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ABSTRACT

A NOVEL MULTIVARIATE DISCRETIZATION ALGORITHM USING
DYNAMIC PROGRAMMING

Ali Burak Erdoğan

Master of Science , Computer Engineering
Supervisor: Assoc. Prof. Dr. Burkay GENÇ

January 2023, 81 pages

Discretization is the task of converting quantitative (continuous) numerical data into qual-

itative (categorical) by assigning them into non-overlapping intervals. It is an important

step in reducing the complexity of data in data mining and exploratory data analysis stud-

ies. There are many methods that provide discretization schemes on continuous attributes,

such as equal-width, equal-frequency, and minimum description length principle (MDLP).

On the other hand, these methods ignore the multivariate nature of the dataset and focus

on a single feature space for discretization. This causes a loss of information with respect

to the correlations between attributes. Moreover, unlabeled data cannot be discretized with

supervised methods (e.g. MDLP) that use class labels. We propose a new technique for

unsupervised, multivariate, global, and static discretization; a discretizer based on informa-

tion entropy which employs a constrained shortest-path algorithm. We test our technique

on manually crafted randomized synthetic datasets as well as well-known real datasets. We

show that our approach provides a more meaningful discretization in test cases. This may al-

low the retrieval of meaningful intervals, which are hidden, for data exploratory tasks. Also,

classification accuracy on real datasets generally improves with our method unlike other uni-

variate benchmark methods. Hence, our method may serve to achieve better accuracy on

classification tasks.
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ÖZET
DİNAMİK PROGRAMLAMA KULLANAN ÖZGÜN BİR ÇOK

DEĞİŞKENLİ AYRIKLAŞTIRMA ALGORİTMASI

Ali Burak Erdoğan

Yüksek Lisans, Bilgisayar Mühendisliği

Danışman: Doç. Dr. Burkay GENÇ

Ocak 2023, 81 sayfa

Ayrıklaştırma, nicel ve sürekli sayısal verileri, kesişmeyen aralıklara atayarak, nitel ve sınıflan-

dırılabilir bir veriye dönüştürme işlemine verilen isimdir. Ayrıklaştırma, veri madenciliği ve

keşifsel veri analizi çalışmalarında verinin karmaşıklığını azaltmak için uygulanan önemli

bir adımdır. Eşit-genişlik, eşit-sıklık ve MDLP (minimum tanım uzunluğu prensibi) gibi

sürekli sayısal verileri ayrıklaştırmak için kullanılan birçok yöntem mevcuttur. Bununla be-

raber, saydığımız yöntemler verinin çok değişkenli doğasını göz önüne almayıp, sadece bir

değişkene odaklanmaktadır. Bu da verinin öz nitelikleri arasındaki mevcut korelasyon bil-

gisinin kaybolmasına sebep olmaktadır. Ayrıca, sınıflandırılmamış veriler, MDLP gibi sınıf

bilgisine dayalı denetimli yöntemler ile ayrıklaştırılamamaktadır. Bu çalışmada, kısıtlanmış

en kısa yol algoritması kullanan ve bilgi entropisine dayanan; denetimsiz, çok değişkenli,

evrensel ve statik bir ayrıklaştırıcı öneriyoruz. Bu ayrıklaştırıcı tekniğimizi manuel olarak

hazırlanmış rastgele sentetik veri kümeleri üzerinde test ederek, yaklaşımımızın ilişkili öz-

nitelikler üzerinden hesaplanan entropiye göre çoğu test durumunda daha başarılı bir ayrıklaştırma

sağladığını gösteriyoruz. Bu yöntem, keşifsel veri analizi gibi görevler için veri içerisinde

gizli olan anlamlı aralıkların keşfedilmesinde yardımcı bir rol üstlenebilir. Buna ek olarak,

yöntemimizi gerçek veri kümeleri üzerinde test ettiğimizde sınıflandırma doğruluğunun genel

olarak –tek değişkenli yöntemlerin aksine – iyileştiğini gözlemledik. Dolayısıyla, ayrıklaştırma

yöntemimiz sınıflandırma görevlerinde daha yüksek bir doğruluk elde edilmesine yardım

edebilir.

Keywords: çok değişkenli ayrıklaştırma, ayrıklaştırıcı, veri madenciliği, keşifsel veri analizi
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1. INTRODUCTION

Discretization is one of the most essential data preprocessing techniques in the data mining

field. It is a data reduction mechanism which ensures a large variety of numeric values are

mapped to a much smaller number of fixed intervals. Thus, quantitative data is transformed

into qualitative data (i.e. categorical values) by mapping each value in a continuous attribute

to a corresponding interval and transforming all continuous values into a discrete number

of values. Three of the top ten data mining algorithms (C4.5 [2], Apriori, Naive Bayes)

require data discretization [3], and some other data mining algorithms work better in terms

of accuracy and efficiency with the use of discretization [4]. For example, Dougherty et al.

[5] showed in their experiments that the classification accuracy of Naive-Bayes algorithm

was significantly improved when attributes are discretized with entropy-based discretizers,

as well as C4.5 algorithm performed better when the continuous features was discretized in

pre-processing step. It is known that decision trees become more concise and provide more

accurate results with the use of discretization [4]. Furthermore, discretization is not only used

for improving performance of data mining algorithms; but also for gaining insights about data

such as uncovering hidden patterns and understanding, using, and explaining data.

1.1. Contributions

It is well-known that discretization causes information loss on the dataset as a numerical

attribute might include significant information to describe an observation’s class. Here, we

develop a dynamic programming based algorithm which discretizes a single attribute while

taking other attributes (multi-variate information) into account so as to reduce information

loss. The algorithm aims to be sufficiently efficient so that it can be employed in large

datasets within a reasonable time frame. Also, the proposed algorithm provides an optimal

(with respect to distribution entropy) discretization scheme that groups values into intervals

containing data with similar distributions. In particular, we hereby propose a discretization

algorithm that is:

1



• multivariate (considers the relationships between all attributes for choosing an interval)

• unsupervised (independent of class labels of data)

• static (executed in the preprocessing step before the learning stage)

• direct (determines multiple intervals at once)

• global (evaluates the entire dataset for picking the best interval among all possible

ones)

1.2. Organization

The organization of the rest of the thesis is as follows:

• Chapter 2 provides definitions and background knowledge about discretization and its

properties.

• Chapter 3 gives an overview of related work on discretization and demonstrates a brief

taxonomy of existing methods.

• Chapter 4 introduces our proposed method and describes how our algorithm works.

• Chapter 5 demonstrates the experiments performed with our method and their results

in detail.

• Chapter 6 states the summary of the thesis and possible future directions.

2. DEFINITIONS AND BACKGROUND

2.1. Formal Description

A general description of a discretization process is as below:
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Assuming a dataset S consisting of N observations, we can discretize a continuous attribute

A by splitting it into k intervals and obtain a discretization scheme D = {[d0, d1), [d1, d2), . . . [dk−1, dk]}

where dk is maximum and d0 is minimum value that exists in A; and D is sorted on attribute

A.

A general discretization process (as in Figure 2.1) consist of 4 steps: Sorting, Searching

(Evaluation), Splitting (or Merging) and Stopping. Sorting process is generally expected

to be performed only once in the beginning and in an efficient way using an algorithm of

time complexity of O(NlogN) at maximum. Search (evaluation) part is the stage of finding

the most optimal cut points by means of an evaluation function. Splitting (or Merging)

part divides a subinterval into two or merges two adjacent intervals if merging approach is

followed. Stopping part is a stage where it is checked if any further splitting/merging is

required or not, according to a stopping criterion determined by discretization method.

2.2. Properties of Discretization Methods

• Static/Dynamic: Static methods are independent of what learning algorithm is used,

and are executed in the preprocessing stage before the learning stage starts. A vast ma-

jority of discretizers are of static type. Dynamic discretizers (for example ID3 decision

tree discretizer) are built into learning algorithms and executed while learning is done.

• Univariate/Multivariate: Univariate discretizers only focus on a single attribute at a

time without taking other continuous attributes into consideration. Multivariate dis-

cretizers take all continuous attributes into account to determine cut-points charac-

terizing the discretization scheme. As such, multivariate discretizers aim to capture

relations between attributes and determine cut points accordingly.

• Supervised/Unsupervised: Supervised discretization algorithms take the class labels

of target variable into account. This enables such discretizers to discover the relation-

ship between an attribute and the class label (e.g. entropy, correlations etc.) Supervised

discretizers can be used only in supervised learning tasks whereas unsupervised coun-

terparts can be used in both supervised and unsupervised learning.
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Figure 2.1 The overview of the steps of discretization [1].

• Splitting/Merging: After the evaluation step, a new interval is decided either by split-

ting a larger interval into two (e.g. top-down approach) or combining two smaller

intervals into a larger one (e.g. bottom-up approach). There are also examples of

hybrid approaches using both operations.

