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ABSTRACT
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Semih Yağcıoğlu

Doctor of Philosophy , Computer Engineering
Supervisor: Assoc. Prof. Dr. Mehmet Erkut Erdem

2nd Supervisor: Assoc. Prof. Dr. İbrahim Aykut Erdem
2023, 160 pages

In the blink of an eye, we understand what we are looking at. Most of our brain is organized

to process the visual information we receive; thus, replicating human intelligence requires a

complete understanding of human vision. But, is understanding vision enough to understand

human intelligence? Probably not. Besides our visual perception skills, language is an

essential and unique ability and a natural way of communication for humans.

For thousands of years, humankind has been telling stories and giving instructions through

spoken language. One of the earliest written forms of language is instructions, specifically

food recipes. These instructions not only help us understand what the people of that time

ate but also teach us how they used to live their lives. Instructions have been around us

for centuries, be it in the form of recipes, or how-to guides, written on stone tablets or

books, or else published on the web. How-to instructions with images and text are perfect

candidates for understanding human intelligence, and understanding them is an important,

intriguing research problem to solve. Modern how-to guides of any form almost always

contain multimodal information, such as images, videos, and text. Instructions are key to
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understanding and replicating a process, and how-to guides are great sources of instruction,

as we can replicate the same process by just following the guide. Furthermore, how-to

instructions often involve a joint understanding of multiple modalities of information e.g.

images and text. However, they are also very challenging to understand as they often

contain multimodal information such as images and text, consist of multiple objects and

entities as well as require a procedural understanding of actions and interactions between

such entities often referred in from one modality into another. How-to guides such as

cooking recipes, typically consist of multiple steps involving various objects and entities,

most of which interact with each other through different actions. Considering an action as a

combination of a verb and an object or entity, being able to generalize to unseen compositions

of these action compounds pose a great challenge. In this regard, understanding how visually

grounded textual instructions might help models’ systematic generalization abilities remains

an important research problem.

In this thesis, we examine multimodal machine comprehension of how-to instructions with

images and text, review related literature, and point out current challenges. We also propose

methods to address some of these challenges and ways to improve upon existing approaches.

The main contributions of this thesis can be summarized as follows. We investigate

machine comprehension and reasoning problems and review the previous literature to lay

the grounds for understanding multimodal how-to instructions. We survey compositional

generalization literature, highlight current research challenges, and discuss its relation to

understanding multimodal how-to instructions. We introduce a multimodal benchmark

how-to instructions dataset comprised of cooking recipes with images and text. We propose

novel methods for understanding multimodal procedures. Finally, we present a challenging

multimodal compositional generalization setup and propose methods to benchmark and

show multimodality’s contribution to significantly improve the current state of the art in

understanding multimodal how-to instructions and conclude with future research directions

and discuss open challenges.

Keywords: machine comprehension and reasoning, how-to instructions, multimodality,

procedural understanding, compositionality

ii



ÖZET

GÖRÜNTÜ VE METİN İÇEREN ÇOK KİPLİ NASIL YAPILIR
TALİMATLARININ MAKİNE İLE KAVRANMASI

Semih Yağcıoğlu

Doktora, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Mehmet Erkut Erdem

Eş Danışman: Doç. Dr. İbrahim Aykut Erdem
2023, 160 sayfa

Göz açıp kapayıncaya kadar, neye baktığımızı anlıyoruz. Beynimizin büyük bir kısmı,

aldığımız görsel bilgileri işlemek için organize edilmiştir; bu nedenle, insan zekasını taklit

etmek, görmenin tam olarak anlaşılmasını gerektirir. Ancak görmeyi anlamak, insan zekasını

anlamak için yeterli midir? Muhtemelen değil. Dil, görsel algı becerimizin yanı sıra, insanlar

için vazgeçilmez ve eşsiz bir yetenek ve doğal bir iletişim biçimidir.

İnsanoğlu binlerce yıldır konuşma diliyle hikayeler anlatmakta ve talimatlar vermektedir.

Dilin en eski yazılı biçimlerinden biri talimatlar olup özellikle yemek tarifleri talimatların

arasında ön plana çıkmaktadır. Bu talimatlar bizlere sadece o zamanın insanlarının ne

yediğini anlamamıza yardımcı olmakla kalmaz, aynı zamanda hayatlarını nasıl yaşadıklarını

da öğretir. İster tarifler şeklinde, ister nasıl yapılır yönergeleri şeklinde, ister taş tabletlere

veya kitaplara yazılmış olsun, ister web’de yayınlanmış olsun, talimatlar yüzyıllardır

etrafımızdadırlar. Görüntü ve metin içeren nasıl yapılır yönergeleri, insan zekasını anlamak

için mükemmel adaylar olmakla birlikte, bunları anlamak, çözülmesi gereken önemli,

merak uyandıran bir araştırma problemidir. Herhangi bir biçimdeki modern nasıl yapılır
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yönergeleri, neredeyse her zaman resimler, videolar ve metin gibi çok kipli bilgiler

içerir. Talimatlar, bir süreci anlamanın ve çoğaltmanın anahtarıdırlar ve nasıl yapılır

yönergeleri, yalnızca yönergeleri izleyerek aynı süreci tekrarlayabileceğimiz için harika

talimat kaynaklarıdır. Ayrıca, nasıl yapılır yönergeleri genellikle, örneğin görüntü ve metin

gibi birden çok kipin ortak bir şekilde anlaşılmasını içerir. Bununla birlikte, bu talimatlar,

genellikle görüntüler ve metin gibi çok kipli bilgiler içerdiklerinden, birden çok nesne ve

varlıktan oluştuklarından ve genellikle bir kipten diğerine atıfta bulunulan bu tür varlıklar

arasındaki eylemler ve etkileşimlerin yordamsal olarak anlaşılmasını gerektirdiğinden,

anlaşılması da oldukça zordur. Yemek tarifleri gibi nasıl yapılır yönergeleri, tipik olarak,

çoğu farklı eylemler yoluyla birbiriyle etkileşime giren çeşitli nesneleri ve varlıkları içeren

birden çok adımdan oluşur. Bir eylemi, bir fiil ile bir nesne veya varlığın birleşimi olarak

ele aldığımızda, bu eylemi oluşturan parçaların daha önce gözlemlenmemiş bileşimlerine

genelleme yapabilmek büyük bir zorluk teşkil etmektedir. Bu bağlamda, görsel temelli

metinsel yönergelerin, makine öğrenmesi modellerinin sistematik genelleme becerilerine

nasıl yardımcı olabileceğini anlamak önemli bir araştırma sorunu olmaya devam etmektedir.

Son yıllarda yapay zeka araştırmalarına giderek artan bir ilgi oluşmuştur. Özellikle, büyük

ölçekli veri kümelerinin önerilmesi, araştırmacıları daha karmaşık modeller geliştirmeye

motive etmiştir. Bilgisayarlı görü ve doğal dil işlemele alanlarında, örneğin görüntülerin

tasviredilmesi ve görsel soruları yanıtlama gibi görevler bir çok araştırmacının ilgisini

çekmiş ve bu problemler üzerinde pek çok çalışma yapılmıştır. Modellerin kalitesi zaman

içinde istikrarlı bir şekilde iyileşse de, bu görevlerin doğası gereği, hem görüntü hem

de metin alanlarında sorunların ortaklaşa çözülmesini gerektiren çeşitli zorluklar ortaya

çıkmıştır.

Bu doğrultuda ön plana çıkan ve araştırmacıların ilgisini çeken konuların başında kavrama ve

muhakeme problemleri dikkat çekmektedir. Geniş bir bağlamda bakacak olursak kavrama,

bir şeyin ne anlama geldiğini idrak etme yeteneğini, muhakeme ise bilinen gerçeklerden

sonuç çıkarmayı ifade etmektedir. Kavrama ve muhakeme yetenekleri üst düzey bilişsel

beceriler olmakla birlikte, sadece makineler için değil insanlar için de oldukça zorlayıcı
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problemler olarak kabul görmektedir. Her halükarda, makinelerin insan düzeyinde kavrama

ve akıl yürütmeye ulaşması için halihazırda oldukça önemli eksikler bulunmaktadır.

Bu tez, hem görseller, hem de metinler için makine kavraması ve makine muhakemesi

problemlerini incelemekte ve çok kipli muhakame ve kavrama problemlerini kapsamlı bir

şekilde ele almaktadır. Ayrıca görseller ve metinleri anlamak ve akıl yürütmek için literatürde

öne çıkan veri kümelerini incelemekle birlikte, daha önce önerilmiş görevleri genel bir

bakışla ele almaktadır. Bu tezde, özellikle, makinelere okumayı öğretmeyi ve ardından

bu konuda sorular sorarak okuduklarını anlamalarını sorgulamayı amaçlayan makine

okuması ve anlaması görevlerini incelemekte, aynı zamanda görsel akıl yürütme alanında

muhakeme ve çıkarım üzerine odaklanmakta, ayrıca çok kipli nasıl yapılır talimatlarının

makine muhakemesi ve makine kavranması ile idrak edilmesi üzerinde çalışmaktayız. Bu

problemlerin çözümü, tek kip ile dahi düşünüldüğünde oldukça zorlu problemler teşkil

etmektedir. Örneğin, makine okuduğunu anlama testleri, makinelerin verilen metni ne

kadar iyi anladıklarını, soruları ne kadar doğru yanıtladıklarını ölçerek değerlendirmeyi

amaçlar. Görsel akıl yürütme, sahne, aktörler, varsa eylemler, bağlam, nesneler ve bunların

bir biri ile olan etkileşimleri gibi görsel verilerin derinlemesine anlaşılmasını gerektirir.

Görsel verileri anlama konusunda onlarca yıllık araştırma yapılmıştır. Görsel muhakeme

ve anlama tipik olarak insanlarla, yani doğal dil yoluyla etkileşimi gerektirdiğinden, bu

görev pratik olarak görüntüler veya videolar ve metin gibi çok kipli verileri aynı anda ele

almayı gerektirmektedir. Tipik bir görsel muhakeme görevinde, bir makinenin görsel verileri

anlaması, bu görsel ile ilgili sorulan soruyu kavraması ve son olarak görsel veriler ve soru

bağlamında doğru bir cevap vermesi beklenir. Bu bağlamda, görüntü ve metinlerden oluşan

nasıl yapılır talimatlarının makine kavranması ve muhakemesi oldukça önemli ve bir o kadar

zor problemler olarak öne çıkmaktadır.

İnsanlar önceden bildikleri kavramların yeni bileşimleri ile ilk kez karşılaşsalar bile

kolayca anlayabilmekte, bildikleri kavram ve nesneleri zahmetsizce bir araya getirerek

yeni bileşimler oluşturabilmektedirler. Bu bağlamda, bileşimsel genelleme son yıllarda

araştırmacıların ilgisini çekmekle birlikte, bu problem, çok kipli nasıl yapılır talimatlarının

kavranması ve muhakemesi için oldukça önem arz etmektedir. Bu tezde, dilbilimsel

v



bileşimler üzerine mevcut çalışmaların kapsamlı bir incelemesini sunmakta, mevcut

görevleri ve veri kümelerini sınıflandırarak tartışmaktayız. Ayrıca, sinir ağı mimarileri ve

bileşimsel genelleme için önerilen öğrenme stratejilerini incelemekte, ve mevcut görevleri,

veri kümelerini, yöntem ve öğrenme stratejilerini tartışarak bu alanda önerilmiş çalışmaları

kapsamlı bir şekilde ele almaktayız. Bununla birlikte, sistematik genelleme alanındaki

mevcut kısıtlara vurgu yaparak ve gelecekteki muhtemel araştırma istikametlerini tartışıyor

ve çok kipliliğin sistematik bileşime katkısını inceliyoruz.

Yemek tariflerini anlamak ve akıl yürütmek, makinelerin yordamsal metinleri yorumlamasını

sağlamaya yönelik önemli bir araştırma alanıdır. Bu doğrultuda, bu tezde ayrıca, yemek

tariflerinin çok kipli olarak anlaşılması için yeni bir veri kümesi olan RecipeQA veri

kümesini sunmaktayız. Sunduğumuz bu veri kümesi, kendi içerisinde başlıklar, açıklamalar

ve hizalanmış görüntüler gibi birden çok kipe sahip eğitici yemek tariflerini içermektedir.

RecipeQA veri kümesi üzerinde hem tek kipli hem de çok kipli modeller önermekle birlikte,

metinsel boşluk doldurma, görsel boşluk doldurma, görsel sıralama, görsel uyum gibi çeşitli

muhakeme ve kavrama görevleri üzerinde farklı modeller ile deneyler gerçekleştirmekteyiz.

Elde ettiğimiz sonuçlar, RecipeQA veri kümesinin zorlu bir test ortamı ve makine anlama

sistemlerini değerlendirmek için ideal bir kıyaslama veri kümesi olarak hizmet edeceğini

göstermektedir.

Yemek tariflerinin yordamsal olarak anlaşılması, nesnelerin kavranmasını, durum

değişikliklerinin izlenmesini ve zamansal ve nedensel ilişkilerin anlaşılmasını

gerektirdiğinden oldukça zorlu bir görevdir. RecipeQA veri kümesini tanıttıktan sonra,

farklı bir problem olarak yordamsal ortak akıl bilgisini anlama problemini araştırmaktayız.

Özellikle, RecipeQA veri kümesinden yararlanan çok kipli yordamsal bilgiyi anlamak

için Yordamsal Muhakeme Ağlarını (PRN) öneriyor, buna ek olarak, metinsel kiplere

tamamlayıcı bir anlamsal sinyal sağlamak için görsel kiplerden nasıl faydalanılabileceği

sorusunu araştırıyoruz. Önermekte olduğumuz bu model, metin talimatlarını okurken

birbiriyle ilişkili varlık durumlarını dinamik olarak güncellemeyi öğrenmektedir. Ayrıca,

daha önce önerdiğimiz RecipeQA veri kümesindeki görsel muhakeme görevleri üzerine

bir analiz sunmakta, yordamsal çok kipli nasıl yapılır talimatlarının anlaşılması için
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sunduğumuz bu yaklaşımımızın, daha önce elde elde ettiğimiz sonuçların doğruluğunu

büyük bir farkla geliştirdiğini görmekteyiz.

Sinir ağı modelleri, pek çok farklı görevde etkileyici bir şekilde iyi performans

gösterir, ancak genellikle daha önce gözlemlenmemiş kavramların bileşimsel olarak

genelleştirmesinde başarısız olmaktadırlar. Bu doğrultuda, günlük ev görevlerinden oluşan

bir veri kümesini kullanarak görsel ve metinsel bilgiye dayalı talimatlardan oluşan bir

bileşimsel ve sistematik veri seti olan EK-100-SYS veri setini önermekte, bu verini

kullanarak, sistematik genelleme problemini kapsamlı bir şekilde ele almaktayız. Ayrıca, bu

çalışma kapsamında, bilinen kavramlardan yeni bileşimler içeren bir eylemi tahmin etmeyi

amaçlayan bir görev ve eylem sınıfını tahminleme görevlerinde birkaç tek kipli ve çok kipli

modeller de sunmaktayız. Elde ettiğimiz bulgular, görsel ve işitsel sinyallerden yararlanan

modellerin, salt metin tabanlı modellere göre belirtilen görevlerde daha iyi sonuçlar elde

edilmesine imkan sunduğunu göstermekte, bu bağlamda çok kipliliğin bileşimsel genelleme

probleminde önemli bir katkı sunabileceğini göstermekteyiz.

Son olarak, bu tezde görüntü ve metinlerden oluşan çok kipli nasıl yapılır talimatlarının

kavranması ve muhakemesi konusunda temel kısıtları ele almakta, gelecekte bu alanda

yapılacak çalışmalara yön vermek için muhtemel araştırmaları istikametlerini belirtmekteyiz.

Keywords: Makine muhakemesi ve makine kavraması, nasıl yapılır talimatları, çok kiplilik,

yordamsal anlama, bileşimsellik
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1. INTRODUCTION

In order to understand what is going on around us, we just need to look for merely a second.

In this short amount of time, the visual information flows through our eyes and through the

lateral geniculate nucleus, a relay center located in the thalamus, and then reaches the visual

cortex. The first cortical areas decode lines, edges, and contours. The parietal cortex takes

the visual signals to locate where things are in 3-dimensional space. The inferotemporal

cortex recognizes shapes, objects, and faces. In the blink of an eye, we understand what we

are looking at. Humans, and in general, animals, are very good at understanding what they

see. Seeing is merely a thing for us, we only need to look in order to see as it comes off

the shelf. Nonetheless, this is not the case for machines. For them to recognize what they

see, one obvious thing to do is to replicate animal vision. This, however, is not enough

to understand our visual world but is an important milestone for machines. In order to

understand what they see, machines have to learn, through vigorous training, of shapes,

edges, geometry, scale, occlusion, time and context, and maybe and more importantly, their

combinations, just like humans. There have been decades of work to understand the vision.

One of the earliest works in understanding vision is Marr’s approach to treating vision as an

information processing system. In his work, Marr proposed three levels for a machine that

carries out an information processing system, such as a vision task [1]. These three levels

are computational theory, representation and algorithm, and hardware implementation, each

of which refers to what a system does, how does it do what it does, and how the system

is physically realized, respectively. Marr also proposed a representational framework for

vision with three stages. In the first stage, that is, the primal sketch, edges, bars, ends,

and blobs are represented. In the second stage, which is a 2.5D sketch, the textures are

acknowledged. Finally, in the third stage, a continuous 3d map of the scene is used for

visualization. Marr’s theory kindled interest in understanding how our visual system works,

along with a framework to process visual data. Visual perception and understanding how our

visual system is important, as most of our brain is organized to process the visual information

we receive, and thus, replicating human intelligence requires a complete understanding of

1



the human vision. But is understanding vision enough to understand human intelligence?

Probably not. Besides our visual perception skills, language is also an important and unique

ability and a natural way of communication for humans. Vision is about how we see the

world, but language is about how we communicate and interact with it. Among other

things, language is maybe what makes the human species superior in the whole animal

kingdom. Although there is no consensus on how, why, when, and where language might

have emerged [2], there are about 7000 languages spoken around the world [3]. Languages

emerge, live, and die with people. Shaped with historical events, languages capture almost

every aspect of human life at the time they are being spoken. Although languages have been

with us for thousands of years, humans started writing much later. With the invention of

written language, humans have started to record everything around them. Through different

mediums, we have produced and captured knowledge for thousands of years in written form.

This leads to an accumulation of human knowledge, and today we are generating more than

ever, adding up to that knowledge. Representing a language through graphic means, i.e.

writing enables readers of that language to reconstruct the encoded contents. Reading, in

this regard, is a very important tool for humans to acquire information and comprehend

what is written. Understanding language is a very challenging task, as it often takes several

years for an infant to learn a language from scratch. For thousands of years, mankind has

been telling stories and giving instructions through spoken language. With the invention of

written language, people started to write down what they deem to be important. Writing, in

this regard, helped preserve human knowledge and subsequently to pass this knowledge from

one generation to the next generation as well as to share it with different cultures. One of the

earliest written forms of language is instructions, specifically food recipes. Nettle pudding,

recently discovered in the UK is, to date, one of oldest recipes known in the world [4]. The

findings indicate that the recipe was from circa 6000 BC and was possibly dating back to

8000 BC. This wild plant, often found in the woods, was an important source of food for the

people of that era. The uncovered recipe gives directions to get rid of the famous stings of

the nettle by boiling them in hot water and then preparing a mixture with barley.

