ∨ a).

If ci is compact in L for all i ∈ I , then the element ci ∨ a is also compact in 1/a by (i).
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3. SOME GENERALIZATIONS OF SMALL

ELEMENTS

3.1 f -Small Elements

Throughout L will denote an arbitrary complete modular lattice with smallest element 0 and

greatest element 1, f will denote an element of L such that f ̸= 1 unless otherwise stated.

Definition 3.1.1. An element a of L is said to be f-small in L if a ∨ b ̸= 1 holds for every

f ≤ b ̸= 1. It is denoted by a ≪f L.

Remark 3.1.2. It is shown in [1, Lemma 1 (1)] that a homomorphic image of an F -small

submodule under a module homomorphism is F -small. The following example shows that

this fact need not be true for lattices. That is a homomorphic image of an f -small element

under a lattice morphism need not be f -small.

Example 3.1.3. [12, Example 1.1] Let A = {1, 2, 3, 6, 12} and B = {1, 2, 3, 6}. Consider

the lattices (A, |) and (B, |) where | is the divisibility relation: x | y means x divides y.

Consider the lattice morphism g : (A, |) → (B, |) defined by g(k) = k for k = 1, 2, 3, 6 and

g(12) = 6. Clearly, 3 ≪2 A since 3 ∨ x ̸= 12 for all 2 ≤ x < 12. But g(3) = 3 ̸≪2 B since

3 ∨ 2 = 6 whilst 2 ̸= 6.

Remark 3.1.4. We will write a < b if a ≤ b and a ̸= b.

Lemma 3.1.5. [12, Lemma 1.2 (1)] Let a < b be elements in L. If a ≪(f∧b) b/0, then

a ≪f L.

Proof. Let a∨x = 1 for some f ≤ x ∈ L. Then we have b = b∧1 = b∧(a∨x) = a∨(b∧x)

by modular law which we have for modular lattices. Since a ≪(f∧b) b/0 and f ∧ b ≤ b ∧ x,

b ∧ x = b and therefore x = a ∨ x = 1.

Lemma 3.1.6. [12, Lemma 1.2 (2)] Let a < b be elements in L. If a ≪(f∧b) b/0, then

a ∨ c ≪[(f∧b)∨c] (b ∨ c)/c for every c in L.
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Proof. Let (a ∨ c) ∨ x = b ∨ c for an element x ∈ (b ∨ c)/c with (f ∧ b) ∨ c ≤ x. Then we

have b = b ∧ (b ∨ c) = b ∧ [a ∨ (c ∨ x)] and therefore b = a ∨ [b ∧ (c ∨ x)] = a ∨ (b ∧ x).

Since f ∧ b ≤ (f ∧ b) ∨ c ≤ x, f ∧ b ≤ b ∧ x. Also since a ≪(f∧b) b/0, b ∧ x = b. So b ≤ x

and therefore b ∨ c = x.

Lemma 3.1.7. [12, Lemma 1.2 (3)] Let a < b elements in L. b ≪f L if and only if a ≪f L

and b ≪(f∨a) 1/a.

Proof. (⇒) Let a ∨ x = 1 for some f ≤ x ∈ L. Since a < b, b ∨ x = 1 and since b ≪f L,

x = 1. Let b ∨ y = 1 for some f ∨ a ≤ y ∈ 1/a. Since b ≪f L and f ≤ y ∈ L, y = 1.

(⇐) Let b ∨ z = 1 for some f ≤ z ∈ L. Then b ∨ (a ∨ z) = 1 and f ∨ a ≤ z ∨ a ∈ 1/a.

Now since b ≪(f∨a) 1/a, a ∨ z = 1 and therefore z = 1 since a ≪f L.

Lemma 3.1.8. [12, Lemma 2.12] Let a and b be elements of a lattice L. a ≪f L and b ≪f L

if and only if a ∨ b ≪f L.

Proof. (⇒)Suppose that a ≪f L and b ≪f L. Let x ∈ L with f ≤ x and (a ∨ b) ∨ x = 1.

Since a ≪f L, b ∨ x = 1. Since b ≪f L, x = 1.

(⇐) Clear by Lemma 3.1.7 (3).

Lemma 3.1.9. [13, Lemma 2.4] Let a and b be elements of a lattice L such that f ≤ a and

f ≤ b. If a′ ≪f a/0 and b′ ≪f b/0, then a′ ∨ b′ ≪f (a ∨ b)/0.

Proof. Since a′ ≪f a/0, a′ ≪f (a ∨ b)/0 by Lemma 3.1.5. Similarly since b′ ≪f b/0,

b′ ≪f (a ∨ b)/0 by Lemma 3.1.5. Therefore a′ ∨ b′ ≪f (a ∨ b)/0 by Lemma 3.1.8.
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4. f -SUPPLEMENTED LATTICES

4.1 f -Supplement Elements

Definition 4.1.1. Let a, b be elements of L. b is said to be supplement of a in L if a ∨ b = 1

and a ∧ b ≪ b/0. L is called a supplemented lattice if every element of L has a supplement

in L.

Definition 4.1.2. Let a, b be elements of L. b is said to be f -supplement of a in L if b is

minimal in the set {x ∈ L | f ≤ x and a∨x = 1}. Since b is an f -supplement of an element

in L, b is called an f -supplement element. If every element of a lattice L has an f -supplement

in L, then L is called an f -supplemented lattice.

Lemma 4.1.3. [12, Lemma 1.4] Let a, b be elements of a lattice L. Then a is an f -supplement

of b in L if and only if f ≤ a and a ∨ b = 1 and a ∧ b ≪f a/0.