• Global/Local: Local discretizers take only a subset of data (i.e. the data exists in the

currently evaluated sub-interval) into account during evaluation. Global discretizers,

on the other hand, has access to the entire dataset to evaluate possible cut-points. To the

best of authors’ knowledge, most of the known discretizers are global. Yet, dynamic

discretizers are local by definition [4]. For example, as ID3 uses a dynamic approach,

the internal discretizer is able to access only the currently splitted data, therefore it is a

local discretizer. ME-MDLP [6] can be given as another example to local discretizers.
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• Direct/Incremental: Direct discretizers determine multiple cut-points at once. The

incremental approach on the other hand, establishes a simple discretization initially

and improves it further over iterations, either splitting the interval more or merging

with a neighbor interval, and stops it when its stopping criterion is satisfied.

• Evaluation Measure: During the search (evaluation) stage, multiple candidate dis-

cretization schemes are compared according to an evaluation measure. There are five

main types of measures:

– Information: Mostly the entropy measure defined in information theory and some

others such as Gini Index, Mutual Information are used in many discretizers like

MDLP [6], ID3 [2].

– Statistical: Dependency and correlation between attributes are statistically eval-

uated (e.g. Chi2 [7])

– Rough Sets: Rough set methods, boolean reasoning, lower and upper approxima-

tions are used [8].

– Wrapper: A classifier (e.g. Naive Bayes) is executed in each iteration and the

error rate is used to evaluate.

– Binning: Bins (intervals) are predefined and there is no evaluation measure.

EqualWidth (each range has the same length) and EqualFrequency (each range

includes the same number of observations) are examples for binning.

• Parametric/Non-parametric: Discretizers such as ME-MDLP [6] does not require

manual input of desired intervals and automatically optimize the number of bins ac-

cording to their stopping criterion. An example of a parametric method is ChiMerge

[9] which requires an upper limit for the number of intervals.

5



3. RELATED WORK

3.1. Supervised Discretizers

Kerber [9] proposed ChiMerge which is a supervised and univariate algorithm based on

statistical χ2 test. It tries to produce such intervals that within each interval target class

frequencies should be consistent and the class frequencies in different intervals should not

be similar. It follows bottom-up strategy, that is there are intervals to the number of unique

values at the beginning, and adjacent intervals with least χ2 value are merged. Also, the

merging step is controlled by using a threshold, which indicates the maximum χ2 value that

permits two neighbor intervals to be merged. The stopping criterion is determined manually

with a maximum number of intervals given by user.

Fayyad and Irani [6] proposed ME-MDLP (Minimum Entropy-Minimum Description Length

Principle) which is a supervised, univariate and splitting discretizer and it is one of the most

basic discretizers proposed so far. Evaluation measure is based on entropy feature and Min-

imum Description Length Principle (MDLP) described in Information Theory. Basically, it

recursively splits intervals until the entropy of interval gets minimized. MDLP is defined

as “the minimum number of bits required to uniquely specify an object out of the universe

of all objects.” [1] The stopping criterion is the same as the evaluation measure. Since it is

univariate, it generates intervals of an attribute regardless of its possible dependencies with

other attributes and only takes account of target class labels.

3.2. Unsupervised Discretizers

3.2.1. Univariate Discretizers

Kontkanen and Myllymäki [10] proposed UD which is a univariate and unsupervised method

based on MDL (minimum description length) principle like Fayyad and Irani’s ME-MDL

method.

6



Vannucci and Colla [11] proposed an unsupervised and univariate method by making use

of SOMs (Self-organizing maps). They compared their method to classical kNN-binning

approach and demonstrated lower error scores.

Schmidberger and Frank [12] proposed TUBE (Tree-based Unsupervised Bin Estimator),

an unsupervised and univariate method which makes use of Tree-based Density Estimation.

Their technique tries to construct an estimated density function without using any parameters.

Using cross validation, the algorithm adapts widths of bins to the data.

Biba et al. [13] proposed an unsupervised, univariate and top-down (splitting) method us-

ing Kernel Density Estimation. It makes use of cross-validation of the log-likelihood for

selecting the number of intervals, and kernel density estimation for selecting the cut-points.

Ferreira and Figueiredo [14] proposed U-LBG, which is an unsupervised version of well-

known LBG (Linde–Buzo–Gray) Vector Quantizer Algorithm [15].

3.2.2. Multivariate Discretizers

Bay [16] proposed MVD which is an unsupervised multivariate discretization technique and

compared it to previous supervised methods like ME-MDL proposed by Fayyad and Irani

[6]. Bay argues that ME-MDL might perform well at classification, but it is not useful at

data discovery and analysis tasks. This technique prioritizes that instances in each interval

should have similar distributions among its attributes. Thus, instead of focusing on increas-

ing predictive accuracy, it pursuits exploring hidden patterns and extracting semantically

meaningful information for humans. For example, an interval of [$26K-$80K] for yearly

income on census data might result in good scores in prediction, but it is not giving much ex-

ploratory information because it hides various groups in terms of education, occupation etc.

This method was evaluated qualitatively and showed success in information extraction like

discovering hidden patterns at UCI Admissions data. In addition, it outperformed ME-MDL

in terms of CPU execution time.
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Mehta et al. [17] proposed CPD (correlation preserving discretization) which is an unsu-

pervised, dynamic, and multivariate method based on PCA. Since the correlations among

all attributes are “intrinsically” preserved with the help of PCA algorithm, they proposed

an efficient method for highly dimensional and large data sets. They also compared their

performance with the prior method that Bay offered [16]. What they define as a meaningful

and correlation-preserved interval is “instances within an interval exhibiting similar proper-

ties, and instances in different intervals exhibiting different properties”. They tackled the

problem of capturing correlations between continuous and categorical attributes by means of

combining PCA with association rules mining. Also, CPD method is a dynamic discretiza-

tion technique that takes account of all attributes at the same time.

Nguyen et al. [18] proposed IPD (interaction-preserving discretization) which aims at not

losing dependencies among attributes while discretizing them. That is, “two multivariate

regions should only be in the same bin if and only if the objects in those regions have similar

multivariate joint distributions in the other dimensions. That is, we enforce each bin to

only contain data of similar distributions.” In this work, IPD was compared against earlier

methods like CPD, MVD, ME-MDL in terms of classification accuracy with Random Forest

classifier. IPD does not result in lower scores than classification scores of non-discretized

original data as well as it rather produces higher scores in some data sets. Also, in most

cases it outperformed CPD, ME-MDL and MVD.
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4. PROPOSED METHOD

We propose a technique to discretize a continuous attribute using dynamic programming and

multivariate information, and our discretizer has the following properties:

1. Multivariate (considers the relationships between all attributes for choosing an interval)

2. Unsupervised (independent of class labels of data)

3. Static (executed in the preprocessing step before the learning stage)

4. Direct (determines multiple intervals at once)

5. Global (evaluates the entire dataset for picking the best interval among all possible

ones)

4.1. Overview of Method

Let S denote a dataset, that consists of N observations, and M be its set of attributes. We

want to discretize the continuous attribute A ∈ M by splitting it into L non-overlapping

intervals, where L is between predetermined thresholds MIN BINS and MAX BINS. That is,

the resulting discretization scheme must consist of L intervals, where MIN BINS ≤ L ≤

MAX BINS, and L is to be determined by an optimization procedure (to be explained later)

rather than being a predetermined parameter. Also, let U = {ui ∈ A|i = 1 . . . k} de-

note the unique set of values that exist in A, sorted in ascending order, i.e. ui < uj

for any i < j. Next, we build a directed acyclic graph Q = (V,E) with vertices V =

{vi | vi = ui; u ∈ U ; i = 1 . . . k} and edges E = {ei,j = (vi, vj) | i < j; i, j = 1 . . . k}

where each vertex in V is connected to all other vertices with an edge ei,j where i < j. By

this definition, we can observe that E contains k(k−1)
2

edges.

Given that U is sorted, the graph Q is always a directed acyclic graph (DAG), that is it has no

cycles. Moreover, it is guaranteed that it has a single source node (whose in-degree is zero)
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denoted by v1 and a single sink node (whose out-degree is zero) denoted by vk. Observe

that, each edge ei,j = (vi, vj) in E actually represents an interval [ui, uj) within A. We

assign a cost based on multivariate entropy to each edge (interval) whose calculation will be

explained in Section 4.2.. Then, it can be seen that a path (a sequence of edges) starting from

the source node v1 and ending at the sink node vk will represent a discretization scheme, and

any discretization scheme can be represented by a path on this graph. Thus, the problem of

finding an optimal discretization scheme is converted into finding an optimal (with respect

to edge costs) path P in graph Q where P starts from v1 and ends at vk, also it is of length1

L and MIN BINS ≤ L ≤ MAX BINS.

Let us illustrate this with a small example. A sample set S taken from the well-known Iris

dataset is given in Table 4.1. It consists of four attributes and fifteen rows.