Food recipes are not the only instructional information humans have preferred to record in
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the early ages. They also wanted to record other aspects of their life. One of the earliest

surviving manuals known to date is discovered in modern Turkey in 1906, which is about

how to train Hittite chariot horses and is from circa 1350 BC [5]. In this text, Kikkuli, a

master horse trainer from the land of Mitanni, gives detailed instructions to follow each day

to raise the best chariot horses, such as the training program, the food and water rations,

etc. These instructions not only help us understand what the people of that time eat or

how they work but also give us how they used to live their lives by providing contextual

information, how they collect food, and preserve it, or what methods they follow to train

their horses and most importantly give us a piece of adequate information to how to replicate

that process. Modern how-to instructions have been using both images and text for many

years now, such as the recipes in cookbooks or the how-to guides shared across the web.

These instructional guides often use visual information, such as images or videos, to aid

textual directions. Although there are instructional guides with only one modality, be it text,

videos, or images, the vast majority of modern how-to guides shared across the web are in a

multimodal form that co-occurs with text and images, often with a visual that illustrates the

process described in the text.

For instance, in Fig. 1.1, the end product of the recipe is illustrated on the top left, and

ingredients are illustrated on the top right both as images and at the bottom the directions to

follow as well as the ingredients are given. As seen from Fig. 1.1, different modalities are

often used to aid the other modality.

1.1. Scope of the Thesis

Throughout this thesis, we will introduce the problem of comprehending multimodal how-to

instructions from images and text. First and foremost, we will make an emphasis on why

this problem is important and worth solving as well as possible ways to address the main

challenges about it. There are a handful of reasons why how-to instructions with images

and text are interesting to work on, and why understanding them is an interesting research

problem to solve. Instructions have been around us for centuries, be it in the form of recipes,
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Figure 1.1 A recipe with both images and text tells almost everything one would need about how to
prepare food. A Feta salad in a jar recipe taken from [6]. On the top left, the final state is
illustrated, top right shows the ingredients annotated with text. At the bottom, we see the
directions to follow.
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or how-to guides, written on stone tablets or books, or else published on the web. Thus, there

is a good chance that they will still be useful sources of information in the future as well.

A second interesting aspect of understanding images and text in the form of instructions

is that they explicitly contain the information to replicate a process from scratch. This is

especially important for three reasons, first, the instructions are almost always written with

a clear purpose, that is to replicate a process, therefore contain only the specific information

to do so. Second, understanding the required steps of a process is an important milestone for

machines because step-by-step instructions inherently divide a process into smaller chunks,

with each chunk followed by a successor chunk. The third interesting aspect of this problem

is that modern how-to guides of any form almost always contain multimodal information,

such as images, videos, and text. In particular, images and text often follow each other in

subsequent steps, with no particular order. This is challenging, but an interesting part of the

problem as having multiple modalities might be useful to address some of the challenges that

surface around this problem, yet this might give birth to newer challenges such as the possible

ambiguities, biases, or semantic gaps that are introduced with modality shifts. Moreover,

having multiple modalities brings another challenge, that is, understanding the coreferences

made in the text might refer to either the predecessor or the successor image or images.

Another problem might be to skip mentioning an instruction in one modality and expect the

reader to fill in this logical gap by inferring what is missing from the information provided

from another modality, e.g. having a chopped tomato image and failing to mention chopping

the tomatoes in the text and just continuing with “put the tomatoes in the pan”. For this

particular case, we need to be able to make a coreference resolution, but the problem here

can not be simply solved by just mapping the word “tomatoes” to the tomatoes in the images,

as the reader is forced to make a reasoning that the tomatoes should have been chopped

because the tomatoes are different from the previous tomato images. Thus they might have

been transformed i.e. chopped. Nevertheless, failing to mention this in one modality forces

the reader to fill in the semantic gap using only one modality.

One particular challenge we also observe in how-to instructions is that often objects are

referred to with no states, such as a tomato in good shape being cut into smaller parts but
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Figure 1.2 Different states of tomato, taken from Instructables.com website [7]

still mentioned as a tomato. This is because people seem to refer to objects even though they

change states, nevertheless constituting a problem as the text does not completely describe

the image, as also illustrated in Fig. 1.2.

Another challenge that needs to be addressed while tackling this problem is that how-to

guides might have directions in them telling the same story, but in a different modality,

although this might be seen as complementary for a direction in different modalities,

the change in visual information and the change in textual information often can not be

compared. For instance in a recipe, for an image that displays the ingredients as a first figure

and as a list of those ingredients as the first textual direction, the next step might be to mix

some of those ingredients, which would lead to a very different image from the previous

image, but for the text modality, the direction might simply be “mix the pepper with the

mince”. This is problematic for two reasons, first, the instructions in text modality do not

simply describe the image, but the image might be a product of the actions described in

the textual directions. Therefore, one needs to understand and infer that following a set of

instructions would transform the image to the subsequent image, although the images are not

their immediate successors, but might have textual steps between them.

Alignment between images and text is a big problem in understanding how-to guides. This

is mainly because how-to instructions do not follow a fixed structure which makes them even

harder to process, and finally leads to problems in aligning one modality with the other. In
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Fig. 1.3, a how-to instruction, in the form of the cooking recipe is taught in 6 steps but the

first set of images demonstrates the final state of the how-to but not the initial state. Thus,

this alignment should be considered while dealing with the sequences in the tutorial.

Figure 1.3 A sweet potato recipe with 6 steps, taken from Instructables.com website [8]

In Fig. 1.3, we see a recipe written in 6 steps. Each of these steps contains at least one or

more images related to the story told in the text in that step, which leads to some structure and

a degree of alignment between images and text. Nevertheless, considering the vast amount

of recipes on the web, we observe varying structures between the websites, or even through

each instruction. Thus, it is a challenge to understand which part of the recipe is related to

which image or images as well as to extract ingredients and tools in the recipes.

Natural language understanding and visual understanding have been two major challenges in

the artificial intelligence field, and there have been decades of work in both domains. Much

recently, researchers in language and vision communities have started working more closely

together to address problems that involve a collaborative understanding of both written

language and visual data. Most mediums, such as the web, books, emails, etc. have both

images and text nested in each other. Thus, understanding how-to instructions often involve

a joint understanding of multiple modalities of information e.g. images and text.

Clearly designed instructions are key to understanding and replicating a process. How-to

guides in this sense, are great sources of instruction as people can replicate the same process

by just following the guide. Moreover, how-to guides are quite an interesting source of

information as there are infinitely many instructions in the world, considering there is
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typically more than one way to do something, and in this regard, there might be infinitely

many variations for almost any how-to guide. Instructional guides are also very challenging

to understand. On the one hand, they often contain multimodal information such as images

and text in them. On the other hand from the beginning to the end of a how-to often there

is very little structure or no structure at all. Additionally, the images in the how-to’s might

show various forms of the objects, tools, or ingredients. Therefore, implicit and explicit

knowledge of the text might be required to understand the transformation or relationship

between each image. This is also true for the text as the author of the guide might have

chosen to skip some of the vital information in the text but expect the reader to infer this

information from the visual content. In general, there are several challenges to this problem,

but this problem is quite interesting firstly because it is a real-world problem, i.e. almost

everyone has read a how-to before or tried to replicate it from scratch, and second, how-to

guides have instructional information for adults to replicate a process in an often multimodal

form which makes it even more interesting as understanding instructions would be a crucial

goal for machines to have a generalized intelligence.

How-to guides, such as cooking recipes, typically consist of multiple steps involving various

objects and entities, most of which interact with each other through different actions.

Considering an action as a combination of a verb and an object or entity, being able to

generalize to unseen compositions of these action compounds pose a great challenge that

remains an open research problem. In particular, having been exposed to primitive elements

such as “cut” and “tomatoe”, being able to comprehend a composition of those primitives e.g.

“cut tomatoe”, is a challenging research problem as this particular compound might have

never been observed during training time. Therefore, understanding and testing models’

compositional generalization abilities and exploring whether grounded textual instructions

with images can help models to systematically generalize to novel compositions of actions

remains an interesting challenge towards understanding multimodal how-to instructions. In

this regard, understanding how visually grounded textual instructions might help models’

systematic generalization abilities, as illustrated in Fig. 1.4 yet remains an important research

problem we will be investigating.
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Figure 1.4 Even though a model may be exposed to the primitives ‘wash’, ‘close’, ‘put down’, ‘cut’
and ‘celery’ during training, generalizing to the never before observed “cut celery”
composition during inference pose a great challenge towards understanding how-to
instructions, hence understanding whether multimodality can help models systematically
generalize to unseen compositions yet remains an open research problem. (Image taken
from EK100 [9].)

In summary, machine comprehension of how-to instructions with images and texts is a

challenging but interesting real-life problem involving several tasks to be addressed. We

briefly discussed a few of these challenges here and will be thoroughly addressing some of

the main challenges related to this research problem throughout this thesis.

1.2. Contributions

In this thesis, we explore multimodal machine comprehension of how-to instructions with

images and text and review related work in the literature and point out current challenges

toward understanding multimodal how-to’s, and propose methods to address some of these

challenges. In the following, we summarize the key contributions of this thesis.

• We investigate machine comprehension and reasoning problems and review the

previous literature to lay the grounds for understanding multimodal how-to

instructions.

• We survey compositional generalization literature and highlight current research

challenges and discuss its relation to understanding multimodal how-to instructions.

• We introduce a multimodal benchmark how-to instructions dataset comprised of

cooking recipes with images and text.

• We propose novel methods for understanding multimodal procedures.

9



• We introduce a challenging multimodal compositional generalization setup and

propose methods to benchmark and show the contribution of multimodality

to significantly improve the state-of-the-art in understanding multimodal how-to

instructions.

1.3. Organization of the Thesis

In the following chapters, we will discuss how to teach machines to understand what they

read and see and to comprehend and reason by using something that has been around us for

thousands of years, how-to instructions.

The remaining chapters of the thesis are arranged in the following manner.

• Chapter 2 discusses the comprehension and reasoning problem.

• Chapter 3 reviews the compositional generalization problem and related studies.

• Chapter 4 introduces multimodal machine comprehension of cooking recipes.

• Chapter 5 demonstrates methods for procedural understanding of cooking recipes.

• Chapter 6 proposes methods for grounded compositional understanding of actions.

• Chapter 7 outlines the thesis and explores open research directions.
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2. MACHINE COMPREHENSION AND REASONING

In recent years, we have seen a great deal of interest in artificial intelligence research. As

larger-scale datasets became available, especially in the vision and language fields, it enabled

researchers to attack problems that had never been proposed before. The abundance of

large-scale data motivated researchers to develop more complex models which could benefit

from these datasets, and the progress in deep learning methods has spurred the artificial

intelligence communities to address a diverse range of problems. Several different tasks have

been proposed that revolve around these datasets featuring multiple modes of information

[10–13]. In the vision and language domain, especially image captioning, as well as visual

question-answering tasks have garnered a lot of interest. In the image captioning task, the

main goal is to describe an image with the best possible caption. The studies around this task

mainly fall into two categories, that is generative-based models and retrieval models. The

studies in the former category deal with generating new natural language descriptions from

scratch [13, 14] whereas the studies that fall into the latter category aim to retrieve descriptive

captions for the query image [15, 16]. Retrieval-based studies also deal with multi-modal

retrieval by linking different modalities such as images and their related descriptions. The

studies in this category use images as queries to retrieve a related caption among several

candidates and a natural language description to retrieve a relevant image for that description.

In visual question answering [12, 17, 18], the main goal is to answer a question given an

image. Although the quality of the models improved steadily over time, due to the nature

of these tasks, there have been several challenges that required solving problems jointly in

both the image and text domains. For example, in the image captioning task it is problematic

to measure how well the model performs. This is mainly because descriptions are hard to

evaluate and how well the captions align with human judgment is a separate problem on its

own. In visual question answering, although the problem is better formulated in terms of

evaluation, casting the task as a classification raises other questions such as whether models

actually learn to reason or just select answers which maximize a probability, even though

they are out of context.
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The question-answering problem has been studied in the natural language processing field

[19] and is referred to as reading comprehension, where the aim is to read a story, understand

it, and finally be able to answer questions about the story [20] to measure how well a reader

understands the given story. Visual question answering (VQA) might be considered as an

extension to this task where the narration in this setup is done via an image, whereas in

reading comprehension narration is done via text. Understanding however is often measured

in the same way. Asking a question and expecting a correct answer for the given context.

Recently, comprehension and reasoning tasks have become very popular, especially in the

text and image domain. Yet there is a huge gap between machines and humans for machines

to achieve human-level comprehension and reasoning. Comprehension, in a broader context,

refers to the ability to understand the meaning of something, and reasoning in the same

regard refers to drawing conclusions from facts. These are very high-level problems and are

considered to be challenging, not just for machines but even for humans. In the subsequent

sections, we explore the comprehension and reasoning problem for both image and text

domains and briefly describe prior efforts toward this direction, and lay the groundwork

for our proposed research problem. We also provide an overview of the prominent datasets

proposed in the literature for the comprehension and reasoning tasks in Table 2.1 which we

will be discussing in this chapter.

Table 2.1 List of Comprehension and Reasoning Datasets

Dataset Image Source Question Source Formulation #Images #Questions Modality
SQuAD - Human RC - 100K T
MCTest - Human RC - 2640 T
WikiQA - Query Logs IR - 3047 T
TREC-QA - Query Logs IR - 1479 T
CNN/Daily Mail - Summary + Cloze RC - 1.4M T
CBT - Cloze RC - 688K T
DAQUAR NYU-Depth V2 Human VQA 1,449 12,468 I
Visual Madlibs COCO Human VQA 10,738 360,001 I
VQA COCO Human VQA 204,721 614,163 I
COCO-QA COCO Syntetic VQA 117,684 117,684 I
FM-IQA COCO Human VQA 158,392 14,944 I
Visual7W COCO Human VQA 47,300 327,939 I
MovieQA Movies Human Movie QA 408 (Movies) 14,944 I/V/T
TQA CK12 Human TQA 3,455 26,260 I/T
CLEVR Rendered Syntetic VQA 100,000 999,968 I

T: Text, I: Image, V: Video
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2.1. Reading Comprehension

The objective of the reading comprehension task is twofold: firstly, to train machines on how

to read, and secondly, to evaluate their comprehension by posing questions related to the

material they have read. Machine reading comprehension, in this regard, aims to evaluate

how well the machines comprehend the given text by measuring how accurate the machines

are to answer questions, similar to the measures humans evaluate reading comprehension for

human students. In this regard, using comprehension tests is appealing mainly because the

performance of the reader is objectively gradable. Reading comprehension task goes back

to Hirschman et al. [19], in which they collected a dataset of 115 reading comprehension

tests that encompasses four grade levels, from third grade to sixth grade. Stories in this

dataset are in the form of a newspaper article, and for each story, there are five questions

among the “who, what, when, where, why” types. In this work, Hirschman et al. showed

that the pattern matching approach could be used to select answers for “who, what, when,

where, why” questions. This dataset sparked interest among researchers, and their baseline

was later improved by Riloff and Thelen [21], and Charniak et al. [22] using rule-based

systems, and by Ng et al. [23] using a logistic regression based system. Wang et al. [24]

used a neural method on the same dataset but could not improve upon the rule-based baseline.

More recently, Wang et al. [25] created QASENT dataset utilizing TREC-QA, wherein the

questions are selected from TREC 8-13 QA tracks, and sentences are chosen from questions

with overlapping non-stopwords. Richardson et al. [26] collected a dataset consisting of

660 fictional stories for open-domain question answering. In this dataset, each story has 4

questions where the answer to each question exists in the story and the stories are limited to a

level where young children would understand them, to reduce the common world knowledge

required by the task. Yang et al. [27] created WikiQA for question answering problems in

open-domain setup. In this dataset, there are 3047 questions sampled from query logs from

Bing, and Wikipedia passages are used to source answers. Weston et al. [28] created bAbI, a

synthetic dataset for reading comprehension for a set of toy tasks. Much recently, Rajpurkar

et al. proposed SQUAD dataset which consists of more than 100K questions posed over

Wikipedia articles. Trischler et al. [29] created NewsQA dataset from 12K CNN articles
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with 120K question-answer pairs where some of the questions might not have the correct

answer in the related article.

Context:

( CNN ) Dolce & Gabbana went familial for fall at its fashion show in Milan on sunday ,
dedicating its collection to ” mamma ” with nary a pair of ” mom jeans ” in sight . Dolce &
Gabbana, who are behind the Italian brand , sent models down the runway in decidedly
feminine dresses and skirts adorned with roses , lace and even embroidered doodles by the
designers ’ own nieces and nephews . many of the looks featured saccharine needlework
phrases like ” i love you , mamma ” and ” Per la mamma più bella del mondo ” ( for the
most beautiful mother in the world ) as a tableau vivant of moms and daughters stood and
posed as a backdrop for the runway . even the usually stoic - faced front row could n’t help
but applaud and smile as a few models carried their own high - fashion progeny down the
runway .

Query:

@placeholder dedicated their fall fashion show to moms

Answer:

Dolce & Gabbana

Figure 2.1 An example story and question-answer pair taken from CNN/Daily Mail dataset [30]

Reading comprehension task is by nature challenging, mainly because of ambiguities, and

biases, and require a higher level of understanding and often common world knowledge to

comprehend what is being read, as well as what is being asked. In Fig. 2.1, a typical setting

is illustrated for the reading comprehension task where the story is given along with the

query posed to the reader and the correct answer for that query. In order to answer the posed

question correctly, a reader should be able to understand who the producer is, who attacked

whom, and what the lawyer said, etc. Therefore, simple pattern-matching approaches would

not suffice for this challenging task.

14



2.2. Visual Reasoning

Visual reasoning is a broad topic that takes its roots back from the well-known Summer

Vision Project1, aiming to identify objects by matching them with a vocabulary of known

objects. The project is widely considered as the birth of artificial intelligence as a research

field. In this regard, visual reasoning has been a major goal of computer vision from maybe

the very beginning which was kindled with the Summer Vision Project. Subsequently, visual

reasoning requires an in-depth understanding of visual data, such as what is the scene, the

actors in it, the actions, if there are any, the context, the objects, and their compositions,

the relations, and interactions between the actors and the objects, size, shape, orientation,

geometry, scale, etc.

Figure 2.2 Semantic segmentation of pixels translates to understanding the correct labels of visual
data. On the left, the original image is taken from the MSCOCO dataset [11], and on the
right semantic annotations are drawn onto the same image.