Proof. (⇒) Let c be an element of L with f ≤ c such that (a∧ b)∨ c = a. Then 1 = a∨ b =

[(a∧ b)∨ c]∨ b = c∨ b. Since a is minimal in the set {x ∈ L | f ≤ x and b∨ x = 1}, c = a.

(⇐) Assume that b∨y = 1 for some f ≤ y ≤ a. Then a = 1∧a = (b∨y)∧a = y∨ (a∧ b).

Since a ∧ b ≪f a/0, y = a.

The following result generalizes [1, Theorem 1].

Theorem 4.1.4. Let a ≤ b be elements of a compactly generated lattice L. Then the following

properties hold:

(1) If a is an f -supplement in L, then a is an f -supplement in b/0.

(2) If b is an f -supplement in L, then

(i) a is an f -supplement in L if and only if a is an f -supplement in b/0.

(ii) a ≪f L if and only if a ≪f b/0.
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Proof. (1) Let a be an f -supplement of x in L. Then by Lemma 4.1.3, f ≤ a, x∨ a = 1 and

x ∧ a ≪f a/0. Now by modular law we have

b = b ∧ 1 = b ∧ (x ∨ a) = a ∨ (b ∧ x).

Also a ∧ b ∧ x ≤ a ∧ x ≪f a/0. Therefore a is an f -supplement of b ∧ x in b/0.

(2) Suppose that b is an f -supplement of x in L. That is by Lemma 4.1.3,

f ≤ b, x ∨ b = 1 and x ∧ b ≪f b/0.

(i) (⇒) Clear by (1).

(⇐) Let a be an f -supplement of y in b/0. Then by Lemma 4.1.3,

f ≤ y, a ∨ y = b and a ∧ y ≪f a/0.

Now we have 1 = x∨ b = x∨ (a∨ y). Assume a′ ∨ (x∨ y) = 1 for some f ≤ a′ ≤ a. Since

f ≤ a′ ∨ y and b is an f -supplement of x in L, a′ ∨ y = b by minimality of b. Now a′ = a by

minimality of a.

(ii)(⇒) Assume that a ∨ z = b for some z ∈ L with f ≤ z ≤ b. So a ∨ (z ∨ x) = b ∨ x = 1.

Since f ≤ z ∨ x and a ≪f L, z ∨ x = 1. By modular law we have

b = b ∧ 1 = b ∧ (z ∨ x) = z ∨ (b ∧ x).

Since b ∧ x ≪f b/0, it follows that z = b. Thus a ≪f b/0.

(⇐) Clear by Lemma 3.1.5.

The following result generalizes [1, Proposition 4].

Proposition 4.1.5. Let L be a compactly generated lattice. If b is an f -supplement of c in L,

then for a ≤ c, (b ∨ a) is an (f ∨ a)-supplement of c in 1/a.
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Proof. Since b is an f -supplement of c in L,

f ≤ b, b ∨ c = 1 and b ∧ c ≪f b/0

by Lemma 4.1.3. Since f ≤ b, f ∨ a ≤ b ∨ a and since a ≤ c, 1 = b ∨ c = b ∨ c ∨ a. Also

1 = (b ∨ a) ∧ c = a ∨ (b ∧ c)

by modular law. Since b ∧ c ≪f b/0,

(b ∧ c) ∨ a ≪(f∨a) (b ∨ a)/a

by Lemma 3.1.6.

The following lemmas generalize [14, 1.24 and 2.3 (1)] from modules to modular lattices.

Lemma 4.1.6. Let a, b, c be elements of a lattice L. Assume that a∨b = 1 and (a∧b)∨c = 1.

Then a ∨ (b ∧ c) = b ∨ (a ∧ c) = 1.

Proof. By modular law we have

a ∨ (b ∧ c) = a ∨ (b ∧ a) ∨ (b ∧ c) = a ∨ [b ∧ [(b ∧ a) ∨ c]] = a ∨ (b ∧ 1) = a ∨ b = 1

and

b ∨ (a ∧ c) = b ∨ (b ∧ a) ∨ (a ∧ c) = b ∨ [a ∧ [(b ∧ a) ∨ c]] = b ∨ a = 1.

Lemma 4.1.7. Let a, b, c be elements of a lattice L. If 1 = a ∨ b, b ≤ c and c ≪ 1/b, then

(a ∧ c) ≪ 1/(a ∧ b).

Proof. Let (a ∧ c) ∨ x = 1 for some x ∈ 1/(a ∧ b). Since a ∨ b = 1, a ∨ c = 1. Then

1 = c ∨ (a ∧ x) by Lemma 4.1.6. Since c ≪ 1/b and c ∨ b ∨ (a ∧ x) = 1, b ∨ (a ∧ x) = 1.

Also 1 = x ∨ (a ∧ b) by Lemma 4.1.6 and hence x = 1. Thus (a ∧ c) ≪ 1/(a ∧ b).
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The following result generalizes [1, Proposition 5].

Proposition 4.1.8. Let a ≤ b be elements of a compactly generated lattice L. If a is an

f -supplement in L and b is an (f ∨ a)-supplement in 1/a, then b is an f -supplement in L.