A (sepal length) B (sepal width) C (petal length) D (petal width)
4.8 3.1 1.6 0.2
6.9 6.9 6.9 6.9
5.3 5.2 5.2 5.2
6.3 6.3 6.3 6.3
7.7 7.6 7.4 7.3
6.7 6.7 6.6 6.6
5.5 4.2 1.4 0.2
6.1 6.1 6.1 6.1
7.7 7.7 7.7 7.7
6.3 6.3 6.3 6.3
5.7 5.7 5.6 5.6
6.7 6.7 6.7 6.7
6.9 6.8 6.8 6.8
5.5 2.3 4.0 1.3
4.8 3.4 1.6 0.2

Table 4.1 A sample subset S from Iris dataset with 15 observations.

Suppose that attribute A is to be discretized whose values are as follows:

{4.8, 6.9, 5.3, 6.3, 7.7, 6.7, 5.5, 6.1, 7.7, 6.3, 5.7, 6.7, 6.9, 5.5, 4.8}
1In our context, the “length” of a path means the number of nodes included in a path, in other terms “hop

count”, not the total weights of that path’s edges.
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Next, U is produced with the unique values in this set in ascending order:

U = {4.8, 5.3, 5.5, 5.7, 6.1, 6.3, 6.7, 6.9, 7.7}

A directed graph Q = (V,E) is generated out of U where V = {v1 = 4.8, v2 = 5.3, v3 =

5.5, v4 = 5.7, v5 = 6.1, v6 = 6.3, v7 = 6.7, v8 = 6.9, v9 = 7.7} as depicted in Figure 4.1.

Figure 4.1 An example graph Q generated out of unique values in the attribute to be discretized.

Notice that, any path P starting from v1 = 4.8 (source node) and ending at v9 = 7.7 (sink

node) in fact corresponds to a discretization scheme. For example the path P = {e1,4e4,6e6,8e8,9}
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establish a discretization scheme D = {[4.8, 5.7), [5.7, 6.3), [6.3, 6.9), [6.9, 7.7]} as demon-

strated in Figure 4.2 (Path P is marked with red, bold lines).

Figure 4.2 An example path in Q (marked with red, bold lines) which corresponds to a discretization
scheme.

At this point, our objective is to find an optimal path among all possible paths. An optimal

path should meet the two criteria below:

1. The total cost (the sum of edge costs in the path) is the minimum among all paths.

2. The length (i.e. hop-count) is within interval [MIN BINS, MAX BINS].
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In order to meet the first criterion, a standard shortest path algorithm is sufficient. Nev-

ertheless, our second criterion makes it necessary to perform a constrained shortest path

procedure. A standard shortest path algorithm (e.g. Dijkstra’s algorithm) does not apply

bounds on the hop count, as its only objective is to find the path with minimum total edge

cost. However, in discretizing an attribute, as the intervals get smaller, the entropy of the

corresponding observations with respect to the other attributes gets lower. Therefore, the

shortest path almost always consists of the shortest possible edges (intervals of two adjacent

unique values). We, therefore, need to put bounds on the path’s length to restrict the number

of bins for discretization. Hence, we iteratively solve a dynamic programming procedure to

find the optimal path within the preassigned length bounds, by gradually modifying the edge

costs at each iteration until we find a path with length between the bounds.

Our search for the shortest path does not work in a brute-force manner, rather we apply a

customized optimization algorithm for minimizing the number of iterations. During each

iteration of the search procedure, we modify the edges by adding the same penalty to the

original weights of all the edges. The additional penalty enforces the shortest path algorithm

to generate another path with less number of edges than the path found with original edge

weights. The main reason is that an increase in each edge’s weight adds up to a larger total

path cost, therefore the shortest path algorithm tends to find a path with less number of edges

to minimize the path cost. Therefore, the relation between path length and penalty is inverse.

Figure 4.3 The visualization of an example execution of optimal path algorithm.
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Iteration Penalty Path Length Path (cutpoints)
0 0.01413 14 (50, 71, 76, 83, 89, 94, 100, 105, 110, 114, 117, 123, 131, 145)
1 0.01940 13 (50, 71, 76, 83, 89, 94, 100, 105, 110, 117, 123, 131, 145)
2 0.02717 11 (50, 76, 83, 89, 96, 104, 109, 114, 123, 131, 145)
3 0.03241 10 (50, 76, 84, 91, 100, 106, 114, 123, 131, 145)
4 0.03795 10 (50, 76, 84, 91, 100, 106, 114, 123, 131, 145)
5 0.04718 8 (50, 76, 88, 100, 106, 114, 123, 145)

Table 4.2 The gradual decrease steps of an example execution of the path optimization algorithm.

As seen in Figure 4.3, adding larger penalties to edge weights caused the computed shortest

path to have less number of edges. This search continues until a path that has MAX BINS or

less edges is found. In case the path length drops below MIN BINS due to a sharp increase

in the penalty, we start gradually decreasing the penalty to produce a path with more edges.

For example, as seen in Figure 4.3 as well as Table 4.2, the threshold MAX BINS = 7 causes

the search procedure to stop once a path of length 8 (with respect to node count) is found.

4.2. Entropy-based Edge Weight Calculation

The weights assigned to the edges in this graph play a critical role in our method, because

our final discretization scheme will be selected according to the edge weights by means of

the shortest path algorithm. We should assign weights to the edges in such a way that the

shortest path can lead us to an optimal discretization scheme among other possible ones.

Remember that each edge actually represents an interval for discretization. For example, the

edge e3,8 from v3 = 5.5 to v8 = 6.9 corresponds to the interval [5.5, 6.9) in our example

graph in Figure 4.2.

For the calculation of edge weights, we start with normalizing each attribute in itself for

preventing scale based misjudgments in further computations. Since we are willing to es-

tablish a multivariate discretization that preserves the correlations among attributes as much

as possible, we compute the weight of each edge ei,j from vi to vj based on the entropy

notion in information theory. Information entropy, which was introduced by Shannon [19],

can be simply described as the impurity of a set of observations and defined by the following
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expression:

H(X) = −
∑
x∈X

p(x) lg p(x) (1)

In our graph, the cost of an edge with respect to attribute A indicates whether the observations

within this interval show similar properties (“pure”: low entropy) or not (“impure”: high

entropy) within the other attributes. A lower cost edge denotes a set of observations that

are more like each other in terms of attributes other than A. For example, in the Iris dataset

(Table 4.1), if an interval defined on sepal length consists of observations that are very similar

in sepal width, petal length and petal width, then we call this interval pure as it has very low

total entropy with respect to the B, C, and D attributes.

Now, let us consider two paths in Q: P1 and P2, each mapping to certain discretization

schemes in A. Now, suppose that the total cost of P1 is less than that of P2. This in turn

means that the intervals corresponding to the edges in P1 are more pure than those in P2.

Here, a path being more pure than another represents its total entropy-based cost being less.

We argue that a good discretization scheme is one that uses intervals having lower entropy

levels, and we aim to optimize the total entropy level of all intervals.

Next, we provide the formula for Wi,j , the entropy-based edge cost calculation (Equation 2)

we use. Notice that C = M − A denotes the set of all attributes other than attribute A; Ni,j

the number of observations within interval [i, j) with respect to A; N the total number of

observations in the dataset; and H denotes the intervals in the equal width discretization of

the distinct values in attribute c that falls into the interval [i, j).

Wi,j =
Ni,j

N
×
∑
c∈C

∑
x∈H

−p(x) lg p(x) (2)

Here, note that we use the equal width discretization to determine the intervals of attributes in

C while computing the intervals of A with our method. That is because our method is based

on the entropy of the other attributes which can only be meaningfully computed if those

attributes are already discretized. Therefore, if the other attributes are given categorically,
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we simply use the provided categorical values. However, if the other attributes are contin-

uous, we then assume a discretization of them based on the fast equal width discretization.

Therefore, the H in the formula represents the intervals (categories) obtained this way.

4.2.1. Histogram Matrices

In order to calculate the proportion of each interval in H, denoted as p(x) in Equation 2, we

use histograms. A histogram consists of the counts of how many values fall into each inter-

val provided that the histogram’s intervals are defined as equal-width and non-overlapping.

However, repeatedly computing histograms during edge-weight calculation is a costly op-

eration. We prefer an iterative and incremental approach and for each attribute in C, we

generate a histogram matrix before computing edge weights. A histogram matrix is a special

data structure that keeps all histogram information for an attribute in the dataset and reduces

the computational cost of histogram calculation.

Row # A B C
1 4.8 1.59 0.77
2 4.8 −0.90 −0.22
3 4.8 −1.22 0.54
4 5.3 −0.16 −0.96
5 5.5 2.25 −0.43
6 5.5 2.03 1.81
7 5.6 1.70 0.15
8 5.7 2.39 1.24
9 6.1 −0.54 0.51
10 6.3 −1.18 0.48
11 6.3 −1.13 −1.61
12 6.7 −0.44 −0.37
13 6.9 −0.20 −0.75
14 6.9 −0.31 −1.08
15 7.7 −1.89 −0.07

⇒

[−1.89,−0.45) [−0.45, 0.97) [0.97, 2.39]

0 0 1
1 0 1
2 0 1
2 1 1
2 1 2
2 1 3
2 1 4
2 1 5
3 1 5
4 1 5
5 1 5
5 2 5
5 3 5
5 4 5
6 4 5

Table 4.3 A sample dataset with 15 observations (left) and the histogram matrix of Attribute B with
3-bins (right).