There have been decades of research done in understanding visual data. Visual

understanding, in this regard often referred as to understanding the correct labels of pixels

through semantic annotations as also illustrated in Fig. 2.2. But, to completely understand

a scene we should be able to go beyond semantic labeling. Moreover, how we measure the

degree of visual understanding is a problem on its own. One possible way to do that is to

be able to answer any question about it [17]. A large body of work has been amassed to

date for question answering, an established task in the language domain. Recently, through

1https://dspace.mit.edu/handle/1721.1/6125
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visual question answering, this task has been extended to the visual domain by replacing

the passage or story in textual counterpart with an image which translates to changing the

modality of the context from text to visual data [17]. Latest efforts in this direction sparked

a lot of interest in visual reasoning and comprehension [12, 17, 18]. As visual reasoning and

comprehension typically require interaction with humans, that is through natural language,

this task practically requires dealing with multimodal data such as images or videos and text

at the same time. In a typical visual reasoning task, a viewer is expected to understand the

visual data as well as to comprehend the question about it, and finally be able to provide an

answer within the context of the visual data and the question. Such a scenario is illustrated

in Fig. 2.3.

Figure 2.3 A natural image on the left taken from MSCOCO dataset [11] along with questions and
their ground-truth answers from VQA dataset [12].

2.3. Tasks

Reading comprehension tasks require understanding the given context, be it a story, a

dialogue, or a paragraph, and subsequently being able to query that understanding by

providing answers for what is being questioned. In particular, the query performed over

the previous understanding would require the reader’s understanding of the given context in a

variety of tasks such as assessing the ability to count, list, or else reasoning about the position

and size etc. Visual reasoning is a challenging concept wherein a viewer needs to understand

all the parts of the visual data, but also to understand the semantics of compositions of scenes,

objects, entities, and events create. For the reading comprehension and visual reasoning

16



tasks, a reader/viewer might need different forms of reasoning. We adopted and stratified a

set of reasoning types from Trischler et al. [29] and Chen et al. [31] for the text domain and

extended and transformed these types for multimodal comprehension of images and text.

• Exact Match: The answer is self-evident and can be found in the given context by just

matching the surrounding words.

• Paraphrasing: The answer can be easily identified by paraphrasing the question.

• Inference: The answer can not be found easily by matching the available semantic

information but must be inferred from the conceptual overlap of partial clues in the

context.

• Coreferencing: The answer can not simply be matched but must be coreferenced from

the available information.

• Synthesis: The answer can not be extracted from the context easily but must be

synthesized from the available components.

• Non-existent: The answer can not be derived from the given context and common

world knowledge is required.

In Fig. 2.4, a list of comprehension and reasoning tasks are given that assess a variety

of abilities, such as reasoning about the size of things, making inductions between actions,

inferring when they happen, referring to them and making deduction of what a good sight

means, etc.

Comprehension and Reasoning as we discussed so far, are challenging tasks and due to

the nature of this problem, for both image and text domains, using RNNs including their

variants such as LSTM or GRU and CNNs does not simply work well in practice, for

this task. In particular, comprehension and reasoning as we discussed need to deal with

complex information and use different types of reasoning, thus we need specific mechanisms

to account for the abilities a machine would need to answer such questions which we will be

discussing under relevant sections.
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Figure 2.4 A set of reading comprehension tasks and their examples described on bAbI dataset,
taken from [32] on the top five rows, and on the bottom row a few example question
answer pairs given for a typical visual reasoning task taken from VQA dataset [12].

2.4. Question Types

In this section, we briefly go over the types of questions used commonly in comprehension

and reasoning tasks. Each of these question types is often posed to query various forms of

reasoning as well as abilities as we discuss in the previous Chapter 2.3..

True/False Questions. In True/False type questions the reader/viewer is expected to provide

an answer by stating whether the facts in the question form a true statement or else false.

Another variation of True/False type questions is Yes/No questions. In the case of a Yes/No

type question, the reader/viewer is given a context (text/visual) and asked to assess whether

the statement is true or false but the formulation of the question is slightly different from the

original true/false statement as the answer should be in yes/no form.

Multiple Choice. One common way to asses a reader’s/viewer’s understanding of a context

is to use multiple-choice tests. In multiple-choice type questions, the reader is given a set of
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John is in the playground.
Daniel picks up the milk.

Q: Is John in the classroom?
A: No
Q: Does Daniel have the milk?
A: Yes

Figure 2.5 Yes/No question and answer pairs taken from bAbI dataset [33]

options to choose from. In such a question, the objective is to choose the right answer from

the pre-selected answers [34–36].

Question: What is Marsha’s noodle made out of?

A) Spaghetti
B) plastic bag
C) mom
D) Macaroni

Figure 2.6 A multiple choice question answer pair selected from MCTest dataset [26]

These types of questions are relatively easier to answer as there are only a few options.

Thus, as a precaution, the reader’s ability to comprehend might be compared against random

selection.

W Questions. In this type of question, which is often referred to as W questions, the

questions are cast as Who, Where, What, When, Why, Which, and How, and the reader

is asked to provide an answer that requires understanding a story, and actors in that story, as

well as their relations while keeping track of different states in the given story. In W-type

questions, typically Who questions assess the ability to find the related actor in a context,

be it textual or visual. Such as ‘who went to the kitchen’, or ‘who has a mustache in the

image’. Where questions assess positional understanding, ‘What’ type of questions demand

an understanding of the objects or entities in the context, ‘When’ type of questions evaluates

the temporal understanding. ‘How’ type of questions are typically harder to answer as one
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needs to understand the relations and compositions in the context but also needs to make

inferences using them.

Figure 2.7 Three W question and answer pairs taken from bAbI dataset [33]

Open Ended Questions In the open-ended type of questions, the answer might be in a free

form and thus has no restrictions. The answers in open-ended question types might vary from

one word to several words and thus might be considered more realistic and challenging. In

Fig. 2.8 an open-ended type question-answer pair is illustrated.

Passage: The German measles are contagious for 7 days before to 7 days after the rash
appears, as noted by the New York State Department of Health. Rubella is another term for
the German measles, and the disease itself is highly contagious and can be seen in patients
through a rash, swollen glands a fever. Know More.

Query: how long is german measles contagious

Answer: 7 days before to 7 days after the rash appears

Figure 2.8 An open-ended question with the passage from MS MARCO dataset, with query id
10555 taken from development set [37]

Cloze Style Questions. Cloze-style questions fill in the blank type of questions. It is often

obtained by randomly removing a word from a sentence and asking the reader to find what

is missing given the context. These types of questions are not considered Natural Language

Questions (NLQ) as they are not really questions posed by humans, but only transformed

sentences in fill-in-the-blank form.

Visual cloze style question type is similar to the textual counterpart. In this question type,

the reader should select the missing visual content from a set of candidates. In Fig. 2.10 a

visual cloze style question is illustrated.

Pointing Type Questions. In pointing-type questions, the machine is asked to point to a

location in the given context. This type of question is mostly suitable for visual questions
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Sentence: Earth has warmed one degree in past 100 years . Majority of scientists say
greenhouse gases are causing temperatures to rise . Some critics say planets often in periods
of warming or cooling .

Question: Earth has warmed one degree in past 100 years . Majority of scientists say
are causing temperatures to rise . Some critics say planets often in

periods of warming or cooling .

Answer: greenhouse gases

Figure 2.9 An illustrative cloze style question-answer pair from CNN/Daily Mail dataset [30]

Figure 2.10 A visual cloze style question is taken from [38], in which the reader is expected to select
the correct panel that would not break the sequence of panel semantically.

where the machine might locate a point, but they might be adapted to other modalities as

well.

Figure 2.11 A set of examples for a pointing type question taken from Visual7W dataset [39]

For the visual context, pointing-type questions are typically asked by which question as in

[39], but in general pointing type of questions might be used for circumstances one can point
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to, given the context is appropriate. A set of pointing-type questions is illustrated in Fig.

2.11.

2.5. Evaluation

Evaluation of machine comprehension and reasoning is extremely important as without a

measure it is hard to say how well a model is doing. Evaluation of comprehension and

reasoning tasks in this regard requires special attention as there are a variety of subtasks that

comprehension and reasoning models should solve and measuring each of these tasks would

need special care. Moreover, the nature of the context and how the models’ understanding

is questioned changes what is being measured. In the following, we will briefly describe the

common evaluation methods for comprehension and reasoning-related tasks.

• Accuracy: Accuracy is an extensively utilized metric to assess comprehension and

reasoning tasks performance. Accuracy is thus calculated by the ratio of correct

answers to the total questions. Typically this metric is used in True/False question

types, and multiple choice question types.

• Word Match: Word level matching aims to look at the exact string match between the

answer and ground truth where only the correct matchings are used [40].

• Automatic Metrics: In this type of question, the evaluation is done by comparing

how well the reader’s answer match with the ground-truth answer by using automatic

evaluation metrics for machine translation such as BLEU [41] and METEOR [42].

• WUPS: Wu-Palmer metric [43] looks at how two words are similar by considering

the depths of their overlapping subsequences found in a taxonomy tree. In this metric,

correctness is determined by how similar the answer is to the groundtruth using a

threshold.

• Human Judgment: In this type of evaluation, the context, question, and answer pairs

are presented to human subjects. Afterward, human subjects are asked to evaluate the
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results as in the Turing test, whether the results are coming from a machine or human

[44].

2.6. Reading Comprehension Datasets

There are a variety of datasets proposed in the literature for reading comprehension tasks.

Each dataset has its own merits as well as weaknesses. In the following, we will briefly

discuss the publicly available reading comprehension datasets.

QASent. QASent dataset is proposed by [25] and is based on data coming from TREC-QA.

The sentences in this dataset are chosen in a way where the questions and answers share

overlapping non-stopwords.

MCTest. MCTest is a challenging dataset consisting of 660 stories and each of these stories

has 4 natural questions asked by humans wherein each question has 4 answers [26].

The dataset was constructed by crowd workers, with each story being written by a distinct

individual. Furthermore, each story is self-contained and unrelated to the others. To address

any inaccuracies that may have resulted from crowdsourcing, the dataset has been partitioned

into two parts: MC160 and MC500, with the former being a smaller dataset that has

undergone manual correction. One caveat of this dataset is that it is a small dataset to train

deep learning models.

CNN/Daily Mail. CNN/Daily Mail datasets are collected from news web pages and contain

real-life news articles [30]. CNN dataset contains over 90K news articles from CNN website,

and on average it has 4 queries for each article resulting 380K question-story pairs. Daily

Mail dataset has around 197K news articles wherein each article has 4 questions adding up

to 880K story-question pairs.

Children’s Book Test (CBT). CBT dataset [45] contains stories taken from child books.

The dataset is created based on books that are available for free on Project Gutenberg 2. In

2https://gutenberg.org
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Figure 2.12 An example story taken from CNN/Daily Mail datasets where a question is selected
from the highlights on the left marked as red box as cloze style [30]

each of the stories, there are 20 consecutive sentences and the 21st sentence is transformed

into a question by removing a word from that sentence.

There are 4 splits in the dataset, each classified as the type of the removed word from the

question, which are Named Entities, Common Nouns, Verbs, and Prepositions. For each

question, 10 answers are selected from the story, each having the same POS tag with the

correct answer.

Stanford Question Answering Dataset (SQuAD). The SQuAD dataset [46] was derived

from 536 articles and, in total, comprises roughly 100,000 pairs of questions and

answers. Every story in the dataset is a single paragraph that has been extracted from the

aforementioned articles, and the questions related to each story have been gathered through

crowdsourcing. The answers are also collected from crowd workers, and there is more than

one answer for each question. One strength of this dataset is that the questions are NLQ. The

availability of multiple responses from crowd workers collected for each question provides

human agreement information for answers. Moreover, the answers are open-ended, thus
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more challenging and realistic for reading comprehension tasks. One weakness of this dataset

is the small size of the articles. Another caveat is that it uses short paragraphs for stories,

which typically contain 4 to 5 sentences.

Fig. 2.13 depicts a particular story from the SQuAD dataset, along with a corresponding

group of question-answer pairs that pertain to that story.

Figure 2.13 Example story and a set of question-answer pairs related to that story is shown from the
SQuAD dataset [46]

NewsQA. NewsQA is a challenging benchmark dataset consisting of 12K articles collected

from CNN and around 120K question-answer pairs. The question and answer pairs are

written by humans in natural language. Questions in this dataset may not be answered as

some of the questions do not have an answer in the related story. The answers may be

multiple-word passages from the related story.
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Figure 2.14 An example story and question answer pairs from NewsQA dataset [29].
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In Fig. 2.14, for a story collected from CNN, we see a headline, an article, and related

questions and answers.

2.7. Visual Reasoning Datasets

In the following, we discuss the most relevant datasets in the visual domain for

comprehension and reasoning tasks.

DAQUAR. This dataset is one of the earliest question-answering datasets in the visual

domain [17]. The dataset contains over 12K question-answer pairs of RGBD images

generated by humans. DAQUAR dataset uses 1449 RGBD indoor images from NYU-Depth

V2 dataset [47] with depth information and annotated semantic segmentations of 894 object

classes.

In Fig. 2.15, a set of challenging examples is illustrated along with the question and answer

pairs.

Figure 2.15 Example images and question-answer pairs denoted as QA and questions denoted as Q
from DAQUAR dataset, taken from [17]

Visual MadLibs. Visual Madlibs dataset [18] consists of 10,738 images from

MSCOCO dataset [11] with 360K focused image descriptions collected automatically with

fill-in-the-blank questions.

In Fig. 2.16, a set of examples are illustrated along with their descriptions. Descriptions in

each row refer to a different type of question in the dataset.
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Figure 2.16 Example images and descriptions from Visual Madlibs dataset, taken from [18]

VQA. Visual Question Answering dataset [12], consists of around 205K images taken from

MS COCO [11] dataset which are real images, and 50K abstract scenes from [48, 49]. The

dataset contains around 615K questions for real images and 150K questions for abstract

scenes. There are around 10M answers in the first version of the VQA dataset in total.

Figure 2.17 Example images from VQA dataset, taken from [12]. For each row, images are provided
at the top, and below them, questions are provided in black, green, and blue responses
referring to whether the answer is given by looking at the image or not, respectively.

In Fig. 2.17, a set of examples are illustrated utilizing the real image and abstract scene data

from the VQA dataset.

FM-IQA.

FM-IQA dataset [44] contains 150K images from MSCOCO dataset [11] and 310K freestyle

question and answer pairs in Chinese, as well as their translations into English for the purpose

of multilingual image question-answering.

In Fig. 2.18, a set of examples are taken from the FM-IQA dataset, where each image has

both Chinese and English translations for question-answer pairs.

Visual7W. This is a visual question-answering dataset with object groundings [39] collected
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Figure 2.18 Example images and question-answer pairs in Chinese and their translations in English
from FM-IQA dataset, taken from [44]

Figure 2.19 Examples from the Visual7W dataset taken from [39]. For each instance, an
accompanying contextual image is provided, along with a set of questions and answers.
The correct answers are indicated in green, while the incorrect answers are marked in
red. The uppermost row pertains to ‘Telling’ type of questions, for which the answer
modality is textual. At the bottom row, ‘Pointing’ type of questions is given where the
answer is a bounding box in the image, for which the bounding box is yellow and red
for the correct and wrong answers respectively.

on 47,300 images from MSCOCO [11] and has around 328K question-answer pairs with

over 1.3M human-generated multiple-choices and over 561K object groundings from 36,579

categories. Each question in the dataset is a W question which is Who, Where, When, What,

Why, How, and Which. In Fig. 2.19, examples are illustrated related to the aforementioned

question types.

The main difference of this dataset is that it introduces a multimodal answer type for QA

tasks, wherein the answer is a grounded image for the Which type of questions. For the rest

29



of the questions, the answer is in textual modality.

MovieQA. MovieQA is a dataset that contains 15K multiple-choice questions and answers

Figure 2.20 Examples from the MovieQA dataset taken from [50]. For each example, a snapshot
from a movie clip is given, along with the questions and answers below the snapshot.

obtained from over 400 movies. The dataset aims to be a benchmark for story comprehension

for both video and text [50].

Each question in this dataset has 5 answers. Among them only one is correct. The dataset

contains multiple sources of information such as movie clips, dialogs, and plots. Although

some of the questions can be answered using only one modality, most of them require using

multiple modalities, in particular, videos and text.

CLEVR. CLEVR is a visual reasoning dataset [51] with 100K computer-rendered images

and around 1M generated questions. The objective of the questions in the CLEVR dataset is

to assess different visual reasoning skills e.g. spatial relationship, identification of attributes,

multi-attention, logical operations, comparison, and counting. In Fig. 2.21, a set of questions

are provided for computer-rendered images.

Figure 2.21 An example image and generated questions taken from CLEVR dataset [51]

COMICS. COMICS dataset [38] consists of around 1.2M comic panels collected from
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Figure 2.22 A few examples from Comics dataset taken from [38]

comic books published during the “Golden Age” of American comics which spans from

1938 to 1954 period. These comic books are now publicly available because of copyright

expiration. The dataset is created from 4000 highest-rated comic books from DCM

(http://digitalcomicmuseum.com). The comic books are broken into smaller components

and panels are extracted from each comic book leading to 1.2M panels with images and text

told in a narrative manner.

TQA. This dataset [52] was constructed using the open-source science curriculum of ck12
3. The dataset consists of 1076 lessons from science textbooks and has around 26K

questions, of which around 12K of them with an accompanying diagram. The questions

have multiple-choice answers ranging from 2 to 7 choices.

TQA is a challenging multi-modal dataset with various science concepts that aim to measure

visual and textual data comprehension through the concepts taught in each lesson. The

questions are divided into two categories as such, whether they have a diagram accompanying

them or not. Thus, a question with a diagram can only be answered with the text and the

accompanying diagram. No diagram questions can be answered using only relying on the

provided textual context. Although they are not a part of the dataset, lessons have links to

3htt://ck12.org
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Figure 2.23 Overview of multi-modal machine comprehension from TQA dataset, taken from [52]

instructional videos, which might help researchers extract additional information about the

lessons.

In Fig. 2.23, an overview of multi-model comprehension is illustrated where a lesson is given

as a story along with textual and visual information.
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3. COMPOSITIONAL GENERALIZATION

In this chapter, we survey compositional generalization literature and highlight current

research challenges to lay the grounds for its connection to understanding multimodal how-to

instructions based on our work4. We only made minor changes to fit the text in the narrative

of the thesis and made small corrections in the text.

As the world we live in is inherently structured, many believe that capturing this

compositional structure is a key component of artificial intelligence. In recent years,

compositional generalization has become increasingly important since neural models are

largely incapable of generalizing to novel compositions never observed during training.

Hence, researchers have been investigating how the generalization ability of these models can

be improved by exploring different aspects of compositionality. In this chapter, we provide

a systematic review of the existing works on linguistic compositionality. In particular, we

categorize and discuss existing tasks and datasets and examine neural architectures and

learning strategies proposed for compositional generalization. Finally, we conclude by

pointing out some challenges and opportunities for future research.

Thanks to their compositional skills, humans can effortlessly understand and construct new

utterances even though they encounter such novel compositions for the first time. For

instance, once we understand the meaning of primitives such as “dax” and “twice”, we can

easily infer what “dax twice” means [53]. Since its inception, compositionality has been

studied in various aspects and sparked interest in linguistics, philosophy, and vision. As

humans can potentially understand an unbounded number of novel utterance combinations

by only being exposed to a limited number of them, compositionality is regarded as a

key towards solving the generalization problem. In particular, the systematicity aspect of

compositionality has been an active research area as a common solution to maintaining the

meanings of complex expressions by depending on their simple parts and the way those parts

are organized.

