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ABSTRACT

f-SUPPLEMENTED LATTICES

Elif CAN

Master of Science, Mathematics
Supervisor: Assoc. Prof. Dr. Sultan Eylem TOKSOY
June 2023, 61 pages

The main purpose of this thesis is to generalize some known results about F'-supplemented
modules to lattices. Let L be a complete modular lattice with smallest element O and greatest
element 1. A homomorphic image of an f-small element under a lattice homomorphism
need not be f-small unlike the module case. For compactly generated compact lattices
f-supplement elements are compact. For compactly generated lattices, f-radical is the join
of all f-small elements. Moreover for compact lattices, f-radical itself is an f-small element.
Let L be a compactly generated compact lattice. If L is f-supplemented, then the quotient
sublattice 1/rad;(L) of L is semiatomic. A compact lattice L is f-supplemented if and
only if every maximal element m of L with f < m has an f-supplement in L. A join of
f-supplemented lattices containing f is f-supplemented. Let L be a compact lattice and
f < abe anelement of L. If a/0 is f-supplemented and 1/a has no maximal element, then
L is f-supplemented. If a lattice L is amply f-supplemented, then the quotient sublattice
1/a is amply (f V a)-supplemented for every element a of L and the sublattice a/0 is amply
f-supplemented for every f-supplement element a of L. L is amply f-supplemented if and
only if for every element a of L, there is an element z < a such that the sublattice /0 is

f-supplemented and the inequality + < a is f-cosmall in L.



Keywords: f-small elements, f-radical f-supplemented lattices, amply f-supplemented
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OZET

f-TUMLENMIS KAFESLER

Elif CAN

Yiiksek Lisans, Matematik
Danmisman: Assoc. Prof. Dr. Sultan Eylem TOKSOY
Mayis 2022, 61 sayfa

Bu tezde temel olarak f-tiimlenmis modiiller hakkinda bilinen sonuglarin kafes teorisine
genellestirilmesi lizerine ¢alisilmas1 amaglanmistir. L, en biiylik elemani 1 en kiigiik eleman1
0 olan tam modiiler bir kafes olsun. Bir modiiliin herhangi bir F'-kii¢iik alt modiiliiniin bir
modiil homomorfizmasi altindaki goriintiisii de F'-kiiciik alt modiildiir. Bu 6zellik kafeslerde
her zaman dogru degildir. Kompakt iiretilmis kompakt kafeslerde f-tiimleyen elemanlar
kompakttir. Kompakt iiretilmis kafeslerin f-radikali f-kiiciik elemanlarinin supremumuna
esittir. Dahas1 kompakt kafeslerin f-radikalinin kendisi f-kiiciik elemandir. Bir L kafesi
f-timlenmis kafes ise 1/ rad (L) boliim alt kafesi yar1 atomiktir. Bir kompakt L kafesinin
f-timlenmis olmasi i¢in gerek ve yeter kosul L kafesinin f < m kosulunu saglayan
her maksimal elemaninin L’de bir f-tiimleyeninin var olmasidir. f-tiimlenmis kafeslerin
supremumu da f-timlenmistir. L bir kompakt kafes ve f < a € L olsun. a/0 alt
kafesi f-tiimlenmis ve 1/a bolim alt kafesinin maksimal elemani yok ise L kafesi de
f-timlenmistir. Bol f-tiimlenmis bir L kafesinin her a elemant i¢in 1/a boliim alt kafesi
(f V a)-timlenmis ve her f-tiimleyen a eleman igin a/0 alt kafesi f-timlenmistir. Bir
L kafesinin bol f-tiimlenmis olmas i¢in gerek ve yeter kosul her a € L igin, /0 alt kafesi
f-timlenmis ve x < aicermesi f-eskiicilik icerme olacak sekilde L’nin bir x < a elemaninin
var olmasidir.

iii



Keywords: f-kiiciik elemanlar, f-tiimlenmis kafesler, bol f-tiimlenmis kafesler, kompakt

kafesler, kompakt iiretilmis kafesler.

iv



ACKNOWLEDGEMENTS

I would like to express my deepest gratitude to my supervisor Assoc. Prof. Dr. Sultan Eylem
TOKSOY for her invaluable supervision, continuous support and guidance. She is the true

role model for me.

Also, T would like to thank the valued thesis committee: Prof. Dr. Ayse Cigdem OZCAN,
Prof. Dr. Evrim AKALAN, Assoc. Prof. Dr. Biilent SARAC and Dr. Erkan Murat
TURKAN for their efforts and attention.

Finally, I would like to thank my father Abdullah CAN and my mother Siikran CAN for your

endless support. You have always stood behind me.

Elif CAN

June 2023, Ankara



CONTENTS

Page

AB ST R ACT .. 1
O o 111
ACKNOWLEDGEMENTS ... v
CONTENTS .o eeeen vi
ABBREVIATIONS. . ...t e e vii
1. INTRODUCTION ...ttt 1
2. PRELIMINARIES ... 4
2.1 Ordered Sets ..oooiiiiiiii 4
2.2 Lattices and Complete LattiCes .........coviiiiiiiiineeiiiiiiiia e eeiiianennn. 5
2.3 Lattice Homomorphisms ..............ooo 9
2.4 Modular LattiCes .. ... .uuuet ettt ettt e 13
2.5 Compactly Generated LattiCes ........ovveeitiiiiiiineeet i iiiiaenns 18

3. SOME GENERALIZATIONS OF SMALL ELEMENTS ...t 22
3.1 f-Small Elements.......oooiiiiiiiiiii e 22

4. f-SUPPLEMENTED LATTICES..... .ot 24
4.1 f-Supplement EIements ...........ooviiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeenn, 24
4.2 f-Supplemented LattiCes .........ouviiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 28

5. AMPLY f-SUPPLEMENTED LATTICES. ... 39
5.1 Amply f-Supplemented Lattices .............ooviiiiiiiiiiiiiiiiiiiiiiiiiaaaaann. 39

6. CONCLUSION ..ttt eeeeen 44
6.1 f-Supplemented Lattices...........ooiiiiiiiiiiii 44
6.2 Amply f-Supplemented Lattices ............oooiiiiiiiiiiiiiiiiiii e, 45
REFERENCES ... 47

vi



ABBREVIATIONS

L A lattice

P A set

pe The dual of P

Max P The set of maximal elements of P
Min P The set of minimal elements of P
St The set of all upper bounds

St The set of all lower bounds

< A partial order

<p A partial order over P

C subset

x <y r<yandzx #vy

x|y x divides y

y/x quotient sublattice

T <Y Y Covers T

xVy=sup{x,y}  least upper bound of z,y called x join y

x Ay =inf{x,y} greatest lower bound of x, y called  meet y

VX least upper bound of X
A X greatest lower bound of X
= isomorphism

U union

N intersection

A(L) The set of all atoms in L
<5 f-small

rad(L) f-radical of L

N The set of natural numbers

Z The set of integers
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The set of real numbers
The set of the subsets of X

a section of a relaiton R
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1. INTRODUCTION

An element b of a complete lattice L is said to be pseudo-complement of an element a, if b is
maximal with respect to the property aAb = 0. If L is a lattice of submodules of a module M,
then a submodule NV of M is called a complement submodule if /V is a pseudo-complement in
L. Dually, if N is a pseudo-complement in L°, then /V is said to be a supplement submodule
of M. Since the lattice of submodules of a module is upper continuous, complement
submodules always exist. However, since dual of the lattice of submodules of a module need

not be upper continuous, the existence of supplement submodules can not be guaranteed.

Recently several authors have studied different generalizations of supplemented modules.
F-supplemented modules are one of them which have been introduced and studied by
Ozdemir in [1]. Namely, a submodule V' C M is called an F'-supplement of U C M in
M if V' is minimal in the set {L C M | U + L =M and F C L}.

Also it has become quite popular to generalize module theoretic concepts into modular
lattices since the 1970s. Many properties of F'-supplemented modules are true for any
lattice and sometimes their proofs can be obtained by arranging their proofs in modules. In
this thesis, generalization of some known properties and results about F'-supplemented and
amply F'-supplemented modules to modular lattices have been studied. Examples showing
that not every generalization is possible are given. In this study, it was mostly preferred to
present results whose proofs might be different from those in modules. Some proven results
for lattices give new results for modules. In addition, proofs of some results for lattices are

easier to obtain than known proofs of these results for modules.

In Chapter 2 some preliminary information which will be needed in the next sections of the

thesis are recalled.

In Chapter 3 some properties of f-small elements are presented. An example showing that
a homomorphic image of an f-small element under a lattice homomorphism need not be

f-small unlike the module case is given (see Example 3.1.3).