To explain more clearly, see the small dataset consisting of 15 observations in Table 4.3. If we

want to calculate histograms with three equal-width bins for attribute B, the intervals will

be [−1.89,−0.45), [−0.45, 0.97), [0.97, 2.39] since the minimum and the maximum values
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of B are −1.89 and 2.39. For this, we generate a histogram matrix for B (the one on the

right in Table 4.3) that holds the counts of observations whose values of attribute B fall into

these ranges. Notice that a row in the histogram matrix holds the histogram for only the set

of observations up to that row. For instance, 7th row of histogram matrix only shows the

histogram calculated with only the first seven observations in the dataset.

A histogram matrix allows us to calculate histograms in constant time. For example, suppose

that we want to calculate attribute B’s histogram for the observations in the range [5.5, 6.3)

with respect to attribute A. We find out that the corresponding observations are with row

number 5, 6, 7, 8, and 9 (separated with lines in the table). The histogram of that set of

observations can be calculated (in constant time) by subtracting 9th row [3, 1, 5] from 4th

row [2, 1, 1] in our histogram matrix. We obtain a histogram [1, 0, 4] with respect to attribute

B. It denotes that one observation falls into [−1.89,−0.45) bin, no observations into the

[−0.45, 0.97) bin, and four observations into the last bin.

4.3. Main Discretization Algorithm

Algorithm 1 presents our main discretization algorithm. It takes several parameters. S is

the main dataset which consists of rows as observations and columns as attributes (whether

continuous or non-continuous). A is the column index number of attribute to be discretized.

MAX BINS and MIN BINS are parameters setting a threshold in order for the algorithm to

search for a discretization scheme having cut-points not more or less than those respective

limits. However, among different possible discretization schemes, always the one nearest

to the MAX BINS will be selected (see Section 4.4.). N PCA signifies how many attributes

should be generated out of attributes by PCA dimensionality reduction algorithm.

17



Algorithm 1 Main discretization function
FUNCTION DISCRETIZE(S, A, MAX BINS, MIN BINS, N PCA):

1: Apply normalization (or standardization) to all attributes of S other than A.

2: S ′ ← A new matrix comprising A and N PCA new attributes generated by PCA applied to all attributes of

S other than A.

3: Sort rows of S ′ by attribute A in ascending order.

4: HM← Calculate histogram matrices of each attribute except for attribute A

5: U ← unique set of values that exist in A, sorted in ascending order

6: V ← {vi|vi = ui;u ∈ U ; i = 1 . . . k} ▷ Generate a vertex for each value in U and assign it to vertex set V

7: Q← Build a graph with vertices V

8:

9: if |U |/5 ≤ MIN BINS then

10: return ▷ A cannot be discretized due to very low uniqueness of values

11: end if

12: for i = 0 to |U | do

13: for j = i+ 1 to |U | do

14: if Ni,j < N/100 then ▷ Ni,j: number of observations within interval [i, j) with respect to A

15: continue to loop, disregard this interval

16: end if

17: TotalEntropy← 0

18: for c ∈ columns of S ′ except for A do

19: H← HM[c] ▷ Take histogram of observations in range [ui, uj) with respect to A, in attribute

c’s histogram matrix

20: EntropyInRange←
∑

x∈H−p(x) lg p(x) ▷ p(x) denotes the ratio of each entry in histogram

21: RatioOfRange← Ni,j

N

22: TotalEntropy← RatioOfRange × EntropyInRange

23: end for

24: Add a directed edge ei,j from vi to vj with a weight of TotalEntropy

25: end for

26: end for

27:

28: Path← Call FIND OPTIMUM PATH prodecure and return the path

29: return Path[1 : −1] ▷ Discard first and last values as they are not required for discretization
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We explain our main discretization algorithm (Algorithm 1) step by step.

1. (Line 1) We start by scaling each attribute in itself for preventing possible biases for

further computations. (either standardization or normalization) Standardization tries

to centralize dataset in such a way that mean of numbers become zero and the standard

deviation becomes 1. On the other hand, normalization scales all values between 0 and

1. Since both can be useful in different scenarios we left it to the user’s preference.

2. (Line 2) We apply a dimensionality reduction technique called PCA (Principal Compo-

nent Analysis) which takes into account all attributes other than attribute A to produce

a reduced number of new attribute set which consists of N PCA attributes. Once PCA

provides derived attributes, we merge them (along with our attribute A as the first col-

umn) into a new matrix S ′.

The rationale behind this step is as follows: Since we are willing to establish a mul-

tivariate discretization which preserves correlations among attributes as much as pos-

sible in order to not lose information, the correlation of each attribute with attribute

A need to be evaluated. This might result in a high computational cost especially in

highly dimensional datasets with tens or hundreds of attributes. Hence, we need to

reduce the complexity of dataset by means of PCA in order to minimize the compu-

tational cost while not losing too much information that lies behind the correlations

between attributes.

3. (Line 3) We sort all rows (observations) according to attribute A in increasing order

(we assume that A is not a categorical variable, otherwise it cannot be discretized).

4. (Line 4) For our entropy-based edge weight calculation, we need each column’s de-

tailed histogram data, but computing it each time is a costly operation. Thus we calcu-

late histogram matrix of each attribute in S ′ in advance. We define histogram matrix to

be a special data structure which reduces computational cost during histogram calcula-

tion. Thus, other than attribute A, histogram matrices of rest of attributes are computed

in advance and stored in memory. The rationale behind was explained in Section 4.2..
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5. (Line 6-7) Build a graph with values in U , do not add any edges yet as they will be

added after edge weights are calculated.

6. (Lines 9-11) Control whether the attribute is eligible for discretization. If number of

unique values in attribute A is less than MIN BINS×5, our heuristic implies that such

a discretization will not be meaningful because it has very low rate of uniqueness and

might be a categorical variable.

7. (Lines 12-13) We will search for all possible intervals in attribute A, thus we perform

two nested for-loops.

8. (Lines 14-16) If the number of values in range [ui, uj) is too small, we do not want to

include this interval to our final discretization scheme.

9. (Lines 17-23) For calculating an edge’s weight as formulated in Equation 2, we per-

form the following steps:

• We initialize TotalEntropy variable with zero.

• We calculate the ratio of observations in range [i, j) with respect to A to all ob-

servations. Denoted as Ni,j

N
.

• For each column c in S ′ (the ones produced by PCA) other than attribute A:

(a) We calculate the histogram of current range by subtracting two rows from

histogram matrix (as we explained above).

(b) We calculate the entropy of resulting histogram with classical entropy for-

mula.

(c) We multiply the ratio with the entropy and add it to TotalEntropy.

10. (Line 24) We connect two nodes vi and vj with a directed edge, and assign TotalEn-

tropy as its weight.

11. (Lines 28-30) We perform Path Optimization Algorithm which will be explained in

detail in Section 4.4., and try to find a shortest path from the minimum value to the
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maximum value in our newly constructed graph, suitable to our constraints by per-

forming Algorithm 2. For optimizing performance, we suggest the iteration limit to be

100 and step size to be 0.01.

12. (Line 31) Resulting path consists of the minimum and maximum values in attribute

A, and cut-points in between. We discard the first and the last values and only return

cut-points.

4.4. Path Optimization Algorithm

Parameters of our procedure is as follows:

• Q: Original graph with unique values in attribute A as nodes

• SOURCE: Starting node for our optimal path

• DEST: Destination node for our optimal path

• MAX LENGTH: Max. length of optimum path

• MIN LENGTH: Min. length of optimum path

• STEP SIZE is a factor to calculate the magnitude of a step which will be multiplied

later with a random number between [0.0, 0.1). The calculated step will be added to

(or subtracted from) last found best penalty and candidate penalty will be used to find

an optimal path. We advice to use 0.01 as default.

