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ABSTRACT

UNDERSTANDING ACTIONS IN INSTRUCTIONAL VIDEOS

Özge Yalçınkaya Şimşek

Doctor of Philosophy, Computer Engineering
Supervisor: Prof. Dr. Pınar Duygulu Şahin

May 2023, 103 pages

Despite the promising improvements in human activity recognition for fundamental actions,

understanding actions in instructional web videos is a challenging research problem.

Instructional web videos contain various demonstrations for daily human tasks such as

cooking, repairing, or how to do something. These tasks involve multiple fine-grained and

complex actions in different orders or appearances according to the people demonstrating

them. In addition to the challenge of finding a robust action localization model for

fine-grained actions, a vast amount of labeled data is needed.

Due to the difficulties in labeling such data, studies propose self-supervised video

representation learning models that leverage the narrations in the videos. By utilizing the

automatically generated transcriptions obtained from the narrators, joint embedding spaces

are trained to learn video-text similarities. Hence, pre-defined instructional action steps can

be localized, leveraging the video-text similarity information.

However, learning such models presents a drawback where background video clips

containing non-action scenes can get high scores for specific action steps due to the

misleading transcriptions paired with them in training. Therefore, action localization results
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can be impacted. Detecting harmful backgrounds and distinguishing them from action clips

is essential.

In this thesis, we investigate improving action localization results on instructional videos by

defining actions and backgrounds with a novel representation that forces their discrimination

in the joint feature space. We show that using baseline video-text model similarity score cues

to describe each video clip reinforces the discrimination of action clips and backgrounds.

The idea is based on the hypothesis that background video clips tend to obtain uniformly

distributed low similarity scores for all action step labels, whereas action clips get high scores

for specific action steps.

We jointly train a binary model that encodes the actionness of each video clip with this

discriminative representation and visual features. Here the actionness score defines the

probability for a given video clip to contain an action. Then, we use the actionness scores of

each video clip to post-process action localization and action segmentation scores of baseline

video-text models. We present results on CrossTask and COIN datasets.

We show that a small labeled set is sufficient for action/background discrimination learning.

However, the quality of the data affects more. Thus, we investigate the effect of augmenting

training data with action images collected from the web and utilize an image-text model. We

show promising results for future directions along with challenges due to the bottleneck of

the model and dataset.

Keywords: instructional videos, action localization, action segmentation, actionness, video

representation, action images
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ÖZET

EĞİTİCİ VİDEOLARDAKİ EYLEMLERİ ANLAMAK

Özge Yalçınkaya Şimşek

Doktora, Bilgisayar Mühendisliği
Danışman: Prof. Dr. Pınar Duygulu Şahin

Mayıs 2023, 103 sayfa

Temel eylemler için insan etkinliği tanımadaki umut verici gelişmelere rağmen, eğitici

internet videolarındaki eylemleri anlamak zorlu bir araştırma problemidir. Eğitici internet

videoları, yemek pişirme, tamir etme veya bir şey nasıl yapılır gibi günlük insan görevleri

için çeşitli gösterimler içerir. Bu görevler, onları yapan insanlara göre değişmek üzere farklı

sırada veya görünümde çok sayıda ince taneli ve karmaşık eylem içermektedir. İnce taneli

eylemler için sağlam bir eylem yerelleştirme modeli bulma zorluğuna ek olarak, büyük

miktarda etiketlenmiş veriye ihtiyaç vardır.

Bu tür verileri etiketlemenin zorlukları nedeniyle, araştırmalar, videolardaki anlatımlardan

yararlanan ve kendi kendini denetleyen video temsili öğrenme modelleri önermiştir.

Anlatıcılardan elde edilen otomatik olarak oluşturulmuş altyazılardan yararlanılarak,

video-metin benzerliklerini öğrenmek için ortak özellik uzayları eğitilir. Bu sayede,

video-metin benzerlik bilgisinden yararlanılarak önceden tanımlanmış eğitimsel eylem

adımları yerelleştirilebilir.

Bununla birlikte, bu tür modellerin öğrenilmesi, eylem dışı sahneler içeren arka plan video

kliplerinin, eğitim sırasında eşleştikleri yanıltıcı altyazılar nedeniyle eylem adımları için

yüksek puanlar alabildiği durumlarda bir dezavantaj sunar. Bu nedenle, eylem yerelleştirme
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sonuçları etkilenebilir. Zararlı arka planları tespit etmek ve bunları eylem kliplerinden

ayırmak önemli olmaktadır.

Bu tezde, eylemlerin ve arka planların ortak özellik uzayındaki ayrımlarını zorlayan yeni

bir temsil tanımlayarak, eğitici videolarda eylem yerelleştirme sonuçlarının iyileştirilmesini

araştırıyoruz. Her bir video klibi tanımlamak için temel video-metin modeli benzerlik

puanı ipuçlarını kullanmanın, eylem klipleri ve arka planların ayrımını güçlendirdiğini

gösteriyoruz. Bu fikir, arka plan video kliplerinin tüm eylem adımı etiketleri için düşük

benzerlik puanları alma eğiliminde olduğu ve karşıt olarak eylem kliplerinin belirli eylem

adımları için yüksek puanlar aldığı hipotezine dayanmaktadır.

Her video klibin eylemliliğini bu ayırt edici temsil ve görsel özelliklerle birlikte kodlayan bir

ikili modeli ortaklaşa eğitiyoruz. Burada eylemlilik puanı, belirli bir video klibin bir eylem

içerme olasılığını tanımlar. Ardından, temel video-metin modellerinin eylem yerelleştirme

ve eylem segmentasyonu puanlarını sonradan işlemek için her bir video klibin eylemlilik

puanlarını kullanıyoruz. Sonuçları CrossTask ve COIN veri kümeleri üzerinde sunuyoruz.

Eylem/arka plan ayrımcılığının öğrenilmesi için küçük etiketli bir kümenin yeterli olduğunu

göstermenin ardından veri kalitesinin sonuçları daha fazla etkileyebileceğini tartışıyoruz. Ek

bir çözüm olarak, internetten toplanan eylem görüntüleriyle eğitim setini çeşitlendirmenin

etkisini araştırıyoruz ve bir görüntü-metin modeli kullanıyoruz. Modelin ve veri kümesinin

darboğazından kaynaklanan zorluklarla birlikte gelecekteki yönelimler için umut verici

sonuçlar gösteriyoruz.

Keywords: eğitici videolar, eylem yerelleştirme, eylem segmentasyonu, eylemlilik, video

temsili, eylem görüntüleri
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1. INTRODUCTION

The development of visual recognition systems has undergone significant advancements

due to the introduction of improved machine learning models. In particular, object, scene,

and facial recognition have become less challenging with the enhancements made on Deep

Neural Networks. On the other hand, recognition of human activities, which require an

understanding of multiple scenes in a temporal order, still poses an open research area,

despite the important achievements. Such task is necessary to enable machines to learn

human activities for various purposes, such as video retrieval, household robot teaching,

anomaly detection, assistance systems for industrial applications, and instruction-specific

warning systems, and more.

Video-based training is an effective approach for modeling human actions. In order to learn

a representation for an action, researchers exposed machine learning systems to multiple

example activities captured through video frames or scenes. Initial investigations involved

learning six hand-crafted actions from short videos, each containing only one action [5].

Then, more realistic actions were learned by exploring movie scenes [6]. With the vast

number of videos available online, researchers have proposed utilizing YouTube videos to

create large-scale activity recognition datasets, which are widely regarded as benchmarks

in the field [7–10]. The emergence of Convolutional Neural Networks (CNNs) for object

recognition has paved the way for their application in human activity recognition [11].

This has led to the development of deep architectures that leverage temporal and spatial

information to understand videos [10, 12–17]. In recent years, there has been a shift

towards transformer-based deep models, which has also influenced activity recognition

models [18, 19].

While the aforementioned deep architectures demonstrate significant success in

understanding fundamental actions, learning daily life human activities such as cooking,

crafting, or repairing remained in development. These activities involve multiple fine-grained

action steps in sequential order, are often complex, and have wide intra-class variety. They
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are demonstrated in a hierarchical structure, starting with a phase like grasping a cup and

progressing to subsequent steps such as pouring water. Each individual action entails

multiple interconnected steps that can be elucidated by illustrating transformations. For

instance, the process of preparing tomatoes involves sequentially holding them, grasping

a knife, cutting the tomatoes into pieces, and adding them to a bowl. Consequently, it is

necessary for researchers to move beyond the conventional approach of assigning a single

action label to a video and training models accordingly. Instead, they require datasets with

fine-grained labels and methodologies capable of localizing multiple actions within a video.

This novel challenge in the field of human activity recognition is commonly referred to

as understanding instructional videos, which encompasses the demonstration of multiple

instructions for daily human activities in video datasets.

Many studies investigate learning and encoding hierarchical structures and transformations

that happen in instructional videos to understand daily-human activities [20–26].

Furthermore, numerous studies have employed labeled and hand-crafted videos of cooking

or daily activities to detect and localize fine-grained pre-defined actions [27–30]. However,

given the varying environments, distinct camera viewpoints, differently used objects, and

different demonstrations of the same action, researchers have sought more diverse and

realistic data to improve learning. Instructional YouTube videos have thus gained attention,

as they often demonstrate how to do something in great detail [31, 32]. Nonetheless,

labeling long-duration videos with fine-grained actions poses a bottleneck. For instance,

the instructional YouTube videos in CrossTask dataset have an average duration of 4 minutes

and 57 seconds, and 72% of the frames are backgrounds while there are only 11 action steps

at most [33]1. Therefore, in such a challenging setting, it is difficult both for humans and

machine learning models to label or recognize corresponding actions appropriately.

As a solution to labeling problem, automatically generated transcripts from the narrations

are utilized [34]. An example video sequence is given in Figure 1.1. The idea is to use

narrations as the descriptions of related video clip chunks to provide weak supervision.

Then, self-supervised video representation models have been developed to learn a joint
1https://arxiv.org/pdf/1903.08225.pdf
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embedding space between video clips and transcriptions [2, 35]. These models aim to force

the encodings of a video clip and its text to be close in the embedding space while making

the others far apart. As a result, video-to-text or text-to-video retrieval tasks are improved,

along with action localization and segmentation.

Figure 1.1 An instructional web video that contains multiple fine-grained action steps to accomplish
the task “how to make a cake”.

The utilization of transcriptions presents certain limitations, including their sensitivity to

background video clips unrelated to the instructional task but featuring the demonstrator

or irrelevant scenes. This sensitivity primarily results from the misalignment between the

video clip and its corresponding description, which is inevitable in YouTube videos, as

individuals may describe their actions before or after demonstrating them. As a solution,

in [2], researchers propose to leverage surrounding transcriptions to find the best matching

video-text pairs before training the model. However, there remain instances of false positive

predictions owing to the high similarity scores between background scenes and related texts.

Therefore, detecting backgrounds and decreasing their misleading scores is essential for

improving the localization of the actions. One way is to learn the discrimination between

background and action video clips by using the representations from video-text models. In

this thesis, we aim to address the issue of mitigating the adverse effects of background video

clips in downstream tasks by proposing the discrimination of such clips from action clips

with the usage of video-text similarity cues along with the baseline representations.

1.1. Scope Of The Thesis

This thesis focuses on improving two downstream tasks, namely action localization

and segmentation on instructional web videos, through the discrimination of action and
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background video clips. These tasks necessitate identifying and localizing a predefined set

of action steps in a given video. In this study, the CrossTask [33] and COIN [36] datasets are

used to investigate the robustness of current video-text models against background video

clips that may mislead the action assignments, leading to false positive predictions. To

address this issue, we explore using the MIL-NCE [2] and COOT [37] models to represent

and distinguish background and action clips. We propose a method that relies on baseline

video to action step label similarity scores as an indicator of discrimination. Our hypothesis

is that while background clips yield uncertain scores for all steps, action clips produce more

confident scores for specific action steps.

Following the demonstration of the usefulness of video to action step label similarities

in detecting backgrounds, our investigation aims to leverage this information to enhance

downstream tasks. Prior research by Zhukov et al. [1] proposes using an actionness

score for each video clip to indicate its probability of containing an action. This score

is employed to adjust the baseline similarity scores and modify the action assignments

correspondingly. Inspired by this approach, we introduce a novel actionness learning

model, which incorporates our action/background discrimination method, and demonstrate

its impact on improving the performance of two distinct tasks. We present this work in the

below study:

• O. Yalcinkaya Simsek, O. Russakovsky and P. Duygulu, “Learning actionness from

action/background discrimination”, Signal, Image and Video Processing (SIVP),

pp.1-8, 2022.