In Chapter 4 f-supplemented lattices are investigated. It is shown for a compactly generated
lattice L that if a < b and a is an f-supplement in L, then a is an f-supplement in /0.
Moreover if b is an f-supplement in L, then a is an f-supplement in L if and only if a is an
f-supplement in b/0 (see Theorem 4.1.4). It is proved that if b is an f-supplement of ¢ in a
compactly generated lattice L, then for a < ¢, (bV a) is an (f V a)-supplement of cin 1/a
(see Proposition 4.1.5). Let a < b be elements of a compactly generated lattice L. If a is
an f-supplement in L and b is an (f V a)-supplement in 1/a, then b is an f-supplement in
L (see Proposition 4.1.8). Let L be a compactly generated lattice and ¢ be an f-supplement
of bin L. It is shown that if « < b and a V ¢ = 1, then c is an f-supplement of a (see
Proposition 4.2.2). It is obtained that an f-supplement element in a compactly generated
lattice L is compact (see Proposition 4.2.3). If c is an f-supplement of b and a <y L in
a compactly generated lattice L, then ¢ is an f-supplement of ¢ V b in L (see Proposition
4.2.4). It is proved that if L is a compactly generated lattice, then f-radical of L is the join
of all f-small elements of L (see Theorem 4.2.9). If L is a compact lattice, then f-radical of
Lis an f-small element of L (see Proposition 4.2.10). It is shown for a compactly generated
compact lattice L that if ¢ is an f-supplement of b in L and if a <y L, then a A ¢ <
¢/0 and rads(c/0) = ¢ A rads(L) (see Proposition 4.2.11). It is obtained for a compactly
generated lattice L that L is f-supplemented if and only if the quotient sublattice 1/f is
supplemented (see Corollary 4.2.13). It is proved that the finite join of f-supplemented
principal ideals is also f-supplemented (see Proposition 4.2.15). It is also proved that if
a compactly generated compact lattice L is f-supplemented, then the quotient sublattice
1/rads(L) of L is semiatomic (see Proposition 4.2.18). It is shown for a compact lattice L
that L is f-supplemented if and only if every maximal element m of L with f < m has an
f-supplement in L (see Theorem 4.2.28). It is also shown for a compact lattice L that if each
sublattice in a collection {a;/0};c; of sublattices of L with 1 = \/ a; such that f < a; for
each ¢ € [ is f-supplemented, then L is also f-supplemented (seezél{heorem 4.2.29).

In Chapter 5 amply f-supplemented lattices are investigated. It is proved that if a lattice L is
amply f-supplemented, then the quotient sublattice 1/a is amply (f V a)-supplemented for

every element a of L (see Proposition 5.1.2). It is shown that if L is an amply f-supplemented



lattice, then for every f-supplement a in L, /0 is amply f-supplemented (see Proposition
5.1.3). Let a, b be elements of a lattice L with a V b = 1. It is proved that if @ and b have
ample f-supplements in L, then a A b has ample f-supplements in L (see Proposition 5.1.5).
Let a, b be elements of a lattice L such that b <y L. It is shown that if a V b has ample
f-supplements in L, then a has also ample f-supplements in L (see Proposition 5.1.6). It is
proved that L is amply f-supplemented if and only if every element a of L is of the form
a =z Vywith z/0 is f-supplemented and y <y L if and only if for every element a of L,
there is an element = < « such that the sublattice x/0 is f-supplemented and the inequality
r < ais f-cosmall in L (see Theorem 5.1.8). It is obtained that if the sublattice a/0 is
f-supplemented for every element a of a lattice L, then L is amply f-supplemented (see
Corollary 5.1.9). Finally a new result for modules is obtained. Namely if every submodule
of a left R-module M is F-supplemented, then )M is amply F'-supplemented (see Corollary
5.1.10).



2. PRELIMINARIES

In this chapter, some preliminary information which will be needed is given. Definitions,
examples, propositions and theorems which are not cited here can be found in [2], [3], [4],

[51, [6], [7], [8], [9], [10] and [11].

2.1 Ordered Sets

Definition 2.1.1. Let P be a set. A partial order on P is a binary relation < on P such that,

forall z,y,z € P,

1) z <
(1) z <yandy < ximply z =y;

(i) r <yandy < zimply z < 2

These conditions are referred to, respectively, as reflexivity, antisymmetry and transitivity.

Definition 2.1.2. A set P equipped with an order relation < is said to be a partially ordered
set or shortly poset and when it is necessary to specify the order relation it is denoted by

(P, <). Usually it is simply said that ““let P be an ordered set”.

Definition 2.1.3. Let P be a partially ordered set. Then P is a chain if, for all x,y € P,

eitherx < yory < x.

Definition 2.1.4. A subset P’ of a poset (P, <p) is called a subposet if it is partially ordered

by restriction (i.e., z <p/ z’ by definition if and only if z, 2’ € P and = <p ).

Definition 2.1.5. Let P be a partially ordered set and x,y € P. If x < y and x # y, then we

write x < y.

Definition 2.1.6. Let P be a partially ordered set. If forall z,y € P,z <yandz < z <y
means x = z; or equivalently, if # < y in a poset P and there is no element z € P such that
r < z <y, then we say that x is covered by y (or y covers x), which is denoted by x < .

4



Definition 2.1.7. Given any partially ordered set (P, <) we can form a new partially ordered

set P° by defining x <p- y if and only if y < x. The set P° is called the dual of P.

Definition 2.1.8. Let P be a partially ordered set and let ) C P. Then a € Q) is a maximal
element of () if a < x and z € ) imply a = x. The set of maximal elements of () is denoted
by Max (). Suppose that () takes an order relation from P: if x,y € @), then x <g y if and
only if x <p y. In this case, () has an order relation with the order inherited from P. If there
exists an element 7" of () such that x < T with the order inherited from P for all x € (),

then Max @ = {T}. In this case T is called the greatest (or maximum) element of ().

Definition 2.1.9. Let P be a partially ordered set and let () C P. Then a € @) is a minimal
element of () if a < z and x € () imply a = x. The set of minimal elements of () is denoted
by Min (). Suppose that () takes an order relation from P: if x,y € @), then v <g y if and
only if z <p y. In this case, () has an order relation with the order inherited from P. If there
exists an element | of () satisfying the condition | < x with the order inherited from P for

all z € @, then Min @@ = {_L}. In this case L is called the least (or minimum) element of ().

Remark 2.1.10. Maximal elements need not exist. For example in the subset () of P(N)
consisting of all subsets of N other than N itself, there is no top element, but N\ {n} € Max @
for each n € N. The subset of P(N) consisting of all finite subsets on N has no maximal

elements.

2.2 Lattices and Complete Lattices

Definition 2.2.1. Let P be a partially ordered set and let S C P. An element z € P is an
upper bound of S if s < z for all s € S. Similarly, an element x € P is a lower bound of S
if v < sforall s € S. The set of all upper bounds of S is denoted by S* and the set of all
lower bounds by S':

St={reP|s<uxVseS}

S'={reP|s>aVsecS}



Definition 2.2.2. Let P be a partially ordered set and let S C P. If S* has a least element
x, then z is called the least upper bound of S and denoted by sup S=\/ S. Equivalently, x is
the least upper bound of S if

(i) x is an upper bound of S, and

(#4) x <y for all upper bounds y of S.

If S = {z,y}, then sup{z, y} is denoted by z V y.

Definition 2.2.3. Let P be an partially ordered set and let S C P. If S! has a greatest element
x, then x is called the greatest lower bound of S and denoted by inf S=/\ S. Equivalently, =
is the least upper bound of S'if

(1) x is an lower bound of S, and

(17) y < x for all lower bounds y of S.

If S = {x,y}, then inf{z, y} is denoted by = A y.

Definition 2.2.4. Let P be a non-empty ordered set.

(1) If z Vyand x Ay exist for all z,y € P, then P is called a lattice.
(ii) If\/ S and A S exist for all S C P, then P is called a complete lattice.

Lemma 2.2.5. [6, 2.8] Let L be a lattice and let a,b € L. Then the following are equivalent:

(1) a<b
(i) avVb=1b
(1ii) aNb=a

Theorem 2.2.6. [3, Proposition 3.1.1] Let L be a lattice. Then for any a,b,c € L the

following are satisfied.



(1) av(bVe)=(aVbVean(bAc)=(andb) A
(i1) aVb=bVa aNb="DbAa;

(i1i) aN(aVb)=a aV (aAb)=a;

(iv) aVa=a,aNa=a.

Conversely, if L is a set with two binary operators V, A satisfying (i)-(iii), then (iv) also holds

and a partial ordering may be defined on L by the rule

a <bifandonlyifa Vb =D.

Relative to this ordering L is a lattice such that the join of a,b is a V b = sup{a, b} and the

meet is a A b = inf{a, b}.
Proof. (ii) Since sup{a,b} = a V b, we can write a \V b as b V a. A similar remark applies
to inf{a,b} = a A b.
(1) Likewise the supremum of {a, b, c} can be writtenas a VV (b V ¢) or (a V b) V c.
(73i) Since a Ab < a < a Vb, (iii) holds by Lemma 2.2.5.
(7v) This is a trivial consequence of the definition. Also if we replace bby a Aaina A (aV
b) = a, we get

a=aAN(aV(aNa))=aANabyaV(aAb)=a.

