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Roads have an important role in the development of the country's economy and social 

structure. Today, with the expansion of transportation networks, routine and proper 

maintenance of roads has gained importance. Cracks and other types of damage appear 

on the surfaces of roads due to many factors. The detection and measurement of these 

damages have an important place in the condition assessment of the roads. The surface 

defects not only affect the visual appearance of roads but also accelerates the aging of 

concrete infrastructure, which affects their normal use, resulting in shorter lifespans. It is 

also a potential threat to safe driving. Early detection of reduced capacity due to this 

deterioration is, therefore, a priority since timely and accurate detection of damages is of 

vital importance. Nowadays, various methods that are used for detecting surface damage 

on roads can be listed as follows: an operator inspecting the damage by using traditional 

guidelines, microscopic examination of the crack using special tools, taking images by 

unmanned aerial vehicles and automatically interpreting the surface damage by analyzing 

collected images. If we compare damage assessment using unmanned aerial vehicles with 
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other methods, we can say that it has many advantages such as less risk of accident, low 

cost, time savings, and fewer logistics requirements. Due to the expanding and increasing 

road networks, it is indeed a difficult task to conduct an extensive investigation using 

traditional methods. Therefore, it is possible to use unmanned aerial vehicles with high-

resolution cameras, which have been used frequently recently, for surface damage 

detection of the investigated road. The detection and quantification of damages can be 

performed using Deep Learning methods from the collected images. With this method, 

images that accurately reflect the geometry of the damage can be obtained by UAVs. The 

proposed thesis study aims to automatically detect potholes and cracks on roads, via 

drones. The results of this study have the potential of contributing the national and 

international literature on damage detection on roads with the help of UAVs. 
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Yollar ülkenin ekonomisinin ve sosyal yapısının gelişmesinde önemli bir role sahiptir. 

Günümüzde ulaşım ağlarının genişlemesiyle birlikte yolların bakımının düzenli ve doğru 

olarak yapılması önem kazanmıştır. Birçok faktör nedeniyle yolların yüzeylerinde 

çatlaklar ve diğer hasar çeşitleri ortaya çıkmaktadır. Bu hasarların tespiti ve ölçümü 

yolların durum değerlendirmesinde önemli bir yere sahiptir. Bu sadece yolların görsel 

görünümünü etkilemekle kalmaz, aynı zamanda onların normal kullanımını etkileyen 

beton altyapısının yaşlanmasını hızlandırır ve daha kısa kullanım ömrüyle sonuçlanır. 

Ayrıca güvenli sürüş için potansiyel bir tehdittir. Bu bozulma nedeniyle azalan 

kapasitenin erken teşhisi öncelikli bir gerekliliktir. Çünkü bu hasarların zamanında ve 

doğru olarak tespit edilmesi hayati bir önem taşımaktadır. Günümüzde, yollarda oluşan 

yüzeysel hasarları tespit etmek amaçlı çeşitli yöntemler şöyle sıralanabilir: bir operatörün 

yapıyı incelemesi esnasında geleneksel yöntemler kullanılarak insanın hasarı teftiş 

etmesi, özel aletler kullanarak çatlağın mikroskobik incelenmesi, insansız hava araçları 

aracılığı ile görüntü alınması ve bu görüntülerin analiziyle yüzeysel hasarın otomatik 

olarak teşhis edilmesi ve ölçülmesi. İnsansız hava aracı kullanılarak yapılan hasar 
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tespitini diğer yöntemlerle karşılaştırırsak kaza riskinin daha az olması, düşük maliyet, 

zaman tasarrufu, daha az lojistik gereksinimi gibi birçok avantajı olduğunu söyleyebiliriz. 

Genişleyen ve artan yol ağları nedeniyle geleneksel yöntemler kullanarak geniş çaplı 

inceleme yapmak gerçekten zor bir çalışmadır. Bu yüzden son zamanlarda sıkça 

kullanılmaya başlanan yüksek çözünürlüklü kameralara sahip insansız hava araçlarını, 

incelenen yolun yüzeysel hasar tespitinde kullanmak mümkündür. Toplanan 

görüntülerden derin öğrenme yöntemleri kullanılarak hasar tespiti ve derecelendirilmesi 

yapılabilir. Bu yöntemle İHA’lar tarafından hasarın geometrisini doğru bir şekilde 

yansıtan görüntüler elde edilebilir. Önerilen tez çalışması, yollarda oluşan çukurların ve 

çatlakların, insansız hava araçları yoluyla otomatik olarak tespit edilmesini 

amaçlamaktadır. Çalışmanın tamamlanması ile ulusal ve uluslararası literatüre İHA 

yardımıyla yollarda hasar tespiti konusunda katkı sağlanmış olunacaktır. 

 

 

Anahtar Kelimeler: Drone, Derin Öğrenme, Yol Hasarları, YOLO, Faster R-CNN, U-

Net 
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1.  INTRODUCTION 

Roads, which are one of the most critical structures all over the world, have a vital role 

in the development of the country’s economy and human society. Therefore, countries 

value the construction of infrastructures and do not avoid providing the necessary budget 

for them. With the development of road construction extensively, the importance of road 

maintenance and rehabilitation has increased. The quality and sustainability of a road 

pavement directly determine the lifetime of that road. However, due to aging, 

environmental factors and road surface deterioration, different types of distress occur on 

the pavement surface. The most typical sorts of pavement distress that we commonly see 

on the road are cracks and potholes. They have a significant impact on the durability of 

the paved roads. These defects not only affect the quality of service and visual appearance 

of the structures but also give rise to steel corrosion by reaching the reinforcement, which 

shortens the lifetime of roads. At the same time, these defects can pose a potential threat 

to safe driving and may endanger human life. Therefore, it is a vital task to inspect these 

surface damages before performing maintenance and repair. It is crucial to identify the 

defects on time and accurately. Quick identification prevents possible dangers and is 

necessary to reach more accurate results. A manual visual inspection is the initial 

technique for identifying and categorizing pavement defects. Traditional visual 

inspection-based damage detection is expensive, inefficient, time consuming, labor 

intensive, and requires logistic planning. Nowadays, with the rapid expansion and 

increase of road networks, it is challenging to perform large-scale inspections. However, 

with the advent of unmanned aerial vehicles (UAVs), data collection has become easy. 

UAVs are used in many research areas because their ability to collect data quickly and 

without a lot of labor requirements. In addition to their efficiency and cost-effectiveness, 

UAVs can also perform large-scale inspections. 

In response to this problem, many automated defect detection methods have been 

developed over the years to efficiently inspect defects on paved roads. This is an ongoing 

research topic and challenge for pavement condition researchers and computer vision 

community. 

The difference of this thesis from the studies in the literature is combining the object 

detection and segmentation tasks.  
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This paper is organized as follows. The relevant studies based on image processing, 

machine learning, and deep learning are included in the literature review section. Chapter 

3 explains available datasets for training and testing which includes images gathered by 

UAV at Hacettepe University Beytepe Campus. Chapter 4 introduces the methodology 

and applications’ detailed explanation. Chapter 5 describes the results of analysis as well 

as comparison of different models. Finally, Chapter 6 contains a brief summary of the 

results of this thesis. 

 

1.1. Objectives 

Regular assessment of road damage is necessary to understand the performance of the 

roads and to carry out the necessary maintenance and repair work in a timely manner. 

Roads should be maintained regularly because they are constantly exposed to traffic loads 

and changes in environmental conditions. However, a lot of manpower is required to 

perform this assessment continuously. Therefore, the assessment of roads by drones can 

be done with less manpower. 

This study’s main aim is to automate the pavement condition assessment process by using 

drones. Therefore, to predict pavement distresses rapidly and accurately, a novel 

pavement assessment method based on deep learning frameworks is proposed. The goal 

of an automatic detection system is to perform continuous and cost-effective pavement 

evaluation. 

Individual objectives can be listed as: 

• Detection of damage with the object detection algorithm with the highest 

performance  

• Determination the ground sampling distance for each image and creation of a new 

pavement assessment guide to quantify of the defects 

• Determination of the total damaged area with the segmentation model with the 

highest performance 

• Categorization of the severity levels of the defects 

• Presentation of ArcGIS-based interactive road state map 
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2. LITERATURE REVIEW 

Pavement surface condition assessment is the key factor in the maintenance and repair of 

roads. It is required to conduct a reliable and high-quality assessment of distresses in the 

pavement such cracks, potholes, and patches, and consequently, there are many studies 

in the literature that focus on pavement defect detection using state-of-the-art technologic 

developments over the years. With the technological developments, focal point of the 

methods used by researchers have changed. Many methods have been developed to 

automate the pavement damage detection, from image processing to machine learning 

methods, including deep learning methods which has been extensively used not only on 

pavement research but also in many other study fields from both the academy and the 

industry nowadays. At an early stage, automatic damage detection using digital image 

processing (DIP) have gained popularity with the advent of more powerful cameras that 

obtain higher-quality images, and numerous approaches based on image processing have 

been proposed by researchers. Later, machine learning methods drew rapid attention of 

many researchers who intended to automate the process. While image processing 

techniques can only focus on pixels of an image and understand unsubtle features, 

machine learning algorithms have the capability of learning deep features. With the 

growing trend in artificial intelligence (AI), deep-learning techniques became prominent, 

and they achieved tremendous success in various tasks (2017-2022). 

 

2.1. Image Processing Techniques 

Images taken from the roads may have not have the desired quality due to noise, blur, and 

uneven illumination. In early studies, various image processing techniques have been 

used to develop methods for performing high-quality pavement surface defect 

inspections. Several methods have been proposed to reduce the impact of noise on defect 

detection. The commonly utilized DIP techniques, such as threshold segmentation, edge 

detection, morphology, and wavelet transform can be used to separate the defects from 

the background and create a binary image classification.  

Image segmentation is a procedure that focus on detecting boundaries such as edges, lines 

or, curves in the processed images. Threshold segmentation (Koch and Brilakis, 2011; 

Zhu et al., 2007) is a classical method of image segmentation. In threshold segmentation, 
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an image is divided into object and background by putting a pixel threshold. The method 

proposed by Koch and Brilakis, (2011) uses histogram-based thresholding to distinguish 

between portions of pothole images with defects and those without defects. They 

extracted a possible pothole form based on its geometric properties using morphological 

thinning and elliptic regression. Since the backdrop is lighter than the crack pixels, both 

dynamic and local thresholding methods have yielded in successful results . Oliveira and 

Correia, (2009) used the dynamic threshold to identify dark pixels in images. Tsai et al., 

(2010) used six methods for segmentation (Canny edge detection, a multiscale wavelet 

method, an iterative clipping method, statistical thresholding, dynamic optimization, and 

a crack seed identification method) to detect the structure of the crack that arise on the 

concrete pavement, and the effectiveness of each technique is evaluated in relation to each 

other. Consequently, the dynamic optimization-based method outperformed the other five 

methods.  

Threshold segmentation can only result in good outcome if there are visible difference 

between pixels of the object and background. However, if the image contains complicated 

information, it may become difficult to perform segmentation using a threshold value on 

the pixel intensity of the image (Zhu et al., 2007). It is also a difficult task to determine 

the appropriate threshold value.  

The edge detection methods were used in wide areas by many scholars. Commonly used 

edge detection filters can be listed as Canny, Sobel, Roberts, and Prewitt. In the field of 

automatic pavement damage detection, edge detection techniques were used specially to 

segment crack features. For instance, Zhao et al., (2010) applied Canny algorithm for 

pavement edge detection. Another implementation that uses edge detection algorithms is 

presented in Abdel-Qader et al., (2003), as they analyzed the cracks occurred on a bridge. 

They also compared the crack detection results for Canny, Sobel, fast Haar transform 

(FHT) and fast Fourier transform (FFT). However, the performed research showed that 

the edge detection methods may not give sufficient results in low-contrast images. 

Mathematical morphology (MM) is also another productive image processing technique 

used for the detection of defects. Fundamental morphological operations can be listed as 

dilation, erosion, opening, and closing; however, it can only be used for binary operations. 

While the closing operator, which is the most popular in mathematical morphology, can 

be utilized to fill small gaps between crack pixels, the opening operation can be employed 
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o remove the undesired noises in the image (Fan et al., 2020). Tanaka, N. and Uematsu, 

(1998) proposed a method for detecting pavement cracks using these morphological 

approaches on the gray-scale images of the road surface. In the recent studies, for example 

Cubero-Fernandez et al., (2017), morphological operations were used during image 

preprocessing to obtain main features of the cracks , before the classification is performed. 

The wavelet transformation (WT) evolved into a powerful signal processing tool during 

the last two decades. Wavelets have been frequently employed to reduce the noises in 

images since the images basically consist of two-dimensional signals. 2D continuous 

wavelet transform, which is one of the image processing methods, was applied to detect 

crack and non-crack regions by Subirats et al. (2006). If there is a background with a 

strong texture, this proposed method could only be used for noise removal since these 

approaches are performed on individual pixels. 

Analysis of collected raw video clips for pavement distress detection has been also 

studied. Huidrom et al., (2013) developed a robust method that uses a fast video 

segmentation algorithm called DFS and CDDMC to automatically detect and quantify 

potholes, cracks, and patches from video clips using various image processing techniques. 