Proof. Let a be an f -supplement of x in L. That is

f ≤ a, a ∨ x = 1 and a ∧ x ≪f a/0

by Lemma 4.1.3. Let b be an (f ∨ a)-supplement of y in 1/a. That is

a ≤ y ≤ 1, f ∨ a ≤ b, b ∨ y = 1 and b ∧ y ≪(f∨a) b/a

by Lemma 4.1.3. We want to show that b is an f -supplement of x ∧ y in L. a ≤ b and a ≤ y

implies a ≤ b∧y and therefore 1 = a∨x = (b∧y)∨x. Also since 1 = b∨y, 1 = b∨ (x∧y)

by Lemma 4.1.6. Since

b = b ∧ 1 = b ∧ (a ∨ x) = a ∨ (b ∧ x)

by modular law,

b ∧ (x ∧ y) ≪ b/(a ∧ x)

by Lemma 4.1.7. So we have

b ∧ (x ∧ y) ≪[f∨(a∧x)] b/(a ∧ x).

Since a ∧ x ≪f a/0, a ∧ x ≪f b/0 by Lemma 3.1.5. So

b ∧ (x ∧ y) ≪f b/0

by Lemma 3.1.6. This means that b is an f -supplement of x ∧ y in L.
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4.2 f -Supplemented Lattices

Recall that if 1 =
∨
i∈I

xi for some elements xi ≥ a implies that 1 =
∨
i∈F

xi for some finite

subset F of I , then L is said to be compact (see [2]). If each element of L is a join of compact

elements, then L is said to be compactly generated (see [15]).

Lemma 4.2.1. Let L be a compactly generated compact lattice, f ≤ a, f ≤ b and a∨ b = 1.

Then there are compact elements f ≤ a′ ≤ a and f ≤ b′ ≤ b such that a′ ∨ b′ = 1.

Proof. Since L is compactly generated, a =
∨
i∈I

ai where f ≤ ai for each i ∈ I and b =
∨
j∈J

bj

where f ≤ bj for each j ∈ J . Now

1 = a ∨ b = (
∨
i∈I

ai) ∨ (
∨
j∈J

bj).

Since L is compact, there exist finite subsets F1 ⊆ I and F2 ⊆ J such that

1 = a ∨ b = (
∨
i∈F1

ai) ∨ (
∨
j∈F2

bj)

where a =
∨

i∈F1

ai and b =
∨

j∈F2

bj are compact by Corollary 2.5.6.

The following result generalizes [2, Proposition 12.2 (1)].

Proposition 4.2.2. Let L be a compactly generated lattice and c be an f -supplement of b in

L. If a ≤ b and a ∨ c = 1, then c is an f -supplement of a.

Proof. Suppose a ∨ c′ = 1 for some f ≤ c′ ≤ c. Since a ≤ b, b ∨ c′ = 1. Since c is an

f -supplement of b in L, it is minimal in the set {x ∈ L | f ≤ x, b ∨ x = 1}. Therefore

c′ = c.

The following result generalizes [2, Proposition 12.2 (2)].
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Proposition 4.2.3. Let L be a compactly generated compact lattice and c be an f -supplement

of b in L. Then c is compact.

Proof. Since c is an f -supplement of b in L, c is minimal in the set {x ∈ L | f ≤ x, b ∨ x =

1}. By Lemma 4.2.1, there exists a compact element c′ with f ≤ c′ ≤ c such that b ∨ c′ = 1.

Therefore c = c′ by minimality of c.

The following result generalizes [2, Proposition 12.2 (4)].

Proposition 4.2.4. Let L be a compactly generated lattice and c be an f -supplement of b in

L. If a ≪f L, then c is an f -supplement of a ∨ b in L.

Proof. Since c is an f -supplement of b in L, c is minimal in the set {x ∈ L | f ≤ x, b ∨ x =

1}. Suppose (a ∨ b) ∨ c′ = 1 for some f ≤ c′ ≤ c. Since a ≪f L and b ∨ c′ = 1. Therefore

c = c′ by minimality of c.

Definition 4.2.5. [12, Definition 11] The meet of all maximal elements m ̸= 1 of L such that

f ≤ m is called the f -radical of L. It is denoted by radf (L).

Remark 4.2.6. a ≪f L and m is a maximal element in L such that f ≤ m, then a ∨m ̸= 1

and therefore a∨m = m. So a ≤ m. This means that all f -small elements of L are less than

radf (L).

Lemma 4.2.7. [16, Proposition 2.9] Let a be an element of L. Then a ≪f L if and only if

a ∨ f ≪ 1/f .

Proof. (⇒) Let f ≤ x such that (a ∨ f) ∨ x = 1. Since a ≪f L, x = f ∨ x = 1.

(⇐) Let f ≤ x such that a ∨ x = 1. Then we have 1 = a ∨ f ∨ x. Since a ∨ f ≪ 1/f ,

x = 1.

Lemma 4.2.8. Let L be a lattice. Then radf (L) = rad(1/f).
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Proof.

rad(1/f) =
∧
i∈I

mi

where mi is a maximal element of L with f ≤ mi for all i ∈ I . Therefore

radf (L) = rad(1/f).

Theorem 4.2.9. Let L be a compactly generated lattice. Then

radf (L) =
∨
i∈I

{ci ∈ L | ci ≪f L}.

Proof. We have

rad(1/f) =
∨
i∈I

{ci ∈ L | ci ≪f L} =
∨
i∈I

{ci ∈ L | f ≤ ci, ci ≪f L} = radf (L)

by Lemma 4.2.7 and Lemma 4.2.8.

Proposition 4.2.10. If L is a compact lattice, then radf (L) ≪f L.

Proof. Let radf (L) ∨ x = 1 for some f ≤ x. Therefore radf (1/x) = 1, by Lemma 4.2.8.

Since L is compact, x = 1 and therefore radf (L) ≪f L.