Similarly, we geta V a = a.
Now let L be a set with two operators V, A satisfying (i)-(ii1). Then the operators V, A
also satisfy (iv) as we just seen in the proof of (iv). Furthermore, a VV b = b if and only

ifaNb=a.IfaVb=D,then by (iii)

aNb=aA(aVb)=a

7



and if a A\ b = a, again by (iii)

aVb=(aNa)Vb=10

holds. If we define the relation <’ by a < b if and only if a \V b = b, then the below
property holds:

a<bandb<c=aVb=bandbVc=c;

hence according to (i)

c=bVe=(aVbVec=aV(bVec)=aVc

therefore a < c¢. Moreover a < a by (iv). If a < b, b < a, then

b=aVb=bVa=a

by (ii).
0
Theorem 2.2.7. [2, Theorem 1.2] A poset (L, <) is a complete lattice if and only if each

subset of L, including the empty subset, has a meet.

Proof. (=) Itis clear by the definition of complete lattice.

(<) Let B be an arbitrary subset of L and

C={zxeL|Vbe B,b<uz}

be the subset of all the upper bounds of B in L. If we take v = inf C, then u < ¢ for all
¢ € Cand if d < ¢ for all elements ¢ of C' and an element [ of L, then d < wu. Therefore
b < u for all b € B by definition of C'. If e € L is an upper bound of B, then by definition
e € C'and u < e. Thus u = sup B. O



The dual of this theorem is as follows:

Theorem 2.2.8. A poset L is a complete lattice if and only if every subset of L, including the

empty subset, has a supremum.

In any lattice L, each finite (nonempty) subset F' has a sup and an inf, as an easy induction
shows. Explicitly the sup and inf of {as,...,a,} are given by a; Vay V...V a, and a; A
as N ... A\ a,, respectively. Here by Theorem 2.2.6 (i), we may omit brackets, by (iv),
omit repetitions, and order of the factors is immaterial, commutativity is given by (ii).

Consequently, \/ F' and A F can be defined for a finite nonempty subset /' of a lattice.

Definition 2.2.9. Let L be a lattice. We say L has a one if there exists 1 € L such that
a N1l = aforall a € L. Dually, L is said to have a zero if there exists 0 € L such that
aV 0 =aforall a € L. A lattice possessing 0 and 1 is called a bounded lattice.

For any subset S of a poset L is a poset. But even if L is a lattice, S need not be a lattice.

Definition 2.2.10. If a subset S of a lattice L is closed under the operators V, A in L, in other
words if given any a,b € S, a V b,a A b € S, then S is called a sublattice of L. In this case,
S is also a lattice (see [3, p.54] or [2, p.6]).

2.3 Lattice Homomorphisms

Definition 2.3.1. Let P and () be two partially ordered sets. A map ¢ : P — () is said to be
(i) order-preserving (or monotone) if x < y in P implies ¢(x) < ¢(y) in @ for all
x,y € P;
(i7) an order-embedding if for all x,y € P, x < y in P if and only if p(z) < ¢(y) in Q;

(17i) an order-isomorphism if it is an order-embedding which maps P onto Q. If there is an

order-isomorphism defined on P onto (), P and () are called ordered isomorphic sets.



Theorem 2.3.2. [6, 1.17] Let P and Q) be finite ordered sets and ¢ : P — (@) be a bijective

map. Then the following are equivalent:

(1) @ is an order-isomorphism;
(17) x <yin Pifand only if p(z) < p(y) in Q;

(1ii) x <y in P ifand only if p(x) < o(y) in Q.

Proof. (i) < (ii) Clear by definition.

(i7) = (iti) Let # < y € P. Then x < y and therefore p(z) < p(y) € @ by (ii). Now
assume that there exists w € () such that p(z) < w < ¢(y). Since  is onto, there exists
u € P such that w = ¢(u). So x < uw < y by (ii). This is a contradiction. Therefore
o(x) < p(y) € Q. Suppose conversely p(z) < ¢(y) € Q. Then ¢(x) < ¢(y) and therefore
x <y € P by (i1). Now suppose that there exists © € P such that z < u < y. Since ¢ is
one-to-one, ¢(x) < ¢(u) < ¢(y). This contradicts with the fact that o(z) < ¢(y). Thus
T <y.

(14i) = (ii) Let x < y in P. Then there exist elements such that
T=2g<T1=...=2Tp =Y
By (iii)
p(r) = @(xo) < (1) < ... < p(xn) = @(y).
Hence ¢(z) < ¢(y). The other hand can be proved by using surjectivity of . O

Definition 2.3.3. Let L and K be lattices. A map f : L — K is said to be a lattice
homomorphism if [ is join-preserving and meet-preserving, that is, for all a,b € L the

following holds:

(i) flaVb)=fla)V f(b)
(#6) flanb) = fla) A f(b)

10



A bijective lattice homomorphism is said to be a lattice isomorphism. If f : L — K is a
one-to-one homomorphism, then the sublattice f(L) of K is isomorphic to L and we refer to

f as an embedding homomorphism of L into K.

Proposition 2.3.4. [2, Remark 1.3] The inverse of a lattice isomorphism is also a lattice

isomorphism.

Proof. Let f : L — K be a lattice isomorphism and a,b € L. Since

F(fHaVvb) =aVvb=f(f"(a)V [(f7'(b)) and

F(fHanb) =anb=f(f"(a))Af(f (b)), then
fHavb) = f"Ha) Vv f71(b) and f7H(a Ab) = f7 (a) A fTH(D). O
Proposition 2.3.5. [2, Remark 1.4] Each lattice homomorphism is an order homomorphism.

The converse is not true.

Proof. Let f : L — K be a lattice homomorphism. Then for all a,b € L the following

equalities hold:

flavb) = f(a) Vv f(b)and f(a Ab) = f(a) A f(D).
Now we know by Lemma 2.2.5 that a < bif andonly if a Vb = band a V b = b if and only
ifaAb=a.Thus f(b) = f(aVb) = f(a)V f(b) if and only if f(a) < f(b). O

Example 2.3.6. For a nonempty set X and a relation (X, X; R) consider f : P(X) —
P(X) defined by f(A) = R(A) where R(A) ={z € X |Ja € A: (a,z) € R} (also called
the section of R after A) for each subset A € P(X). f is an order morphism but not a lattice

morphism. Notice that

fAUAY) = R(AU A') = R(A)U R(A) = f(A) U f(A)

11



holds but only
fANA)=RANA)CRANRA)=f(A) N f(A)

holds in general. If we take X = Rand R = {(z,y) € R? | y = 2*}. The middle equality
fails for A = (—1,0] and A" = [0, 1].

Proposition 2.3.7. [2, Remark 1.5] A function between two lattices is an order-isomorphism

if and only if it is a lattice isomorphism.

Proof. (=) Let f : L — K be a lattice isomorphism. Since a Ab < aanda A b < b,

J(aAb) < f(a) and fla A D) < f(D)

Therefore, f(a A b) is a lower bound for f(a) and f(b). If ¢ is another lower bound for f(a)
and f(b), ¢ < f(a)and ¢ < f(b). Now suppose there exists ¢ € L such that f(c) = ¢.

Since f~! is also an order-isomorphism,

c=[TN) < [T (fla)) =aandc= [TH(d) < fHf(b) =b

therefore a A b < c. Since f is an order-isomorphism,

Flanb) < fle) =

Hence

fland) =inf{f(a), f(b)}.

Similarly, since a < aVband b < a Vb,

f(a) < f(a v b)and f(b) < f(aVb).

Therefore f(a V b) is an upper bound for f(a) and f(b). If d' is another upper bound for
f(a) and f(b), then f(a) < d and f(b) < d'. Now suppose there exists d € L such that
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f(d) = d'. Since f~! is also an order-isomorphism,
a=f"a)< [Nd) =dandb=f7'(b) < fH(d) =d
thus d < a V b. Since f is an order-isomorphism,
& = f(d) < flaVb).

Hence

fla Vv b) = sup {f(a), f(b)}.

<) It is clear by Proposition 2.3.5. O]
(<) y Prop

2.4 Modular Lattices

Lemma 2.4.1. [6, Lemma 4.1] Let L be a lattice and let a,b,c € L. Then the following

properties hold:

(i) an(bVe)>(aNb)V (aAc), and dually;
(i1) a > cimpliesa A (bV ¢) > (a ANb) V ¢, and dually;

(1ii) (aAND)V (bAc)V(eNa) < (aVD)A(DbBVe)A(cVa).

Proof. (i) aANb<bVcandaAc <bVc Ontheotherhanda ANb < aandaAc < a.

Hence the following inequalities can be written:
(anb)V(aNc) <bAc,

(anD)V(aNc)<a.
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Then by these two inequalities we get

(anb)V(aNc)<aA(bVec).

(17) Let ¢ < a. Since c < bVe, (aNb) < aand (aAc) < b < bV e, the following
inequalities can be written:

c<aAN(bVe),
aNb<aAn(bVec).

Then by these two inequalities we get

(anb)Ve<aAn(bVe).

(13i) Sincea Ab<aVb,aNb<bVcandaAb<aVc, wehave

aANb<(aVD)A(DVec)A(cVa).

SincebAc<aVbbAc<bVcandbAc<aVc, wehave

bAc<(aVD)A(bVec)A(cVa).

Similarly sincecAa <aVbcANa<bVcandcAa < cVa,wehave

cha<(aVbAbVc)A(cVa).