• ITER LIMIT prevents very long executions if it’s difficult to find a path with required

thresholds. We use 100 as the limit even though our algorithm usually finds an opti-

mum path in no more than 10 iterations.
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Algorithm 2 Algorithm for finding an optimal path
FUNCTION FIND OPTIMUM PATH (Q, SOURCE, DEST, MAX LENGTH, MIN LENGTH, STEP SIZE,

ITER LIMIT):

1: DoClimb← False

2: Penalty← 0

3: Path← NULL

4: PathLength← 0

5: while Path = NULL do ▷ Generate and evaluate initial penalty

6: Penalty← Pick random number between 0 and 0.1 with uniform distribution

7: QP ← Clone graph Q and add Penalty to each edge’s weight

8: Path, PathLength← SHORTEST PATH (QP, SOURCE, DEST)

9: DoClimb← PathLength ≤ MAX LENGTH

10: end while

11: Iter← 0

12: while Iter ≤ ITER LIMIT do

13: Step← Pick random number between 0 and 0.1 with uniform distribution

14: if DoClimb then

15: Step←− Step × STEP SIZE

16: else

17: Step← Step × STEP SIZE

18: end if

19: CandidatePenalty← Penalty + Step

20: QCP ← Clone graph Q and add CandidatePenalty to each edge’s weight

21: CandidatePath, CandidatePathLength←SHORTEST PATH(QCP, SOURCE, DEST)

22: NewOptimumFound← False

23: if not DoClimb then ▷ in descending state

24: if MIN LENGTH ≤ CandidatePathLength ≤ PathLength then

25: NewOptimumFound← True

26: if CandidatePathLength ≤ MAX LENGTH then

27: DoClimb← True

28: end if

29: end if

30: else ▷ in climbing state

31: if PathLength ≤ CandidatePathLength ≤ MAX LENGTH then

32: NewOptimumFound← True

33: end if

34: end if
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35: if NewOptimumFound then ▷ Update current optimum path

36: Penalty,Path,PathLength←CandidatePenalty,CandidatePath,CandidatePathLength

37: end if

38:

39: if PathLength = MAX LENGTH then

40: break ▷ Stop iterating, we reached a path with optimum length

41: end if

42:

43: Iter← Iter+1

44: end while

45:

46: if PathLength < MIN LENGTH or PathLength > MAX LENGTH then

47: return NULL ▷ the found path is out of aimed interval, it means no optimal path

48: else

49: return Path, PathLength

50: end if

The algorithm shown in pseudo-code in Algorithm 2 is explained below:

• We store our current best found path in Path and it’s length in PathLength and the

penalty which causes that path to be generated in Penalty.

• The direction of search is stored in DoClimb flag variable. If execution is in “descend”

state, (i.e. DoClimb = False), it means the path search will be forward (since the path

length-penalty correlation is a decreasing function, see Figure 4.3 ), that is it will be

seeking a shorter path than the last found best path by means of a higher penalty. If

the search is in “climb” state (i.e. DoClimb = True), it means the path search will be

backward, that is a longer path than the last found best path is searched by means of a

lower penalty.

• (Lines 1-4) We start with initializing our variables.

• (Lines 5-10) We randomly pick a starting point for penalty, and we clone the graph

and add the same penalty to each edge of the cloned graph, then calculate the shortest
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path. If the resulted path is higher than our MAX LENGTH threshold with respect to

length, we go into “descend” state. Otherwise, we enter “climb” state. (by means of

setting DoClimb flag)

• (Lines 11-12) We enter main loop and continue until the ITER LIMIT is reached if the

loop is not exited early in case of finding an optimal path.

• (Lines 13-19) We calculate Step by multiplying a random number between [0, 0.1) and

STEP SIZE. If we are in “climb” state, we subtract Step from current Penalty (as we

wish to decrease penalty in order to produce a longer path). If we are in “descend”

state, we aim at producing a shorter path by increasing penalty, thus we add Step from

current Penalty. The resulting penalty is saved temporarily in CurrentPenalty as we

will discard it if it does not bring any improvement on our last found best path.

• (Lines 20-21) We clone the graph and add CandidatePenalty to each edge of the cloned

graph, after which we calculate the shortest path and assign CandidatePath and Can-

didatePathLength variables.

• (Lines 23-29) If we are in “descend” state in the current iteration, we check whether

CandidatePathLength is in between our MIN LENGTH and PathLength (most optimal

path found so far) because “descend” state’s aim is always finding a shorter (or equal)

path. If this condition is true, we record this by setting NewOptimumFound to True.

Also, we check whether CandidatePathLength is less or equal than MAX LENGTH.

If it holds true, we change our state to “climbing”. The reason is that we always

favor paths as close as possible to the our maximum length. Thus, after obtaining a

candidate optimal path within our thresholds, we do not greedily accept this path to

be a real optimal. Rather, we continue our search backwards for finding a longer path

than current optimal, but shorter than (or equal with) MAX LENGTH.

• (Lines 31-34) If we are in climbing state, check if CandidatePathLength is between

last found optimal path length and MAX LENGTH. If it is, we record this as a new

improvement because we managed to find a longer path than current optimal but also
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shorter than (or equal to) MAX LENGTH. As we mentioned earlier, our optimization

algorithm always favors the closest path length to MAX LENGTH.

• (Lines 36-38) If we recorded that this iteration brought an improvement on optimum

path, we assign all candidate variables to current most optimal path’s variables and

accept it to be the most optimal path found so far.

• (Lines 40-42) If our most optimal path length is equal to MAX LENGTH, we exit the

loop as there remains no need to search for another path.

• (Lines 47-51) If most optimal path found is within our thresholds, return it. Otherwise,

return nothing.
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5. EXPERIMENTAL RESULTS

We performed two types of experiments: the first is performed on synthetic data whereas

the second is performed on real datasets. In our experiments, we compare our method with

three common discretization methods: equal-width, equal-frequency, and k-means binning
2. Unlike our method, all benchmark methods are univariate and they do not investigate

the correlations among attributes. Equal-width binning makes intervals of the same width

(namely length) from the minimum value to the maximum value. For example, a range of

values from 0 to 600 are split into three intervals: [0, 200), [200, 400), [400, 600]. Note that

this approach is prone to produce unnecessary or nearly empty bins from sparse data or data

with outliers. Equal-frequency binning ensures that each interval contains an equal (or close)

number of values, given the number of intervals. For example, the sequence containing 12

values {3, 4, 5, 4, 6, 7, 7, 8, 9, 9, 10, 9} is split into three intervals such as [3, 6), [6, 9), [9, 10]

ensuring that each interval contains four observations. K-means binning runs a k-means clus-

tering algorithm on a single dimension of the data, which separates the data into k clusters

while minimizing the mean squared errors within each cluster. Since each cluster maps to

a non-overlapping interval, the clusters generated by this method provide a discretization

scheme.

On real datasets, in addition to the three above mentioned benchmark methods, we compare

our method with Mehta et al.’s CPD method [17], Nguyen et al.’s IPD method, [18], and

Bay’s MVD method [16]. Since we could not access the implementation codes of those

methods, we compared our results with the ones reported in their studies.

Remember that, we define a good multivariate discretization to be one that each interval

contains observations with similar properties and different intervals have observations with

dissimilar properties with respect to other attributes. We showed that our method is generally

more effective in this purpose as compared to the other methods.

2We used the implementations in scikit-learn library [20] used for machine learning in Python language.
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Moreover, note that very large intervals can hide significant patterns in the data, whereas tiny

intervals cannot have sufficient observations to capture patterns. This is called the resolution

problem [16]. In our experiments, we show that the resolution problem occurs with three uni-

variate benchmark methods. On the contrary, we can prevent resolution problem by avoiding

paths with tiny intervals or paths with few large intervals by means of the weighted entropy

formula (see Equation 2) and path optimization algorithm (discussed in Section 4.4.),

5.1. Evaluation Method

In order to evaluate our method’s multivariate discretization performance and compare it to

others, we need a numerical metric. Multivariate discretization enables putting observations

with similar distributions into the same bins by considering all attributes and correlations

within. To this end, we consider the entropy levels as an indicator of similarity among

distributions since a low entropy in a group of observations implies that their distributions

are not far off. Thus, once all attributes are discretized, we calculate the total entropy of each

attribute as well as the total entropy of observations in each bin.

Before presenting our results, we first explain what a percentage matrix is, and then, we

define our formula for calculating total entropies by taking an example of a small dataset.

Observe our example dataset in Figure 5.1a where all attributes are assumed to be discretized

into 3-bins and mapped to one of the labels 0, 1, or 2.

Percentage Matrix: A percentage matrix displays the frequencies of attribute levels with

respect to other attributes’ levels. An example percentage matrix and the corresponding

attribute discretization is shown in Figure 5.1. In this matrix, each row and column represents

a level of an attribute. The set of observations that has the level j in attribute Ai is denoted

by Ai,j . A cell of the matrix is addressed by row Ai,j and column Ak,l and represent the

observations whose Ai value is j and Ak value is l. Within each cell two statistics are given,

namely the number of matching observations and their percentage within all of Ai. Moreover,

the tone of the cell background also represents the percentage, the darker shades hinting at

higher percentages.
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(a) (b)

Figure 5.1 A small discretized dataset (a) and its corresponding percentage matrix (b).

Note that, a good discretization is one that purifies other attributes with respect to the dis-

cretized attribute. This is equivalent to having higher contrasts in the matrix. The more cells

we have with very high and very low percentages, the better. In this example, we have many

50% ratios, which means this is a weak discretization. On the other hand, cell A1,0, A4,1 has

maximum percentage, and that means the first bin of A1 contains only level-1 observations

from attribute 4.

We evaluate the success of discretization with two entropy-based metrics:

1. The total entropy of the observations in a discretization bin Ai,j , calculated with the

classical entropy formula and then summed up. It is denoted as Hi,j in Equation 3

below. Note that M is the set of attributes in the dataset; Oi,j is the set of observations

where Ai = j; and Hk,i,j is the total entropy of observation set Oi,j with respect to k-th

attribute (only values in Ak used for entropy calculation) based on Equation 1.