Despite the advances shown in our work, we further analyze the outcomes and the dataset

employed to train our model, CrossTask. Our findings indicate that the coarse labeling of

actions and backgrounds could compromise the efficiency of our model training. As such,

we present a detailed exploration of the labeling methodology of the CrossTask dataset,

which has served as a standard benchmark for action localization tasks over time. Drawing

on the insights of prior research [38], we suggest including images to improve the quality
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of training data. Specifically, we aim to enhance the action/background discrimination

model by utilizing a more dependable training dataset. To this end, we change our baseline

model with the state-of-the-art image classification model CLIP [39] and use video frames

instead of clips. We curate action images from Google using the predefined action step

labels of CrossTask, and we also incorporate instructional images from the RecipeQA

dataset [3]. Our results suggest that collecting and integrating action images for better

discrimination is challenging but provides an opportunity for future research. Nevertheless,

preliminary investigations indicate that augmenting the training data with confident examples

can improve action localization.

1.2. Contributions

The main contributions of this thesis are summarized as follows:

• We explore the adverse effect of background video clips on action localization task for

instructional web videos.

• We propose defining action and background video clips by the cues computed from

their similarity scores to the action step labels.

• We propose a new model to learn actionness of video clips for enhancing downstream

tasks. Our model performs better than the state-of-the-art study for improvement over

the same baseline.

• We propose a novel post-processing strategy for the action segmentation task.

• We present a detailed analysis of the CrossTask’s annotations.

• We change our representations and work in the image-based domain to augment the

training set with action images in order to enhance action/background discrimination.

We present promising results for future works along with the challenges.
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1.3. Organization

The organization of the thesis is as follows:

• Chapter 2 provides a detailed literature review on self-supervised video representation

learning, action localization on instructional videos, actionness learning, and

image-to-video learning.

• Chapter 3 details the primary baseline model used in this work, MIL-NCE [2], and

the downstream task, action localization. After that, the utilization of video to action

step similarity scores for learning action/background discrimination is explored.

• Chapter 4 introduces our previous work [4], which covers learning actionness from an

action/background discrimination model and its usage for post-processing the baseline

scores.

• Chapter 5 demonstrates the detailed analysis of the CrossTask [33] dataset’s

annotations and proposes using action images to augment the training set for an

improved action/background discrimination.

• Chapter 6 states the thesis summary and possible future directions.
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2. RELATED WORK

This study uses self-supervised video representation models that focus on learning video-text

embedding spaces. We leverage the encodings taken from these models to accomplish action

localization task on instructional videos. Then, in order to enhance the performance, we

explore learning the actionness of video clips by discriminating actions and backgrounds.

Finally, we investigate improving the discrimination of clips with action images. In this

section, we give a detailed literature review on the mentioned research topics.

2.1. Self-supervised Video Representation Learning

In order to understand complex human actions, the studies for video representation learning

explore the utilization of large-scale web videos. Due to the inevitable challenge of

labeling such videos, self-supervised architectures are developed where the models learn

a joint embedding space between video clips and texts by leveraging the narrations of

the videos. The achievements are shown by evaluating these models’ video and text

encodings on multiple downstream tasks such as action recognition, action localization,

action segmentation, video captioning, and text-to-video retrieval.

Miech et al. [34] initiate the studies in this field by presenting the HowTo100M dataset.

It is composed of 1.2 million instructional YouTube videos demonstrating thousands of

different tutorials about cooking, crafting, gardening, repairing, and such. The narrations

are provided as subtitles generated by the Automatic Speech Recognition (ASR) system.

The presented model uses pre-trained models’ video and text features and projects them into

a joint embedding space such that the video-subtitle pair cosine similarity score is high. The

model is trained with contrastive loss.

Some works use the BERT [40] pre-training language model in video-text learning.

VideoBERT [35] uses video clips as a sequence of visual words to be trained along with

the textual model. Then, ActBERT [41] further inserts local and global tokens as actions

and objects to add the learning of human-object interactions. ClipBERT [42] suggests using
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fewer video frames to decrease the enormous computation drawback of video-text learning

models by presenting state-of-the-art results. In addition, Yang et al. [43] propose using a

different noun/verb aware contrastive loss to emphasize the object or action tokens in the

learning. Then, Lin et al. [44] present SwinBERT in order to enhance long-range video

modeling. It learns attention masks to extract sparse video tokens in an end-to-end manner

along with a multi-modal transformer.

Due to misaligned video-subtitle pairs, Miech et al. [2] propose MIL-NCE loss. Here, for

a given video, not only the related transcription is used but also surrounding transcripts are

contributed to learning. Moreover, end-to-end learning is provided. In our study, we utilize

the representations obtained from this model and a detailed description of the process can be

found in Section 3.. Likewise, Tang et al. [45] attack the misaligned and incomplete subtitle

problem. They propose adding dense captions to elevate the inadequate text information and

using attention loss to focus on the most related caption among the others.

Following the success of MIL-NCE, COOT [37] further improves embedding space by using

transformers on top of the MIL-NCE encodings. Patrick et al. [46] enhances the contrastive

loss by proposing a generative loss that leverages support set captions in order to avoid

strict discrimination of non-paired but semantically similar captions to the video. They use

transformers for the encodings. In another study, Liu et al. [47] propose the Hierarchical

Transformer (HiT) that utilizes both feature level and semantic level contrastive matching to

leverage different levels of information in video-text learning.

Furthermore, audio is used as the third component in cross-modal learning models to

improve the joint learning space. First, Gabeur et al. [48] propose a multi-modal transformer

that encodes video, speech, and audio and jointly learns embeddings with related caption

encodings from BERT. This transformer module provides temporal information for the

occurrence of the action with the audio. Then, [49] suggest a multi-modal contrastive

loss and [50] utilize transformers similar to [48]. Differently from previous works using

audio as an additional component, in [51], they utilize static images as snapshots of the

videos. They propose a dual transformer encoder that leverages spatial information from the
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images and gradually learns temporal information from videos. Most recently, Shvetsova

et al. [52] present combinatorial loss on the training of multi-modal fusion transformer.

Gabeur et al. [53] propose exploiting the cues in the different modalities (audio, transcription,

appearance) to a shared encoder through mask training in order to leverage joint learning of

all information.

With the advance of the Contrastive Language-Image Pre-Training (CLIP) [39] model, Luo

et al. [19] propose using it for video-text learning. They transfer image representation to

video representation by using a visual transformer and encoding positions of the frames

along with their spatial features. Then, CLIP trains the video-text similarity learning scheme

using related visual and textual sequences.

Moreover, Croitoru et al. [54] suggest a teacher-student method using distillation loss with

multiple text embeddings. This is also shown to be useful for noise elimination in datasets.

Li et al. [55] propose improved multi-modal learning using video patches to learn semantic

similarities between objects and related text. They present a new task where the video-text

model predicts entities to reinforce multi-modality in addition to regular video and text

encoders. Similarly, Wang et al. [56] incorporate object bounding boxes into the visual

transformer training for an object-aware space.

2.2. Action Localization on Instructional Videos

Localizing actions in instructional videos requires detecting action steps in the given video by

weak supervision. For this purpose, many labeled datasets have been introduced to evaluate

action localization where they have action step lists or descriptions for each instruction [27,

30, 33, 36, 57–59]. The task is to find the best alignment between the encodings of given

action steps and short clips of the videos. Therefore, the video-text representation model

impacts the process. The alignment is accomplished by Viterbi, Hidden Markov Model

(HMM), and Dynamic Time Warping (DTW) kind of methods in order to maximize the total

alignment of observations. We detail the related studies in the following.
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First, Richard et al. [60] examine weakly supervised segmentation of fine-grained actions.

They do not use any text encodings but uniformly split a video into the number of steps to

appear according to the related instruction and then iteratively train RNN to finally determine

regions of the actions. It is followed by [61] where they utilize a Viterbi-based loss and then

they present an extended HMM formulation [62].

Zhukov et al. [33] propose to utilize narrations in the videos to localize and learn models

for each cross-task action. This is conducted by applying an alternate update between the

action’s location and the parameters of the action classifier. After learning models with weak

supervision from narrations, they run each model on temporal segments and extract a scoring

matrix for video clips and action step models. The best alignment is found by maximizing

the alignment scores with dynamic programming. Here, each action can only be assigned to

one video clip. In our study, we utilize this same inference methodology which is also used

in [2]. Furthermore, Lin et al. [63] propose matching textual instructions in wikiHow with

the generated transcriptions in order to label instructional action steps automatically. Then,

they show the usage of this supervision by training video models and presenting results on

downstream tasks.

Weakly-supervised video to action step alignment, where only the ordered action steps are

available for training, is explored well by improving the traditional sequence-to-sequence

alignment method DTW either with discriminative and differentiable DTW [64], constraint

alignment [65], restricted edit distance [66], segment-level beam search [67] or pairwise

ordering consistency [68]. Then, Dvornik et al. [69] further propose Drop-DTW, which

suggests a modification for DTW to solve assigning outliers to action steps. Similar to

our motivation, the goal is to decrease the adverse effect of misleading outlier scores.

Differently, they focus on solving this issue from the prediction part directly. Likewise,

they conduct experiments on CrossTask and COIN using MIL-NCE [2] representations and

present improved results. Han et al. [70] propose the Temporal Alignment Network (TAN)

that encodes the alignability of the video and text inputs to mitigate the non-aligned and

noisy video-text pairs’ adverse effects on DTW. Moreover, in [71], they present an approach

to detect whether the corresponding narration is visually described in the pairing video
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clip. To this end, they use a small partially labeled dataset composed from COIN [36]

and CrossTask [33] to train their joint model and then assign pseudo labels on large-scale

HowTo100M [34] dataset to cope with the noisy training pairs of it.

Besides weakly supervised action localization, many studies propose unsupervised

segmentation of the actions in instructional videos. Alayrac et al. [31] utilize clustering of

video and narration segments. Sener et al. [72] suggest an iterative discriminative-generative

approach through the Generalized Mallows Model (GMM) for segmenting video clips.

Kukleva et al. [73] introduce clustering time-stamp based embeddings to obtain sub-action

representations and encode videos accordingly. Furthermore, Elhamifar et al. [74] present a

key-step extraction module along with the subsequential studies [75, 76] proposing the usage

of narrations.

2.3. Actionness Learning

Actionness learning is widely studied to improve the Weakly Supervised Temporal Action

Localization (WS-TAL) task applied to fundamental activity videos. The ultimate goal

is to detect time-stamps of the given single-type activities, such as throwing a ball or

running, without knowing the locations of the actions. Thus, studies leverage the weak

supervision of video-level labels to classify uniformly sampled temporal proposals with

attention mechanisms [77] and obtain class activation sequences. After that, the aim is

to filter out noisy activations by learning the actionness of the segments. While these

videos present a comparably easier task due to short and basic scenes, applying the same

process to instructional videos is challenging because multiple actions appear in a complex

manner. Therefore, other solutions, such as using pre-defined action steps or unsupervised

localization of different entities are explored, as previously mentioned. As far as we know,

only Zhukov et al. [1] attack the problem of actionness learning to improve action localization

on instructional videos. However, the actionness score is used for post-processing action

localization results, unlike studies presented below for WS-TAL, where actionness loss

contributes directly to model learning. We attack the problem as the same as [1] and focus
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more on discriminating actions from backgrounds. In the following, we comprehensively

review the actionness learning literature for WS-TAL to present the state-of-the-art methods

that could be applied to instructional videos in the future.

Actionness is first explored as defining the likelihood of frame regions [78] or motion

maps [79] for containing an action scene, and it is shown to be useful for action detection.

After that, studies focus on the discrimination of background frames that does not include

any action scene to denoise the false activations obtained from action detection. To this end,

explicit modeling of backgrounds is proposed for temporal action localization in addition to

modeling of actions [80, 81].

First, Nguyen et al. [77] introduce a background-aware loss that contributes to the total

training loss along with clustering and action losses, and they show an improvement

compared to only using action loss. Lee et al. [82] propose a background suppression branch

to avoid misclassifying backgrounds into action classes. They suggest using an auxiliary

class for backgrounds to filter their activity scores. Ma et al. [83] use actionness loss jointly

with frame-wise classification scores, which are supervised with single-frame annotations.

Similarly, Lee et al. [84] use single-frame annotations to integrate background and action

scores for joint learning. Furthermore, Narayan et al. [85] combine action/background

discriminating loss with denoising loss to have enhanced action detection scores. Chang

et al. [86] propose a transformer module augmented with actionness prediction to be used

along with an adaptive graph to detect noisy actions and learn temporal context jointly.

In [87], they suggest separating scenes containing real action from scenes that do not

include action but bring confusion due to contextual similarities. It is accomplished by

first getting snippet level predictions from attention-based video classification model [88]

and then learning two representation spaces jointly with triplet loss: (1) Contextually similar

samples close to background scenes and distinct from action scenes, (2) contextually similar

samples close to action scenes and distinct from background scenes. Likewise, Ma et al. [89]

attack the problem of misclassification due to similar context appearance in the scenes and

propose training an actionness model that separates actions from context.
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2.4. Image to Video Adaptation

Web images are widely utilized in understanding human activities either for compensating

the challenges in labeling video data or supporting the localization of actions. To this end,

separate action models are trained by using action images [90]. Many studies focus on

improving the mining of noisy web images [91, 92], decreasing the domain gap between

images and videos [93, 94], or training models jointly with images and videos [38], similar

to our experiments in Section 5..