Therefore by these three inequalities, we get

(@anb)V (bAc)V(cNha) <(aVb)ADBVe)A(cVa).
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Definition 2.4.2. Let L be a lattice. If L satisfies the modular law, then L is called a modular

lattice.

Modular Law: If for all a,b,c € L, a > c implies a A (bV ¢) = (a Ab) V c.

Example 2.4.3. Let M be a left R-module and S(M ) be the set of all submodules of M. The
set (S(M), <) is a poset where < is shown as being submodule. For N, K € S(M), S(M)

is a complete modular lattice defined by the operators VV and A with

NVK=N+KNANK=NNK.

It is known by Lemma 2.4.1 (i) that if a > ¢ for all a, b, ¢ € L, then the following inequality
holds:
aN(bVe)>(and)Ve.

Therefore if for every a, b, c € L, a > cimpliesa A (bV ¢) < (a Ab) V¢, then L is a modular

lattice.

Proposition 2.4.4. [8, Theorem 85 and Theorem 89] Let L be a modular lattice.

(1) Every sublattice of L is also a modular lattice.

(17) The image of L under a lattice homomorphism is also a modular lattice.

Proof. (i) Let S be a sublattice of a modular lattice L and a,b,c € S such that b < a.

Since L is modular, the following equality holds:

aN(bVe)=bV(aNec).

Since S is the sublattice, for every element a, b, ¢ taken from .S

aN(bVe)=bV(aNc)eS.
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Therefore, modular law is also provided in .S. Thus S is also a modular lattice.

(77) Let K be the image of L under a lattice homomorphism f and z, y, z € K. Itis enough
to show that

zA(yVz)=(@xAz)Vy

while z > y. Let f(a) = x and f(c) = z for some a, ¢ € L. Then by [8, Theorem 82],
there exists at least one b € L such that f(b) = y and a > b. Since L is modular, the

following inequality holds:

aN(bVe)<bV(aAc).

Therefore

flan(@®Ve)=f((anc)Vb).

Now

flan(bve)) = fla) A(fB)V f(e) < (fla)Afle)V f(b)=f(lanc)Vb).

This means that z A (y V z) < (z A 2) V y. Hence K is also modular.

Lemma 2.4.5. [2, Lemma 12.3] In any modular lattice

[(cvVd)AND] <[cA(BVA)]VIAA (V)

holds for every b, c,d € L.

Proof. Since ¢ A (bV d) < bV c, the following equation can be written by modular law:

[cABVA)]VIAAN(BbVe)]=[cADVdA)Vd ADBVec).
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If we apply the modular law again using that d < bV d, we can write the equality

[(cA(bVd))Vd=(cVd)AbVd)

By the two equality above, we obtain

leA (VA VIAADBVE)] =[(cABVA)VAADBVE)=[cVd)ADVAADVeC).

Since b < (bV d) A (b V c¢), the following inequality holds:

(eVA)Ab< [(cVd)ADVA]ADY ).

Thus we obtain the conclusion that

[(cVd) AL < [cABVAVdA (DY)

]

Definition 2.4.6. A sublattice {x € L | a < x < b} of a lattice L is called a quotient

sublattice and it is denoted by b/a.

Theorem 2.4.7. [2, Theorem 1.5] Let a and b be elements in a modular lattice L. Then the

quotient sublattices (a \V b) /b and a/(a N\ b) are isomorphic.

Proof. Let
f:(avb)/b—a/(anbd)

be defined by f(x) =z Aaforall z € (aV b)/band

g:a/(anb) — (aVb)/b
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be defined by g(y) =y Vbforally € a/(a A b). In this case, f and g are mutually inverse

lattice homomorphisms. Therefore

(aVb)/b=af(aND).

2.5 Compactly Generated Lattices

Definition 2.5.1. If an element p of a complete lattice L covers 0, i.e. (0 < p), pis called an

atom. The set of all atoms in a lattice L is denoted by A(L) (see [11]).

Definition 2.5.2. If 1 is the supremum of atoms in a complete lattice L, then L is called a

semiatomic lattice.

Definition 2.5.3. [11] A complete lattice L is said to be upper continuous, if for every a € L

and for every chain C' C [,

a\/(\/ x) = \/(a/\x).

zeC zeC
Definition 2.5.4. Let ¢ be an element of a lattice L. If every subset S of L that satisfies
the condition ¢ < \/ S has a finite subset F' such that ¢ < \/ F', then c is called a compact

element (see [10]).

Lemma 2.5.5. Let L be a complete lattice, ¢, and cy be two compact elements of L. Then

c1V ¢y € Lis also compact (see [7]).

Proof. Let ¢; V co < '\/ S for every subset S in L. Then ¢; < \/ S and c; < \/ S. Since ¢;
and ¢, are compact, there exist finite subsets F}, I of S such that ¢; < \/ F} and ¢; <'\/ Fo.

Therefore
eV < (\/ Fl) v (\/ FQ) = /(A V ).

Here clearly F; V F; C S is finite. O

Corollary 2.5.6. [7, Lemma 2.1] Each finite join of compact elements is a compact element.
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Definition 2.5.7. ([2, p.22]) If 1 € L is compact in a complete lattice L, then L is said to be

compact.

Lemma 2.5.8. [2, Lemma 2.4] Let L be a compact lattice and 1 # a € L. Then the sublattice

1/a has at least one maximal element which is different from 1.

Proof. S = 1/a — {1} # by hypothesis. Moreover, since 1 is compact, S contains the joins
of the chains in S and therefore Zorn’s Lemma can be applied. If C' C S is any chain, then
\/ C = 1. Assume that \/ C' = 1. Therefore, since 1 is compact, there exists at least one
element ¢y € C such that 1 < ¢y or 1 = ¢ and this is a contradiction. Thus there exists at

least one maximal element in 1/a which is different from 1. ]

Definition 2.5.9. If every element in a complete lattice L is a join of compact elements, then

L is called a compactly generated lattice (see [10]).

Proposition 2.5.10. /4, Lemma 2] Every compactly generated lattice is upper continuous.

Proof. For any lattice L and for every chain C in L, the following inequality holds

\/(a/\az)ﬁa/\(\/C).

zeC

Let us obtain inverse of this inequality for compactly generated lattices by using special way:
if for every compact element ¢ and any two elements z,y in L, ¢ < x requires ¢ < y, then
x < y, because every element is a join of compact elements. Let ¢ be a compact element
satisfying the condition ¢ < a A (\/ C) in L. Then ¢ < \/ C and thus for a proper z, € C,

c < xy. Moreover, ¢ < a. Hence

c<alAzy< \/(a/\a:).
zeC

]

Lemma 2.5.11. [2, Exercise 2.6] Let a be an element of an upper continuous complete lattice
L. Then the compact elements in a/0 are exactly the compact elements of L that belong to
a/0.

19



Proof. Let ¢ € a/0 be compact in L. Therefore it is also compact in a/0. Suppose now that

¢ € a/0 be compact only in a/0. If ¢ < \/ C for a chain C' C L, then

c=a/\c§a/\<\/0) = \/(a/\x).

zeC

So \/ (a A z) is also a cover of ¢ in a/0. Thus there exists a finite chain ' C C' such that

zeC
c<aA \/ (a N x).
rel
Therefore
\/(a/\x) :a/\(\/ xr)=aAx
zeF zel
foran xg € F,i.e. c < a A xg. O

Lemma 2.5.12. [2, Exercise 2.7] Let L be a compactly generated lattice and a be an element

of L. Then a/0 is also compactly generated.

Proof. Every compactly generated lattice is upper continuous by Proposition 2.5.10.
Therefore, we know that for all a € L, the compact elements in a/0 are exactly the compact
elements of L that belong to a/0 by Lemma 2.5.11. Therefore a/0 is also compactly

generated. [
Lemma 2.5.13. /2, Exercise 2.9]
(1) If c is a compact element in a complete lattice L and a € L, then ¢\ a is compact in
1/a.
(1) If L is a compact lattice and a € L, then 1/a is also a compact lattice.

(13i) If L is a compactly generated lattice, then the quotient sublattice 1/a is also compactly

generated for every element a of L.
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Proof. (i) Let ¢ € L be compact and ¢V a < \/a; for {a;}ic; € 1/a. Then ¢ < \/a,.

i€l iel
Since ¢ is compact in L, there exists a finite subset /' C [ such that ¢ < \/ a;.
i€F

Therefore

cVa< (\/ai)\/a: \/(ci\/a).

el el
(#7) Taking ¢ = 1 it is the special case of ().

(7i1) Let z € 1/a. Since L is a compactly generated lattice and = € L, x = \/¢; for some
el
compact elements {c¢; },c; C L. Therefore, we can write

x:x\/a:(\/ci)Vaz\/(cl-VQ).

13 iel
If ¢; is compact in L for all 7 € [, then the element ¢; V a is also compact in 1/a by (i).

]
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3. SOME GENERALIZATIONS OF SMALL
ELEMENTS

3.1 f-Small Elements

Throughout L will denote an arbitrary complete modular lattice with smallest element O and

greatest element 1, f will denote an element of L such that f = 1 unless otherwise stated.