The following result generalizes [1, Proposition 2].

Proposition 4.2.11. Let L be a compactly generated compact lattice and c be an

f -supplement of b in L. If a ≪f L, then a ∧ c ≪f c/0 and radf (c/0) = c ∧ radf (L).

Proof. Let (a∧ c)∨ c′ = c for some f ≤ c′ ∈ c/0. Since a∧ c ≤ a and a ≪f L, a∧ c ≪f L

by Lemma 3.1.7. Then

1 = b ∨ c = b ∨ [(a ∧ c) ∨ c′] = (a ∧ c) ∨ b ∨ c′
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and f ≤ b ∨ c′. Therefore 1 = b ∨ c′. Thus c = c′. We know that

radf (c/0) ≤ c ∧ radf (L)

is always true. Since L is compact, radf (L) ≪f L by Proposition 4.2.10. So c is an

f -supplement of b ∨ radf (L) in L. That is

f ≤ c, (b ∨ radf (L)) ∨ c = 1 and (b ∨ radf (L)) ∧ c ≪f c/0

by Lemma 4.1.3. Since radf (c/0) is a join of all f -small elements of c/0 by Theorem 4.2.9,

(b ∨ radf (L)) ∧ c ≤ radf (c/0).

Therefore

radf (L) ∧ c ≤ (b ∨ radf (L)) ∧ c ≤ radf (c/0).

The following result generalizes [1, Proposition 9].

Proposition 4.2.12. Let L be a compactly generated f -supplemented lattice. Then 1/a is

(f ∨ a)-supplemented for every element a of L.

Proof. Let b ∈ 1/a. Since L is f -supplemented, there is an f -supplement c of b in L. That is

f ≤ c, b ∨ c = 1 and b ∧ c ≪f c/0

by Lemma 4.1.3. Now by modular law and Lemma 3.1.6

b ∧ (c ∨ a) = (b ∧ c) ∨ a ≪(f∨a) (c ∨ a)/a.
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The following result generalizes [1, Theorem 2].

Corollary 4.2.13. Let L be a compactly generated lattice. L is f -supplemented if and only

if the quotient sublattice 1/f is supplemented.

Proof. (⇒) Suppose that L is f -supplemented. Then 1/f is supplemented by Proposition

4.2.12.

(⇐) Let a ∈ L. Since 1/f is supplemented, (f ∨ a) has a supplement b in 1/f . That is

(f ∨ a) ∨ b = 1 and (f ∨ a) ∧ b ≪ b/f.

Then

1 = (a ∨ f) ∨ b = a ∨ b.

Let (a ∧ b) ∨ x = b for some f ≤ x ≤ b in L. Therefore

(a ∧ b) ∨ x ∨ f = b.

Since

f ∨ (a ∧ b) = (f ∨ a) ∧ b ≪ b/f, x = b.

This means that (a ∧ b) ≪f b/0. Thus b is an f -supplement of a in L.

The following result generalizes [1, Proposition 6].

Lemma 4.2.14. Let L be a compactly generated lattice and a, b be elements of L with f ≤ a.

If a/0 is f -supplemented and a∨ b has an f -supplement in L, then b has an f -supplement in

L.

Proof. Let c be an f -supplement of a ∨ b in L and d be an f -supplement of a ∧ (b ∨ c) in

a/0. Then

f ≤ c, (a ∨ b) ∨ c = 1 and (a ∨ b) ∧ c ≪f c/0;

f ≤ d, [a ∧ (b ∨ c)] ∨ d = a and [a ∧ (b ∨ c)] ∧ d ≪f d/0
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by Lemma 4.1.3. Now since

1 = a ∨ b ∨ c = [a ∧ (b ∨ c)] ∨ d ∨ b ∨ c = d ∨ b ∨ c

and since

(b ∨ c) ∧ d = (b ∨ c) ∧ d ∧ a = [(b ∨ c) ∧ a] ∧ d ≪f d/0,

d is an f -supplement of b ∨ c in L. Since d ∈ a/0, d ≤ a and therefore b ∨ d ≤ a ∨ b. Also

(a ∨ b) ∨ c = (b ∨ d) ∨ c = 1.

Since c is an f -supplement of a ∨ b in L, c is an f -supplement of b ∨ d in L by Proposition

4.2.2. Then

(b ∨ d) ∨ c = 1 and (b ∨ d) ∧ c ≪f c/0

by Lemma 4.1.3. So by Lemma 2.4.5 and by Lemma 3.1.9, we have

b ∧ (c ∨ d) ≤ [c ∧ (b ∨ d)] ∨ [d ∧ (b ∨ c)] ≪f (c ∨ d)/0.

That is c ∨ d is an f -supplement of b in L.

The following result generalizes [1, Proposition 7].

Proposition 4.2.15. Let L be a compactly generated lattice. If f ≤ a1, f ≤ a2, a1 ∨ a2 = 1,

a1/0 and a2/0 are f -supplemented sublattices of L, then L is also f -supplemented.

Proof. For an element b of L, there is an f -supplement of a1 ∨ (a2 ∨ b) = 1 in L. Since

a1/0 is f -supplemented, a2 ∨ b has an f -supplement in L by Lemma 4.2.14. Since a2/0 is

f -supplemented, again by Lemma 4.2.14, b has an f -supplement in L.

Definition 4.2.16. If a ∨ b = 1 and a ∧ b = 0 for elements a and b of L, then we use the

notation a⊕ b = 1 and call this a direct sum. In this case a and b are called direct summands

of 1. Also a is said to be complement of b and b is said to be complement of a. If every

33



element of a lattice L has a complement in L, then L is called a complemented lattice (see

[6]).