Hi,j =
∑

k∈M−i

Hk,i,j (3)

2. The total entropy of attribute Ai, which is the weighted sum of each bin’s total entropy

(Hi,j). Equation 4 provides a formal equation. Note that N is the total number of

observations in the dataset and J is the total number of bins in attribute Ai. Note that,

the weight coefficient allows us to decrease the contribution of pure but small-sized

bins in total entropy.
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Hi =
J∑

j=1

|Oi,j|
N
×Hi,j (4)

5.2. Experiments on Synthetic Data

We adopted the approach by Nguyen et al. [18] and Bay [16] and performed our exper-

iments on synthetic data with designed correlations among attributes. Our method excels

at discovering these correlations between attributes and uses them for better discretization.

Considering that we work on unsupervised data, exposing the multi-modality of the data is

the best available option and the synthetic datasets provide an optimal ground for testing this.

Next, we explain how we generate the datasets.

5.2.1. Synthetic Data Generation

(a) Equal-frequency (b) K-Means (c) Our method

Figure 5.2 Discretizations on linearly correlated synthetic data by different methods.

For explaining the rationale behind our data generation, we provide a very simple example in

Figure 5.2 where we consider only two attributes with a very noticeable linear dependency. In

this figure, the discretization intervals computed by equal-frequency and k-means algorithms

and our method is shown. Even though equal-frequency and k-means, both of which are

univariate methods, do not consider the correlations between the attributes, they still perform

fine due to the inherent shape of the data. Our algorithm is designed to handle complicated

correlations which can not be exposed trivially by univariate approaches. Therefore, in order
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Table 5.1 Configuration of synthetic dataset.

A1 A2 A3 A4

X1,1 ∼ N(50, 152)
size=1000

X2,1 ∼ N(100, 302)
size=2000

X3,1 ∼ N(2000, 1002)
size=500 X4,1 ∼ N(4000, 5002)

size=1000X3,2 ∼ N(5000, 4002)
size=500

X1,2 ∼ N(550, 152)
size=1000

X3,3 ∼ N(1000, 1002)
size=500 X4,2 ∼ N(1000, 2002)

size=1000X3,4 ∼ N(8000, 2002)
size=500

X1,3 ∼ N(120, 152)
size=1500

X2,2 ∼ N(250, 402)
size=3000

X3,5 ∼ N(1000, 1002)
size=750 X4,3 ∼ N(4000, 2002)

size=1500X3,6 ∼ N(8000, 2002)
size=750

X1,4 ∼ N(480, 152)
size=1500

X3,7 ∼ N(11000, 8002)
size=1500

X4,4 ∼ N(2000, 1502)
size=1500

X1,5 ∼ N(300, 602)
size=5000

X2,3 ∼ N(400, 302)
size=5000

X3,8 ∼ N(7000, 2002)
size=2500 X4,5 ∼ N(300, 302)

size=5000X3,9 ∼ N(3000, 2002)
size=2500

to test our method’s capability, we generated our synthetic data with more noise and non-

trivial correlations.

We first generate a dataset with 10000 observations, comprising varying correlations among

four attributes, namely A1, A2, A3, and A4. Each attribute is then sequentially divided into

intervals of differing sizes. Each interval is assigned a separate random variable each of

which produces values using Gaussian distributions with varying means and standard devia-

tions: Xi,j ∼ N(µi,j, σ
2
i,j). Here, i represents the attribute and j represents the order of the

random variable within the attribute.

Our synthetic data configuration is given in Table 5.1 and also visualized with histograms in

Figure 5.3. For example, X2,1 is assigned to observations 1 through 2000, X2,2 to observa-

tions 2001 through 5000, and X2,3 to 5001 through 10000. Also, first 1000 observations are

assigned to X1,1 and the next 1000 to X1,2. That means, two observations both of which are

associated to the same random variable within the second attribute may be associated to two

different random variables within the first attribute. This introduces a non-linear correlation
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(a) A1 (b) A2 (c) A3 (d) A4

Figure 5.3 Distributions of attributes in the synthetic dataset.

between attributes. However, we assign the random variables to the observations in a se-

quential manner, and hence although we create variation, we do not produce totally random

observations. The resulting dataset and the correlations among attributes can be observed in

Figure 5.4.

(a) A1 −A2 (b) A1 −A3

(c) A1 −A4

Figure 5.4 Correlations between A1 and other attributes in the synthetic dataset.
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5.2.2. Results

We run our algorithm and three benchmark methods on our synthetic dataset to discretize A1,

A2, A3, A4 into 5, 3, 6, 4 bins, respectively. These bin sizes are optimal by the construction

of the dataset.

We provide comparisons of our method with the three benchmark methods in Figures 5.5,5.6,

and 5.7. Considering that presenting all comparisons visually would take a very large amount

of space, here we provide visual comparisons for a limited amount of cases. More detailed

comparisons are given numerically in Section 5.2.3..

(a) Equal-width (b) Our method

Figure 5.5 A1 and A2’s discretization intervals produced by equal-width and our method.

Figure 5.5a demonstrates that equal-width approach could not detect similar clusters of ob-

servations since it did not regard A2 for determining cutpoints of A1 and vice versa. It only

focused on partitioning a single dimension into equal widths. However, our method took all

other attributes into account and discovered known ground-truth cutpoints on A1 and A2 and

separated the clusters of observations properly (as shown in Figure 5.5b).

32



(a) K-Means (b) Our method

Figure 5.6 A1 and A3’s discretization intervals produced by k-means and our method.

In Figure 5.6a, k-means binning approach split A1 into five clusters and minimized the mean

square error within clusters using only the values in A1. Similarly, it split A3 into six clusters

using only the values of A3. Consequently, the correlations between the discretized attribute

and the others are disregarded. On the other hand, our method regards all correlations be-

tween attributes while calculating entropy of bins and tries to minimize the entropy within

each bin. Therefore, in Figure 5.6b, we see a better separation of clusters and cutpoints closer

to the known ground-truth cutpoints.

(a) Equal-frequency (b) Our method

Figure 5.7 A1 and A4’s discretization intervals produced by equal-frequency and our method.
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For attribute A1 and A4, equal-frequency binning produced intervals each of which contains

a nearly equal number of observations as shown in Figure 5.7a. When those intervals are

projected into a scatter plot for A1 −A4, we see that they are not as successful as that of our

method at separating clusters, as demonstrated in Figure 5.7b.

5.2.3. Evaluation

(a) Our method

(b) Equal-width

Figure 5.8 Percentage matrices of A1 after our method and equal width applied.
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(a) Equal-frequency

(b) K-Means

Figure 5.9 Percentage matrices of A1 after equal frequency and k-means binning applied.

In Figure 5.8 and 5.9, the frequency matrices of attribute A1 after the synthetic dataset was

discretized with different methods are shown. This visualization helps us to assess the en-

tropy of bins after discretization. When we examine the percentage matrix of our method

(see Figure 5.8a), we see more contrast as compared to the matrices of equal-width (see Fig-

ure 5.8b) or equal-frequency (see Figure 5.9a). The k-means algorithm did better than the

other two, but failed to identify the bins as clear as our approach. The rest of the percentage

matrices for all attributes and methods are listed in Appendix.

Figure 5.10 shows the Hi,j values for all attributes and all methods. In this figure, the width

of each bar represents the ratio of observations falling into that bin and the height represents
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Figure 5.10 Total entropy achieved in each bin via all four methods.

the bin-wise entropy value, Hi,j . A better discretization should provide thick and short bars,

whereas the worst is to have thick and long bars. Overall, our approach provides thicker

and shorter bars (larger intervals with smaller entropies). Finally, Figure 5.11 provides a

visualization of the attribute-wise entropy values, Hi, for each method. It clearly shows that

our approach is superior to all three benchmark algorithms on the synthetic data set.

Figure 5.11 Total entropy achieved in each attribute via all four methods.

5.3. Experiments on Real Data

We performed our experiments on four common real datasets from UCI Machine Learning

Repository [21] (summarized in Table 5.2). We compare our method against three bench-

mark methods: equal-width, equal-frequency, and k-means binning. Also, we provide com-

parisons of our method with other multivariate discretizers such as Mehta et al.’s CPD method
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Dataset Attributes Observations Class Labels
Adult-income 14 48842 2
SatImage 36 6435 6
Shuttle 9 58000 2
Ionosphere 34 351 2

Table 5.2 Used real datasets and their properties.

[17], Nguyen et al.’s IPD method, [18], and Bay’s MVD method [16] whenever we have data

of their results. Since we could not access the implementation of these methods, we com-

pared our results with results reported in the respective papers. For comparison, we consider

two evaluation metrics: percentage matrices and total entropy levels, both of which were

explained in the previous section.