Definition 3.1.1. An element a of L is said to be f~small in L if a V b # 1 holds for every
f <b# 1. Itis denoted by a < L.

Remark 3.1.2. It is shown in [1, Lemma 1 (1)] that a homomorphic image of an F'-small
submodule under a module homomorphism is F'-small. The following example shows that
this fact need not be true for lattices. That is a homomorphic image of an f-small element

under a lattice morphism need not be f-small.

Example 3.1.3. [12, Example 1.1] Let A = {1,2,3,6,12} and B = {1,2,3,6}. Consider
the lattices (A, |) and (B,|) where | is the divisibility relation: = | y means x divides y.
Consider the lattice morphism g : (A, |) — (B, |) defined by g(k) = k for k = 1,2,3,6 and
g(12) = 6. Clearly, 3 <5 Asince 3V z # 12 forall 2 < x < 12. But ¢(3) = 3 £ B since
3V 2 = 6 whilst 2 # 6.

Remark 3.1.4. We will write a < bif a < band a # .

Lemma 3.1.5. [12, Lemma 1.2 (1)] Let a < b be elements in L. If a <(sap) b/0, then
a <y L.

Proof. LetaVx = 1forsome f < x € L. Thenwe have b = bA1 =bA(aVz) =aV (bAx)
by modular law which we have for modular lattices. Since a <(ap) b/0and f AD < bAz,
b A x = band therefore xt = a VvV x = 1. O

Lemma 3.1.6. [12, Lemma 1.2 (2)] Let a < b be elements in L. If a <tpp) b/0, then
aV e <L sanvdg (bVc)/cforevery cin L.
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Proof. Let (aV ¢)V x =0bV cforanelementz € (bV ¢)/cwith (f Ab)V ¢ < x. Then we
haveb =bA (bVec) =bAlaV (cV )| and therefore b = aV [bA (cV )] =aV (bAx).
Since fAb < (fAD)Ve<uz, fAD<bAz. Alsosince a < fap) b/0, 0Nz =0.Sob <z

and therefore b V ¢ = z. ]

Lemma 3.1.7. [12, Lemma 1.2 (3)] Let a < b elements in L. b <y L ifand onlyifa <y L
and b < (yva)y 1/a.

Proof. (=) LetaV x =1forsome f <z € L. Since a < b, bV x = 1 and since b < L,
r=1Letbvy=1forsome fVa<yel/a Sinceb<yLand f<yelL,y=1
(<)LetbV z=1forsome f <z € L. ThenbV (aVz)=1land fVa<zVacela

Now since b <(fvq) 1/a, a V z = 1 and therefore z = 1 since a < L. l
Lemma 3.1.8. [12, Lemma 2.12] Let a and b be elements of a lattice L. a <; Land b <; L

ifand only if a vV b < L.

Proof. (=)Suppose that e <y Land b <y L. Letz € L with f <z and (a Vb))V z = 1.
Sincea <y L, bV x =1.Since b <y L, v = 1.
(<) Clear by Lemma 3.1.7 (3). O

Lemma 3.1.9. [13, Lemma 2.4] Let a and b be elements of a lattice L such that f < a and
f<bIfd <;a/0andll <;b/0, thend' Vb <y (aVb)/0.

Proof. Since ¢’ <y a/0, a’ <y (aV b)/0 by Lemma 3.1.5. Similarly since i’ <; /0,
V' <5 (aV b)/0by Lemma 3.1.5. Therefore ' V I/ < (a Vv b)/0 by Lemma 3.1.8. O
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4. f-SUPPLEMENTED LATTICES

4.1 f-Supplement Elements

Definition 4.1.1. Let a, b be elements of L. b is said to be supplement of a in Lifa Vb =1
and a A b < b/0. L is called a supplemented lattice if every element of L has a supplement
in L.

Definition 4.1.2. Let a,b be elements of L. b is said to be f-supplement of a in L if b is
minimal in the set {x € L | f <z and aVx = 1}. Since bis an f-supplement of an element
in L, bis called an f-supplement element. If every element of a lattice L has an f-supplement

in L, then L is called an f-supplemented lattice.
Lemma 4.1.3. [12, Lemma 1.4] Let a, b be elements of a lattice L. Then a is an f-supplement

ofbin Lifandonly if f < aandaVb=1anda Nb <y a/0.

Proof. (=) Let c be an element of L with f < csuchthat (a Ab)Vec=a.Thenl =aVb=
[(aAD)Vc]Vb=cVb. Since a is minimal intheset {r € L | f <z andbVz =1}, c = a.
(<) Assume that bV y = 1 forsome f <y < a. Thena=1Aa = (bVy)Aa=1yV(aAb).
Since a A b <y a/0,y = a. O
The following result generalizes [1, Theorem 1].
Theorem 4.1.4. Let a < b be elements of a compactly generated lattice L. Then the following
properties hold:

(1) If ais an f-supplement in L, then a is an f-supplement in b/0.

(2) Ifbis an f-supplement in L, then

(i) ais an f-supplement in L if and only if a is an f-supplement in b/0.

(ii) a < L ifand only if a <; b/0.
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Proof. (1) Let a be an f-supplement of = in L. Then by Lemma 4.1.3, f < a,xVa = 1and

z A\ a <y a/0. Now by modular law we have

b=bA1l=bA(zVa)=aV (bAx).

Alsoa Nb Az < aAx <y af0. Therefore a is an f-supplement of b A z in b/0.

(2) Suppose that b is an f-supplement of x in L. That is by Lemma 4.1.3,

f<baxvb=1and x Ab<;b/0.

(i) (=) Clear by (1).
(<) Let a be an f-supplement of y in b/0. Then by Lemma 4.1.3,

f<y,aVy=band a ANy < a/0.

Now wehave l =z Vb =1xV (aVy). Assume a'V (xVy) = 1forsome f < a' < a. Since
f <a Vyandbisan f-supplement of z in L, a’ V y = b by minimality of b. Now a’ = a by
minimality of a.

(ii)(=) Assume that a V z = b for some z € L with f < z<b.SoaV (zVz)=bVae=1.

Since f < zVwzanda <s L, zV x = 1. By modular law we have

b=bA1=bA(2Vz)=2V(bAx).

Since b Az < b/0, it follows that z = b. Thus a <y b/0.
(<) Clear by Lemma 3.1.5. O

The following result generalizes [1, Proposition 4].

Proposition 4.1.5. Let L be a compactly generated lattice. If b is an f-supplement of c in L,

then for a < ¢, (bV a) is an (f V a)-supplement of c in 1/a.
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Proof. Since b is an f-supplement of cin L,

F<bbve=1land bAc<;b/0

by Lemma 4.1.3. Since f < b, fVa<bVaandsincea <c,1=0Vc=0>0VcVa. Also

l=0bBVa)Ac=aV (bAc)

by modular law. Since b A ¢ < b/0,

(bAc)Va< (v (bVa)/a

by Lemma 3.1.6. L

The following lemmas generalize [14, 1.24 and 2.3 (1)] from modules to modular lattices.

Lemma 4.1.6. Let a, b, ¢ be elements of a lattice L. Assume that a\Vb = 1 and (aNb)V e = 1.
ThenaV (bAc)=bV (aNc)=1.
Proof. By modular law we have

aV(bAc)=aV (bANa)V(bAc)=aV[]bA[(bAa)Vc]]=aV(bAl)=aVb=1

and

bV(ane)=bV(bAa)V(anc)=bVI]aN[(bANa)Vc]]=bVa=1.
[

Lemma 4.1.7. Let a,b, ¢ be elements of a lattice L. If 1 = aV b, b < cand ¢ < 1/b, then
(anc)<1/(aNDb).

Proof. Let (a Ac)V x = 1forsome z € 1/(a Ab). SinceaVb = 1,aVc = 1. Then
l=cV(aAz)byLemma4.1.6. Sincec < 1/bandcVbV (aANx)=1,bV (aAzx) =1
Also 1 =z V (a A b) by Lemma 4.1.6 and hence = 1. Thus (a A ¢) < 1/(a A D). O
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The following result generalizes [1, Proposition 5].

Proposition 4.1.8. Let a < b be elements of a compactly generated lattice L. If a is an

f-supplement in L and b is an (f \V a)-supplement in 1/a, then b is an f-supplement in L.

Proof. Let a be an f-supplement of = in L. That is

f<a,aver=land a ANz <;a/0

by Lemma 4.1.3. Let b be an (f V a)-supplement of y in 1/a. That is

a<y<1l,fva<bbVy=1landbAy < sva) b/a

by Lemma 4.1.3. We want to show that b is an f-supplementof r Ayin L.a < banda <y
implies a < bAy and therefore | = aVx = (bAy)Vx. Alsosince 1 =bVy,1 =bV (xAy)

by Lemma 4.1.6. Since

b=bAl=bA(aVz)=aV (bAx)

by modular law,

bA(zANy) <b/(aNx)

by Lemma 4.1.7. So we have

bA(xAy) K[fv(ana)) b/(a N ).