Definition 4.2.17. Let L be a lattice and a < b be element of L. If a ≤ c < b implies c = a,

then it is said that a is covered by b. If 0 is covered by an element a of L, then a is called an

atom. A lattice L is said to be semiatomic, if 1 is a join of atoms in L (see [2]).

The following result generalizes [1, Proposition 8].

Proposition 4.2.18. Let L be a compactly generated compact lattice. If L is f -supplemented,

then the quotient sublattice 1/ radf (L) of L is semiatomic.

Proof. Since L is compactly generated, 1/ radf (L) is also compactly generated. Since L

is f -supplemented, 1/ radf (L) is (f ∨ radf (L))-supplemented by Proposition 4.2.12. Also

1/ radf (L) does not contain any f -small element of L by Remark 4.2.6. Let x ∈ 1/ radf (L).

Since 1/ radf (L) is (f ∨ radf (L))-supplemented, there is an (f ∨ radf (L))-supplement y of

x in 1/ radf (L). That is,

f ∨ radf (L) ≤ y, x ∨ y = 1 and x ∧ y ≪(f ∨ radf (L))
y/ radf (L)

by Lemma 4.1.3. Therefore x ∧ y ≪(f ∨ radf (L))
1/ radf (L) by Lemma 3.1.5. Since

L is compact, radf (L) ≪f L by Proposition 4.2.10. Therefore x ∧ y ≪f L by Lemma

3.1.7. Again by Remark 4.2.6, x ∧ y ≤ radf (L) and so x ∧ y = radf (L). This means that

1/ radf (L) is completed. Thus 1/ radf (L) is semiatomic by [2, Theorem 6.7].

Definition 4.2.19. [13, Definition 2.7] A lattice L is said to be f -local if the set {x ∈ L |

f ≤ x ̸= 1} of elements of L has the greatest element. Also an element l of L is called an

f -local element if f ≤ l and the sublattice l/0 is an f -local lattice.

Definition 4.2.20. A lattice L is said to be f -hollow if every element a of with f ≤ a ̸= 1 is

f -small.

Remark 4.2.21. Clearly a hollow lattice is f -hollow and the converse is true when f = 0. In

general f -hollow lattices need not be hollow (see [1, Example 2]).
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Lemma 4.2.22. [2, Corollary 7.2] Let L be a compact lattice. Then for every element a of

L there is a maximal element m of L such that a ≤ m.

Proof. Ω = {x ∈ L | a ≤ x, x ̸= 1}. Let Γ = {xλ | λ ∈ Λ} be a chain in Ω. Take

x =
∨
λ∈Λ

xλ. Since a ≤ xλ for all λ ∈ Λ , a ≤ x. If 1 = x =
∨
λ∈Λ

xλ, then since L is compact,

1 = x =
∨
λ∈F

xλ = xλ0 for some finite subset F of Λ and xλ0 ∈ F . This is a contradiction.

Therefore x ∈ Ω. Also x is an upper bound for Γ. So there is a maximal element m in Ω

with a ≤ m by Zorn’s Lemma.

Lemma 4.2.23. If in a lattice L there exists a largest element m such that f ≤ m ̸= 1, then

m ≪f L.

Lemma 4.2.24. Let L be a compactly generated lattice. If L is f -local with f ≤ m the

largest element, then radf (L) = m ≪f L.

Proof. Clearly radf (L) = m is the only maximal element with f ≤ m and therefore

radf (L) = m ≪f L by Lemma 4.2.23.

The following result generalizes [1, Proposition 10].

Proposition 4.2.25. A compactly generated lattice L is f -local if and only if it is f -hollow

and radf (L) ̸= 1.

Proof. (⇒) Let a be an element of L with f ≤ a ̸= 1. Since L is f -local, radf (L) is the

largest element with f ≤ radf (L). Therefore a ≤ radf (L). Since radf (L) = m ≪f L by

Lemma 4.2, a ≪f L. Also radf (L) ̸= 1.

(⇐) Suppose L is f -hollow and radf (L) ̸= 1. Since L is compactly generated, radf (L) =∨
i∈I{ci ∈ L | ci ≪f L}. Since L is f -hollow, every element a with f ≤ a ̸= 1 is f -small

in L. Hence there is a largest (f -small) element which is equal to radf (L) by Lemma 4.2.

Therefore 1 is trivially compact i.e., 1 =
∨

X implies 1 ∈ X . Then radf (L) ≪f L. Thus L

is f -local.
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Lemma 4.2.26. [13, Lemma 2.8] Let {li/0}i∈I with f ≤ li for all i ∈ I and I = {1, . . . , n}

be a finite collection of f -local sublattices of a lattice L and a be an element of L such that

a∨ (
∨
i∈I

li) has an f -supplement b in L. Then there exists a subset J of I such that b∨ (
∨
i∈J

li)

is an f -supplement of a in L.

Proof. Induction on n.

For n = 1, b is an f -supplement of a ∨ l1, i.e.

f ≤ b, (a ∨ l1) ∨ b = 1 and (a ∨ l1) ∧ b ≪f b/0.

Put c = (a ∨ b) ∧ l1. If c = l1, then l1 ≤ a ∨ b. So

1 = b ∨ (a ∨ l1) = a ∨ b

and

a ∧ b ≤ (a ∨ l1) ∧ b ≪f b/0.

Thus b is an f -supplement of a in L by Lemma 4.1.3. If c ̸= l1, then (a∨b)∧ l1 = c ≪f l1/0.