4Under review
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In the last few years, neural models have shown astounding performance on many

tasks [54]. Nevertheless, there has been an ongoing debate around neural models’ ability to

compositionally generalize to unseen instances. Due to their associative nature and inability

to accurately represent systematic compositionality, researchers have been debating that

neural models are not realistic representations of the human mind [55–58]. Furthermore,

despite a wealth of empirical evidence, there is little agreement on whether and how much

neural networks can generalize compositionally [53, 59]. Despite the recent successes of

neural models, they often cannot capture the compositional structure; therefore, failing

to generalize compositionally remains an open research challenge yet to be solved. This

open research problem recently garnered much interest from different fields, such as

language and vision. Recent work around compositional generalization sparked interest

in the contribution of multimodality and grounded language processing toward systematic

compositionality [60–62].

In this study, we survey the literature on compositional generalization by categorizing and

discussing the existing tasks, datasets, neural models, and learning strategies proposed for

improving linguistic compositionality and review related studies from the point of language

generation. Moreover, we highlight current limitations and open research problems for future

research directions. In particular, we review background work in Sec. 3.1.. Sec. 3.2. outlines

the proposed tasks for measuring the compositional generalization abilities of learning

systems. In Sec. 3.3., we underline the existing datasets in compositional generalization

literature. In Sec. 3.4., we examine the prominent models and the learning strategies in the

previous relevant research. Finally, in Sec. 3.5., we debate open research challenges and

provide some discussions around the compositional generalization problem.

3.1. Background

Compositionality has been widely studied for many years. It studies ways to define a

particular sentence’s meaning as a function of its constituents’ meaning as well as the rules

used to put those parts together. The principle of compositionality, which was introduced
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by Frege, refers to the meaning of an expression being determined by the meanings of

its parts [63]. It deals with describing the relationship between an unbounded number of

sentences and a vast set of meanings from a finite set of rules. As a long-standing problem,

compositionality has been investigated by the linguistic and philosophy communities and has

been studied from different perspectives.

Compositionality was characterized by [64] from a syntactical point of view. From a

different point of view, compositionality and systematic generalization have been viewed

as standing problems to represent symbolic computation and human cognition [55, 65].

Since the beginning of the compositional generalization debate, researchers have studied

the compositional abilities of neural models with mixed results (e.g. [53, 56, 66–73])

and little agreement on whether neural models can perform systematic compositionality

or to what extent. Much recently, the compositionality problem has been investigated in

various settings. [61] constructed the CLEVR-CoGenT dataset based on the CLEVR dataset

to test models’ ability for compositional generalization on visual reasoning tasks. [74]

investigated systematic generalization in a VQA-like setting. [75] studied systematicity and

compositionality with a human-like number of examples. [76] examined picking up new

concepts and applying them in test time by coupling previously learned concepts with new

concepts in a meta-learning setup. [77] explored compositional generalization, to compose

unseen combinations of concepts in an image captioning setting. [78] inspected the capacity

of artificial neural networks in linguistic compositionality. Though neural models have

been shown to generalize well across biased dataset splits, they are criticized for learning

surface statistics. Towards addressing this problem, [79] described a heuristic to create

similar distributions of primitives and different distributions of combinations to measure

models’ compositional abilities on novel compositions. [62] explored a 2D grid world

setting for situated language understanding using grounded instructions. [80] investigated

compositionality in a novel word acquisition setting from narrated videos. [59] proposed an

evaluation framework to test models’ compositional ability in five dimensions.
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3.2. Tasks

Previous studies explored a collection of tasks to test models’ compositional ability.

Below we highlight the prominent tasks from prior work to evaluate the compositional

generalization properties of neural models.

Generalizing to Novel Compositions. The purpose of this task is to assess the compositional

skills of models when all primitive components of the input have been observed during

training, but the models are tested with novel compositions of primitive components –

defined as systematicity by [59]. [53] introduced SCAN to measure the systematicity

of models in a highly compositional textual navigation setting. They found that popular

sequence-to-sequence models do not show systematic generalization skills. [81] inverted the

SCAN task by swapping the input commands with action sequence outputs, introducing the

NACS task. They confirmed the results of [53]. [79] explored a divergence-based approach

and created MCD splits for SCAN, which the authors used to test models’ systematicity

performance on the MCD splits.

Generalizing to Longer Sequences. [53] introduced a testing framework to assess the

ability of recurrent sequence-to-sequence models to generalize. Specifically, the models were

trained on shorter action sequences and then evaluated on commands that required longer

action sequences, using the SCAN dataset. Similarly, [59] tested the models’ generalization

abilities of the PCFG-SET in a setup where the aim is to generalize to an unbounded length

of sequences.

Machine Translation. [53] experimented with a machine translation (MT) task using

a simple setup in which they trained a simple seq2seq model on short sentence pairs

where English is the source language, and French is the target language. The authors

chose sentences that begin with English phrases and contractions of these phrases. The

authors trained a new network with 1,000 repeats of the phrase “I am daxy” to assess

compositionality with the addition of a new word. Their motivation was to show that

an introduction of a new word in the vocabulary will lead to difficulty in the systematic
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generalization of models. [82] examined neural machine translation models to understand

whether they can solve compositional tasks. As SCAN MT split only contains 8 words,

it is limited in its scope. For this, they curated a 216K-sized English-Chinese translation

dataset and trained a Transformer based model. They found that even if the model has good

metrics under traditional metrics, they fail to generalize compositionally. [83] claim that

compositionality in natural language is much more multi-dimensional than rigid, artificially

generated datasets, and these datasets often focus on only strongly local, context-independent

structures. As natural language involves atomic compounds (e.g. collocations, idioms) and

global relations between words, a fine-tuned local-global approach to compositionality is

indispensable. For this purpose, the authors formulate three different experimental setups

for systematicity, substitutivity, and overgeneralization. Finally, the authors conclude that as

natural language is not as algebraic as artificial data, a non-compositional word translation

may not change the meaning of the whole. Hence, they state that MT is a more suitable task

for compositionality than artificial transductions.

Table Lookup. [84] formulated the table lookup tasks on seq2seq models to measure their

compositional generalization abilities. In this task, the objective is to map bit string inputs

to function outputs, hence learning how to apply functions in a compositional setup. The

authors experimented on the CTL dataset that maps atomic functions with input and output

bit strings. A sample lookup task is depicted in Figure 3.1.

Atomic
g

00 → 01
01 → 00
10 → 10
11 → 11

Atomic
f

00 → 11
01 → 10
10 → 01
11 → 00

Composed
fg

00 → 0110
01 → 0011
10 → 1001
11 → 1100

Figure 3.1 Two atomic 2-bit lookup tasks f and g and their composition fg. Note that the
composition function output starts with the output of the function g.

Image Captioning. The objective of this task is, given an input image, to generate a natural

description [85]. Previous work on compositionality in image captioning research focused on

triplet prediction [86], where each triplet is defined as subject-relation-object (SRO) present

37



in a visual scene, and the task is predicting unseen SRO combinations successfully in test

time. [77] and [87] also focused on only systematicity, but the task is composing unseen

combinations of concepts by generating natural language captions. Recently, [88] also

investigated models with a broader spectrum of compositional aspects such as productivity,

substitutivity, and systematicity. [86] investigated whether state-of-the-art image captioning

models that perform well on IID splits can generalize to novel compositions in terms of

triplet predictions. The authors created a compositional split from MSCOCO dataset [89]

such that test set triplets have zero probability distribution under the train set, but the test

set is composed of the same atoms (e.g. subjects) as in the train set. They found that

state-of-the-art models [90] cannot generalize compositionally. [77] studied compositional

generalization from the point of image captioning, focusing on systematicity. They created

a new split of MSCOCO dataset composed of novel combinations of adjective-noun and

noun-verb pairs [91] and investigated to what extent image captioning models can generalize

systematically. The authors found that state-of-the-art image captioning models [90], [92]

failed to generalize systematically, mainly due to language generation components based on

textual distributions that cannot incorporate a compositional perspective. They achieve better

results by creating a multi-task setup combining captioning and image-sentence ranking on

top of different attention models [92].

Visual Question Answering. In this task, the reasoning and understanding capabilities of

the models are examined by the answers they provide to the questions about visual scenes.

Work on compositionality in VQA can be divided into two: where the image distribution in

the dataset is changed, or the question distribution in the dataset is changed. Independent of

the division, compositional VQA tasks test spatial reasoning, quantification, and comparison

in general. CLEVR-CoGenT [61] is a compositional VQA task that requires the listed

skills above from a model. The dataset measures compositional skills by using mutually

exclusive colors for cubes and cylinders in the train set and swapping these colors in the

test set. CLOSURE [93] is another VQA task derived from CLEVR. In CLOSURE, the

change in image distribution is modified with a change in question distribution, which

increases the complexity of the task by enabling multiple referring expressions. In VQA-CP,
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[94] find that VQA models heavily rely on priors in data while producing correct results

on non-compositional datasets, which inflates models’ compositional understanding of the

real-world phenomenon.

Cloze. In a compositional generalization setup, [80] investigated the acquisition of words

from visual scenes. They measured how effectively the representations generalize to new

verb and noun combinations that aren’t part of the training set. They employed the cloze task

for model evaluation but require the model to predict both a verb and a noun rather than just

one word. The findings were then divided based on whether or not the compositions were

visible during training. According to the authors, there is a significant performance difference

between compositions that have been seen before and those that haven’t. However, the gap is

considerably lower because their model is explicitly trained for generalization (nearly twice

as small). Additionally, their method significantly outperforms baselines for both known and

unique compositions. Furthermore, even though their model is trained on three orders of

magnitude less training data than pre-trained BERT [95], their approach can outperform or

match BERT’s performance.

3.3. Datasets

SCAN. [53] introduced SCAN, a synthetically generated dataset that consists of navigation

commands associated with action sequences such that the command “jump twice” is mapped

to actions JUMP JUMP and “turn around right” is mapped to RTURN RTURN RTURN

RTURN. The focus of this paper is the SCAN tasks, which involve translating simplified

natural language commands into a sequence of actions. The aim is to evaluate how well

recurrent seq2seq models can generalize in this context.

CTL. [84] introduced a setup to measure compositional generalization of neural networks by

artificially generating compositional table lookup (CTL) using a simple binary representation

e.g. if c(100) = 011, g(011) = 001, c(101) = 100, g(001) = 101 and g(100) = 010,

compositions of functions are then applied in the following manner gc(100) = 001,

cc(101) = 011, gcg(001) = 010. Lookup tasks were formulated as, given the atomic
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functions such that g and c, the objective is to predict the output of their composition gc.

In particular, the intermediate step’s output is used as an input to the composition, where in

this case, applying function c, then g to predict the final output gc.

PCFG-SET. [59] introduced a synthetically generated dataset using a probabilistic

context-free grammar (PCFG), which generates the sequences where output sequences

correspond to the meanings of input sequences. There are three categories of terms in

PCFG-SET: a term for unary operations (e.g. copy, reverse, swap) and binary operations

(e.g. append, prepend, remove first), and elements which the aforementioned operations

apply to (e.g. A, B, A1, B1), as well as and a separator token (, ) to set apart binary function

arguments. In particular, for an input sequence “repeat D E B” the expected output is D E

B D E B and for “append swap C G, repeat H D” the target is G C H D H D.

CFQ. [79] introduced Compositional Freebase Questions (CFQ), a procedurally generated

dataset, where the objective is translating natural language questions into SPARQL

queries against the Freebase. The main idea behind CFQ dataset creation is based on

distribution-based compositionality assessment (DBCA), where the train and test split

display similar atom (e.g. entities, question patterns) distributions while the distribution

of compounds in train and test splits are maximized using maximum compound divergence

(MCD) heuristic. It has been empirically shown that there is a significant negative correlation

between the model accuracy and the compound divergence.

NACS. [81] introduced NACS by leveraging the SCAN dataset. In particular, they modified

the SCAN dataset so that action sequences are translated into navigation commands rather

than navigation commands being translated into action sequences, such as translating LTURN

into “turn left”, instead of vice versa. This simple modification makes the SCAN dataset

more difficult in terms of compositional generalization for seq2seq models.

Mathematics. [96] presented the Mathematics dataset, comprised of mathematics

question-answer pairs up to university level in textual form (e.g. solve 3(x−5) = x+3 for

x, where the answer is 9). Compared to other datasets like SCAN, Mathematics focuses on

mathematical reasoning rather than language transduction to test the compositional skills
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of a model. This large, automatically generated dataset is divided into 56 modules (e.g.

linear equations in two variables, addition or summation, differentiation) and has 2 million

training examples with 10K test examples for each module. Moreover, the dataset includes

extrapolation modules to test compositional generalization.

gSCAN. [62] presented gSCAN, a dataset based on SCAN [53] for measuring the

compositional skills of models in a grounded learning setting. In natural languages the

interpretation of linguistic data is grounded in the real world, introducing the contextual

sensitivity notion. However, SCAN imitates a navigation task only in textual form, where the

goal is to learn an interpretation function with only the linguistic structure. Hence, SCAN

lacks this type of contextual sensitivity. gSCAN alleviates this shortcoming by grounding

textual information with visual information in a grid world setup (see Figure 3.2), measuring

both the compositionality and contextual sensitivity of models.

Figure 3.2 Illustration of a sample from gSCAN showing actions walking while spinning and
pushing. Image is taken from [62].

For example, Walk to the small circle command and an accompanying visual representation

of a grid world with the target object, several distracting objects, and the agent altogether

form a data sample. All objects can have different sizes, shapes, and colors, which implies

that small circle in a visual representation is context-dependent. The introduction of context

sensitivity enables testing broader types of compositional generalization.

ReaSCAN. [97] presented ReaSCAN, a dataset based on gSCAN trying to alleviate its

limitations. The authors argue that there are four potential downsides of the gSCAN dataset,

namely irrelevance of word order, biased distractor object sampling, a small number of
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effective distractors, and its limits in testing linguistic compositionality. Irrelevance of word

order makes bag-of-words models adequate for encoding gSCAN without any compositional

understanding. In gSCAN, all compounds are not needed to generate the correct action

sequence which raises the question of whether this can help models to attain linguistic

compositional skills effectively. Hence, ReaSCAN has a more complex structure achieved by

multiple relational clauses and that encourages models to display compositional skills (e.g.

gSCAN → push the big yellow circle cautiously, ReaSCAN → push the big yellow circle

that is in the same column as a blue square and in the same row as a red circle). Moreover, in

ReaSCAN, commands become ambiguous when permuted, subsequently a random distractor

sampling is used to make ReaSCAN more robust.

CLEVR-CoGenT. CLEVR [61] is a visual question-answering benchmark that measures

a spectrum of visual reasoning skills. As CLEVR is artificially generated, it addresses

the problem of inherent biases that can elicit in real-world data. The dataset consists of

question-image-answer triplets, where each image is a scene from a 3D-rendered world with

multiple objects. The questions require complex multi-step reasoning about the contents

of rendered images. The objects are made of two different materials (matte “rubber”

and shiny “metal”) and can have 8 colors (e.g. yellow, red), 2 sizes (small and big), 3

shapes (sphere, cube, and cylinder), and an absolute position in the 3D scene. An example

question-image-answer triplet could then be an image of a 3D visual scene (see Figure 3.3),

a question such as “What color is the cube behind the brown cylinder?” and, the answer is

“yellow”.

Figure 3.3 Illustration of a visual scene sample from CLEVR dataset. Image taken from [61].
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CLEVR tests a range of reasoning abilities such as spatial reasoning, comparison, and

quantification. In this dataset, authors proposed the CLEVR-CoGenT split, created to test

the compositional generalization abilities of models. In the CLEVR-CoGenT train split, all

cubes are can have predetermined colors, whereas cylinder color does not overlap with cube

color to measure compositional generalization, and colors between cubes and cylinders are

swapped in the test set, while sphere colors can be any color from the given color palette.

CLOSURE. [93] constructed CLOSURE, a visual question-answering dataset based on

CLEVR [61], which tests spatial, logical, and quantification skills of a model. While

CLEVR-CoGenT tests models’ generalization skills under changing image distributions,

on the contrary, CLOSURE tests models’ generalization skills under changing question

distributions caused by the introduction of novel question compounds. The authors argue that

the main complexity of CLEVR is how the present objects are referred to and to augment this

complexity, they defined 7 different CLOSURE tests. In this scope, authors used three types

of referring expression (RE) from CLEVR (e.g. simple, complex, and logical REs) where

RE is a noun phrase referring to one or more objects. Then, by composing novel questions

similar to CLEVR with matching object properties (e.g. small sphere that is the same color

as the big cube) they constructed the CLOSURE dataset. The questions in this dataset follow

the same structure as the CLEVR questions. However, the CLOSURE questions have zero

probability distribution under CLEVR data.

SQOOP. SQOOP [74] is a synthetic visual question-answering dataset to test the

compositional skills of models in terms of spatial reasoning. The dataset is composed of

image-question-answer triplets, where each 64x64 image contains 5 distinct alphanumerical

characters, and each question has a binary answer (yes/no). Each question has the following

structure: (CHARa SP RELATION CHARb) where CHARs are distinct alphanumeric

characters, and SP RELATION is an element from the set {LEFT OF, RIGHT OF,

ABOVE, BELOW}. These properties make SQOOP simple and maybe not representative of

the real world, but they measure the spatial reasoning of models in an unbiased and isolated

manner, which is beneficial.
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COGS. [98] introduced a procedurally generated semantic parsing dataset (COGS) based

on a subset of English. COGS examples consist of a natural language sentence and a

corresponding logical form (e.g. A frog hopped. → frog(x1) AND hop.agent(x2,

x1)). COGS embodies a large spectrum of syntactic structures and semantic representations

(by using lambda calculus) that emerge in natural languages. Hence, the authors suggest that

COGS can be a better benchmark for compositionality compared to SCAN, as it encompasses

more systematic subcomponents that are present in natural languages. The evaluation part

of COGS contains several systematic gaps that can only be addressed by compositional

generalization such as new combinations of known syntactic structures or new combinations

of known words. The dataset consists of three sets: a train set, an independent and identically

distributed (IID) validation set, and an out-of-distribution (OOD) test set.

EPIC-Kitchens. [99] introduced an egocentric video benchmark dataset recorded by 32

participants in their native kitchen environments capturing non-scripted daily household

activities such as cooking, cleaning, etc. This dataset is then extended by [100] to 100 hours

of videos captured by 45 participants with denser annotations and fine-grained actions (see

Fig. 3.4 for an overview of the dataset).

Figure 3.4 Illustration of EPIC-KITCHENS dataset. Image is taken from [100].

Even though the EPIC-Kitchens dataset was introduced mainly for object detection,

action recognition, and action anticipation tasks, it was later utilized for measuring the

compositional abilities of neural networks on a word acquisition task [80] leveraging its

multimodal nature.
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VQA-CP. [94] constructed a real-world visual question-answering dataset from the point

of compositional generalization where the types of questions in the test split are of different

distribution than the types of questions found in the train split. The authors discovered that

VQA models exploit the biases in real-world data while achieving near-perfect results on

non-compositional datasets and do not show any compositional understanding of underlying

phenomena.

