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ABSTRACT
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Master of Science, Department of Civil Engineering
Supervisor: Asst. Prof. Burcu GULDUR ERKAL

November 2022, 94 pages

Roads have an important role in the development of the country's economy and social
structure. Today, with the expansion of transportation networks, routine and proper
maintenance of roads has gained importance. Cracks and other types of damage appear
on the surfaces of roads due to many factors. The detection and measurement of these
damages have an important place in the condition assessment of the roads. The surface
defects not only affect the visual appearance of roads but also accelerates the aging of
concrete infrastructure, which affects their normal use, resulting in shorter lifespans. It is
also a potential threat to safe driving. Early detection of reduced capacity due to this
deterioration is, therefore, a priority since timely and accurate detection of damages is of
vital importance. Nowadays, various methods that are used for detecting surface damage
on roads can be listed as follows: an operator inspecting the damage by using traditional
guidelines, microscopic examination of the crack using special tools, taking images by
unmanned aerial vehicles and automatically interpreting the surface damage by analyzing

collected images. If we compare damage assessment using unmanned aerial vehicles with



other methods, we can say that it has many advantages such as less risk of accident, low
cost, time savings, and fewer logistics requirements. Due to the expanding and increasing
road networks, it is indeed a difficult task to conduct an extensive investigation using
traditional methods. Therefore, it is possible to use unmanned aerial vehicles with high-
resolution cameras, which have been used frequently recently, for surface damage
detection of the investigated road. The detection and quantification of damages can be
performed using Deep Learning methods from the collected images. With this method,
images that accurately reflect the geometry of the damage can be obtained by UAVs. The
proposed thesis study aims to automatically detect potholes and cracks on roads, via
drones. The results of this study have the potential of contributing the national and

international literature on damage detection on roads with the help of UAVS.
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OZET

INSANSIZ HAVA ARACI KULLANILARAK ELDE EDIiLEN
GORUNTULERDEN YOL YUZEYIi HASARI TESPITI

Tugba YILDIZLI

Yiiksek Lisans, insaat Miihendisligi Boliimii
Tez Damsmani: Dr. Ogr. Uyesi Burcu GULDUR ERKAL

Kasim 2022, 94 sayfa

Yollar iilkenin ekonomisinin ve sosyal yapisinin gelismesinde 6nemli bir role sahiptir.
Gilintimiizde ulagim aglarinin genislemesiyle birlikte yollarin bakiminin diizenli ve dogru
olarak yapilmasi 6nem kazanmistir. Bir¢ok faktdr nedeniyle yollarin yiizeylerinde
catlaklar ve diger hasar cesitleri ortaya ¢ikmaktadir. Bu hasarlarin tespiti ve ol¢limii
yollarin durum degerlendirmesinde 6dnemli bir yere sahiptir. Bu sadece yollarin gorsel
goriinlimiinii etkilemekle kalmaz, ayn1 zamanda onlarin normal kullanimini etkileyen
beton altyapisinin yaslanmasini hizlandirir ve daha kisa kullanim dmriiyle sonuglanir.
Ayrica giivenli siirlis i¢in potansiyel bir tehdittir. Bu bozulma nedeniyle azalan
kapasitenin erken teshisi oncelikli bir gerekliliktir. Cilinkii bu hasarlarin zamaninda ve
dogru olarak tespit edilmesi hayati bir 6nem tagimaktadir. Giiniimiizde, yollarda olusan
yiizeysel hasarlar tespit etmek amach ¢esitli yontemler sdyle siralanabilir: bir operatoriin
yapiy1 incelemesi esnasinda geleneksel yontemler kullanilarak insanin hasar teftis
etmesi, 0zel aletler kullanarak ¢atlagin mikroskobik incelenmesi, insansiz hava araglari
araciligr ile goriintii alinmas1 ve bu goriintiilerin analiziyle ylizeysel hasarin otomatik

olarak teshis edilmesi ve Olgiilmesi. insansiz hava araci kullanilarak yapilan hasar



tespitini diger yontemlerle karsilastirirsak kaza riskinin daha az olmasi, diisiik maliyet,
zaman tasarrufu, daha az lojistik gereksinimi gibi bir¢ok avantaji oldugunu sdyleyebiliriz.
Genisleyen ve artan yol aglar1 nedeniyle geleneksel yontemler kullanarak genis ¢aplh
inceleme yapmak gerg¢ekten zor bir calismadir. Bu ylizden son zamanlarda sikca
kullanilmaya baslanan yiiksek ¢oziiniirliikli kameralara sahip insansiz hava araglarini,
incelenen yolun ylizeysel hasar tespitinde kullanmak mimkiindir. Toplanan
goriintiilerden derin 6grenme yontemleri kullanilarak hasar tespiti ve derecelendirilmesi
yapilabilir. Bu yontemle IHA’lar tarafindan hasarin geometrisini dogru bir sekilde
yansitan goriintiiler elde edilebilir. Onerilen tez ¢alismasi, yollarda olusan ¢ukurlarin ve
catlaklarin, insansiz hava araglar1 yoluyla otomatik olarak tespit edilmesini
amaclamaktadir. Calismanm tamamlanmasi ile ulusal ve uluslararas: literatiire ITHA

yardimiyla yollarda hasar tespiti konusunda katki saglanmis olunacaktir.

Anahtar Kelimeler: Drone, Derin Ogrenme, Yol Hasarlar;, YOLO, Faster R-CNN, U-
Net
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1. INTRODUCTION

Roads, which are one of the most critical structures all over the world, have a vital role
in the development of the country’s economy and human society. Therefore, countries
value the construction of infrastructures and do not avoid providing the necessary budget
for them. With the development of road construction extensively, the importance of road
maintenance and rehabilitation has increased. The quality and sustainability of a road
pavement directly determine the lifetime of that road. However, due to aging,
environmental factors and road surface deterioration, different types of distress occur on
the pavement surface. The most typical sorts of pavement distress that we commonly see
on the road are cracks and potholes. They have a significant impact on the durability of
the paved roads. These defects not only affect the quality of service and visual appearance
of the structures but also give rise to steel corrosion by reaching the reinforcement, which
shortens the lifetime of roads. At the same time, these defects can pose a potential threat
to safe driving and may endanger human life. Therefore, it is a vital task to inspect these
surface damages before performing maintenance and repair. It is crucial to identify the
defects on time and accurately. Quick identification prevents possible dangers and is
necessary to reach more accurate results. A manual visual inspection is the initial
technique for identifying and categorizing pavement defects. Traditional visual
inspection-based damage detection is expensive, inefficient, time consuming, labor
intensive, and requires logistic planning. Nowadays, with the rapid expansion and
increase of road networks, it is challenging to perform large-scale inspections. However,
with the advent of unmanned aerial vehicles (UAVSs), data collection has become easy.
UAVs are used in many research areas because their ability to collect data quickly and
without a lot of labor requirements. In addition to their efficiency and cost-effectiveness,
UAVs can also perform large-scale inspections.

In response to this problem, many automated defect detection methods have been
developed over the years to efficiently inspect defects on paved roads. This is an ongoing
research topic and challenge for pavement condition researchers and computer vision

community.

The difference of this thesis from the studies in the literature is combining the object

detection and segmentation tasks.



This paper is organized as follows. The relevant studies based on image processing,
machine learning, and deep learning are included in the literature review section. Chapter
3 explains available datasets for training and testing which includes images gathered by
UAYV at Hacettepe University Beytepe Campus. Chapter 4 introduces the methodology
and applications’ detailed explanation. Chapter 5 describes the results of analysis as well
as comparison of different models. Finally, Chapter 6 contains a brief summary of the

results of this thesis.

1.1. Objectives

Regular assessment of road damage is necessary to understand the performance of the
roads and to carry out the necessary maintenance and repair work in a timely manner.
Roads should be maintained regularly because they are constantly exposed to traffic loads
and changes in environmental conditions. However, a lot of manpower is required to
perform this assessment continuously. Therefore, the assessment of roads by drones can

be done with less manpower.

This study’s main aim is to automate the pavement condition assessment process by using
drones. Therefore, to predict pavement distresses rapidly and accurately, a novel
pavement assessment method based on deep learning frameworks is proposed. The goal
of an automatic detection system is to perform continuous and cost-effective pavement

evaluation.
Individual objectives can be listed as:

e Detection of damage with the object detection algorithm with the highest
performance

e Determination the ground sampling distance for each image and creation of a new
pavement assessment guide to quantify of the defects

e Determination of the total damaged area with the segmentation model with the
highest performance

e Categorization of the severity levels of the defects

e Presentation of ArcGIS-based interactive road state map



2. LITERATURE REVIEW

Pavement surface condition assessment is the key factor in the maintenance and repair of
roads. It is required to conduct a reliable and high-quality assessment of distresses in the
pavement such cracks, potholes, and patches, and consequently, there are many studies
in the literature that focus on pavement defect detection using state-of-the-art technologic
developments over the years. With the technological developments, focal point of the
methods used by researchers have changed. Many methods have been developed to
automate the pavement damage detection, from image processing to machine learning
methods, including deep learning methods which has been extensively used not only on
pavement research but also in many other study fields from both the academy and the
industry nowadays. At an early stage, automatic damage detection using digital image
processing (DIP) have gained popularity with the advent of more powerful cameras that
obtain higher-quality images, and numerous approaches based on image processing have
been proposed by researchers. Later, machine learning methods drew rapid attention of
many researchers who intended to automate the process. While image processing
techniques can only focus on pixels of an image and understand unsubtle features,
machine learning algorithms have the capability of learning deep features. With the
growing trend in artificial intelligence (Al), deep-learning techniques became prominent,

and they achieved tremendous success in various tasks (2017-2022).

2.1. Image Processing Techniques

Images taken from the roads may have not have the desired quality due to noise, blur, and
uneven illumination. In early studies, various image processing techniques have been
used to develop methods for performing high-quality pavement surface defect
inspections. Several methods have been proposed to reduce the impact of noise on defect
detection. The commonly utilized DIP techniques, such as threshold segmentation, edge
detection, morphology, and wavelet transform can be used to separate the defects from

the background and create a binary image classification.

Image segmentation is a procedure that focus on detecting boundaries such as edges, lines
or, curves in the processed images. Threshold segmentation (Koch and Brilakis, 2011,

Zhu et al., 2007) is a classical method of image segmentation. In threshold segmentation,



an image is divided into object and background by putting a pixel threshold. The method
proposed by Koch and Brilakis, (2011) uses histogram-based thresholding to distinguish
between portions of pothole images with defects and those without defects. They
extracted a possible pothole form based on its geometric properties using morphological
thinning and elliptic regression. Since the backdrop is lighter than the crack pixels, both
dynamic and local thresholding methods have yielded in successful results . Oliveira and
Correia, (2009) used the dynamic threshold to identify dark pixels in images. Tsai et al.,
(2010) used six methods for segmentation (Canny edge detection, a multiscale wavelet
method, an iterative clipping method, statistical thresholding, dynamic optimization, and
a crack seed identification method) to detect the structure of the crack that arise on the
concrete pavement, and the effectiveness of each technique is evaluated in relation to each
other. Consequently, the dynamic optimization-based method outperformed the other five

methods.

Threshold segmentation can only result in good outcome if there are visible difference
between pixels of the object and background. However, if the image contains complicated
information, it may become difficult to perform segmentation using a threshold value on
the pixel intensity of the image (Zhu et al., 2007). It is also a difficult task to determine
the appropriate threshold value.

The edge detection methods were used in wide areas by many scholars. Commonly used
edge detection filters can be listed as Canny, Sobel, Roberts, and Prewitt. In the field of
automatic pavement damage detection, edge detection techniques were used specially to
segment crack features. For instance, Zhao et al., (2010) applied Canny algorithm for
pavement edge detection. Another implementation that uses edge detection algorithms is
presented in Abdel-Qader et al., (2003), as they analyzed the cracks occurred on a bridge.
They also compared the crack detection results for Canny, Sobel, fast Haar transform

(FHT) and fast Fourier transform (FFT). However, the performed research showed that

the edge detection methods may not give sufficient results in low-contrast images.

Mathematical morphology (MM) is also another productive image processing technique
used for the detection of defects. Fundamental morphological operations can be listed as
dilation, erosion, opening, and closing; however, it can only be used for binary operations.
While the closing operator, which is the most popular in mathematical morphology, can

be utilized to fill small gaps between crack pixels, the opening operation can be employed



o remove the undesired noises in the image (Fan et al., 2020). Tanaka, N. and Uematsu,
(1998) proposed a method for detecting pavement cracks using these morphological
approaches on the gray-scale images of the road surface. In the recent studies, for example
Cubero-Fernandez et al., (2017), morphological operations were used during image

preprocessing to obtain main features of the cracks , before the classification is performed.

