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ABSTRACT

A NOVEL MULTIVARIATE DISCRETIZATION ALGORITHM USING
DYNAMIC PROGRAMMING

Ali Burak Erdogan

Master of Science , Computer Engineering
Supervisor: Assoc. Prof. Dr. Burkay GENC
January 2023, 81 pages

Discretization is the task of converting quantitative (continuous) numerical data into qual-
itative (categorical) by assigning them into non-overlapping intervals. It is an important
step in reducing the complexity of data in data mining and exploratory data analysis stud-
ies. There are many methods that provide discretization schemes on continuous attributes,
such as equal-width, equal-frequency, and minimum description length principle (MDLP).
On the other hand, these methods ignore the multivariate nature of the dataset and focus
on a single feature space for discretization. This causes a loss of information with respect
to the correlations between attributes. Moreover, unlabeled data cannot be discretized with
supervised methods (e.g. MDLP) that use class labels. We propose a new technique for
unsupervised, multivariate, global, and static discretization; a discretizer based on informa-
tion entropy which employs a constrained shortest-path algorithm. We test our technique
on manually crafted randomized synthetic datasets as well as well-known real datasets. We
show that our approach provides a more meaningful discretization in test cases. This may al-
low the retrieval of meaningful intervals, which are hidden, for data exploratory tasks. Also,
classification accuracy on real datasets generally improves with our method unlike other uni-
variate benchmark methods. Hence, our method may serve to achieve better accuracy on

classification tasks.

Keywords: multivariate discretization, discretizer, data mining, exploratory data analysis
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OZET
DINAMIK PROGRAMLAMA KULLANAN OZGUN BIR COK
DEGISKENLI AYRIKLASTIRMA ALGORITMASI

Ali Burak Erdogan
Yiiksek Lisans, Bilgisayar Miihendisligi
Damisman: Dog¢. Dr. Burkay GENC
Ocak 2023, 81 sayfa

Ayriklastirma, nicel ve siirekli sayisal verileri, kesismeyen araliklara atayarak, nitel ve siniflan-
dirilabilir bir veriye doniistiirme islemine verilen isimdir. Ayriklastirma, veri madenciligi ve
kesifsel veri analizi ¢alismalarinda verinin karmagsikligini azaltmak i¢in uygulanan onemli
bir adimdir. Egit-genislik, esit-siklik ve MDLP (minimum tanim uzunlugu prensibi) gibi
stirekli sayisal verileri ayriklastirmak i¢in kullanilan bir¢ok yontem mevcuttur. Bununla be-
raber, saydigimiz yontemler verinin ¢cok degiskenli dogasin1 goz Oniine almayip, sadece bir
degiskene odaklanmaktadir. Bu da verinin 6z nitelikleri arasindaki mevcut korelasyon bil-
gisinin kaybolmasina sebep olmaktadir. Ayrica, stniflandirilmamais veriler, MDLP gibi simif
bilgisine dayali denetimli yontemler ile ayriklastirnlamamaktadir. Bu calismada, kisitlanmig
en kisa yol algoritmasi kullanan ve bilgi entropisine dayanan; denetimsiz, cok degiskenli,
evrensel ve statik bir ayriklastiric1 Oneriyoruz. Bu ayriklastirict teknigimizi manuel olarak
hazirlanmig rastgele sentetik veri kiimeleri {izerinde test ederek, yaklagimimizin iligkili 6z-
nitelikler tizerinden hesaplanan entropiye gore cogu test durumunda daha basarili bir ayriklagtirma
sagladi@in1 gosteriyoruz. Bu yontem, kesifsel veri analizi gibi gorevler i¢in veri icerisinde
gizli olan anlamli araliklarin kesfedilmesinde yardimci bir rol iistlenebilir. Buna ek olarak,
yontemimizi gercek veri kiimeleri tizerinde test ettigimizde siniflandirma dogrulugunun genel
olarak —tek degiskenli yontemlerin aksine —iyilestigini gozlemledik. Dolayisiyla, ayriklastirma
yontemimiz siniflandirma gorevlerinde daha yiiksek bir dogruluk elde edilmesine yardim

edebilir.

Keywords: ¢ok degiskenli ayriklagtirma, ayriklastirici, veri madenciligi, kesifsel veri analizi
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1. INTRODUCTION

Discretization is one of the most essential data preprocessing techniques in the data mining
field. It is a data reduction mechanism which ensures a large variety of numeric values are
mapped to a much smaller number of fixed intervals. Thus, quantitative data is transformed
into qualitative data (i.e. categorical values) by mapping each value in a continuous attribute
to a corresponding interval and transforming all continuous values into a discrete number
of values. Three of the top ten data mining algorithms (C4.5 [2], Apriori, Naive Bayes)
require data discretization [3], and some other data mining algorithms work better in terms
of accuracy and efficiency with the use of discretization [4]. For example, Dougherty et al.
[5] showed in their experiments that the classification accuracy of Naive-Bayes algorithm
was significantly improved when attributes are discretized with entropy-based discretizers,
as well as C4.5 algorithm performed better when the continuous features was discretized in
pre-processing step. It is known that decision trees become more concise and provide more
accurate results with the use of discretization [4]. Furthermore, discretization is not only used
for improving performance of data mining algorithms; but also for gaining insights about data

such as uncovering hidden patterns and understanding, using, and explaining data.

1.1. Contributions

It is well-known that discretization causes information loss on the dataset as a numerical
attribute might include significant information to describe an observation’s class. Here, we
develop a dynamic programming based algorithm which discretizes a single attribute while
taking other attributes (multi-variate information) into account so as to reduce information
loss. The algorithm aims to be sufficiently efficient so that it can be employed in large
datasets within a reasonable time frame. Also, the proposed algorithm provides an optimal
(with respect to distribution entropy) discretization scheme that groups values into intervals
containing data with similar distributions. In particular, we hereby propose a discretization

algorithm that is:



1.2.

multivariate (considers the relationships between all attributes for choosing an interval)
unsupervised (independent of class labels of data)

static (executed in the preprocessing step before the learning stage)

direct (determines multiple intervals at once)

global (evaluates the entire dataset for picking the best interval among all possible

ones)

Organization

The organization of the rest of the thesis is as follows:

2.1.

Chapter 2 provides definitions and background knowledge about discretization and its

properties.

Chapter 3 gives an overview of related work on discretization and demonstrates a brief

taxonomy of existing methods.
Chapter 4 introduces our proposed method and describes how our algorithm works.

Chapter 5 demonstrates the experiments performed with our method and their results

in detail.

Chapter 6 states the summary of the thesis and possible future directions.

2. DEFINITIONS AND BACKGROUND

Formal Description

A general description of a discretization process is as below:



Assuming a dataset S consisting of NV observations, we can discretize a continuous attribute
A by splitting it into k intervals and obtain a discretization scheme D = {[dy, dy), [d1,ds), . . . [dr—1, dk]}
where d;, is maximum and d, is minimum value that exists in A; and D is sorted on attribute

A.

A general discretization process (as in Figure 2.1) consist of 4 steps: Sorting, Searching
(Evaluation), Splitting (or Merging) and Stopping. Sorting process is generally expected
to be performed only once in the beginning and in an efficient way using an algorithm of
time complexity of O(NlogN) at maximum. Search (evaluation) part is the stage of finding
the most optimal cut points by means of an evaluation function. Splitting (or Merging)
part divides a subinterval into two or merges two adjacent intervals if merging approach is
followed. Stopping part is a stage where it is checked if any further splitting/merging is

required or not, according to a stopping criterion determined by discretization method.

2.2. Properties of Discretization Methods

 Static/Dynamic: Static methods are independent of what learning algorithm is used,
and are executed in the preprocessing stage before the learning stage starts. A vast ma-
jority of discretizers are of static type. Dynamic discretizers (for example ID3 decision

tree discretizer) are built into learning algorithms and executed while learning is done.

* Univariate/Multivariate: Univariate discretizers only focus on a single attribute at a
time without taking other continuous attributes into consideration. Multivariate dis-
cretizers take all continuous attributes into account to determine cut-points charac-
terizing the discretization scheme. As such, multivariate discretizers aim to capture

relations between attributes and determine cut points accordingly.

* Supervised/Unsupervised: Supervised discretization algorithms take the class labels
of target variable into account. This enables such discretizers to discover the relation-
ship between an attribute and the class label (e.g. entropy, correlations etc.) Supervised
discretizers can be used only in supervised learning tasks whereas unsupervised coun-
terparts can be used in both supervised and unsupervised learning.

3
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Figure 2.1 The overview of the steps of discretization [1].

» Splitting/Merging: After the evaluation step, a new interval is decided either by split-
ting a larger interval into two (e.g. top-down approach) or combining two smaller
intervals into a larger one (e.g. bottom-up approach). There are also examples of

hybrid approaches using both operations.

* Global/Local: Local discretizers take only a subset of data (i.e. the data exists in the
currently evaluated sub-interval) into account during evaluation. Global discretizers,
on the other hand, has access to the entire dataset to evaluate possible cut-points. To the
best of authors’ knowledge, most of the known discretizers are global. Yet, dynamic
discretizers are local by definition [4]. For example, as ID3 uses a dynamic approach,
the internal discretizer is able to access only the currently splitted data, therefore it is a

local discretizer. ME-MDLP [6] can be given as another example to local discretizers.



* Direct/Incremental: Direct discretizers determine multiple cut-points at once. The
incremental approach on the other hand, establishes a simple discretization initially
and improves it further over iterations, either splitting the interval more or merging

with a neighbor interval, and stops it when its stopping criterion is satisfied.

* Evaluation Measure: During the search (evaluation) stage, multiple candidate dis-
cretization schemes are compared according to an evaluation measure. There are five

main types of measures:

Information: Mostly the entropy measure defined in information theory and some
others such as Gini Index, Mutual Information are used in many discretizers like

MDLP [6], ID3 [2].

— Statistical: Dependency and correlation between attributes are statistically eval-

uated (e.g. Chi2 [7])

— Rough Sets: Rough set methods, boolean reasoning, lower and upper approxima-

tions are used [8].

— Wrapper: A classifier (e.g. Naive Bayes) is executed in each iteration and the

error rate is used to evaluate.

— Binning: Bins (intervals) are predefined and there is no evaluation measure.
EqualWidth (each range has the same length) and EqualFrequency (each range

includes the same number of observations) are examples for binning.

* Parametric/Non-parametric: Discretizers such as ME-MDLP [6] does not require
manual input of desired intervals and automatically optimize the number of bins ac-
cording to their stopping criterion. An example of a parametric method is ChiMerge

[9] which requires an upper limit for the number of intervals.



3. RELATED WORK

3.1. Supervised Discretizers

Kerber [9] proposed ChiMerge which is a supervised and univariate algorithm based on
statistical y? test. It tries to produce such intervals that within each interval target class
frequencies should be consistent and the class frequencies in different intervals should not
be similar. It follows bottom-up strategy, that is there are intervals to the number of unique
values at the beginning, and adjacent intervals with least y? value are merged. Also, the
merging step is controlled by using a threshold, which indicates the maximum y? value that
permits two neighbor intervals to be merged. The stopping criterion is determined manually

with a maximum number of intervals given by user.

Fayyad and Irani [6] proposed ME-MDLP (Minimum Entropy-Minimum Description Length
Principle) which is a supervised, univariate and splitting discretizer and it is one of the most
basic discretizers proposed so far. Evaluation measure is based on entropy feature and Min-
imum Description Length Principle (MDLP) described in Information Theory. Basically, it
recursively splits intervals until the entropy of interval gets minimized. MDLP is defined
as “the minimum number of bits required to uniquely specify an object out of the universe
of all objects.” [1] The stopping criterion is the same as the evaluation measure. Since it is
univariate, it generates intervals of an attribute regardless of its possible dependencies with

other attributes and only takes account of target class labels.

3.2. Unsupervised Discretizers

3.2.1. Univariate Discretizers

Kontkanen and Myllymaéki [10] proposed UD which is a univariate and unsupervised method
based on MDL (minimum description length) principle like Fayyad and Irani’s ME-MDL

method.



Vannucci and Colla [11] proposed an unsupervised and univariate method by making use
of SOMs (Self-organizing maps). They compared their method to classical kKNN-binning

approach and demonstrated lower error scores.