3.4. Methods

Through this section, we discuss the prominent models proposed for addressing

compositional generalization and highlight learning strategies used in the existing work.

3.4.1. Models

Some researchers have tackled the compositional generalization problem with different

neural architectures. In the following, we highlight the most prominent models investigated

in the existing studies.

Neural Sequence Models. Recurrent models have been extensively used for text scanning

and widely leveraged in the literature for solving various NLP tasks. [84] experimented

with vanilla recurrent neural networks (RNN) [101] with no special architectural constraints.

[53] described a simple sequence-to-sequence framework to tackle the compositional

generalization problem on the SCAN dataset.

Convolutional Neural Models. Although they were first developed for visual data,

convolutional neural networks (CNNs) have proven to be highly effective in addressing a

variety of problems related to vision [54]. After the early success of CNNs, convolutional

architectures have been applied to solving various problems and adopted to process text input

in NLP research [102]. [103] proposed a convolutional model for sequence-to-sequence

learning where the authors discuss advantages over a recurrent neural model for the

45



seq2seq setting. Recently, [59] explored the compositional generalization abilities of the

aforementioned convolutional neural model as a baseline on PCFG SET tasks.

Neural Module Networks. [60] approached compositionality from a structural point of

view and proposed a dynamic neural module network for answering queries provided with

only triplets of (question, world, answer) as training data, where the model learns to combine

neural networks on-the-spot from a catalog of neural models, and learns weights concurrently

for these modules in a way that they can be assembled into novel structures. In a similar

direction, [104] proposed an end-to-end neural modal for the VQA setup to address the

compositional aspect of the task.

Transformers. The transformer architecture was proposed in [105] and has since been

widely embraced by the natural language processing (NLP) community. It has been

demonstrated to achieve very good results in a range of NLP tasks. The transformer

architecture is built with a stack of encoder layers and also in a similar fashion, a stack

of decoder layers. In these stacks of encoder and decoder layers, each stack has its

corresponding embeddings. The model also utilizes a self-attention mechanism which works

as a function for mapping query-key-value triples to an output. Positional encodings in the

transformer model, coupled with the self-attention mechanism, allow the model to process

input in parallel, which gives the model an advantage over recurrent models, where models

need to process tokens in a sequential manner. Recent studies in compositional generalization

literature explored different aspects of the Transformer model and its generalization capacity

across different compositional tasks, and datasets [106–109]

3.4.2. Learning Strategies

In the literature, there has been a growing body of work in which researchers investigated

a different aspect of the compositional generalization problem. Below we review different

learning strategies explored in the compositional generalization works.
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Meta-learning. [76] investigated systematicity in a meta-learning setup. In this study, the

author proposed a seq2seq architecture as a backbone coupled with a memory unit to solve

SCAN tasks and demonstrates that memory-augmented neural models can compositionally

generalize compositionally in this setup. The proposed setup consists of the meta-training

phase where models observe episodes of primitive instructions e.g. “jump”, “turn left”,

“look”, and “walk” and learn the corresponding meanings for these primitives JUMP,

L TURN, LOOK, WALK and in during test phase, support items are fed into the memory,

and models are required to learn new meanings of primitives during test time to predict

the target commands. Different from the regular seq2seq training setup, the models are

provided support items in each training episode, which then are used to form a context to

improve models’ compositional generalization abilities while also utilizing a self-attention

mechanism with an external memory. Another work that leverages meta-learning is [80] on

the EPIC-Kitchens [99] and Flickr30K [110] datasets in which the authors provide reference

primitives to aid the models both during training time and test time. In this setup, the models

are not only trained with training data but also reference instances are provided to support

the models. The same procedure is used in the test phase, where the models are tasked with

predicting the masked target word while also being provided a set of reference instances

that contains the target word. While the objective is to generalize to novel compositions,

this study diverges from the usual compositional generalization problem as the main goal is

to acquire words from the visual scene and to generalize to unseen compositions of these

primitives while being supported with reference instances that the models have access to

during both the training as well as the test time.

Supervised Learning. Much recently, [111] formulated the compositional generalization

problem as a classification problem by transforming a seq2seq setup into a classification

setup using a natural language dataset that requires compositional generalization abilities. In

this study, the authors converted the CFQ dataset into a binary classification dataset, where a

question and a SPARQL query are the inputs, then the objective is to decide whether the given

two inputs have the same meaning or not. Diverging from most of the sequence-to-sequence

tasks in the literature, the authors describe a negative sampling strategy and construct
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negative samples for every input to train and evaluate the models. Here, a random sampling

strategy for constructing incorrect predictions was followed by another approach, where a

pre-trained network is used to retrieve incorrect examples to choose hard examples aiming

to make the task more challenging, hence requiring the models to leverage compositional

generalization abilities to correctly predict the target.

Pre-training. Lately, the Transformer model [105] and its variants have been shown to

work very well, particularly across many NLP tasks. Thanks to their generalization capacity,

transformer-based pre-trained models such as BERT and its variants are hugely adopted in

the literature and applied to solving different tasks. These pre-trained models are often

trained on large datasets and are widely used for solving different tasks, such as semantic

labeling, sentiment classification, and language generation. Some researchers leveraged

these models as pre-trained encoders and applied them to solving various tasks in NLP. One

of the recent works in this direction is proposed by [106], in which the authors investigated

the models’ generalization abilities in a compositional generalization setup. They explored

how transformer models perform in compositional generalization tasks against different

compositional generalization datasets and how the design decisions in transformers, such

as position encoding, decoder type, and weight sharing, impact models’ compositional

generalization abilities. The authors reported that they achieve state-of-the-art for COGS

as well as PCFG datasets.

Augmentation. Data augmentation is a strategy recently researchers explored from

the point of improving the compositional generalization performance of models. A

replacement-based strategy was employed by [112], where they explored a synthetic

augmentation procedure to construct examples for downstream tasks such as semantic

parsing using compositionality. In this approach, fragments of original data instances

are replaced with fragments from other instances where samples are chosen with similar

contexts. Another data augmentation strategy was introduced by [113]. In particular,

they created new synthetic examples by randomly combining parts of two sentences from

the training data to encourage models to rely on compositions of sentence segments to

predict the output. [114] proposed a data augmentation procedure to improve compositional
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generalization in neural sequence models by recombining fragments of training instances

to reconstruct other instances and resample model outputs to pick high-quality synthetic

samples. Recently, [107] studied one-shot primitive generalization introduced by the

SCAN benchmark. They show that typical seq-to-seq models can obtain near-perfect

generalization performance by changing the training distribution in simple and intuitive

manners. Furthermore, they carried out thorough empirical analyses demonstrating that the

traditional seq-to-seq models’ generalization capability is largely underestimated. A more

general conclusion of their research is that, even though systematicity must be preserved

when creating such benchmarks, it is crucial to carefully examine various setup parameters in

order to make meaningful judgments about a model’s generalization capabilities. The authors

of this paper argue that their proposed approach retains the systematic distinctions between

the training and testing sets while enhancing the performance of sequence-to-sequence

models. Earlier research had disregarded this aspect while trying to improve the

compositional generalization capabilities but break the systematicity aspect of the setup.

Prompting. [115] proposed the prompting technique to improve language models’

performances for various tasks. In particular, the authors discuss that large language models

can be used to solve complex mathematical reasoning tasks. In this work, the authors propose

prompting with chain-of-thought, allowing models to use intermediate reasoning steps, hence

demonstrating that prompting technique can lead to performance improvement for language

models on a different task, in addition to providing better compositional generalization.

3.5. Research Challenges

In this section, we discuss the open research challenges toward understanding compositional

generalization. In particular, we review these challenges in the following orthogonal

dimensions: natural datasets, violation compositionality, a general evaluation benchmark,

multimodality, multilinguality, and interpretability.

Natural Datasets. Much of the previous work investigated compositional generalization

problem using artificially generated datasets due to their ease of creation with the
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predetermined rules and constraints. These synthetic dataset construction strategies followed

by many researchers enable them to build larger datasets that adhere to a set of rules and

constraints (e.g. achieving different distribution for compositions across different splits etc.).

On the other hand, it remains a challenge to achieve a certain distribution for natural datasets

due to the lack of labels or even the existence of certain data. Even though there has been a

considerable amount of effort in understanding and assessing compositional generalization

problem with natural data, and an interest in this direction, we consider this to be an important

open research problem to be addressed in future work.

Violating Compositionality Constraints. We should emphasize that diverging from the

regular systematic generalization setup, where the models are expected to generalize to

novel compositions and are evaluated against compositional generalization constraints, the

pre-training in transformer model training naturally does not adhere to these constraints

as the models during their pre-training phase could have been already exposed to the

compositions which they are evaluated in test time. Nevertheless, it is still worth investigating

the compositional generalization abilities of these models and exploring how pre-trained

transformer models perform in various compositional generalization tasks. This could be an

interesting direction for transformer-based compositional generalization research for future

work. In another direction, researchers have been investigating data augmentation strategies

to alleviate the out-of-distribution challenge we observe in the compositional splits. We

should highlight that, little has been done in previous studies to enforce the compositional

nature of datasets. This particular problem of data augmentation without breaking the

compositional aspect of the problem in compositional splits remains an open challenge and

is a future research direction.

A General Evaluation Benchmark. As compositional generalization research has been

rekindled in the past decade, there is no general evaluation benchmark to test the

compositional skills of a model. The lack of well thought general benchmark results in a

vicious loop, where a new benchmark is curated to remedy problems in an earlier benchmark,

a new symbolic/neural model performs great on this specific dataset while previous models

cannot, then a new benchmark is created that the new model does not perform well. For
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natural language understanding (NLU) and language generation (LG) tasks, there exist de

facto general evaluation benchmarks (e.g. GLUE for NLU and GEM for LG) [116], [117],

[118]. By following a similar path, a systematic way to follow the progress in compositional

models can be created. A general evaluation benchmark quite likely would accelerate the

research and increase the quality and robustness of future studies.

Multimodality. The contribution of multimodality to the compositional generalization

problem has become an interesting research problem researchers recently started to explore.

However, due to limitations with natural datasets explored for compositional generalization,

whether multimodality can help models systematically generalize and how multimodality

can help solve compositional generalization, yet remains an open research problem.

Nevertheless, we believe exploring multimodality, in a grounded language understanding and

generation setup could be a fruitful research direction as we humans leverage multimodal

cues in the real world to generalize compositionally. Toward this goal, we investigate the

contribution of multimodality in compositional generalization for how-to instructions in

Chapter 6..

Multilinguality. Multilinguality and its connections to compositional generalization is

another research direction that remains an under-explored topic yet. There has been little

done in the past to understand the impact of models’ compositional generalization abilities in

multilingual settings, even though there has been a plethora of work related to multilinguality

in the past years. From this point of view, this makes understanding models’ compositional

generalization skills on multilinguality an exciting research direction for future work.

Interpretability. Neural networks have been largely criticized in the literature because

of their black-box nature and their lack of interpretability. A body of work focuses on

interpretability in machine learning models, but we consider this a significant research

problem for compositional generalization since little has been done to understand how

models compositionally generalize and why. We consider this would be an interesting

research problem to explore for future work.
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4. MULTIMODAL COMPREHENSION OF COOKING

RECIPES

The ability to understand cooking recipes and to reason about them is an important research

area in the quest to enable machines to comprehend procedural knowledge. Throughout

this chapter, we present RecipeQA, a benchmark for multimodal comprehension of cooking

recipes, which is based on our work,

• RecipeQA: A Dataset for Multimodal Comprehension of Cooking Recipes, S.

Yagcioglu, A. Erdem, E. Erdem, N. Ikizler-Cinbis. EMNLP 2018, Brussels, Belgium,

Oct. 2018.

We only made minor changes to fit the text in the narrative of the thesis and made small

corrections and changes in the text and figures.

RecipeQA is composed of approximately 20,000 instructional cooking recipes that

incorporate various modalities, including recipe step titles, step descriptions, and

corresponding sets of images. Using over 36,000 question-answer pairs that were

automatically generated, we devised a series of comprehension and reasoning tasks that

demand a comprehensive understanding of both text and images. These tasks capture the

progression of events in temporal order and necessitate the ability to reason about procedural

knowledge. Our initial findings suggest that RecipeQA presents a challenging and ideal

benchmark for evaluating machine comprehension systems. 5

There is a rich literature in natural language processing, and information retrieval on question

answering (QA) [119], but recently deep learning has sparked interest in a special kind of

QA, commonly referred to as reading comprehension (RC) [20]. The main goal of RC

research is to build systems to read and make sense of natural language text and as well

as to answer questions about the provided text [120]. These tests are attractive because they

5The leaderboard and the dataset can be accessed via http://hucvl.github.io/recipeqa.
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demand a comprehensive grasp of the question and the related passage (or context) and can

objectively evaluate various types of abilities [121].

Although recent years have seen remarkable advances in reading comprehension (RC), there

is still a considerable discrepancy between the performance of deep neural models and

human abilities. To further our comprehension of the potential and limitations of these

approaches, researchers have developed new datasets. The variations in existing RC tasks

can be broadly categorized into two aspects: (1) question-answer formats, which can be

cloze (fill-in-the-blank), span selection, or multiple choice, and (2) text sources used, which

can include news [29, 30], fictional stories [45], and Wikipedia articles [46, 122, 123] or

other web sources [124]. A popular topic in computer vision closely related to RC is

Visual Question Answering, wherein the context is an image instead of text in the reading

comprehension task, such as [12, 18, 51, 125], to name a few.

More recently, research in QA has been extended to focus on the multimodal aspects of

the problem where different modalities are being explored. Tapaswi et al. [50] introduced

MovieQA where they concentrate on evaluating comprehension of stories from both text

and video in an automatic manner. In COMICS, Iyyer et al. [38] turned to comic books to

test understanding of closure, and transitions in the narrative from one panel to the next.

In AI2D [126] and FigureQA [127], the authors addressed comprehension of scientific

diagrams and graphical plots. Last but not least, Kembhavi et al. [52] has proposed another

comprehensive and challenging dataset named TQA, which is comprised of middle school

science lessons of diagrams and texts.

In this study, we focus on multimodal machine comprehension of cooking recipes with

images and text. In that regard, we introduce a novel question-answering dataset called

RecipeQA that consists of recipe instructions and related questions (see Fig. 4.1 for an

example text cloze style question).

There are a handful of reasons why understanding and reasoning about recipes is interesting.

Recipes are written with a specific goal in mind, which is to teach others how to prepare

a particular food. Hence, they contain immensely rich information about the real world.
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Figure 4.1 An illustrative text cloze style question (context, question and answer triplet). The
context is comprised of recipe descriptions and images where the question is generated
using the question titles. Each paragraph in the context is taken from another step, as also
true for the images. The bold answer is the correct one.

Recipes consist of instructions, wherein one needs to follow each instruction to successfully

complete the recipe. As a classical example in introductory programming classes, each recipe

might be seen as a particular way of solving a task and in that regard can also be considered an

algorithm. We believe that recipe comprehension is an elusive challenge and might be seen

as an important milestone in the long-standing goal of artificial intelligence and machine

reasoning [128, 129].

Among previous efforts towards multimodal machine comprehension [38, 50, 52, 126, 127],

our study is closer to what Kembhavi et al. [52] envisioned in TQA. Our task primarily differs

in utilizing a substantially larger number of images found in the dataset. In RecipeQA, on

average we have 12 images per recipe, whereas TQA has only 3 images per question on

average. Moreover, in our case, each image is aligned with the text of a particular step
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in the corresponding recipe. Another important difference is that TQA contains mostly

diagrams or textbook images whereas RecipeQA consists of natural images taken by users

in unconstrained environments.

Some of the important characteristics of RecipeQA are as follows:

• There are arbitrary numbers of steps in recipes and images in steps, respectively.

• There are different question styles, each requiring a specific comprehension skill.

• The contexts, questions, and answers show a significant level of variation in terms of

both word choice and sentence structure.

• The comprehension of procedural language, especially in terms of monitoring entities

and/or actions and how they change state, is necessary to provide answers.

• Answers may need information coming from multiple steps (i.e. multiple images and

multiple paragraphs).

• Answers inherently involve a multimodal understanding of image(s) and text.

In summary, we believe RecipeQA is a challenging dataset that will be useful as a benchmark

for assessing the performance of multimodal comprehension systems.

4.1. RecipeQA Dataset

RecipeQA is a challenging multimodal question-answering dataset that evaluates reasoning

over real-life cooking recipes [130]. Approximately 20K recipes from 22 different food

categories are included in the dataset, along with over 36K questions.

Fig. 4.2 shows an illustrative cooking recipe from our dataset. Each recipe in RecipeQA

comprises of multiple steps that comprise both textual and visual components. In particular,

each step of a recipe is accompanied by a ‘title’, a ‘description’, and a set of illustrative

‘images’ that are aligned with the title and the description. Each of these elements can
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Figure 4.2 ‘Creamy Coconut Chickpea Curry’ recipe with 9 steps from Instructables website [131].

be considered as a different modality of the data. The questions in RecipeQA explore the

multimodal aspects of the step-by-step instructions available in the recipes through a number

of specific tasks that are described in Sec. 4.2.. In particular, we have 4 main tasks, which

are visual ordering, visual coherency textual cloze, visual cloze.

4.1.1. Data Collection

We consider cooking recipes as the main data source for our dataset. These recipes were

collected from Instructables 6, which is a how-to website where users share all kinds of

instructions including but not limited to recipes.

6All materials from http://instructables.com were downloaded in April 2018.
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We employed a set of heuristics that helped us collect high-quality data in an automatic

manner. For instance, while collecting the recipes, we downloaded only the most popular

recipes by considering their popularity as an objective measure for assessing the quality of

a recipe. Our assumption is that the most viewed recipes contain less noise and include

easy-to-understand instructions with high-quality illustrative images.

In total, we collected about 20K unique recipes from the food category of Instructables.

We filtered out non-English recipes using a language identification [132] and automatically

removed the ones with unreadable contents such as the ones that only contain recipe

videos. Finally, as a post-processing step, we normalized the description text by removing

non-ASCII characters from the text.

4.1.2. Questions and Answers

For machine comprehension and reasoning, forming the questions and the answers is crucial

for evaluating the ability of a model in understanding the content. Prior studies employed

natural language questions either collected via crowdsourcing platforms such as SQuAD [46]

or generated synthetically as in CNN/Daily Mail [30]. Using natural language questions is

a good approach in terms of capturing human understanding, but crowdsourcing is often too

costly and doesn’t scale well as dataset sizes keep growing. Synthetic question generation is

a low-cost solution, but the quality of the generated questions is subject to question.

The structured data of cooking recipes in RecipeQA provides step-by-step instructions,

which enables us to automatically generate questions with high quality.Our questions test the

semantics of the instructions of the recipes from different aspects through the tasks described

in Sec. 4.2.. In particular, we generate a set of multiple-choice questions (the number of

choices is fixed as four) by following a simple procedure that applies to all of our tasks with

slight modifications.