The wavelet transformation (WT) evolved into a powerful signal processing tool during
the last two decades. Wavelets have been frequently employed to reduce the noises in
images since the images basically consist of two-dimensional signals. 2D continuous
wavelet transform, which is one of the image processing methods, was applied to detect
crack and non-crack regions by Subirats et al. (2006). If there is a background with a
strong texture, this proposed method could only be used for noise removal since these

approaches are performed on individual pixels.

Analysis of collected raw video clips for pavement distress detection has been also
studied. Huidrom et al., (2013) developed a robust method that uses a fast video
segmentation algorithm called DFS and CDDMC to automatically detect and quantify

potholes, cracks, and patches from video clips using various image processing techniques.

Another challenge to overcome in image processing is shadows that composed of
complex noises and backgrounds. For that reason, Zou et al., (2012) proposed a method
named CrackTree that uses image processing for crack detection. After removing the
shadows while preserving crack pixels, they used a minimum spanning tree algorithm for

crack identification.

Although all of the discussed image processing algorithms can detect cracks in images,
they are not as effective as desired. In addition, not all image processing technigues can
be adapted to various pavement images with different conditions. Image processing
methods have been restricted to identifying distresses, but they have not yielded in
efficient results for localizing and categorizing the detected distresses. The flowchart of
image processing-based model for crack detection is shown in Figure 1.



Figure 1. The flowchart of image processing techniques for crack detection (Munawar et
al., 2021)

2.2. Machine Learning Techniques

With the development of computer vision and artificial intelligence, automatic detection
of cracks through a variety of machine learning methods has become possible for both
pavements and other structures. The three main types of machine learning algorithms are
Supervised learning (Liu, 2011), Unsupervised learning (Barlow, 1989) and
Reinforcement learning (Szepesvari, 2010). During the last two decades, automatic
pavement defect identification and analysis have been done using both supervised and
unsupervised learning approaches. The main difference between unsupervised and
supervised learning is whether the utilized data have a label or not. Supervised learning
uses the labeled dataset, and then training occurs to classify data and predict outcomes by
considering the previous experience. However, there is no labeled data in unsupervised
learning, this technique finds hidden structures in unlabeled data by deciphering the

similarity between data by itself.

Unsupervised algorithms can be effective when the existence and the location of the
defect is unknown within the data. These algorithms are frequently employed to obtain
useful information about data features and perform clustering. The main types of
unsupervised learning algorithms include K-means (Yang et al., 2017), K-medoids (Park
and Jun, 2009), and Neural Networks (Abiodun et al., 2018).

Amhaz et al. (2016) introduced an unsupervised learning algorithm for crack
segmentation based on minimum path selection (MPS) by calculating the crack width
using two-dimensional pavement image. However, the developed technique is incapable

of dealing with a crack that has a complicated regional anatomy.

Akagic et al. (2018) suggested a new unsupervised learning method for detecting cracks

in 2D images. After dividing the input images, the Otsu threshold and the maximum



histogram value were used on every sub-image. This method has performed well in low

signal-to-ratio circumstances thanks to unsupervised learning.

Unsupervised learning-based MFCD, or the multi-scale fusion was proposed by Li et al.
(2019). By calculating the highest average crack score across all scales, they attempted

to increase the effectiveness of crack detection.

Oliveira and Correia, (2013) designed a system based on both image processing and
machine learning. The system called CrackIT used threshold-based segmentation in the
pre-processing step to distinguish cracked pixels from the background, and then used
clustering techniques (unsupervised learning) to group patches of images that contain
cracks.

In the case of supervised learning, the most common types of problems are the regression
and classification. If there is data that needs to be categorized, classification algorithms
can deal with the problem. The most popular classification algorithms are: Random Forest
(Biau and Scornet, 2016), Nearest Neighbors (Indyk and Motwani, 1998), Support Vector
Machines (SVM) (Hearst et al., 1998), Decision Trees (Kotsiantis, 2013), Logistic and
Linear regression (Wright, 1995) and Neural Networks (Abiodun et al., 2018).

One of the most prevalent supervised learning techniques with binary classification is the
Support Vector Machine (SVM) (Christopher J.C. Burges, 1998). Gavilan et al., (2011)
presents a road distress detection model that uses a linear SVM-based classifier for
different pavement types in Spain. In (Marques, 2012), three different pre-processing
arrangements are applied to increase the smoothness of the image texture. A crack
classification using SVM was then used to distinguish cracks and non-cracks.

Another supervised machine learning technique that is popular in classification and
regression is Random Forest. Shi et al. (2016) introduced CrackForest, which is a road
crack detection framework that was developed by using random structured forests, to deal
with complex topological structures. They compared the proposed approach with other

methods and concluded that it was effective in discriminating cracks from noises.

Cubero-Fernandez et al., (2017) applied decision tree heuristic algorithm for
classification task once several image processing techniques are utilized to enhance

pavement images.



2.3. Deep Learning Techniques

One of the subsets of machine learning is Deep Learning, which can simulate the
computational capabilities of the human brain and develop decision-making patterns.
Deep learning algorithms are based on neural networks, which is a set of algorithms that
works similar to human brain. In recent years, upon further development, deep learning
algorithms have been extensively used for research in various areas as they do not require

much human interference.

The basic goals of the field of computer vision are classification, localization, detection,
and instance segmentation. The difference between these tasks is illustrated in Figure 2
based on the output image. Road defect detection and classification has been the subject
of numerous experiments with Deep Learning, especially based on Deep Convolutional

Neural Networks.
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Classification Segmentation
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Figure 2. Image classification and localization for single object, object detection and

segmentation for multiple objects (Jaiswal et al., 2020)

Convolutional Neural Networks, a method of deep learning (CNN), have great advanced
especially in performing multi-class classification compared to the traditional methods.
CNN algorithms are generally preferred over regular Artificial Neural Networks (ANN)
since they require less computation. LeCun et al., (1998) designed the first neural
convolutional neural network called LeNet for handwritten digit recognition (Figure 3).
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Figure 3. Architecture of LeNet-5, the first famous CNN architecture. (LeCun et al., 1998)

Binary Classification

Binary classification can be performed with deep learning. It is the simplest method to
categorize the input into two classes. When a model performs binary classification, it
examines the input data and determines which of two possible classifications to assign it.

As an example of binary classification, the road images acquired by smartphone were
first divided into small patches. Later, the probability of these patches including cracks
was calculated using deep CNN (Zhang et al., 2016). This study was pioneer in applying

deep learning techniques to identify road cracks.

Gopalakrishnan et al. (2017) trained a deep learning model using an open-source database
called ImageNet and transferred its learning ability to perform automatic pavement crack
detection. The developed pavement crack detection model contains five convolutional
blocks of the VGG16 architecture. Then, several machine learning classifiers such as
Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN) were
utilized. The performances of these classifiers are then compared. It is concluded that the
single-layer neural network classifier based on pre-trained VGG-16 deep CNN model
outperformed the other four classifiers.

Cha et al. (2018) improved a deep CNN to discriminate between crack pixels and non-
crack pixels in concrete structures without utilizing image processing techniques for
feature extraction. The results indicated that even if the images were taken under various
conditions such as insufficient lighting or shadow, the performance of the method was
more robust compared to the traditional edge detection techniques (i.e., Canny and Sobel).



CrackNet software based on deep learning was established by Zhang et al. (2017). The
outputs of the proposed CNN, a pixel-level classification method, are class scores for all
individual pixels. The difference between regular CNN and CrackNet is that CrackNet
does not use any pooling layers. The architecture of the suggested CNN model, CrackNet,
is illustrated in Figure 4. Later, to increase the computation speed of the model, the
CrackNet software is improved into CrackNet 11 software (Zhang et al., 2018). CrackNet
Il uses a deeper architecture compared to CrackNet. CrackNet 11 not only provides faster

detection, but it is also effective for detecting of small cracks.
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Figure 4. CrackNet model architecture (Zhang et al., 2017)

Yang et al., (2020) presented a novel network utilizes feature pyramid and hierarchical
boosting to detecting cracks automatically. This novel approach provides an integration
between context information and low-level features. CRACKS500 dataset which contain
five hundred images from the campus of Temple University was also published by the

same group of researchers.

Multi-Classification

Several earlier studies focus only on the existence of defects. If it is desired to separate
the cracks into groups or to differentiate various damage types, binary classification is

not sufficient. For this reason, several researchers have focused on defect categorization
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and defect severity level determination for years. As a result, many techniques based on
CNN for multi-classification task have been presented.

Fan et al. (2018) offered a structured prediction method using Deep Learning CNN to
automate the multi-label classification problem in crack detection. They have not used
any preprocessing techniques but instead used raw images. To deal with the problem of
unstable data, the developed model was tested on two different data sets. It was found
that the proposed approach has strong generalizability even for images with particularly

complex backgrounds and crack patterns.

Song et al., (2019) proposed deep multi-scale convolutional features to detect high-level
cracks by using the multiscale dilated attention (MDA). Afterwards, the crack resolutions
were recovered using the Feature Fusion Up Sampling (FFU) module. Cracks were
separated into groups for block, alligator, transverse, and longitudinal categories during
the second phase. In addition, the severity of them was evaluated as a function of branch
spacing and crack width.

Object Detection

In recent years, object detection applications have also been used for the road damage
detection since they can perform both classification and localization tasks. The most
commonly used CNN-based algorithms for object detection are Fast R-CNN (Girshick,
2015), Faster R-CNN (Ren et al., 2017), Single Shot MultiBox Detector (SSD) (Liu et
al., 2016), and You Only Look Once (YOLO) (Redmon et al., 2016). All of these
techniques aim to define a bounding box around the target object.

The main advantage of YOLO is that it can locate and classify objects with a single CNN.

Hereby, it works faster than other listed algorithms.

Majidifard et al. (2020) proposed a comprehensive new dataset named pavement image
dataset (P1D). Images were extracted as wide-view and top-view from Google API Street
view, and they were manually labeled into nine categories. YOLO and Faster R-CNN
were utilized to automatically identify and categorize road damages. The results were

then compared with each other.
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Another object detection-based multi-classification method that uses CNN architecture
was developed by Maeda et al. (2018). They prepared an extensive dataset that includes
9053 road images with eight damage types captured by a smartphone. Then, SSD
architecture was used to perform automatic damage detection and classification tasks.
The proposed SSD framework employed Inception V2 and MobileNet as the backbone

feature extractor modules.

In (Du et al., 2021), a large-scale dataset collected by a high-resolution camera installed
on a vehicle was prepared. The dataset includes 45,788 distress images with various
illumination for seven damage classes. Subsequently, a technique for identifying and
categorizing roadway deterioration based on the Yolov3 network was proposed to
automate feature extraction and increase detection speed. In addition, this study compared
the Yolo Network, Faster R-CNN, and SSD algorithms regarding speed and precision.
The results showed that Yolova3 is relatively faster than other algorithms.

The applications of computer vision-based techniques have not only been used for
pavement monitoring but also been applied for structural condition assessment and
inspection (i.e., concrete cracks, concrete spalling, fatigue cracks in the steel, steel
corrosion) (Spencer et al., 2019). For example, Cha et al., (2018) proposed a Faster R-
CNN-based structural defect detection model to categorize various damages such as

corrosion and delamination of steel in bridges.

Image Segmentation

Image segmentation is another popular technique used for differentiating objects in an
image. For image segmentation, each pixel is labeled with a corresponding category. In

recent years, this method has been used in pavement damage inspection automation.

Lietal., (2021) presented a semantic segmentation model, that uses advanced pixel-level
recognition, to automate pavement distress classification. They created an extensive
pavement distress image dataset containing 10,097 images and labeled these images
under six categories including potholes, patches, block cracks, longitudinal cracks,
transverse cracks, and alligator cracks. The U-Net and Resnet architecture was then

trained to detect the areas of damage in the images. When the binary classification was
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considered, the results obtained by this method showed good pixel accuracy. However,
this method is not efficient in predicting the shapes and locations of the six distress.