Schmidberger and Frank [12] proposed TUBE (Tree-based Unsupervised Bin Estimator),
an unsupervised and univariate method which makes use of Tree-based Density Estimation.
Their technique tries to construct an estimated density function without using any parameters.

Using cross validation, the algorithm adapts widths of bins to the data.

Biba et al. [13] proposed an unsupervised, univariate and top-down (splitting) method us-
ing Kernel Density Estimation. It makes use of cross-validation of the log-likelihood for

selecting the number of intervals, and kernel density estimation for selecting the cut-points.

Ferreira and Figueiredo [14] proposed U-LBG, which is an unsupervised version of well-

known LBG (Linde—-Buzo—Gray) Vector Quantizer Algorithm [15].

3.2.2. Multivariate Discretizers

Bay [16] proposed MVD which is an unsupervised multivariate discretization technique and
compared it to previous supervised methods like ME-MDL proposed by Fayyad and Irani
[6]. Bay argues that ME-MDL might perform well at classification, but it is not useful at
data discovery and analysis tasks. This technique prioritizes that instances in each interval
should have similar distributions among its attributes. Thus, instead of focusing on increas-
ing predictive accuracy, it pursuits exploring hidden patterns and extracting semantically
meaningful information for humans. For example, an interval of [$26K-$80K] for yearly
income on census data might result in good scores in prediction, but it is not giving much ex-
ploratory information because it hides various groups in terms of education, occupation etc.
This method was evaluated qualitatively and showed success in information extraction like
discovering hidden patterns at UCI Admissions data. In addition, it outperformed ME-MDL

in terms of CPU execution time.



Mehta et al. [17] proposed CPD (correlation preserving discretization) which is an unsu-
pervised, dynamic, and multivariate method based on PCA. Since the correlations among
all attributes are “intrinsically” preserved with the help of PCA algorithm, they proposed
an efficient method for highly dimensional and large data sets. They also compared their
performance with the prior method that Bay offered [16]. What they define as a meaningful
and correlation-preserved interval is “instances within an interval exhibiting similar proper-
ties, and instances in different intervals exhibiting different properties”. They tackled the
problem of capturing correlations between continuous and categorical attributes by means of
combining PCA with association rules mining. Also, CPD method is a dynamic discretiza-

tion technique that takes account of all attributes at the same time.

Nguyen et al. [18] proposed IPD (interaction-preserving discretization) which aims at not
losing dependencies among attributes while discretizing them. That is, “two multivariate
regions should only be in the same bin if and only if the objects in those regions have similar
multivariate joint distributions in the other dimensions. That is, we enforce each bin to
only contain data of similar distributions.” In this work, IPD was compared against earlier
methods like CPD, MVD, ME-MDL in terms of classification accuracy with Random Forest
classifier. IPD does not result in lower scores than classification scores of non-discretized
original data as well as it rather produces higher scores in some data sets. Also, in most

cases it outperformed CPD, ME-MDL and MVD.



4. PROPOSED METHOD

We propose a technique to discretize a continuous attribute using dynamic programming and

multivariate information, and our discretizer has the following properties:

1. Multivariate (considers the relationships between all attributes for choosing an interval)
2. Unsupervised (independent of class labels of data)

3. Static (executed in the preprocessing step before the learning stage)

4. Direct (determines multiple intervals at once)

5. Global (evaluates the entire dataset for picking the best interval among all possible

ones)

4.1. Overview of Method

Let S denote a dataset, that consists of /N observations, and M be its set of attributes. We
want to discretize the continuous attribute A € M by splitting it into L non-overlapping
intervals, where L is between predetermined thresholds MIN_BINS and MAX_BINS. That is,
the resulting discretization scheme must consist of L intervals, where MIN_BINS < L <
MAX_BINS, and L is to be determined by an optimization procedure (to be explained later)
rather than being a predetermined parameter. Also, let U = {u; € Ali = 1...k} de-
note the unique set of values that exist in A, sorted in ascending order, i.e. u; < u;
for any i < j. Next, we build a directed acyclic graph @Q = (V, E) with vertices V' =
{vi|vi = w;; u € Uyi = 1...k}andedges E ={e;; = (v;,v;) |i < j;i,5=1...k}
where each vertex in V' is connected to all other vertices with an edge e; ; where i < j. By
k(k—1)

this definition, we can observe that £ contains —5 edges.

Given that U is sorted, the graph () is always a directed acyclic graph (DAG), that is it has no

cycles. Moreover, it is guaranteed that it has a single source node (whose in-degree is zero)



denoted by v; and a single sink node (whose out-degree is zero) denoted by v;. Observe
that, each edge e;,; = (v;,v;) in E actually represents an interval [u;, u;) within A. We
assign a cost based on multivariate entropy to each edge (interval) whose calculation will be
explained in Section 4.2.. Then, it can be seen that a path (a sequence of edges) starting from
the source node v; and ending at the sink node v;, will represent a discretization scheme, and
any discretization scheme can be represented by a path on this graph. Thus, the problem of
finding an optimal discretization scheme is converted into finding an optimal (with respect
to edge costs) path P in graph () where P starts from v; and ends at vy, also it is of length!

L and MIN_BINS < L. < MAX_BINS.

Let us illustrate this with a small example. A sample set S taken from the well-known Iris

dataset is given in Table 4.1. It consists of four attributes and fifteen rows.

A (sepal length) | B (sepal width) | C (petal length) | D (petal width)
4.8 3.1 1.6 0.2
6.9 6.9 6.9 6.9
5.3 5.2 5.2 5.2
6.3 6.3 6.3 6.3
7.7 7.6 7.4 7.3
6.7 6.7 6.6 6.6
5.5 4.2 1.4 0.2
6.1 6.1 6.1 6.1
7.7 7.7 7.7 7.7
6.3 6.3 6.3 6.3
5.7 5.7 5.6 5.6
6.7 6.7 6.7 6.7
6.9 6.8 6.8 6.8
5.5 2.3 4.0 1.3
4.8 3.4 1.6 0.2

Table 4.1 A sample subset S from Iris dataset with 15 observations.

Suppose that attribute A is to be discretized whose values are as follows:

{4.8,6.9,5.3,6.3,7.7,6.7,5.5,6.1,7.7,6.3,5.7,6.7,6.9,5.5,4.8}

'In our context, the “length” of a path means the number of nodes included in a path, in other terms “hop
count”, not the total weights of that path’s edges.
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Next, U is produced with the unique values in this set in ascending order:

U = {4.8,5.3,5.5,5.7,6.1,6.3,6.7,6.9, 7.7}

A directed graph Q = (V, F) is generated out of U where V = {v; = 4.8, vy = 5.3,v3 =
5.5,v4 = 5.7,v5 = 6.1,v6 = 6.3,v7 = 6.7,v5 = 6.9,v9 = 7.7} as depicted in Figure 4.1.

|
N

Figure 4.1 An example graph () generated out of unique values in the attribute to be discretized.

Notice that, any path P starting from v; = 4.8 (source node) and ending at v9 = 7.7 (sink

node) in fact corresponds to a discretization scheme. For example the path P = {e; 4e4 666559}
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establish a discretization scheme D = {[4.8,5.7),[5.7,6.3), [6.3,6.9),[6.9,7.7]} as demon-
strated in Figure 4.2 (Path P is marked with red, bold lines).

Figure 4.2 An example path in () (marked with red, bold lines) which corresponds to a discretization
scheme.

At this point, our objective is to find an optimal path among all possible paths. An optimal

path should meet the two criteria below:

1. The total cost (the sum of edge costs in the path) is the minimum among all paths.

2. The length (i.e. hop-count) is within interval [MIN_BINS, MAX_BINS].

12



In order to meet the first criterion, a standard shortest path algorithm is sufficient. Nev-
ertheless, our second criterion makes it necessary to perform a constrained shortest path
procedure. A standard shortest path algorithm (e.g. Dijkstra’s algorithm) does not apply
bounds on the hop count, as its only objective is to find the path with minimum total edge
cost. However, in discretizing an attribute, as the intervals get smaller, the entropy of the
corresponding observations with respect to the other attributes gets lower. Therefore, the
shortest path almost always consists of the shortest possible edges (intervals of two adjacent
unique values). We, therefore, need to put bounds on the path’s length to restrict the number
of bins for discretization. Hence, we iteratively solve a dynamic programming procedure to
find the optimal path within the preassigned length bounds, by gradually modifying the edge

costs at each iteration until we find a path with length between the bounds.

Our search for the shortest path does not work in a brute-force manner, rather we apply a
customized optimization algorithm for minimizing the number of iterations. During each
iteration of the search procedure, we modify the edges by adding the same penalty to the
original weights of all the edges. The additional penalty enforces the shortest path algorithm
to generate another path with less number of edges than the path found with original edge
weights. The main reason is that an increase in each edge’s weight adds up to a larger total
path cost, therefore the shortest path algorithm tends to find a path with less number of edges

to minimize the path cost. Therefore, the relation between path length and penalty is inverse.

14+ &

13 4 LJ

12 4 ~

114 L

Path Length

104 R °

T T T T T T T
0.015 0.020 0.025 0.030 0.035 0.040 0.045
Penalty

Figure 4.3 The visualization of an example execution of optimal path algorithm.
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Iteration | Penalty | Path Length | Path (cutpoints)
0 0.01413 14 (50,71,76,83,89,94,100, 105, 110, 114, 117,123, 131, 145)
1 0.01940 13 (50,71,76,83,89,94, 100,105,110, 117,123,131, 145)
2 0.02717 11 (50, 76,83,89,96,104,109, 114,123,131, 145)
3 0.03241 10 (50, 76,84,91, 100, 106, 114, 123, 131, 145)
4 0.03795 10 (50, 76,84,91, 100, 106, 114, 123, 131, 145)
5 0.04718 8 (50,76, 88,100,106, 114, 123, 145)

Table 4.2 The gradual decrease steps of an example execution of the path optimization algorithm.

As seen in Figure 4.3, adding larger penalties to edge weights caused the computed shortest
path to have less number of edges. This search continues until a path that has MAX_BINS or
less edges is found. In case the path length drops below MIN_BINS due to a sharp increase
in the penalty, we start gradually decreasing the penalty to produce a path with more edges.
For example, as seen in Figure 4.3 as well as Table 4.2, the threshold MAX_BINS = 7 causes

the search procedure to stop once a path of length 8 (with respect to node count) is found.

4.2. Entropy-based Edge Weight Calculation

The weights assigned to the edges in this graph play a critical role in our method, because
our final discretization scheme will be selected according to the edge weights by means of
the shortest path algorithm. We should assign weights to the edges in such a way that the
shortest path can lead us to an optimal discretization scheme among other possible ones.
Remember that each edge actually represents an interval for discretization. For example, the
edge e3s from v3 = 5.5 to vs = 6.9 corresponds to the interval [5.5,6.9) in our example

graph in Figure 4.2.

For the calculation of edge weights, we start with normalizing each attribute in itself for
preventing scale based misjudgments in further computations. Since we are willing to es-
tablish a multivariate discretization that preserves the correlations among attributes as much
as possible, we compute the weight of each edge e; ; from v; to v; based on the entropy
notion in information theory. Information entropy, which was introduced by Shannon [19],

can be simply described as the impurity of a set of observations and defined by the following
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expression:

== plx)lgp(x (1

zeX

In our graph, the cost of an edge with respect to attribute A indicates whether the observations
within this interval show similar properties (“pure”: low entropy) or not (“impure”: high
entropy) within the other attributes. A lower cost edge denotes a set of observations that
are more like each other in terms of attributes other than A. For example, in the Iris dataset
(Table 4.1), if an interval defined on sepal length consists of observations that are very similar
in sepal width, petal length and petal width, then we call this interval pure as it has very low

total entropy with respect to the B, C, and D attributes.

Now, let us consider two paths in @): P, and P,, each mapping to certain discretization
schemes in A. Now, suppose that the total cost of P; is less than that of P,. This in turn
means that the intervals corresponding to the edges in P, are more pure than those in P;.
Here, a path being more pure than another represents its total entropy-based cost being less.
We argue that a good discretization scheme is one that uses intervals having lower entropy

levels, and we aim to optimize the total entropy level of all intervals.

Next, we provide the formula for W, ;, the entropy-based edge cost calculation (Equation 2)
we use. Notice that C' = M — A denotes the set of all attributes other than attribute A; N; ;
the number of observations within interval [7, j) with respect to A; N the total number of
observations in the dataset; and H denotes the intervals in the equal width discretization of

the distinct values in attribute ¢ that falls into the interval [4, 7).