In order to generate question-answer-context triplets, we first filtered out recipes that contain

less than 3 steps or more than 25 steps. We also ignored the initial step of the recipes as
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our preliminary analysis showed that the first step of the recipes is almost always used by the

authors to provide a narrative, e.g. why they love making that particular food or how it makes

sense to prepare food for some occasion and often is not relevant to the recipe instructions.

In addition, we automatically removed some indicators such as step numbers, that explicitly

emphasize temporal order from the step titles while generating questions.

Given a task, we first randomly select a set of steps from each recipe and construct our

questions and answers from these steps according to the task at hand. In particular, we

employ the modality that the comprehension task is built upon to generate the candidate

answers and use the remaining content as the necessary context for our questions. For

instance, if the step titles are used within the candidate answers, the context becomes the

descriptions and the images of the steps. As the average number of steps per recipe is larger

than four, using this strategy, we can generate multiple context-question-answer triplets from

a single recipe.

Candidate answers can be generated by selecting the distractors at random from the steps

of other recipes. To make our dataset more challenging, we employ a different strategy and

select the distractors from the relevant modalities (titles, descriptions, or images) which are

not too far or too close to the correct answer. Specifically, we employ the following simple

heuristic. We first find k nearest neighbors (k = 100) from other recipes. We then define

an adaptive neighborhood by finding the closest distance to the query and removing the

candidates that are too close. The remaining candidates are similar enough to be adversarial

but not too similar to semantically substitute for the groundtruth. Finally, we randomly

sample distractors from that pool. Details of the question generation procedure for each of

the tasks are given in Sec. 4.2..

4.1.3. Dataset Statistics

RecipeQA dataset contains approximately 20K cooking recipes and over 36K

question-answer pairs divided into four major question types reflecting each of the tasks

at hand. The data is split into non-overlapping training, validation, and test sets so that one
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set does not include a recipe and/or questions about that recipe which are available in other

sets. There are 22 different food categories across our dataset whose distribution is shown in

Fig. 4.3. While splitting the recipes into sets, we take into account these categories so that

all the sets have a similar distribution of recipes across all the categories.

Table 4.1 RecipeQA dataset statistics.

train valid test

# of recipes 15847 1963 1969
. . . avg. # of steps 5.99 6.01 6.00
. . . avg. # of tokens (titles) 17.79 17.40 17.67
. . . avg. # of tokens (descr.) 443.01 440.51 435.33
. . . avg. # of images 12.67 12.74 12.65

# of question-answers 29657 3562 3567
. . . cloze (textual) 7837 961 963
. . . cloze (visual) 7144 842 848
. . . coherence (visual) 7118 830 851
. . . ordering (visual) 7558 929 905

In Table 4.1, we show detailed statistics about our RecipeQA dataset. Moreover, to visualize

the token frequencies, we also provide the word clouds of the titles and the descriptions from

the recipes in Fig. 4.4.

Figure 4.3 Distribution of food categories across RecipeQA.
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Figure 4.4 Word clouds of the tokens for the titles and the descriptions of the recipes from
RecipeQA.

4.2. Tasks

RecipeQA includes four different types of tasks: (1) Cloze (textual), (2) Cloze (visual), (3)

Coherence (visual), and (4) Ordering (visual). As discussed in [121], each proposed task

requires different reasoning abilities and considers different modalities in their contexts and

candidate answer sets. By modalities, we refer to the following pieces of information: (i)

titles of steps, (ii) descriptions of steps, and (iii) illustrative images of steps. While generating

the questions for these tasks, we rather employ fixed templates as will be discussed below,

which helps us to automatically construct question-answer pairs from the recipes with no

human intervention. Using these tasks, we can easily evaluate complex relationships between

different steps of a recipe via their titles, their descriptions, and/or their illustrative images.

Hence, our question-answers pairs are multimodal in nature. In the following, we present a

thorough description of each task and discuss our strategies for how we selected candidate

answers.

4.2.1. Textual Cloze

Textual cloze-style questions test whether models can infer the missing text either in the title

or the description of the steps by taking into account the question’s context which includes
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a set of illustrative images besides the text. When creating the question-answer pairs for

RecipeQA, a random step is chosen from the available candidate steps in a recipe. The

title and description of that step are hidden, and the question is generated by asking the

user to identify the hidden text among several options from the other available modalities.

To construct the distractor answers, we use the strategy in Sec. 4.1.2. that depends on the

WMD [133] distance measure. In Fig. 4.1, we provide a sample text cloze question from

RecipeQA generated automatically in this way.

4.2.2. Visual Cloze

The skill tested in visual cloze-style questions is similar to that of a textual cloze task, but

the missing information in this type of task is in the visual domain instead of the text. In this

type of task, similar to the textual cloze task, a step from a recipe is chosen at random, and

its corresponding image is hidden. Then, the question is asked to identify the hidden image

among several multiple-choice options. For this task, the context is solely textual, consisting

of a sequence of titles and descriptions. To choose the distractor images, we measure the

Euclidean distances between 2048-dimensional pool5 features extracted from a ResNet-50

model [134] trained on the ImageNet classification task. We show a sample visual cloze style

question in Fig. 4.5 (second row).

4.2.3. Visual Coherence

Visual coherence questions assess the ability to identify a visually incoherent image among

a set of images that are arranged in accordance with the step titles and descriptions of the

associated recipe context. This task requires understanding the sequential flow of events in

the recipe and associating it with the corresponding visual content. Therefore, in order to

perform well on this task, a system must not only comprehend the connections between the

candidate steps, but also align and connect different modalities found in both the context

and the answers. While generating the answer candidates for this task, we randomly select a

single representative image from a single step and replace this image with a distractor image
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Figure 4.5 Sample question types (context, question and answer triplet) taken from the RecipeQA
training set. The answers that are indicated by green frames or bold formatting are correct
answers.
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by employing the distractor selection strategy used for the visual cloze task. In Fig. 4.5 (third

row), we provide a sample question for this task.

4.2.4. Visual Ordering

Visual ordering questions assess the capacity of a system to correctly arrange a series of

images in a specific order, based on a set of images that have been disordered and represent

a cooking recipe. As we mentioned earlier, the context for this task is composed of the

step titles and descriptions for a particular recipe. To perform well in this task, the system

must understand the temporal sequence of recipe steps and deduce the relationship between

candidates from a temporal perspective, such as boiling water first and then adding the

spaghetti. Consequently, the series of images should demonstrate an order that corresponds

to the recipe. To generate answer choices, we simply use random permutations of the

illustrative images in the recipe steps. In Fig. 4.5 (last row), we illustrate this visual

ordering task through an example question. Here, we should note that a similar task has

been previously investigated by [135] for visual stories where the task is to order a jumbled

set of aligned image-description pairs.

4.3. Experiments

4.3.1. Data Preparation

Ingredient Detection. We employed the method proposed in [136] to detect recipe

ingredients. To learn more effective word embeddings, we transformed the ingredients with

compound words such as olive oil into single-word ingredients with a proper hyphenation as

olive oil.

Textual Embeddings. We trained a distributed memory model, namely Doc2Vec [137],

and used it to learn word-level and document-level embeddings while encoding the semantic

similarity by taking into account the word order within the provided context. In this way, we
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can represent each word, sentence, or paragraph by a fixed-sized vector. In our experiments,

we employed 100-d vectors to represent all of the textual modalities (titles and descriptions).

We made sure that the embeddings encode semantically useful information by exploring

nearest neighbors (see Fig. 4.6 for some examples.)

Figure 4.6 Sample nearest neighbors from the embeddings by the trained Doc2Vec model.

Visual Features. We used the final activation of ResNet-50 [134] architecture trained on

ImageNet [138] to extract 2048-d dense visual representations. Then, we further utilized an

autoencoder to decrease the dimension of the visual features to 100-d so that they become

compatible in size with the text embeddings.

4.3.2. Baseline Models

Neural Baselines. We modified the Impatient Reader model described in a previous

study by Hermann et al. [30], which was initially designed for answering cloze-style text

comprehension questions in the CNN/Daily Mail dataset, for our neural baseline models. In

our implementation, we used a uni-directional stacked LSTM architecture with 3 layers, in

which we feed the question context sequentially to the model. Particularly, we preserve the

temporal order of the steps of the recipe while feeding it to the neural model by mimicking

the most common reading strategy – reading from top to bottom. For the multimodal setting,

since images are represented with vectors that are of the same size as the text embeddings,

we also feed the images to the network in the same order they are presented in the recipe.

In order to account for different question types, we employ a modular architecture, which

requires small adjustments to be made for each task. For instance, we place the candidate

answers into the query for the cloze style questions or remove the candidate answer from
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the query for the visual coherence type questions. In training our Impatient Reader baseline

model, we use a cosine similarity function and employed the hinge ranking loss [139] as

follows:

L = max{0,M − cos(q, a+) + cos(q, a−)} (1)

in which M denotes a scalar that corresponds to a margin, a+ represents the ground truth

answer, and a− corresponds to an incorrect answer which is sampled randomly from the

whole answer space. For all of our experiments, we select M as 1.5 and employ a simple

heuristic to prevent overfitting by following an early stopping scheme with patience set to 10

against the validation set accuracy after the initial epoch. We utilize ADAM optimizer and

use 1e− 3 for the learning rate. The training took around 18 to 24 hours on GTX 1080Ti on

a single GPU. We did not perform any hyperparameter tuning.

Simple Baselines.We adopt the Hasty Student baseline, which was initially introduced in

[50], to work with RecipeQA. Unlike other models, the Hasty Student model does not take

into account the provided context and answers questions by merely assessing the similarity

between the candidate answers and questions. For the textual close task, each candidate

answer is compared against the titles or descriptions of the steps by using WMD [133]

distance, where such distances are averaged. Then, the choice closest to all of the question

steps is selected as the final answer. For the visual cloze task, a similar approach is carried

out by considering images instead of text using deep visual features. In visual coherence,

as the objective is to identify an incoherent image from among other images, the answer is

chosen as the most dissimilar one to the remaining images on average. Lastly, for the visual

ordering task, first, the distances between each consecutive image pair in a candidate ordering

of the jumbled image set are estimated. Then, each candidate ordering is scored based on the

average of these pairwise distances, and the choice with the minimum average distance is set

as the final answer. In all these simple baseline models, we utilize cosine similarity to rank

the candidates.
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4.3.3. Baseline Results

We report the performance of our baselines in Table 4.2 which presents the proportion of

correct answers out of the total number of questions in the test. In other words, we use

the accuracy metric for calculating the model performance on these tasks, considering these

tasks are multiple choice questions each consisting of 4 candidate answers per question.

Table 4.2 Results for simple and neural models on the test set of RecipeQA dataset.

Visual Textual Visual Visual
Cloze Cloze Coherence Ordering

Hasty Student 27.35 26.89 65.80 40.88
Impatient Reader (Text only) – 28.03 – –
Impatient Reader (Multimodal) 27.36 29.07 28.08 26.74

For the textual cloze, the comparison between text-only and multimodal Impatient Reader

models shows that the additional visual modality helps the model to understand the question

better and to provide more accurate answers. While for the cloze style questions, the

Impatient Reader outperforms the Hasty student, for the visual coherence and visual ordering

style questions Hasty student gives way better results. This demonstrates that better neural

models are needed to be able to deal effectively with these kinds of questions. In Fig. 4.7

and in Fig. 4.8 we provide some qualitative examples.

4.4. Related Work

Question Answering has been studied extensively in the literature. With the success of

deep learning approaches in question answering, comprehension, and reasoning aspects of

the task has attracted researchers to investigate QA as a medium to measure intelligence.

Various datasets and methods have been proposed for measuring different aspects of

the comprehension and reasoning problem. Each dataset has its own merits as well as

weaknesses. Recently, a thorough analysis by [31] revealed that the required reasoning and

inference level was quite simple for CNN/Daily Mail dataset [30]. To make reasoning task
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Figure 4.7 Sample groundtruth and model prediction results for a textual cloze style question
(context, question and answer triplet) taken from the RecipeQA test set (Question Id:
1000-12665-0-3-4-6). Here, the context is comprised of step descriptions and images
where the questions are generated using the step titles in the recipe. Correct answer for
the question is highlighted in green. Answers selected by neural models are correct,
marked as green whereas Hasty Student’s prediction is wrong and marked as red.
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Figure 4.8 Sample question types taken from the RecipeQA test set. The correct answers are
indicated by green frames or text highlighted in green. Wrong answers are marked as
red.
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more realistic, new datasets such as SQuAD [46], NewsQA [29], MSMARCO [37], CLEVR

[51], COMICS [38] and FigureQA [127] have been proposed.

In the following, we briefly discuss the publicly available datasets that are closely related to

our problem and provide an overview in Table 4.3.

Table 4.3 Comparison of the RecipeQA dataset to other multimodal machine comprehension
datasets.

Dataset #Images #Questions Modality
COMICS 1.2M 750K Image/Text
MovieQA 408 14,944 Image/Video/Text
TQA 3,455 26,260 Image/Text

RecipeQA 250,730 36,786 Image/Text

The closest works to ours are [38], [50] and [52] where data multi-modality is the key

aspect. COMICS dataset [38] focuses on comic book narratives and explores visual cloze

style questions, introducing a dataset consisting of drawings from comic books. The dataset

is constructed from 4K Golden Age (1938-1954) comic books from the Digital Comics

Museum and contains 1.2M panels with 2.5M textboxes. Three tasks are evaluated in

this context, namely text cloze, visual cloze, and character coherence. MovieQA dataset

[50], comprises 15K crowdsourced questions about 408 movies. It consists of movie clips,

subtitles, and snapshots and is about comprehending stories about movies. TQA dataset

[52], has 26K questions about 1K middle school science lessons with 3.5K images, mostly

of diagrams, and aims at addressing middle school knowledge acquisition using both images

and text. Since the audience is middle school children, it requires limited reasoning.

RecipeQA substantially differentiates from the previous work in the following way. Our

dataset consists of natural images that are taken by anonymous users in unconstrained

environments, which is a major diversion from COMICS and TQA datasets.

It should also be noted that there has been a long history of research involving cooking

recipes. Recent examples include parsing of recipes [140, 141], aligning instructional text

to videos [142, 143], recipe text generation [144], learning cross-modal embeddings [136],

tracking entities and action transformations in recipes [145].
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Finally, to our best knowledge, there is no dataset focusing on “how-to” instructions or

recipes; hence, this work will be the first to serve multimodal comprehension of recipes

having an arbitrary number of steps aligned with multiple images and multiple sentences.

4.5. Discussions

In this chapter, we presented RecipeQA dataset, which consists of roughly 20K cooking

recipes with over 36K context-question-answer triplets. To our best knowledge, RecipeQA is

the first machine comprehension dataset that deals with understanding procedural knowledge

in a multimodal setting. Each one of the four question styles in our dataset is specifically

tailored to evaluate a particular skill and requires connecting the dots between different

modalities. Results of our baseline models demonstrate that RecipeQA is a challenging

dataset and hopefully will be useful for other researchers to promote the development of new

methods for multimodal machine comprehension. We also hope that RecipeQA will serve

other purposes for related research problems on cooking recipes as well.
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5. PROCEDURAL UNDERSTANDING OF COOKING

RECIPES

In this chapter, we explore understanding multimodal procedural knowledge and describe a

novel architecture for it. In particular, we propose Procedural Reasoning Networks (PRN)

for understanding procedural commonsense knowledge, based on our work,

• Mustafa Sercan Amac, Semih Yagcioglu, Aykut Erdem, and Erkut Erdem. Procedural

reasoning networks for understanding multimodal procedures. In Proceedings of

the 23rd Conference on Computational Natural Language Learning (CoNLL), pages

441–451. 2019.

We only made minor changes to fit the text in the narrative of the thesis and made small

corrections and changes in the text and figures and added further discussion regarding related

work that reports results with the RecipeQA dataset.

Procedural understanding of cooking recipes is a challenging problem as it involves

identifying various entities, establishing their temporal and causal relationships, and tracking

changes in their states. In this study, differing from most of the previous work, we investigate

how can multimodality be used for providing a complementary semantic signal without

relying on strong inductive biases. In order to accomplish this, we introduce an entity-aware

novel neural model which is equipped with an external relational memory unit that helps

to monitor the changes in the state of entities. The proposed model learns to update

entity states while reading the textual instructions considering each entity’s relation to the

other. The experimental analysis on RecipeQA [130] visual reasoning tasks shows that the

proposed approach significantly outperforms the previous baselines. Additionally, through

further analysis, we discover that the proposed model can learn effective dynamic entity

representations without relying on any entity-level supervision.

A tremendous amount of commonsense knowledge about our world is procedural in nature

and involves steps that show ways to achieve specific goals. Understanding and reasoning
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Figure 5.1 A recipe for preparing a cheeseburger (adapted from the cooking
instructions available at https://instructables.com/id/
In-N-Out-Double-Double-Cheeseburger-Copycat). Each basic
ingredient (entity) is highlighted by a different color in the text and with bounding boxes
on the accompanying images. Over the course of the recipe instructions, ingredients
interact with each other and change their states with each cooking action (underlined in
the text), which in turn alter the visual and physical properties of entities. For instance,
the tomato changes its form by being sliced up and then stacked on a hamburger bun.

about procedural texts (e.g. cooking recipes, how-to guides, scientific processes) are very

hard for machines as it demands modeling the intrinsic dynamics of the procedures [130,

146, 147]. That is, one must be aware of the entities present in the text, infer relations among

them, and even anticipate changes in the states of the entities after each action. For example,

consider the cheeseburger recipe presented in Fig. 5.1. The instruction “salt and pepper

each patty and cook for 2 to 3 minutes on the first side” in Step 5 entails mixing three basic

ingredients, the ground beef, salt and pepper, together and then applying heat to the mix,

which in turn causes chemical changes that alter both the appearance and the taste. From a

natural language understanding perspective, the main difficulty arises when a model sees the

word patty again at a later stage of the recipe. It still corresponds to the same entity, but its

form is totally different.

Over the past few years, many new datasets and approaches have been proposed that address

this inherently hard problem [146–149]. To mitigate the aforementioned challenges, the
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existing works rely mostly on heavy supervision and focus on predicting the individual state

changes of entities at each step. Although these models can accurately learn to make local

predictions, they may lack global consistency [148, 149], not to mention that building such

annotated corpora is very labor-intensive. In this work, we take a different direction and

explore the problem from a multimodal standpoint. Our basic motivation, as illustrated in

Fig. 5.1, is that accompanying images provide complementary cues about causal effects and

state changes. For instance, it is quite easy to distinguish raw meat from cooked one in the

visual domain.

In recent years, tracking entities and their state changes have been explored in the literature

from a variety of perspectives. In an early work, [150] proposed a dynamic memory-based

network that updates entity states using a gating mechanism while reading the text. [151]

presented a more structured memory-augmented model which employs memory slots for

representing both entities and their relations. Pavez et al. [152] suggested a conceptually

similar model in which the pairwise relations between attended memories are utilized to

encode the world state. The primary distinction between these works and our method is that

by utilizing relational memory core units, we also allow memories to interact with each other

during each update.