Sun et al. [95] propose a domain transfer strategy in order to filter noisy web images

and weakly labeled non-action video frames jointly. Then, models are trained over

cleaned images for assigning action scores to video frames before learning action detectors.

Similarly, Zhang et al. [96] attack the domain shift problem. However, they propose

combining image and video features and then optimizing image and heterogeneous feature

classifiers jointly.

Furthermore, Yu et al. [97] suggest using symmetric GANs (Generative Adversarial

Network) to obtain domain-invariant representations for images and videos where one GAN

maps joint features into video space and the other one maps video features into joint feature

space. Liu et al. [98] introduce the inclusion of keyframes along with image and video

models to guide the training of domain-invariant feature space.

Duan et al. [99] transform web images into pseudo videos by inflating data before learning

joint space, and they use teachers to distill noisy web data. Kae et al. [100] suggest training

spatial and temporal features sequentially by a two-stage approach rather than joint training.

They first learn an image model and use the parameters to initialize the video model to be

trained later. Chen et al. [101] propose a spatial-temporal causal graph approach to solve the

domain shift problem. Most recently, Lin et al. [102] present a domain adaptation method

that alternates between updating the image model with pseudo labels obtained from the video

model and visa versa.
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3. ACTION LOCALIZATION AND

ACTION/BACKGROUND DISCRIMINATION ON

INSTRUCTIONAL VIDEOS

This chapter presents how the action localization task is done on instructional videos using

the joint video-text embedding space proposed with MIL-NCE [2] model and what can

be done to improve the process. Firstly, the baseline model MIL-NCE is explored, and

then the action assignment process done on video clips of the CrossTask [33] dataset using

pre-defined action step labels is explained. After that, the action localization results on the

validation set of CrossTask are analyzed to identify opportunities for improving step recall.

Our investigations indicate that mitigating the detrimental effects of background video clip

scores could improve the step recall results. To this end, we examine how to represent

backgrounds and actions so that by discriminating them, we can post-process the scores

accordingly before doing the step assignment. In other words, we aim to learn the actionness

of a video clip, similar to previous research [1].

In this regard, we explore the possibility of representing video clips using cosine similarity

scores between pre-defined action step labels. We claim that actions and backgrounds have

different patterns regarding their similarity score distribution among the action step labels

and neighbor video clips. For example, backgrounds might get equally distributed low

scores for all action step labels, whereas action clips might get a high score for a specific

action step label. Thus, a video clip can be defined by its similarity scores. Finally, we

show how we learn a discrimination model between actions and backgrounds with the novel

representations.
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3.1. Action Localization on CrossTask with MIL-NCE

3.1.1. CrossTask

The CrossTask dataset, introduced in Zhukov et al. [33], is a collection of 2750 instructional

videos from 18 primary tasks, which are annotated with pre-defined ordered action step

labels. For example, the cooking task “Make Banana Ice Cream” has action step labels

as “peel banana, cut banana, put bananas into blender, pour milk, mix ingredients”. The

videos are labeled with varying duration and order according to the appearance of the actions.

In [33], 360 annotated videos (20 videos for each task) are held as the validation set and used

to tune the hyperparameters of the models. We divide this set into val-train, val-holdout and

val-test (12, 4 and 4 videos for each task, respectively). We aim to work on a small annotated

subset and not touch the original test sets except for computing the final result. As in [33],

we randomly obtain original test sets from the remaining 2390 videos 20 times and report

the average.

3.1.2. MIL-NCE

The MIL-NCE proposed by Miech et al. [2] is a jointly trained end-to-end model learned

for obtaining robust video representations with the aid of narrations rather than manual

annotations. This model is trained on the HowTo100M [34] dataset, which consists of 1.2

million instructional YouTube videos. The narrations in the videos are provided as subtitles

generated by the Automatic Speech Recognition (ASR) system. A total of 120 million video

clips are obtained based on the appearing intervals of the subtitles provided by YouTube. The

data is split into 3.2 second clip-text pairs.

However, as it is told in Miech et al. [34], the alignment between subtitles and demonstrations

in the HowTo100M dataset is often inaccurate. The reason is that narrators may explain

the steps before or after performing them. This leads to misleading similarity learning

results between video clips and subtitles. To address this issue, the authors propose not only
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considering the subtitle that matches the video based on time intervals but also taking into

account the subtitles before and after. This method involves selecting the closest subtitle to

the video from a bag of subtitles with a Multiple Instance Learning (MIL) approach. On the

other hand, coarsely, the contrastive loss function, Negative Contrastive Estimation (NCE),

ensures that the similarity between a positive video and a negative subtitle (i.e., a subtitle

that does not belong to that video) is smaller than the similarity between the positive video

and its own subtitle. This approach results in matched subtitles and video clips being much

closer to each other in the learned joint space than in the negative set. Consequently, they

combine Multiple Instance Learning (MIL) with Negative Contrastive Estimation (NCE) to

develop a robust model that can handle misaligned video clip-text pairs.

The model architecture taken from [2] is presented in Figure 3.1. The architecture employs

two distinct gates for processing video clips and related text. The video gate f leverages

either the I3D [10] or S3D [103] models as backbones and we use S3D as the video encoder

throughout our study. The text gate g processes each subtitle by breaking it down into

individual words and representing them using their corresponding word2vec representations.

The projection layers serve as the final linear layers for embedding both modalities into

a shared space. The model is trained from scratch in an end-to-end manner. The similarity

between a video clip x and its corresponding text y is computed using the dot product of their

embeddings, f(x)g(y)T , for downstream tasks such as action localization on CrossTask.

3.1.3. Action Localization on CrossTask

We present the methodology employed for action localization on CrossTask using video

and text encodings obtained from our baseline model, MIL-NCE. Initially, each video

is segmented into one-second clips, and text encodings for a primary instructional task’s

action step labels are acquired. The similarity scores are computed between each clip and

pre-defined action step label encodings, resulting in a cosine similarity table. Each row

comprises a video clip’s action step similarity scores. The best video clip for each action step

is identified using dynamic programming to solve Equation 1, taken from Zhukov et al. [1].
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Figure 3.1 The baseline model trained with the MIL-NCE loss. This figure is taken from [2].

Here, fk(xt) denotes the similarity score between video clip xt and action step k, while

t1, ..., tK represent the clip ids assigned to steps 1, ..., K, respectively. An order constraint

exists where the latter video clips are assigned to the last steps, and the total similarity is

maximized accordingly. Evaluation is done by computing the “step recall”, defined as the

ratio of correctly predicted video clips to the total number of action steps annotated.

(t⇤1, ..., t
⇤
K) = arg max

t1<...<tK

TP
t=1

PK
k=1 fk(xt) (1)

However, as seen from the statistics in the Section C.2.-Table 22 of [33], three problems

may mislead the action step assignment maximization. First, a considerable percentage of
2https://arxiv.org/pdf/1903.08225.pdf
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action steps are missing in the videos, averaging 31%. This leads to the dynamic prediction

process forcing the prediction of unseen actions, resulting in false positive predictions on

backgrounds or video clips of other action steps. Second, false positive predictions may also

arise due to the order constraint, given that the action steps do not always appear in the given

order due to the nature of the web videos. The order consistency is given as 86%, while it is

relatively lower for some tasks. Lastly, the large proportion of background frames forming an

average of 72% of videos can adversely affect the similarity maximization process, resulting

in false positive predictions on backgrounds due to the misleading action step similarity

scores. While these problems can be solved by improving the prediction method as in [69],

handling challenging background clip scores depends on also the robustness of the baseline

video-text model. In this study, we focus on enhancing the recognition of backgrounds by

arranging the similarity scores accordingly without changing the baseline model or retraining

it.

Specifically, we identify the occurrence of false positives when a background behaves as

an outlier that cannot be distinguished from action scenes by the baseline model. We then

concentrate on this issue and further examine it. Firstly, we demonstrate that challenging

background similarity scores have an important impact on the average step recall results. We

employ val-test labels and manipulate the scores of background video clips by setting them

to -inf, indicating the lowest possible scores. This approach allows us to compute an upper

bound. The comparison of the baseline and the upper bound task-based step recall results are

given in Table 3.1. Here, the average baseline step recall is 42.35, while the upper bound for

background score modification is 55.47. Moreover, there is a significant improvement in the

majority of the tasks.
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MIL-NCE [2] 45.00 37.50 46.66 28.00 62.50 52.38 36.58 58.33 33.33 37.50 35.29 9.09 38.23 35.29 37.50 69.23 53.17 44.44 42.35
Upper bound 65.00 43.75 73.33 52.00 62.50 42.85 56.09 58.33 50.00 50.00 58.82 36.36 47.05 52.94 54.16 73.07 77.77 44.44 55.47

Table 3.1 The baseline and upper bound step recall results for each task when background clips get
the lowest scores. The evaluation set is val-test.
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This promising outcome suggests that modifying the baseline scores to improve the

differentiation between action and background clips has the potential to enhance action

localization. To automatically achieve this, we need to learn the discrimination of actions

and backgrounds according to their behaviors. We propose to learn this discrimination from

the action step similarity score cues, which we present in Section 3.2..

3.2. Action/Background Discrimination with Similarity Cues

In this section, we utilize the val-train set containing 216 videos. First, for each video clip x,

we calculate cosine similarity scores between all 105 action step labels k 2 KD where k is

an action step label and K refers to all action step labels in the dataset D, CrossTask. Then,

we apply the softmax function to have a 1x105 probability distribution ax for each video clip

x. An overview of the approach is given in Figure 3.2. Each row corresponds to ax, and

we call them as “video clip to action step label assignment probabilities” (video-to-action

probability). We aim to define each video clip by different cues from probability scores and

then investigate whether they contribute to the discrimination.

Our approach involves the development of four main components. Firstly, we assume that

action video clips tend to have higher scores for specific action steps, while backgrounds tend

to have lower scores even if they are assigned to a step. To capture this, we define the first

component, r1, as the maximum probability score from ax for each video clip x. Secondly,

we utilize the entropy of a probability vector to gain insight into the distribution of scores.

Action video clips typically exhibit lower entropy due to having more confident scores

on specific action steps, while background video clip scores tend to show high aleatoric

uncertainty and therefore have higher entropy values. We define the entropy values of each

video clip as r2. Thirdly, we create a 1x3 vector from the neighbor values of the action step

with the maximum probability value, as shown in Figure 3.2-r3, and calculate its entropy.

Our intuition is that backgrounds tend to be outliers in the region, which results in a lower r3

value for backgrounds and a higher value for action clips since actions appear sequentially.

Lastly, we calculate the average of the regional entropy as the fourth component, r4. We
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compute r2 for surrounding neighbors and the current video clip x, as shown in Figure 3.2-r4,

and then take the average of the three values. This is based on the idea that backgrounds

and actions may appear together in a region, and therefore, the average entropy can be

representative. We combine all four components to form the rx vector, which represents

each video clip by its action step label assignment probability cues.

����� ����� ����� ����� �����

����� ����� ����� ����� �����

����� ����� ����� ����� �����

����� ����� ����� ����� �����

����� ����� ����� ����� �����

«
«
«
«

Figure 3.2 Components calculated from the video clip x 2 X to action step label k 2 KD

assignment probability cues. Final vector is formed as rx.

In order to investigate the capability of rx to represent actions and backgrounds, we employ

the scikit-learn [104] LinearSVC implementation to learn a linear Support Vector Machine

(SVM), with C = 100 and balanced class weights. Specifically, each video clip x has a

target y, where y = 0 represents backgrounds and y = 1 represents action clips. Inputs are

scaled with zero-mean unit-variance. Following the training of the SVM model, we analyze

the feature weights to gain insight into the most effective component. Figure 3.3 indicates

that calculated entropy values and max probability values serve as reliable discriminators.

However, we observe that the small vector size of r3 results in reduced contribution to the

classification performance. Moreover, extending the window size to obtain more neighboring

frames is found to be detrimental, due to the increased presence of misinformation resulting

from the action clips appearing at the start or end of the action window. Finally, we

evaluate the model on the val-test set and report the average precision of action/background

discrimination as 36.48%.

3.3. Discussion

Some background video clips’ action step label similarity scores can result in misleading

information due to the sensitivity of video-text embedding models. The performance can be
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Figure 3.3 Linear SVM weights assigned to the components of rx.

enhanced by recognizing and decreasing these scores, as indicated by upper bound results.

Our suggestion is to utilize the cues obtained from similarity scores, as background and

action video clip scores can reveal representative patterns. To this end, we propose converting

each video clip’s similarity score vector into a probability distribution.