Another challenge to overcome in image processing is shadows that composed of 

complex noises and backgrounds. For that reason, Zou et al., (2012) proposed a method 

named CrackTree that uses image processing for crack detection. After removing the 

shadows while preserving crack pixels, they used a minimum spanning tree algorithm for 

crack identification.  

Although all of the discussed image processing algorithms can detect cracks in images, 

they are not as effective as desired. In addition, not all image processing techniques can 

be adapted to various pavement images with different conditions. Image processing 

methods have been restricted to identifying distresses, but they have not yielded in 

efficient results for localizing and categorizing the detected distresses. The flowchart of 

image processing-based model for crack detection is shown in Figure 1. 
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Figure 1. The flowchart of  image processing techniques for crack detection (Munawar et 

al., 2021) 

 

2.2. Machine Learning Techniques 

With the development of computer vision and artificial intelligence, automatic detection 

of cracks through a variety of machine learning methods has become possible for both 

pavements and other structures. The three main types of machine learning algorithms are 

Supervised learning (Liu, 2011), Unsupervised learning (Barlow, 1989) and 

Reinforcement learning (Szepesvári, 2010). During the last two decades, automatic 

pavement defect identification and analysis have been done using both supervised and 

unsupervised learning approaches. The main difference between unsupervised and 

supervised learning is whether the utilized data have a label or not. Supervised learning 

uses the labeled dataset, and then training occurs to classify data and predict outcomes by 

considering the previous experience. However, there is no labeled data in unsupervised 

learning, this technique finds hidden structures in unlabeled data by deciphering the 

similarity between data by itself. 

Unsupervised algorithms can be effective when the existence and the location of the 

defect is unknown within the data. These algorithms are frequently employed to obtain 

useful information about data features and perform clustering. The main types of 

unsupervised learning algorithms include K-means (Yang et al., 2017), K-medoids (Park 

and Jun, 2009), and Neural Networks (Abiodun et al., 2018). 

Amhaz et al. (2016) introduced an unsupervised learning algorithm for crack 

segmentation based on minimum path selection (MPS) by calculating the crack width 

using two-dimensional pavement image. However, the developed technique is incapable 

of dealing with a crack that has a complicated regional anatomy. 

Akagic et al. (2018) suggested a new unsupervised learning method for detecting cracks 

in 2D images. After dividing the input images, the Otsu threshold and the maximum 
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histogram value were used on every sub-image. This method has performed well in low 

signal-to-ratio circumstances thanks to unsupervised learning. 

Unsupervised learning-based MFCD, or the multi-scale fusion was proposed by Li et al. 

(2019). By calculating the highest average crack score across all scales, they attempted 

to increase the effectiveness of crack detection. 

Oliveira and Correia, (2013) designed a system based on both image processing and 

machine learning. The system called CrackIT used threshold-based segmentation in the 

pre-processing step to distinguish cracked pixels from the background, and then used 

clustering techniques (unsupervised learning) to group patches of images that contain 

cracks.  

In the case of supervised learning, the most common types of problems are the regression 

and classification. If there is data that needs to be categorized, classification algorithms 

can deal with the problem. The most popular classification algorithms are: Random Forest 

(Biau and Scornet, 2016), Nearest Neighbors (Indyk and Motwani, 1998), Support Vector 

Machines (SVM) (Hearst et al., 1998), Decision Trees (Kotsiantis, 2013), Logistic and 

Linear regression (Wright, 1995) and Neural Networks (Abiodun et al., 2018).  

One of the most prevalent supervised learning techniques with binary classification is the 

Support Vector Machine (SVM) (Christopher J.C. Burges, 1998). Gavilán et al., (2011) 

presents a road distress detection model that uses a linear SVM-based classifier for 

different pavement types in Spain. In (Marques, 2012), three different pre-processing 

arrangements are applied to increase the smoothness of the image texture. A crack 

classification using SVM was then used to distinguish cracks and non-cracks. 

Another supervised machine learning technique that is popular in classification and 

regression is Random Forest. Shi et al. (2016) introduced CrackForest, which is a road 

crack detection framework that was developed by using random structured forests, to deal 

with complex topological structures. They compared the proposed approach with other 

methods and concluded that it was effective in discriminating cracks from noises.  

Cubero-Fernandez et al., (2017) applied decision tree heuristic algorithm for 

classification task once several image processing techniques are utilized to enhance 

pavement images. 
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2.3. Deep Learning Techniques 

One of the subsets of machine learning is Deep Learning, which can simulate the 

computational capabilities of the human brain and develop decision-making patterns. 

Deep learning algorithms are based on neural networks, which is a set of algorithms that 

works similar to human brain. In recent years, upon further development, deep learning 

algorithms have been extensively used for research in various areas as they do not require 

much human interference.  

The basic goals of the field of computer vision are classification, localization, detection, 

and instance segmentation. The difference between these tasks is illustrated in Figure 2 

based on the output image. Road defect detection and classification has been the subject 

of numerous experiments with Deep Learning, especially based on Deep Convolutional 

Neural Networks. 

 

 

Figure 2. Image classification and localization for single object, object detection and 

segmentation for multiple objects (Jaiswal et al., 2020) 

 

Convolutional Neural Networks, a method of deep learning (CNN), have great advanced 

especially in performing multi-class classification compared to the traditional methods. 

CNN algorithms are generally preferred over regular Artificial Neural Networks (ANN) 

since they require less computation. LeCun et al., (1998) designed the first neural 

convolutional neural network called LeNet for handwritten digit recognition (Figure 3). 



 

 9 

 

 

Figure 3. Architecture of LeNet-5, the first famous CNN architecture. (LeCun et al., 1998) 

 

Binary Classification 

Binary classification can be performed with deep learning. It is the simplest method to 

categorize the input into two classes. When a model performs binary classification, it 

examines the input data and determines which of two possible classifications to assign it. 

As an example of binary classification, the road images acquired by smartphone were 

first divided into small patches. Later, the probability of these patches including cracks 

was calculated using deep CNN (Zhang et al., 2016). This study was pioneer in applying 

deep learning techniques to identify road cracks. 

Gopalakrishnan et al. (2017) trained a deep learning model using an open-source database 

called ImageNet and transferred its learning ability to perform automatic pavement crack 

detection. The developed pavement crack detection model contains five convolutional 

blocks of the VGG16 architecture. Then, several machine learning classifiers such as 

Support Vector Machine (SVM), Random Forest (RF), and Neural Network (NN) were 

utilized. The performances of these classifiers are then compared. It is concluded that the 

single-layer neural network classifier based on pre-trained VGG-16 deep CNN model 

outperformed the other four classifiers. 

Cha et al. (2018) improved a deep CNN to discriminate between crack pixels and non-

crack pixels in concrete structures without utilizing image processing techniques for 

feature extraction. The results indicated that even if the images were taken under various 

conditions such as insufficient lighting or shadow, the performance of the method was 

more robust compared to the traditional edge detection techniques (i.e., Canny and Sobel). 
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CrackNet software based on deep learning was established by Zhang et al. (2017). The 

outputs of the proposed CNN, a pixel-level classification method, are class scores for all 

individual pixels. The difference between regular CNN and CrackNet is that CrackNet 

does not use any pooling layers. The architecture of the suggested CNN model, CrackNet, 

is illustrated in Figure 4. Later, to increase the computation speed of the model, the 

CrackNet software is improved into CrackNet II software (Zhang et al., 2018). CrackNet 

II uses a deeper architecture compared to CrackNet. CrackNet II not only provides faster 

detection, but it is also effective for detecting of small cracks. 

 

 

Figure 4. CrackNet model architecture (Zhang et al., 2017) 

 

Yang et al., (2020) presented a novel network utilizes feature pyramid and hierarchical 

boosting to detecting cracks automatically. This novel approach provides an integration 

between context information and low-level features. CRACK500 dataset which contain 

five hundred images from the campus of Temple University was also published by the 

same group of researchers. 

 

Multi-Classification 

Several earlier studies focus only on the existence of defects. If it is desired to separate 

the cracks into groups or to differentiate various damage types, binary classification is 

not sufficient. For this reason, several researchers have focused on defect categorization 



 

 11 

and defect severity level determination for years. As a result, many techniques based on 

CNN for multi-classification task have been presented. 

Fan et al. (2018) offered a structured prediction method using Deep Learning CNN to 

automate the multi-label classification problem in crack detection. They have not used 

any preprocessing techniques but instead used raw images. To deal with the problem of 

unstable data, the developed model was tested on two different data sets. It was found 

that the proposed approach has strong generalizability even for images with particularly 

complex backgrounds and crack patterns. 

Song et al., (2019) proposed deep multi-scale convolutional features to detect high-level 

cracks by using the multiscale dilated attention (MDA). Afterwards, the crack resolutions 

were recovered using the Feature Fusion Up Sampling (FFU) module. Cracks were 

separated into groups for block, alligator, transverse, and longitudinal categories during 

the second phase. In addition, the severity of them was evaluated as a function of branch 

spacing and crack width. 

 

Object Detection 

In recent years, object detection applications have also been used for the road damage 

detection since they can perform both classification and localization tasks. The most 

commonly used CNN-based algorithms for object detection are Fast R-CNN (Girshick, 

2015), Faster R-CNN (Ren et al., 2017), Single Shot MultiBox Detector (SSD) (Liu et 

al., 2016), and You Only Look Once (YOLO) (Redmon et al., 2016). All of these 

techniques aim to define a bounding box around the target object. 

The main advantage of YOLO is that it can locate and classify objects with a single CNN. 

Hereby, it works faster than other listed algorithms.  

Majidifard et al. (2020) proposed a comprehensive new dataset named pavement image 

dataset (PID). Images were extracted as wide-view and top-view from Google API Street 

view, and they were manually labeled into nine categories. YOLO and Faster R-CNN 

were utilized to automatically identify and categorize road damages. The results were 

then compared with each other. 
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Another object detection-based multi-classification method that uses CNN architecture 

was developed by Maeda et al. (2018). They prepared an extensive dataset that includes 

9053 road images with eight damage types captured by a smartphone. Then, SSD 

architecture was used to perform automatic damage detection and classification tasks. 

The proposed SSD framework employed Inception V2 and MobileNet as the backbone 

feature extractor modules. 

In (Du et al., 2021), a large-scale dataset collected by a high-resolution camera installed 

on a vehicle was prepared. The dataset includes 45,788 distress images with various 

illumination for seven damage classes. Subsequently, a technique for identifying and 

categorizing roadway deterioration based on the Yolov3 network was proposed to 

automate feature extraction and increase detection speed. In addition, this study compared 

the Yolo Network, Faster R-CNN, and SSD algorithms regarding speed and precision. 

The results showed that Yolov3 is relatively faster than other algorithms. 

The applications of computer vision-based techniques have not only been used for 

pavement monitoring but also been applied for structural condition assessment and 

inspection (i.e., concrete cracks, concrete spalling, fatigue cracks in the steel, steel 

corrosion) (Spencer et al., 2019). For example, Cha et al., (2018) proposed a Faster R-

CNN-based structural defect detection model to categorize various damages such as 

corrosion and delamination of steel in bridges. 

 

Image Segmentation 

Image segmentation is another popular technique used for differentiating objects in an 

image. For image segmentation, each pixel is labeled with a corresponding category. In 

recent years, this method has been used in pavement damage inspection automation.  

Li et al., (2021) presented a semantic segmentation model, that uses advanced pixel-level 

recognition, to automate pavement distress classification. They created an extensive 

pavement distress image dataset containing 10,097 images and labeled these images 

under six categories including potholes, patches, block cracks, longitudinal cracks, 

transverse cracks, and alligator cracks. The U-Net and Resnet architecture was then 

trained to detect the areas of damage in the images. When the binary classification was 
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considered, the results obtained by this method showed good pixel accuracy. However, 

this method is not efficient in predicting the shapes and locations of the six distress. 

A technique for segmenting and detecting pavement cracks was suggested by (Liu et al., 

2020), which utilizes a combination of the modified YOLOv3 and U-Net. First, an object 

detection algorithm was used to classify four types of distresses, and the crack regions 

detected in the first step were then used as an input for the segmentation step. The goal 

of these steps is to increase the accuracy of the model. After comparing the proposed two-

step method with other detection and segmentation techniques, it was found to be more 

successful.
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3. DATASETS 

Pavement surfaces deteriorate over the years due to many reasons such as heavy traffic, 

natural disasters, construction faults and environmental conditions. The common types of 

the distresses can be divided into three main groups: cracking, disintegration, and surface 

treatment distresses. These types of damage differ depending on the materials of the 

pavement. Figure 5 shows the types of pavement distress for both flexible and rigid 

surfaces as a summary. 