A technique for segmenting and detecting pavement cracks was suggested by (Liu et al.,
2020), which utilizes a combination of the modified YOLOv3 and U-Net. First, an object
detection algorithm was used to classify four types of distresses, and the crack regions
detected in the first step were then used as an input for the segmentation step. The goal
of these steps is to increase the accuracy of the model. After comparing the proposed two-
step method with other detection and segmentation techniques, it was found to be more

successful.
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3. DATASETS

Pavement surfaces deteriorate over the years due to many reasons such as heavy traffic,
natural disasters, construction faults and environmental conditions. The common types of
the distresses can be divided into three main groups: cracking, disintegration, and surface
treatment distresses. These types of damage differ depending on the materials of the
pavement. Figure 5 shows the types of pavement distress for both flexible and rigid

surfaces as a summary.
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Figure 5. The common distress types for flexible and rigid pavements

Since these deteriorations occur very slow at the beginning, they only require regular
maintenance to maintain the level of service of the road. If not maintained and improved
in a timely manner, deterioration will accumulate and lead to very expensive maintenance
and improvement work. Therefore, pavement maintenance is important to extend the
useful life of a road. Although there are a variety of defects in different pavements, cracks
are the most common damage that occurs on both types of roads. Cracking of the road
surface allows moisture to penetrate the subgrade, which can lead to premature
deterioration of the road structure. To maximize the life expectancy of a road, it is
desirable to minimize the damaging effects of cracking. This can be achieved by early
detection and repair of cracks before extensive deterioration occurs. If cracks are not

repaired in a timely manner, maintenance costs can increase as the crack progresses.
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Pothole is another common type of damages that occurs on the road surface. Potholes are
also caused by the progression of cracks that are not maintained in a timely manner.
Potholes deface the road structure and shorten the life of the road. Failure to maintain a
crack in a timely manner will result in more wear and potholes. Potholes are also
important for safe driving. They lead to impaired driving comfort and accidents,
especially since visibility is very poor in the dark. They pose a greater risk, especially to
vehicles such as bicycles and motorcycles, and can even cause fatal accidents. Therefore,
proper and timely road maintenance has become an important service that extends the life

of the road and also reduces risks.

There are numerous open-access and private datasets in the literature that contain these
types of damage. Especially with the widespread use of digital image processing methods,
studies using these datasets have increased. Since it is easy to distinguish the crack
structure from any background, effective studies have been conducted to detect cracks on
asphalt and concrete surfaces. As a result of these studies, open access datasets are
presented. Since the advent of machine learning and deep learning methods, the need for
more images has arisen. To meet this need, large-scale datasets of road defect images
from different angles and multiple damage classes have been developed. To choose the
best dataset for this research, a detailed literature review was conducted. Many open-
access datasets related to pavement conditions have been found and prepared for efficient

use in this study.

3.1 Available Datasets

Pavement distress data are traditionally collected by walking on the road and evaluating
the required criteria. However, this procedure takes a long time, and the outcomes are
inaccurate. Automated data collection systems are evolving as technology develops. A
truck or robot with cameras are among the most commonly used methods for data
collection in pavement inspection. Since the installation of these trucks is very costly,
they are not preferred by researchers. Nowadays, drones are increasingly used for
pavement data collection (Zhu et al., 2022).

Some datasets that are collected manually have been found in the literature. However,
most of them have only 2 types (with crack and without crack) of labels. These are some
examples of them; CrackForest Dataset (Shi et al., 2016), Crack500 (Yang et al., 2020),

15



CrackTree (Zou et al., 2012), GAPs (Eisenbach et al., 2017) and DeepCrack (Liu et al.,
2019) . The images in these datasets were taken with smartphone cameras and contain
close-up photos of the crack structure. The number of images and pixel sizes in these
datasets are listed in Table 1. Most of them contain images with a size of 448x448, while
Crak500 and GAPs contain crack images with a high pixel size of 3264x2448 and
1920x1080, respectively.

Table 1. Existing datasets with crack image

Dataset Number of Images Pixel Size
Crack Forest Dataset (CFD) 118 448x448
Crack500 500 3264x2448
CrackTree 206 448x448
GAPs vl 1969 1920x1080
DeepCrack 537 448x448

Datasets containing only the crack structure are generally used in the literature for image
processing methods. Image processing methods such as thresholding, edge detection, and
segmentation have been applied to the images in these datasets. Researchers have
generally utilized these datasets to extract the crack region based on the assumption that
the crack pixel is darker than its background. Recently, with the increasing interest in
deep learning, such datasets have been used with deep learning algorithms. In particular,
segmentation based on deep learning networks have been applied to crack images. Since
the crack structure has specific pixels, studies were conducted on different surfaces. These
studies were not limited to asphalt and concrete, but were also applied to marble
(Vrochidou et al., 2022), rock (Chen et al., 2020), and plastic surface (Kien et al., 2019).

The datasets listed in Table 1 contain not only the raw images but also their masks. Each
crack image has a binary image as a mask, labeled at the pixel level. Some of the raw

images and masks of the datasets examined in this study are shown in Table 2.

In this study, segmentation was performed using deep learning methods to obtain a pixel
output of road damage. Images and their masks from the five datasets listed in Table 2

were used to train the segmentation model.
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Table 2. The images and their masks in the crack datasets

Dataset Raw Image Mask

Crack Forest Dataset
(CFD)

Crack500

CrackTree

GAP vl

DeepCrack
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The first goal of this work is to detect different types of pavement damage. Therefore,
datasets containing multiple types of pavement distresses were searched and two datasets
were found. One of them is created by Majidifard et al., (2020). There are 7237 images
of pavement damage in this dataset, including nine different types of damage. The images
in this dataset were taken from two different viewpoints. Sample images from the dataset

are displayed for each category in Figure 6.
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Figure 6. Samples of the images in the dataset presented by Majidifard et al., (2020)

Another dataset was created by Passos et al., (2020) with support from the Brazilian
National Department of Transportation Infrastructure (NDTI). These images were
extracted from videos recorded by a Highway Diagnostic Vehicle (HDV) with a high-
resolution camera. The total of 2235 images extracted from the video in this dataset have
a resolution of 1280x729. Although generally consists of pothole images, it also contains

some types of cracks such as alligator and longitudinal cracks, as shown in Figure 7.

Alligator Crack Pothole Longitudinal Crack

Figure 7. Samples of the images in the dataset introduced by Passos et al., (2020)
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Flexible pavements such as asphalt are common on existing highways in Turkey. The
most common pavement damages in Turkey are potholes, longitudinal cracking, alligator
cracking, and reflective cracking. Therefore, this study aims to investigate a multi-
classification task focusing on these four types of defects in object detection. Thus, the

aforementioned datasets were prepared for the object detection model.

3.2. Dataset Preparation

The size of the dataset is the key factor for the effective execution of a deep learning
model. Since the above two datasets generally contain the desired defect types, the use of
these datasets would be more appropriate. The images containing these crack types were
extracted and classified into four categories. In order to train the object detection model,
the collected images should be used as input to the damage detection models. This study
employed a number of deep learning-based object detection algorithms. Therefore,
depending on the algorithm used for different formats, the images are labeled according

to their classes. This labeling process is explained in detail.

No labeling process is required to build the segmentation model. This is because the

publicly available crack datasets also contain their images and masks.

3.2.1. Labeling

Obiject detection task based on deep learning algorithms requires that the object contained
in the image can be assigned to its class. The image may contain multiple objects
belonging to different types, so each object must be labeled separately. To train the object
detection model, bounding boxes should be created around the location of each object.
The labeling process can be done manually for each image using various freely available
software tools. In this study, a software called Labellmg was utilized for labeling. This
graphical tool allows labeling images and to prepare them for deep learning models.
Thanks to Labellmg, the coordinates of the object locations are recorded in different
formats for each algorithm. An illustration of the Labellmg software's labeling procedure

can be seen in Figure 8.
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Figure 8. An example of a labeling using Labellmg

YOLO Format

In order to perform object detection with the YOLO architecture, the images must
conform to the YOLO format. In this format, the upper right corner of the images is
considered a (0,0) point, and the lower left corner is considered a (1,1) point, so labeling
is based on pixel coordinates between 0 and 1. Using the Labellmg software, the
information about the object is stored in a file TXT for YOLO format in the order shown
below.

[class] [x-coordinate of the center of the object] [y-coordinate of the center of the object]
[width of the object] [height of the object]

3 B8.36279296875 08.5171875 8.8595783125 0.865625

2 8.439453125 8.5421875 0.883984375 0.14375800000000082

2 B.43683515625 0.3148625 8.0947265625 8.25625600000000883
2 B.77294921875 0.74765625 @.1142578125 ©.1859375

Figure 9. An example of YOLO annotation format

20



In YOLO format, the damage class is symbolized by a number, as shown in Figure 9. The

damage classes were used in the labeling in this study as shown below:

0 > Longitudinal Crack
1 > Reflective Crack
2 > Alligator Crack
3 > Pothole

Pascal VOC Format

To use the Faster R-CNN architecture for training the object detection model, the input
data must be in Pascal VOC format. In this format, the annotations are stored in an XML
file. This XML file contains directory information for each image, the coordinates of the

corresponding bounding-box, and the type of defect, as shown in Figure 10.

<annotation=
zfilename>potholedataset_(196).jpg</filename=
=folder=C:fTensorflow3 /workspace/training_demo
(196).xml</folder=
- <size>
<width>1024 =< /width =
<height=630</height=
<depth=3</depth>
= size=
- zobject=
<namez=Alligator</name=
- «<bndboxz=
<xmin=778</xmin>
zymin>424</ymin>
<¥max>1022</xmax>
<ymax>=629</ymax=
< /bndbox=
< /object=
= fannotation=

Figure 10. An example of Pascal VOC annotation format
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Asphalt pavements are widely used on existing highways in Turkey. Deformations such
as cracks and potholes usually occur in these flexible pavements. Therefore, it was
considered appropriate to use the dataset prepared by Passos et al., (2020) in this study.
The labeling process was carried out for four classes: Pothole, longitudinal crack, alligator
crack, and reflective crack. First, images from the dataset presented by Passos et al.,
(2020) were manually labeled, resulting in 1524 images collected for this project. The

total number of labels created for each class in the dataset is shown in Figure 11.
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Figure 11. The total number of labels for each category (Passos et al., 2020)

The balance of tags belonging to each class is one of the most crucial elements influencing
an object detection model's accuracy. However, after the labeling process for this dataset,
it was found that the numbers of tags were not evenly distributed. In particular, it was
found that the number of reflective cracks was very low. This is because the dataset
mostly consists of pothole, alligator cracking, and longitudinal crack types. To address
this issue, another dataset (Majidifard et al., 2020) was also labeled for four categories
and added to the training data. In this way, a total of more than 200 labels for reflective

cracks were added. The final version of the class distribution is shown in Figure 12.
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Figure 12. The distribution of the labels obtained from two groups of datasets
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The collected images are used as input to the damage detection models for training the
models. In this study, it was recommended to use two deep learning-based object
detection models.: YOLOvV5 and Faster R-CNN. Since each model has a different

annotation format, the images are labeled according to a compatible format.

3.2.2. Data Augmentation

Prior to building deep learning-based object detection models, several image
augmentation techniques were applied to the images to be included in the training. The
performance of the model is adversely affected by an irregular distribution of label
numbers. It was estimated that this situation may decrease the overall accuracy of the
model. Therefore, to balance the distribution, some image augmentations techniques were

applied to the images, especially to reflective cracks.

In order to create a variety of images in the model, both geometric changes and
differences in pixels can be applied to the images. In this study, the geometry of the image
is important to determine the crack type. This is because the direction in which the crack
extends determines its class. Therefore, only horizontal flip could be applied as a

geometric modification. An example of this application can be found in Figure 12.
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Figure 13. Example of horizontal flip for data augmentation

Changing the brightness of the image is another technique of data augmentation. This
technique allows the model to recognize the image under different illuminations. In this
study, the brightness was changed at a rate of 30%. This created new images that were
30% brighter and darker.

Another method is to change the saturation level. Saturation is the depth or intensity of
color in an image. In this work, the saturation was changed by 50%. A sample image of

this change is shown in Figure 14.

Figure 14. An example of the changing the saturation
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In the last step of data augmentation, some images were converted to black and white

format and added to the dataset. In this way, more data was obtained.

During the dataset preparation phase, some preliminary studies were conducted to build
models for automatic road damage detection. In these studies, it was found that the model
made false detections in images with trees or tree shadows. It was found that it perceived
areas with tree branches and shadows as cracks. For this reason, some small images with
objects such as trees and tree shadows were added to the dataset without labels. The
training data was enlarged in this way. This allows the model to produce more accurate
results. Examples of these images can be seen in Figure 15.

Figure 15. Examples of images containing trees and tree shadows for training data

After the data augmentation for training the model, 342 more images were added to the
dataset. Thus, the uneven distribution of labels was eliminated. The dataset then contained
a total of 1930 images. The final distribution of the dataset according to the numbers of

labels for each category is shown in Figure 16.