Perez et al. [153] showed that similar ideas can be used to compile supporting memories in

tracking dialogue state. Wang et al. [154] has shown the importance of coreference signals

for reading comprehension tasks. More recently, [155] introduced a specialized recurrent

layer that uses coreference annotations for improving reading comprehension tasks. On the

language modeling task, [156] proposed a language model which can explicitly incorporate

entities while dynamically updating their representations for a range of tasks e.g. language

modeling, entity prediction, and coreference resolution.

Our work builds upon and contributes to the growing literature on tracking state changes in

procedural text. Bosselut et al. [146] presented a neural model that can learn to explicitly

predict state changes of ingredients at different points in a cooking recipe. Mishra et al. [147]

proposed another entity-aware model to track entity states in scientific processes. Tandon
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et al. [148] demonstrated that the prediction quality can be boosted by including hard and

soft constraints to eliminate unlikely or favor probable state changes. In follow-up work,

[149] exploited the notion of label consistency in training to enforce similar predictions in

similar procedural contexts. Das et al. [157] proposed a model that dynamically constructs a

knowledge graph while reading the procedural text to track the ever-changing entities states.

As discussed in the introduction, however, these previous methods use a strong inductive

bias and assume that state labels are present during training. In our study, we deliberately

focus on unlabeled procedural data and ask the question: Can multimodality help to identify

and provide insights into understanding state changes?

In particular, we take advantage of the proposed RecipeQA dataset [130] and explore

whether it is possible to have a model which employs dynamic representations of entities

in answering questions that requires a multimodal understanding of procedures. To this

end, inspired from [158], we propose Procedural Reasoning Networks (PRN) [159] that

incorporate entities into the comprehension process and allow us to keep track of entities,

understand their interactions, and accordingly update their states across time. We report that

our proposed approach significantly improves upon previously published results on visual

reasoning tasks in RecipeQA, which test understanding causal and temporal relations from

images and text. We further show that the dynamic entity representations can capture the

semantics of the state information in the corresponding steps.

5.1. Visual Reasoning in RecipeQA

In our study, we particularly focus on 3 different visual reasoning tasks proposed in

RecipeQA, namely cloze, coherence, and ordering tasks, each of which examines a different

reasoning skill 7. We briefly describe these tasks below.

Visual Cloze. In this task, the question is formed by a sequence of four images from

consecutive steps of a recipe, where one of them is replaced by a placeholder. A model

7We intentionally leave the textual cloze task out from our experiments as the questions in this task does not
necessarily need multimodality.
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CNN CNN CNN

LSTM LSTM LSTM

Step 1: Ingredients
8-12 oz (225-350g) gingersnap cookies (depending on
how much crust you like!) 1/4 cup (57g) butter, melted
(or slightly more if you're going full-hog on the crust) 24
oz.. (680g) cream cheese, softened 15 oz. (425g)
pumpkin puree 2/3 cup (75g) sugar 4 eggs 1 teaspoon
vanilla 1/4 cup (30g) flour Pinch of salt Freshly ground
cinnamon, ginger and nutmeg to taste (I use 1/2
teaspoon each!) Optional: fresh ground pepper - I know
it sounds weird, but it adds depth to the spice profile!

In a mixer or food processor,
combine the softened cream
cheese, pumpkin puree, sugar,
and vanilla extract until well
blended. Add the eggs, one at a
time, mixing after each until just
incorporated. Combine flour and
spices and slowly add to the liquid
mixture. Pour mixture into crust.

Step 3: The Filling
Bake the pumpkin cheesecake for 80-90
minutes, until the center is almost set., and
barely jiggles in the middle. Use a knife to gently
loosen the crust from the edge of the pan. Allow
cheesecake to cool before removing the rim of
the pan.  Refrigerate for at least 4 hours and up
to overnight. If you are traveling with the
cheesecake, leave the pan in tact until ready to
eat! You're gonna love this one, I just know it!

Step 4: BakeStep 2: The Crust
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Preheat your oven to 350F (180C). Using a food processor (or
a mallet and a baggie - go for it!), turn your gingersnaps into
crumbs! Add butter to crumbs and process until well
incorporated.  (If you're using the mallet method, you can use a
fork for this part!) I like to line just the bottom of a 9" springform
pan with parchment, but that is optional.  Pat the crust mixture
into your pan, covering just the bottom, or going up the sides as
far as you dare! If you're going full-crust, it's a good idea to par-
bake your crust (meaning bake it before filling) for 5-10 mins. 
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Figure 5.2 An illustration of our Procedural Reasoning Networks (PRN). For a sample question
from the visual coherence task in RecipeQA, while reading the cooking recipe, the model
constantly performs updates on the representations of the entities (ingredients) after each
step and makes use of their representations along with the whole recipe when it scores a
candidate answer.

should select the correct one from a multiple-choice list of four answer candidates to fill

in the missing piece. In that regard, the task inherently requires aligning visual and textual

information and understanding temporal relationships between the cooking actions and the

entities.

Visual Coherence. The goal of this task is to identify the inconsistent image within a

sequence of four images considering the textual instructions of a cooking recipe. To succeed

in this task, a model should have a clear understanding of the procedure described in the

recipe and at the same time connect language and vision.

Visual Ordering. The visual ordering task is about grasping the temporal flow of visual

events with the help of the given recipe text. The questions show a set of four images from

the recipe and the task is to sort jumbled images into the correct order. Here, a model needs

to infer the temporal relations between the images and align them with the recipe steps.
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5.2. Procedural Reasoning Networks

In the following, we explain our Procedural Reasoning Networks model [159]. Its

architecture is based on a bi-directional attention flow (BiDAF) model [160]8 but also

equipped with an explicit reasoning module that acts on entity-specific relational memory

units. Fig. 5.2 presents the overview of the proposed neural architecture which comprises

five main modules: An input module, an attention module, a reasoning module, a modeling

module, and an output module. Note that the question-answering tasks we consider here are

multimodal in that while the context is a procedural text, the question and the multiple-choice

answers are composed of images.

1. Input Module extracts vector representations of inputs at different levels of granularity

by using several different encoders.

2. Reasoning Module scans the procedural text and tracks the states of the entities and

their relations through a recurrent relational memory core unit [158].

3. Attention Module computes context-aware query vectors and query-aware context

vectors as well as query-aware memory vectors.

4. Modeling Module employs two multi-layered RNNs to encode previous layers’

outputs.

5. Output Module scores a candidate answer from the given multiple-choice list.

At a high level, as the model is reading the cooking recipe, it continually updates the internal

memory representations of the entities (ingredients) based on the content of each step – it

keeps track of changes in the states of the entities, providing an entity-centric summary of

the recipe. The response to a question and a possible answer depends on the representation of

the recipe text as well as the last states of the entities. All this happens in a series of implicit

relational reasoning steps and there is no need for explicitly encoding the state in terms of a

predefined vocabulary.

8Our implementation is based on the implementation publicly available in AllenNLP [160].
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5.2.1. Input Module

Let the triple (R,Q,A) be a sample input. Here, R denotes the input recipe which contains

textual instructions composed of N words in total. Q represents the question that consists

of a sequence of M images. A denotes an answer that is either a single image or a series of

L images depending on the reasoning task. In particular, for the visual cloze and the visual

coherence type questions, the answer contains a single image (L = 1) and for the visual

ordering task, it includes a sequence.

We encode the input recipe R at character, word, and step levels. Character-level embedding

layer uses a convolutional neural network, namely the CharCNN model by [161], which

outputs character-level embeddings for each word to address the representational challenges

in the existence of out of vocabulary words. In the word embedding layer, we use the GloVe

model as a pretrained model [162], to extract word embeddings (We also consider pre-trained

ELMo embeddings [163] in our experiments but found out that the performance gain does

not justify the computational overhead.). We concatenate character-level and word-level

embeddings and then feed this vector to a two-layered highway network [164] to obtain a

contextual embedding for each word in the recipe. This results in the matrix R′ ∈ R2d×N .

We utilize another layer leveraging the previous layers, to encode the steps of the recipe

in an individual manner. Specifically, we obtain a step-level contextual embedding of the

input recipe containing T steps as S = (s1, s2, . . . , sT ) where si represents the final state of

a BiLSTM encoding the i-th step of the recipe obtained from the character and word-level

embeddings of the tokens exist in the corresponding step.

We represent both the question Q and the answer A in terms of visual embeddings. Here,

we employ a pre-trained ResNet-50 model [165] trained on ImageNet dataset [166] and

represent each image as a real-valued 2048-d vector using features from the penultimate

average-pool layer. Then these embeddings are passed first to a multilayer perceptron (MLP)

and then its outputs are fed to a BiLSTM. We then form a matrix Q′ ∈ R2d×M for the question

by concatenating the cell states of the BiLSTM. For the visual ordering task, to represent the
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We'll start with a nice piece of
roast, mine was 1 kilo and a
half, but you can do less if you
want.We'll have to cut the
pieces so that it eventually fit in
the bottle. This depends
entirely from the size of the
bottle itself, that said remember
the meat will shrink in the oven.

Step 1: Slicin', Dicin'...

salt
oil

potatoes
rosemary

thyme
crushed garlic

pork tenderloin
blackpepper

Then comes the phase that is
known in italian as "Pillottare".
Using a mortar, grind together
the spices, the salt, the
crushed garlic and add a drop
or two of olive oil so that the
mixture sticks together After
that, take a knife, stab the meat
and start filling the cavities with
the spices. When you're
finished it should look like your
meat had grown a beard.

Quickly clean the potatoes and
the onion and chop them in
medium sized pieces. Put half
an inch of Olive oil in the pan
and put everything in it. Add
the remaining spices and, if
you like, add some more.

Preheat the oven to 180C
(356F) and then put this baby
to roast. Turn it from time to
time so that both sides cook
evenly. I kept it one hour and
ten, but it depends really from
the size of your roast. You can
always go old school and
check with a toothpic from time
to time.

Bottle has to be clean, so after
washing and drying it, and right
before putting the meat in it,
boil some water and pour it in
for a quick rinse off. To avoid
breaking the bottle pour some
cold water in it and pour the
boiling water into the cold
water. You do not need much of
it, just a cup or so, quickly rinse
the bottle and throw the water
away. 

Wait till the meat is cold, then
put it into the freshly sterilized
bottle and cover in olive oil.
The meat has to rest for at
least two days, then you can
start eating it.

Step 2: ... and Spicin' Step 3: Bring Company! Step 4: Burn Baby Burn! Step 5: Ready the Bottle. Step 6: Put the Piggies to Sleep.
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Figure 5.3 Sample visualizations of the self-attention weights demonstrating both the interactions
among the ingredients and between the ingredients and the textual instructions
throughout the steps of a sample cooking recipe from RecipeQA (darker colors imply
higher attention weights). The attention maps do not change much after the third step
as the steps after that mostly provide some redundant information about the completed
recipe.

sequence of images in the answer with a single vector, we additionally use a BiLSTM and

define the answering embedding by the summation of the cell states of the BiLSTM. Finally,

for all tasks, these computations produce answer embeddings denoted by a ∈ R2d×1.

5.2.2. Reasoning Module

As mentioned before, comprehending a cooking recipe is mostly about entities (basic

ingredients) and actions (cooking activities) described in the recipe instructions. Each action

leads to changes in the states of the entities, which usually affects their visual characteristics.

A change rarely occurs in isolation; in most cases, the action affects multiple entities at once.

Hence, in our reasoning module, we have an explicit memory component implemented with

relational memory units [158]. This helps us to keep track of the entities, their state changes,

and their relations in relation to each other over the course of the recipe (see Fig. 5.3). As

we will examine in more detail in Section 5.3., it also greatly improves the interpretability of

model outputs.

Specifically, we set up the memory with a memory matrix E ∈ RdE×K by extracting

K entities (ingredients) from the first step of the recipe (The first steps of the recipes in
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RecipeQA commonly contain a list of ingredients.). We initialize each memory cell ei

representing a specific entity by its CharCNN and pre-trained GloVe embeddings. For the

entities that have multiple words in them such as minced garlic, we take the average of

the word embeddings they contain, and OOV words are expressed with the average word

vector of all the words. From now on, we will use the terms memory cells and entities

interchangeably throughout the paper. Since the input recipe is given in the form of a

procedural text decomposed into a number of steps, we update the memory cells after each

step, reflecting the state changes that happened to the entities. This update procedure is

modeled via a relational recurrent neural network (R-RNN), recently proposed by [158]. It

is built on a 2-dimensional LSTM model whose matrix of cell states represents our memory

matrix E. Here, each row i of the matrix E refers to a specific entity ei and is updated after

each step of the recipe, referred to as t as follows:

ϕi,t = R-RNN(ϕi,t−1, st) (2)

where st denotes the embedding of recipe step t and ϕi,t = (hi,t, ei,t) corresponds to the

state of the R-RNN cells at step t with hi,t and ei,t denoting i-th row of R-RNN hidden state

and the dynamic representation of entity ei at the step t, respectively. The R-RNN model

exploits a multi-headed self-attention mechanism [167] that allows memory cells to interact

with each other and attend multiple locations simultaneously during the update phase.

In Fig. 5.3, we illustrate how this interaction takes place in our relational memory module

by considering a sample cooking recipe and by presenting how the attention matrix changes

throughout the recipe. In particular, the attention matrix at a specific time shows the attention

flow from one entity (memory cell) to another along with the attention weights to the

corresponding recipe step (offset column). The color intensity shows the magnitude of the

attention weights. As can be seen from the figure, the internal representations of the entities

are actively updated at each step. Moreover, as argued in [158], this can be interpreted as a

form of relational reasoning as each update on a specific memory cell is operated in relation

to others. Here, we should note that it is often difficult to make sense of these attention
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weights. However, we observe that the attention matrix changes very gradually near the

completion of the recipe.

5.2.3. Attention Module

The attention module is in charge of linking the question with the recipe text and the entities

present in the recipe. It takes the matrices Q′ and R′ from the input module, and E from

the reasoning module and constructs the question-aware recipe representation G and the

question-aware entity representation Y. Following the attention flow mechanism described

in [168], we specifically calculate attention in four different directions: (1) from question

to recipe, (2) from recipe to question, (3) from question to entities, and (4) from entities to

question.

The first two of these attentions require computing a shared affinity matrix SR ∈ RN×M with

SR
i,j indicating how similar the i-th recipe word and j-th image is in the question estimated

by

SR
i,j = w⊤

R[R
′
i;Q

′
j;R

′
i ◦Q′

j] (3)

where w⊤
R is a trainable weight vector, ◦ and [; ] denote elementwise multiplication and

concatenation operations, respectively.

Recipe-to-question attention determines the images within the question that is most relevant

to each word of the recipe. Let Q̃ ∈ R2d×N represent the recipe-to-question attention matrix

with its i-th column being given by Q̃i =
∑

j aijQ
′
j where the attention weight is computed

by ai = softmax(SR
i ) ∈ RM .

Question-to-recipe attention signifies the words within the recipe that have the closest

similarity to each image in the question, and construct an attended recipe vector given by

r̃ =
∑

i biR
′
i with the attention weight is calculated by b = softmax(maxcol(S

R)) ∈ RN

where maxcol denotes the maximum function across the column. The question-to-recipe

matrix is then obtained by replicating r̃ N times across the column, giving R̃ ∈ R2d×N .
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Then, we construct the question-aware representation of the input recipe, G, with its i-th

column Gi ∈ R8d×N denoting the final embedding of i-th word given by

Gi = [R′
i; Q̃i;R

′
i ◦ Q̃i;R

′
i ◦ R̃i; ] . (4)

Attention from the question to entities and from entities to the question is computed in a way

similar to the ones described above. The only difference is that it uses a different shared

affinity matrix to be computed between the memory encoding entities E and the question Q′.

These attentions are then used to construct the question-aware representation of entities,

denoted by Y, that links and integrate the images in the question and the entities in the input

recipe.

5.2.4. Modeling Module

The modeling module takes the question-aware representations of the recipe G and the

entities Y and forms their combined vector representation. For this purpose, we first use a

two-layer BiLSTM to read the question-aware recipe G and to encode the interactions among

the words conditioned on the question. For each direction of BiLSTM, we use its hidden

state after reading the last token as its output. In the end, we obtain a vector embedding

c ∈ R2d×1. Similarly, we employ a second BiLSTM, this time, over the entities Y, which

results in another vector embedding f ∈ R2dE×1. Finally, these vector representations are

concatenated and then projected to a fixed size representation using o = φo([c; f ]) ∈ R2d×1

where φo is a multilayer perceptron with tanh activation function.

5.2.5. Output Module

The output module takes the output of the modeling module, encoding vector embeddings of

the question-aware recipe and the entities Y, and the embedding of the answer A, and returns

a similarity score which is used while determining the correct answer. The answer candidate
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with the highest similarity score among all candidates is selected as the correct one. To train

our proposed procedural reasoning network, we employ a hinge ranking loss [139], similar

to the one used in [130], given below.

L = max{0, γ − cos(o, a+) + cos(o, a−)} (5)

where γ is the margin parameter, a+ and a− are the correct and the incorrect answers,

respectively.

5.3. Experiments

Throughout the section, we explain how we conducted the experiments, and then we present

a detailed analysis of the outcomes of the Procedural Reasoning Networks (PRN) model.

5.3.1. Entity Extraction

Given a recipe, we automatically extract the entities from the initial step of a recipe by using

a dictionary of ingredients. While determining the ingredients, we exploit Recipe1M [169]

and Kaggle What’s Cooking Recipes [170] datasets and form our dictionary using the most

commonly used ingredients in the training set of RecipeQA. For the cases when no entity

can be extracted from the recipe automatically (20 recipes in total), we manually annotate

those recipes with the related entities.

5.3.2. Training Details

In our experiments, we separately trained models on each task, as well as we investigated

multi-task learning where one model was trained to solve all these tasks at once. In total,

PRN architecture consists of ∼12M trainable parameters. We implemented our models in

PyTorch [171] using AllenNLP library [160]. We used ADAM for optimization and set

learning rate to 1e − 4 using an early stopping condition where the patience is set to 10
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indicating that the training procedure ends after 10 iterations if the performance would not

improve. We considered a batch size of 32 due to our hardware constraints. In the multi-task

setting, batches are sampled round-robin from all tasks, where each batch is solely composed

of examples from one task. We performed our experiments on a system containing four

NVIDIA GTX-1080Ti GPUs, and training a single model took around 2 hours. We employed

the same hyperparameters for all the baseline systems. We plan to share our code and model

implementation after the review process.

5.3.3. Baselines

We benchmark our proposed model against several baselines and note that the results of the

first two are previously reported in [130].

Hasty Student [130] is a heuristics-based simple model which ignores the recipe and gives

an answer by examining only the question and the answer set using distances in the visual

feature space.

Impatient Reader [30] is a simple neural model where its name comes from its behavior of

repeatedly computing attention over the recipe after observing each image in the query.

BiDAF [168] is a strong neural reading comprehension model in which a bi-directional

attention flow is employed to obtain question-aware embeddings and bases its predictions

on this representation. Originally, it is a span-selection model from the input context. Here,

we adapt it to work in a multimodal setting and answer multiple-choice questions instead.

BiDAF w/ static memory is an extended version of the BiDAF model which resembles our

proposed PRN model in that it includes a memory unit for the entities. However, it does

not make any updates on the memory cells. That is, it uses the static entity embeddings

initialized with GloVe word vectors. We propose this baseline to test the significance of the

use of relational memory updates.
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Figure 5.4 t-SNE visualizations of learned embeddings from each memory snapshot mapping to
each entity and their corresponding states from each step for visual cloze task.