 

Figure 5. The common distress types for flexible and rigid pavements 

 

Since these deteriorations occur very slow at the beginning, they only require regular 

maintenance to maintain the level of service of the road. If not maintained and improved 

in a timely manner, deterioration will accumulate and lead to very expensive maintenance 

and improvement work. Therefore, pavement maintenance is important to extend the 

useful life of a road. Although there are a variety of defects in different pavements, cracks 

are the most common damage that occurs on both types of roads. Cracking of the road 

surface allows moisture to penetrate the subgrade, which can lead to premature 

deterioration of the road structure. To maximize the life expectancy of a road, it is 

desirable to minimize the damaging effects of cracking. This can be achieved by early 

detection and repair of cracks before extensive deterioration occurs. If cracks are not 

repaired in a timely manner, maintenance costs can increase as the crack progresses. 
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Pothole is another common type of damages that occurs on the road surface. Potholes are 

also caused by the progression of cracks that are not maintained in a timely manner. 

Potholes deface the road structure and shorten the life of the road. Failure to maintain a 

crack in a timely manner will result in more wear and potholes. Potholes are also 

important for safe driving. They lead to impaired driving comfort and accidents, 

especially since visibility is very poor in the dark. They pose a greater risk, especially to 

vehicles such as bicycles and motorcycles, and can even cause fatal accidents. Therefore, 

proper and timely road maintenance has become an important service that extends the life 

of the road and also reduces risks. 

There are numerous open-access and private datasets in the literature that contain these 

types of damage. Especially with the widespread use of digital image processing methods, 

studies using these datasets have increased. Since it is easy to distinguish the crack 

structure from any background, effective studies have been conducted to detect cracks on 

asphalt and concrete surfaces. As a result of these studies, open access datasets are 

presented. Since the advent of machine learning and deep learning methods, the need for 

more images has arisen. To meet this need, large-scale datasets of road defect images 

from different angles and multiple damage classes have been developed. To choose the 

best dataset for this research, a detailed literature review was conducted. Many open-

access datasets related to pavement conditions have been found and prepared for efficient 

use in this study. 

 

3.1 Available Datasets 

Pavement distress data are traditionally collected by walking on the road and evaluating 

the required criteria. However, this procedure takes a long time, and the outcomes are 

inaccurate. Automated data collection systems are evolving as technology develops. A 

truck or robot with cameras are among the most commonly used methods for data 

collection in pavement inspection. Since the installation of these trucks is very costly, 

they are not preferred by researchers. Nowadays, drones are increasingly used for  

pavement data collection (Zhu et al., 2022). 

Some datasets that are collected manually have been found in the literature. However, 

most of them have only 2 types (with crack and without crack) of labels. These are some 

examples of them; CrackForest Dataset (Shi et al., 2016), Crack500 (Yang et al., 2020), 
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CrackTree (Zou et al., 2012), GAPs (Eisenbach et al., 2017) and DeepCrack (Liu et al., 

2019) . The images in these datasets were taken with smartphone cameras and contain 

close-up photos of the crack structure. The number of images and pixel sizes in these 

datasets are listed in Table 1. Most of them contain images with a size of 448x448, while 

Crak500 and GAPs contain crack images with a high pixel size of 3264x2448 and 

1920x1080, respectively. 

 

Table 1. Existing datasets with crack image 

Dataset Number of Images Pixel Size 

Crack Forest Dataset (CFD) 118 448x448 

Crack500 500 3264x2448 

CrackTree 206 448x448 

GAPs v1 1969 1920x1080 

DeepCrack 537 448x448 

 

Datasets containing only the crack structure are generally used in the literature for image 

processing methods. Image processing methods such as thresholding, edge detection, and 

segmentation have been applied to the images in these datasets. Researchers have 

generally utilized these datasets to extract the crack region based on the assumption that 

the crack pixel is darker than its background. Recently, with the increasing interest in 

deep learning, such datasets have been used with deep learning algorithms. In particular, 

segmentation based on deep learning networks have been applied to crack images. Since 

the crack structure has specific pixels, studies were conducted on different surfaces. These 

studies were not limited to asphalt and concrete, but were also applied to marble 

(Vrochidou et al., 2022), rock (Chen et al., 2020), and plastic surface (Kien et al., 2019). 

The datasets listed in Table 1 contain not only the raw images but also their masks. Each 

crack image has a binary image as a mask, labeled at the pixel level. Some of the raw 

images and masks of the datasets examined in this study are shown in Table 2. 

In this study, segmentation was performed using deep learning methods to obtain a pixel 

output of road damage. Images and their masks from the five datasets listed in Table 2 

were used to train the segmentation model. 
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Table 2. The images and their masks in the crack datasets 

Dataset Raw Image Mask 

Crack Forest Dataset 

(CFD) 

 

 

 

 

Crack500 

 

 

 

 

CrackTree 

 

 

 

 

GAP v1 

 

 

 

 

DeepCrack 
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The first goal of this work is to detect different types of pavement damage. Therefore, 

datasets containing multiple types of pavement distresses were searched and two datasets 

were found. One of them is created by Majidifard et al., (2020). There are 7237 images 

of pavement damage in this dataset, including nine different types of damage. The images 

in this dataset were taken from two different viewpoints. Sample images from the dataset 

are displayed for each category in Figure 6.  

 

 

Figure 6. Samples of the images in the dataset presented by Majidifard et al., (2020) 

 

Another dataset was created by Passos et al., (2020) with support from the Brazilian 

National Department of Transportation Infrastructure (NDTI). These images were 

extracted from videos recorded by a Highway Diagnostic Vehicle (HDV) with a high-

resolution camera. The total of 2235 images extracted from the video in this dataset have 

a resolution of 1280x729. Although generally consists of pothole images, it also contains 

some types of cracks such as alligator and longitudinal cracks, as shown in Figure 7. 

 

Figure 7. Samples of the images in the dataset introduced by Passos et al., (2020) 
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Flexible pavements such as asphalt are common on existing highways in Turkey. The 

most common pavement damages in Turkey are potholes, longitudinal cracking, alligator 

cracking, and reflective cracking. Therefore, this study aims to investigate a multi-

classification task focusing on these four types of defects in object detection. Thus, the 

aforementioned datasets were prepared for the object detection model. 

 

3.2. Dataset Preparation 

The size of the dataset is the key factor for the effective execution of a deep learning 

model. Since the above two datasets generally contain the desired defect types, the use of 

these datasets would be more appropriate. The images containing these crack types were 

extracted and classified into four categories. In order to train the object detection model, 

the collected images should be used as input to the damage detection models. This study 

employed a number of deep learning-based object detection algorithms. Therefore, 

depending on the algorithm used for different formats, the images are labeled according 

to their classes. This labeling process is explained in detail. 

No labeling process is required to build the segmentation model. This is because the 

publicly available crack datasets also contain their images and masks. 

 

3.2.1. Labeling 

Object detection task based on deep learning algorithms requires that the object contained 

in the image can be assigned to its class. The image may contain multiple objects 

belonging to different types, so each object must be labeled separately. To train the object 

detection model, bounding boxes should be created around the location of each object. 

The labeling process can be done manually for each image using various freely available 

software tools. In this study, a software called LabelImg was utilized for labeling. This 

graphical tool allows labeling images and to prepare them for deep learning models. 

Thanks to LabelImg, the coordinates of the object locations are recorded in different 

formats for each algorithm. An illustration of the LabelImg software's labeling procedure 

can be seen in Figure 8. 
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Figure 8. An example of a labeling using LabelImg 

 

YOLO Format 

In order to perform object detection with the YOLO architecture, the images must 

conform to the YOLO format. In this format, the upper right corner of the images is 

considered a (0,0) point, and the lower left corner is considered a (1,1) point, so labeling 

is based on pixel coordinates between 0 and 1. Using the LabelImg software, the 

information about the object is stored in a file TXT for YOLO format in the order shown 

below. 

 

[class] [x-coordinate of the center of the object] [y-coordinate of the center of the object] 

[width of the object] [height of the object] 

 

 

Figure 9. An example of YOLO annotation format 
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In YOLO format, the damage class is symbolized by a number, as shown in Figure 9. The 

damage classes were used in the labeling in this study as shown below: 

 

0 Longitudinal Crack 

1 Reflective Crack 

2 Alligator Crack 

3 Pothole 

 

Pascal VOC Format  

To use the Faster R-CNN architecture for training the object detection model, the input 

data must be in Pascal VOC format. In this format, the annotations are stored in an XML 

file. This XML file contains directory information for each image, the coordinates of the 

corresponding bounding-box, and the type of defect, as shown in Figure 10. 

 

 

Figure 10. An example of Pascal VOC annotation format 
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Asphalt pavements are widely used on existing highways in Turkey. Deformations such 

as cracks and potholes usually occur in these flexible pavements. Therefore, it was 

considered appropriate to use the dataset prepared by Passos et al., (2020) in this study. 

The labeling process was carried out for four classes: Pothole, longitudinal crack, alligator 

crack, and reflective crack. First, images from the dataset presented by Passos et al., 

(2020) were manually labeled, resulting in 1524 images collected for this project. The 

total number of labels created for each class in the dataset is shown in Figure 11.  

 

 

Figure 11. The total number of labels for each category (Passos et al., 2020) 

 

The balance of tags belonging to each class is one of the most crucial elements influencing 

an object detection model's accuracy. However, after the labeling process for this dataset, 

it was found that the numbers of tags were not evenly distributed. In particular, it was 

found that the number of reflective cracks was very low. This is because the dataset 

mostly consists of pothole, alligator cracking, and longitudinal crack types. To address 

this issue, another dataset (Majidifard et al., 2020) was also labeled for four categories 

and added to the training data. In this way, a total of more than 200 labels for reflective 

cracks were added. The final version of the class distribution is shown in Figure 12. 

 



 

 23 

 

Figure 12. The distribution of the labels obtained from two groups of datasets 

 

The collected images are used as input to the damage detection models for training the 

models. In this study, it was recommended to use two deep learning-based object 

detection models.: YOLOv5 and Faster R-CNN. Since each model has a different 

annotation format, the images are labeled according to a compatible format.  

 

3.2.2. Data Augmentation 

Prior to building deep learning-based object detection models, several image 

augmentation techniques were applied to the images to be included in the training. The 

performance of the model is adversely affected by an irregular distribution of label 

numbers. It was estimated that this situation may decrease the overall accuracy of the 

model. Therefore, to balance the distribution, some image augmentations techniques were 

applied to the images, especially to reflective cracks. 

In order to create a variety of images in the model, both geometric changes and 

differences in pixels can be applied to the images. In this study, the geometry of the image 

is important to determine the crack type. This is because the direction in which the crack 

extends determines its class. Therefore, only horizontal flip could be applied as a 

geometric modification. An example of this application can be found in Figure 12. 
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Figure 13. Example of horizontal flip for data augmentation  

 

Changing the brightness of the image is another technique of data augmentation. This 

technique allows the model to recognize the image under different illuminations. In this 

study, the brightness was changed at a rate of 30%. This created new images that were 

30% brighter and darker. 

Another method is to change the saturation level. Saturation is the depth or intensity of 

color in an image. In this work, the saturation was changed by 50%. A sample image of 

this change is shown in Figure 14. 

 

 

Figure 14. An example of the changing the saturation 
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In the last step of data augmentation, some images were converted to black and white 

format and added to the dataset. In this way, more data was obtained. 

During the dataset preparation phase, some preliminary studies were conducted to build 

models for automatic road damage detection. In these studies, it was found that the model 

made false detections in images with trees or tree shadows. It was found that it perceived 

areas with tree branches and shadows as cracks. For this reason, some small images with 

objects such as trees and tree shadows were added to the dataset without labels. The 

training data was enlarged in this way. This allows the model to produce more accurate 

results. Examples of these images can be seen in Figure 15. 

 

 

Figure 15. Examples of images containing trees and tree shadows for training data 

 

After the data augmentation for training the model, 342 more images were added to the 

dataset. Thus, the uneven distribution of labels was eliminated. The dataset then contained 

a total of 1930 images. The final distribution of the dataset according to the numbers of 

labels for each category is shown in Figure 16.  

As a result of these applications, the total number of images to be used for building an 

object detection model was increased to 1930 images. Then, the dataset was split into a 

training and a validation dataset in a ratio of 80/20. The validation data is used to evaluate 

the performance of the model after training, while the training data is used as input to the 

model. Therefore, the number of training and validation images was calculated to be 1544 

and 386, respectively.  
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Figure 16. Label distribution after data augmentation 

 

3.3. Data Collection 

The Beytepe Campus of Hacettepe University was chosen as the place to work on this 

project. The campus was built on a 5,877,628 m2 plot of land along the 20th kilometer of 

the Ankara-Eskişehir highway. Before conducting a drone flight, the roads on the Beytepe 

Campus were examined for feasibility. It was found that there are many damages that 

need to be maintained and repaired. During the preliminary surveys, pictures of the 

damaged areas were taken with a smartphone camera. Figure 17 shows examples of these 

images. 

 

Figure 17. Sample images taken with the smartphone camera in the preliminary study 
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After this preliminary study, it was decided on which routes the flight with the drone 

would be carried out. The route on which the study was to be conducted was selected as 

the main street of the dormitories on the Beytepe Campus. The estimated flight distance 

was planned about 1400 m. The map of the flight route was taken from Google Maps and 

is illustrated in Figure 18. 