—p(z)lgp(z) 2)
ceC zeH

Here, note that we use the equal width discretization to determine the intervals of attributes in

C' while computing the intervals of A with our method. That is because our method is based

on the entropy of the other attributes which can only be meaningfully computed if those

attributes are already discretized. Therefore, if the other attributes are given categorically,

15



we simply use the provided categorical values. However, if the other attributes are contin-
uous, we then assume a discretization of them based on the fast equal width discretization.

Therefore, the H in the formula represents the intervals (categories) obtained this way.

4.2.1. Histogram Matrices

In order to calculate the proportion of each interval in H, denoted as p(x) in Equation 2, we
use histograms. A histogram consists of the counts of how many values fall into each inter-
val provided that the histogram’s intervals are defined as equal-width and non-overlapping.
However, repeatedly computing histograms during edge-weight calculation is a costly op-
eration. We prefer an iterative and incremental approach and for each attribute in C, we
generate a histogram matrix before computing edge weights. A histogram matrix is a special
data structure that keeps all histogram information for an attribute in the dataset and reduces

the computational cost of histogram calculation.

[Row# | A | B | C | [[-1.89,—0.45)[[-0.45,0.97) [ [0.97,2.39] |
1 [48] 159 | 0.77 0 0 1
2 | 48| —-0.90 | —0.22 1 0 1
3 |48 -122] 054 2 0 1
4 53| —0.16 | —0.96 2 1 1
5 [55] 225 | —0.43 2 1 2
6 |55 203 | 181 2 1 3
7|56 L70 | 015 | 2 1 4
8 | 57| 239 | 124 2 1 5
9 ]6.1|-054] 051 3 1 5
10 [6.3]—118] 0.48 4 1 5
11 63| —-113 | —1.61 5 1 5
12 6.7| —0.44 | —0.37 5 2 5
13 69| —020| —0.75 5 3 5
14 69| —-031|—-1.08 5 4 5
15 | 7.7] =189 | —0.07 6 4 5

Table 4.3 A sample dataset with 15 observations (left) and the histogram matrix of Attribute B with
3-bins (right).

To explain more clearly, see the small dataset consisting of 15 observations in Table 4.3. If we
want to calculate histograms with three equal-width bins for attribute B, the intervals will

be [—1.89,—0.45),[—0.45,0.97), [0.97, 2.39] since the minimum and the maximum values
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of B are —1.89 and 2.39. For this, we generate a histogram matrix for B (the one on the
right in Table 4.3) that holds the counts of observations whose values of attribute B fall into
these ranges. Notice that a row in the histogram matrix holds the histogram for only the set
of observations up to that row. For instance, 7th row of histogram matrix only shows the

histogram calculated with only the first seven observations in the dataset.

A histogram matrix allows us to calculate histograms in constant time. For example, suppose
that we want to calculate attribute B’s histogram for the observations in the range [5.5,6.3)
with respect to attribute A. We find out that the corresponding observations are with row
number 5, 6, 7, 8, and 9 (separated with lines in the table). The histogram of that set of
observations can be calculated (in constant time) by subtracting 9" row [3, 1, 5] from 4%
row [2, 1, 1] in our histogram matrix. We obtain a histogram [1, 0, 4] with respect to attribute
B. Tt denotes that one observation falls into [—1.89, —0.45) bin, no observations into the

[—0.45,0.97) bin, and four observations into the last bin.

4.3. Main Discretization Algorithm

Algorithm 1 presents our main discretization algorithm. It takes several parameters. S is
the main dataset which consists of rows as observations and columns as attributes (whether
continuous or non-continuous). A is the column index number of attribute to be discretized.
MAX _BINS and MIN _BINS are parameters setting a threshold in order for the algorithm to
search for a discretization scheme having cut-points not more or less than those respective
limits. However, among different possible discretization schemes, always the one nearest
to the MAX_BINS will be selected (see Section 4.4.). N_PCA signifies how many attributes

should be generated out of attributes by PCA dimensionality reduction algorithm.
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Algorithm 1 Main discretization function

FUNCTION DISCRETIZE(S, A, MAX_BINS, MIN_BINS, N_PCA):

1:

2:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

Apply normalization (or standardization) to all attributes of .S other than A.

S’ <— A new matrix comprising A and N_PCA new attributes generated by PCA applied to all attributes of
S other than A.

Sort rows of S’ by attribute A in ascending order.

HM < Calculate histogram matrices of each attribute except for attribute A

U < unique set of values that exist in A, sorted in ascending order

V « {v|v; = u;;u € U;i =1...k} > Generate a vertex for each value in U and assign it to vertex set V'

() < Build a graph with vertices V'

if | /5 < MIN_BINS then

return > A cannot be discretized due to very low uniqueness of values

. end if

for i = 0to |U| do
forj =i+ 1to|U|do
if N;; < N/100 then > N; ;: number of observations within interval [z, j) with respect to A
continue to loop, disregard this interval
end if
TotalEntropy < 0
for ¢ € columns of S’ except for A do
H < HM[c] > Take histogram of observations in range [u;, u;) with respect to A, in attribute
¢’s histogram matrix
EntropylnRange < —p(z)1gp(x) > p(x) denotes the ratio of each entry in histogram

N,‘,‘j

RatioOfRange < —;

TotalEntropy < RatioOfRange X EntropylnRange
end for
Add a directed edge e; ; from v; to v; with a weight of TotalEntropy
end for

end for

Path < Call FIND_OPTIMUM _PATH prodecure and return the path

return Path[l : —1] > Discard first and last values as they are not required for discretization
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We explain our main discretization algorithm (Algorithm 1) step by step.

1. (Line 1) We start by scaling each attribute in itself for preventing possible biases for
further computations. (either standardization or normalization) Standardization tries
to centralize dataset in such a way that mean of numbers become zero and the standard
deviation becomes 1. On the other hand, normalization scales all values between 0 and

1. Since both can be useful in different scenarios we left it to the user’s preference.

2. (Line 2) We apply a dimensionality reduction technique called PCA (Principal Compo-
nent Analysis) which takes into account all attributes other than attribute A to produce
a reduced number of new attribute set which consists of N_PCA attributes. Once PCA
provides derived attributes, we merge them (along with our attribute A as the first col-
umn) into a new matrix S’.

The rationale behind this step is as follows: Since we are willing to establish a mul-
tivariate discretization which preserves correlations among attributes as much as pos-
sible in order to not lose information, the correlation of each attribute with attribute
A need to be evaluated. This might result in a high computational cost especially in
highly dimensional datasets with tens or hundreds of attributes. Hence, we need to
reduce the complexity of dataset by means of PCA in order to minimize the compu-
tational cost while not losing too much information that lies behind the correlations

between attributes.

3. (Line 3) We sort all rows (observations) according to attribute A in increasing order

(we assume that A is not a categorical variable, otherwise it cannot be discretized).

4. (Line 4) For our entropy-based edge weight calculation, we need each column’s de-
tailed histogram data, but computing it each time is a costly operation. Thus we calcu-
late histogram matrix of each attribute in S in advance. We define histogram matrix to
be a special data structure which reduces computational cost during histogram calcula-
tion. Thus, other than attribute A, histogram matrices of rest of attributes are computed

in advance and stored in memory. The rationale behind was explained in Section 4.2..
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5. (Line 6-7) Build a graph with values in U, do not add any edges yet as they will be

added after edge weights are calculated.

6. (Lines 9-11) Control whether the attribute is eligible for discretization. If number of
unique values in attribute A is less than MIN_BINS X 5, our heuristic implies that such
a discretization will not be meaningful because it has very low rate of uniqueness and

might be a categorical variable.

7. (Lines 12-13) We will search for all possible intervals in attribute A, thus we perform

two nested for-loops.

8. (Lines 14-16) If the number of values in range [u;, u;) is too small, we do not want to

include this interval to our final discretization scheme.

9. (Lines 17-23) For calculating an edge’s weight as formulated in Equation 2, we per-

form the following steps:

* We initialize TotalEntropy variable with zero.

» We calculate the ratio of observations in range [, j) with respect to A to all ob-

servations. Denoted as TJ

e For each column c in S’ (the ones produced by PCA) other than attribute A:
(a) We calculate the histogram of current range by subtracting two rows from
histogram matrix (as we explained above).

(b) We calculate the entropy of resulting histogram with classical entropy for-

mula.

(c) We multiply the ratio with the entropy and add it to TotalEntropy.

10. (Line 24) We connect two nodes v; and v; with a directed edge, and assign TotalEn-

tropy as its weight.

11. (Lines 28-30) We perform Path Optimization Algorithm which will be explained in

detail in Section 4.4., and try to find a shortest path from the minimum value to the
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12.

44.

maximum value in our newly constructed graph, suitable to our constraints by per-
forming Algorithm 2. For optimizing performance, we suggest the iteration limit to be

100 and step size to be 0.01.

(Line 31) Resulting path consists of the minimum and maximum values in attribute
A, and cut-points in between. We discard the first and the last values and only return

cut-points.

Path Optimization Algorithm

Parameters of our procedure is as follows:

@: Original graph with unique values in attribute A as nodes
SOURCE: Starting node for our optimal path

DEST: Destination node for our optimal path

MAX _LENGTH: Max. length of optimum path
MIN_LENGTH: Min. length of optimum path

STEP _SIZE is a factor to calculate the magnitude of a step which will be multiplied
later with a random number between [0.0,0.1). The calculated step will be added to
(or subtracted from) last found best penalty and candidate penalty will be used to find

an optimal path. We advice to use 0.01 as default.

ITER_LIMIT prevents very long executions if it’s difficult to find a path with required
thresholds. We use 100 as the limit even though our algorithm usually finds an opti-

mum path in no more than 10 iterations.
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Algorithm 2 Algorithm for finding an optimal path

FUNCTION FIND_OPTIMUM_PATH (Q, SOURCE, DEST, MAX_ LENGTH, MIN_LENGTH, STEP_SIZE,
ITER_LIMIT):

1:

2:

10:

11:

12:

14:

15:

16:

17:

18:

19:

20:

21:

22:

23:

24:

25:

26:

27:

28:

29:

30:

31:

32:

33:

34:

DoClimb < False
Penalty <+ 0

: Path < NULL
: PathLength < 0

: while Path = NULL do > Generate and evaluate initial penalty

Penalty < Pick random number between 0 and 0.1 with uniform distribution
Qp < Clone graph () and add Penalty to each edge’s weight
Path, PathLength < SHORTEST_PATH (Qp, SOURCE, DEST)
DoClimb < PathLength < MAX_LENGTH
end while
Iter <0
while lter < ITER_LIMIT do
Step < Pick random number between 0 and 0.1 with uniform distribution
if DoClimb then
Step < — Step x STEP _SIZE
else
Step < Step x STEP _SIZE
end if
CandidatePenalty <— Penalty + Step
Qcp  Clone graph () and add CandidatePenalty to each edge’s weight
CandidatePath, CandidatePathLength<—SHORTEST _PATH(Qcp, SOURCE, DEST)
NewOptimumFound < False
if not DoClimb then > in descending state
if MIN_LENGTH < CandidatePathLength < PathLength then
NewOptimumFound < True
if CandidatePathLength < MAX_LENGTH then
DoClimb < True
end if
end if
else > in climbing state
if PathLength < CandidatePathLength < MAX_LENGTH then
NewOptimumFound < True
end if
end if
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35:

36:

37:

38:

39:

40:

41:

42:

43:

44

45:

46:

47:

48:

49:

50:

if NewOptimumFound then > Update current optimum path
Penalty, Path, PathLength<—CandidatePenalty, CandidatePath, Candidate PathLength
end if

if PathLength = MAX LENGTH then
break > Stop iterating, we reached a path with optimum length

end if

Iter + Iter+1

end while

if PathLength < MIN_LENGTH or PathLength > MAX LENGTH then

return NULL > the found path is out of aimed interval, it means no optimal path

else

return Path, PathLength

end if

The algorithm shown in pseudo-code in Algorithm 2 is explained below:

* We store our current best found path in Path and it’s length in PathLength and the

penalty which causes that path to be generated in Penalty.