Therefore l1 is an f -supplement of c in l1/0. Now the following holds by Lemma 2.4.5 and

Lemma 3.1.9:

a ∧ (b ∨ l1) ≤ [b ∧ (a ∨ l1)] ∨ [l1 ∧ (a ∨ b)] ≪f (b ∨ l1)/0.

So b ∨ l1 is an f -supplement of a in L. Suppose that n > 1 and b is an f -supplement of

a′ ∨ (
n∨

i=2

li) in L where a′ = a∨ l1. By induction hypothesis there is a subset I ′ of {2, . . . , n}

such that b′ = b ∨ (
∨
i∈I′

li) is an f -supplement of a′ = a ∨ l1. Therefore either b′ or b′ ∨ l1 is

an f -supplement of a in L.

Lemma 4.2.27. [13, Lemma 2.9] Let m be a maximal element of L such that f ≤ m. If l is

an f -supplement of m in L, then l/0 is f -local. Moreover l ∧m is the largest element of l/0

with f ≤ l ∧m which is different from l.
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Proof. l is an f -supplement of m if and only if f ≤ l, m ∨ l = 1 and m ∧ l ≪f l/0. Let

x ∈ l/0 with f ≤ x and x ̸= l. If x ≤ m, then x ≤ l ∧m. If x ̸≤ m (x ̸≤ l ∧m), then since

m is maximal x ∨m = 1. Now

l = l ∧ 1 = l ∧ (x ∨m) = x ∨ (l ∧m).

Since l ∧m ≪f l/0, x = l. This is a contradiction. Thus l ∧m is the largest element (̸= l)

of l/0 such that f ≤ l ∧m.

Let the join of f -local elements of L be denoted by locf (L). The following result is a

generalization of [1, Corollary 7].

Theorem 4.2.28. Let L be a compact lattice. Then L is f -supplemented if and only if every

maximal element m of L with f ≤ m has an f -supplement in L.

Proof. (⇒) Since L is f -supplemented by assumption, this part is clear.

(⇐) Let a ∈ L. There is a maximal element m of L such that a ≤ m by Lemma

4.2.22. Suppose m is a maximal element of the quotient sublattice 1/ locf (L). m has an

f -supplement b in L by assumption, i.e.

f ≤ b,m ∨ b = 1 and m ∧ b ≪f b/0

by Lemma 4.1.3. Therefore b/0 is an f -local sublattice by Lemma 4.2.27. That is b is an

f -local element of L. Then b ≤ locf (L) ≤ m and so 1 = m∨ b = m, which is contradicting

with the maximality of m. So there is no maximal element in 1/ locf (L) and therefore

1/(a ∨ locf (L)) has no maximal element. Since 1/(a ∨ locf (L)) has at least one maximal

element ( ̸= 1) whenever a ∨ locf (L) ̸= 1 by [2, Lemma 2.4], a ∨ locf (L) = 1. Also since

L is compact, a ∨ (l1 ∨ . . . ∨ ln) = 1 for some f -local elements l1, . . . ln of L. Now since f

is an f -supplement of a ∨ (l1 ∨ . . . ∨ ln) = 1 in L, a has an f -supplement in L by Lemma

4.2.26.
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Using Theorem 4.2.28 we prove that if a lattice L is an arbitrary join of f -supplemented

sublattices containing f , then L is also f -supplemented.

Theorem 4.2.29. Let L be a compact lattice and {ai/0}i∈I be a collection of f -supplemented

sublattices of L with 1 =
∨
i∈I

ai and f ≤ ai for each i ∈ I . Then L is f -supplemented.

Proof. Let f ≤ m and m be a maximal element of L. If ai ≤ m for all i ∈ I , then

1 =
∨
i∈I

ai ≤ m which is a contradiction. So aj ≰ m for some j ∈ I . Therefore 1 = aj ∨m.

Since

aj/(aj ∧m) ∼= (aj ∨m)/m = 1/m,

the element aj∧m is maximal in aj/0 and f ≤ aj∧m. There is an f -supplement b of aj∧m

in aj/0 by Theorem 4.2.28. That is,

f ≤ b, (aj ∧m) ∨ b = aj and (aj ∧m) ∧ b ≪f b/0

by Lemma 4.1.3. If b ≤ m, then aj = (aj ∧m)∨ b ≤ m, which is a contradiction. So b ≰ m.

Therefore 1 = m ∨ b and m ∧ b = aj ∧m ∧ b ≪f b/0. Thus b is an f -supplement of m in

L. Hence L is f -supplemented by Theorem 4.2.28.
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5. AMPLY f -SUPPLEMENTED LATTICES

5.1 Amply f -Supplemented Lattices

Definition 5.1.1. An element a of a lattice L has ample f -supplements in L if for every

element b of L with a ∨ b = 1, the sublattice b/0 contains an f -supplement of a in L. A

lattice L is said to be amply f -supplemented if every element of L has ample f -supplements

in L (see [13]).

Recall that a homomorphic image of an f -small element under a lattice homomorphism

need not be f -small. Nevertheless, we will show that the quotient sublattice 1/a of an amply

f -supplemented lattice L is amply (f ∨ a)-supplemented by using properties of f -small

elements given in Chapter 3.

Proposition 5.1.2. If a lattice L is amply f -supplemented, then the quotient sublattice 1/a

is amply (f ∨ a)-supplemented for every element a of L.