Since a Az <5 a/0, a Az < b/0 by Lemma 3.1.5. So

bA(zANy) <5 b/0

by Lemma 3.1.6. This means that b is an f-supplement of z A y in L. [
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4.2 f-Supplemented Lattices

Recall that if 1 = \/ x; for some elements x; > a implies that 1 = \/ x; for some finite
iel i€F
subset F' of I, then L is said to be compact (see [2]). If each element of L is a join of compact

elements, then L is said to be compactly generated (see [15]).

Lemma 4.2.1. Let L be a compactly generated compact lattice, f < a, f < banda Vb= 1.

Then there are compact elements f < o/ < aand f <V < bsuch thata' V'V = 1.

Proof. Since L is compactly generated, a = \/ a; where f < a; foreachi € [ and b = \/ b;
iel jeJ
where f < b; for each j € J. Now

iel jeJ

Since L is compact, there exist finite subsets /| C [ and F> C J such that

L=avb=(\/a)V(\b)

ieFy jEF
where a = \/ a; and b = \/ b; are compact by Corollary 2.5.6.
1€F JEF
The following result generalizes [2, Proposition 12.2 (1)].
Proposition 4.2.2. Let L be a compactly generated lattice and c be an f-supplement of b in

L. Ifa<bandaVN c =1, then cis an f-supplement of a.

Proof. Suppose a V ¢ = 1 forsome f < ¢ < ¢. Sincea < b, bV ¢ = 1. Since cis an
f-supplement of b in L, it is minimal in the set {x € L | f < 2,bV & = 1}. Therefore
d=c O

The following result generalizes [2, Proposition 12.2 (2)].
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Proposition 4.2.3. Let L be a compactly generated compact lattice and ¢ be an f-supplement

of bin L. Then c is compact.

Proof. Since cis an f-supplement of b in L, c is minimal inthe set {z € L | f < x,bV z =
1}. By Lemma 4.2.1, there exists a compact element ¢ with f < ¢ < csuchthatbV ¢ = 1.

Therefore ¢ = ¢’ by minimality of c. [
The following result generalizes [2, Proposition 12.2 (4)].
Proposition 4.2.4. Let L be a compactly generated lattice and c be an f-supplement of b in

L. If a <y L, then c is an f-supplement of a \VV bin L.

Proof. Since cis an f-supplement of b in L, ¢ is minimal inthe set {z € L | f < x,bV x =
1}. Suppose (a vV b) V¢ =1 forsome f < ¢ <ec. Since a <y Land bV ¢ = 1. Therefore

¢ = ¢ by minimality of c. O]

Definition 4.2.5. [12, Definition 11] The meet of all maximal elements m # 1 of L such that
f < mis called the f-radical of L. It is denoted by rad;(L).

Remark 4.2.6. a < L and m is a maximal element in L such that f < m, thena V m # 1
and therefore a V m = m. So a < m. This means that all f-small elements of L are less than

radf(L).
Lemma 4.2.7. [16, Proposition 2.9] Let a be an element of L. Then a <y L if and only if

aV f<1/f.

Proof. (=) Let f <z suchthat (aV f)Vo=1. Sincea <y L,z =fVaz=1
(«<)Let f < xzsuchthataVz = 1. Thenwehavel = aV fVz. SinceaV f < 1/f,
r=1. O

Lemma 4.2.8. Ler L be a lattice. Then rad (L) = rad(1/f).
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Proof.

rad(1/f) = [\ m;

iel

where m; is a maximal element of L with f < m,; for all 7 € I. Therefore

rads(L) = rad(1/f).

[

Theorem 4.2.9. Let L be a compactly generated lattice. Then

rady(L) = \/{c; € L | & < L}.
iel
Proof. We have
rad(1/f) = \/{cZ €Ll|e <L} = \/{cZ €L|f<e¢,c¢<sL}=rads(L)
iel iel
by Lemma 4.2.7 and Lemma 4.2.8. [

Proposition 4.2.10. If L is a compact lattice, then rads(L) <y L.

Proof. Letrads(L) vV x = 1 for some f < x. Therefore rad;(1/z) = 1, by Lemma 4.2.8.
Since L is compact, z = 1 and therefore rad (L) < L. O

The following result generalizes [1, Proposition 2].
Proposition 4.2.11. Let L be a compactly generated compact lattice and ¢ be an

f-supplement of bin L. If a < L, then a N\ ¢ <y ¢/0 and rads(c/0) = ¢ Arads(L).

Proof. Let (aAc)V =cforsome f < ¢ €¢/0.SinceaNc<aanda <; L,aNc <y L
by Lemma 3.1.7. Then

I=bVe=bV|lane)V]=(aNnc)VbV <
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and f < bV . Therefore 1 = bV . Thus ¢ = ¢’. We know that

rads(c/0) < cArady(L)

is always true. Since L is compact, rads(L) < L by Proposition 4.2.10. So c is an
f-supplement of bV rad;(L) in L. That is

f<ec (bVrads(L))Ve=1and (bVrads(L)) Ac <y c/0

by Lemma 4.1.3. Since rads(c/0) is a join of all f-small elements of ¢/0 by Theorem 4.2.9,

(bVvrads(L)) Ac <rads(c/0).

Therefore

rads(L) Ae < (bVrads(L)) Ac <rads(c/0).

The following result generalizes [1, Proposition 9].

Proposition 4.2.12. Let L be a compactly generated f-supplemented lattice. Then 1/a is

(f V a)-supplemented for every element a of L.

Proof. Letb € 1/a. Since L is f-supplemented, there is an f-supplement c of b in L. That is

f<ec,bVe=1land bAc <5 c/0

by Lemma 4.1.3. Now by modular law and Lemma 3.1.6

bA(cVa)=(bAc)Va<iv (cVa)la.
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The following result generalizes [1, Theorem 2].
Corollary 4.2.13. Let L be a compactly generated lattice. L is f-supplemented if and only

if the quotient sublattice 1/ f is supplemented.

Proof. (=) Suppose that L is f-supplemented. Then 1/f is supplemented by Proposition
4.2.12.
(<) Leta € L. Since 1/ f is supplemented, (f V a) has a supplement b in 1/ f. That is

(fVa)Vvb=1land (fVa)ANb<b/f.
Then
l=(aV f)Vb=aVb.
Let (a Ab) Vo =0bforsome f < x < bin L. Therefore
(aNb)VzV f=0b.
Since
fVv(@nb)=(fVa)Nb<gb/f,x=b.

This means that (a A b) < b/0. Thus bis an f-supplement of @ in L. O

The following result generalizes [1, Proposition 6].

Lemma 4.2.14. Let L be a compactly generated lattice and a, b be elements of L with f < a.

Ifa/0 is f-supplemented and a Vb has an f-supplement in L, then b has an f-supplement in
L.

Proof. Let c be an f-supplement of a VV bin L and d be an f-supplement of a A (b V ¢) in
a/0. Then
f<ec(avb)Ve=1and (aVb)ANc<yc/0;

f<dJan(bVc)Vd=aand [aN(bVc)ANd<sd/0
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by Lemma 4.1.3. Now since

l=aVbVe=[aN(bVc)]VdVbVe=dVbVe

and since

(bveyNd=(bVe)ANdANa=[0bVc)ANalNd <y d)0,

d is an f-supplement of bV cin L. Since d € a/0, d < a and therefore bV d < a V b. Also

(avb)Ve=(bVvd)Ve=1.

Since c is an f-supplement of a VV b in L, ¢ is an f-supplement of b \VV d in L by Proposition
4.2.2. Then
(bvd)Ve=1and (bVd)Ac<sc/0

by Lemma 4.1.3. So by Lemma 2.4.5 and by Lemma 3.1.9, we have

bA(cvd) <[cAbVA)]VIAA (V)] <y (cVd))o.

Thatis ¢ V d is an f-supplement of b in L. [

The following result generalizes [1, Proposition 7].

Proposition 4.2.15. Let L be a compactly generated lattice. If f < ay, f < as, a1 V ag =1,

a1 /0 and ay /0 are f-supplemented sublattices of L, then L is also f-supplemented.

Proof. For an element b of L, there is an f-supplement of a; V (a2 V b) = 1in L. Since
a;/0 is f-supplemented, as V b has an f-supplement in L by Lemma 4.2.14. Since a5 /0 is
f-supplemented, again by Lemma 4.2.14, b has an f-supplement in L. [

Definition 4.2.16. If « Vb = 1 and a A b = 0 for elements ¢ and b of L, then we use the
notation a @ b = 1 and call this a direct sum. In this case a and b are called direct summands

of 1. Also a is said to be complement of b and b is said to be complement of a. If every
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element of a lattice L has a complement in L, then L is called a complemented lattice (see

[6]).

Definition 4.2.17. Let L be a lattice and a < b be element of L. If a < ¢ < b implies ¢ = a,
then it is said that a is covered by b. If 0 is covered by an element a of L, then a is called an

atom. A lattice L is said to be semiatomic, if 1 is a join of atoms in L (see [2]).

The following result generalizes [1, Proposition 8].

Proposition 4.2.18. Let L be a compactly generated compact lattice. If L is f-supplemented,

then the quotient sublattice 1/ rad(L) of L is semiatomic.