The direction of search is stored in DoClimb flag variable. If execution is in “descend”
state, (i.e. DoClimb = False), it means the path search will be forward (since the path
length-penalty correlation is a decreasing function, see Figure 4.3 ), that is it will be
seeking a shorter path than the last found best path by means of a higher penalty. If
the search is in “climb” state (i.e. DoClimb = True), it means the path search will be
backward, that is a longer path than the last found best path is searched by means of a

lower penalty.
(Lines 1-4) We start with initializing our variables.

(Lines 5-10) We randomly pick a starting point for penalty, and we clone the graph
and add the same penalty to each edge of the cloned graph, then calculate the shortest
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path. If the resulted path is higher than our MAX LENGTH threshold with respect to
length, we go into “descend” state. Otherwise, we enter “climb” state. (by means of

setting DoClimb flag)

(Lines 11-12) We enter main loop and continue until the ITER_LIMIT is reached if the

loop is not exited early in case of finding an optimal path.

(Lines 13-19) We calculate Step by multiplying a random number between [0, 0.1) and
STEP _SIZE. If we are in “climb” state, we subtract Step from current Penalty (as we
wish to decrease penalty in order to produce a longer path). If we are in “descend”
state, we aim at producing a shorter path by increasing penalty, thus we add Step from
current Penalty. The resulting penalty is saved temporarily in CurrentPenalty as we

will discard it if it does not bring any improvement on our last found best path.

(Lines 20-21) We clone the graph and add CandidatePenalty to each edge of the cloned
graph, after which we calculate the shortest path and assign CandidatePath and Can-

didatePathLength variables.

(Lines 23-29) If we are in “descend” state in the current iteration, we check whether
CandidatePathLength is in between our MIN_LENGTH and PathLength (most optimal
path found so far) because “descend” state’s aim is always finding a shorter (or equal)
path. If this condition is true, we record this by setting NewOptimumFound to True.
Also, we check whether CandidatePathLength is less or equal than MAX LENGTH.
If it holds true, we change our state to “climbing”. The reason is that we always
favor paths as close as possible to the our maximum length. Thus, after obtaining a
candidate optimal path within our thresholds, we do not greedily accept this path to
be a real optimal. Rather, we continue our search backwards for finding a longer path

than current optimal, but shorter than (or equal with) MAX_LENGTH.

(Lines 31-34) If we are in climbing state, check if CandidatePathLength is between
last found optimal path length and MAX_LENGTH. If it is, we record this as a new

improvement because we managed to find a longer path than current optimal but also
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shorter than (or equal to) MAX LENGTH. As we mentioned earlier, our optimization

algorithm always favors the closest path length to MAX LENGTH.

(Lines 36-38) If we recorded that this iteration brought an improvement on optimum
path, we assign all candidate variables to current most optimal path’s variables and

accept it to be the most optimal path found so far.

(Lines 40-42) If our most optimal path length is equal to MAX_LENGTH, we exit the

loop as there remains no need to search for another path.

(Lines 47-51) If most optimal path found is within our thresholds, return it. Otherwise,

return nothing.
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5. EXPERIMENTAL RESULTS

We performed two types of experiments: the first is performed on synthetic data whereas
the second is performed on real datasets. In our experiments, we compare our method with
three common discretization methods: equal-width, equal-frequency, and k-means binning
2. Unlike our method, all benchmark methods are univariate and they do not investigate
the correlations among attributes. Equal-width binning makes intervals of the same width
(namely length) from the minimum value to the maximum value. For example, a range of
values from 0 to 600 are split into three intervals: [0,200), [200, 400), [400, 600]. Note that
this approach is prone to produce unnecessary or nearly empty bins from sparse data or data
with outliers. Equal-frequency binning ensures that each interval contains an equal (or close)
number of values, given the number of intervals. For example, the sequence containing 12
values {3,4,5,4,6,7,7,8,9,9,10,9} is split into three intervals such as [3,6),[6,9), [9, 10]
ensuring that each interval contains four observations. K-means binning runs a k-means clus-
tering algorithm on a single dimension of the data, which separates the data into k clusters
while minimizing the mean squared errors within each cluster. Since each cluster maps to
a non-overlapping interval, the clusters generated by this method provide a discretization

scheme.

On real datasets, in addition to the three above mentioned benchmark methods, we compare
our method with Mehta et al.’s CPD method [17], Nguyen et al.’s IPD method, [18], and
Bay’s MVD method [16]. Since we could not access the implementation codes of those

methods, we compared our results with the ones reported in their studies.

Remember that, we define a good multivariate discretization to be one that each interval
contains observations with similar properties and different intervals have observations with
dissimilar properties with respect to other attributes. We showed that our method is generally

more effective in this purpose as compared to the other methods.

2We used the implementations in scikit-learn library [20] used for machine learning in Python language.
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Moreover, note that very large intervals can hide significant patterns in the data, whereas tiny
intervals cannot have sufficient observations to capture patterns. This is called the resolution
problem [16]. In our experiments, we show that the resolution problem occurs with three uni-
variate benchmark methods. On the contrary, we can prevent resolution problem by avoiding
paths with tiny intervals or paths with few large intervals by means of the weighted entropy

formula (see Equation 2) and path optimization algorithm (discussed in Section 4.4.),

5.1. Evaluation Method

In order to evaluate our method’s multivariate discretization performance and compare it to
others, we need a numerical metric. Multivariate discretization enables putting observations
with similar distributions into the same bins by considering all attributes and correlations
within. To this end, we consider the entropy levels as an indicator of similarity among
distributions since a low entropy in a group of observations implies that their distributions
are not far off. Thus, once all attributes are discretized, we calculate the total entropy of each

attribute as well as the total entropy of observations in each bin.

Before presenting our results, we first explain what a percentage matrix is, and then, we
define our formula for calculating total entropies by taking an example of a small dataset.
Observe our example dataset in Figure 5.1a where all attributes are assumed to be discretized

into 3-bins and mapped to one of the labels 0, 1, or 2.

Percentage Matrix: A percentage matrix displays the frequencies of attribute levels with
respect to other attributes’ levels. An example percentage matrix and the corresponding
attribute discretization is shown in Figure 5.1. In this matrix, each row and column represents
a level of an attribute. The set of observations that has the level j in attribute A; is denoted
by A;;. A cell of the matrix is addressed by row A, ; and column A ; and represent the
observations whose A; value is j and Ay value is [. Within each cell two statistics are given,
namely the number of matching observations and their percentage within all of A;. Moreover,
the tone of the cell background also represents the percentage, the darker shades hinting at

higher percentages.
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Figure 5.1 A small discretized dataset (a) and its corresponding percentage matrix (b).

Note that, a good discretization is one that purifies other attributes with respect to the dis-
cretized attribute. This is equivalent to having higher contrasts in the matrix. The more cells
we have with very high and very low percentages, the better. In this example, we have many
50% ratios, which means this is a weak discretization. On the other hand, cell A, o, A4 has
maximum percentage, and that means the first bin of A; contains only level-1 observations

from attribute 4.

We evaluate the success of discretization with two entropy-based metrics:

1. The total entropy of the observations in a discretization bin A, ;, calculated with the
classical entropy formula and then summed up. It is denoted as H; ; in Equation 3
below. Note that M is the set of attributes in the dataset; O; ; is the set of observations
where A; = j; and Hy,; ; is the total entropy of observation set O; ; with respect to k-th

attribute (only values in A, used for entropy calculation) based on Equation 1.

Hij= > Hy 3)

keM—i

2. The total entropy of attribute A;, which is the weighted sum of each bin’s total entropy
(H; ;). Equation 4 provides a formal equation. Note that NV is the total number of
observations in the dataset and .J is the total number of bins in attribute A;. Note that,
the weight coefficient allows us to decrease the contribution of pure but small-sized
bins in total entropy.
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5.2. Experiments on Synthetic Data

We adopted the approach by Nguyen et al. [18] and Bay [16] and performed our exper-
iments on synthetic data with designed correlations among attributes. Our method excels
at discovering these correlations between attributes and uses them for better discretization.
Considering that we work on unsupervised data, exposing the multi-modality of the data is
the best available option and the synthetic datasets provide an optimal ground for testing this.

Next, we explain how we generate the datasets.

5.2.1. Synthetic Data Generation

EqualFreq KMeans OurMethod
1000 1000 1000 ;
‘. ’. ' J
800 800 800 :
0 ° Py
o o o
600 600 600
o~ " ,' ’
<
D D o
200 O 200 O 200 :
.*. .*' :
0 Y 0 : 0 t

0 100 200 300 400 500 ] 100 200 300 400 500 0 100 200 300 400 500
Al Al Al

A2
A2

(a) Equal-frequency (b) K-Means (c) Our method

Figure 5.2 Discretizations on linearly correlated synthetic data by different methods.

For explaining the rationale behind our data generation, we provide a very simple example in
Figure 5.2 where we consider only two attributes with a very noticeable linear dependency. In
this figure, the discretization intervals computed by equal-frequency and k-means algorithms
and our method is shown. Even though equal-frequency and k-means, both of which are
univariate methods, do not consider the correlations between the attributes, they still perform
fine due to the inherent shape of the data. Our algorithm is designed to handle complicated

correlations which can not be exposed trivially by univariate approaches. Therefore, in order
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Table 5.1 Configuration of synthetic dataset.

Ay Ay Ay Ay
X3 ~ N(2000,1002)

X1 ~ N(50,152) size=500 Xu1 ~ N(4000, 5002)
1 y— 906 A 2 1 —
size=1000 X1 ~ N(100,302) X3 'N(EE)(())(())AOO ) size=1000

size=2000 S1ze=o
X33 ~ N(1000,1002)

X149 ~ N(550,15?) size=500 X, ~ N (1000, 200?)

size=1000 Xs.4 ~ N(8000,2002) size=1000
size=500
X35 ~ N(1000,100?)

X3~ N(120,15%) size=750 Xy3 ~ N (4000, 200?)
ize=1500 o~ 2 size=
Xaa ~ N(250,407) | oo~ NSO00.200%) | sice=1500

size=3000 sre=

X14 ~ N(480,15%) X317 ~ N(11000,800%) | X44 ~ N(2000,1502)
size=1500 size=1500 size=1500

X3.8 ~ ]\/v(70007 2002)

X15 ~ N(300,60%) | Xy5 ~ N(400,30?) size=2500 Xu5 ~ N(300,302)
size=5000 size=5000 X39 ~ N(3000,200?) size=5000

size=2500

to test our method’s capability, we generated our synthetic data with more noise and non-

trivial correlations.

We first generate a dataset with 10000 observations, comprising varying correlations among
four attributes, namely A;, Ay, A3, and A,. Each attribute is then sequentially divided into
intervals of differing sizes. Each interval is assigned a separate random variable each of
which produces values using Gaussian distributions with varying means and standard devia-
tions: X;; ~ N(u;;, 02 ;)- Here, i represents the attribute and j represents the order of the

random variable within the attribute.

Our synthetic data configuration is given in Table 5.1 and also visualized with histograms in
Figure 5.3. For example, X ; is assigned to observations 1 through 2000, X5 5 to observa-
tions 2001 through 5000, and X 3 to 5001 through 10000. Also, first 1000 observations are
assigned to X ; and the next 1000 to X ». That means, two observations both of which are
associated to the same random variable within the second attribute may be associated to two

different random variables within the first attribute. This introduces a non-linear correlation
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Figure 5.3 Distributions of attributes in the synthetic dataset.
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between attributes. However, we assign the random variables to the observations in a se-

quential manner, and hence although we create variation, we do not produce totally random

observations. The resulting dataset and the correlations among attributes can be observed in

Figure 5.4.
500 14000 {
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Figure 5.4 Correlations between A; and other attributes in the synthetic dataset.
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5.2.2. Results

We run our algorithm and three benchmark methods on our synthetic dataset to discretize Ay,
Ag, Az, Ay into 5, 3, 6, 4 bins, respectively. These bin sizes are optimal by the construction

of the dataset.

We provide comparisons of our method with the three benchmark methods in Figures 5.5,5.6,
and 5.7. Considering that presenting all comparisons visually would take a very large amount
of space, here we provide visual comparisons for a limited amount of cases. More detailed

comparisons are given numerically in Section 5.2.3..