Proof. Let x be an element of 1/a. If x ∨ y = 1 for some y ∈ 1/a, then x has a supplement

y′ ≤ y in L since L is amply supplemented, i.e.

f ≤ y′, x ∨ y′ = 1 and x ∧ y′ ≪f y′/0

by Lemma 4.1.3. Then

1 = x ∨ y′ = x ∨ (y′ ∨ a).

By modular law,

x ∧ (y′ ∨ a) = (x ∧ y′) ∨ a).

Since x ∧ y′ ≪f y′/0,

(x ∧ y′) ∨ a) ≪(f∨a) (y
′ ∨ a)/a

39



by Lemma 3.1.6 and since f ≤ y′,

f ∨ a ≤ y′ ∨ a.

Therefore y′ ∨ a is an (f ∨ a)-supplement of x in 1/a.

The following result generalizes [1, Proposition 14].

Proposition 5.1.3. If L is an amply f -supplemented lattice, then for every f -supplement a

in L, a/0 is amply f -supplemented.

Proof. Let a be an f -supplement of b in L, i.e.

f ≤ a, a ∨ b = 1 and a ∧ b ≪f a/0

by Lemma 4.1.3. Let a = x ∨ y. Then

1 = a ∨ b = x ∨ y ∨ b.

There is an f -supplement y′ of b ∨ x in L with y′ ≤ y. Now

f ≤ y′, 1 = (b ∨ x) ∨ y′ and (b ∨ x) ∧ y′ ≪f y′/0

by Lemma 4.1.3. Since

x ∧ y′ ≤ (b ∨ x) ∧ y′ ≪f y′/0,

by Lemma 3.1.7

x ∧ y′ ≪f y′/0.

By modular law we have the following equalities:

a = a ∧ 1 = a ∧ [(b ∨ x) ∨ y′] = y′ ∨ [a ∧ (b ∨ x)] = y′ ∨ [x ∨ (a ∧ b)].
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Now since f ≤ x ∨ y′ and a ∧ b ≪f a/0, a = x ∨ y′. Thus y′ is an f -supplement of x in

a/0.

Corollary 5.1.4. If L is an amply f -supplemented lattice, then for a direct summand a of L

with f ≤ a, the sublattice a/0 is also amply f -supplemented.

The following results generalize [1, Proposition 15 and Proposition 16] respectively.

Proposition 5.1.5. Let a, b be elements of a lattice L with a ∨ b = 1. If a and b have ample

f -supplements in L, then a ∧ b has ample f -supplements in L.

Proof. Let (a ∧ b) ∨ c = 1 for some c ∈ L. Then

1 = a ∨ (b ∧ c) = b ∨ (a ∧ c).

Now there is an f -supplement x of a in L with x ≤ b ∧ c and there is an f -supplement y of

b in L with y ≤ a ∧ c by assumption. So

x ∨ y ≤ c and (a ∧ b) ∨ (x ∨ y) = 1.

Also since f ≤ x and f ≤ y, f ≤ x ∨ y. Moreover

(a ∧ b) ∧ (x ∨ y) = (x ∧ a) ∨ (y ∧ b) ≪f L

by Lemma 3.1.8. Thus (x ∨ y) is an f -supplement of (a ∧ b) in L.

Proposition 5.1.6. Let a, b be elements of a lattice L such that b ≪f L. If a ∨ b has ample

f -supplements in L, then a has also ample f -supplements in L.

Proof. Let a ∨ c = 1 for some c ∈ L. Then

1 = a ∨ c = a ∨ b ∨ c.
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So by assumption there is an f -supplement b′ ≤ b of a ∨ b in L, that is

f ≤ b′, a ∨ b ∨ b′ = 1 and (a ∨ b) ∧ b′ ≪f b′/0

by Lemma 4.1.3. Since b ≪f L and f ≤ a ∨ b′, a ∨ b′ = 1. Also

a ∧ b′ ≤ (a ∨ b) ∧ b′ ≪f b′/0

implies that

a ∧ b′ ≪f b′/0

by Lemma 3.1.7. Therefore b′ is an f -supplement of a in L.

Definition 5.1.7. Given elements a ≤ b of L, the inequality a ≤ b is said to be f -cosmall in

L if b ≪(f∨a) 1/a.

The following result generalizes [1, Theorem 4].

Theorem 5.1.8. The following statements are equivalent for a lattice L.

(1) L is amply f -supplemented.

(2) Every element a of L is of the form a = x∨y with x/0 is f -supplemented and y ≪f L.

(3) For every element a of L, there is an element x ≤ a such that the sublattice x/0 is

f -supplemented and the inequality x ≤ a is f -cosmall in L.

Proof. (1) ⇒ (2) L is f -supplemented. Let b be an f -supplement of a in L, i.e.

f ≤ b, a ∨ b = 1 and a ∧ b ≪f b/0

by Lemma 4.1.3. Since L is amply f -supplemented, there is an f -supplement x ≤ a of b in

L. That is,

f ≤ x, b ∨ x = 1 and b ∧ x ≪f x/0
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by Lemma 4.1.3. Now

a = a ∧ 1 = a ∧ (b ∨ x) = x ∨ (a ∧ b)

by modular law. Since a ∧ b ≪f b/0, a ∧ b ≪f L by Lemma 3.1.5. x/0 is amply

f -supplemented and therefore it is f -supplemented by Proposition 5.1.3.

(2) ⇒ (3) Let a = x ∨ y for which x/0 is f -supplemented and y ≪f L. Then

a = x ∨ y ≪(f∨x) 1/x

by Lemma 3.1.7.