As a result of these applications, the total number of images to be used for building an
object detection model was increased to 1930 images. Then, the dataset was split into a
training and a validation dataset in a ratio of 80/20. The validation data is used to evaluate
the performance of the model after training, while the training data is used as input to the
model. Therefore, the number of training and validation images was calculated to be 1544

and 386, respectively.
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Figure 16. Label distribution after data augmentation
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3.3. Data Collection

The Beytepe Campus of Hacettepe University was chosen as the place to work on this
project. The campus was built on a 5,877,628 m2 plot of land along the 20th kilometer of
the Ankara-Eskisehir highway. Before conducting a drone flight, the roads on the Beytepe
Campus were examined for feasibility. It was found that there are many damages that
need to be maintained and repaired. During the preliminary surveys, pictures of the
damaged areas were taken with a smartphone camera. Figure 17 shows examples of these

images.

Figure 17. Sample images taken with the smartphone camera in the preliminary study
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After this preliminary study, it was decided on which routes the flight with the drone
would be carried out. The route on which the study was to be conducted was selected as
the main street of the dormitories on the Beytepe Campus. The estimated flight distance

was planned about 1400 m. The map of the flight route was taken from Google Maps and

is illustrated in Figure 18.
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Figure 18. Drone Flight Route (Google Maps)
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Today, several research are using unmanned aerial vehicles (UAVSs) because these tools

are fast and inexpensive. In addition, UAVs have recently been supported by the

development of artificial intelligence technologies and have taken a larger place in human

life.
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Data acquisition was performed using a drone to capture high-resolution images of road
deformations quickly and safely. This project used the DJI Mavic 2 Pro unmanned aerial
vehicle, one of DJI's new drone models. It features a high-resolution camera. The drone
weighs about 907 grams and has a length, width, and height of 322%242x84 mm when
the wings are spread out (Figure 16). The drone's integrated camera has a 1-inch CMOS

sensor and a resolution of 20 megapixels.

Figure 19. Drone used to collect images (DJI Mavic 2 Pro)

The necessary permissions were obtained from the authorized bodies of Directorate
General of Civil Aviation (DGCA) and Hacettepe University for the UAV flight. For
safety reasons, the flight was preferably conducted when the university is outside of
academic hours and vehicle traffic is low. The drone was flown on the main road in the
region of the dormitories of the Beytepe Campus of Hacettepe University. Continuous
images and video clips were collected from this region. The start and end coordinates of
the flight are listed in Table 3. The flight took place over a total distance of 1361 meters.

Table 3. Drone flight coordinates

Flight Start Coordinate Flight End Coordinate
Latitude 39; 52; 1.64430000001459575 39; 52; 12.6842999999935557
Longitude 32; 43; 58.3614999999989000 32; 43; 50.65390000000046258
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Although the flight was initially launched autonomously, there were interruptions in the
GPS signal because the flight area was in military airspace. For this reason, the UAV
flight was conducted manually and parallel to the road to ensure safety. The flight altitude
of the UAV could not be determined due to the manual flight and the lack of LIDAR
integration, but it was flown at altitudes between 8 and 20 meters above the ground
surface and these altitudes were recorded. Due to the low battery and loss of the GPS
signal, four separate flights were conducted. The total flight time was 31 minutes. The
total distance flown, total time, and number of images recorded for these flights are shown
in Table 4.

Table 4. Drone Flight Records

) ) Duration
Flight Distance (meter) ) Road Photo Number
(minutes)
First Flight 616 12 30
Second Flight 205 6 21
Third Flight 299 6 23
Fourth Flight 241 7 28

During these flights, a total of 102 images of the road images and the campus images
were collected from the flight area with. These images are 5472x3648 pixels in size. The
pavement image taken in this flight is shown in Figure 20, and a photo of the Hacettepe

University campus is shown in Figure 21 as an example.
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Figure 21. Example of Hacettepe University Beytepe Campus image using UAV
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3.3.1. Processing the Collected Images

The images captured by the drone were transferred to the map using ArcGIS Pro, a
geographic information system-based software (Figure 22). This transfer process was
based on the coordinate information of the images. The capture points of the 102 photos
collected during the four flights mentioned in Table 4 are visualized on this map.

OpenStreetMap (OSM) was used as the map base.
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Figure 22. ArcGIS map of images taken from drone

Ground sampling distance (GSD) is a fundamental concept for any drone flight for
research and inspection purposes. It forms the basis for many important flight planning
decisions. This value can be used to determine from what altitude to fly to achieve the
required resolution and quality of the desired data. This value is also important for the
flight safety of the camera.
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Ground sampling distance represents the size of one pixel on the ground. Ground
sampling distance is usually specified in cm/pixel. This helps to find the amount of ground
or surface area covered by a drone image. Two major variables are used to calculate the
GSD: the flight altitude and the camera parameters. The camera sensor width, focal
length, and image resolution are the camera parameters used to calculate the GSD. The
formula for calculating the GSD is as follows.

Sensor Width * Height (Altitude)

Ground Sampling Distance (GSD)= :
Focal Length * Image Width

In order to calculate the ground sampling distance of each image, the distance of the
camera to the ground at the time of capture must be known. However, this value is not
the same for each image due to manual flight. For this reason, the altitude of each image
was determined using the Google Earth application since the coordinates were known. In
addition, the altitude of the point where the image was taken, that is, the altitude at which
the drone is flying at that moment, is also included in the information of the photo. Thus,
the distance to the ground was calculated by calculating the difference between the two
altitudes. Using this data, the ground sampling distance was calculated for each image
and used to determine the severity of the road damage.

The parameters of the camera connected to the drone used in this study and the

information about the images obtained after the flight are summarized in Table 5.

Table 5. Parameters for the calculation of the GSD

Image Width (pixels) 5472
Image Height (pixels) 3648
Focal Length (mm) 28
Sensor Width (mm) 13.3
Sensor Height (mm) 8.8
Height (m) Variable
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4. METHODOLOGY

4.1. Deep Learning

Deep learning is a method that is now widely used in many areas of artificial intelligence.
Deep learning, one of the subsets of machine learning algorithms, uses multilayer
artificial neural networks (ANN). The learning process of this system is based on the
previously given data, learns on this basis, and provides results. Compared to other types
of machine learning, this method can learn information directly from data such as photos,
videos, audio, or text, and predict outcomes. Its applications include classification, object

detection, and natural language processing.

The structure of ANN is inspired by the way synapses work in the human brain. To
process information, it uses a similar structure of nodes and connections. These networks
perform operations on input data (x0) received from another neuron and transmit the
received output to another neuron or a layer. Artificial neural networks in the deep
learning architecture operate according to this logic. Figure 23 shows a simple illustration
of this structure.

INPUT LAYER HIDDEN LAYERS OUTPUT LAYER

Figure 23. A simple illustration of ANN network structure (drawn by author)
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Other techniques based on machine learning and image processing require upfront
preprocessing. Deep learning techniques on the other hand, can work directly with raw
data. They can process raw data without requiring preprocessing, because they transfer
the relevant features of the desired object to be found within the algorithm. In order to
achieve accurate results in deep learning, a large amount of data is required. While image
classification algorithms can only categorize the data, object detection algorithms can

both classify and locate the object.

In recent years, image classification and object detection in computer vision applications
have evolved with the development of technologies. Great progress has been made thanks
to access to large data sets and faster training on GPUs. In addition, libraries offered by
large technology companies (Google, Facebook, Microsoft) have facilitated further

studies in this area.

4.2. Convolutional Neural Networks

With the growth of data and the desire to extract more meaningful information from the
data, optimization is required to extract attributes. Deciphering the connections between
neurons and layers in this big data with a classical artificial neural network model and
using the learned parameters presents a tremendous computational challenge. For that
reason, CNN are introduced by LeCun and Bengio, (1995) to the field of computer vision.
Convolutional neural networks work as a mathematical operation by using one or more
layers. Convolution can effectively minimize the training complexity of the network
model as well as the weights associated with the network connections and parameters,

making it easier to train.

While the input data is an image, the properties of the neural network become pixel
values. So, the model reads in the pixel values of an image, performs feature extraction
and classification. However, the features of an image are not only the pixel values, but
also the relationships between pixels, or in other words, image features are edges, lines,
corners, or basically the shapes and patterns of an image. In order for classification to be
performed with an artificial neural network, the artificial neural network must be given
the features (feature extraction) that represent the relevant data. Selecting the right

features is quite difficult, especially when the input data is an image. However, in
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convolutional neural networks, the convolutional layer performs the feature selection

automatically.

The convolutional neural network consists of two main parts: The first is a convolutional
and pooling mechanism that divides the image into features and analyzes them, and the
second is a fully connected layer that uses the output and predicts the class to identify the

image.

The convolutional layer is added to the neural network and the network is now called a
convolutional neural network. The purpose of the convolutional layer is to extract features
from an image using a mathematical operation called convolution. The dot product
between the kernel and the subarray of an input image of the same size as a kernel is
calculated by the convolutional layer. The single pixel value of the output image is then
determined by adding all the values obtained from the dot product. This procedure is
continued for each kernel until the entire input image is covered. An illustration of this

operation can be seen in Figure 24.
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Figure 24. An illustration of a 3x3 filter with convolution operation

The pooling layer, the second layer of the architecture, aims to decrease the size of the
matrix. This helps compress the amount of data and parameters to avoid overfitting. In

the last layer, the image is converted to a single-column vector using a fully connected
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layer. This generated flattened output is taken as input and the working logic of the
classical artificial neural network is applied. Then, a fully connected structure is created
by connecting each input to a neuron. After the model identify dominant and specific low-
level features in images throughout a range of epochs, it can categorize the image and
predict the class. The architecture of convolutional neural networks is shown in Figure
25.

il

SO0 OO0

Convolution + Nonlinearity Max Pooling

O
O000QO0O0O0

ONONONG

Convolution + Pooling Layers

Fully Connected Layers

Figure 25. An illustration of the Convolution Neural Networks (CNN) architecture

(drawn by author)

4.3. Object Detection

The image classification task is determining the class of a particular object. In the Object
localization task, the position the objects are predicted, and bounding boxes are drawn
around their extend. Object detection consists of these two tasks, categorizing the class

of each object and locating one or more things in an image.

This study is about the classification and localization the pavement defects using images
captured by a drone. For this reason, the images in the previously mentioned datasets
were used as input data to train the object detection model. Object detection algorithms
based on deep learning can learn the characteristics of all the pixels in the marked region

and identify the class of this region thanks to the convolutional layers in the neural
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network architecture. Thanks to these networks, the algorithm creates a map about the
relationship between the data and stores it in memory. Thus, when a new image is
presented to the trained model, the algorithm can predict the position and the class of the

object to be found. The working principle of this algorithm is illustrated in Figure 26.

@~ X

OBJECT
DETECTION

Figure 26. The workflow of object detection (drawn by author)

Deep learning-based object detection models are often split into two types: One-Stage
Object Detection and Two-Stage Object Detection. Two-Stage object detector models
have another part that finds possible regions, which distinguishes them from One-Stage
object detector models. In the second part, the model works on the possible regions to

classify them. However, One-Stage Object Detection models does all parts in one stage.

The most popular architectures for two-stage object recognition are R-CNN(Ibragimov et
al., 2020), Fast R-CNN, and Faster R-CNN. As suggested by its name, the Faster R-CNN,
which is the fastest model among them, is widely used today due to its high model
performance. One-Stage Object algorithms include Single Shot Detector (SSD),
RetinaNet, and YOLO versions.

The object detection models consist of two sections: a backbone and a head. While the
backbone is responsible for learning features, the head creates bounding boxes around the
desired objects and finds the class based on the learned features. ResNet, VGG and
Mobile Net are the best-known examples of backbones. They can be trained on ImageNet
and these pre-trained weights can be used in object detection algorithms. Some recent

algorithms also include the neck part, which is the layer between the backbone and the
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head. This part extracts more information from the different layers of the backbone and
passes it to the head. In this study, two heads were preferred: YOLO and Faster R-CNN.

A general flowchart of object detection models is illustrated in Figure 27.
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Figure 27. An illustration of object detection (Bochkovskiy vd., 2020)

Since the purpose of this study is to compare the one-stage and two-stage object detection
models and to determine the model with the best performance, Faster R-CNN and YOLO
versions were selected for this study. These object detection architectures examined in
this study are listed below.

4.3.1. Faster R-CNN

The Faster R-CNN algorithm is an example of a two-stage object detection model that is
the evolution of Fast R-CNN (Girshick, 2015). In the Faster R-CNN network, an
additional neurol network layer was added, which solved some problems of Fast R-CNN.
The new neurol network layer is called the Region Proposal Network (RPN).

In this algorithm, convolutional layers first create features from the input image. Then,
the candidate regions where the object can be found are estimated by RPN, and the feature
map is created using fully convolutional neural networks. The output of RPN is used as
input to the Region of Interest (ROI) pooling layer. Then, object detection is performed
for each predicted region. The object detection phase is performed by R-CNN. These

phases are shown in Figure 28.
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Figure 28. Faster R-CNN structure (Ren et al., 2017)

In order to train a model with Faster R-CNN, ResNet50 and ResNet 101 which are pre-
trained networks were utilized as a backbone. More than a million photos from the

ImageNet database were used to train these convolutional neural networks.