The probability cues alone are not enough to have a sufficient discrimination model that

can be used to augment similarity scores since the average precision is low. Therefore,

after showing the video-to-action probability cues can contribute to action/background

discrimination, we continue to develop our approach in order to improve the baseline

MIL-NCE visual features for better discrimination. By having that, our final goal is to

post-process the similarity scores according to a video clip’s probability of being an action

or background to decrease the adverse effect of challenging background scores. A similar

approach is presented in Zhukov et al. [1] where they augment the similarity scores with

their actionness model that gives probabilities for being an action or background. We further

propose a model by combining visual features and action step label assignment probability

cues.

In our previous work [4], we train a discrimination model jointly trained with MIL-NCE

visual features and an auxiliary feature that we form based on the action step label assignment

probability cues. We propose to use an extended version of the 4-dimensional representation

rx and show the improvement of it over visual features in ablation studies. We further explain

this study in the next chapter.
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4. LEARNING ACTIONNESS FROM

ACTION/BACKGROUND DISCRIMINATION3

As discussed in the previous chapter, despite the promising achievements of video-text

joint embedding space models, one of the essential issues that affect their robustness is the

background video clips, not including any action related to the task in the video. Some

background scenes can be difficult to differentiate from action scenes due to similar words in

narrations or objects. As a result, action localization is adversely impacted, and identifying

these misleading background scenes can improve performance, as shown in Table 3.1.

One approach to address this issue is to learn the actionness of a video clip, which determines

the probability that it contains an action. Zhukov et al. [1] propose a self-supervised temporal

order verification method to learn actionness. This approach enhances action localization

by increasing the probabilities of action clips and decreasing those of background clips to

avoid false predictions. With similar objectives, we introduced a new approach for learning

actionness that aims to reduce false positive predictions on backgrounds in our previous

work [4]. Specifically, we train a binary logistic regression model to discriminate between

action and background clips.

We incorporate video-to-action probability cues as an auxiliary representation in conjunction

with visual features to enhance classification performance, as demonstrated in Section 3.2..

Our rationale is that background video clips tend to yield similar scores for all action step

labels, while action clips exhibit more robust scores for specific steps. Furthermore, since

action clips frequently appear in sequence, they exhibit the highest scores for similar steps.

Consequently, we leverage the cues from adjacent video clips. By jointly training the model,

we aim to project visual features onto a space that is more sensitive to action/background

discrimination. During inference, we employ the actionness score of each video clip to

adjust the video-to-action outputs of the baseline methods through post-processing.
3This chapter is adapted from our Signal, Image and Video Processing’22 journal paper [4].
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The methodology employed in this study is demonstrated in Figure 4.1, which depicts the

various stages involved. It is noteworthy that, as per the baseline scores, the “pour water”

action step label has been erroneously assigned to a background scene. However, through the

application of actionness scores to each video clip in post-processing, we have successfully

rectified this issue.

3RXU�ZDWHU�LV�
DVVLJQHG�WR�
EDFNJURXQG�

%DVHOLQH

/HDUQLQJ�DFWLRQQHVV

3RVW�SURFHVVLQJ

3RXU�ZDWHU�LV�
DVVLJQHG�WR�
DFWLRQ�FOLS�

��$FWLRQ�FOLSV�
��%DFNJURXQGV�

Figure 4.1 Overview of our method. We learn a discrimination model d to derive an actionness
score d(x), indicating the probability of an action being present in the given input x.
Leveraging the output of the baseline video-to-action outputs fk(x) for each video clip
x and action step label k, we integrate the actionness score with the baseline scores to
obtain the post-processed scores f 0

k(x). Specifically, the proposed approach corrects
false positive predictions on background clips, such as the “pour water” action step in
the illustrative example, and elevates the scores of action clips to identify the associated
action step label accurately.

The subsequent sections outline our approach for learning the actionness of video clips

to augment the baseline methods. We test our method on both the CrossTask and COIN

datasets. We present that the combination of actionness scores with baseline video-to-action

outputs yields enhanced action step localization outcomes. Furthermore, we show the results

of action segmentation as an additional task. Ablation studies are conducted to provide

insight into our method and the selected parameters.
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4.1. Method

Our study aims to improve the accuracy of action step labeling for a given video clip x.

We first train a binary discrimination model d to classify action and background video clips

and obtain the actionness score d(x) for the given clip x. In the second step, we use the

actionness score to refine the baseline model outputs for the video-to-action outputs denoted

by fk(x), where k represents the pre-defined action step label. We apply the actionness

score to post-process the baseline outputs, resulting in improved step assignments f
0
k(x).

Our ultimate goal is to predict better action step labels for each video clip x based on the

post-processed outputs.
���
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Figure 4.2 Proposed auxiliary representation denoted as ax for a video clip x. The representation is
constructed using the probabilities fk(x) of assigning action step labels to a video clip x.
The temporal window for selecting neighboring probabilities is set to t = 3.

4.1.1. Learning Actionness

We propose a method to improve the discrimination of video clip representations by

incorporating auxiliary features. Each video clip x is represented by a visual feature vx

and an auxiliary feature ax 2 RKt
D , which is computed only for training samples. The

auxiliary feature is constructed by considering the probability of each action step k in the

related dataset D, within a temporal window of size t that includes the current clip x and its

neighbors (Figure 4.2). The proposed vector includes baseline video-to-action probabilities

fk(x), and the neighbors are concatenated end to end to form the final auxiliary feature

ax = (ax�bt/2c, ..., ax+bt/2c). The size of ax is R105⇤t for CrossTask and R779⇤t for COIN
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dataset, and we set t = 3 for our experiments. We consider two types of visual features:

the global average pool outputs of the video model in MIL-NCE S3D [2] with vx 2 R1024

and the intermediate low-level clip embedding of COOT [37] trained on YouCook2 with

vx 2 R384. Each video clip x is associated with an annotated target label y, where y 2 0, 1,

with 0 indicating backgrounds and 1 indicating actions.

Action

Background

S
ig
m
oi
d

S
ig
m
oi
d Action

Background

Figure 4.3 The proposed discrimination model d to obtain the actionness of a video clip x. It is
jointly trained with auxiliary ax and visual vx features. The actionness d(x) is the
probability of being an action for the visual representation vx.

Incorporating the auxiliary representation, we enhance the discrimination model d by training

it with shared weights for the input vectors vx and ax. The model architecture, as illustrated

in Fig. 4.3, involves projecting the inputs onto a fixed dimension of R512 using projection

weights Wv and Wa. After that, the shared output linear layer Wo is utilized to classify the

inputs, followed by sigmoid functions and a joint loss:

L = Lv + ✓ ⇤ La (2)

The hyper-parameter ✓ balances the contribution of the auxiliary vector loss and is assigned

a value of 0.8. The visual vector and the auxiliary vector classification loss functions denoted

by Lv and La, respectively, are the binary cross-entropy losses used for distinguishing actions

from backgrounds where
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Lv = � 1

N

NX

i=1

yi.log(p(v
0

xi
)) + (1� yi).log(1� p(v

0

xi
))

La = � 1

N

NX

i=1

yi.log(p(a
0

xi
)) + (1� yi).log(1� p(a

0

xi
))

(3)

and

p(v
0

x) = P (y = 1 | v0

x) =
1

1 + e�(WT
o v0

x+b)

p(a
0

x) = P (y = 1 | a0

x) =
1

1 + e�(WT
o a0

x+b)

(4)

Here, v0
x = W T

v vx is the projected visual feature and a
0
x = W T

a ax is the projected auxiliary

feature of video clip x. Wo and b are the learned weight and bias, respectively. P (y = 1 | v0
x)

or P (y = 1 | a0
x) depicts the binary model prediction probability for whether x belongs to

the action class.

In inference time, we obtain the actionness score as

d(x) = P (y = 1 | v0

x) =
1

1 + e�(WT
o v0

x+b)
(5)

We only use visual features in inference time in order to decrease the complexity of

calculating auxiliary representations for test sets and provide a generalized pipeline for our

method to be adapted to all video datasets in the future. Since labeling or providing action

step lists for instructional videos cause additional effort, we limit inference to visual features.

Thus, auxiliary representation obtained from video-text similarities is required only in the

training time for a small labeled set.

4.1.2. Post-processing with Actionness

In order to get baseline video-to-action outputs fk(x), we utilize two datasets and models

which indicate different downstream tasks. We modify the baseline model outputs with the
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proposed actionness scores as follows:

f
0

k(x) = (1� ↵)fk(x) + ↵d(x) (6)

We utilize the CrossTask [33] dataset to perform action step localization. We employ the

MIL-NCE S3D model to obtain baseline scores fk(x) by utilizing the last layer’s output, as

previously demonstrated in [2]. This involves acquiring 512-dimensional representations

for each video clip from the video model and each action step label k in primary tasks

of CrossTask from the text model. To determine the cosine similarity scores S(X,KCT )

between a video clip x 2 X and each action step label k, where X denotes the test set

video and KCT comprises all step labels in the CrossTask dataset, we utilize the MIL-NCE

representations. The resulting fk(x) is set to S(x, k) for action step localization. Before

generating the auxiliary feature ax, we subject S(x,KCT ) to the softmax function to derive

probabilities. Finally, we combine the actionness scores d(x) of each video clip x as

S
0
(x,KCT ) = (1� ↵)S(x,KCT ) + ↵d(x) (7)

to obtain post-processed outputs f
0
k(x) = S

0
(x, k), and then we re-predict video-to-action

assignments as done in [1].

We use the COIN[36] dataset for action segmentation, along with the representations from

two baseline models. Moreover, we propose a novel post-processing method for this task.

We first obtain 2112-dimensional features from the MIL-NCE model as described in [2]

and 384-dimensional features from the COOT model as in [37]. To establish the baseline

video-to-action probabilities, a multinomial logistic regression c is trained on the training

set of COIN. Here, each action step label, along with the background, is considered as a

class k 2 KC , where KC has 779 targets. Softmax probabilities for each x are obtained as

fk(x) = c(x) = Pc(y = k | x), where y represents the class label. In contrast to the previous

task, where the probabilities were updated for all action steps, for this task, the approach is

different. Since there is a probability of being a background k = 0, the score of the action
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step with the maximum assignment probability k = m is considered the clip’s main action

step score in addition to k = 0. As such, the clip’s background probability Pc(y = 0 | x)

is combined with the probability of being a background 1 � d(x) and the clip’s main action

probability Pc(y = m | x) is combined with the probability of being an action (actionness)

d(x):

P
0

c(y = m | x) = (1� �)Pc(y = m | x) + �d(x)

P
0

c(y = 0 | x) = (1� �)Pc(y = 0 | x) + �(1� d(x)) (8)

f
0
k=0(x) = P

0
c(y = 0 | x) and f

0
k=m(x) = P

0
c(y = m | x) are the post-process assignment

probabilities for background and main action step but we leave other ones unchanged. In

our experiments, both ↵ and � are weighted combination parameters, and we tune them on a

holdout set.

4.2. Datasets

We use CrossTask [33] dataset for the action localization task and COIN [36] dataset

for the action segmentation task. We give the details of CrossTask and the splits we

utilize in Section 3.1.1.. As presented by Tang et al. [36], the COIN dataset consists of a

comprehensive collection of instructional YouTube videos encompassing 180 distinct tasks.

An ordered list of steps and corresponding annotations accompanies each video. The dataset

is divided into two subsets, with 9030 and 2797 samples assigned for training and testing.

Likewise, we randomly select 20 videos from each task within the training set to form a

validation subset further partitioned into val-train, val-holdout, and val-test. Notably, our

selection process ensures that all action step labels remain present within the remaining

training set.

The data splits given in Table 4.1 are used as follows: We use val-train sets to train d models

while using val-holdout sets to validate the training and tune the combination parameters. We
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decide the model according to val-test results given in the ablation studies, and then present

the final outcome with the original test sets.

val-train val-holdout val-test
CrossTask 216 72 72

COIN 2160 720 720
Usage Train d Validate training, Ablation

tune ↵/� studies

Table 4.1 # of videos included and usage of different splits.

4.3. Implementation Details

In the MIL-NCE S3D [2] model employed in this study, video clip inputs consist of 16

frames sampled at 16 fps, resulting in one feature per second. The resolution of these

frames is set to 200x200, and the 512-dimensional output of MIL-NCE serves as input to

COOT [37]. To obtain the baseline MIL-NCE representation of COIN, we get the global

average pool outputs of the video model in the dimension of 1024 for each video clip x 2 X .

Subsequently, we concatenate each video clip feature with the average representation of the

video (1x1024) and sinusoidal position encodings (1x64) following [2], thereby resulting in

a 1x2112 dimensional representation. The optimization procedure of the actionness model

d entails using binary cross-entropy loss and ADAM optimizer with a learning rate of 10�5

and a batch size of 32. We train each model until the validation loss stops decreasing for

10 epochs, and saturation is achieved after 3-4 epochs. Furthermore, we scale the input

embeddings to zero-mean unit-variance.