 

 

Figure 18. Drone Flight Route (Google Maps) 

 

Today, several research are using unmanned aerial vehicles (UAVs) because these tools 

are fast and inexpensive. In addition, UAVs have recently been supported by the 

development of artificial intelligence technologies and have taken a larger place in human 

life. 
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Data acquisition was performed using a drone to capture high-resolution images of road 

deformations quickly and safely. This project used the DJI Mavic 2 Pro unmanned aerial 

vehicle, one of DJI's new drone models. It features a high-resolution camera. The drone 

weighs about 907 grams and has a length, width, and height of 322×242×84 mm when 

the wings are spread out (Figure 16). The drone's integrated camera has a 1-inch CMOS 

sensor and a resolution of 20 megapixels. 

 

Figure 19. Drone used to collect images (DJI Mavic 2 Pro) 

 

The necessary permissions were obtained from the authorized bodies of Directorate 

General of Civil Aviation (DGCA) and Hacettepe University for the UAV flight. For 

safety reasons, the flight was preferably conducted when the university is outside of 

academic hours and vehicle traffic is low. The drone was flown on the main road in the 

region of the dormitories of the Beytepe Campus of Hacettepe University. Continuous 

images and video clips were collected from this region. The start and end coordinates of 

the flight are listed in Table 3. The flight took place over a total distance of 1361 meters. 

 

Table 3. Drone flight coordinates 

 Flight Start Coordinate Flight End Coordinate 

Latitude 39; 52; 1.64430000001459575 39; 52; 12.6842999999935557 

Longitude 32; 43; 58.3614999999989000 32; 43; 50.65390000000046258 



 

 29 

Although the flight was initially launched autonomously, there were interruptions in the 

GPS signal because the flight area was in military airspace. For this reason, the UAV 

flight was conducted manually and parallel to the road to ensure safety. The flight altitude 

of the UAV could not be determined due to the manual flight and the lack of LIDAR 

integration, but it was flown at altitudes between 8 and 20 meters above the ground 

surface and these altitudes were recorded. Due to the low battery and loss of the GPS 

signal, four separate flights were conducted. The total flight time was 31 minutes. The 

total distance flown, total time, and number of images recorded for these flights are shown 

in Table 4. 

 

Table 4. Drone Flight Records 

Flight Distance (meter) 
Duration 

(minutes) 
Road Photo Number 

First Flight 616 12 30 

Second Flight 205 6 21 

Third Flight 299 6 23 

Fourth Flight 241 7 28 

 

During these flights, a total of 102 images of the road images and the campus images 

were collected from the flight area with. These images are 5472×3648 pixels in size. The 

pavement image taken in this flight is shown in Figure 20, and a photo of the Hacettepe 

University campus is shown in Figure 21 as an example. 
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Figure 20. Example of road image collected using UAV 

 

 

Figure 21. Example of Hacettepe University Beytepe Campus image using UAV 
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3.3.1. Processing the Collected Images 

The images captured by the drone were transferred to the map using ArcGIS Pro, a 

geographic information system-based software (Figure 22). This transfer process was 

based on the coordinate information of the images. The capture points of the 102 photos 

collected during the four flights mentioned in Table 4 are visualized on this map. 

OpenStreetMap (OSM) was used as the map base. 

 

 

Figure 22. ArcGIS map of images taken from drone 

 

Ground sampling distance (GSD) is a fundamental concept for any drone flight for 

research and inspection purposes. It forms the basis for many important flight planning 

decisions. This value can be used to determine from what altitude to fly to achieve the 

required resolution and quality of the desired data. This value is also important for the 

flight safety of the camera. 
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Ground sampling distance represents the size of one pixel on the ground. Ground 

sampling distance is usually specified in cm/pixel. This helps to find the amount of ground 

or surface area covered by a drone image. Two major variables are used to calculate the 

GSD: the flight altitude and the camera parameters. The camera sensor width, focal 

length, and image resolution are the camera parameters used to calculate the GSD. The 

formula for calculating the GSD is as follows. 

 

Ground Sampling Distance (GSD)= 
Sensor Width * Height (Altitude) 

Focal Length * Image Width 

 

In order to calculate the ground sampling distance of each image, the distance of the 

camera to the ground at the time of capture must be known. However, this value is not 

the same for each image due to manual flight. For this reason, the altitude of each image 

was determined using the Google Earth application since the coordinates were known. In 

addition, the altitude of the point where the image was taken, that is, the altitude at which 

the drone is flying at that moment, is also included in the information of the photo. Thus, 

the distance to the ground was calculated by calculating the difference between the two 

altitudes. Using this data, the ground sampling distance was calculated for each image 

and used to determine the severity of the road damage. 

The parameters of the camera connected to the drone used in this study and the 

information about the images obtained after the flight are summarized in Table 5. 

 

Table 5. Parameters for the calculation of the GSD 

Image Width (pixels) 5472 

Image Height (pixels) 3648 

Focal Length (mm) 28 

Sensor Width (mm) 13.3 

Sensor Height (mm) 8.8 

Height (m) Variable 
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4. METHODOLOGY 

4.1. Deep Learning 

Deep learning is a method that is now widely used in many areas of artificial intelligence. 

Deep learning, one of the subsets of machine learning algorithms, uses multilayer 

artificial neural networks (ANN). The learning process of this system is based on the 

previously given data, learns on this basis, and provides results. Compared to other types 

of machine learning, this method can learn information directly from data such as photos, 

videos, audio, or text, and predict outcomes. Its applications include classification, object 

detection, and natural language processing.  

The structure of ANN is inspired by the way synapses work in the human brain. To 

process information, it uses a similar structure of nodes and connections. These networks 

perform operations on input data (x0) received from another neuron and transmit the 

received output to another neuron or a layer. Artificial neural networks in the deep 

learning architecture operate according to this logic. Figure 23 shows a simple illustration 

of this structure. 

 

 

Figure 23. A simple illustration of ANN network structure (drawn by author) 
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Other techniques based on machine learning and image processing require upfront 

preprocessing. Deep learning techniques on the other hand, can work directly with raw 

data. They can process raw data without requiring preprocessing, because they transfer 

the relevant features of the desired object to be found within the algorithm. In order to 

achieve accurate results in deep learning, a large amount of data is required. While image 

classification algorithms can only categorize the data, object detection algorithms can 

both classify and locate the object. 

In recent years, image classification and object detection in computer vision applications 

have evolved with the development of technologies. Great progress has been made thanks 

to access to large data sets and faster training on GPUs. In addition, libraries offered by 

large technology companies (Google, Facebook, Microsoft) have facilitated further 

studies in this area.  

 

4.2. Convolutional Neural Networks 

With the growth of data and the desire to extract more meaningful information from the 

data, optimization is required to extract attributes. Deciphering the connections between 

neurons and layers in this big data with a classical artificial neural network model and 

using the learned parameters presents a tremendous computational challenge. For that 

reason, CNN are introduced by LeCun and Bengio, (1995) to the field of computer vision. 

Convolutional neural networks work as a mathematical operation by using one or more 

layers. Convolution can effectively minimize the training complexity of the network 

model as well as the weights associated with the network connections and parameters, 

making it easier to train. 

While the input data is an image, the properties of the neural network become pixel 

values. So, the model reads in the pixel values of an image, performs feature extraction 

and classification. However, the features of an image are not only the pixel values, but 

also the relationships between pixels, or in other words, image features are edges, lines, 

corners, or basically the shapes and patterns of an image. In order for classification to be 

performed with an artificial neural network, the artificial neural network must be given 

the features (feature extraction) that represent the relevant data. Selecting the right 

features is quite difficult, especially when the input data is an image. However, in 
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convolutional neural networks, the convolutional layer performs the feature selection 

automatically.  

 

The convolutional neural network consists of two main parts: The first is a convolutional 

and pooling mechanism that divides the image into features and analyzes them, and the 

second is a fully connected layer that uses the output and predicts the class to identify the 

image. 

The convolutional layer is added to the neural network and the network is now called a 

convolutional neural network. The purpose of the convolutional layer is to extract features 

from an image using a mathematical operation called convolution. The dot product 

between the kernel and the subarray of an input image of the same size as a kernel is 

calculated by the convolutional layer. The single pixel value of the output image is then 

determined by adding all the values obtained from the dot product. This procedure is 

continued for each kernel until the entire input image is covered. An illustration of this 

operation can be seen in Figure 24. 

 

 

Figure 24. An illustration of a 3x3 filter with convolution operation  

 

The pooling layer, the second layer of the architecture, aims to decrease the size of the 

matrix. This helps compress the amount of data and parameters to avoid overfitting. In 

the last layer, the image is converted to a single-column vector using a fully connected 
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layer. This generated flattened output is taken as input and the working logic of the 

classical artificial neural network is applied. Then, a fully connected structure is created 

by connecting each input to a neuron. After the model identify dominant and specific low-

level features in images throughout a range of epochs, it can categorize the image and 

predict the class. The architecture of convolutional neural networks is shown in Figure 

25. 

 

 

Figure 25. An illustration of the Convolution Neural Networks (CNN) architecture 

(drawn by author) 

 

4.3. Object Detection 

The image classification task is determining the class of a particular object. In the Object 

localization task, the position the objects are predicted, and bounding boxes are drawn 

around their extend. Object detection consists of these two tasks, categorizing the class 

of each object and locating one or more things in an image. 

This study is about the classification and localization the pavement defects using images 

captured by a drone. For this reason, the images in the previously mentioned datasets 

were used as input data to train the object detection model. Object detection algorithms 

based on deep learning can learn the characteristics of all the pixels in the marked region 

and identify the class of this region thanks to the convolutional layers in the neural 
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network architecture. Thanks to these networks, the algorithm creates a map about the 

relationship between the data and stores it in memory. Thus, when a new image is 

presented to the trained model, the algorithm can predict the position and the class of the 

object to be found. The working principle of this algorithm is illustrated in Figure 26. 

 

TRAINING 

DATA

TRAINED 

MODEL

OBJECT 

DETECTION

TEST 

DATA

 

Figure 26. The workflow of object detection (drawn by author) 

 

Deep learning-based object detection models are often split into two types: One-Stage 

Object Detection and Two-Stage Object Detection. Two-Stage object detector models 

have another part that finds possible regions, which distinguishes them from One-Stage 

object detector models. In the second part, the model works on the possible regions to 

classify them. However, One-Stage Object Detection models does all parts in one stage. 

The most popular architectures for two-stage object recognition are R-CNN(Ibragimov et 

al., 2020), Fast R-CNN, and Faster R-CNN. As suggested by its name, the Faster R-CNN, 

which is the fastest model among them, is widely used today due to its high model 

performance. One-Stage Object algorithms include Single Shot Detector (SSD), 

RetinaNet, and YOLO versions.  

The object detection models consist of two sections: a backbone and a head. While the 

backbone is responsible for learning features, the head creates bounding boxes around the 

desired objects and finds the class based on the learned features. ResNet, VGG and 

Mobile Net are the best-known examples of backbones. They can be trained on ImageNet 

and these pre-trained weights can be used in object detection algorithms. Some recent 

algorithms also include the neck part, which is the layer between the backbone and the 
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head. This part extracts more information from the different layers of the backbone and 

passes it to the head. In this study, two heads were preferred: YOLO and Faster R-CNN. 

A general flowchart of object detection models is illustrated in Figure 27. 

 

 

Figure 27. An illustration of object detection (Bochkovskiy  vd., 2020) 

 

Since the purpose of this study is to compare the one-stage and two-stage object detection 

models and to determine the model with the best performance, Faster R-CNN and YOLO 

versions were selected for this study. These object detection architectures examined in 

this study are listed below. 

 

4.3.1. Faster R-CNN 

The Faster R-CNN algorithm is an example of a two-stage object detection model that is 

the evolution of Fast R-CNN (Girshick, 2015). In the Faster R-CNN network, an 

additional neurol network layer was added, which solved some problems of Fast R-CNN. 

The new neurol network layer is called the Region Proposal Network (RPN). 

In this algorithm, convolutional layers first create features from the input image. Then, 

the candidate regions where the object can be found are estimated by RPN, and the feature 

map is created using fully convolutional neural networks. The output of RPN is used as 

input to the Region of Interest (ROI) pooling layer. Then, object detection is performed 

for each predicted region. The object detection phase is performed by R-CNN. These 

phases are shown in Figure 28.  
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Figure 28. Faster R-CNN structure (Ren et al., 2017) 

 

In order to train a model with Faster R-CNN, ResNet50 and ResNet 101 which are pre-

trained networks were utilized as a backbone. More than a million photos from the 

ImageNet database were used to train these convolutional neural networks. 

 

4.3.2. YOLOv5 

The You Only Look Once (YOLO) algorithm was initially introduced by Redmon et al., 

(2016) for fast object detection in real time. YOLO and its versions are algorithms that 

perform one-stage object detection. They can directly recognize the desired object using 

convolutional networks. The most important feature that distinguishes the YOLO 

algorithm from the other algorithms is its ability to perform object detection in real-time. 