4.3.2. YOLOVS

The You Only Look Once (YOLO) algorithm was initially introduced by Redmon et al.,
(2016) for fast object detection in real time. YOLO and its versions are algorithms that
perform one-stage object detection. They can directly recognize the desired object using
convolutional networks. The most important feature that distinguishes the YOLO
algorithm from the other algorithms is its ability to perform object detection in real-time.
It is also superior to its alternatives in terms of speed, as the algorithm predicts the
bounding boxes of an image at once. How this algorithm detects the objects is explained

in Figure 29.
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YOLO uses the Darknet framework, a structure trained on ImageNet, with 53 network
layers as the backbone for feature extraction. In the YOLOVS5 architecture, the algorithm
is constructed by using PyTorch as the coding base. This is much more user-friendly and

easier. For this reason, YOLOvV5 became the most widely used version of YOLO.
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Figure 29. YOLO object detection system (Redmon et al., 2016)

Four different pre-trained models of the YOLO algorithm were used in this study. The
YOLOvV5s, YOLOvV5s6, YOLOvV5m, and YOLOvV5m6 models were selected based on
their performance on COCO data.

4.3.3. YOLOv7

YOLOVT7 is the latest version of the YOLO series by Wang et al., (2022). With this
release, the field of object detection makes enormous progress. YOLOV7 also focuses on
optimizing the training process by using trainable Bag of Freebees. In this way, the real-
time object recognition parameters can be reduced by about 40% and the computer usage
can be reduced by 50%, resulting in faster inference speed and higher recognition
accuracy. While training costs decrease, model accuracy and speed of inference increase.
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Like YOLOvV5, YOLOv7 uses PyTorch as the coding base. In the MS COCO Object
Detection task, YOLOV7 outperforms other convolutional networks and earlier versions
of its series in terms of average precision (AP) and inference time (Figure 30). There are
also some pre-trained weights available for YOLOV7 object detection. The most suitable
weights were employed for automatic defect detection: YOLOv7, YOLOv7-tiny and
YOLOv7-X.
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Figure 30. Comparison of YOLOvV7 on the COCO dataset (Wang et al., 2022)

4.4. Object Segmentation

The goal of image segmentation is splitting images into several smaller parts by labeling
each pixel of an image. These parts, or multiple segments, help the image segmentation
model learn the task. The basic requirement for image segmentation is the use of masks
in the training phase. These masks can be a binary image consisting of zero or non-zero
values of pixels. The output has the same size as the input image, in which each pixel is

labeled. Therefore, it can be called a pixel-level classification.
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In this study, CrackForest Dataset (CFD) (Shi et al., 2016) , Crack500 (Yang et al., 2020),
Cracktree ( Zou et al., 2012) , GAPs (Eisenbach et al., 2017) and DeepCrack (Liu et al.,
2019) were used to train the segmentation model. 1500 randomly selected images from

these datasets were used. Before the training step, these images were resized to 448x448.

4.4.1. U-Net

U-Net, a convolutional network-based network structure, was introduced by Ronneberger
et al., (2015) and used for biomedical image segmentation. The success of U-Net in
biomedical image segmentation has led to the use of this model in many segmentation

studies. In this study, the U-Net architecture was preferred for crack segmentation.
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Figure 31. The architecture of U-Net (Ronneberger et al., 2015)

The U-Net architecture includes two paths: contracting and expansive, as shown in Figure
31. The first part consists of classical convolutional neural networks (conv) and max-
pooling layers, and the network is constrained by applying 3x3 convolutions in each part.

This part is called the encoder and is used to understand the model image. This part can
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also be referred to as the feature extractor. It generates the desired mask by understanding
the input data with filters. The second part is the decoder part, where the object requested
by the model is learned. In this part, a 2x2 upward convolution is performed and the
number of features is halved. This layer is mainly used to check the localization. In the
last layer, a 1x1 convolution is performed and the output equals the quantity of label
classes. The U-net owes its name to the U-shaped image that is created in each stage of
this algorithm.

The feature extractor networks in the first part can be replaced by pre-trained networks.
In this study, the encoder part was replaced by two different pre-trained convolutional
neural networks: VGG-16 (Simonyan and Zisserman, 2014) and ResNet50 (He et al.,
2015). These networks were trained with the ImageNet dataset so that they are able to
extract the required features. The VGG-16 network was designed to diminish the amount
of parameters and speed up the training time in convolutional layers. In ResNet50
(Residual Networks) network, there are some additional layers to figure out complex
problems. ResNet50 is often preferred for transfer learning. These deep learning networks
were trained to develop a model for crack segmentation, and their results are presented in

the results section.

4.5. Quantification of Pavement Defects

There are certain criteria for determining the maintenance and repair of road damage. The
criteria for each class of damage generally relate to the geometric structure of the damage
and the area it occupies. Damage is classified according to the severity of the damage

based on these criteria.

Each country or region has different guidelines for repairing road damage. To find
guidelines, an extensive search of the literature was conducted, and many guidelines were
found around the world. First, standards for road damage repair were found primarily for
the U.S. states: Oregon, Pennsylvania, Florida, Washington, California, Indiana, and
North Carolina. Additional guidelines were also found for the Canadian provinces of
British Columbia and Ontario. The guidelines for each state are listed in the Appendix-1
for alligator cracking, longitudinal cracking, reflective cracking, and potholes,

respectively.
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It was investigated whether there is a specification for road damage inspection in Turkey.
Engineers and experts from Ankara Metropolitan Municipality, Ankara Kegioren
Municipality, Antalya Metropolitan Municipality, and the General Directorate of
Highways were consulted on this issue. However, investigation revealed that there was
no guide currently in use. Therefore, for this study, a new guide compatible with the
metric system was prepared for four classes of damage, using the guidelines in America
and Canada as a reference.

Table 6. Pavement defects inspection criteria used in the state of California

Distress Type Severity Limits for California
Low Average crack width <0.25 in
Longitudinal Crack Medium 0.25 in < Average crack width <0.5 in
High Average crack width > 0.5 in
Low Average crack width <0.25 in
Reflective Crack Medium 0.25 in < Average crack width <0.5 in
High Average crack width > 0.5 in
Low Average crack width <0.25 in
Alligator Crack Medium 0.25 in < Average crack width <0.5 in
High Average crack width > 0.5 in
Low 0 <number<2
Pothole Medium 2 <number <5
High number> 5
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The criteria used in the State of California for longitudinal cracks, transverse cracks,
alligator cracks, and potholes are shown in Table 6. These limits were converted to the
metric system for use in this study. However, the limits for potholes in this guide were
not considered adequate. For this reason, the pothole limits in the guide used in the
Canadian province of British Columbia, listed in Table 7, were used as an additional limit.
Since the images are two-dimensional, the depth of the cracks and pits could not be
measured. Therefore, the diameter and number of potholes are used to determine the
damage limit for the pothole. The reference limits used in this study are given in Table 8

in the metric system.

Table 7. Pothole inspection criteria used in the Canadian province of British Columbia

Distress ) o . )
Severity Limits for British Columbia
Type

Low Pothole < 175 cm?2 in area (~15cm @) and less than 25mm deep
Pothole Medium | Pothole > 175 cm2 in area (~15c¢m o) and 25mm to 50mm deep

High Pothole > 175 cm2 in area (~15cm o) and greater than 50mm

19
deep

The limits in Table 8. allow the usability of the road to be determined in the region where
the study was obtained. Based on these criteria, the degree of damage is determined, and
then maintenance and repair are performed according to the degree. For example, if the
degree of damage is considered high, the maintenance of damage must be carried out
urgently.
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Table 8. Pavement defects inspection limits used in this study

Distress Type Severity Limits for British Columbia
Low Average crack width <0.635 cm
Longitudinal Crack Medium 0.635 cm < Average crack width <1.27 cm
High Average crack width > 1.27 cm
Low Average crack width <0.635 cm
Reflective Crack Medium 0.635 cm < Average crack width <1.27 cm
High Average crack width > 1.27 cm
Low Average crack width <0.635 cm
Alligator Crack Medium 0.635 cm < Average crack width <1.27 cm
High Average crack width > 1.27 cm
0 < number of potholes<2,
Low
Diameter <15 cm
2 < number of potholes <5,
Pothole Medium
Diameter >15 cm
Number of potholes > 5,
High
Diameter >15 cm

4.6. Environmental Setup

Setting up the required environment is the first step before starting to train the object
detection model. Python is the most common programming language used when creating

deep learning models. Python must be utilized on the computer before to develop an
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object detection model. In this study, Anaconda, a free and open-source software

developed to use Python language, was used as the development environment.

A powerful graphics processing unit (GPU) is also important when working with larger
neural networks and a large amount of data. They allow processing in small steps in
parallel and are therefore faster than CPUs. All training experiments are performed using
GPUs on a laptop with 16 Gb of RAM and a graphics card called NVIDIA GeForce GTX
1660Ti and Windows operating system. To use GPUs, the required CUDA and cuDNN
were installed. While CUDA 10.2 was used for training the YOLO models, CUDA 11.2
was used for training the Faster R-CNN models.

Two frameworks were used to create an environment for YOLO versions and Faster R-
CNN: Tensorflow and PyTorch. TensorFlow’s object detection application program
interface (API) provides an environment for building models for deep learning-based
object detection. A Faster R-CNN architecture is also available in that framework. The
YOLO is an object detection algorithm that uses PyTorch as its coding foundation. Thus,
the installation of the PyTorch and the Tensorflow was completed on the Anaconda
software. In addition, PyTorch was also used to create a crack segmentation model with
U-Net.

4.7. Metrics

Before training the model, the hyperparameters should first be determined. These are the
variables that shape the structure of the network. There is no fixed value for them, they
vary depending on the task and the dataset. The experiment should continue with trying
the different hyperparameters to find the best ones. The hyperparameters used in this
study are listed in below.

After training, the performance of each model should be evaluated according to certain
metrics. Based on these metrics, conclusions should be drawn to compare the models in
terms of their efficiency. Generally, the accuracy value is considered as the accuracy, but
the accuracy is not sufficient when the data sets are unstable and small. Therefore, the
evaluation metrics of COCO (Lin et al., 2014) were used. There includes a brief
explanation of evaluation criteria such the confusion matrix, recall, precision, and F1

score.
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4.7.1. Hyperparameters

When the deep learning network is trained, certain parts of the data are included in the
training. Once the first group is trained, the performance of the model is tested. Then
backpropagation is performed according to the result, and the results are updated. The
model is trained again with new data and the results are updated again. This process is
continued in this way trying to get the best result. Each of these steps is called an epoch.
The number of epochs varies contingent on the number of parameters of the algorithm
and its speed.

How much data is entered is one of the most important parameters. Although the accuracy
of the model increases with increasing image size, using a large image size leads to a
decrease in the training speed of the model. Therefore, 640x640 images were preferred
for all trainings in this study and the size of the images was changed to 640x640.

Another parameter is the batch size. The batch size allows the model to train with small
pieces. Splitting the dataset into small parts during the training phase is called a batch.
This can speed up the training because less memory is required. Although a large batch
size increases the accuracy of the model, a lot of memory is required for this process.

Therefore, considering the capacity of the computer, the optimal batch size is set to 4.

Learning rate and momentum coefficient are the other hyperparameters. The learning rate
is a parameter that should be used during the training of the model. It ensures to determine
the weighting result for each class during the training phase. This value can be set as a
fixed value or as a value that increases or decreases with time. In this study, the learning
coefficient was initially set at 0.01, but as a variable that decreases with time. The

momentum coefficient was set at 0.9.

Another important parameter is the Intersection Over Union (IOU), which indicates the
accuracy value of the created boxes. The exact bounding box of the damage is compared
to the bounding box obtained after testing the model. The proportion of the overlapping
area to the overall area is equal to the loU value. This value must be determined before
training the model. The model needs this value when it validates itself during training.
While boxes below this value are deleted, boxes above the value are kept. The symbolized

formula for calculating the 10U value is illustrated in Figure 32.
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Area of Overlap

loU =

Area of Union

Figure 32. IOU formulization

The parameters mentioned above are the same for both algorithms, but the number of

epochs differs. The hyperparameters used for each model are summarized in Table 9.

Table 9. Hyperparameters for each model

] Batch Learning Momentum
Model Image Size ) loU o Epochs
size Rate Coefficient
YOLOvV5 640x640 4 0.4 0.01 0.9 30
YOLOv7 640x640 4 0.4 0.01 0.9 100
Faster R-CNN  640x640 4 0.4 0.01 0.9 25000
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4.7.2. Evaluation Metrics

Confusion Matrix

The predicted and actual values can be compared using at the confusion matrix. There are
four different outputs, which are explained below in relation to the subject under study.