(3) ⇒ (1) Let a ∈ L with a ∨ b = 1. Then there is an f -supplement x ≤ a of b with x ≤ a

f -cosmall in L by assumption. Since 1 = (a ∨ x) ∨ b, 1 = a ∨ x. Now a ∧ x ≤ x has an

f -supplement b′ in x/0. That is,

f ≤ b′, x = (a ∧ x) ∨ b′ and (a ∧ x) ∧ b′ ≪f b′/0

by Lemma 4.1.3. Therefore

1 = a ∨ (a ∧ x) ∨ b′ = a ∨ b′

and

a ∧ b′ = (a ∧ x) ∧ b′ ≪f b′/0.

Thus b′ is an f -supplement of a in L with b′ ≤ b. Hence L is amply f -supplemented.

Corollary 5.1.9. If the sublattice a/0 is f -supplemented for every element a of a lattice L,

then L is amply f -supplemented.

The following result is a new result for modules.

Corollary 5.1.10. If every submodule of a left R-module M is F -supplemented, then M is

amply F -supplemented.
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6. CONCLUSION

In this thesis we generalize some known results about F -supplemented and amply

F -supplemented modules to complete modular lattices. In this work one of the most

important motivation is to show that not every generalization is possible. Therefore we

give an example showing that a homomorphic image of an f -small element under a lattice

homomorphism need not be f -small unlike the module case (see Example 3.1.3). Another

important motivation is to obtain different proofs of the results from those in modules such

as the proof of Theorem 4.2.28 and Theorem 4.2.29. Also some proven results for lattices

give new results for modules (see Corollary 5.1.10). Some of the important results given in

Chapter 4 and Chapter 5 are as follows:

6.1 f -Supplemented Lattices

Theorem 6.1.1. (Theorem 4.1.4) Let a ≤ b be elements of a compactly generated lattice L.

Then the following properties hold:

(1) If a is an f-supplement in L, then a is an f-supplement in b/0.

(2) If b is an f-supplement in L, then

(i) a is an f-supplement in L if and only if a is an f -supplement in b/0.

(ii) a ≪f L if and only if a ≪f b/0.

Proposition 6.1.2. (Proposition 4.2.3) Let L be a compactly generated compact lattice and

c be an f -supplement of b in L. Then c is compact.

Theorem 6.1.3. (Theorem 4.2.9) Let L be a compactly generated lattice. Then radf (L) =∨
i∈I{ci ∈ L | ci ≪f L}.

Proposition 6.1.4. (Proposition 4.2.10) If L is a compact lattice, then radf (L) ≪f L.

Proposition 6.1.5. (Proposition 4.2.11) Let L be a compactly generated compact lattice and

c be an f -supplement of b in L. If a ≪f L, then a∧ c ≪f c/0 and radf (c/0) = c∧ radf (L).
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Proposition 6.1.6. (Proposition 4.2.12) Let L be a compactly generated f -supplemented

lattice. Then 1/a is (f ∨ a)-supplemented for every element a of L.

Proposition 6.1.7. (Proposition 4.2.15) Let L be a compactly generated lattice. If f ≤ a1,

f ≤ a1, a1 ∨ a2 = 1, a1/0 and a2/0 are f -supplemented sublattices of L, then L is also

f -supplemented.

Proposition 6.1.8. (Proposition 4.2.18) Let L be a compactly generated compact lattice. If

L is f -supplemented, then the quotient sublattice 1/ radf (L) of L is semiatomic.

Theorem 6.1.9. (Theorem 4.2.28) Let L be a compact lattice. Then L is f -supplemented if

and only if every maximal element m of L with f ≤ m has an f -supplement in L.

Theorem 6.1.10. (Theorem 4.2.29) Let L be a compact lattice and {ai/0}i∈I be a collection

of f -supplemented sublattices of L with 1 =
∨
i∈I

ai and f ≤ ai for each i ∈ I . Then L is

f -supplemented.

6.2 Amply f -Supplemented Lattices

Proposition 6.2.1. (Proposition 5.1.2) If a lattice L is amply f -supplemented, then the

quotient sublattice 1/a is amply (f ∨ a)-supplemented for every element a of L.

Proposition 6.2.2. (Proposition 5.1.3) If L is an amply f -supplemented lattice, then for every

f -supplement a in L, a/0 is amply f -supplemented.

Corollary 6.2.3. (Corollary 5.1.4) If L is an amply f -supplemented lattice, then for a direct

summand a of L with f ≤ a, the sublattice a/0 is also amply f -supplemented.

Proposition 6.2.4. (Proposition 5.1.5) Let a, b be elements of a lattice L with a∨ b = 1. If a

and b have ample f -supplements in L, then a ∧ b has ample f -supplements in L.

Proposition 6.2.5. (Proposition 5.1.6) Let a, b be elements of a lattice L such that b ≪f L.

If a ∨ b has ample f -supplements in L, then a has also ample f -supplements in L.

Theorem 6.2.6. (Theorem 5.1.8) The following statements are equivalent for a lattice L.

45



(1) L is amply f -supplemented.

(2) Every element a of L is of the form a = x∨y with x/0 is f -supplemented and y ≪f L.

(3) For every element a of L, there is an element x ≤ a such that the sublattice x/0 is

f -supplemented and the inequality x ≤ a is f -cosmall in L.

Corollary 6.2.7. (Corollary 5.1.9 If the sublattice a/0 is f -supplemented for every element

a of a lattice L, then L is amply f -supplemented.

Corollary 6.2.8. (Corollary 5.1.10) If every submodule of a left R-module M is

F -supplemented, then M is amply F -supplemented.
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