It is also superior to its alternatives in terms of speed, as the algorithm predicts the 

bounding boxes of an image at once. How this algorithm detects the objects is explained 

in Figure 29. 
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YOLO uses the Darknet framework, a structure trained on ImageNet, with 53 network 

layers as the backbone for feature extraction. In the YOLOv5 architecture, the algorithm 

is constructed by using PyTorch as the coding base. This is much more user-friendly and 

easier. For this reason, YOLOv5 became the most widely used version of YOLO.  

 

 

Figure 29. YOLO object detection system (Redmon et al., 2016) 

 

Four different pre-trained models of the YOLO algorithm were used in this study. The 

YOLOv5s, YOLOv5s6, YOLOv5m, and YOLOv5m6 models were selected based on 

their performance on COCO data.  

 

4.3.3. YOLOv7 

YOLOv7 is the latest version of the YOLO series by  Wang et al., (2022). With this 

release, the field of object detection makes enormous progress. YOLOv7 also focuses on 

optimizing the training process by using trainable Bag of Freebees. In this way, the real-

time object recognition parameters can be reduced by about 40% and the computer usage 

can be reduced by 50%, resulting in faster inference speed and higher recognition 

accuracy. While training costs decrease, model accuracy and speed of inference increase.  
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Like YOLOv5, YOLOv7 uses PyTorch as the coding base. In the MS COCO Object 

Detection task, YOLOv7 outperforms other convolutional networks and earlier versions 

of its series in terms of average precision (AP) and inference time (Figure 30). There are 

also some pre-trained weights available for YOLOv7 object detection. The most suitable 

weights were employed for automatic defect detection: YOLOv7, YOLOv7-tiny and 

YOLOv7-X.  

 

 

Figure 30. Comparison of YOLOv7 on the COCO dataset (Wang et al., 2022) 

 

4.4. Object Segmentation 

The goal of image segmentation is splitting images into several smaller parts by labeling 

each pixel of an image. These parts, or multiple segments, help the image segmentation 

model learn the task. The basic requirement for image segmentation is the use of masks 

in the training phase. These masks can be a binary image consisting of zero or non-zero 

values of pixels. The output has the same size as the input image, in which each pixel is 

labeled. Therefore, it can be called a pixel-level classification. 
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In this study, CrackForest Dataset (CFD) (Shi et al., 2016) , Crack500 (Yang et al., 2020), 

Cracktree ( Zou et al., 2012) , GAPs (Eisenbach et al., 2017) and DeepCrack (Liu et al., 

2019) were used to train the segmentation model. 1500 randomly selected images from 

these datasets were used. Before the training step, these images were resized to 448x448. 

 

4.4.1. U-Net 

U-Net, a convolutional network-based network structure, was introduced by Ronneberger 

et al., (2015) and used for biomedical image segmentation. The success of U-Net in 

biomedical image segmentation has led to the use of this model in many segmentation 

studies. In this study, the U-Net architecture was preferred for crack segmentation. 

 

 

Figure 31. The architecture of U-Net (Ronneberger et al., 2015) 

 

The U-Net architecture includes two paths: contracting and expansive, as shown in Figure 

31. The first part consists of classical convolutional neural networks (conv) and max-

pooling layers, and the network is constrained by applying 3x3 convolutions in each part. 

This part is called the encoder and is used to understand the model image. This part can 
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also be referred to as the feature extractor. It generates the desired mask by understanding 

the input data with filters. The second part is the decoder part, where the object requested 

by the model is learned. In this part, a 2x2 upward convolution is performed and the 

number of features is halved. This layer is mainly used to check the localization. In the 

last layer, a 1x1 convolution is performed and the output equals the quantity of label 

classes. The U-net owes its name to the U-shaped image that is created in each stage of 

this algorithm. 

The feature extractor networks in the first part can be replaced by pre-trained networks. 

In this study, the encoder part was replaced by two different pre-trained convolutional 

neural networks: VGG-16 (Simonyan and Zisserman, 2014) and ResNet50 (He et al., 

2015). These networks were trained with the ImageNet dataset so that they are able to 

extract the required features. The VGG-16 network was designed to diminish the amount 

of parameters and speed up the training time in convolutional layers. In ResNet50 

(Residual Networks) network, there are some additional layers to figure out complex 

problems. ResNet50 is often preferred for transfer learning. These deep learning networks 

were trained to develop a model for crack segmentation, and their results are presented in 

the results section. 

 

4.5. Quantification of Pavement Defects 

There are certain criteria for determining the maintenance and repair of road damage. The 

criteria for each class of damage generally relate to the geometric structure of the damage 

and the area it occupies. Damage is classified according to the severity of the damage 

based on these criteria.  

Each country or region has different guidelines for repairing road damage. To find 

guidelines, an extensive search of the literature was conducted, and many guidelines were 

found around the world. First, standards for road damage repair were found primarily for 

the U.S. states: Oregon, Pennsylvania, Florida, Washington, California, Indiana, and 

North Carolina. Additional guidelines were also found for the Canadian provinces of 

British Columbia and Ontario. The guidelines for each state are listed in the Appendix-1 

for alligator cracking, longitudinal cracking, reflective cracking, and potholes, 

respectively. 
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It was investigated whether there is a specification for road damage inspection in Turkey. 

Engineers and experts from Ankara Metropolitan Municipality, Ankara Keçiören 

Municipality, Antalya Metropolitan Municipality, and the General Directorate of 

Highways were consulted on this issue. However, investigation revealed that there was 

no guide currently in use. Therefore, for this study, a new guide compatible with the 

metric system was prepared for four classes of damage, using the guidelines in America 

and Canada as a reference. 

 

Table 6. Pavement defects inspection criteria used in the state of California 

Distress Type Severity Limits for California 

Longitudinal Crack 

Low Average crack width <0.25 in 

Medium 0.25 in ≤ Average crack width ≤0.5 in 

High Average crack width > 0.5 in 

Reflective Crack 

Low Average crack width <0.25 in 

Medium 0.25 in ≤ Average crack width ≤0.5 in 

High Average crack width > 0.5 in 

Alligator Crack 

Low Average crack width <0.25 in 

Medium 0.25 in ≤ Average crack width ≤0.5 in 

High Average crack width > 0.5 in 

Pothole 

Low 0 <number<2 

Medium 2 ≤ number ≤ 5 

High number> 5 
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The criteria used in the State of California for longitudinal cracks, transverse cracks, 

alligator cracks, and potholes are shown in Table 6. These limits were converted to the 

metric system for use in this study. However, the limits for potholes in this guide were 

not considered adequate. For this reason, the pothole limits in the guide used in the 

Canadian province of British Columbia, listed in Table 7, were used as an additional limit. 

Since the images are two-dimensional, the depth of the cracks and pits could not be 

measured. Therefore, the diameter and number of potholes are used to determine the 

damage limit for the pothole. The reference limits used in this study are given in Table 8 

in the metric system.  

 

Table 7. Pothole inspection criteria used in the Canadian province of British Columbia 

Distress 

Type 
Severity Limits for British Columbia 

Pothole 

Low Pothole < 175 cm2 in area (~15cm ø) and less than 25mm deep 

Medium Pothole > 175 cm2 in area (~15cm ø) and 25mm to 50mm deep 

High 
Pothole > 175 cm2 in area (~15cm ø) and greater than 50mm 

deep 

 

 

The limits in Table 8. allow the usability of the road to be determined in the region where 

the study was obtained. Based on these criteria, the degree of damage is determined, and 

then maintenance and repair are performed according to the degree. For example, if the 

degree of damage is considered high, the maintenance of damage must be carried out 

urgently.  

 

  



 

 46 

Table 8. Pavement defects inspection limits used in this study 

Distress Type Severity Limits for British Columbia 

Longitudinal Crack 

Low Average crack width <0.635 cm 

Medium 0.635 cm ≤ Average crack width ≤1.27 cm 

High Average crack width > 1.27 cm 

Reflective Crack 

Low Average crack width <0.635 cm 

Medium 0.635 cm ≤ Average crack width ≤1.27 cm 

High Average crack width > 1.27 cm 

Alligator Crack 

Low Average crack width <0.635 cm 

Medium 0.635 cm ≤ Average crack width ≤1.27 cm 

High Average crack width > 1.27 cm 

Pothole 

Low 

0 < number of potholes<2,  

Diameter <15 cm 

Medium 

2 ≤ number of potholes ≤ 5,  

Diameter >15 cm 

High 

Number of potholes > 5,  

Diameter >15 cm 

 

 

4.6. Environmental Setup 

Setting up the required environment is the first step before starting to train the object 

detection model. Python is the most common programming language used when creating 

deep learning models. Python must be utilized on the computer before to develop an 
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object detection model. In this study, Anaconda, a free and open-source software 

developed to use Python language, was used as the development environment. 

A powerful graphics processing unit (GPU) is also important when working with larger 

neural networks and a large amount of data. They allow processing in small steps in 

parallel and are therefore faster than CPUs. All training experiments are performed using 

GPUs on a laptop with 16 Gb of RAM and a graphics card called NVIDIA GeForce GTX 

1660Ti and Windows operating system. To use GPUs, the required CUDA and cuDNN 

were installed. While CUDA 10.2 was used for training the YOLO models, CUDA 11.2 

was used for training the Faster R-CNN models. 

Two frameworks were used to create an environment for YOLO versions and Faster R-

CNN: Tensorflow and PyTorch. TensorFlow’s object detection application program 

interface (API) provides an environment for building models for deep learning-based 

object detection. A Faster R-CNN architecture is also available in that framework. The 

YOLO is an object detection algorithm that uses PyTorch as its coding foundation. Thus, 

the installation of the PyTorch and the Tensorflow was completed on the Anaconda 

software. In addition, PyTorch was also used to create a crack segmentation model with 

U-Net. 

 

4.7. Metrics 

Before training the model, the hyperparameters should first be determined. These are the 

variables that shape the structure of the network. There is no fixed value for them, they 

vary depending on the task and the dataset. The experiment should continue with trying 

the different hyperparameters to find the best ones. The hyperparameters used in this 

study are listed in below. 

After training, the performance of each model should be evaluated according to certain 

metrics. Based on these metrics, conclusions should be drawn to compare the models in 

terms of their efficiency. Generally, the accuracy value is considered as the accuracy, but 

the accuracy is not sufficient when the data sets are unstable and small. Therefore, the 

evaluation metrics of COCO (Lin et al., 2014) were used. There includes a brief 

explanation of evaluation criteria such the confusion matrix, recall, precision, and F1 

score. 
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4.7.1. Hyperparameters 

When the deep learning network is trained, certain parts of the data are included in the 

training. Once the first group is trained, the performance of the model is tested. Then 

backpropagation is performed according to the result, and the results are updated. The 

model is trained again with new data and the results are updated again. This process is 

continued in this way trying to get the best result. Each of these steps is called an epoch. 

The number of epochs varies contingent on the number of parameters of the algorithm 

and its speed. 

How much data is entered is one of the most important parameters. Although the accuracy 

of the model increases with increasing image size, using a large image size leads to a 

decrease in the training speed of the model.  Therefore, 640x640 images were preferred 

for all trainings in this study and the size of the images was changed to 640x640. 

Another parameter is the batch size. The batch size allows the model to train with small 

pieces. Splitting the dataset into small parts during the training phase is called a batch. 

This can speed up the training because less memory is required. Although a large batch 

size increases the accuracy of the model, a lot of memory is required for this process. 

Therefore, considering the capacity of the computer, the optimal batch size is set to 4. 

Learning rate and momentum coefficient are the other hyperparameters. The learning rate 

is a parameter that should be used during the training of the model. It ensures to determine 

the weighting result for each class during the training phase. This value can be set as a 

fixed value or as a value that increases or decreases with time. In this study, the learning 

coefficient was initially set at 0.01, but as a variable that decreases with time. The 

momentum coefficient was set at 0.9.  

Another important parameter is the Intersection Over Union (IOU), which indicates the 

accuracy value of the created boxes. The exact bounding box of the damage is compared 

to the bounding box obtained after testing the model. The proportion of the overlapping 

area to the overall area is equal to the IoU value. This value must be determined before 

training the model. The model needs this value when it validates itself during training. 

While boxes below this value are deleted, boxes above the value are kept. The symbolized 

formula for calculating the IOU value is illustrated in Figure 32. 
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Figure 32. IOU formulization 

 

The parameters mentioned above are the same for both algorithms, but the number of 

epochs differs. The hyperparameters used for each model are summarized in Table 9. 

 

Table 9. Hyperparameters for each model 

Model Image Size 
Batch 

size 
IoU 

Learning 

Rate 

Momentum 

Coefficient 
Epochs 

YOLOv5 640x640 4 0.4 0.01 0.9 30 

YOLOv7 640x640 4 0.4 0.01 0.9 100 

Faster R-CNN 640x640 4 0.4 0.01 0.9 25000 
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4.7.2. Evaluation Metrics 

Confusion Matrix 

The predicted and actual values can be compared using at the confusion matrix. There are 

four different outputs, which are explained below in relation to the subject under study. 

 

 

True Positive: Predicting damage to the image that is actually damaged 

True Negative: Predicting that there is no damage in the image that is not actually damaged 

False Positive: Claiming that there is damage to the image that is not actually damaged 

False Negative: Claiming that there is no damage to the image that is actually damaged 

 

 

The Confusion Matrix can be defined as the output of these values in a general frame. 