4.4. Experiments

4.4.1. Action Step Localization

We utilize the prediction and evaluation methodology outlined in previous works [1, 2, 33].

The evaluation metric employed is the average step recall, which measures the correctly
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assigned action step labels in the CrossTask dataset. The details are given in Section 3.1.3..

To reproduce the step recall results reported in [2], we apply prediction on the test set

similarity scores S(X,KCT ). Upon completion of the training process of d, we obtain

actionness values for each video clip in the test set using Equation 5. We then incorporate

these actionness values with each S(x,KCT ) via Equation 7 with the chosen value of

↵ = 0.75, following which we rerun dynamic prediction on S
0 .

Method SR
MIL-NCE [2] 40.46*

Zhukov et al. [1] 41.00
Ours (d) 41.76

Table 4.2 Action Step Localization. Post-processing with actionness scores of the discrimination
model d increases the step recall (SR) on CrossTask. The method in [1] improves the same
baseline [2]. * depicts the reproduced baseline.

Zhukov et al. [1] propose a self-supervised method to learn action/background

discrimination. On the other hand, we demonstrate in Table 4.2 that efficient actionness

scores can be learned with simple binary logistic regression using a small amount of

annotated data, which is jointly trained with auxiliary loss. The use of auxiliary

representation enhances visual features as shown in Section 4.4.3., and our study

outperforms [1] in improving over the same baseline [2]. Task-based results and the ratio

of corrections from false positive predictions on backgrounds to true positives are presented

in Table 4.3, where most classes show improvement. For the classes where we decrease

the results, our method converts true positives to false positives as well. On average, we

convert 17.03% of false positives on background video clips to true positives, but we have

only a 1.3% improvement because we lose some of the baseline true positives too. This is

because our discrimination model is not perfect, and post-processing can harm some classes

where the model d is not robust enough to detect related actions. Qualitative results are also

provided in Fig.4.4, showing examples of rectified assignments on backgrounds before and

after post-processing. The proposed actionness score enables the correction of assignments

into clips with actual action rather than only a scene with the object.
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MIL-NCE [2] 31.71 40.80 49.53 39.82 24.90 43.31 36.21 45.55 36.87 30.69 52.11 31.35 38.52 42.53 43.89 47.84 53.17 39.44
Ours (d) 34.73 38.66 53.45 43.89 24.20 46.57 34.21 47.59 39.82 31.99 57.54 32.16 38.80 44.36 45.10 47.15 53.78 37.80

Background FP 29.47 8.00 14.87 14.80 3.30 30.29 34.00 14.55 13.85 21.72 16.20 12.99 13.69 18.70 26.81 22.48 16.40 16.26
to TP ratio

Table 4.3 Task-based CrossTask action step localization results (SR) and the ratio of corrections
done from false positives on the backgrounds to true positives.

&XW�VKHOYH

%DVHOLQH

$GG�OHWWXFH �3RXU�ZDWHU

Figure 4.4 We present the predicted video clips for different action step labels before (baseline) and
after post-processing with d. Our actionness score converts false positive predictions into
true positives.

4.4.2. Action Segmentation

The COIN dataset’s video clips are classified into an action step label or background class

based on the maximum probability from c. The frame-wise accuracy is then calculated

using the methodology outlined in [2]. The baseline model is trained and evaluated using

MIL-NCE S3D or COOT features. We note that the discrepancy between the reproduced

and reported MIL-NCE [2] baseline results from the random selection of the validation set.

We train d on the val-train collection of COIN and obtain actionness values for the test

set. We then combine d and c probabilities using Equation 8, where � = 0.25, before

making step assignments on post-processed probabilities P
0
c . Based on these assignments,

we recalculate the frame-wise accuracy and present minor improvements over two different

baselines in Table 4.4. However, due to the high number of background scenes in COIN, this

task remains open for improvement using alternative post-processing approaches to address

the class imbalance problem.
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Method FA
MIL-NCE [2] 66.12*

Ours (d) 66.34
COOT [37] 63.72
Ours (d) 63.84

Table 4.4 Action Segmentation. Frame-wise accuracy (FA) results on COIN after applying
post-processing with actionness scores of d. * depicts the reproduced baseline.

4.4.3. Ablation Studies

In this section, we investigate the impact of visual/auxiliary features and the number of

data on the training of the discrimination model d. We present results on the val-test set

of CrossTask.

4.4.3.1. Visual features: We conduct experiments to evaluate the impact of different

visual features on the training of the actionness model d. The experimental results, which

are summarized in Table 4.5, demonstrate the effects of these features on action/background

discrimination, as measured by the average precision (AP), and post-processing, as measured

by the step recall (SR). We observe that MIL-NCE features in the 1024-dimensional space

produced the best discrimination performance. Consequently, we employ these features for

subsequent tasks.

Feature AP SR
COOT 384 [37] 60.41 42.81
MIL-NCE 512 [2] 64.14 43.87
MIL-NCE 1024 [2] 64.35 44.20

Table 4.5 Various visual features are employed to train d with CrossTask val-test set. The average
Precision (AP) metric measures the discrimination between actions and backgrounds,
while the Step Recall (SR) is evaluated following post-processing with the trained d.

4.4.3.2. Auxiliary loss: We explore the impact of the auxiliary loss La, which

corresponds to the binary classification loss of the auxiliary representation ax, in the joint
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learning process of the model d with Lv. To achieve this, we conduct an experiment

where we train the model solely with Lv, denoted as dv in Table 4.6. Our findings

demonstrate that incorporating the auxiliary loss enhances the visual features in the direction

of improved discrimination between action and background video clips, leading to superior

post-processing outcomes.

Model AP SR
Random - 39.86

dv 63.04 42.49
dr 63.45 43.01
dt=0 63.78 43.08
dt=5 63.98 42.98
dt=3 64.35 44.20

Table 4.6 Different configurations of the actionness model d and their impact on the performance
metrics of average precision (AP) for action/background discrimination and step recall
(SR). One such configuration involves employing random numbers generated from a
uniform distribution as the actionness score.

We discuss the qualitative outcomes where the model d outperforms dv. We illustrate these

findings through Fig. 4.5, which displays action step samples predicted as true positives by

d but false positives on backgrounds by dv. Our study highlights that the joint loss function

used to train d plays a crucial role in correcting false positive predictions and converting them

into true positives. This is accomplished by incorporating an auxiliary loss that includes

additional information about whether the scene is an action or background scene. The

confidence score pattern observed in the baseline video-to-action probabilities provides a

cue for practical model training. As a result, our research shows that learning weights for

action step label scores provides improved discrimination performance compared to using

only visual weights.

4.4.3.3. Neighbors in auxiliary representation: We further investigate the impact of

neighboring video clips on the contribution of auxiliary features. To this end, we

evaluate three jointly trained models using different auxiliary representations with varying

dimensions. In Table 4.6, we present the results of our experiments, where dt=0 denotes
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Figure 4.5 Examples to where post-processing with d is better than dv trained with only visual loss
Lv.

the absence of neighboring video clips, dt=5 refers to the use of a temporal window size of

5, and dt=3 indicates a window size of 3. Our findings suggest that using too many or no

neighboring video clips has a negligible impact on the auxiliary feature’s contribution. In

contrast, employing only the surrounding neighbors performs best when the window size is

3. This outcome is in line with our expectations, as the key actions tend to occur within a

short period, and utilizing consistent cues enhances the quality of the information.

4.4.3.4. Using 4-dimensional auxiliary representation: We fix the dimension of the

auxiliary feature to 4 by extracting further information from the probability cues. The details

of this process are explained in the previous chapter (Section 3.2.). A model dr is trained

with the extracted features rx as illustrated in Figure 3.2. However, our main model d, which

is trained with ax, outperformed dr as demonstrated in Table 4.6. This result suggests that

learning weights from a pool of probabilities to extract cues provides more informative data

than learning weights from hand-crafted values.

4.4.3.5. Amount of training samples: We explore the impact of the number of training

videos utilized to learn the discrimination model d. We employ diverse val-train sets, each

containing 1, 3, or 6 videos per task. Random videos from each task of CrossTask are

selected, and each experiment is repeated 10 times to report the mean step recalls after

post-processing. The results are presented in Figure 4.6, which displays the mean of the 10

runs for each val-train variant, along with the standard deviation with error bars. Our analysis
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shows that increasing the number of videos does not significantly affect post-processing.

Therefore, the amount of data in the training set is not a primary concern. However,

as discussed in the subsequent chapter (Section 5.), the quality of the examples plays an

essential role.

Figure 4.6 The effect of varying CrossTask val-train sets on post-processing. The baseline set
contains 12 videos per task; its step recall is 44.20.

We fix the hyperparameters for all the ablation experiments as batch size, learning rate, and

combination parameter ↵ as the results are not changing significantly. Although training

loss is decreased and the average precision of discrimination is increased a little more, we

observe no difference in step recall results, which is in parallel with the above experiment.

As we discuss later on in the following sections, the content of the training data affects our

results. This is because we need weights that learn to discriminate a diverse set of actions

rather than only a few actions. Therefore, even if our model’s average precision and training

are near perfect, if it has not learned all actions, our step recall would not be increased since

the absent actions will not be detected.

4.5. Discussion

We introduce a novel approach to learning the actionness of video clips by leveraging the

cues provided by the video to action step label assignment probabilities (video-to-action

probabilities). To discriminate actions from backgrounds, we propose an auxiliary loss,
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which improves the actionness scores and post-processing through the projection of visual

features using an actionness-aware network. Our method’s efficacy is demonstrated through

experiments conducted on various tasks and baseline models. However, our model may be

impacted adversely due to being dependent on the dataset labeling.

We discuss the complexities of the CrossTask dataset, particularly about challenging samples

and their labeling. Figure 4.7 demonstrates instances of misclassified samples, despite

utilizing d for post-processing. Notably, instructional videos often involve segments that

are inherently challenging to classify due to their diverse styles, complicating the annotation

process. Consequently, this could potentially lead to unreliable model inference and learning.

For example, we observe an outlier scene in the video clip annotated with the “whisk

mixture” action. The whisking motion is executed using a hand instead of a whisk, which

our model misclassifies as a background. Similarly, the introductory section of the second

video clip is labeled as a background, although it features the “cut lemon” action. Careful

labeling and the removal of redundant scenes could improve model performance.

$GG�FKHHVH $GG�RQLRQ

:KLVN�PL[WXUH
%DFNJURXQG

)DXOW\�LQWHUHVWLQJ��PDNH�WDFR

%Y�!�E��E�LV�EDFNJURXQG����EY�!�E��E�LV�EDFNJURXQG

$QQRWDWLRQ %DFNJURXQG
&XW�OHPRQ

%DFNJURXQG
3RXU�DOFRKRO

%DFNJURXQG
$GG�RQLRQ

Figure 4.7 False predictions after post-processing with d. Coarse annotation of the dataset could be
effective adversely as training of the d depends on the labels.

Our model predicts a background clip as “pour alcohol” despite the presence of the “pour

water” action, as shown in the third column of Figure 4.7. This misclassification can

be attributed to the absence of the “pour water” action step in the instruction set for the

recipe “Make Irish Coffee”. Hence, these action/background labels can mislead our model’s

training process. Moreover, the “add onion” and “cut onion” actions are annotated in separate

tasks in the CrossTask. Assuming the cut and add actions happen consecutively, models tend

to learn the similarity between the video clip and the “onion” word. It is highly possible

to assign the “add onion” action to a video clip that includes onion cutting labeled as
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background. To address this issue, the pre-defined action steps should consist of all main

actions, and all video clips should be labeled according to them, not just the steps in the

instruction set. Overall, our findings highlight the need for careful annotation and labeling

strategies.

In the next chapter, instead of recreating or relabeling the data, we examine the action steps

in the CrossTask datasets in detail and propose a data augmentation method to help with the

mentioned issues.
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5. IMPROVING ACTION/BACKGROUND

DISCRIMINATION WITH IMAGES

The execution of actions portrayed in instructional videos on YouTube poses numerous

challenges due to inconsistencies in tools, sequence or style of actions, surroundings, camera

viewpoint, and materials employed. In Figure 5.1, we can see how many different ways

the “add strawberries to cake” action is done in various videos. Compared to fundamental

actions, instructional videos often feature more intricate and prolonged procedures. Ensuring

consistency in this context presents a formidable task that may be unachievable. Our study

utilizes ground truth labels for actions and backgrounds extracted from instructional YouTube

video datasets to train a discrimination model. However, the effectiveness of this approach is

reliant on the dependability of dataset labels, which is often problematic when dealing with

complex data.

Figure 5.1 Different styles of executions for the “add strawberries to cake” action.

As discussed in Section 4.5., there are issues with the labeling of the CrossTask dataset

from our research perspective. These problems include discrepancies in action step labels

and their application to video labeling. For example, some actions are not labeled as such

because they do not appear in the relevant task’s action step list, while certain challenging

scenes are incorrectly labeled as actions. Moreover, the action data is unbalanced across
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different step labels, with some having few or no examples. This can mislead our simple

action/background model, resulting in faulty post-processing of the probabilities.