Equalwidth OurMethod
500 i 500 A :

400 400

300 - 300

Az ()

Az ()

200 - 200+

100 100

0 : : : : 04 : : : :
0 100 200 300 400 500 600 0 100 200 300 400 500 600
A1 () Al ()
(a) Equal-width (b) Our method

Figure 5.5 A; and A,’s discretization intervals produced by equal-width and our method.

Figure 5.5a demonstrates that equal-width approach could not detect similar clusters of ob-
servations since it did not regard A, for determining cutpoints of A; and vice versa. It only
focused on partitioning a single dimension into equal widths. However, our method took all
other attributes into account and discovered known ground-truth cutpoints on A; and A, and

separated the clusters of observations properly (as shown in Figure 5.5b).
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Figure 5.6 A; and Ajs’s discretization intervals produced by k-means and our method.

In Figure 5.6a, k-means binning approach split A; into five clusters and minimized the mean

square error within clusters using only the values in A;. Similarly, it split A3 into six clusters

using only the values of As. Consequently, the correlations between the discretized attribute

and the others are disregarded. On the other hand, our method regards all correlations be-

tween attributes while calculating entropy of bins and tries to minimize the entropy within

each bin. Therefore, in Figure 5.6b, we see a better separation of clusters and cutpoints closer

to the known ground-truth cutpoints.
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(a) Equal-frequency
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Figure 5.7 A; and A4’s discretization intervals produced by equal-frequency and our method.



For attribute A; and A4, equal-frequency binning produced intervals each of which contains
a nearly equal number of observations as shown in Figure 5.7a. When those intervals are
projected into a scatter plot for A; — A4, we see that they are not as successful as that of our

method at separating clusters, as demonstrated in Figure 5.7b.

5.2.3. Evaluation

OurMethod_synthetic_2_10k_[5, 3, 6, 4]bins
As1 Az Az Az Aszs As0 As As2

49.95% 0.40% 48.85% 0.20% 0.60% 0.00% 0.20% 0.00% 0.10%
501 4 490 2 6 0 2 0 1
A 2.34% 91.81% 48.63% 1.56% 0.39% 1.63% 47.79% 0.00% 0.00% 0.00%
11 36 1412 748 24 6 25 735 0 0 0
A 0.00% 0.86% 0.04% 49.85% 0.08% 49.70% 0.33% 0.00% 0.04% 0.00% 0.04%
1.2 0 2 2 2443 4 2436 16 0 2 0 2
A 2.38% 0.39% 1.93% 0.00% 1.74% 0.32% 0.06%
1.3 37 6 30 0 27 5 1
2.89% 0.20% 0.10% 0.00% 0.50% 49.00% 1.20% 0.10% 1.20% 0.00%
29 2 1 0 5 492 12 1 12 0
(a) Our method
EqualWidth_synthetic_2_10k_[5, 3, 6, 4]bins
3 Az Az 3 Azl Az, Az Asa Ass As0 Ag1 Ag3
58.56% | 40.33% 1.11% LRI | 14.96%  14.67%  21.10% 0.00% 0.00% 1.17% 21.27%
1002 690 19 843 256 251 361 0 0 20 364

51.19% 47.91% 32.41% 18.39% 19.81% 29.39% 0.00% 0.00% 48.75% 0.00% 46.82% 4.44%
A1 14 796 745 504 286 308 457 0 0 758 0 728 69

A 0.00% 12.28% 37.94% 41.51% 8.27% 0.00% 0.00% 0.00% 0.00% 0.00%
1,2 0 420 1298 1420 283 0 0 0 0 0
0.79% 49.88% 49.33% 5.32% 18.70% 21.27% 5.07% 37.90% 11.74% 49.45% 50.55% 0.00% 0.00%
13 816 807 87 306 348 83 620 192 809 827 0 0
59.87% 39.36% 29.82% 0.18% 0.12% 30.41% 29.58% 9.90% 59.75% 40.25% 0.00% 0.00%
1004 660 500 3 2 510 496 166 1002 675 0 0

(b) Equal-width

Figure 5.8 Percentage matrices of A; after our method and equal width applied.
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EqualFreq_synthetic_2_10k_[5, 3, 6, 4]bins

Az As,2 As 3 As4 As,s As0 As1 As,2
28.50% 45.40% 4.35% 25.00% 0.20% 22.20% 2.85% 0.30% 0.15% 0.05%
570 908 87 500 4 244 57 6 3 1
A 10.80% coon | 12.95%  23.30%  1820%  24.65%  19.25% 1.65% 0.00% 25.45%
11 216 972 259 266 364 293 385 33 0 509
A 0.00% 32.75% EIEEA 0.00% 32.15%  23.10%  33.15%  11.60% 0.00% 50.25% | 49.75% 0.00% 0.00%
1.2 0 655 1345 0 643 162 663 232 0 1005 995 0 0
A 11.95% 50.40% 0.00% 23.45%  16.85%  25.15% 9.10% 25.45% 25.45% 0.00%
137 239 1008 0 469 337 503 182 509 509 0
A PR 27.15% 0.30% 25.00% 0.05% 0.20% 0.15% 2120% [EEERILA 0.25% 0.20% 99.50% 0.05%
Py 1451 543 6 500 1 4 3 224 1068 5 4 1990 1
(a) Equal-frequency
KMeans_synthetic_2_10k_[5, 3, 6, 4]bins
Az,0 Az Az Azl As,2 Az 3 Asa Ass As0 Ag1 Ag2 Ay
41.42% | 54.69% 3.90% Gl 1051%  1118%  29.25% 0.00% 0.00% 1.69% 0.51% 58.50%
el 1052 1389 99 1246 267 284 743 0 0 43 13 1486
0.00% 1.10% 0.15% 50.59% | 48.46% 0.81% 0.00% 0.00% 0.00% 0.07% 0.15%
AL [ 15 2 688 659 11 0 0 0 1 2
0.00% 0.63% 0.00% 50.47% | 48.80% 0.72% 0.00% 0.00% [ETICAM  0.00% 0.00% 0.00%
A1z 0 14 [ 1116 1079 16 0 0 2211 0 [ [
A 0.00% 1.12% 0.00% 48.02% | 50.93% 0.75% 0.22% 0.07% 0.37% 0.00% 0.00%
1.3 0 15 0 [ [E] 10 3 1 5 [ [
A 41.33% | 54.71% 3.96% 19.62% 1.06% 1.10% 20.13%  31.63%  26.45% | 32.03% | AR 0.00% 0.00%
By 1053 1394 101 500 27 28 513 806 674 816 1732 0 0
(b) K-Means

Figure 5.9 Percentage matrices of A; after equal frequency and k-means binning applied.

In Figure 5.8 and 5.9, the frequency matrices of attribute A; after the synthetic dataset was
discretized with different methods are shown. This visualization helps us to assess the en-
tropy of bins after discretization. When we examine the percentage matrix of our method
(see Figure 5.8a), we see more contrast as compared to the matrices of equal-width (see Fig-
ure 5.8b) or equal-frequency (see Figure 5.9a). The k-means algorithm did better than the

other two, but failed to identify the bins as clear as our approach. The rest of the percentage

matrices for all attributes and methods are listed in Appendix.

Figure 5.10 shows the H; ; values for all attributes and all methods. In this figure, the width

of each bar represents the ratio of observations falling into that bin and the height represents
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Figure 5.10 Total entropy achieved in each bin via all four methods.

the bin-wise entropy value, ; ;. A better discretization should provide thick and short bars,

whereas the worst is to have thick and long bars. Overall, our approach provides thicker

and shorter bars (larger intervals with smaller entropies). Finally, Figure 5.11 provides a

visualization of the attribute-wise entropy values, f;, for each method. It clearly shows that

our approach is superior to all three benchmark algorithms on the synthetic data set.

Total entropy of each attribute

< < < <

#Zm OurMethod
= KMeans

BN EqualWidth
= Equalfreq

Figure 5.11 Total entropy achieved in each attribute via all four methods.

5.3. Experiments on Real Data

We performed our experiments on four common real datasets from UCI Machine Learning

Repository [21] (summarized in Table 5.2). We compare our method against three bench-

mark methods: equal-width, equal-frequency, and k-means binning. Also, we provide com-

parisons of our method with other multivariate discretizers such as Mehta et al.’s CPD method
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Dataset Attributes | Observations | Class Labels
Adult-income 14 48842 2
SatImage 36 6435 6
Shuttle 9 58000 2
Tonosphere 34 351 2

Table 5.2 Used real datasets and their properties.

[17], Nguyen et al.’s IPD method, [18], and Bay’s MVD method [16] whenever we have data
of their results. Since we could not access the implementation of these methods, we com-
pared our results with results reported in the respective papers. For comparison, we consider
two evaluation metrics: percentage matrices and total entropy levels, both of which were

explained in the previous section.

In addition, we perform classification tests with the random forest classifier to measure how
different discretizations affect the performance of a machine learning study. Although ran-
dom forest is not always the best classifier for prediction, it is enough to show that our method
preserves correlations in a predictive task. We also remind that our method’s main purpose
is to preserve correlations between attributes and to find hidden patterns in order to minimize
the accuracy loss in machine learning. Supervised entropy-based discretization methods are
reported to be improving the predictive performance of some classifiers such as Naive-Bayes
[5]. Nevertheless, Bay argues that supervised discretizers such as ME-MDL harm pattern
discovery in exploratory tasks despite the increase in prediction accuracy [16]. For example,
Bay reports that using different class variables of UCI Student Admissions dataset radically
changed cut points of income attribute although the predictive accuracy was stable in two
cases. Hence, supervised discretization may affect the stability of discretization results and

may not give confidence to a human expert for discovering patterns.

On the other hand, unsupervised discretization methods do not consider class labels and as a
result, the correlations between attributes and the class labels may be lost. Therefore, a small
decrease in prediction scores after an unsupervised discretization is not unusual. Our results

show that unsupervised benchmark methods resulted in considerable decrease in prediction
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accuracy. Nonetheless, our method surpassed two benchmark methods, and also performed

very close to undiscretized data.

5.3.1. Experiments on Adult-income Dataset

This dataset is collected from the 1994 Current Population Survey in the US. It has 14 at-
tributes such as age, education level, capital gain and loss, gender, weekly worked hours,
marital status, ethnicity, occupation, etc. It has two class labels since it is prepared for a task
to predict whether a person’s income is above 50,000 dollars or not. We omit class labels as
well as nominal attributes like marital status. Thus, we use only five attributes: age, weekly

worked hours, educational level (from preschool to PhD), capital gain, and capital loss.

We present the results of the experiment with three benchmark methods. Our bounds for the

number of bins are five (maximum) and three (minimum). Our method separated capital loss
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Figure 5.12 Discretization intervals for age and educational level attributes, produced by our method
and benchmark methods in adult income dataset.
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and weekly working hours into four bins, and the remaining attributes into five bins. Thus,

we run benchmark methods with that number of bins for a fair comparison.

In Figure 5.12 we observe that our method determined the cutpoints for the age as [19, 23, 30, 63].
Note that our intervals for age focused on young ages rather than old ages as opposed to other
benchmark methods. Remember that our method discretizes the age attribute considering its
relation with educational level, capital gain and loss, and weekly working hours at the same
time. Since this dataset is based on demographic and economical properties, it is meaningful
to have more detailed intervals at young ages as they contain groups with different economic
qualities [16]. Also, most people retire at age 60, thus, detailed intervals at old ages do not
make much sense. This allows us to capture more patterns in terms of people’s educational

and economical qualities.

For example, we can see in Figure 5.12 that until age 19, people have an education level
number 9 at most. It corresponds to a high school degree (using the provided education level
map in Table 5.3). This pattern can be explored with our method’s discretization as it has
a cut point at age 19. However, such a pattern between age and education is lost in other
methods’ intervals as their cut points for age start from the late twenties. This is another

example of the resolution problem with too large intervals.

Enumeration | Educational level

1 Preschool

2 15t — 4t class

3 5t — 6t class

4 7th — 8t class

5 9" class

6 10" class

7 11t class

8 12" class

9 High school & some college degree
11 Associate degree
13 Bachelors

14 Masters

15 Professional school
16 Doctorate

Table 5.3 Educational level and their enumerations in adult income dataset.
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Next, the intervals for educational level (which can be seen in Figure 5.12) are presented in
Table 5.4 for easy interpretation. Our method determined cut points for educational levels
as 9% class, high school degree, associate degree, bachelor’s degree, and master’s degree.
We consider this a reasonable decision since usually each refers to a different career path.
However, all other benchmark methods grouped people with bachelor, master, and PhD.
degrees into the same interval. It probably hides many patterns in population with different

academic degrees.