True Positive:  Predicting damage to the image that is actually damaged
True Negative:  Predicting that there is no damage in the image that is not actually damaged
False Positive:  Claiming that there is damage to the image that is not actually damaged

False Negative: Claiming that there is no damage to the image that is actually damaged

The Confusion Matrix can be defined as the output of these values in a general frame.

The general framework of this matrix is shown in Figure 33.

)
>
a ﬁ False Negative | True Negative
(1] [}
5 =2
=
€ 5
= True Positive False Positive
&
Positive Negative
ACTUAL

Figure 33. Confusion Matrix
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Precision

The precision value is the proportion of those correctly predicted positively to the objects
predicted to be positive. A high precision value is an important criterion that shows that

the performance of the model is good. The formula of this metric is given below.

True Positive
Precision =

True Positive + False Positive

Recall

The recall value is the ratio of correctly predicted positive objects to whole objects

belonging to same class.

True Positive

Recall = _ i
True Positive + False Negative

There is a curve that illustrates the relationship between precision and recall. The
effectiveness of the binary classification model may also be assessed using it. Both high
precision and high recall are desirable properties for the algorithm. Therefore, the Area

Under Curve (AUC) can be used as an alternative metric in some cases.

F1-Score

The harmonic mean between the Precision and Sensitivity is represented by the F1 score.
The F1 value is a value between 0 and 1. If this value is close to 1, it means that the

accuracy of the model is high. The formalization of this value is explained below.

5 precision * recall
F1 Score = 2*

precision + recall
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mAP

Mean Average Precision (mAP) is generally exploited metric for evaluating the model,
especially in the object detection algorithms such as Faster R-CNN, YOLO, Mask R-
CNN. This value is the average of the precision value calculated for each class. It takes a

value between 0 and 1. This metric is calculated with the following general formula.

1
MAP = Y APi

The mAP values are considered to find the percentage of correct predictions in the model.
In this study, these values were observed to compare three different object detection

models in terms of their performance.

Loss

Basically, the loss function is the measure of the relationship between the dataset and the
algorithm. The loss function should be chosen before training begins. This metric is
required for the model to efficiently determine the model error. The loss value represents
a probability value between 0 and 1. It is calculated using a logarithmic function based
on how much the predicted value deviates from the true value. Thus, if the model does
not predict well, the loss value will be close to 1 due to the large difference between the
actual value and the predicted value. The loss value of a good model should be close to
0. So, it is always tried to minimize the loss by changing the parameters.

The formula of the most common lost function The Mean Squared Error is described

below. While Yi represents the actual value, Y’ represents the model prediction.

1
MSE = N Y (Yi-Y')?
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5. RESULTS

5.1. Training Results

Object detection models were trained using the previously prepared road damage
detection dataset. To evaluate and compare the training results of the models, the
previously mentioned evaluation metrics are calculated for each model. The training
performances of the Faster R-CNN, YOLOVS5, and YOLOV7 algorithms are elaborated in
this chapter using Precision, Recall, mAP, and Training Time.

The training results of crack segmentation models with U-Net were also be mentioned in

this part.

The trained models that performed the best in automatic road damage detection were
examined using the test images. A total of 281 images were used for the test of defect
detection. The distribution of this test data according to the number of labels is shown in
Figure 34.
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Figure 34. Distribution of test data according to the number of labels
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5.1.1. Faster R-CNN Defect Detection

In this study, the Faster R-CNN architecture was trained with the prepared dataset. Two
popular pre-trained networks ResNet50 and ResNet101 were employed for automatic
damage detection. The performances of these Faster R-CNN models are compared in

Table 10 with respect to the evaluation metrics.

Table 10. The performances of the Faster R-CNN models

Model Recall Loss mMAP Training time (h)

0.035 (training)
ResNet 50 0.52 0.44 6.42
0.29 (validation)

0.007 (training)
ResNet 101 0.38 0.59 16.21
0.147 (validation)

Since the size of the ResNet50 network structure is smaller, it is compatible if the dataset
contains an object that can be easily distinguished, or whose features can be easily
classified. However, determining the pavement defect class and extracting its features
requires a more detailed study. Since the number of pixels of these objects is small and
the number of variables in the images is high, it is difficult to detect them with a small
network. Therefore, an average precision value (mAP) of 0.44 was obtained in the study

using the ResNet50 network.

The training result of the ResNet101 model was much better, as can be seen in Table 10.
This is because the ResNet101 network has quite a large architecture compared to the
ResNet50 network. Therefore, it can learn the smallest details of objects. The mean
precision value (MAP) in this training was found to be 0.59. Although the average

precision value is high, it is quite slow in terms of training time.

Loss values for Faster R-CNN models are considered in three different ways:
Classification loss, Localization loss, and Regulation loss. To evaluate all these losses
together, it would be more precise to examine the total loss value. The loss values found

as a result of training the Faster R-CNN model with ResNet101 are shown in Figure 35

54



by number of epochs. These graphs were created using Tensorboard, a tool offered by
Google that can be used to visualize the network structure and many parameters. These
graphs belong to the loss values formed in the validation phase. After completing the

training at the end of 25,000 cycles, it was observed that the loss values approached 0.
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Figure 35. a) Classification loss b) Localization loss c¢) Regularization loss d) Total loss
of the Faster R-CNN model with ResNet101

5.1.2. Yolov5 Defect Detection

Several pre-trained layers can be utilized for the YOLOV5 object detection model. These
networks are ordered from the smallest to the largest in terms of size as YOLOV5s,
YOLOv5m, YOLOvV5SI, and YOLOvbx. Figure 36 provides an overview of the
performance of these pre-trained weights on the dataset COCO. Larger models such as
Yolov5x and Yolov5x6 generally perform better in all situations. However, they require
more CUDA memory to train and they run very slowly, since they have more parameters.
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In the literature, Yolov5s/m is generally preferred for mobile classifications. Considering
the capacity of the computer on which the study was performed, the use of YOLOV5s,
YOLOv5m and their versions (YOLOv5s6, YOLOv5m6) was chosen.

> > B B

Small Medium Large XLarge
YOLOv5s YOLOvVOmM YOLOvVSI YOLOv5x
14 MB__ .. 41 MB_,,, 90 MB_, 168 MB_..
2.2 ms 2.9 ms, o 3.8 mMS,,100 6.0 ms, o
36.8 mAP___, 44.5 mAP__ 48.1 mAP__ 50.1 mAP__

Figure 36. Pre-trained networks for YOLOV5

Training results for the YOLOV5s, YOLOv5m, YOLOvV5s6, and YOLOv5mM6 models are
compared in Table 11 in terms of precision, sensitivity, F1 score, mean precision, and
training time. Test results for the YOLOvV5 models were visualized using Wandb
(Weights and Biases) (Biewald, 2020).

Table 11. The performances of the YOLOv5 models

Model Precision Recall F1-Score mAP Training Time (h)
YOLOV5s 0.62 0.60 0.61 0.60 3.72
YOLOV5s6 0.58 0.61 0.59 0.61 3.78
YOLOVS5m 0.58 0.62 0.60 0.61 6.33
YOLOvV5m6 0.68 0.62 0.61 0.65 6.74
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It was observed that training time increased with increasing model size and complexity.
Since the YOLOV5s weighting is smaller than the YOLOv5m weighting, the training
speed is almost half. In addition, the average precision value (mAP) in each model was
over 60%. Considering the ratios of precision, recall and F1 value, the performance of the
models is close to each other. However, although the training time was slow, the model
with the highest performance in terms of all metrics was the YOLOv5m6.

Figure 37 visualize the progression of mAP, precision and recall of the YOLOv5mM6
model with the validation data during training. While these initially increased, they

remained constant thereafter.

metrics/mAP_0.5 07 metrics/precision metrics/recall
0.6 0.6
0.6 0.5
0.4 0.4
0.5 0.3
0.2 0.2
0.4 0.1
0.0 0.0
0 20 0 20 0 20

Figure 37. The visualization of mAP, precision and recall of the YOLOv5m6 model with

the number of epochs during training

The loss values obtained after testing the YOLOv5m6 model with validation data during
training are summarized in Table 12 for training and validation. The changing of these

values over 30 epochs is shown graphically in Figure 38.

The bounding box losses, object losses, and classification losses for validation and
training of the YOLOVS5 defect detection model were determined using the experiment
tracking tool Wandb. After completing the training at the end of 100 epochs, it was

observed that the loss values approached 0.
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Table 12. The loss values of YOLOv5m6 model

Bounding Box Loss

Object Loss

Classification Loss

Training

Validation

0.08

0.07

0.06

0.05

0.04

0.03

0.06

0.05

0.04

Figure 38. Loss values of the YOLOv5m6 model in terms of the number of epochs during
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training and validation

In this model training, the average precision for all classes in the validation data was 0.65.
During the training of the model, an evaluation study was performed with validation
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images and the average precision values for each class were determined separately.

To understand the relationship between the classes, confusion matrix is determined. The
correct prediction rates of each class in this model are given in the confusion matrix in

Figure 39. When looking at the confusion matrix, it was found that the class with the
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highest rate was the pothole with 0.77. Since the images of potholes contain clearer
information about the pixels and the area occupied in the image is larger, they were easily
identified using the model. The damage class with the lowest proportion was the

longitudinal crack with a value of 0.45.
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Longitudinal Crack Reflective Crack Alligator Pothole background FP
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Figure 39. Confusion Matrix as a result of the YOLOv5m6 model for training

5.1.3. Yolov7 Defect Detection

Multiple pre-trained layers can be used when training the YOLOV7 object detection
model. There are many models in the YOLOv7 family. However, considering the
capacity of the computer and its memory, three models that have the smallest parameters
were selected. In this study, the normal model of YOLOv7, YOLOv7-tiny and YOLOv7-
X weights and their pre-trained weights were utilized. While YOLOv7-tiny is the smallest
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network among the YOLOv7 family, YOLOv7-X consists of larger networks. In the
Table 13, the suggested YOLOvV7 architectures are compared using the evaluation

metrics.

Table 13. The performances of YOLOv7 models

Model Precision Recall mAP Training Time (h)
YOLOv7 0.64 0.62 0.67 6.23
YOLOV7_training 0.67 0.57 0.66 6.04
YOLOv7-tiny 0.57 0.55 0.58 6.30
YOLOv7x 0.61 0.54 0.59 6.22
YOLOV7x_training 0.62 0.52 0.56 6.27

As for the mAP values, the most successful model, YOLOv7, has a mean average
precision of 0.67. The training graphs of this model are shown in Figure 40. The
progression of mAP, precision and recall of the YOLOv7 model is illustrated in Figure
40. After showing an increase up to a certain point, they remained stable.

mAP@0.5 Precision Recall
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Figure 40. The visualization of mAP, precision and recall of the YOLOv7 model with the

number of epochs during training.
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The final loss values obtained for the training and validation of the YOLOv7 model are
shown in Table 14. The variation of the loss values during 100 cycles is shown graphically

in Figure 41.

Table 14. The loss values of YOLOv7 model

Bounding Box Lost Object Loss Classification Loss
Training 0.0249 0.0055 0.0008
Verification 0.0447 0.0236 0.0065
Box Objectness Classification
007 0.011 —e— results 0.020
0.010
0.06 0.015
0.009
0.05
0.008 0.010
0.04
0.007 0.005
0.03 0.006
0.000
0 50 100 0 50 100 0 50 100
val Box val Objectness val Classification
0.0200
0.09 0023
0.0175
0.08 0.022
0.0150
0.07 0.021
0.020 0.0125
0.06 0.0100
0.019
0.05 0.0075
0.018
0 50 100 0 50 100 0 50 100

Figure 41. Loss values of the YOLOv7 model with the number of epochs during training
and validation
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When training the YOLOV7 model, mean average precision value of 0.67 was obtained
for the validation data for all classes. The correct prediction rate obtained for each class
is shown in Figure 42 in the confusion matrix. It was found that the class with the highest
rate was alligator cracks with 0.72. This value is followed by reflective cracks with 0.71.
While the potholes have a rate of 0.67, the longitudinal cracks have the lowest value of
0.60.
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Figure 42. Confusion Matrix as a result of the YOLOv7 model for training

The actual labels and the predicted labels of a validation image are compared in Figure
43. Although the model successfully detected most defects, some images containing small

size damages failed to produce accurate results.
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Figure 43. Comparison of true labels and predicted labels by YOLOv7 model
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5.1.4. U-Net Crack Segmentation

The crack segmentation model is trained with the U-Net architecture to extract the area
of the defects from the image. Two different pre-trained networks are used for this
architecture: VGG16 and ResNet34. The performances obtained by testing the trained

models with validation images are compared in Table 15.