To address this issue, we propose augmenting the training data with web action step images

as done in [38] before, and we reduce the entire problem to an image-based format using

the Contrastive Language-Image Pre-Training (CLIP) [39] model. We conduct all our

experiments and analyses on a subset of the CrossTask dataset comprising only cooking

tasks, which we refer to as CrossTask-Cooking. In this chapter, we exclude four primary

tasks from CrossTask, namely “Jack Up Car, Change Tire, Add Oil to Car, Build Shelves”.

Augmenting the training dataset with relevant image examples while preserving the

discrimination between actions and backgrounds is a complex and demanding task. Several

difficulties arise during the process, including (1) the insufficiency of action step labels

leading to misleading data collection, (2) the usage of still images instead of videos creating

a disparity between the original dataset and image data, (3) the bottleneck of the CLIP model

in transferring the information of only shapes and colors instead of actions, which hinders

the classification of many action step classes, and (4) the challenge of finding practical image

examples that are action-specific since a recipe action could be employed in varying ways,

as shown in Figure 5.1.

This chapter provides a comprehensive analysis of the CrossTask-Cooking dataset, with

the aim of investigating the accuracy of its labeling and identifying any discrepancies in

action step labels that may not be suitable for our research objectives. Subsequently, we

present a detailed account of the data collection process from Google image search and the

integration of the RecipeQA [3] image action dataset. We also provide the implementation

details for augmentation and automatic image selection based on text-to-image similarities,

along with the image baseline utilized for CrossTask-Cooking. These are followed by

extensive presentations of our experiments and ensuing discussions. Our results reveal that

the incorporation of images for all actions does not confer any significant advantage, but

the use of reliable examples with appropriate scenes for specific actions can substantially

enhance step recalls. Nevertheless, our intuition is that to harness the full potential of images
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in defining complex actions, emphasis should be placed on hands, objects, their respective

positions, and their interactions.

5.1. Comprehensive Analysis and Discussion of the CrossTask-Cooking

Dataset

This section provides an overview of the annotation process for cooking actions in the

CrossTask dataset and examines how challenging action labels can impact our study in

various aspects. The original goal of the CrossTask dataset is to facilitate the sharing

of information about similar actions across different tasks, which led to the use of weak

supervision instead of detailed modeling for each separate step [33]. As a result, pre-defined

action step labels are not highly detailed and descriptive, since the focus is on cross-task

actions that have a covering meaning. For example, in [33], the “pour” action is learned

using models that are trained for both “pour mixture” and “pour water”. Here, the mixture

is for either meringue or pancake. However, this approach can cause various challenges

when evaluating current video-text models, since there is a lack of information about what

the term “mixture” refers to. As video-text or image-text models are learned based on

related narrations or captions, obtaining the similarity value between “pour mixture” and

a scene may yield misleading results. A brief demonstration of this issue is provided in

Section 5.4.1.. Furthermore, in order to collect images for action step labels, detailed

descriptions are necessary. As such, our initial step is to identify which action step labels

can be enhanced by incorporating additional nouns describing objects.

Following this, we discuss annotations conducted on video frames with accompanying action

step labels that pose challenges. Such annotations bear the potential to misguide our model,

and thus necessitate careful consideration. Lastly, we give the number of examples for each

action step and the total number of backgrounds. Then, we mention the potential benefits of

additional data collection for certain classes.

We limit our examination to the primary tasks and their associated action labels. We

solely utilize videos from the val-train set, a subset of the original validation set. It is
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used as the training set in our study. We exclude the examination of the original test and

val-test/val-holdout sets presented in Section 3.1.1.. Our rationale is that addressing labeling

issues would enhance the accuracy of experiments conducted on the CrossTask dataset in the

existing literature.

5.1.1. Challenging Action Step Labels

During our analysis of the action labels and their associated video clips, we observe that

some step labels are difficult to distinguish and associate with the corresponding action

without knowing the related task. For instance, the action label “put mixture into bag” cannot

retrieve related action images without information about what the “mixture” refers to. This

situation brings an obstacle for image collection process and also affects the video-text or

image-text similarities, which in turn affects the step recall results obtained on the CrossTask

dataset, as demonstrated in Section 5.4.1.. To address this issue, we add extra words to some

action labels without changing their meaning, and collect images from Google with the new

labels. Figure 5.16 presents the list of action step labels for which images are collected.

Modifications are made exclusively to those labels that have a markedly negative impact,

while other labels are left unchanged unless additional information is deemed necessary but

not compulsory.

Below, we present a comprehensive breakdown of each arduous action step label, consisting

of the action step label and its corresponding task. Visual examples of frames are selected

from the midsection of the action clips, to ensure the accurate representation.

• “add coffee” from “Make Latte”: The analysis of annotated video frames (Figure 5.2)

and the following second label “press coffee” indicates the necessity of specifying the

form of coffee added, either as ground or whole bean. The possibility of confusion

arises when adding brewed coffee. Due to varying styles, there is a need for special

rearrangement; thus, the label for this step remains unchanged. This observation

highlights the importance of clear and concise labeling in the preparation of coffee,
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particularly when differentiating between the various forms in which coffee can be

added.

Figure 5.2 Example frames for “add coffee”.

• “add ice” from “Make Lemonade”: The description of adding ice is overly broad. To

enhance specificity, we employ the instance frames given in Figure 5.3 as a basis for

relabeling the action as “add ice cubes”. This modification serves to refine and clarify

the action’s definition.

Figure 5.3 Example frames for “add ice”.

• “add meat” from “Make Taco Salad”: In the context of this recipe, the term “adding

meat” in the video frames (Figure 5.4) specifically pertains to the addition of ground

meat. Despite the importance of providing a detailed description of the object, the

label remains unchanged as it continues to facilitate the collection of images of ground

meat and conveys the relevant information about adding meat, albeit without explicitly

mentioning the term “ground”. Additionally, the ambiguity exists as to whether

“adding meat” denotes the addition of cooked or raw meat. Nevertheless, this instance

further highlights the challenging nature of recipes.

• “add taco” from “Make Taco Salad”: To ensure accurate image collection and

contextual interpretation of the step label, we substitute the phrase “add taco” with
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Figure 5.4 Example frames for “add meat”.

“add taco seasoning”. This modification is based on evidence from corresponding

video frames (Figure 5.5) that demonstrate the actual action as adding taco seasoning

rather than the taco itself. The inadequate specificity of “add taco” hinders both

models and humans in comprehending the intended action without access to relevant

contextual information.

Figure 5.5 Example frames for “add taco”.

• “add tortilla” from “Make Taco Salad”: Being a very specific action to the recipe taco

salad, adding tortilla corresponds to adding tortilla chips, according to the example

video frames in Figure 5.6. Similar to other modified step labels, even if it serves the

main creation goal of the CrossTask dataset, it is an inadequate step label both for our

image collection and baseline video-text or image-text models. Therefore, we change

it to “add tortilla chips”.

Figure 5.6 Example frames for “add tortilla”.
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• “add whipped cream” from “Make Irish Coffee”: Similarly, this action step label is

lacking from the main object which the whipped cream would be adding on. As it is

clearly comprehensible from the video frames (Figure 5.7), whipped cream is added

on top of the coffee as a final step. Thus, we change the label to “add whipped cream

coffee”.

Figure 5.7 Example frames for “add whipped cream”.

• “close lid” and “open lid” from “Grill Steak”: The corresponding frames (Figure 5.8)

demonstrate closing or opening a grill’s lid for this step label. That being so, we replace

them with “close grill lid” and “open grill lid”.

Figure 5.8 Example frames for “close lid” and “open lid”.

• “mix ingredients” from “Make Banana Ice Cream”: Based on the recipe and the video

frames (Figure 5.9) annotated with the label “mix ingredients”, it can be inferred that

all the added ingredients are mixed through a blender rather then other mixing tools.

Therefore, it seems it is a special action step for this recipe, and adding an extra object

is crucial. Despite the challenge in identifying a distinct label for this process, “mix

ingredients blender” is utilized instead of the aforementioned label.

• “pour egg” from “Make Meringue, Make French Toast, Make Strawberry Cake, Make

Pancakes”: The demonstration of this action is multifaceted, with instances ranging
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Figure 5.9 Example frames for “mix ingredients”.

from a simple pouring of the egg from a dish to the cracking of the egg into a mixture

or solely pouring the egg yolk (Figure 5.10). The presence of this step across diverse

recipes underscores the challenge in comprehending specific actions, owing to their

disparate contexts and applications. We leave the step label unchanged since there is a

requirement for multiple step labels and relabeling of the data.

Figure 5.10 Example frames for “pour egg”.

• “pour mixture into cup, put mixture into bag, remove bread from pan, spread mixture”

from “Make Jello Shots, Make Meringue, Make French Toast, Make Meringue”

respectively: These step labels are changed as “pour jello mixture into cup, put

meringue mixture into bag, remove french toast from pan, spread meringue mixture” in

order to describe what the mixture and the bread refer to. The alterations are imperative

due to the overly broad definition of mentioned action step labels.

• “put dough into form” from Make Strawberry Cake: Upon analysis of the video

samples in Figure 5.11, it has been established that the act in question may be more

aptly described as the process of transferring dough or cake mixture into a cake mold

as opposed to the present interpretation of kneading the dough. Nevertheless, the label

remains unchanged as it requires rearrangement of the labeling.
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Figure 5.11 Example frames for “put dough into form”.

• “pour water” from “Make Jello Shots, Make a Latte, Pickle Cucumber, Make

Lemonade, Make Fish Curry”: Similar to “pour egg”, this action has varying styles

per task since the goal for pouring water differs, such as pouring into coffee, a jar,

a glass, or a pan (Figure 5.12). This step label can be multiplied with additional

phrases defining where the water will pour. Since it needs a relabeling process to

fix the ambiguity and to be helpful for our problem, the label stays unchanged.

Figure 5.12 Example frames for “pour water”.

• “stir, stir mixture, whisk mixture”: These action step labels define stirring and

whisking actions, which are most common for many tasks. Not having them as more

descriptive actions brings challenges similar to mentioned labels. However, in order to

make them action specific, we need corresponding objects, such as stirring the salad

or whisking the cake mixture. Since the additional nouns will differ from task to task,

we leave these labels as unchanged.

5.1.2. Challenging Annotations

In Section 4.5., we present certain scenarios where actions lack annotation with respect to

action step labels, due to their exclusion from the designated task’s action step list. Such an
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approach towards labeling misguides our research, as it employs the dataset labels to learn the

action/background discrimination model. Our examination of annotated video frames further

reveals additional challenges that can significantly affect our study and related literature.

Consequently, in the subsequent items, we provide a detailed breakdown of the annotation

problems prevalent in the val-train set video frames.

• Annotating the narrators: Within some videos, the corresponding action step label

is assigned to the scenes where the narrator only speaks. The validity or invalidity

of this practice is questionable, as the actions in instructional videos on YouTube

typically involve a demonstration that spans the entirety of the action. Although in

the CrossTask dataset the actions are annotated as chunks, refining and adjusting the

action labeling process may enhance the evaluation. Furthermore, our study is subject

to potential impact, as a background scene is utilized as a positive sample. Figure 5.13

displays example video clips for various actions where the narrator appears before, in

the middle, or after the action and is annotated with the action step label.

Add butter

Add 
strawberries

Cut 
cucumber

Figure 5.13 Example video clips for specific actions where the narrators are annotated with action
step labels.

• Faulty annotation: Furthermore, it is imperative to consider the accuracy of labeled

scenes in addition to the labeling of narrators. It has been observed that certain

labeled scenes lack relevance to the actions depicted and lack any action items,
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indicating faulty labeling. The examples provided in Figure 5.14 exemplify this

issue, emphasizing the need for a meticulous double-check during the dataset labeling

process. Such attention to detail will ensure the reliability and validity of the dataset.

Even though these labels do not affect positive data and thus our action/background

model, as we explain in the upcoming experimental sections, they affect our image

selection process and, of course, the evaluation in the general tasks.

Add butter Add flour Cut 
strawberries

Figure 5.14 Examples of faulty annotations.

• The discrepancy between the recipe applied in the video and the action step label:

As cooking videos allow for flexibility in ingredient choice and preparation methods,

viewers may adapt a recipe in various ways to suit their preferences. For instance, in

the video tutorial “Make Kimchi Fried Rice”, alternative ingredients such as chicken

or shrimp are used in place of ham, despite the task only requiring the addition of

ham. The corresponding frames are still labeled as “add ham”. Similarly, a narrator

adds chicken instead of meat to a taco salad, and this action is labeled as “add meat”.