Method Education level intervals Education level groups (inclusive)

[preschool-9*" class], [1** class-1** class], [high school
Our method [1,6),[6,9),[9,13),[13,14), [14,16] | degree-associate degree], [bachelor’s degree], [masters de-
gree, PhD degree]

[preschool-8%" class], [9™" class-11%" class], [12¢" class-high

K-Means [1,5),[5,8),[8,11),[11,13),[13,16] | school degree], [associate degree], [bachelor’s degree, PhD
degree]
[preschool-6" class], [T class-10%" class], [11*" class-high
Equal Width [1,4),[4,7),[7,11),[11,13),[13,16] | school degree], [associate degree], [bachelor’s degree, PhD
degree]

[preschool-12%" class], [high school degree-associate de-

Equal Frequency | 1,9), [9,13), [13, 16] gree], [bachelor’s degree, PhD degree]

Table 5.4 Educational level intervals produced by different discretization methods.

In Figure 5.13 we can see the discretization of age and weekly work hours together. Our
method determined the cut points as [9, 31, 42]. Also, Figure 5.18 shows percentage matrices
of the hours per week attribute (As) produced by our method, equal-width and k-means
binning. At first look, we can see higher contrast in the cells of our method’s percentage
matrix. It is an indication that our intervals are purer with respect to other attributes such as

capital gain and loss, age, etc.

Notice that the observations of people working under 9 hours per week are mostly under age
20 and above age 60 (see Figure 5.13). It might correspond to the young population who
work part-time and the elder population with fewer working hours. We consider this as a
significant correlation between age and work hours. Nevertheless, the other three benchmark

methods could not capture that correlation since their first cut point for age is around 30.
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Figure 5.13 Discretization intervals for age and weekly working hours attributes, produced by our
method and benchmark methods in adult income dataset.

This is an example of a resolution problem, that is, too large intervals for age attribute hid

the mentioned pattern.

Moreover, our method placed the last cut point at 42 hours per week, which is generally
accepted as the overworking threshold in most countries. Also, the cut point at 42 hours
(denoted as Aj 3) provided a high contrast in the percentage matrix of our method (see Fig-
ure 5.18). On the other hand, k-means and equal-width chose the last cut point to be around
80 hours. We cannot contextually make a meaningful explanation of this cut point. In ad-
dition, the cut point at 80 (corresponds to Aj; 4) does not have cells with high contrast in the

percentage matrix of k-means in Figure 5.18.

We list all percentage matrices of all attributes below in Figure 5.14, Figure 5.15, Figure 5.16,
Figure 5.17, Figure 5.18. Since equal frequency could not discretize capital gain and loss at-
tributes, percentage matrices for equal frequency are not possible. However, we can compare

our method’s discretization to other two benchmark methods (equal width and k-means).
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A1z

A1q

A1

A1l

A1z

A1q

A1

A1z

A1s

OurMethod_adult_income

Az0 Azl Az Az Az Aso LERY As2 As3 Ass As0 Asn As2 Ass As,o As,1 As,> As,3
4.46% JZBIEZN 31.37% 0.00%  0.07% 0.55% 0.14% 0.00% 0.14% 2.20% 0.00% 0.00% [ 6.04% NEERFEZN 21.35% 2.75%
65 934 457 0 1 8 2 0 2 32 0 0 88 1018 311 40
3.24% 7.86% [EEEEFA 3.40% 0.07% 0.79% 0.50% 0.05% 0.25% [QEEHUSZN 1.42% 0.09% 0.50% [ 1.51% el 10.43%
144 349 3793 151 3 135] 22 2 11 4351 63 4 22 67 2171 463
3.74%  6.41% [EHVALE 22.24% 3.95% QEREEY 1.38% 1.95% 0.60% 0.53% QEVEYEN 1.00% 0.88% 0.70% J 0.66% 13.40% [ElVEAH 25.49%
322 552 5487 1917 340 8233 119 168 52 46 8396 86 76 60 57 1155 5209 2197

5.13% 5.66% [EOEPAE 17.79% 10.94% 0.87% 3.13% 2.57% 3.02% QERWAY 0.87% 2.71% 1.17% | 0.63% 7.21% [Sl:pl/
1618 1786 19092 5615 3454 274 987 812 954 30066 276 854 369 200 2275 17936
14.52% 8.58% |SEHERA 12.38% 10.39% QRZNGSEZN 5.32% 3.62% 0.69% 5.68% QERRINA 1.19% 0.54% 2.75% J 9.45% 15.89%
401 237 1495 342 287 2339 147 100 19 157 2638 33 15 76 261 439
KMeans_adult_income
Az0 Azl Az Az Az LERY As2 As3 Ass As0 Asn As2 Ass As,o As,1 As,> As,3
2.18% 11.77% [GEHUWZY 6.43% 16.62% QEYMEYAE 1.87% 0.25% 0.07% 0.08% 2.43% 0.30% 0.00% J22.36% WARELV/N 5.44% 0.82%
316 1709 9145 933 2412 14186 271 37 10 11 352 44 0 3246 10361 789 119
2.41% 5.86% [SUEEIVAN 9.43% 27.74% 5.40% 1.61% 0.17% 0.43% 4.33% 0.62% 0.03% [ 5.18% RIMPAN 12.19% 1.62%
370 899 8376 1447 4259 829 247 26 66 665 95 4 795 12437 1871 248
3.67% 5.34% [SiviVA 8.10% 31.65% 6.34% 2.61% 0.28% 0.98% 4.92% 0.87% 0.01% [ 4.96% RPIEA 13.02% 1.74%
396 576 5525 873 3413 684 281 30 106 531 94 1 535 8656 1404 188
7.42%  9.11% [SEHGSPA 5.03% 25.40% QELEYAZN 5.99%  2.55% 0.26% 0.77% QELREFAN 4.55% 0.95% 0.02% | 9.99% NEEEYA 10.06% 1.41%
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Figure 5.14 Percentage matrices of the age attribute (A1) produced by our method and benchmark

methods.
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Figure 5.15 Percentage matrices of the education level attribute (A2) produced by our method and
benchmark methods.
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Figure 5.16 Percentage matrices of the hours per week attribute (As) produced by our method and
benchmark methods.

44




OurMethod_adult_income

Ao Al Ao Ara  Ayo A1 Ayx Az Ays Aso As1 Ase A3z Asy Aso Aspy As,3

A 3.04% 9.28% 17.91% [ZREYA 5.63% § 5.31% 8.04% [ZEEFA 16.13% 7.96% EENMESA 1.24% 2.73% 1.89% 2.50% § 1.40% 14.93% [SLicEVA 28.73%
4.01 1425 4351 8396 [ELLEAGN 2638 2487 3770 [PEEYER 7563 3733 QEYAELE] 583 1279 885 1170 657 6997 | PEVEEH 13467

>
=
w
>
o
~

A 6.53% 12.86% 17.55% [SISEEFAl 6.73% § 5.10%  8.78% [GEIERRZN 15.71% 4.90% RUIOIRZ 0.00% 0.00% 0.00% 0.00% § 1.43% 21.43% [l0:PA%0 26.33%
411 32 63 86 276 B 25 43 321 77 24 490 0 0 0 0 7 105 249 129

A 0.00% 0.42% 8.01% [EEAEFA 1.58% § 1.05% 1.79% |- 7 30.03% 24.55% BN 0.00% 0.00% 0.00% 0.00% J 0.21% 3.37% |l :bii SlEkvs)
4.2 0 4 76 854 15 10 17 404 285 233 949 0 ] 0 ] 2 32 435 480

N

A 0.00% 4.17% 11.39% [ANPAZY 14.42%Q 5.31% 5.31% |[SPA=ibZA) 18.98% 18.03% pRUONURZ 0.00% 0.00% 0.00% 0.00% § 1.33% 8.35% |4ciieir
4.3 0 22 60 369 76 28 28 276 100 95 527 0 0 0 0 7 44 259

KMeans_adult_income

Ao At Az Az Al Ao A Aza Az Ays Aso Asn Asp Asz Asay Aso Asa Asp Ass
A 30.30% 31.30% 21.79% 12.38% 4.23% [ 3.73% 8.27% [SlSiEVAl 7.53% 24.04% v 4.90% 1.72% 0.19% 0.52% §12.84% RLPAYA 9.51% 1.36%
4,01 14119 14587 10157 5769 1971 1740 3853 pAElol 3507 11203 2284 802 88 244 5984 BEREENA 4432 636
A 18.78% 28.34% 14.83% 2.56% §2.08% 4.54% LA 7.10% JOLNEZ 0.00% 0.00% 0.00% 0.00% § 7.04% NANLEA 14.19% 1.12%
4.1] 352 531 278 48 39 85 882 133 1874 0 0 0 0 132 1455 266 21
A 12.50% 26.99% 26.70% 16.48% 17.33%] 3.69% 5.11% 6.25% sl RIOIRZ 0.00% 0.00% 0.00% 0.00% § 9.09% [CERVEZY 19.60% 2.84%
4.2 44 95 94 58 61 13 18 22 170 352 0 0 0 0 32 241 69 10

A 0.00% 30.77% 7.69% g CELcELN15.38%  7.69% [GIESERZY 0.00% 15.38% 0.00% 0.00% 0.00% 0.00% §23.08% [GEWEYA 7.69% 0.00%
4.3 0 4 1 7 2 1 0 2 0 0 0 0 3 9 1 0

-

EqualWidth_adult_income

A1o A1 A12 Az Aua Az,0 Azl Az,2 Az Aza Aso Azl Az As3z  Asas Aso As,1 As As,3

A 19.93% 6.58% 0.76% | 1.75% 6.47% |GUPALZ 7.53% 24.04% v 0.29% 0.01% 0.00% 0.52% §12.34% [GEWEPA 18.05% 1.35%
4.0 9289 3065 356 815 3017 [eAblePA 3508 | 11203 EpyZ 134 3 0 244 5752 QEENEALUN 8413 630
A 24.37% |l 24.47% 5.64% 0.58% | 0.84% 3.69% [LclEiiA 7.07% POJONO[FZ 0.00% 0.00% 0.00% 0.00% § 7.01% [GERRRZN 26.32% 1.05%
4.1 462 852 464 107 11 16 70 935 134 1896 ] 0 0 0 133 1244 499 20
16.67% 26.06% 17.58% 1.21% §2.42% 3.33% 6.06% |l O REOMIRZ 0.00% 0.00% 0.00% 0.00% J 7.88% [SIEHUGEZ) 33.03% 3.03%
As2]" 55 86 58 4 8 11 20 164 330 0 0 0 0 26 185 109 10

9.09% 27.27% 18.18% 27.27% 18.18%f 0.00% 18.18% [EHLYA 0.00% 18.18% BMRZ 0.00% 0.00% 0.00% 0.00% §18.18% [EAM:PAZY 0.00% 0.00%
As3 1 3 2 3 2 0 2 7 0 2 11 0 [ 0 0 2 9 0 0

Figure 5.17 Percentage matrices of the capital loss attribute (A4) produced by our method and
benchmark methods.
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Figure 5.18 Percentage matrices of the hours per week attribute (As) produced by our method and
benchmark methods.
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After discussing the cut points in detail, we show the total entropy levels provided by our
method and each benchmark method in Figure 5.19. Our method achieved a comparable
total entropy level for each attribute. We note that the equal-frequency method could not
discretize capital gain and loss attributes into equal-frequency bins since they are highly

skewed.

6 @A OurMethod
E=3 KMeans

BN Equalwidth
E=8 Equalfreq

Total entropy of each attribute
w

education-num A,
capital-gain As
capital-loss As

hours-per-week As

education-num A,
capital-gain As
capital-loss As

hours-per-week As

education-num A,
capital-gain As
capital-loss As

hours-per-week As

education-num A,

capital-gain As
capital-loss A4
hours-per-week As

Figure 5.19 Total entropy achieved in each attribute in adult income dataset.

Accuracy with Different Discretization Methods
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Figure 5.20 Classification accuracy of our method and three benchmark methods in adult income
dataset.