Table 15. The performances of YOLOv7 models

Number of Training Time
Model Loss Value Accuracy
Epochs (h)

0.028 (training) 0.988 (training)
ResNet34 100 6.15
0.122 (validation) 0.954 (validation)

0.034 (training) 0.986 (training)
VGG16 100 7.31
0.259 (validation) 0.937 (validation)

There is not much difference between the training time of the two segmentation models.
However, when training with the ResNet34 network, a model with 95.4% accuracy was
obtained, which is higher than the VGG16 model. The loss values for training and
validation of the crack segmentation model with ResNet34 are shown in Figure 44 with
100 epochs during training. The training accuracy and the validation accuracy of the U-

Net segmentation model with ResNet34 are illustrated in Figure 45.

Both training and validation loss decreased up to 20 epochs. Thereafter, the training loss
continues to decrease while the validation loss slightly increases. This is due to the
overfitting of the model. It means that the model memorizes the training data and
therefore cannot predict the test images well. However, a good result was obtained in the

validation data with an accuracy of 0.95.

Test results of this model on untrained images from Crack500 and CFD datasets are
compared in Table 16. As expected from the results, the model trained with ResNet34 is

more sensitive to noise. So, it gave more a better result than VGG16.
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Figure 44. Loss values of the U-Net with ResNet34 crack segmentation model for training

and validation
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Figure 45. Accuracy of the U-Net with ResNet34 crack segmentation model for training

and validation
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Table 16. Comparison of U-Net Segmentation models

CRACKS500 CFD

Image

Mask

VGG16
Prediction

ResNet34

Prediction
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5.2. Test Results

5.2.1. Defect Detection

The object detection model trained with the deep learning method was used to detect
damage on the images taken by drone from the Beytepe Campus of Hacettepe University.
The YOLOv7 model with the highest performance was selected for road damage
assessment. First, the images from the region were manually labeled for four classes.

Examples of labelled images can be found in Figure 46. The labels predicted by YOLOv7
model for this image are shown in Figure 47.
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Figure 46. Labels for drone test image
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Figure 47. Prediction of drone test image with YOLOv7

In these predictions, it was found that the model could not recognize the potholes. This is
because the model was trained with close-up images. Therefore, the pixels in the images
taken by the drone have low resolution. So, the model scarcely distinguishes these pixels
when making predictions. Another drawback of the model is that it could not detect
damage in shadow areas. This is because the model was trained with less training data,
with shadows and cracks in the road.

The results of each class for precision, recall, and mAP obtained by testing the YOLOv7
model with drone imagery are shown in Table 17. Although the mAP value of the model
during training was 0.67, the mAP value during testing for the drone images was 0.42.
This is due to the different angle of the images between the training data and the test data.
The training images was taken from a vehicle, so it contains close-up images. However,
since the images taken by the drone were taken from a greater distance, these images have
the damage with a lower pixel resolution. For this reason, the trained model performed

poorly in the test images.
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Table 17. YOLOVT7 test results for each class

Class Precision Recall mAP

All Classes 0.51 0.45 0.42
Longitudinal Crack 0.60 0.43 0.44
Reflective Crack 0.37 0.43 0.34
Alligator Crack 0.55 0.47 0.48
Pothole 0.53 0.45 0.43
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background FN

longitudinal reflective alligator pothole background FP
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Figure 48. Confusion Matrix as a result of the YOLOv7 model for testing
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The test performance of the YOLOv7 model can be examined for each class using the
confusion matrix shown in Figure 48. The confusion matrix of the test images was created
with a confidence score of 0.15 and an loU threshold of 0.45. The model has the highest
value of 0.5 for the class of alligator cracks as a result of the test. While the reflective
cracks class has a success rate of 0.47, the potholes and longitudinal cracks classes have
the lowest success rate of 0.46.

5.2.2. Segmentation of Defects

The damaged regions that are predicted by the model, i.e., bounding boxes drawn by the
model, were recorded separately. To determine the severity of damages, damage areas
were examined by segmentation model and the damage level for each image was

determined.

The severity of damages was calculated using the reference limits described in Table 8.
In this study, three classes were used to characterize the damage status of roads: Low,
Medium, and High. Low damage is defined as areas that do not require maintenance and
repair, while medium damage is defined as areas that require maintenance and repair.

Defect classified as high describes areas where maintenance and repair urgently needed.

After determining the damaged areas with the YOLOv7 model, the bounding boxes
drawn by the model around the damaged area were taken as separate images. To find the
severity level of the damage, each damage image that was found by the YOLOv7 model
was measured. MATLAB image processing tools were used to measure the width of the
cracks and potholes in these images. The ground sampling distance for each image was
calculated using an Excel spreadsheet created with the coordinates of the images. The
crack widths calculated in pixels were converted to centimeters using this value. Then,
the damage was classified into three classes based on reference limits: low, medium, and
high.

These procedures were applied to the images of the Beytepe dataset, and a total of 528
damages were detected and labeled according to the severity of the damage. Table 18
shows the total number of detected defects according to their class and severity.
Longitudinal cracks were mostly encountered in the region. A total of 271 longitudinal
cracks were found, of which only 2 were classified as high. Similarly, the majority of

reflective cracks were classified as low and only 3 were classified as high. The damage
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class, whose maintenance and repair are urgent, is crocodile cracks with 20 damage. The
least common damages class was potholes. A total of 15 potholes were found, of which
only 1 had a high grade. Examples of damage with a high degree of damage are shown in
Figure 46 for each class.

Table 18. The number of defects according to class and severity

Damage Class/Severity Low Middle High Total
Longitudinal Crack 249 20 2 271
Transverse Crack 97 14 3 114
Fatigue Cracks 68 40 20 128
Hole 14 0 1 15
Total 428 74 26 528

(b)

() (d)

Figure 49. Examples of high degree a) pothole b) reflective crack c) alligator crack d)
longitudinal crack
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The distribution of these numbers by class and severity is illustrated in the diagram in
Figure 50. As can be seen from the diagram, there are mainly longitudinal cracks in the

region, which account for more than half of the total damage.

Number of Defects by Class and Severity

Severity of Crack ®C1 - Low @C2 - Medium @®C3 - High Total Number of

Defects
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Figure 50. Distribution of the severity of defects according to class

This study attempts to quantify the area of damage regions using U-Net ResNet34 that is
the highest performance crack segmentation model. This is significant to determine in
advance the amount of material needed to repair road damage and to speed up this
process.

The U-Net ResNet34 crack segmentation model was trained on close-up crack images
and achieved the best results. However, since the test images were taken with a drone
from a very high altitude, the damaged areas have low pixels. So, the crack segmentation
model could not achieve success on these images. For that reason, the segmentation model

was applied only to high-severity defects and the total area of this defects was subtracted.
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Binary masks of the high-grade defects were obtained using the U-Net ResNet34 crack
segmentation model. An example of this process can be found in Figure 51.

Figure 51. Example of segmentation of high-level a) Alligator crack b) Longitudinal
Crack

To calculate the area of cracked regions, the white areas in the binary mask images were
extracted as pixels. The white areas found in pixels were converted to square centimeters
by multiplying the ground sampling distance of each image. After this analysis, the total

area to be repaired was calculated as 3.87 square meters.

Although the total area of damaged areas could not be extracted by this method, a
preliminary study was desirable by subtracting the area of high-grade damage. However,
this model can be further improved by training the crack segmentation model with

different and more data sets. Thus, the applicability with small pixels will increase.
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5.3. Performance Evaluation

Following this study, an interactive map was created to show the severity of road damage
and regional road conditions for visual interpretation. The map created with ArcGIS is

explained in detail in this section.

In the dataset collected by the drone, each image also contains the coordinate information
of the location where it was taken. Therefore, the coordinates of the images were inserted

as points on the map using ArcGIS Pro software.

Damage was assessed individually considering the reference limits and then the severity
was decided for each image. The coordinate points were coded in three colors according
to the degree of damage of the images: green, yellow and red. The green points represent
only the low damage region, the yellow points represent the low and medium damage

region, and the red points represent the region with at least one high damage level.

A total of 66 images of roads on the Beytepe campus of Hacettepe College were used to
assess the damage and were labeled according to the severity. As shown in Figure 52,
these images were mapped to the point where the coordinate information is located. It is
expected that this map, which contains information about road conditions, will be of great
help to road maintenance and repair organizations. This map has been released through

the link below.

https://www.arcqgis.com/home/item.html|?id=a4901233b6e04fhabbb4blccd03c7886
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Figure 52. Road condition map of Beytepe Campus of Hacettepe University

5.4. Discussion/Comparison

To select the best model for defect detection, the evaluation metrics were monitored. In
terms of mAP, the Faster R-CNN models gave significantly worse results than the YOLO
models. Moreover, despite the small size of the model, the training time is longer
compared to the YOLO model. Since the training time of the Faster R-CNN model is
longer and the mean precision value (mAP) is lower than the YOLO models, it was

decided that the use of this model is not efficient.

It was found that the YOLOv5 models were superior to the Faster R-CNN model in terms
of model efficiency, prediction success, and code readability. In both training time and
testing time, the YOLOvV5 models achieved great success. The YOLOv5 models were

found to be faster than the Faster R-CNN model, especially in terms of training time.

From the comparison of the YOLO architectures, it can be concluded that the results of
the YOLOvV7 models outweigh those of the YOLOV5 models. The YOLOV7 architectures
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have the same speed as the YOLOvV5 model in terms of training time. However, the
average precision value was more successful than them. In addition, the mAP values are
much higher than the Faster R-CNN and YOLOv5 models. For these reasons, YOLOv7

was selected for the application of the test images.

From the confusion matrices it can be deduced that the main problem of the proposed
models seems to be that many objects are not recognized, i.e., they are considered as
background.

Regarding the segmentation models, the training times of the two segmentation models
did not differ significantly. In contrast, after training with the ResNet34 network, a
model with higher accuracy was produced that outperformed the VGG16 model. For
this reason, the U-Net with the ResNet34 crack segmentation model was selected for

use with drone imagery.
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6. CONCLUSION

In this study, the damage types were classified considering the most common
deformations on highways in Turkey and the labelling was performed in different formats
to be used in multiple algorithms. Moreover, image augmentation was applied to the

dataset to increase the accuracy of the model.

Following this, different deep learning models were trained with tagged images and the
performance of these models was compared using numerous evaluation metrics. The
weights of the YOLOvV7 model with the highest performance were recorded and tested at
the Beytepe campus of Hacettepe University, which was selected as the pilot region for

damage assessment.

A preliminary study was conducted to determine the condition of the roads on the Beytepe
campus of Hacettepe University, which is the pilot area. Thanks to the information
obtained through the preliminary study, an effective drone flight was conducted. Owing
to the large area of Hacettepe University's Beytepe campus, the desired quantity and

quality of images could be achieved by flying over the main roads.

It was found that damage assessment can be easily performed using photos taken by high-
resolution cameras using UAVS. In the future, it is planned to conduct this study in a
larger area. As a result of this study, it was found that the detection of damage using drone

images is possible in larger areas.

Subsequently, the predicted road damage was used to determine the usability of the road.
Therefore, a new damage assessment guide was created that was compatible with the
model used. Thus, the current condition of the roads on the Beytepe Campus of Hacettepe
University could be determined. Defect was detected using deep learning models, and
according to this determination, the severity of damage was calculated manually on all
images. Unfortunately, a one-to-one spatial inference of all detected damages could not
be made. However, spatial inferences could be made for images with a high degree of

damage.

Finally, an ArcGIS-based map was created to show the condition of the studied roads as
a visual interpretation. This map can be used as a reference for organizations responsible

for assessing road conditions and can be used prior to road maintenance and repair. It is
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expected that the results of this study will lead to innovations and technology adaptations

in the field of road damage maintenance.

The goal is to contribute to the literature by combining object detection and segmentation

tasks in the field of road condition assessment.

In the future, this study can be applied to a wide range of fields. In addition, the drone
videos could be analyzed for defect detection in real time using object detection models.
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Appendix 1 -Criteria for Road Damage Assessment

APPENDIX

Pieces may move when
subjected to traffic. Cracks
may be sealed. Pumping
may be evident.

typically forming a
diamond shaped, chicken
wire or alligator’s hide
pattern.)

edges; some of the pieces
are loose and rock under
traffic.

) OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON
Distress Type . — . — . — . —
Severity Limits Severity Limits Severity Limits Severity Limits
An area of cracks with no
or only a few connecting Average Crack Width < Fine, longitudinal hairline Branched, longitudinal,
cracks. Cracks are not hairline (Fatigue cracking cracks running parallel to discontinuous thin cracks are
Low spalled or sealed. No Low consisting of only Low each other with no or only Low beginning to interconnect and
pumping is evident. longitudinal cracks in the a few interconnecting form the typical alligator pattern
Includes Wheel Path wheel path.) cracks. with no spalling.
Longitudinal Cracks.
Average Crack Width > Further development of .
hairline and < 0.25 in light alligator cracking - Cracking is completely
. . : . interconnected and has fully
An area of interconnected (Fatigue cracking into a pattern or network -
. e L O developed an alligator pattern.
cracks forming a complete consisting of longitudinal of cracks that may be Some spalling mav appear at the
Moderate pattern. Cracks may be Medium | and interconnecting cracks | Medium slightly spalled. Well- Medium edaes og cracis T)r/1e T:Fr)acks ma
ALLIGATOR slightly spalled or sealed. typically forming a defined pattern of 9 : . may
CRACKING e ayi : - - - be greater than 1/4-inch wide,
No pumping is evident. diamond shaped, chicken interconnecting cracks, . A
. ; . s - - but the pavement pieces are still
wire or alligator’s hide where all pieces are firmly ;
. in place.
pattern.) held in place.
An area of moderately or Average Crack Width > The pattern of cracking is well
- - . Network or pattern Lo
severely spalled 0.25 in (Fatigue cracking . developed. Spalling is very
. i S cracking has developed so -
interconnected cracks consisting of longitudinal that pieces are well- apparent at the crack. Individual
High forming a complete pattern. High and interconnecting cracks High defined and spalled at the High pieces may be loosened and may

rock under traffic. Pieces may
be missing. Pumping of fines up
through the cracks may be
evident.
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bi - CALIFORNIA INDIANA NORTH CAROLINA BRITISH COLUMBIA (2016) ONTARIO (2016)
istress Type
Severity Limits Severity Limits Severity Limits Severity Limits Severity Limits
Multiple cracks begin to
develop short
Longitudinal disconnected Very interconnecting cracks and
averaae crack width hairline cracks about 1/8 slight cause alligator pattern
d inch wide running parallel forming. May include
<1/4 inch or crack Cracks not spalled or L depression up to 6 mm.
sealed with the sealant sealed, pumping not to each other; initially may Crack width i to 3
Low | e Low T Light be only a single crack in Low N/A rack wiatn 1s up to >mm.
in good condition and evident, cracks not the wheel path or edae of i
the width cannot be interconnected. pb I dg I Alligator pattern
determined pavement but could also established with block
look like an alligator Slight corners fracturing. May
pattern. 9 include depression 7-12
mm. Crack width is
between 3 and 12mm.
Cracks form Longitudinal cracks in Alligator pattern
ALLIGATOR 14 inch < average interconnected arez, oavement forming an forming a complte. "o blocks. May include
CRACKING Medium en = 9 Moderate | slight spalling, cracks | Moderate pe . 9 Moderate Y . P Moderate - May
crack width < 1/2 inch mav be sealed alligator pattern; cracks block pattern; slight depression
um % not evid‘ent may be lightly spalled and spalling and no pumping 13-19 mm. Crack width is
pumping ' are about 1/4 inch wide. between 13 and 19mm.
Blocks begin to lift. Small
potholes from missing
Area of moderately or Cracking has progressed Severe plocks. May Inelude
severely spalled so that igeces ap e?ar loose Interconnected cracks depression 20-25 mm.
interconnected cracks Withpseverel p[; alled forming a complete Crack width is between 20
. average crack width . forming a pattern, , Y sp . block pattern, moderate and 25mm.
High >1/2 inch High pieces dislodged Severe edges; cracks are about High to severe spalling, pieces o
cracks may be sealéd 3/8 to 1/2 inch wide or may move, and ﬂm in Polygon blocks I|_ft|_ng.
y : greater; potholes may be y » and pumping Potholes from missing
and pumping may be present. may exist. Very blocks. May include
evident. Severe | depression greater than 25

mm. Crack width is
greater 25mm.
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) OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON
Distress Type - — - — . — - —
Severity Limits Severity Limits Severity Limits Severity Limits
The cracks have very little or no
Crack widths <0.125”, no spalling along the edges and are
spall:)r:g,fan? _no. Average crack width > General condition: 1/ non- less than 1r/14-|nchk|n width. If
Low | Mmeasurablefaulting; or | o\ | piine and <025 in Low Filled, mean < /4" 2/ Low the cracks
well-sealed and with a wide Filled: any Width are sealed and the width of the
width that cannot be ' ' crack prior to sealing is
determined invisible, they should be
classified as Low Severity.
General condition:
1/ Any Width, The cracks have little or no
. " . 2/ If Filled crack, spalling, but they are greater
| ONGITUDINAL Crack :V(l)dsths 205 _ ﬁzvgﬂ?]g;fngls‘p:ﬁ?;z N . 3/ 1 Non-filled, mean | than /-inch in width. There
Moderate lling < 37 or faultin Medium 2 0 in wide for < 50% Medium >1/4 Medium | may be a few randomly spaced
CRACKING spatiing - OF Taulting ’ WI N (r)] =2 4/ Light cracking appears low severity connecting cracks
up t0 0.5%. engt near the crack or at the near the main crack or at the
corner of intersecting corners of intersecting cracks.
cracks.
Cracks are spalled and there
may be several randomly
: spaced cracks near the main
Crack widths > 0.5”; or onfsrﬁ?]evsirggkswéﬂtiz > crack or at the corners of
High with spalling > 3”; or High >2’ 0 in wide %Orp> 50°g/o High Can be any Width High intersecting cracks. Pieces are
faulting > 0.5” - length visibly missing along the crack.
At some point, this longitudinal
cracking becomes alligator
cracking.

88




DI T CALIFORNIA INDIANA NORTH CAROLINA BRITISH COLUMBIA (2016) ONTARIO (2016)
istress Type
Severity Limits Severity Limits Severity Limits Severity Limits Severity Limits
average crack width ) V_ery Single crack less than 3
. Unsealed crack with slight mm.
<1/4 inch or crack . . . . g
. mean width <0.25 in. Single cracks with no
sealed with the sealant : o
Low . . Low Sealed crack with Low | spalling; mean unsealed
n gooc_i condition and sealant in good crack width < 5mm
the width cannot be condition Single crack from 3 mm to
determined ' Slight ‘ 12 mm
Crack with mean
W(;d;}g Tnogrsa::rli \jlvriltchS Single or multiple 13 mm to 19 mm width for
LONGITUDINAL | Medi 1/4 inch < average ' N . . cracks; moderate . .
edium . : Moderate | mean width <0.75 in. Medium L Moderate | single cracks, or multiple
crack width < 1/2 inch - N/A spalling; mean unsealed .
CRACKING and adjacent random crack width 5-20mm cracks starting.
cracking at low
severity levels.
20-25 mm width for single
Crack with mean Severe | cracks, or multiple cracks,
With >0.75 |n Crack Single or multiple spalling begins to develop.
. average crack width . with mean width < . cracks; severe spalling;
High >1/2 inch High 0675 n., aij_acent q High mean unsealed crack Greater than 25 mm wide
ran Oé“ crtac mhg, ﬁn width >20mm, alligator Very for single cracks, or
moaerate or hig multiple cracks with
severity levels. Severe

spalling developed. May
begin to alligator.
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Distress Type

TRANSVERSE
CRACKING

OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON
Severity Limits Severity Limits Severity Limits Severity Limits
The cracks have very little
An unsealed crack with a szggssm I:rge ?égg%ht:rf
mean width OfS. 0.257; or . General condition: 1/ non- 1/4-inch in width. If the
a sealed crack with sealant Average Crack Width > . e
Low S o Low L . Low Filled, mean < Y4 2/ Low cracks are sealed and the
material in good condition hairline and < 0.25 in Filled: any Width width of the crack prior to
e thgevt\g;jrmnc:; notbe sealing is invisible, they
' should be classified as
Low Severity.
General condition: The cracks have little or no
. 1/ Any Width, spalling, but they are
wﬁi?g:rgczksxvaﬁ]daj(])egg“ 2/ If Filled crack, greater than 1/4-inch in
or an cfack witha n’iean7 Average Crack Width > 3/ If Non-filled, mean width. There may be a few
Moderate Wigth <0.75” in and Medium 0 2sgin and < 0.5 in Medium >1/4” Medium randomly spaced low
adiacent Ibw severity ) = 4/ Light cracking appears severity connecting cracks
rJandom crackin near the crack or at the near the main crack or at
g corner of intersecting the corners of intersecting
cracks. cracks.
Cracks are spalled and
Any crack with a mean there gﬁzob;@everal
W'.dth >0.757 or any crack . spaced cracks near the
High with a mean width <0.75 High Average Cra(_:k Width > High Can be any Width High main crack or at the
and adjacent moderate to 0.5in corners of
high Sg\r':gl'(% random intersecting cracks. Pieces
g are visibly missing along
the crack.
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bi T CALIFORNIA INDIANA NORTH CAROLINA BRITISH COLUMBIA (2016) ONTARIO (2016)
Istress Type
Severity Limits Severity Limits Severity Limits Severity Limits Severity Limits
Cracks, usually only
transverse, are less than very Less than 3 mm single crack.
. 1/4 inch wide and are not slight
Unsealed crack with spalled; block pattern ma:
. mean width <0.25 in. P ' KDP . Y Single cracks with no
average crack width : - not be visible yet; o
Low - Low Sealed crack with Light Low spalling; mean unsealed
<1/4 inch . transverse cracks usually -
sealant in good crack width < 5mm
. 10 to 20 feet apart. Cracks
condition. have little or no spallin . :
s patiing Slight Single crack 3 mm to 12 mm.
and joints are usually not
bumped up.
Block pattern may be
1/4 inch < average Crack with mean visible with blocks 10 -
. : . . square feet or greater 13 mm to 19 mm single crack,
crack width < 1/2 inch width > 0.25 in. and < . . . . .
. - . present; cracks are 1/4 Single or multiple or multiple cracks even if crack
or crack sealed with 0.75 in. Crack with inch to 1/2 inch wide; cracks; moderate opening is less than 13mm
Medium the sealant in good Moderate | mean width <0.75 in. | Moderate ’ Medium L Moderate P g : '
o . cracks may or may not be spalling; mean unsealed Cracks starting to develop
condition and the and adjacent random lled: K K width ) lioping. barel
width cannot be cracking at low spalled; transverse cracks crack width 5-20mm cupping or lipping, barely
TRANSVERSE determined severity levels usually 5 to 20 feet apart; noticeable bump.
CRACKING y : joints may be bumped up
1/2 inch over concrete.
20 mm to 25 mm single crack,
or multiple cracks even if crack
Cracks may be severely Severe | OPeningis less than 20 mm but
spalled with smaller greater than 13 mm. (?racks
Crack with mean blocks 2 to 10 square feet “have developed cupping or
width > 0.75 in. Crack present; cracks usually : : lipping with noticeable bump.
. . . o Single or multiple
. with mean width < greater than 1/2 inch wide; ’ o
. average crack width . . - . cracks; severe spalling;
High - High 0.75 in., adjacent Severe transverse cracks may be High
>1/2 inch d Ki d 110 2 feet t mean unsealed crack
random cracking, an 0 < Teet apar width >20mm, alligator Greater than 25 mm single
moderate or high throughout portions of the crack, or multiple cracks even if
severity levels. surface; cracks may be craclk opening is less than 25
bumped up more than 1/2 S\g\??r/e mm but greater than 20 mm.
inch. Cracks have fully developed
cupping or lipping, and spalling
has occurred. Bump or thump.
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Dist T OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON
ISTress e
P Severity Limits Severity Limits Severity Limits Severity Limits
Depth < 17 (Typically
delamination of thin patch
Low -
or seal coat creating a
shallow pothole.)
1” < Depth <2” (Remains
POTHOLES Moderate | within top lift of wearing N/A N/A N/A
course.)
Depth > 2” (Extends
High beyond top lift of wearing
course.)
Dist T CALIFORNIA INDIANA NORTH CAROLINA BRITISH COLUMBIA (2016) ONTARIO (2016)
ISTress e
yp Severity Limits Severity Limits Severity Limits Severity Limits Severity ‘ Limits
Less than 1.0 in Pothole <175 cm2 in
Low 0 < number< 2 Low d T Low area (~15cm @) and less
eep.
than 25mm deep
Pothole > 175 cm2 in
POTHOLES Medium 2 <number <5 Moderate 1.0t0 2.0 in. deep. Medium | area (~15cm @) and 25 N/A
to 50mm deep
. Pothole > 175 cm2 in
High number > 5 High More éhan 2.01n. High area (~15cm o) and
eep.
greater than 50mm deep
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