Proof. Since L is compactly generated, 1/rads(L) is also compactly generated. Since L
is f-supplemented, 1/rad(L) is (f V rad(L))-supplemented by Proposition 4.2.12. Also
1/rads(L) does not contain any f-small element of L by Remark 4.2.6. Letz € 1/ rad;(L).
Since 1/rads(L) is (f Vrads(L))-supplemented, there is an (f \V rad;(L))-supplement y of
xin1/rads(L). That is,

fVvrady(L) <y,xVy=1land x Ay <<(f v rad(L)) y/rads(L)

by Lemma 4.1.3. Therefore = A y <(fv rad;(L)) 1/rads(L) by Lemma 3.1.5. Since
L is compact, radf(L) < L by Proposition 4.2.10. Therefore z A y <; L by Lemma
3.1.7. Again by Remark 4.2.6, x A y < rad;(L) and so z A y = rad;(L). This means that
1/rad(L) is completed. Thus 1/ rad (L) is semiatomic by [2, Theorem 6.7]. O

Definition 4.2.19. [13, Definition 2.7] A lattice L is said to be f-local if the set {x € L |
f < x # 1} of elements of L has the greatest element. Also an element [ of L is called an

f-local element if f < [ and the sublattice /0 is an f-local lattice.

Definition 4.2.20. A lattice L is said to be f-hollow if every element a of with f < a # 1is
f-small.

Remark 4.2.21. Clearly a hollow lattice is f-hollow and the converse is true when f = 0. In
general f-hollow lattices need not be hollow (see [1, Example 2]).
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Lemma 4.2.22. [2, Corollary 7.2] Let L be a compact lattice. Then for every element a of

L there is a maximal element m of L such that a < m.

Proof. Q = {x € L | a < x,x # 1}. LetT' = {x, | A € A} be a chain in ). Take
rx= \z Sincea < x)forall A\ € A,a <z If1 =2 = \/ z,, then since L is compact,
1= ?UEAZ \/ =\ = z,, for some finite subset F' of A and z A/\OEAG F'. This is a contradiction.
Therefore)\xEFE Q2. Also z is an upper bound for I'. So there is a maximal element m in €2

with a < m by Zorn’s Lemma. O]

Lemma 4.2.23. If in a lattice L there exists a largest element m such that f < m # 1, then

m<<fL.

Lemma 4.2.24. Let L be a compactly generated lattice. If L is f-local with f < m the

largest element, then rad¢(L) = m <y L.

Proof. Clearly rads(L) = m is the only maximal element with f < m and therefore

rads(L) = m <y L by Lemma 4.2.23. O

The following result generalizes [1, Proposition 10].

Proposition 4.2.25. A compactly generated lattice L is f-local if and only if it is f-hollow
and rads(L) # 1.

Proof. (=) Let a be an element of L with f < a # 1. Since L is f-local, rad;(L) is the
largest element with f < rad;(L). Therefore a < rad;(L). Since rad;(L) = m < L by
Lemma4.2, a < L. Alsorads(L) # 1.

(«<=) Suppose L is f-hollow and rads(L) # 1. Since L is compactly generated, rads(L) =
Vierlei € L | ¢; <y L}. Since L is f-hollow, every element ¢ with f < a # 11is f-small
in L. Hence there is a largest (f-small) element which is equal to rad (L) by Lemma 4.2.
Therefore 1 is trivially compact i.e., 1 = \/ X implies 1 € X. Thenrad;(L) <y L. Thus L
is f-local. [
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Lemma 4.2.26. [13, Lemma 2.8] Let {l;/0};cr with f <; foralli € [ and I ={1,...,n}
be a finite collection of f-local sublattices of a lattice L and a be an element of L such that
aV (\ ;) has an f-supplement b in L. Then there exists a subset J of I such thatbV (\/ ;)

iel ieJ
is an f-supplement of a in L.

Proof. Induction on n.

Forn =1, bis an f-supplement of a V [1, i.e.
f<b(avil)Vb=1and (aV1)ANb<;b)O.
Putc= (aVb)Al;. Ifc =1, thenly <a Vb So
1=bV(aVlh)=aVd
and

aANb<(aVi)ANb<;b/0.

Thus bis an f-supplement of ¢ in L by Lemma 4.1.3. If ¢ # [;, then (aVb) Al; = ¢ < 11/0.
Therefore [, is an f-supplement of ¢ in [/, /0. Now the following holds by Lemma 2.4.5 and
Lemma 3.1.9:

aN(OVh) <[bA(aVD)]V]iA@VD)] < (bVi)/0.

So bV [y is an f-supplement of a in L. Suppose that n > 1 and b is an f-supplement of
a'V (\/ ;) in L where o’ = a V [;. By induction hypothesis there is a subset I’ of {2,...,n}
=2
such that &’ = bV (\/ ;) is an f-supplement of a’ = a V [;. Therefore either ¥’ or b’ V [; is
i€l
an f-supplement of a in L. O]
Lemma 4.2.27. [13, Lemma 2.9] Let m be a maximal element of L such that f < m. If Lis

an f-supplement of m in L, then 1 /0 is f-local. Moreover | \ m is the largest element of /0

with f < [ A m which is different from l.
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Proof. lis an f-supplement of m if and only if f <[, m VI =1and m Al <y [/0. Let
r€l/Owith f <zandx # . Ifx < m,thenxz <l Am.If v £ m(z £ 1A m), then since

m 1s maximal z V m = 1. Now

l=IN1=IAN(xVvm)=aV (IAm).

Since | A m < 1/0, x = [. This is a contradiction. Thus [ A m is the largest element (5 [)
of [/0 such that f <[ A m. O

Let the join of f-local elements of L be denoted by locs(L). The following result is a

generalization of [1, Corollary 7].

Theorem 4.2.28. Let L be a compact lattice. Then L is f-supplemented if and only if every

maximal element m of L with f < m has an f-supplement in L.

Proof. (=) Since L is f-supplemented by assumption, this part is clear.
(<) Let a € L. There is a maximal element m of L such that a < m by Lemma
4.2.22. Suppose m is a maximal element of the quotient sublattice 1/locs(L). m has an

f-supplement b in L by assumption, i.e.

f<bmvb=1and mAb<;b/0

by Lemma 4.1.3. Therefore b/0 is an f-local sublattice by Lemma 4.2.27. That is b is an
f-local element of L. Then b < loc f(L) < mandso 1 =mV b= m, which is contradicting
with the maximality of m. So there is no maximal element in 1/locs(L) and therefore
1/(a V locs(L)) has no maximal element. Since 1/(a V locs(L)) has at least one maximal
element (# 1) whenever a V locs(L) # 1 by [2, Lemma 2.4], a VV locs(L) = 1. Also since
L is compact, a VV (I V...V [,) = 1 for some f-local elements [y, ..., of L. Now since f
is an f-supplementof a V (I; V...V [,) = lin L, a has an f-supplement in L by Lemma
4.2.26. [
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Using Theorem 4.2.28 we prove that if a lattice L is an arbitrary join of f-supplemented

sublattices containing f, then L is also f-supplemented.

Theorem 4.2.29. Let L be a compact lattice and {a;/0};c; be a collection of f-supplemented
sublattices of Lwith 1 = \/ a; and f < a; for eachi € I. Then L is f-supplemented.
iel
Proof. Let f < m and m be a maximal element of L. If a; < m for all i € I, then
1 =\ a; < m which is a contradiction. So a; £ m for some j € I. Therefore 1 = a; V m.
iel
Since

a;/(a; Am) = (a; v m)/m = 1/m,

the element a; Am is maximal in a;/0 and f < a; Am. There is an f-supplement b of a; Am

in a;/0 by Theorem 4.2.28. That is,
f<b,(aj Am)Vb=a; and (a; Am)ANb<;b/0

by Lemma 4.1.3. If b < m, then a; = (a; Am) Vb < m, which is a contradiction. So b £ m.
Therefore 1 = mVband m Ab=a; Am Ab <y b/0. Thus bis an f-supplement of m in
L. Hence L is f-supplemented by Theorem 4.2.28. [
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5. AMPLY f-SUPPLEMENTED LATTICES

5.1 Amply f-Supplemented Lattices

Definition 5.1.1. An element a of a lattice L has ample f-supplements in L if for every
element b of L with a V b = 1, the sublattice b/0 contains an f-supplement of a in L. A
lattice L is said to be amply f-supplemented if every element of L has ample f-supplements

in L (see [13]).

Recall that a homomorphic image of an f-small element under a lattice homomorphism
need not be f-small. Nevertheless, we will show that the quotient sublattice 1/a of an amply
f-supplemented lattice L is amply (f V a)-supplemented by using properties of f-small

elements given in Chapter 3.

Proposition 5.1.2. If a lattice L is amply f-supplemented, then the quotient sublattice 1/a

is amply (f V a)-supplemented for every element a of L.

Proof. Let x be an element of 1/a. If z V y = 1 for some y € 1/a, then x has a supplement

y' < yin L since L is amply supplemented, i.e.
f<y,zvy =1landz Ay <;y'/0

by Lemma 4.1.3. Then
l=zVvy =2V Va).

By modular law,

x AW Va)=(xAy)Va).