Another example involves the injection of jello mixture into chocolate instead of

pouring it into a cup, while the corresponding action is labeled as “pour mixture into

cup”. Figure 5.15 presents these examples. Although these instances may be outliers,

improving the labeling process by utilizing more detailed phrases and employing

greater care in labeling would bolster the reliability of the dataset.
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Add ham Add meat Pour mixture 
into cup

Figure 5.15 Examples of discrepancies between the action in the video and the annotation.

5.1.3. The Number of Positive and Background Data

This section presents the sample distribution for each action step comprising the positive

dataset, along with the total number of backgrounds employed in the study. The variance

in sample count across action steps is visualized in Figure 5.16. The aggregate number of

positive instances and backgrounds utilized in the study is 11794 and 31831, respectively.

Note that this set corresponds to the cooking subset of the val-train split of the original

validation data. Unlike val-train in Section 4., here we have 168 videos since four

non-cooking tasks are excluded.

Figure 5.16 The number of samples for each action step in the CrossTask-Cooking val-train.

The analysis of Figure 5.16 reveals that the number of examples varies across the action

steps due to the duration and frequency of occurrence of each action. For instance, the action

step “stir mixture” generally requires more time to execute and has more frames compared
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to the other steps. Moreover, the action step “add sugar” is annotated with a greater number

of distinct video clips. On the other hand, in our val-train split, the action step “cut onion”

is represented by only one video clip, consisting of 19 frames. Likewise, “press coffee”

has only 12 examples from two different videos. These circumstances render recognition

of certain actions as positive action classes more challenging, as learning is based solely on

inadequate examples. In this chapter, we aim to augment each action step data in quantity

and quality with practical instances to improve our model learning.

5.2. Datasets

In this section, we present the image datasets employed to examine the concept of enhancing

instructional video datasets with action images. We initially collect images from Google

search using action step labels. Then, we select appropriate data for each action by hand

and we utilize the pre-defined action step labels to identify the most similar action images.

Furthermore, we experiment with RecipeQA images. We gather images through leveraging

the image-text similarity provided by the CLIP model.

5.2.1. Google Images Collected with Modified Labels

We obtain images for each modified action step label in the primary tasks of

CrossTask-Cooking, as presented in Figure 5.16. To collect these images, we utilize the

Google image search API through the open-source GitHub repository4. In order to expand

the dataset, we augment the step labels with the terms “cooking” or “recipe” and search for

300 images for each category, resulting in a subset of photos that are more relevant to the

cooking domain. We then merge the two categories into a single class for the purposes of

our experiments. After removing duplicates, we obtain approximately 500 images for each

action step label. Notably, we exclude the action step “move steak on grill” from our queries,

as this step is not present in the original training set val-train. The overview of the total

number of collected images is given in Figure 5.17.
4https://github.com/ohyicong/Google-Image-Scraper
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Figure 5.17 The total number of Google images collected for each action step label.

We propose to investigate the efficacy of image augmentation method in improving the

performance of action recognition using web images. Along with the proper instances, web

images are known to contain noisy and complex information, posing a challenge to access

useful data. It is possible to collect an image including just the objects/scene instead of

the action itself or just an illustration of the action without the environment as a special

shot rather than a natural action image. Moreover, irrelevant examples may arise due to the

presence of non-task/recipe specific action step labels. An example of collected images from

the top rows of Google search is shown in Figure 5.18. As such, further investigation is

necessary to determine the suitability of the image augmentation method. To this end, we

construct a clean hand-selected subset comprising the most relevant images from each action

class (Section 5.4.2.). Additionally, we utilize text-to-image similarities between pre-defined

action step labels and images for automatic selection (Section 5.4.3.).

5.2.2. RecipeQA

As a supplementary dataset for image analysis, the training set images of RecipeQA [3] are

utilized. The images in RecipeQA are comprised of instructional depictions for particular

recipes, which have been collected from the Instructables website. This platform offers a

vast array of recipe action steps accompanied by detailed descriptions and corresponding

images. The training set comprises 109024 images, which were gathered for various question

answering (QA) tasks. The example images for the recipe “3 minutes vegan cake” in the
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Figure 5.18 Example of top Google images for “squeeze lemon”.

RecipeQA dataset are given in Figure 5.19. Similar to web videos or Google images, the

dataset is noisy. Moreover, most of the scenes include the result of the action rather than

the action itself. There are no pre-defined action labels for each instruction. Therefore, we

exclusively extract the most pertinent images by relying solely on the pre-defined action

step labels of CrossTask-Cooking. We utilize the text and image encoding similarities

obtained from the CLIP model. The elaborate account of our experiments is presented in

Section 5.4.3..

Figure 5.19 Example instructional step images for “3 minutes vegan cake” recipe in the
RecipeQA [3].
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5.3. Implementation Details

In this chapter, we use Contrastive Language-Image Pre-Training (CLIP) [39] model to

obtain features for video frames, images, and action step labels. CLIP is trained with 400

million image-text pairs collected from the web where the text includes at least one word

from the query list covering 500000 items. They use Vision Transformer (ViT) [105] along

with different architectures for the image encoder and Transformer [106] for the text encoder.

In this work, we utilize ViT-B/32 as it is done in [70]. After having L2 normalized features

from a shared encoding space in the dimension of 1x512 both for an image and the text, the

cosine similarities are calculated. Softmax is applied to obtain the probability distributions.

We use probabilities for text-to-image retrieval as in [39], but we use cosine similarities to

regenerate the CrossTask baseline as the action step assignment method from [1, 2, 33] use

those.

5.4. Experiments

5.4.1. CLIP Baseline

For the CLIP-based CrossTask baseline, we choose one random frame from each one-second

clip. After having the features of frames and base action step labels, we obtain cosine

similarities. We follow exactly the same approach in Section 4. and use the same prediction

and evaluation method with the same original test set. The average step recall is calculated as

16.9. While it has been previously reported that CLIP can lead to reduced accuracy for video

data due to a lack of temporal information [39], we propose that an additional issue is the

scarcity of action-containing examples in the CLIP training data, which we explore further

in Section 5.4.3.. Furthermore, after excluding the non-cooking tasks from the dataset, we

calculate the baseline for CrossTask-Cooking as 18.73. In the present study, we refine the

actionness score computation by training d and dv solely on video frames obtained from

video clips in the val-train set. The updated results are reported in Table 5.1, where dv denotes

the actionness model trained using exclusively visual features, and d denotes the model
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jointly trained with auxiliary features. The baseline is post-processed using the actionness

model scores, as proposed in Section 4. and our prior research [4]. To enhance the positive set

of visual features, we incorporate supportive images in this chapter. Therefore, we consider

the outcomes of dv as our starting point and aim to enhance it further by utilizing additional

data.

AP SR
Baseline - 18.73

Baseline - Modified - 19.65
dv [4] 49.77 19.85
d [4] 50.03 20.16

Table 5.1 Average precision (AP) of action/background discrimination and average step recall (SR)
results for CrossTask-Cooking dataset with CLIP image-based features.

As previously discussed, the CrossTask-Cooking baseline can be enhanced by adjusting

action step labels prior to step assignment. This improvement is necessary as some labels

lack specific information and are overly broad without proper context. Leveraging video-text

or image-text models such as CLIP that depend on text-to-image similarities, the addition of

descriptive language to these labels has the potential to improve the baseline. Our hypothesis

regarding the significance of modified action step labels is confirmed by the results presented

in Table 5.1 (Baseline - Modified). The modified labels are used in the prediction process

without any post-processing. Despite the promising results, the current performance still

falls short of that achieved through post-processing with actionness (d, dv), demonstrating

the continued relevance of the actionness score.

5.4.2. Hand-selected Subset of Google Images

To evaluate the validity of the proposed image augmentation technique, we construct a

subset of Google images that are highly representative of the targeted action. The selection

criteria is based on the similarity of the images to the action frames present in the CrossTask

val-train set. Additionally, we emphasize the selection of images that portray the action more

effectively than the corresponding frame or those with unique features. For challenging
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task-specific actions, including “stir mixture, stir, seal jar, put vegetables in water, put

dough into form, pour juice, dip bread in mixture, flip bread, pour egg, press coffee”,

we select contextually similar images since obtaining related images proved challenging.

Consequently, despite the objective of constructing a purified subset, a few of the collected

images may still exhibit undesirable outcomes, instead of improving the discrimination

between action and background. Figure 5.20 illustrates the number of total examples after

augmenting val-train video clips with hand-selected Google images. The presented findings,

reveal noteworthy insights regarding the quantity of selected examples. While a satisfactory

number of samples are attainable for certain action steps, a considerable number of samples

are noticeably absent for others. In the following, we present several instances of problematic

and satisfactory images. Then, we report the outcomes of enlarging the training dataset by

incorporating all selected images, as well as solely incorporating a subset of good quality

ones. A detailed analysis of the generated outputs is then provided.

Figure 5.20 The number of total samples in the val-train set before and after augmenting the number
of clips with the hand-selected subset of Google Images.

5.4.2.1. Quality of the Examples: Figure 5.21 displays a set of images that are chosen

to represent the related action step. However, these images are insufficient for discriminating

between actions, as they did not depict the relevant action or any action at all. The reason

is that searching for some specific action step labels is challenging such as “press coffee,

add spices, add salt, dip bread in mixture”. For instance, searching for “press coffee” yields

images of french presses, while searching for “add spices, add salt” yields images related to
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general recipes, rather than those specific to pickle recipes. Similarly, when searching for

“add kimchi, add tortilla chips,” only images of the resulting products are available, rather

than those that capture the action itself. Such difficulties are expected, as it is challenging

to find images that depict specific actions without a detailed description. On the other hand,

augmenting action step labels with recipe/task-specific descriptions can lead to inadequate

data, as it reduces the possibility of finding relevant images. This situation is not desirable

as well. Therefore, we select images that are contextually similar to action step frames such

as scenes featuring tortilla chips, kimchi dishes or adding spice into pot. Despite having

a few good examples, we often get insufficient data for these action classes, as shown in

Figure 5.20.

Video frames

Google 
images

Add tortilla 
chips Add kimchi Add spices

Figure 5.21 Original video frames and difficult examples selected from Google Images for action
steps.

In Figure 5.22, we present good examples that represent the related action step and are

similar to video frames. As such, the inclusion of these images has the potential to bolster

the discrimination of corresponding actions by increasing both the quantity and quality of

the available samples. It is worth noting, however, that the acquisition of useful images is

limited to a select few action step classes. In the following section, we present our findings

on the impact of integrating both effective and ineffective examples on discrimination, and

subsequently, post-processing.
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Video frames

Google 
images

Pour 
mixture Steam milk Spread 

creme

Figure 5.22 Representative Google images selected for action steps.

5.4.2.2. Results: We report on the inclusion of 2439 manually selected images as positive

samples in addition to video frames and its effect on action/background discrimination (AP)

and average step recall (SR) given in Table 5.1-dv. We use the same positive and background

video frame examples for the analysis. Our goal is to enhance the aforementioned

performance metrics. We add samples to val-train and train the binary discrimination model

dv as in Section 4.1.1. - Equation 5. We post-process the similarity scores of the original test

set with the actionness scores of dv as in Section 4.1.2. - Equation 7. Then, we rerun the

dynamic prediction (Section 3.1.3. - Equation 1) as it is mentioned in Section 4.4.1.. Note

that in the following experiments, the combination parameter ↵ is decided as 0.9 by tuning

on val-holdout. We conduct a series of experiments. The first experiment incorporates all

image samples from 78 action step classes, while the second experiment involves a narrowed

focus on only 4 action step classes, which exhibit high quality. Lastly, the third experiment

involves the inclusion of images from the “steam milk” category and a thorough analysis of

the findings. We present the results in Table 5.2. Here, “random” represents the set created

by choosing 20 random images from each action step class.

From Table 5.2, it can be inferred that not adding all selected images but the high-quality

ones improves the results. The main problem is majority of the classes have still images

instead of the actions and forcing the binary model to take them as positives can increase

false positive predictions on backgrounds even more. As we mentioned before, since the
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Image Set AP SR # of images
Baseline (dv [4]) 49.77 19.85 -

Random 47.44 19.32 1560
All 47.56 19.38 2439

Best 4 50.20 20.01 190
Steam Milk 50.66 20.22 61

Table 5.2 Average precision (AP) of action/background discrimination and average step recall (SR)
results when val-train is augmented with different hand-selected Google image sets.

instructional action steps are complex and prolonged, finding proper images is a challenging

but interesting problem.

We further examine the step based results in Figure 5.23 to infer which classes are poorly

affected and vice-versa. We separate 4 of the best improved classes which also contain high

quality Google images. This subset contains “cut onion, pour mixture into pan, spread creme

upon cake, steam milk” action step classes. Further experimentation revealed that adding

more categories does not enhance performance but decreases it since the samples have a

harmful impact across other action step classes, as can be seen from the results of adding

“All” images. Thus, we limit the high-quality subset to only these 4 classes.

Figure 5.23 Comparison of step recall results for “Baseline (dv [4])” trained with val-train and “All”
trained with val-train + hand-selected Google images.