Finally, we performed a classification experiment using the discretization results. We discard
the class labels during discretization, and later we merge them back into the dataset before
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model training. All experiments are performed using random forest implementation of scikit-
learn library [20] with default parameters and 10-fold cross validation. Since the benchmark
methods are univariate and unsupervised, equal width and k-means caused a decrease in pre-
diction accuracy as expected (see Figure 5.20). Note that, the adult-income dataset is highly
skewed on gain and loss attributes and the equal frequency binning could not discretize those
attributes. As a result, random forest algorithm performed better with equal frequency than
other two univariate methods. Our method shows comparable results with a classification

performed on undiscretized data.

To conclude, our method produced meaningful and insightful intervals for exploratory tasks,
it preserved complex correlations between attributes, and produced lower total entropy val-
ues for most attributes. Moreover, the classification experiment showed that the prediction
accuracy was nearly the same as undiscretized data, which is remarkable for an unsupervised

discretization.

Similar to our study, Mehta et al. [17] used adult income dataset in their experiments for
evaluating their CPD method. We do not have access to CPD implementation, nevertheless,
we take the discretization intervals of each attribute reported in that study. Then, we calcu-
late percentage matrices and total entropy levels using the cut points produced by CPD and
our method. Since the number of intervals produced by CPD is different than our previous
experiment with benchmark methods, we conducted a separate experiment. The increase in
number of bins result in higher levels of entropy, therefore, we use the same number of bins

to prevent unfair comparisons in terms of entropy levels.
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Figure 5.21 Discretization intervals for age and weekly working hours attributes, produced by our
method and CPD methods in adult income dataset.

In Figure 5.21 we can observe the discretization intervals of CPD and our method for age and
weekly working hours. Since CPD and our method are multivariate discretizers, both pro-
duced more detailed intervals on younger ages as compared to univariate benchmark meth-
ods. This is because younger ages include more diverse socioeconomic groups and more
details to be identified. It can be easily observed from the figure that our method provided
thicker intervals whereas some CPD intervals are contextually meaningless due to being very

thin.
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Figure 5.22 Total entropy achieved in each attribute in adult income dataset (including CPD).

Total entropy values of each attribute after discretization with respect to CPD’s interval
counts are presented in Figure 5.22. Both methods could not lower the total entropy of each
attribute when compared to univariate benchmark methods. Finally, Figure 5.23 presents
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the classification accuracy scores of all methods including CPD. As we stated earlier, un-
supervised methods tend to decrease predictive performance in classification. Equal width
and k-means caused a decrease in accuracy. Equal frequency showed a better accuracy since
it could not discretize capital gain and loss attributes, and undiscretized data can result in
higher accuracies. However, CPD and our method performed nearest to the classification on

undiscretized data. Also, we can see that our method is slightly better than CPD’s accuracy.
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Figure 5.23 Classification accuracy of our method, CPD and three benchmark methods in adult in-
come dataset.

5.3.2. Experiments on SatImage Dataset

This dataset is retrieved from Landsat Multi-spectral Scanner images of NASA. It consists
of 3x3 pixel values of four spectral bands, which totals 36 attributes. It is used for a classifi-

cation task to predict the soil type among 6 soil class labels.

We present the results of the experiment with three benchmark methods. Our bounds for
the number of bins are five (maximum) and three (minimum). Our method separated all at-

tributes into five bins. Thus, we run benchmark methods with five bins for a fair comparison.

Total entropies of each attribute after discretization are presented in Figure 5.24. Our method
could not lower the total entropy of each attribute significantly when compared to univariate

benchmark methods.
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Next, Figure 5.25 presents the classification accuracy scores of all methods. Again, all ex-
periments used random forest with default parameters and 10-fold cross-validation. Our
method’s score is 0.86 in the lower quartile (Q2) and 0.90 in the upper quartile (Q3). It is
apparent that our method’s score is the nearest to the score of classification on undiscretized
data. Also, Nguyen et al. [18] performed classification experiments with random forests on
the SatImage dataset and they reported that their IPD method has scored 0.89+ 0.01 whereas
Bay’s [16] MVD method scored 0.81 £ 0.01 in terms of prediction accuracy. We are aware
that their and our configuration for random forest might not be the same, nonetheless, it is
sufficient to say that our method is comparable with IPD and MVD in terms of classification
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Figure 5.24 Total entropy achieved in each attribute in SatImage dataset.

Accuracy with Different Discretization Methods
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Figure 5.25 Classification accuracy of our method and three benchmark methods in Sat/mage
dataset.
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5.3.3. [Experiments on Shuttle Dataset

This dataset is prepared for classification tasks and contains the data on the positioning of
radiators in the Space Shuttle. It consists of 9 continuous attributes and seven class labels.
Also, the class distribution is skewed and nearly 80% of the observations belong to class 1.
Hence, the donors of the dataset noted that the default accuracy score is 80% and the goal of

classification is achieving 99-99.9% accuracy.

The discretization has the same configuration as the experiment on Satimage dataset. Total
entropies of each attribute after discretization are presented in Figure 5.26. We see that

equal-width and k-means binning surpassed our method in terms of the total entropy.

16
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=3 KMeans
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Total entropy of each attribute
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N

Figure 5.26 Total entropy achieved in each attribute in Shuttle dataset.

Next, Figure 5.27 presents the classification accuracy scores of all methods. All experiments
used random forest with default parameters and 10-fold cross-validation. Again, our method
has the nearest accuracy score to undiscretized data. Besides, we mentioned that this dataset
is aimed at achieving at least 99% accuracy, and our method is the closest to reach that score.
This experiment shows that although k-means and equal-width approaches benefit from the
shape of the dataset and end up with lower entropy levels, their intervals are contextually

incorrect and therefore they lose significant accuracy points in prediction tasks.
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Accuracy with Different Discretization Methods
(Dataset: shuttle, Method: RandomForestClassifier(random_state=0))
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Figure 5.27 Classification accuracy of our method and three benchmark methods in Shuttle dataset.

5.3.4. Experiments on Ionosphere Dataset

This dataset contains the signal data collected by radars. It consists of 34 continuous at-
tributes and two class labels. The class labels are either “good” which indicates the evidence
for the existence of a structure in the ionosphere, or “bad” which shows that radar signals

pass through the ionosphere.

The discretization has the same configuration with the experiment on Satlmage dataset. The
total entropies of each attribute after discretization are presented in Figure 5.28. Our method
could not lower the total entropy of each attribute significantly when compared to univariate

benchmark methods.
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Figure 5.28 Total entropy achieved in each attribute in lonosphere dataset.

Next, Figure 5.29 presents the classification accuracy scores of all methods. All experiments
used random forest with default parameters and 10-fold cross validation. We can see that our
method showed comparable scores with other methods. Interestingly, the three benchmark
approaches provided better classification accuracy not only with respect to our model but
also with respect to the original dataset. Further testing and investigation is necessary to

expose the causes of this result which we did not have the time to do in this study.

Accuracy with Different Discretization Methods
(Dataset: ionosphere, Method: RandomForestClassifier(random_state=0))
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Figure 5.29 Classification accuracy of our method and three benchmark methods in lonosphere
dataset.
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5.4. Execution time

Our method evaluates all attributes at once to calculate graph edge weights via entropy val-
ues, and then, solves a graph shortest path problem with a dynamic programming approach.
This increases the complexity of overall procedure. We’ve run different tests with different
sized synthetic datasets in order to demonstrate the effect of increasing sizes. Our setup is
a laptop with AMD Ryzen-7 5700U processor and 40 gigabytes of RAM. Notice in Fig-
ure 5.30 that increasing the data size 10-fold (from 10,000 to 100,000) increased the running
time only 2-fold. That is due to the fact that we perform sub-sampling on unique values of an
attribute and limit the maximum number of nodes in the graph to 1,000. In our experiments,
we did not notice a significant effect of this on discretization intervals and prediction accu-
racy. Moreover, we benefit from PCA dimensionality reduction method to cope with high
dimensional datasets with tens or hundreds of attributes. It is worth noticing that increas-
ing the bin size of discretization caused a little increase in running time because additional

operations are performed to find a lengthier path during graph path search phase.
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Figure 5.30 Runtime of discretization (4-bins and 8-bins) on synthetic datasets.
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6. CONCLUSION

In this study, we established a static, multivariate, unsupervised and global discretizer by
making use of data entropy and constrained shortest path search. We tested the proposed
method using a synthetic dataset where the attributes are non-trivially correlated, to expose its
capability of distinguishing related observations by considering all attributes and correlations

within.

Also, we made experiments on well-known real datasets and demonstrated that our method’s
discretization intervals are more meaningful for exploratory tasks and more capable of cap-
turing hidden patterns as compared to the intervals of univariate benchmark methods. In ad-
dition, on classification tasks, our method significantly generally surpassed univariate bench-
mark methods and showed comparable results with other multivariate discretizers such as

MVD [16], CPD [17], and IPD [18].

In the future, we are expecting to decrease the running time of our algorithm, which is sig-
nificantly more than our benchmark algorithms. For this purpose, we expect to improve our
penalty value searching routine which is the main bottleneck in the algorithm. We also expect

to make it more autonomous by discarding the bin count thresholds.

Finally, we observed that in some datasets with unique distribution shapes our method per-
forms worse than the univariate benchmark approaches. The underlying reasons of this re-
quires further investigation, which we expect to conduct in the future. We are also interested

in discovering modifications to our algorithm to alleviate this issue.
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OurMethod_synthetic_2_10k_[5, 3, 6, 4]bins

Azl Az, Az3 LER) Ass As0 Asn As,2
0.40% 48.85% 0.20% 0.60% 0.00% 0.20% 0.00% 0.10%
4 490 2 6 0 2 0 1
2.34% o 5.85% 48.63% 1.56% 0.39% 1.63% 47.79% 0.00% 2.67% 0.00% 0.00%
36 90 748 24 6 25 735 41 0 0
99.14% 49.85% 0.08% 49.70% 0.33% 0.04% 0.00%
4859 2443 4 2436 16 2 0

1.93% 0.00%
30 0
0.10% 0.00%
1 0

98.71%
991

95.43%
1483

97.33%
1497

Figure 6.1 Percentage matrix of A; from synthetic dataset after discretized with our method.

KMeans_synthetic_2_10k_[5, 3, 6, 4]bins

As1 As,2 As3 A3 Ass Aso Azl
41.42% 3.90% 10.51% 11.18% 29.25% 0.00% 0.00% 1.69% 0.51%
1052 929 267 284 743 0 0 43 13
0.81% 0.00% 0.00% 0.00%
11 0 0 0
99.37% 0.72% 0.00% 0.00% 100.00% 0.00%
2197 0 1116 16 0 0 2211 0
0.00% 1.12% 98.88% 48.02% 50.93% 0.75% 0.22% 0.07% 0.37%
0 15 1326 644 683 10 3 1 5
41.33% 54.71% 19.62% 1.06% 1.10% 20.13% 31.63% 26.45% 32.03% 67.97%
1053 1394 500 27 28 513 806 674 816 1732

0.07%

0.00%
0

0.00%

0.00%
0

0.15%
0.00%
0
0.00%

0

0.00%

Figure 6.2 Percentage matrix of A; from synthetic dataset after discretized with k-means.
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EqualWidth_synthetic_2_10k_[5, 3, 6, 4]bins

As1 Az, Az 3 Az 4 Ass Aso As1
14.96% 14.67% 21.10% 0.00% 0.00% 1.17%
256 251 361 0 0 20
18.39% 19.81% 29.39% 0.00% 0.00% 0.00% 46.82%
286 308 457 0 0 0 728
A 0.00% 1.87% 12.28% 37.94% 41.51% 8.27% 0.00% 0.00% 100.00% 0.00% 0.00% 0.00%
1 0 64 420 1298 1420 283 0 0 3421 0 0

A 49.88% 49.33% 5.32% 18.70% 21.27% 5.07% 37.90% 11.74% 49.45% 0.00%
1 816 807 87 306 348 83 620 192 809

A 59.87% 29.82% 0.18% 0.12% 30.41% 29.58% 9.90% 59.75% 40.25%
1 1004 500 3 2 510 496 166 1002 675

Figure 6.3 Percentage matrix of A; from synthetic dataset after discretized with equal-width.