Since z Ay < v/'/0,

(@ AY)Va) Lva (¥ Va)/a
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by Lemma 3.1.6 and since f </,

fVva<y Va.

Therefore ¢’ V a is an (f V a)-supplement of z in 1/a. O

The following result generalizes [1, Proposition 14].

Proposition 5.1.3. If L is an amply f-supplemented lattice, then for every f-supplement a

in L, a/0 is amply f-supplemented.

Proof. Let a be an f-supplement of bin L, i.e.

f<a,avb=1land a ANb<;a/0

by Lemma 4.1.3. Let a = x V y. Then

l=aVb=xVyVb.

There is an f-supplement y’ of b V z in L with 3/ < y. Now

f<y,1=(bVz)Vy and bVz)ANy <y /0

by Lemma 4.1.3. Since
s ANy < (bVaz)ANy <5 y')0,

by Lemma 3.1.7
z ANy <5 y')0.

By modular law we have the following equalities:

a=arNl=an[bV)VY]=y VenbVz)]=y V]V (aAD).
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Now since f < zVy' and a Ab < a/0, a = x V y'. Thus ¢ is an f-supplement of z in
a/0. O

Corollary 5.1.4. If L is an amply f-supplemented lattice, then for a direct summand a of L

with f < a, the sublattice a /0 is also amply f-supplemented.

The following results generalize [1, Proposition 15 and Proposition 16] respectively.

Proposition 5.1.5. Let a,b be elements of a lattice L with a \V b = 1. If a and b have ample

f-supplements in L, then a A\ b has ample f-supplements in L.

Proof. Let (a A b) V ¢ =1 for some ¢ € L. Then

l=aV(bAc)=bV(aAc).

Now there is an f-supplement x of a in L with z < b A c and there is an f-supplement y of

bin L with y < a A c by assumption. So

xVy<cand (aANb)V (zVy)=1.

Alsosince f < xand f <y, f < xVy. Moreover

(aAD)AN(xzVy)=(xAa)V(yAbd) <5 L

by Lemma 3.1.8. Thus (z V y) is an f-supplement of (a A b) in L. O

Proposition 5.1.6. Let a,b be elements of a lattice L such that b <y L. If a V b has ample

f-supplements in L, then a has also ample f-supplements in L.

Proof. Leta V c =1 for some ¢ € L. Then

l=aVec=aVbVec.
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So by assumption there is an f-supplement b’ < b of a \V b in L, that is

f<b,avbVvbd =1and (aVD) AV <,V /0
by Lemma 4.1.3. Since b <y Land f <aV,aVl =1. Also

aNb < (aVb)AY <;b/0
implies that
aNb <5 b'/0

by Lemma 3.1.7. Therefore b’ is an f-supplement of a in L. [
Definition 5.1.7. Given elements a < b of L, the inequality a < b is said to be f-cosmall in
Lifbd < (fva) 1/&.
The following result generalizes [1, Theorem 4].

Theorem 5.1.8. The following statements are equivalent for a lattice L.

(1) L is amply f-supplemented.
(2) Every element a of L is of the form a = x\ y with x /0 is f-supplemented and y <y L.
(3) For every element a of L, there is an element x < a such that the sublattice x /0 is
f-supplemented and the inequality v < a is f-cosmall in L.
Proof. (1) = (2) Lis f-supplemented. Let b be an f-supplement of a in L, i.e.

f<bavb=1and a Nb<;b/0

by Lemma 4.1.3. Since L is amply f-supplemented, there is an f-supplement x < a of b in
L. That is,
f<zbvz=land bAz < z/0
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by Lemma 4.1.3. Now

a=aNl=aN(bVz)=zV(aND)

by modular law. Since a A b <y b/0, a A b <; L by Lemma 3.1.5. z/0 is amply
f-supplemented and therefore it is f-supplemented by Proposition 5.1.3.
(2) = (3) Let a = x V y for which z/0 is f-supplemented and y < ¢ L. Then

a=zVy <L v 1/

by Lemma 3.1.7.
(3) = (1) Leta € L with a V b = 1. Then there is an f-supplement z < a of bwithz < a
f-cosmall in L by assumption. Since 1 = (a V)V b, 1 =aV z. Now a Az < x has an

f-supplement & in /0. That is,
[<V,z=(anz)VV and (a Ax) ANV <; /0
by Lemma 4.1.3. Therefore
l=aV(aAnz)VV =aV¥
and
aNb =(anz) NV <5 V')0.

Thus ' is an f-supplement of ¢ in L with &’ < b. Hence L is amply f-supplemented. [

Corollary 5.1.9. If the sublattice a/0 is f-supplemented for every element a of a lattice L,

then L is amply f-supplemented.

The following result is a new result for modules.

Corollary 5.1.10. If every submodule of a left R-module M is F-supplemented, then M is
amply F'-supplemented.
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6. CONCLUSION

In this thesis we generalize some known results about F'-supplemented and amply
F'-supplemented modules to complete modular lattices. In this work one of the most
important motivation is to show that not every generalization is possible. Therefore we
give an example showing that a homomorphic image of an f-small element under a lattice
homomorphism need not be f-small unlike the module case (see Example 3.1.3). Another
important motivation is to obtain different proofs of the results from those in modules such
as the proof of Theorem 4.2.28 and Theorem 4.2.29. Also some proven results for lattices
give new results for modules (see Corollary 5.1.10). Some of the important results given in

Chapter 4 and Chapter 5 are as follows:

6.1 f-Supplemented Lattices

Theorem 6.1.1. (Theorem 4.1.4) Let a < b be elements of a compactly generated lattice L.

Then the following properties hold:

(1) If a is an f-supplement in L, then a is an f-supplement in b/0.
(2) If bis an f-supplement in L, then
(i) ais an f-supplement in L if and only if a is an f-supplement in b/0.
(ii) a < L ifand only if a <; b/0.
Proposition 6.1.2. (Proposition 4.2.3) Let L be a compactly generated compact lattice and
¢ be an f-supplement of bin L. Then c is compact.
Theorem 6.1.3. (Theorem 4.2.9) Let L be a compactly generated lattice. Then rad;(L) =
Vierlci € L ei < L}
Proposition 6.1.4. (Proposition 4.2.10) If L is a compact lattice, then rad (L) < L.
Proposition 6.1.5. (Proposition 4.2.11) Let L be a compactly generated compact lattice and

cbe an f-supplement of bin L. If a <y L, then a \ ¢ < ¢/0 and rads(c/0) = c Arads(L).
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Proposition 6.1.6. (Proposition 4.2.12) Let L be a compactly generated f-supplemented

lattice. Then 1/a is (f V a)-supplemented for every element a of L.

Proposition 6.1.7. (Proposition 4.2.15) Let L be a compactly generated lattice. If f < ay,
f < ay, a1 Vay =1, a1/0 and ay/0 are f-supplemented sublattices of L, then L is also

f-supplemented.

Proposition 6.1.8. (Proposition 4.2.18) Let L be a compactly generated compact lattice. If

L is f-supplemented, then the quotient sublattice 1/ rad (L) of L is semiatomic.

Theorem 6.1.9. (Theorem 4.2.28) Let L be a compact lattice. Then L is f-supplemented if

and only if every maximal element m of L with f < m has an f-supplement in L.

Theorem 6.1.10. (Theorem 4.2.29) Let L be a compact lattice and {a;/0};cr be a collection

of f-supplemented sublattices of L with 1 = \/ a; and f < a; for each i € I. Then L is
iel
f-supplemented.

6.2 Amply f-Supplemented Lattices

Proposition 6.2.1. (Proposition 5.1.2) If a lattice L is amply f-supplemented, then the

quotient sublattice 1/a is amply (f \V a)-supplemented for every element a of L.

Proposition 6.2.2. (Proposition 5.1.3) If L is an amply f-supplemented lattice, then for every
f-supplement a in L, a/0 is amply f-supplemented.

Corollary 6.2.3. (Corollary 5.1.4) If L is an amply f-supplemented lattice, then for a direct

summand a of L with f < a, the sublattice a/0 is also amply f-supplemented.

Proposition 6.2.4. (Proposition 5.1.5) Let a, b be elements of a lattice L witha NV b= 1. If a

and b have ample f-supplements in L, then a N\ b has ample f-supplements in L.

Proposition 6.2.5. (Proposition 5.1.6) Let a, b be elements of a lattice L such that b <y L.

If a vV b has ample f-supplements in L, then a has also ample f-supplements in L.

Theorem 6.2.6. (Theorem 5.1.8) The following statements are equivalent for a lattice L.
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(1) L is amply f-supplemented.
(2) Every element a of L is of the form a = x N y with x /0 is f-supplemented and y <y L.

(3) For every element a of L, there is an element x < a such that the sublattice x/0 is

f-supplemented and the inequality v < a is f-cosmall in L.

Corollary 6.2.7. (Corollary 5.1.9 If the sublattice a/0 is f-supplemented for every element

a of a lattice L, then L is amply f-supplemented.

Corollary 6.2.8. (Corollary 5.1.10) If every submodule of a left R-module M is
F'-supplemented, then M is amply F-supplemented.
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