In Table 5.3, we present the step based results for image augmentation with the “Best 4”

subset. The present findings indicate that the incorporation of images can effectively enhance

the classification performance for specific actions, particularly in the case of “cut onion”,
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where the baseline dataset comprises a limited number of instances. Such an improvement

highlights the significance of the quality of samples utilized in the training process. Finally,

we see that high-quality “steam milk” images contribute little to the action discrimination of

“steam milk”, but they are the images that increase the overall average step recall the most

when they are used alone (Table 5.2). Therefore, we investigate this further.

Cut Onion Pour Mixture Spread Creme Steam Milk
Image Set into Pan upon Cake

Baseline (dv [4]) 28.07 29.12 11.73 17.29
Best 4 34.36 30.00 13.86 18.93

Table 5.3 Average step recall results for 4 action step classes when image augmentation with the
hand-selected “Best 4” is applied.

We explore the impact of adding “steam milk” images to the positive set on the step recall

of other action steps. Specifically, we analyze the step-based results obtained from this

augmentation to gain insights into the effect of qualified images on the discrimination

of different action classes. The results presented in Table 5.4 demonstrate a significant

improvement in the step recall of four other action steps. To illustrate this finding, we provide

video frames depicting these actions in Figure 5.24, which show scenes, objects, structures,

and colors similar to those of a “steam milk” image (Figure 5.22), even though the actions

themselves are unrelated. For example, in the “add milk” scenes, the liquid and container

can be visually similar, and it is difficult to distinguish objects and colors in “add sugar” or

“put dough into form” scenes. Notably, actions involving hands, such as “pack cucumbers in

jar”, are also found to be improved, likely due to the similarity in scene structure when

holding objects. While these findings are intriguing, further investigation is needed to

better understand their implications. Establishing a standardized criterion for identifying

the specific image exemplars that impact distinct action steps remains challenging, given

the limitations of the CLIP bottleneck. Additionally, this experiment highlights a potential

limitation of the CLIP model’s ability to understand actions from images, as discussed in

Section 5.4.3.. We demonstrate that the primary training data for CLIP comprises image-text
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pairs containing non-action contexts, which results in the model’s difficulty in encoding

actions.

Pour Milk Add Sugar Pack Cucumbers Put Dough
Image Set in Jar into Form

Baseline (dv [4]) 24.63 14.27 22.15 14.57
Steam Milk 28.50 19.43 30.02 20.27

Table 5.4 Average step recall results of some improved action step classes when image augmentation
with the hand-selected “Steam milk” images is applied.

Pour milk Add sugar Pack 
cucumbers

Put dough 
into form

Figure 5.24 Example video frames for specific action step classes where hand-selected “steam milk”
images contribute to their discrimination.

Furthermore, we investigate the efficacy of using only hand-selected Google images in

training set while excluding all video clips. Our findings demonstrate that (Table 5.5)

learning a discrimination model solely from images is not feasible due to the natural

domain gap between video clips and images, as previously mentioned in Section 5.2.1.

and discussed in [94]. Then, we employ these hand-selected images to identify relevant

video clips that depict the action step by assuming the chosen images’ representation of

the action. Using a more confident set, the primary objective is to eliminate challenging

video frames described in Section 5.1.2.. To this end, we utilize hand-selected images as

seeds for the related action step and calculate the cosine similarities between video clips.

We select video clips with an average similarity value of at least 0.65 with all seeds. We

determine this threshold empirically and give the number of selected clips in Figure 5.25.

However, as shown in Table 5.5, our results indicate that this approach does not improve

but decreases the step recall. As described in Section 5.4.2.1., the challenges associated

with selecting images highlight the complexities of identifying suitable images to represent
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intricate actions. Nonetheless, it is also essential to consider the CLIP bottleneck as an

effective issue.

Figure 5.25 The number of clips chosen by using hand-selected Google images as seeds.

Training set AP SR # of positive data
Baseline (dv [4]) 49.77 19.85 11794

Hand-selected Google images 28.37 16.67 2439
Selected clips with image seeds 49.14 19.54 7379

Table 5.5 Results for additional training set variants.

5.4.3. Auto-selected Subsets of RecipeQA and Google Images

We demonstrate the use of the CLIP model’s text-image similarity capability to identify

relevant images for action step categories. Instead of manually selecting a subset, we rely on

the cosine similarities between the text encoding of action step labels and the image encoding

to obtain the most relevant images. We apply softmax to the cosine similarity values of each

image to obtain logits, as previously done in [39]. Using a threshold of 0.95, we eliminate

images with low scores. This threshold is determined through empirical examination of

the selected images. We apply this process to both the collected Google images and the

RecipeQA training set, augmenting the positive video set with the auto-selected images.

Note that we use modified action step labels, and our objective is to improve the “All”

result in Table 5.2 by filtering out bad examples. However, our results, as shown in

Table 5.6, indicate that automatically determining images for improving action/background
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discrimination remains a challenging open research problem. We attribute this difficulty to

the CLIP bottleneck, which may have a significant impact on the selection of good examples.

Image Set AP SR # of images
Baseline (dv [4]) 49.77 19.85 -

RecipeQA 47.33 19.57 792
Google 47.31 19.66 1973

Table 5.6 Average precision (AP) of action/background discrimination and average step recall (SR)
results when val-train is augmented with auto-selected image sets collected according to
text-to-image similarities.

We give examples of selected images in Figure 5.26. It can be seen that the images achieved

the highest similarity scores for their corresponding action step labels are dominated by static

objects and text rather than depicting the relevant actions. These findings highlight the need

to train the CLIP model with verb-centric image pairs to address the identified limitations.

Google 
Images

RecipeQA

Add 
cheese

Squeeze 
lemon

Spread 
creme Steam milk

Figure 5.26 Example images selected with text-to-image similarity values of CLIP.

5.5. Discussion

The present study comprises experimental investigations into the efficacy of augmenting

video samples with images as a means of enhancing the action/background discrimination

model. The findings indicate that this approach is a complex process and, on balance, does

not provide a superior solution compared to the joint training of auxiliary features as outlined
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in Section 4.. However, the study identifies a promising research field that merits further

exploration. In the following, we discuss the possible problems and how the images can be

leveraged in the future. The foremost challenge pertains to the CLIP bottleneck, which arises

from the model’s training data being designed for recognizing visual concepts. Fine-tuning

the model with action step label-image pairs can bolster the action recognition capability

of CLIP. The second issue is related to the fact that the utilized images do not capture the

human background context in which actions occur, unlike in YouTube instructional videos

where the demonstrator is depicted performing the action.

Additionally, it is essential to note that images often capture only a single state, such as

a fully prepared dish or an individual ingredient. Conversely, videos capture a temporal

sequence of actions, such as the process of adding an ingredient to a pan. The use of isolated

images to represent a single action phase, such as “adding tomatoes”, may limit the learning

potential of the model to a single step. This issue can be resolved by segmenting an action

into multiple phases consisting of initial, intermediate, and resulting states and collecting

relevant images for each stage.

The objective of this study is to enhance action localization by refining the action/background

discrimination model through the use of high-quality training data. The current labeling

methodology employed by CrossTask is inadequate due to its coarse nature. Given

the complexity of actions, which entail multi-stage processes, object manipulation, hand

movements, scene interaction, and various phases, single action images cannot suffice for

improving data quality. Consequently, datasets with a similar structure to the existing data

could serve as better sources of information. Moreover, objects often signify action steps, as

in “put steak on grill”, where the grill and the steak define the scene. Thus, the importance

of object interactions should be noticed while integrating images and videos.
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6. CONCLUSION

In this thesis, we attack the problem of understanding fine-grained complex actions in

instructional web videos. To this end, we focus on improving the action localization

task evaluated on annotated datasets with pre-defined action step labels. We examine the

robustness of utilized baseline video-text models that provide similarity scores for assigning

action step labels to video clips. Our investigations show challenging background clip scores

affect action localization accuracy. Motivated by previous work, we aim to mitigate their

effect by modifying similarity scores as a post-processing step before doing assignments.

The goal is to learn the actionness of video clips and decrease or increase similarity scores

accordingly.

To address this, we first suggest reinforcing the recognition of backgrounds and actions since

visual encodings present inadequate discrimination according to outlier background scores.

We introduce a novel representation for video clips containing cues from their similarity

values for action step labels. We hypothesize that while action clips obtain confident scores

for specific action steps, background clip scores will present high aleatoric uncertainty

through action step labels. We propose handling the similarity scores of a video clip by

converting them into a probability distribution. Then, we extract four different components

based on the highest value, the entropy of the vector, and neighbors. In Section 3., we

illustrate that these components help the discrimination of action clips from backgrounds.

After showing the contribution of similarity cues in action/background discrimination, we

explore using them for learning an actionness model in Section 4.. We extend the idea

of similarity cues and define an auxiliary representation directly from the probabilities of

the video clip and its neighbors. We suggest learning a binary discrimination model by

utilizing a small annotated set. The model is trained jointly with visual and auxiliary

representations of video clips using shared weights. The goal is to project visual features

into a more action/background discrimination aware space so that the output probability

can depict the actionness of a given video clip. We conduct action localization and action
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segmentation experiments, in addition to ablation studies, on CrossTask [33] and COIN [36]

datasets, respectively. We show improvement over the previous work and present a new

post-processing approach for the action segmentation task.

We argue that not the number of data but the quality of the data affects the action/background

discrimination. Since we rely on action and background labels, challenging annotations

can affect our method. Therefore, in Section 5., we investigate augmenting the subset

of the CrossTask [33] with action images collected from the web for an improved

action/background discrimination model. We first analyze the challenges we face due to

the structure of the CrossTask dataset from our study’s perspective. Then, we mention the

difficulties of collecting proper image web data for fine-grained instructional action steps.

We leverage the image-text foundation model CLIP [39] to encode video frames and images.

We present primarily results with a hand-selected subset of web images. The outcomes

suggest a promising future direction when the selected samples are proper for the related

action. However, as we discuss in Section 5.5., finding good examples and the model we

utilize pose a challenge in the way.

6.1. Limitations and Future Directions

Recognizing fine-grained instructional actions from web videos is a complex problem from

the computer vision aspect. It is affected by various challenges:

• Actions appear in different scenes due to variations in ingredients, tools, and

environment.

• People demonstrate actions and instructions in different ways. One can pour the egg

by cracking it directly, while another can pour it from a cup. Moreover, people can

improvise and tutor tasks in their style.

• Camera viewpoints vary due to the shooting styles of the videos.

• Automatic transcriptions can be misleading since they depend on the person’s narrative

style.
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• Presence of many background scenes increases the complexity of the problem.

According to these difficulties we observed during our study, digging into foundations should

be the next step. Regarding baseline model robustness, one crucial thing to handle in the

future could be leveraging multiple modalities such as audio, object tokens/interactions, and

hand positions as additional supervision. Moreover, benchmark datasets should be labeled

more carefully as annotation of fine-grained actions can be subjective, and challenging

labeling can mislead the evaluation of action localization.

In this study, we use pre-trained embedding models for our baseline scores, representations,

and video-text similarity values. These models can be replaced with more updated

ClipBERT [42] or CLIP4Clip [19] to get enhanced results. However, some state-of-the-art

works present more specialized networks for understanding instructional videos [63, 107,

108]. In [63], they propose to use wikiHow instructions to match them with automatic

transcriptions and then to learn joint embeddings between related video snippets and

wikiHow instructions. Furthermore, in [108], they also suggest encoding the relation

between wikiHow instruction steps and refining features from a video embedding model with

more procedure-aware information. Thus, taking these models as the base and leveraging

multi-modalities simultaneously would be a helpful starting point for the problem.

We propose to handle the adverse effect of misleading background scores by post-processing

them. Although we show improvement by modifying scores with our actionness aware

method, there are many things to consider in the future. First of all, auxiliary representation

could be inadequate for defining the edge video clips that start or end an action. We do

not handle this situation, and using neighbor properties can give a misleading description

for them. Moreover, we have a minor enhancement on the COIN dataset for the action

segmentation task. While changing all scores, we may also lose true positives due to bad

actionness scores. The reason is that in the COIN dataset, we also modify background

scores and calculate accuracy for detecting them. However, without having a near-perfect

actionness model, post-processing has drawbacks too. Therefore, detecting outliers and only

modifying their scores could be one step.
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To address this issue, we suggested learning an improved action/discrimination model next.

We observe that our training set labels can have an impact. Thus, we augment the dataset with

images and show a promising direction. According to challenges mentioned in Section 5.5.,

image-to-video adaptation models that transfer the knowledge between two domains can

be explored and leveraged for improved representations. As a result, action/background

discrimination could be enhanced.

Finally, in this field, a user study is needed. The next question would be how much we can

learn instructions as humans from given YouTube videos by recognizing the fine-grained

actions, before asking models to understand them. In such a challenging environment, a

human upper bound for the benchmark datasets would provide a helpful direction for the

interpretation of developed models.
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