The general framework of this matrix is shown in Figure 33. 

 

 

Figure 33. Confusion Matrix 
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Precision 

The precision value is the proportion of those correctly predicted positively to the objects 

predicted to be positive. A high precision value is an important criterion that shows that 

the performance of the model is good. The formula of this metric is given below. 

 

Precision = 

True Positive 

True Positive + False Positive 

 

Recall 

The recall value is the ratio of correctly predicted positive objects to whole objects 

belonging to same class. 

 

Recall = 
True Positive 

True Positive + False Negative 

 

There is a curve that illustrates the relationship between precision and recall. The 

effectiveness of the binary classification model may also be assessed using it. Both high 

precision and high recall are desirable properties for the algorithm. Therefore, the Area 

Under Curve (AUC) can be used as an alternative metric in some cases. 

 

F1-Score 

The harmonic mean between the Precision and Sensitivity is represented by the F1 score. 

The F1 value is a value between 0 and 1. If this value is close to 1, it means that the 

accuracy of the model is high. The formalization of this value is explained below. 

 

F1 Score = 2* 
precision * recall 

precision + recall 
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mAP 

Mean Average Precision (mAP) is generally exploited metric for evaluating the model, 

especially in the object detection algorithms such as Faster R-CNN, YOLO, Mask R-

CNN. This value is the average of the precision value calculated for each class. It takes a 

value between 0 and 1. This metric is calculated with the following general formula. 

 

mAP = 
1 

∑ APi 

N 

 

The mAP values are considered to find the percentage of correct predictions in the model. 

In this study, these values were observed to compare three different object detection 

models in terms of their performance. 

 

Loss 

Basically, the loss function is the measure of the relationship between the dataset and the 

algorithm. The loss function should be chosen before training begins. This metric is 

required for the model to efficiently determine the model error. The loss value represents 

a probability value between 0 and 1. It is calculated using a logarithmic function based 

on how much the predicted value deviates from the true value. Thus, if the model does 

not predict well, the loss value will be close to 1 due to the large difference between the 

actual value and the predicted value. The loss value of a good model should be close to 

0. So, it is always tried to minimize the loss by changing the parameters. 

The formula of the most common lost function The Mean Squared Error is described 

below. While Yi represents the actual value, Y’ represents the model prediction. 

 

MSE = 
1 

∑ (Yi-Y’)2 

N 
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5. RESULTS 

5.1. Training Results 

Object detection models were trained using the previously prepared road damage 

detection dataset. To evaluate and compare the training results of the models, the 

previously mentioned evaluation metrics are calculated for each model. The training 

performances of the Faster R-CNN, YOLOv5, and YOLOv7 algorithms are elaborated in 

this chapter using Precision, Recall, mAP, and Training Time. 

The training results of crack segmentation models with U-Net were also be mentioned in 

this part. 

The trained models that performed the best in automatic road damage detection were 

examined using the test images. A total of 281 images were used for the test of defect 

detection. The distribution of this test data according to the number of labels is shown in 

Figure 34. 

 

 

Figure 34. Distribution of test data according to the number of labels 
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5.1.1. Faster R-CNN Defect Detection 

In this study, the Faster R-CNN architecture was trained with the prepared dataset. Two 

popular pre-trained networks ResNet50 and ResNet101 were employed for automatic 

damage detection. The performances of these Faster R-CNN models are compared in 

Table 10 with respect to the evaluation metrics. 

 

Table 10. The performances of the Faster R-CNN models 

Model Recall Loss mAP Training time (h) 

ResNet 50 0.52 
0.035 (training) 

0.29 (validation) 
0.44 6.42 

ResNet 101 0.38 

0.007 (training) 

0.147 (validation) 

0.59 16.21 

 

Since the size of the ResNet50 network structure is smaller, it is compatible if the dataset 

contains an object that can be easily distinguished, or whose features can be easily 

classified. However, determining the pavement defect class and extracting its features 

requires a more detailed study. Since the number of pixels of these objects is small and 

the number of variables in the images is high, it is difficult to detect them with a small 

network. Therefore, an average precision value (mAP) of 0.44 was obtained in the study 

using the ResNet50 network.  

The training result of the ResNet101 model was much better, as can be seen in Table 10. 

This is because the ResNet101 network has quite a large architecture compared to the 

ResNet50 network. Therefore, it can learn the smallest details of objects. The mean 

precision value (mAP) in this training was found to be 0.59. Although the average 

precision value is high, it is quite slow in terms of training time.  

Loss values for Faster R-CNN models are considered in three different ways: 

Classification loss, Localization loss, and Regulation loss. To evaluate all these losses 

together, it would be more precise to examine the total loss value. The loss values found 

as a result of training the Faster R-CNN model with ResNet101 are shown in Figure 35 
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by number of epochs. These graphs were created using Tensorboard, a tool offered by 

Google that can be used to visualize the network structure and many parameters. These 

graphs belong to the loss values formed in the validation phase. After completing the 

training at the end of 25,000 cycles, it was observed that the loss values approached 0.  

 

 

Figure 35. a) Classification loss b) Localization loss c) Regularization loss d) Total loss 

of the Faster R-CNN model with ResNet101 

 

5.1.2. Yolov5 Defect Detection 

Several pre-trained layers can be utilized for the YOLOv5 object detection model. These 

networks are ordered from the smallest to the largest in terms of size as YOLOv5s, 

YOLOv5m, YOLOv5l, and YOLOv5x. Figure 36 provides an overview of the 

performance of these pre-trained weights on the dataset COCO. Larger models such as 

Yolov5x and Yolov5x6 generally perform better in all situations. However, they require 

more CUDA memory to train and they run very slowly, since they have more parameters. 
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In the literature, Yolov5s/m is generally preferred for mobile classifications. Considering 

the capacity of the computer on which the study was performed, the use of YOLOv5s, 

YOLOv5m and their versions (YOLOv5s6, YOLOv5m6) was chosen. 

 

 

Figure 36. Pre-trained networks for YOLOv5 

 

Training results for the YOLOv5s, YOLOv5m, YOLOv5s6, and YOLOv5m6 models are 

compared in Table 11 in terms of precision, sensitivity, F1 score, mean precision, and 

training time. Test results for the YOLOv5 models were visualized using Wandb 

(Weights and Biases) (Biewald, 2020). 

 

Table 11. The performances of the YOLOv5 models 

Model Precision Recall F1-Score mAP Training Time (h) 

YOLOv5s 0.62 0.60 0.61 0.60 3.72 

YOLOV5s6 0.58 0.61 0.59 0.61 3.78 

YOLOV5m 0.58 0.62 0.60 0.61 6.33 

YOLOv5m6 0.68 0.62 0.61 0.65 6.74 
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It was observed that training time increased with increasing model size and complexity. 

Since the YOLOv5s weighting is smaller than the YOLOv5m weighting, the training 

speed is almost half. In addition, the average precision value (mAP) in each model was 

over 60%. Considering the ratios of precision, recall and F1 value, the performance of the 

models is close to each other. However, although the training time was slow, the model 

with the highest performance in terms of all metrics was the YOLOv5m6. 

Figure 37 visualize the progression of mAP, precision and recall of the YOLOv5m6 

model with the validation data during training. While these initially increased, they 

remained constant thereafter. 

 

 

Figure 37. The visualization of mAP, precision and recall of the YOLOv5m6 model with 

the number of epochs during training 

 

The loss values obtained after testing the YOLOv5m6 model with validation data during 

training are summarized in Table 12 for training and validation. The changing of these 

values over 30 epochs is shown graphically in Figure 38. 

The bounding box losses, object losses, and classification losses for validation and 

training of the YOLOv5 defect detection model were determined using the experiment 

tracking tool Wandb. After completing the training at the end of 100 epochs, it was 

observed that the loss values approached 0. 
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Table 12. The loss values of YOLOv5m6 model 

 Bounding Box Loss Object Loss Classification Loss 

Training 0.0301 0.0201 0.0181 

Validation 0.0167 0.0175 0.0012 

 

 

Figure 38. Loss values of the YOLOv5m6 model in terms of the number of epochs during 

training and validation 

 

In this model training, the average precision for all classes in the validation data was 0.65. 

During the training of the model, an evaluation study was performed with validation 

images and the average precision values for each class were determined separately.  

To understand the relationship between the classes, confusion matrix is determined. The 

correct prediction rates of each class in this model are given in the confusion matrix in 

Figure 39. When looking at the confusion matrix, it was found that the class with the 
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highest rate was the pothole with 0.77. Since the images of potholes contain clearer 

information about the pixels and the area occupied in the image is larger, they were easily 

identified using the model. The damage class with the lowest proportion was the 

longitudinal crack with a value of 0.45. 

 

 

Figure 39. Confusion Matrix as a result of the YOLOv5m6 model for training 

 

5.1.3. Yolov7 Defect Detection 

Multiple pre-trained layers can be used when training the YOLOv7 object detection 

model. There are many models in the YOLOv7 family. However, considering the 

capacity of the computer and its memory, three models that have the smallest parameters 

were selected. In this study, the normal model of YOLOv7, YOLOv7-tiny and YOLOv7-

X weights and their pre-trained weights were utilized. While YOLOv7-tiny is the smallest 



 

 60 

network among the YOLOv7 family, YOLOv7-X consists of larger networks. In the 

Table 13, the suggested YOLOv7 architectures are compared using the evaluation 

metrics. 

 

Table 13. The performances of YOLOv7 models 

Model Precision Recall mAP Training Time (h) 

YOLOv7 0.64 0.62 0.67 6.23 

YOLOv7_training 0.67 0.57 0.66 6.04 

YOLOv7-tiny 0.57 0.55 0.58 6.30 

YOLOv7x 0.61 0.54 0.59 6.22 

YOLOv7x_training 0.62 0.52 0.56 6.27 

 

As for the mAP values, the most successful model, YOLOv7, has a mean average 

precision of 0.67. The training graphs of this model are shown in Figure 40. The 

progression of mAP, precision and recall of the YOLOv7 model is illustrated in Figure 

40. After showing an increase up to a certain point, they remained stable.  

 

 

Figure 40. The visualization of mAP, precision and recall of the YOLOv7 model with the 

number of epochs during training. 
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The final loss values obtained for the training and validation of the YOLOv7 model are 

shown in Table 14. The variation of the loss values during 100 cycles is shown graphically 

in Figure 41. 

 

Table 14. The loss values of YOLOv7 model 

 Bounding Box Lost Object Loss Classification Loss 

Training 0.0249 0.0055 0.0008 

Verification 0.0447 0.0236 0.0065 

 

 

Figure 41. Loss values of the YOLOv7 model with the number of epochs during training 

and validation 
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When training the YOLOv7 model, mean average precision value of 0.67 was obtained 

for the validation data for all classes. The correct prediction rate obtained for each class 

is shown in Figure 42 in the confusion matrix. It was found that the class with the highest 

rate was alligator cracks with 0.72. This value is followed by reflective cracks with 0.71. 

While the potholes have a rate of 0.67, the longitudinal cracks have the lowest value of 

0.60. 

 

 

Figure 42. Confusion Matrix as a result of the YOLOv7 model for training 

 

The actual labels and the predicted labels of a validation image are compared in Figure 

43. Although the model successfully detected most defects, some images containing small 

size damages failed to produce accurate results.  
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(a) Ground truth of the validation image 

 

(b) Predicted labels of the validation image 

Figure 43. Comparison of true labels and predicted labels by YOLOv7 model 
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5.1.4. U-Net Crack Segmentation 

The crack segmentation model is trained with the U-Net architecture to extract the area 

of the defects from the image. Two different pre-trained networks are used for this 

architecture: VGG16 and ResNet34. The performances obtained by testing the trained 

models with validation images are compared in Table 15. 

 

Table 15. The performances of YOLOv7 models 

Model 
Number of 

Epochs 
Loss Value Accuracy 

Training Time 

(h) 

ResNet34 100 
0.028 (training) 

0.122 (validation) 

0.988 (training) 

0.954 (validation) 
6.15 

VGG16 100 
0.034 (training) 

0.259 (validation) 

0.986 (training) 

0.937 (validation) 

7.31 

 

There is not much difference between the training time of the two segmentation models. 

However, when training with the ResNet34 network, a model with 95.4% accuracy was 

obtained, which is higher than the VGG16 model. The loss values for training and 

validation of the crack segmentation model with ResNet34 are shown in Figure 44 with 

100 epochs during training. The training accuracy and the validation accuracy of the U-

Net segmentation model with ResNet34 are illustrated in Figure 45.  

Both training and validation loss decreased up to 20 epochs. Thereafter, the training loss 

continues to decrease while the validation loss slightly increases. This is due to the 

overfitting of the model. It means that the model memorizes the training data and 

therefore cannot predict the test images well. However, a good result was obtained in the 

validation data with an accuracy of 0.95. 