In addition, we perform classification tests with the random forest classifier to measure how

different discretizations affect the performance of a machine learning study. Although ran-

dom forest is not always the best classifier for prediction, it is enough to show that our method

preserves correlations in a predictive task. We also remind that our method’s main purpose

is to preserve correlations between attributes and to find hidden patterns in order to minimize

the accuracy loss in machine learning. Supervised entropy-based discretization methods are

reported to be improving the predictive performance of some classifiers such as Naive-Bayes

[5]. Nevertheless, Bay argues that supervised discretizers such as ME-MDL harm pattern

discovery in exploratory tasks despite the increase in prediction accuracy [16]. For example,

Bay reports that using different class variables of UCI Student Admissions dataset radically

changed cut points of income attribute although the predictive accuracy was stable in two

cases. Hence, supervised discretization may affect the stability of discretization results and

may not give confidence to a human expert for discovering patterns.

On the other hand, unsupervised discretization methods do not consider class labels and as a

result, the correlations between attributes and the class labels may be lost. Therefore, a small

decrease in prediction scores after an unsupervised discretization is not unusual. Our results

show that unsupervised benchmark methods resulted in considerable decrease in prediction
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accuracy. Nonetheless, our method surpassed two benchmark methods, and also performed

very close to undiscretized data.

5.3.1. Experiments on Adult-income Dataset

This dataset is collected from the 1994 Current Population Survey in the US. It has 14 at-

tributes such as age, education level, capital gain and loss, gender, weekly worked hours,

marital status, ethnicity, occupation, etc. It has two class labels since it is prepared for a task

to predict whether a person’s income is above 50,000 dollars or not. We omit class labels as

well as nominal attributes like marital status. Thus, we use only five attributes: age, weekly

worked hours, educational level (from preschool to PhD), capital gain, and capital loss.

We present the results of the experiment with three benchmark methods. Our bounds for the

number of bins are five (maximum) and three (minimum). Our method separated capital loss

Figure 5.12 Discretization intervals for age and educational level attributes, produced by our method
and benchmark methods in adult income dataset.
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and weekly working hours into four bins, and the remaining attributes into five bins. Thus,

we run benchmark methods with that number of bins for a fair comparison.

In Figure 5.12 we observe that our method determined the cutpoints for the age as [19, 23, 30, 63].

Note that our intervals for age focused on young ages rather than old ages as opposed to other

benchmark methods. Remember that our method discretizes the age attribute considering its

relation with educational level, capital gain and loss, and weekly working hours at the same

time. Since this dataset is based on demographic and economical properties, it is meaningful

to have more detailed intervals at young ages as they contain groups with different economic

qualities [16]. Also, most people retire at age 60, thus, detailed intervals at old ages do not

make much sense. This allows us to capture more patterns in terms of people’s educational

and economical qualities.

For example, we can see in Figure 5.12 that until age 19, people have an education level

number 9 at most. It corresponds to a high school degree (using the provided education level

map in Table 5.3). This pattern can be explored with our method’s discretization as it has

a cut point at age 19. However, such a pattern between age and education is lost in other

methods’ intervals as their cut points for age start from the late twenties. This is another

example of the resolution problem with too large intervals.

Enumeration Educational level
1 Preschool
2 1st − 4th class
3 5th − 6th class
4 7th − 8th class
5 9th class
6 10th class
7 11th class
8 12th class
9 High school & some college degree
11 Associate degree
13 Bachelors
14 Masters
15 Professional school
16 Doctorate

Table 5.3 Educational level and their enumerations in adult income dataset.
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Next, the intervals for educational level (which can be seen in Figure 5.12) are presented in

Table 5.4 for easy interpretation. Our method determined cut points for educational levels

as 9th class, high school degree, associate degree, bachelor’s degree, and master’s degree.

We consider this a reasonable decision since usually each refers to a different career path.

However, all other benchmark methods grouped people with bachelor, master, and PhD.

degrees into the same interval. It probably hides many patterns in population with different

academic degrees.

Method Education level intervals Education level groups (inclusive)

Our method [1, 6), [6, 9), [9, 13), [13, 14), [14, 16]
[preschool-9th class], [1th class-1th class], [high school
degree-associate degree], [bachelor’s degree], [masters de-
gree, PhD degree]

K-Means [1, 5), [5, 8), [8, 11), [11, 13), [13, 16]
[preschool-8th class], [9th class-11th class], [12th class-high
school degree], [associate degree], [bachelor’s degree, PhD
degree]

Equal Width [1, 4), [4, 7), [7, 11), [11, 13), [13, 16]
[preschool-6th class], [7th class-10th class], [11th class-high
school degree], [associate degree], [bachelor’s degree, PhD
degree]

Equal Frequency [1, 9), [9, 13), [13, 16]
[preschool-12th class], [high school degree-associate de-
gree], [bachelor’s degree, PhD degree]

Table 5.4 Educational level intervals produced by different discretization methods.

In Figure 5.13 we can see the discretization of age and weekly work hours together. Our

method determined the cut points as [9, 31, 42]. Also, Figure 5.18 shows percentage matrices

of the hours per week attribute (A5) produced by our method, equal-width and k-means

binning. At first look, we can see higher contrast in the cells of our method’s percentage

matrix. It is an indication that our intervals are purer with respect to other attributes such as

capital gain and loss, age, etc.

Notice that the observations of people working under 9 hours per week are mostly under age

20 and above age 60 (see Figure 5.13). It might correspond to the young population who

work part-time and the elder population with fewer working hours. We consider this as a

significant correlation between age and work hours. Nevertheless, the other three benchmark

methods could not capture that correlation since their first cut point for age is around 30.
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Figure 5.13 Discretization intervals for age and weekly working hours attributes, produced by our
method and benchmark methods in adult income dataset.

This is an example of a resolution problem, that is, too large intervals for age attribute hid

the mentioned pattern.

Moreover, our method placed the last cut point at 42 hours per week, which is generally

accepted as the overworking threshold in most countries. Also, the cut point at 42 hours

(denoted as A5,3) provided a high contrast in the percentage matrix of our method (see Fig-

ure 5.18). On the other hand, k-means and equal-width chose the last cut point to be around

80 hours. We cannot contextually make a meaningful explanation of this cut point. In ad-

dition, the cut point at 80 (corresponds to A5,4) does not have cells with high contrast in the

percentage matrix of k-means in Figure 5.18.

We list all percentage matrices of all attributes below in Figure 5.14, Figure 5.15, Figure 5.16,

Figure 5.17, Figure 5.18. Since equal frequency could not discretize capital gain and loss at-

tributes, percentage matrices for equal frequency are not possible. However, we can compare

our method’s discretization to other two benchmark methods (equal width and k-means).
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Figure 5.14 Percentage matrices of the age attribute (A1) produced by our method and benchmark
methods.
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Figure 5.15 Percentage matrices of the education level attribute (A2) produced by our method and
benchmark methods.
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Figure 5.16 Percentage matrices of the hours per week attribute (A3) produced by our method and
benchmark methods.
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Figure 5.17 Percentage matrices of the capital loss attribute (A4) produced by our method and
benchmark methods.
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Figure 5.18 Percentage matrices of the hours per week attribute (A5) produced by our method and
benchmark methods.
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After discussing the cut points in detail, we show the total entropy levels provided by our

method and each benchmark method in Figure 5.19. Our method achieved a comparable

total entropy level for each attribute. We note that the equal-frequency method could not

discretize capital gain and loss attributes into equal-frequency bins since they are highly

skewed.

Figure 5.19 Total entropy achieved in each attribute in adult income dataset.

Figure 5.20 Classification accuracy of our method and three benchmark methods in adult income
dataset.

Finally, we performed a classification experiment using the discretization results. We discard

the class labels during discretization, and later we merge them back into the dataset before
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model training. All experiments are performed using random forest implementation of scikit-

learn library [20] with default parameters and 10-fold cross validation. Since the benchmark

methods are univariate and unsupervised, equal width and k-means caused a decrease in pre-

diction accuracy as expected (see Figure 5.20). Note that, the adult-income dataset is highly

skewed on gain and loss attributes and the equal frequency binning could not discretize those

attributes. As a result, random forest algorithm performed better with equal frequency than

other two univariate methods. Our method shows comparable results with a classification

performed on undiscretized data.

To conclude, our method produced meaningful and insightful intervals for exploratory tasks,

it preserved complex correlations between attributes, and produced lower total entropy val-

ues for most attributes. Moreover, the classification experiment showed that the prediction

accuracy was nearly the same as undiscretized data, which is remarkable for an unsupervised

discretization.

Similar to our study, Mehta et al. [17] used adult income dataset in their experiments for

evaluating their CPD method. We do not have access to CPD implementation, nevertheless,

we take the discretization intervals of each attribute reported in that study. Then, we calcu-

late percentage matrices and total entropy levels using the cut points produced by CPD and

our method. Since the number of intervals produced by CPD is different than our previous

experiment with benchmark methods, we conducted a separate experiment. The increase in

number of bins result in higher levels of entropy, therefore, we use the same number of bins

to prevent unfair comparisons in terms of entropy levels.
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Figure 5.21 Discretization intervals for age and weekly working hours attributes, produced by our
method and CPD methods in adult income dataset.