EqualFreq_synthetic_2_10k_[5, 3, 6, 4]bins
Azl As,2 As3 Az Ass As0 As1 As,2

71.35% 45.40% 4.35% 25.00% 0.20% 22.20% 2.85% 0.30% 0.15% 0.05%

1427 908 87 500 4 444 57 1
A 10.80% 40.60% 12.95% 23.30% 18.20% 24.65% 19.25% 1.65% 37.45% 37.10% 0.00% 25.45%
1.1 216 812 259 466 364 493 385 g5 749 742 0 509
0.00% 23.10% 11.60% 0.00% 0.00% 0.00%
0 462 232 0 0 0

0.00% 23.45% 16.85% 25.15% 9.10% 25.45%
0 857 503 182

25.45% 0.00%
469 509 0

509

0.30%
543 6

25.00% 0.05% 0.20% 0.15% 21.20% 53.40% 0.25%
500 1 4 3 424 1068 5

0.20%
4

0.05%
1

Figure 6.4 Percentage matrix of A; from synthetic dataset after discretized with equal-frequency.
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OurMethod_synthetic_2_10k_[5, 3, 6, 4]bins
A1 A1l A1z Ays A1s Aso As1 As,2 As3 Az 4 As,s As0 As1 As2 Asz

48.32% 1.78% 0.00% 1.83% 48.07%  49.51% 0.15% 24.21% 0.20% 24.60% 1.33%

A 0.00% 48.52% 50.05%
2.0 978 36 0 37 &y 1002 3 490 4 498 27

0 982 1013

0.75% 48.34% 1.44% 48.48% 0.99% 24.75% 0.75% 0.21% 0.96% 24.51%

A 48.82%
2.1 22 1412 42 1416 29 723 22 6 28 716

1426

1.37% 48.68% | 49.20%
1422 1437

0.06% 1.78% 2.00% 0.04% 0.51% 0.08% 48.72% 0.79% 0.89% 0.04% 0.89%
3 920 101 2 26 4 2463 40 45 2 45

Figure 6.5 Percentage matrix of A from synthetic dataset after discretized with our method.

KMeans_synthetic_2_10k_[5, 3, 6, 4]bins

A1 A1 A1z A13 Aso As1 As2 As3 Az Ass As1 As2 Asz
49.98% 0.00% 0.00% 0.00% 48.69% 11.45% 12.45% 24.80% 1.33% 1.28% 36.10% 14.54% 27.36% 22.00%
A20 1052 0 0 0 1025 241 262 522 28 27 760 306 576 463

A 49.13% 0.53% 0.50% 0.53% 24.51% 0.74% 0.81% 25.04%  26.71%  22.18% Celelpa 30.92% 18.32%

E3y 1389 15 14 15 693 21 23 708 755 627 1396 874 518

A 1.95% 26.54% | = -o0 26.16% 1.99% 0.59% 48.93% | 48.30% 1.24% 0.51% 0.41% 97.95% 0.95% 0.73% 0.37%
2.2 99 1345 2197 1326 101 30 2480 2448 63 26 21 4964 48 37 19

Figure 6.6 Percentage matrix of A from synthetic dataset after discretized with k-means.

EqualWidth_synthetic_2_10k_[5, 3, 6, 4]bins

A1 A1z A13 A1s Az o0 As1 As,2 As3 Az Ass As3
49.29% 0.69% 0.00% 0.64% 49.39% 49.34% 12.20% 12.10% 24.84% 1.28% 0.25% 14.66%
1002 14 0 13 1004 1003 248 246 505 26 5 298
A 22.80% 26.31% 2.12% 26.97% 21.81% 24.88% 1.45% 1.29% 25.38% 35.53% 11.47% 47.79% 43.89% 4.36%
2,1 690 796 64 816 660 753 44 39 768 1075 347 1446 1328 132
A 0.38% 15.08% 67.94% 16.33% 0.26% 12.10% 37.58% 41.37% 8.52% 0.30% 0.12% 0.06%
2,2 19 745 3357 807 13 598 1857 2044 421 15 6 3

Figure 6.7 Percentage matrix of As from synthetic dataset after discretized with equal-width.

EqualFreq_synthetic_2_10k_[5, 3, 6, 4]bins

A1l A1, A13 ; Aso0 As1 As, 2 Az Ass Ass
A 6.48% 0.00% 7.17% 43.53% 37.20% 2.49% 15.00% 0.00% 0.00% 0.00%
2,0 216 0 239 1451 1240 83 500 0 0 0
12.81% 16.08%  12.24% 15.78%
A2 427 536 408 526
A 40.34% 11.64% 0.00% 50.48% b 0.00%
2.2 3 1345 6 0 388 0 1683 0

Figure 6.8 Percentage matrix of Ay from synthetic dataset after discretized with equal-frequency.
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OurMethod_synthetic_2_10k_[5, 3, 6, 4]bins
Az,0

A0 A11 A1,2 A1z A1
A, | 28:61% 011%  034%  28.21%
3,00 501 2 6 494
0.16%  0.96% [RINTCM 1.20%  0.04%
A1l g 24 2443 30 1
O 1.20%  0.80%  0.00%  0.00%
A3, 2 [ 6 4 0 0
A 0.08%  1.00% [RIKTCM 1.08%  0.20%
33] 2 2436 27 5
0.48% [l 1.28%  0.40%
Asal 6 735 16 5
0.00%  0.00%  0.00% 0.80%
Assl o 0 0 12

98.00%
490

0.16%

1.80%
27

Azl Az,2 Ag0 Ag1 As,2
1.48% 0.06% 28.56% 0.06%
26 500 1

0.88%

57.10%
716

95.19%
1426

98.72%

2463

99.88%
2499 0

99.36%

0.28%
2479 7
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4

99.20%
496

59.17%
742

Figure 6.9 Percentage matrix of A from synthetic dataset after discretized with our method.
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A1l A1,2 A3 A14
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27
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Figure 6.10 Percentage matrix of A3 from synthetic dataset after discretized with k-means.
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EqualWidth_synthetic_2_10k_[5, 3, 6, 4]bins
A0 A11 A1 A3 A1, Az Azl Az,2 Ag0 Ag1 As,2 Ay 3

31.99%

21.41% 17.84% 3.70%  21.24% 43.71%

Asol - 504 420 87 500 753 598 1029 209
11.91% 13.31% [DLOEA 14.24%  0.14% 7.82%  3.82%
A3 1| 256 286 1298 306 3 168 82

A 10.78%  13.22% PEEFEZS 14.94%  0.09% [ 10.56%  1.67% RCYMAYORERERENN  0.21% 6.91% 3.48%
3.2 251 308 1420 348 2 246 2044 2082 161 81

A 21.31% 26.98% 16.71% 4.90%  30.11% J 29.81% SRS 3.60%
3.3 361 457 283 83 510 505 689 61

0.00% 0.00% [NV 55.56% |N44449%S EPICEYCIN 96.33% AVONVPZY  0.00% 0.00%
As4 0 0 0 620 496 26 1075 1116 0 0

100.00% ORI 0.00%
358 0 0

A 0.00% 0.00% 0.00% | SERGERA 1.40%
3.5 0 0 0 192 5

Figure 6.11 Percentage matrix of A3 from synthetic dataset after discretized with equal-width.

EqualFreq_synthetic_2_10k_[5, 3, 6, 4]bins
A10 A1l A1, A3 A14 Az0 Az A2 Ado Ag1 Ag,2 A4,z

69.95%
1166

SUYEAS 15.54% 0.00% 0.00% = 29.99% JRWESEEN

A 25.61% 0.00% 0.00% 0.00% = 30.05%
3.0 908 259 0 0 500 1240

427 0 0 0 501

A 5.22% | 27.97% | = dcs 28.15%  0.06% 4.98% | 32.17% “APEsS 0.00% 4.98%
3.1 87 466 643 469 1 83 536 795 0 83

A 29.99% 21.84% 27.71% 20.22%  0.24% | 29.99% 24.48% | ‘SioEbA R C il 0.00%  29.99%
3.2 500 364 462 337 4 500 408 759 605 0 500

A 0.24%  29.59% | clcies 0 30.19%  0.18% 0.00%  31.57% SOEEEZE 0.00% 0.00%
3.3 4 493 663 503 3 0 526 843 0 0

26.63% 23.10% 13.92% 10.92% 25.43% 34.31% 23.28% | 17.04% 18.00% 25.37% | -l --i%
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3.5 57 33 0 509 864 0 0 0

Figure 6.12 Percentage matrix of A3 from synthetic dataset after discretized with equal-frequency.
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OurMethod_synthetic_2_10k_[5, 3, 6, 4]bins
A1z Ava Az0 Az Az As,o

Avo AL . Azl As,2 As3 Asa Ass

0.04% 0.82% 1.14% 0.02% 0.00% 0.80% 0.02% 50.00% 0.08% 49.60% 0.30% 0.00%
2 41 57 1 0 40 1 2499 4 2479 15 0

0.00% 0.00% 0.20% 1.29% 2.19% 0.20% 49.70% 0.00% 0.00% 0.70% 49.20% 0.40%
As 0 0 2 13 22 2 500 0 0 7 495 4
0.07% 0.00% 0.00% 0.80% 1.94% 3.01% 0.07% 0.00% 0.00% 0.00% 0.13%
As2 1 0 0 12 29 45 1 0 0 0 2

A 40.00% 59.88% 0.08% 0.04% 0.00% 40.52% 57.48% 2.00% 49.96% 0.12% 19.84% 0.36% 29.68% 0.04%
4.3 1000 1497 2 1 0 1013 1437 50 1249 3 496 9 742 1

Figure 6.13 Percentage matrix of A4 from synthetic dataset after discretized with our method.

KMeans_synthetic_2_10k_[5, 3, 6, 4]bins

Avo AL ALz Avs Ava Azo0 Az Az Aso Azl As2 As3 Asa Ass
A 0.75% 2355% | o0 23.18%  14.16% J 13.19% 0.68% 6.45% 4338% | 42.81% 7.36% 0.00% 0.00%
4.0 43 1357 2211 1336 816 760 372 2500 2467 424 0 0

0.74% 0.00% 0.00% 0.29%
1 [ 0 5 809

0.11% 0.17% 7.14% 46.23% 38.57%
2 3 125 675

0.00% 38.74% 58.78% 2.49% 50.71% 8.20% 9.68% 31.41% 0.00% 0.00%
0 576 874 37 754 122 144 467 0 0

99.93% 0.07% 0.00% 0.00%
1486 1 0 0

99.80% 0.20% 0.00% 0.00% 0.00% 46.30% 51.80% 1.90% 48.60% 11.80% 11.90% 27.70% 0.00% 0.00%
998 2 0 [ 0 463 518 19 486 118 119 277 0 0

Figure 6.14 Percentage matrix of A4 from synthetic dataset after discretized with k-means.

EqualWidth_synthetic_2_10k_[5, 3, 6, 4]bins
A0 Azl Az2 Aso Azl As2 As3 Asg Ass

Avo AL ALz Avs Ava

0.13% 12.64% 57.04% 13.49% 16.71%
8 758 809

16.37% 2.00%
3421 1002 982

18.39% 31.61% 15.29% 0.00% 0.00%
120 0 0

1103 1896 917

0.00% 0.00% 44.35% 95.01% . 0.85%
[ 0 82 675 13

020%  0.33% 177% [WREEAM  23.52%
1446 3 5 27

1116 358

64.44% 35.56% 0.00%
728 0

0.00% 50.27% 8.21% 7.87% 33.66% 0.00% 0.00%
1319 0 1029 168 161 689 0 0

84.06% 15.94% 0.00% 0.00% 0.00% .82% 48.27% 18.94% 18.71% 14.09% 0.00% 0.00%
364 69 0 [ 0 98 209 82 81 61 [ 0

Figure 6.15 Percentage matrix of A4 from synthetic dataset after discretized with equal-width.

EqualFreq_synthetic_2_10k_[5, 3, 6, 4]bins

Azo Az Az Aso Asz As,3 Asa Ass
A 40.20% 67.32% 0.00% 24.20% 11.36% 0.00%
4.0 1005 1683 0 605 284 0
0.12% 66.04% 0.00% 22.48% 12.00% 0.00%
Asl 3 1651 [ 562 300 0

0.00% 0.00% 16.92%
0 423

0.04% .68% 46.64% 3.32% 20.00% 0.00% 26.40% 3.64%
1 0 1166 83 500 0 660 91

Figure 6.16 Percentage matrix of A4 from synthetic dataset after discretized with equal-frequency.
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