Test results of this model on untrained images from Crack500 and CFD datasets are 

compared in Table 16. As expected from the results, the model trained with ResNet34 is 

more sensitive to noise. So, it gave more a better result than VGG16. 
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Figure 44. Loss values of the U-Net with ResNet34 crack segmentation model for training 

and validation 

 

 

Figure 45. Accuracy of the U-Net with ResNet34 crack segmentation model for training 

and validation 
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Table 16. Comparison of U-Net Segmentation models 

 CRACK500 CFD 

Image 

 

 

 

 

Mask 

 

 

 

 

VGG16 

Prediction 

 

 

 

 

ResNet34 

Prediction 
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5.2. Test Results 

5.2.1. Defect Detection 

The object detection model trained with the deep learning method was used to detect 

damage on the images taken by drone from the Beytepe Campus of Hacettepe University. 

The YOLOv7 model with the highest performance was selected for road damage 

assessment. First, the images from the region were manually labeled for four classes. 

Examples of labelled images can be found in Figure 46. The labels predicted by YOLOv7 

model for this image are shown in Figure 47. 

 

 

Figure 46. Labels for drone test image 
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Figure 47. Prediction of drone test image with YOLOv7 

 

In these predictions, it was found that the model could not recognize the potholes. This is 

because the model was trained with close-up images. Therefore, the pixels in the images 

taken by the drone have low resolution. So, the model scarcely distinguishes these pixels 

when making predictions. Another drawback of the model is that it could not detect 

damage in shadow areas. This is because the model was trained with less training data, 

with shadows and cracks in the road. 

The results of each class for precision, recall, and mAP obtained by testing the YOLOv7 

model with drone imagery are shown in Table 17. Although the mAP value of the model 

during training was 0.67, the mAP value during testing for the drone images was 0.42. 

This is due to the different angle of the images between the training data and the test data. 

The training images was taken from a vehicle, so it contains close-up images. However, 

since the images taken by the drone were taken from a greater distance, these images have 

the damage with a lower pixel resolution. For this reason, the trained model performed 

poorly in the test images. 
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Table 17. YOLOv7 test results for each class 

Class Precision Recall mAP 

All Classes 0.51 0.45 0.42 

Longitudinal Crack 0.60 0.43 0.44 

Reflective Crack 0.37 0.43 0.34 

Alligator Crack 0.55 0.47 0.48 

Pothole 0.53 0.45 0.43 

 

 

 

Figure 48. Confusion Matrix as a result of the YOLOv7 model for testing  
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The test performance of the YOLOv7 model can be examined for each class using the 

confusion matrix shown in Figure 48. The confusion matrix of the test images was created 

with a confidence score of 0.15 and an IoU threshold of 0.45. The model has the highest 

value of 0.5 for the class of alligator cracks as a result of the test. While the reflective 

cracks class has a success rate of 0.47, the potholes and longitudinal cracks classes have 

the lowest success rate of 0.46. 

 

5.2.2. Segmentation of Defects 

The damaged regions that are predicted by the model, i.e., bounding boxes drawn by the 

model, were recorded separately. To determine the severity of damages, damage areas 

were examined by segmentation model and the damage level for each image was 

determined.  

The severity of damages was calculated using the reference limits described in Table 8. 

In this study, three classes were used to characterize the damage status of roads: Low, 

Medium, and High. Low damage is defined as areas that do not require maintenance and 

repair, while medium damage is defined as areas that require maintenance and repair. 

Defect classified as high describes areas where maintenance and repair urgently needed. 

After determining the damaged areas with the YOLOv7 model, the bounding boxes 

drawn by the model around the damaged area were taken as separate images. To find the 

severity level of the damage, each damage image that was found by the YOLOv7 model 

was measured. MATLAB image processing tools were used to measure the width of the 

cracks and potholes in these images. The ground sampling distance for each image was 

calculated using an Excel spreadsheet created with the coordinates of the images. The 

crack widths calculated in pixels were converted to centimeters using this value. Then, 

the damage was classified into three classes based on reference limits: low, medium, and 

high. 

These procedures were applied to the images of the Beytepe dataset, and a total of 528 

damages were detected and labeled according to the severity of the damage. Table 18 

shows the total number of detected defects according to their class and severity. 

Longitudinal cracks were mostly encountered in the region. A total of 271 longitudinal 

cracks were found, of which only 2 were classified as high. Similarly, the majority of 

reflective cracks were classified as low and only 3 were classified as high. The damage 
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class, whose maintenance and repair are urgent, is crocodile cracks with 20 damage. The 

least common damages class was potholes. A total of 15 potholes were found, of which 

only 1 had a high grade. Examples of damage with a high degree of damage are shown in 

Figure 46 for each class. 

 

Table 18. The number of defects according to class and severity 

Damage Class/Severity Low Middle High Total 

Longitudinal Crack 249 20 2 271 

Transverse Crack 97 14 3 114 

Fatigue Cracks 68 40 20 128 

Hole 14 0 1 15 

Total 428 74 26 528 

 

 

Figure 49. Examples of high degree a) pothole b) reflective crack c) alligator crack d) 

longitudinal crack 
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The distribution of these numbers by class and severity is illustrated in the diagram in 

Figure 50. As can be seen from the diagram, there are mainly longitudinal cracks in the 

region, which account for more than half of the total damage. 

 

 

Figure 50. Distribution of the severity of defects according to class 

 

This study attempts to quantify the area of damage regions using U-Net ResNet34 that is 

the highest performance crack segmentation model. This is significant to determine in 

advance the amount of material needed to repair road damage and to speed up this 

process. 

The U-Net ResNet34 crack segmentation model was trained on close-up crack images 

and achieved the best results. However, since the test images were taken with a drone 

from a very high altitude, the damaged areas have low pixels. So, the crack segmentation 

model could not achieve success on these images. For that reason, the segmentation model 

was applied only to high-severity defects and the total area of this defects was subtracted.  
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Binary masks of the high-grade defects were obtained using the U-Net ResNet34 crack 

segmentation model. An example of this process can be found in Figure 51. 

 

 

Figure 51. Example of segmentation of high-level a) Alligator crack b) Longitudinal 

Crack  

 

To calculate the area of cracked regions, the white areas in the binary mask images were 

extracted as pixels. The white areas found in pixels were converted to square centimeters 

by multiplying the ground sampling distance of each image. After this analysis, the total 

area to be repaired was calculated as 3.87 square meters. 

Although the total area of damaged areas could not be extracted by this method, a 

preliminary study was desirable by subtracting the area of high-grade damage. However, 

this model can be further improved by training the crack segmentation model with 

different and more data sets. Thus, the applicability with small pixels will increase. 
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5.3. Performance Evaluation 

Following this study, an interactive map was created to show the severity of road damage 

and regional road conditions for visual interpretation. The map created with ArcGIS is 

explained in detail in this section. 

In the dataset collected by the drone, each image also contains the coordinate information 

of the location where it was taken. Therefore, the coordinates of the images were inserted 

as points on the map using ArcGIS Pro software. 

Damage was assessed individually considering the reference limits and then the severity 

was decided for each image. The coordinate points were coded in three colors according 

to the degree of damage of the images: green, yellow and red. The green points represent 

only the low damage region, the yellow points represent the low and medium damage 

region, and the red points represent the region with at least one high damage level. 

A total of 66 images of roads on the Beytepe campus of Hacettepe College were used to 

assess the damage and were labeled according to the severity. As shown in Figure 52, 

these images were mapped to the point where the coordinate information is located. It is 

expected that this map, which contains information about road conditions, will be of great 

help to road maintenance and repair organizations. This map has been released through 

the link below. 

 

https://www.arcgis.com/home/item.html?id=a4901233b6e04fbabbb4b1ccd03c7886  

 

 

https://www.arcgis.com/home/item.html?id=a4901233b6e04fbabbb4b1ccd03c7886
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Figure 52. Road condition map of Beytepe Campus of Hacettepe University 

 

5.4. Discussion/Comparison 

To select the best model for defect detection, the evaluation metrics were monitored. In 

terms of mAP, the Faster R-CNN models gave significantly worse results than the YOLO 

models. Moreover, despite the small size of the model, the training time is longer 

compared to the YOLO model. Since the training time of the Faster R-CNN model is 

longer and the mean precision value (mAP) is lower than the YOLO models, it was 

decided that the use of this model is not efficient. 

It was found that the YOLOv5 models were superior to the Faster R-CNN model in terms 

of model efficiency, prediction success, and code readability. In both training time and 

testing time, the YOLOv5 models achieved great success. The YOLOv5 models were 

found to be faster than the Faster R-CNN model, especially in terms of training time. 

From the comparison of the YOLO architectures, it can be concluded that the results of 

the YOLOv7 models outweigh those of the YOLOv5 models. The YOLOv7 architectures 
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have the same speed as the YOLOv5 model in terms of training time. However, the 

average precision value was more successful than them. In addition, the mAP values are 

much higher than the Faster R-CNN and YOLOv5 models. For these reasons, YOLOv7 

was selected for the application of the test images. 

From the confusion matrices it can be deduced that the main problem of the proposed 

models seems to be that many objects are not recognized, i.e., they are considered as 

background. 

Regarding the segmentation models, the training times of the two segmentation models 

did not differ significantly. In contrast, after training with the ResNet34 network, a 

model with higher accuracy was produced that outperformed the VGG16 model. For 

this reason, the U-Net with the ResNet34 crack segmentation model was selected for 

use with drone imagery. 

 



 

 77 

6. CONCLUSION 

In this study, the damage types were classified considering the most common 

deformations on highways in Turkey and the labelling was performed in different formats 

to be used in multiple algorithms. Moreover, image augmentation was applied to the 

dataset to increase the accuracy of the model. 

Following this, different deep learning models were trained with tagged images and the 

performance of these models was compared using numerous evaluation metrics. The 

weights of the YOLOv7 model with the highest performance were recorded and tested at 

the Beytepe campus of Hacettepe University, which was selected as the pilot region for 

damage assessment. 

A preliminary study was conducted to determine the condition of the roads on the Beytepe 

campus of Hacettepe University, which is the pilot area. Thanks to the information 

obtained through the preliminary study, an effective drone flight was conducted. Owing 

to the large area of Hacettepe University's Beytepe campus, the desired quantity and 

quality of images could be achieved by flying over the main roads.  

It was found that damage assessment can be easily performed using photos taken by high-

resolution cameras using UAVs. In the future, it is planned to conduct this study in a 

larger area. As a result of this study, it was found that the detection of damage using drone 

images is possible in larger areas. 

Subsequently, the predicted road damage was used to determine the usability of the road. 

Therefore, a new damage assessment guide was created that was compatible with the 

model used. Thus, the current condition of the roads on the Beytepe Campus of Hacettepe 

University could be determined. Defect was detected using deep learning models, and 

according to this determination, the severity of damage was calculated manually on all 

images. Unfortunately, a one-to-one spatial inference of all detected damages could not 

be made. However, spatial inferences could be made for images with a high degree of 

damage. 

Finally, an ArcGIS-based map was created to show the condition of the studied roads as 

a visual interpretation. This map can be used as a reference for organizations responsible 

for assessing road conditions and can be used prior to road maintenance and repair. It is 
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expected that the results of this study will lead to innovations and technology adaptations 

in the field of road damage maintenance. 

The goal is to contribute to the literature by combining object detection and segmentation 

tasks in the field of road condition assessment.  

In the future, this study can be applied to a wide range of fields. In addition, the drone 

videos could be analyzed for defect detection in real time using object detection models.  
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APPENDIX 

Appendix 1 -Criteria for Road Damage Assessment 
 

 

 

Distress Type 
OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON 

Severity Limits Severity Limits Severity Limits Severity Limits 

 ALLIGATOR 

CRACKİNG 

Low 

An area of cracks with no 

or only a few connecting 

cracks. Cracks are not 

spalled or sealed. No 

pumping is evident. 

Includes Wheel Path 

Longitudinal Cracks. 

Low 

Average Crack Width ≤ 

hairline (Fatigue cracking 

consisting of only 

longitudinal cracks in the 

wheel path.) 

Low 

Fine, longitudinal hairline 

cracks running parallel to 

each other with no or only 

a few interconnecting 

cracks. 

Low 

Branched, longitudinal, 

discontinuous thin cracks are 

beginning to interconnect and 

form the typical alligator pattern 

with no spalling. 

 

Moderate 

An area of interconnected 

cracks forming a complete 

pattern. Cracks may be 

slightly spalled or sealed. 

No pumping is evident. 

Medium  

Average Crack Width > 

hairline and ≤ 0.25 in 

(Fatigue cracking 

consisting of longitudinal 

and interconnecting cracks 

typically forming a 

diamond shaped, chicken 

wire or alligator’s hide 

pattern.) 

Medium  

Further development of 

light alligator cracking 

into a pattern or network 

of cracks that may be 

slightly spalled. Well-

defined pattern of 

interconnecting cracks, 

where all pieces are firmly 

held in place. 

Medium  

Cracking is completely 

interconnected and has fully 

developed an alligator pattern. 

Some spalling may appear at the 

edges of cracks. The cracks may 

be greater than 1/4-inch wide, 

but the pavement pieces are still 

in place. 

 

High 

An area of moderately or 

severely spalled 

interconnected cracks 

forming a complete pattern. 