In Figure 5.21 we can observe the discretization intervals of CPD and our method for age and

weekly working hours. Since CPD and our method are multivariate discretizers, both pro-

duced more detailed intervals on younger ages as compared to univariate benchmark meth-

ods. This is because younger ages include more diverse socioeconomic groups and more

details to be identified. It can be easily observed from the figure that our method provided

thicker intervals whereas some CPD intervals are contextually meaningless due to being very

thin.

Figure 5.22 Total entropy achieved in each attribute in adult income dataset (including CPD).

Total entropy values of each attribute after discretization with respect to CPD’s interval

counts are presented in Figure 5.22. Both methods could not lower the total entropy of each

attribute when compared to univariate benchmark methods. Finally, Figure 5.23 presents
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the classification accuracy scores of all methods including CPD. As we stated earlier, un-

supervised methods tend to decrease predictive performance in classification. Equal width

and k-means caused a decrease in accuracy. Equal frequency showed a better accuracy since

it could not discretize capital gain and loss attributes, and undiscretized data can result in

higher accuracies. However, CPD and our method performed nearest to the classification on

undiscretized data. Also, we can see that our method is slightly better than CPD’s accuracy.

Figure 5.23 Classification accuracy of our method, CPD and three benchmark methods in adult in-
come dataset.

5.3.2. Experiments on SatImage Dataset

This dataset is retrieved from Landsat Multi-spectral Scanner images of NASA. It consists

of 3x3 pixel values of four spectral bands, which totals 36 attributes. It is used for a classifi-

cation task to predict the soil type among 6 soil class labels.

We present the results of the experiment with three benchmark methods. Our bounds for

the number of bins are five (maximum) and three (minimum). Our method separated all at-

tributes into five bins. Thus, we run benchmark methods with five bins for a fair comparison.

Total entropies of each attribute after discretization are presented in Figure 5.24. Our method

could not lower the total entropy of each attribute significantly when compared to univariate

benchmark methods.
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Next, Figure 5.25 presents the classification accuracy scores of all methods. Again, all ex-

periments used random forest with default parameters and 10-fold cross-validation. Our

method’s score is 0.86 in the lower quartile (Q2) and 0.90 in the upper quartile (Q3). It is

apparent that our method’s score is the nearest to the score of classification on undiscretized

data. Also, Nguyen et al. [18] performed classification experiments with random forests on

the SatImage dataset and they reported that their IPD method has scored 0.89±0.01 whereas

Bay’s [16] MVD method scored 0.81 ± 0.01 in terms of prediction accuracy. We are aware

that their and our configuration for random forest might not be the same, nonetheless, it is

sufficient to say that our method is comparable with IPD and MVD in terms of classification

scores.

Figure 5.24 Total entropy achieved in each attribute in SatImage dataset.

Figure 5.25 Classification accuracy of our method and three benchmark methods in SatImage
dataset.
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5.3.3. Experiments on Shuttle Dataset

This dataset is prepared for classification tasks and contains the data on the positioning of

radiators in the Space Shuttle. It consists of 9 continuous attributes and seven class labels.

Also, the class distribution is skewed and nearly 80% of the observations belong to class 1.

Hence, the donors of the dataset noted that the default accuracy score is 80% and the goal of

classification is achieving 99-99.9% accuracy.

The discretization has the same configuration as the experiment on SatImage dataset. Total

entropies of each attribute after discretization are presented in Figure 5.26. We see that

equal-width and k-means binning surpassed our method in terms of the total entropy.

Figure 5.26 Total entropy achieved in each attribute in Shuttle dataset.

Next, Figure 5.27 presents the classification accuracy scores of all methods. All experiments

used random forest with default parameters and 10-fold cross-validation. Again, our method

has the nearest accuracy score to undiscretized data. Besides, we mentioned that this dataset

is aimed at achieving at least 99% accuracy, and our method is the closest to reach that score.

This experiment shows that although k-means and equal-width approaches benefit from the

shape of the dataset and end up with lower entropy levels, their intervals are contextually

incorrect and therefore they lose significant accuracy points in prediction tasks.
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Figure 5.27 Classification accuracy of our method and three benchmark methods in Shuttle dataset.

5.3.4. Experiments on Ionosphere Dataset

This dataset contains the signal data collected by radars. It consists of 34 continuous at-

tributes and two class labels. The class labels are either “good” which indicates the evidence

for the existence of a structure in the ionosphere, or “bad” which shows that radar signals

pass through the ionosphere.

The discretization has the same configuration with the experiment on SatImage dataset. The

total entropies of each attribute after discretization are presented in Figure 5.28. Our method

could not lower the total entropy of each attribute significantly when compared to univariate

benchmark methods.
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Figure 5.28 Total entropy achieved in each attribute in Ionosphere dataset.

Next, Figure 5.29 presents the classification accuracy scores of all methods. All experiments

used random forest with default parameters and 10-fold cross validation. We can see that our

method showed comparable scores with other methods. Interestingly, the three benchmark

approaches provided better classification accuracy not only with respect to our model but

also with respect to the original dataset. Further testing and investigation is necessary to

expose the causes of this result which we did not have the time to do in this study.

Figure 5.29 Classification accuracy of our method and three benchmark methods in Ionosphere
dataset.
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5.4. Execution time

Our method evaluates all attributes at once to calculate graph edge weights via entropy val-

ues, and then, solves a graph shortest path problem with a dynamic programming approach.

This increases the complexity of overall procedure. We’ve run different tests with different

sized synthetic datasets in order to demonstrate the effect of increasing sizes. Our setup is

a laptop with AMD Ryzen-7 5700U processor and 40 gigabytes of RAM. Notice in Fig-

ure 5.30 that increasing the data size 10-fold (from 10,000 to 100,000) increased the running

time only 2-fold. That is due to the fact that we perform sub-sampling on unique values of an

attribute and limit the maximum number of nodes in the graph to 1,000. In our experiments,

we did not notice a significant effect of this on discretization intervals and prediction accu-

racy. Moreover, we benefit from PCA dimensionality reduction method to cope with high

dimensional datasets with tens or hundreds of attributes. It is worth noticing that increas-

ing the bin size of discretization caused a little increase in running time because additional

operations are performed to find a lengthier path during graph path search phase.

Figure 5.30 Runtime of discretization (4-bins and 8-bins) on synthetic datasets.
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6. CONCLUSION

In this study, we established a static, multivariate, unsupervised and global discretizer by

making use of data entropy and constrained shortest path search. We tested the proposed

method using a synthetic dataset where the attributes are non-trivially correlated, to expose its

capability of distinguishing related observations by considering all attributes and correlations

within.

Also, we made experiments on well-known real datasets and demonstrated that our method’s

discretization intervals are more meaningful for exploratory tasks and more capable of cap-

turing hidden patterns as compared to the intervals of univariate benchmark methods. In ad-

dition, on classification tasks, our method significantly generally surpassed univariate bench-

mark methods and showed comparable results with other multivariate discretizers such as

MVD [16], CPD [17], and IPD [18].

In the future, we are expecting to decrease the running time of our algorithm, which is sig-

nificantly more than our benchmark algorithms. For this purpose, we expect to improve our

penalty value searching routine which is the main bottleneck in the algorithm. We also expect

to make it more autonomous by discarding the bin count thresholds.

Finally, we observed that in some datasets with unique distribution shapes our method per-

forms worse than the univariate benchmark approaches. The underlying reasons of this re-

quires further investigation, which we expect to conduct in the future. We are also interested

in discovering modifications to our algorithm to alleviate this issue.
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APPENDIX

Figure 6.1 Percentage matrix of A1 from synthetic dataset after discretized with our method.

Figure 6.2 Percentage matrix of A1 from synthetic dataset after discretized with k-means.
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Figure 6.3 Percentage matrix of A1 from synthetic dataset after discretized with equal-width.

Figure 6.4 Percentage matrix of A1 from synthetic dataset after discretized with equal-frequency.
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Figure 6.5 Percentage matrix of A2 from synthetic dataset after discretized with our method.

Figure 6.6 Percentage matrix of A2 from synthetic dataset after discretized with k-means.

Figure 6.7 Percentage matrix of A2 from synthetic dataset after discretized with equal-width.

Figure 6.8 Percentage matrix of A2 from synthetic dataset after discretized with equal-frequency.
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Figure 6.9 Percentage matrix of A3 from synthetic dataset after discretized with our method.

Figure 6.10 Percentage matrix of A3 from synthetic dataset after discretized with k-means.
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Figure 6.11 Percentage matrix of A3 from synthetic dataset after discretized with equal-width.

Figure 6.12 Percentage matrix of A3 from synthetic dataset after discretized with equal-frequency.
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Figure 6.13 Percentage matrix of A4 from synthetic dataset after discretized with our method.

Figure 6.14 Percentage matrix of A4 from synthetic dataset after discretized with k-means.

Figure 6.15 Percentage matrix of A4 from synthetic dataset after discretized with equal-width.

Figure 6.16 Percentage matrix of A4 from synthetic dataset after discretized with equal-frequency.

65