Pieces may move when 

subjected to traffic. Cracks 

may be sealed. Pumping 

may be evident. 

High 

Average Crack Width > 

0.25 in (Fatigue cracking 

consisting of longitudinal 

and interconnecting cracks 

typically forming a 

diamond shaped, chicken 

wire or alligator’s hide 

pattern.) 

High 

Network or pattern 

cracking has developed so 

that pieces are well-

defined and spalled at the 

edges; some of the pieces 

are loose and rock under 

traffic. 

High 

The pattern of cracking is well 

developed. Spalling is very 

apparent at the crack. Individual 

pieces may be loosened and may 

rock under traffic. Pieces may 

be missing. Pumping of fines up 

through the cracks may be 

evident. 
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Distress Type 
CALIFORNIA INDIANA NORTH CAROLİNA BRITISH COLUMBIA (2016) ONTARİO (2016) 

Severity Limits Severity Limits Severity Limits Severity Limits Severity Limits 

 ALLIGATOR 

CRACKİNG  

Low 

average crack width 

<1/4 inch or crack 

sealed with the sealant 

in good condition and 

the width cannot be 

determined 

Low 

 Cracks not spalled or 

sealed, pumping not 

evident, cracks not 

interconnected.  

Light 

Longitudinal disconnected 

hairline cracks about 1/8 

inch wide running parallel 

to each other; initially may 

be only a single crack in 

the wheel path or edge of 

pavement but could also 

look like an alligator 

pattern.  

Low N/A 

Very 

slight 

Multiple cracks begin to 

develop short 

interconnecting cracks and 

cause alligator pattern 

forming. May include 

depression up to 6 mm. 

Crack width is up to 3mm. 

Slight 

Alligator pattern 

established with block 

corners fracturing. May 

include depression 7-12 

mm. Crack width is 

between 3 and 12mm. 

Medium  
1/4 inch ≤ average 

crack width ≤ 1/2 inch 
Moderate 

Cracks form 

interconnected area, 

slight spalling, cracks 

may be sealed, 

pumping not evident. 

Moderate 

Longitudinal cracks in 

wheel path(s) or edge of 

pavement forming an 

alligator pattern; cracks 

may be lightly spalled and 

are about 1/4 inch wide.  

Moderate 

Interconnected cracks 

forming a complete 

block pattern; slight 

spalling and no pumping 

Moderate 

Alligator pattern 

established with spalling 

of blocks. May include 

depression 

13-19 mm. Crack width is 

between 13 and 19mm. 

High 
average crack width 

>1/2 inch 
High 

 Area of moderately or 

severely spalled 

interconnected cracks 

forming a pattern, 

pieces dislodged, 

cracks may be sealed, 

and pumping may be 

evident.  

Severe 

Cracking has progressed 

so that pieces appear loose 

with severely spalled 

edges; cracks are about 

3/8 to 1/2 inch wide or 

greater; potholes may be 

present.  

High 

Interconnected cracks 

forming a complete 

block pattern, moderate 

to severe spalling, pieces 

may move, and pumping 

may exist. 

Severe 

Blocks begin to lift. Small 

potholes from missing 

blocks. May include 

depression 20-25 mm. 

Crack width is between 20 

and 25mm. 

Very 

Severe 

Polygon blocks lifting. 

Potholes from missing 

blocks. May include 

depression greater than 25 

mm. Crack width is 

greater 25mm. 
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Distress Type 
OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON 

Severity Limits Severity Limits Severity Limits Severity Limits 

LONGITUDINAL 

CRACKING 

Low 

Crack widths < 0.125”, no 

spalling, and no 

measurable faulting; or 

well-sealed and with a 

width that cannot be 

determined 

Low 

Average crack width > 

hairline and ≤ 0.25 in 

wide 

Low 

General condition: 1/ non-

Filled, mean < ¼” 2/ 

Filled: any Width, 

Low 

The cracks have very little or no 

spalling along the edges and are 

less than 1/4-inch in width. If 

the cracks 

are sealed and the width of the 

crack prior to sealing is 

invisible, they should be 

classified as Low Severity. 

 

Moderate 

Crack widths ≥ 0.125” 

and < 0.5”; or with 

spalling < 3”; or faulting 

up to 0.5”. 

Medium  

Average crack width ≤ 

0.25 in wide, spalling ≥ 

2.0 in wide for ≤ 50% 

length 

Medium  

General condition: 

1/ Any Width, 

2/ If Filled crack, 

3/ If Non-filled, mean 

>1/4” 

4/ Light cracking appears 

near the crack or at the 

corner of intersecting 

cracks. 

Medium  

The cracks have little or no 

spalling, but they are greater 

than 1/4-inch in width. There 

may be a few randomly spaced 

low severity connecting cracks 

near the main crack or at the 

corners of intersecting cracks. 

 

High 

Crack widths ≥ 0.5”; or 

with spalling ≥ 3”; or 

faulting ≥ 0.5” 

High 

Average crack width > 

0.25 in wide, spalling 

≥2.0 in wide for > 50% 

length 

High Can be any Width High 

Cracks are spalled and there 

may be several randomly 

spaced cracks near the main 

crack or at the corners of 

intersecting cracks. Pieces are 

visibly missing along the crack. 

At some point, this longitudinal 

cracking becomes alligator 

cracking. 
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Distress Type 
CALIFORNIA INDIANA NORTH CAROLİNA BRITISH COLUMBIA (2016) ONTARİO (2016) 

Severity Limits Severity Limits Severity Limits Severity Limits Severity Limits 

LONGITUDINAL 

CRACKING 

Low 

average crack width 

<1/4 inch or crack 

sealed with the sealant 

in good condition and 

the width cannot be 

determined 

Low 

 Unsealed crack with 

mean width ≤ 0.25 in. 

Sealed crack with 

sealant in good 

condition. 

N/A 

Low 

Single cracks with no 

spalling; mean unsealed 

crack width < 5mm 

Very 

slight 

Single crack less than 3 

mm. 

Slight 
Single crack from 3 mm to 

12 mm. 

Medium  
1/4 inch ≤ average 

crack width ≤ 1/2 inch 
Moderate 

Crack with mean 

width > 0.25 in. and ≤ 

0.75 in. Crack with 

mean width ≤ 0.75 in. 

and adjacent random 

cracking at low 

severity levels.  

Medium  

Single or multiple 

cracks; moderate 

spalling; mean unsealed 

crack width 5-20mm 

Moderate 

13 mm to 19 mm width for 

single cracks, or multiple 

cracks starting. 

High 
average crack width 

>1/2 inch 
High 

Crack with mean 

width > 0.75 in. Crack 

with mean width ≤ 

0.75 in., adjacent 

random cracking, and 

moderate or high 

severity levels.  

High 

Single or multiple 

cracks; severe spalling; 

mean unsealed crack 

width >20mm, alligator 

Severe 

20-25 mm width for single 

cracks, or multiple cracks, 

spalling begins to develop. 

Very 

Severe 

Greater than 25 mm wide 

for single cracks, or 

multiple cracks with 

spalling developed. May 

begin to alligator. 
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Distress Type 
OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON 

Severity Limits Severity Limits Severity Limits Severity Limits 

TRANSVERSE 

CRACKING 

Low 

An unsealed crack with a 

mean width of ≤ 0.25”; or 

a sealed crack with sealant 

material in good condition 

and the width cannot be 

determined. 

Low 
Average Crack Width > 

hairline and ≤ 0.25 in 
Low 

General condition: 1/ non-

Filled, mean < ¼” 2/ 

Filled: any Width, 

Low 

The cracks have very little 

or no spalling along the 

edges and are less than 

1/4-inch in width. If the 

cracks are sealed and the 

width of the crack prior to 

sealing is invisible, they 

should be classified as 

Low Severity. 

 

Moderate 

Any crack with a mean 

width > 0.25” and ≤ 0.75”; 

or any crack with a mean 

width < 0.75” in and 

adjacent low severity 

random cracking. 

Medium  
Average Crack Width > 

0.25 in and ≤ 0.5 in 
Medium  

General condition: 

1/ Any Width, 

2/ If Filled crack, 

3/ If Non-filled, mean 

>1/4” 

4/ Light cracking appears 

near the crack or at the 

corner of intersecting 

cracks. 

Medium  

The cracks have little or no 

spalling, but they are 

greater than 1/4-inch in 

width. There may be a few 

randomly spaced low 

severity connecting cracks 

near the main crack or at 

the corners of intersecting 

cracks. 

 

High 

Any crack with a mean 

width > 0.75”; or any crack 

with a mean width ≤ 0.75” 

and adjacent moderate to 

high severity random 

cracking. 

High 
Average Crack Width > 

0.5 in 
High Can be any Width High 

Cracks are spalled and 

there may be several 

randomly 

spaced cracks near the 

main crack or at the 

corners of 

intersecting cracks. Pieces 

are visibly missing along 

the crack. 
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Distress Type 
CALIFORNIA INDIANA NORTH CAROLİNA BRITISH COLUMBIA (2016) ONTARİO (2016) 

Severity Limits Severity Limits Severity Limits Severity Limits Severity Limits 

TRANSVERSE 

CRACKING 

Low 
average crack width 

<1/4 inch 
Low 

 Unsealed crack with 

mean width ≤ 0.25 in. 

Sealed crack with 

sealant in good 

condition. 

Light 

Cracks, usually only 

transverse, are less than 

1/4 inch wide and are not 

spalled; block pattern may 

not be visible yet; 

transverse cracks usually 

10 to 20 feet apart. Cracks 

have little or no spalling 

and joints are usually not 

bumped up.  

Low 

Single cracks with no 

spalling; mean unsealed 

crack width < 5mm 

Very 

slight 
Less than 3 mm single crack. 

Slight Single crack 3 mm to 12 mm. 

Medium  

1/4 inch ≤ average 

crack width ≤ 1/2 inch 

or crack sealed with 

the sealant in good 

condition and the 

width cannot be 

determined 

Moderate 

 Crack with mean 

width > 0.25 in. and ≤ 

0.75 in. Crack with 

mean width ≤ 0.75 in. 

and adjacent random 

cracking at low 

severity levels.  

Moderate 

Block pattern may be 

visible with blocks 10 

square feet or greater 

present; cracks are 1/4 

inch to 1/2 inch wide; 

cracks may or may not be 

spalled; transverse cracks 

usually 5 to 20 feet apart; 

joints may be bumped up 

1/2 inch over concrete.  

Medium  

Single or multiple 

cracks; moderate 

spalling; mean unsealed 

crack width 5-20mm 

Moderate 

13 mm to 19 mm single crack, 

or multiple cracks even if crack 

opening is less than 13mm. 

Cracks starting to develop 

cupping or lipping, barely 

noticeable bump. 

High 
average crack width 

>1/2 inch 
High 

Crack with mean 

width > 0.75 in. Crack 

with mean width ≤ 

0.75 in., adjacent 

random cracking, and 

moderate or high 

severity levels.  

Severe 

Cracks may be severely 

spalled with smaller 

blocks 2 to 10 square feet 

present; cracks usually 

greater than 1/2 inch wide; 

transverse cracks may be 

1 to 2 feet apart 

throughout portions of the 

surface; cracks may be 

bumped up more than 1/2 

inch.  

High 

Single or multiple 

cracks; severe spalling; 

mean unsealed crack 

width >20mm, alligator 

Severe 

20 mm to 25 mm single crack, 

or multiple cracks even if crack 

opening is less than 20 mm but 

greater than 13 mm. Cracks 

have developed cupping or 

lipping with noticeable bump. 

Very 

Severe 

Greater than 25 mm single 

crack, or multiple cracks even if 

crack opening is less than 25 

mm but greater than 20 mm. 

Cracks have fully developed 

cupping or lipping, and spalling 

has occurred. Bump or thump. 
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Distress Type 
OREGON (2019) PENNSYLVANIA (2019) FLORIDA WASHINGTON 

Severity Limits Severity Limits Severity Limits Severity Limits 

POTHOLES 

Low 

Depth < 1” (Typically 

delamination of thin patch 

or seal coat creating a 

shallow pothole.) 

N/A N/A N/A 

 

Moderate 

1” ≤ Depth ≤ 2” (Remains 

within top lift of wearing 

course.) 

 

High 

Depth > 2” (Extends 

beyond top lift of wearing 

course.) 

 

 

 

Distress Type 
CALIFORNIA INDIANA NORTH CAROLİNA BRITISH COLUMBIA (2016) ONTARİO (2016) 

Severity Limits Severity Limits Severity Limits Severity Limits Severity Limits 

POTHOLES 

Low 0 < number< 2 Low 
 Less than 1.0 in. 

deep. 

N/A 

Low 

Pothole < 175 cm2 in 

area (~15cm ø) and less 

than 25mm deep 

N/A 

 

Medium  2 ≤ number ≤ 5 Moderate  1.0 to 2.0 in. deep. Medium  

Pothole > 175 cm2 in 

area (~15cm ø) and 25 

to 50mm deep 

 

High number > 5 High 
More than 2.0 in. 

deep. 
High 

Pothole > 175 cm2 in 

area (~15cm ø) and 

greater than 50mm deep 

 

 



 

 

 