Table 5.1 Quantitative comparison for the PRN model results against the baselines.

Single-task Training Multi-task Training
Model Cloze Coherence Ordering Average Cloze Coherence Ordering All
Human∗ 77.60 81.60 64.00 74.40 – – – –
Hasty Student 27.35 65.80 40.88 44.68 – – – –
Impatient Reader 27.36 28.08 26.74 27.39 – – – –
BIDAF 53.95 48.82 62.42 55.06 44.62 36.00 63.93 48.67
BIDAF w/ static memory 51.82 45.88 60.90 52.87 47.81 40.23 62.94 50.59
PRN 56.31 53.64 62.77 57.57 46.45 40.58 62.67 50.17
∗ Taken from the RecipeQA project website, based on 100 questions sampled randomly from the validation set.

5.3.4. Results

Table 5.1 presents the quantitative results for the visual reasoning tasks in RecipeQA. We

present the results of our baseline models, which show the percentage of questions that were

answered correctly out of the total number of questions in the test. In other words, we use

the accuracy metric for calculating the model performance on these tasks, considering these

tasks are multiple choice questions each consisting of 4 candidate answers per question. In

the single-task training setting, PRN achieves state-of-the-art against other neural models.

Moreover, it also performs as the best baseline on average. These findings demonstrate the

importance of having a dynamic memory and keeping track of entities extracted from the

recipe. In the multi-task training setting where a single model is trained to solve all the

tasks at once, PRN and BIDAF w/ static memory perform comparably and give much better
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results than BIDAF. Note that the model performances in the multi-task training setting are

worse than single-task performances. We believe that this is due to the nature of the tasks

that some are more difficult than others. We think that the performance could be improved

by employing a carefully selected curriculum strategy [172].

In Fig. 5.4, we illustrate the entity embeddings space by projecting the learned embeddings

from the step-by-step memory snapshots through time with t-SNE to 3-d space from 200-d

vector space. Color codes denote the categories of the cooking recipes. As can be seen, these

step-aware embeddings show clear clustering of these categories. Moreover, within each

cluster, the entities are grouped together in terms of their state characteristics. For instance,

in the zoomed parts of the figure, chopped and sliced or stirred and whisked entities are

placed close to each other.

Figure 5.5 Step-aware entity representations can be used to discover the changes that occurred in
the states of the ingredients between two different recipe steps. The difference vector
between two entities can then be added to other entities to find their next states. For
instance, in the first example, the difference vector encodes the chopping action done
on onions. In the second example, it encodes the pouring action done on the water. When
these vectors are added to the representations of raw tomatoes and milk, the three most
likely next states capture the semantics of state changes in an accurate manner.
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Fig. 5.5 demonstrates the entity arithmetics using the learned embeddings from each entity

step. Here, we show that the learned embedding from the memory snapshots can effectively

capture the contextual information about the entities at each time point in the corresponding

step while taking into account of the recipe data. This basic arithmetic operation suggests

that the proposed model can successfully capture the semantics of each entity’s state in the

corresponding step9.

5.4. Further Analysis

In the following, we provide implementation details and further analysis we did for the

proposed Procedural Reasoning Networks model.

Entity Extraction. While initializing memory cells we used ingredients as entities and

during each read we updated the memory cells, resulting in an implicit update for entity

states. In that regard, detecting ingredients has been an important part of our experiments.

We followed a simple scheme for extracting entities from each recipe. We used Recipe1M

[169] and Kaggle What’s Cooking Recipes [170] datasets and formed a dictionary using the

ingredients provided in those datasets from the food domain. Next, we scanned each recipe

for existing ingredients using this dictionary.

In RecipeQA often the first steps contain ingredients of that recipe, but in some cases,

ingredients might not be explicitly provided the first step. In order to address this we

calculated the maximum number of unique ingredients in each step of a recipe and selected

that step to extract ingredients. In cases ingredients can not be automatically extracted we

manually annotated those recipes. In particular, we annotated 20 recipes manually.

Training Details. For training our model architecture in multitask mode, we used random

shuffling for each batch. This is as well true for training in single mode, but by doing so we

tried to reduce the task bias that sequential training might lead to.

9We used Gensim for calculating entity arithmetics using cosine distances between entity embeddings.
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Analyses. For t-SNE embedding analyses, we used Embedding Projector10 project. We

used the embeddings learned by the model extracted from memory cells of each time step

during each read. Each embedding corresponds to an entity state. In particular, we used

entity embeddings and trained a t-SNE model with the following parameters perplexity=30,

learning rate=10 for 1000 iterations. Due to a limitation in the embedding projector, the

project downsamples data points to 10K, hence we used only 10K entity embeddings in our

t-SNE analyses.

Hyperparameters. In Table 5.2 we demonstrate the hyperparameters we used to train our

model.

Table 5.2 Training hyperparameter selection used in our experiments.

Hyperparameter Value

Optimizer Adam
Batch Size 32
Early Stopping Yes
Learning Rate 1-e4
Patience 10
Memory Cell Size 61

5.5. Discussions

In this chapter, we presented a new neural architecture called Procedural Reasoning

Networks (PRN) [159] for the multimodal understanding of step-by-step instructions. Our

proposed model is based on the successful BiDAF framework but is also equipped with

an explicit memory unit that provides an implicit mechanism to keep track of the changes

in the states of the entities over the course of the procedure. Our experiments on the

RecipeQA dataset’s visual reasoning tasks reveal that the proposed PRN model significantly

outperforms the previous baselines, indicating that it better understands the procedural

text and the accompanying images. Additionally, we carefully analyze our results and

highlight that the proposed approach can learn meaningful entity representations without any
10https://projector.tensorflow.org
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entity-level supervision. Although we achieve state-of-the-art on RecipeQA, clearly there is

still room for improvement compared to human performance. We also believe that the PRN

architecture will be of value to other visual and textual sequential reasoning tasks.

Much recently, the RecipeQA dataset received a great deal of interest from both

computer vision and natural language processing communities. There has been a body

of research inspired by the RecipeQA dataset in various setups such as multimodal

comprehension, procedural understanding, commonsense reasoning, information retrieval,

image-text coherence, and cross-modal representation learning. In the following, we discuss

the related follow-up studies that report results on RecipeQA as well as utilize the RecipeQA

dataset for solving various research problems.

[173] proposed CITE, based on the RecipeQA dataset, and investigated multimodal discourse

relations between image and text pairs. Authors leveraged recipes that have a one-to-one

correspondence between each instruction and image to study the relationship between

instructions and images with a broader goal of better understanding natural communication

and commonsense reasoning. [174] proposed a method to identify image-sentence

associations in documents with multiple images and multiple sentences without depending

on explicit multimodal annotation during training leveraging the RecipeQA dataset. [175]

explored the RecipeQA dataset and studied the inferential relations between images and text

from the perspective of captioning by looking at the verb usages in text and the coherence

of images and text co-occurring with images. [176] proposed a method to map activities in

a given sequence with the matching instruction from the provided instruction sequences.

The proposed model follows a regularization approach to identify and match with the

instruction orders utilizing their partial orders. The authors then evaluate their proposed

model performance on the RecipeQA textual cloze task and propose two other ordering

tasks using RecipeQA. [177] proposed a transformer-based framework for reasoning tasks

on RecipeQA to simulate interactions between various modalities at numerous steps.

[178] proposed a dataset for sequence-to-sequence retrieval task. The authors used the

RecipeQA dataset to augment the proposed dataset with the main objective to choose the

image sequence that most accurately depicts the given textual input. [179] proposed an
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alignment mechanism for procedural reasoning on RecipeQA. The authors investigate latent

alignment space and the positional encoding of questions and answers to constrain the

output space of the latent alignment. They leverage cross-modal representation based on

cross-attention and analyze the benefits of information flow between images and instructions.

[180] explore uncertainty measures for image-caption embedding-and-retrieval task on the

RecipeQA dataset to assess sample reliability. The authors proposed a Bayesian neural

network to quantify feature uncertainty and posterior uncertainty with a broader goal to

improve retrieval performance by rejecting uncertain queries. [181] proposed a heuristic

to reduce the inherent bias present in the RecipeQA dataset. The authors discuss that the

question generation scheme in the RecipeQA dataset introduces a distributional bias, such

that the beginning and final step titles often contain ‘Ingredients’ and ‘Enjoy’ therefore

might lead models to only choose answers that contain these words without looking at

the context, hence proposed a method to overcome this shortcoming. [182] proposed a

method to model temporal structures for recipes in RecipeQA. In particular, the authors

propose a knowledge-based deep heterogeneous graph matching model to reduce the

divergence between recipe representations of entities across temporal changes and guarantee

neighbourhood consensus through a graph-based approach. [183] proposed a cross-modal

coherence model for text-to-image retrieval task for a joint understanding of co-occurring

images and text and proposed CITE++ by extending the CITE dataset which is based on

the RecipeQA dataset. [184] proposed Meta-RecipeQA to reduce the inherent biases in the

RecipeQA dataset and proposed a model to solve comprehension and reasoning tasks on

the RecipeQA dataset. The authors analyzed distance distributions between correct answers

and incorrect answers and proposed methods to effectively reduce the bias in RecipeQA

tasks. [185] demonstrated a heuristic to construct rich recipe representations in the form of

plans leveraging the recipes in the RecipeQA dataset. The authors enriched the recipes in

RecipeQA by adding allergens, activities, objects, and background knowledge such as tools

and possible failures for each step of the recipes with a broader goal to improve retrieval

efficiency. [186] proposed a method for sequencing unordered multimodal procedural

instructions and utilized RecipeQA for multimodal event sequencing problem. In particular,

the authors proposed different techniques to align images and text to improve the sequencing

89



of unordered steps in multimodal instructions where images and text complement each other.

[187] proposed a method to model entities in both their temporal and cross-modal relations

and leveraged the temporal nature of the RecipeQA dataset as well as its multimodal nature.

The authors examine entities both in textual modality and visual modality and encode entity

relations through temporal relations as well as model their cross-modal relations in the

recipes.

In summary, the RecipeQA dataset has been inspiring several researchers to investigate

various aspects of the dataset and has become a traditional multimodal dataset in the

literature. We hope that our work continues to attract more attention from different fields

and so that more researchers can exploit RecipeQA for the procedural understanding of

multimodal how-to instructions.
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6. COMPOSITIONAL GROUNDED UNDERSTANDING

OF ACTIONS

In this chapter, we explore the multimodal understanding of actions in a challenging

compositional generalization setup which we surveyed thoroughly in Ch. 3.. In particular, we

review the problem of compositional understanding of actions and propose models to show

the contribution of multimodality towards models’ compositional generalization abilities,

based on our work11. We only made minor changes to fit the text in the narrative of the

thesis and made small corrections in the text. In the following, we introduce the problem

of compositional grounded understanding of actions and propose methods that can leverage

multimodal signals to significantly improve models’ compositional generalization abilities

which we believe will be a step towards solving the compositional generalization problem

which is an open research problem.

Humans can rapidly understand new concepts, relying upon and combining context

information with basic concepts from their existing knowledge. Compared to humans,

neural network models trained over increasingly large datasets perform impressively well

on a wide range of tasks, but they often fail to compositionally generalize to unseen

concepts. In this study, we investigate compositionality and systematic generalization in

a perceptually grounded setting by using a dataset of everyday household activities. This

dataset depicts sequences of activities in pursuit of a wide variety of goals, e.g. preparing

celery, washing plates. Each activity is represented with crowd-sourced utterances that

describe different steps of the activity alongside the egocentric video frames and audio

features. We evaluate several unimodal and multimodal baselines on future utterance

prediction and action anticipation tasks, that respectively aim at describing and predicting

an activity involving novel compositions of seen concepts. The models that exploit visual

and audio signals do indeed improve over text-only model when they are evaluated on the

long tail of rare complex concepts.

11In submission
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As a long-standing problem in language, compositionality has been widely studied for many

years. It deals with describing the relationship between an unbounded number of sentences

and a vast set of meanings from a finite set of rules [63]. Therefore, compositionality aims to

address the problem of finding ways to define the meaning of an entire sentence as a function

of the meaning of its constituents and the rules that are used to put those constituents together.

In that regard, compositionality and systematic generalization have been used to characterize

symbolic computation and human cognition [55, 65]. Humans exhibit compositional skills in

a variety of areas, including visual scene comprehension and language understanding. As put

by [76], “Once a person learns the meaning of a new verb ‘dax’, he or she can immediately

understand the meaning of ‘dax twice’ and ‘sing and dax’.” In a similar fashion, it has been

shown that humans can learn a novel object’s shape and leveraging prior color and concept

information they can understand its compositions [61, 188].

Researchers have shown that neural models can perform well across different tasks that

require effective generalization abilities [54]. The compositionality and systematicity of

neural networks have been long debated whether – and to what extent – neural networks

display compositional generalization [55, 66, 68, 71, 72]. Moreover, deep neural networks

have been commonly criticized for requiring a very large number of training examples

to succeed and argued to lack compositional abilities [189]. Discussions around neural

networks’ inability to generalize compositionally in order to capture the structure of the

underlying problem, thus failing across various tasks have recently sparked a lot of interest

in the machine learning community [53, 59, 61, 79, 81, 93, 190, 191].

Although recent studies towards understanding and improving the compositional

generalization skills of neural models have sparked much interest in the research community,

work around understanding the role of multimodal and grounded language processing has

been limited. [76] investigated picking up new concepts and applying them in test time by

coupling previously learned concepts with new concepts. [80] investigated how to acquire

new words and how to predict novel compositions by learning textual representations from

visual context for understanding instructional videos in a language modeling setup. Other

existing works are centered around designing conceptual benchmark datasets specifically
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constructed for testing compositionality, e.g. [79, 93, 192]. These studies have demonstrated

that many deep neural models fail to capture the compositional structures in the underlying

tasks and cannot generalize well even on really simple textual data.

Our motivation in this study is to test linguistic compositionality and systematic

generalization in a perceptually grounded setting and to understand whether leveraging visual

and auditory cues can contribute to systematic generalization capabilities of deep models.

Towards this goal, we turn our attention to multimodal how-to instructions as they provide a

good test bed for our needs. More concretely, our contributions can be highlighted as:

• We curate a novel benchmark: Epic-Kitchens-100-Systematicity (EK-100-SYS) for

future utterance prediction and action anticipation tasks, which can be used to analyze

compositional generalization in a grounded setup.

• We implement several neural models, and through them, we analyze whether

multimodality helps linguistic compositionality in the context of the proposed tasks.

6.1. Problem Formulation

6.1.1. Future Utterance Prediction Task

Predicting what comes next plays a central role in cognition [193, 194] and also has been

attributed as an interesting training scheme from a cognitive perspective [78]. We study

this task on a multimodal dataset of people performing everyday household activities, e.g.

preparing celery. Each video in our dataset consists of short clips (microsegments) that

define sub-tasks of an activity, and each sub-task is described by a textual description, e.g.

“pick up plate”, “put plate in sink”, “turn on water”, and “wash plate”, annotated by the

actors after the recording. In the following, we formulate the future utterance prediction

task as a language generation problem. Let S = (X,V,A) denote a triplet representing

a short video clip with X = {xi}Ki=1 being a sequence of K utterances, which describe a

household activity and grounded with visual and audio signals, denoted by V = {vi}Ki=1 and

A = {ai}Ki=1, respectively. Our proposed future utterance prediction task involves generating
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Inputs (key frames and utterances) Targets (future utterance)

take celery throw things into garbage bin open fridge put celery back into fridge

Tr
ai

ni
ng

pour sesame oil close sesame oil pick up onion cut onion in half

pick up containers wash colander put down colander wash container

E
va

lu
at

io
n

wash celery close tap put down celery cut celery

Figure 6.1 Overview of our systematicity setup for future utterance prediction task using
microsegments from our EK-100-SYS dataset. During training time, the model
has already been exposed to the primitives ‘wash’, ‘close’, ‘put down’, and ‘celery’
but not the “cut celery” composition and the goal is to be able to generalize to novel
compositions of primitive elements in test time.

the (K + 1)th utterance, y = xK+1, following the preceding K utterances and multimodal

cues. The training data comprised of multiple microsegments, {(S,y)}.

During training, our objective is the minimization of the negative log-likelihood for

generating the next utterance, where the multimodal models are conditioned on additional

modalities such as image, or audio. Given the microsegment S and the model parameters

θ, our objective is to minimize the negative log-likelihood of all next utterance tokens

y = {yi}mi=1:
log p(y|S; θ) = −

m∑
i=1

log p(yi|S; θ) (6)
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6.1.2. Action Anticipation Task

We formulate action anticipation as a classification task, where we study the problem of

predicting the next action with the target verbs and nouns. The main difference between this

task and the future utterance prediction task is that utterance prediction is a natural language

generation task. In particular, in action anticipation, the main objective is predicting the next

action by leveraging the previously observed actions. Differing from other action anticipation

tasks [9, 195, 196], our setup allows us to formulate action anticipation in a compositional

manner by predicting the verb and noun separately.

More formally, let S = (X,V,A) denote a triplet representing a video clip with X =

{xi}Ki=1 representing a sequence of K utterances, which describe a household activity and

grounded with visual and audio signals, denoted by V = {vi}Ki=1 and A = {ai}Ki=1,

respectively. Our action anticipation task involves predicting the verb/noun in the (K + 1)th

utterance, y = xC
K+1, following the preceding K utterances and multimodal cues where C

denotes the verb or noun class.

6.2. EK-100-SYS Dataset

We use the EPIC-Kitchens-100 dataset (EK-100) as the starting point for our experiments

[9]. EK-100 contains first-person videos of unscripted daily kitchen activities in natural

household environments. Each video V is split into a sequence of shorter clips v1, . . . ,vk,

which have manually annotated English narrations of the activities within clips denoted by

x1, . . . ,xk. The clips also have audio tracks a1, . . . , ak, which only contain sounds, e.g. a

knife cutting an onion or a person opening the fridge. We denote a sequence of video clips –

audio tracks – narrations as an instance.

Recall from Section 6.1.1. that our aim is to model sequences of video clips. Therefore, we

select instances from the EK-100 dataset with a window of K = 4 clips: the first 3 clips are

used for context, while the final clip is used for prediction. This results in 22,136 instances
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that can be used for our experiments. In Fig. 6.1, we provide some examples, along with

representative keyframes and their corresponding narrations.

6.2.1. Systematicity Splits (EK-100-SYS)

Given a dataset of video sequences, our main focus is to study how well models

compositionally generalize to unseen combinations of concepts. In the same vein of

compositional captioning [77] or novel compositions of object properties [62], we create

a dataset where the distribution of the individual concepts is similar across the dataset, but

the compositions of those concepts is different. Consider the example given in Fig. 6.1.

The model has already seen the nouns CELERY, TAP and verbs WASH, CLOSE, PUT DOWN,

CUT but it has not seen the combination of CUT CELERY during training. The model has to

compositionally generalize to this new instance.

To obtain such splits of the dataset, we followed the Maximum Compound Divergence

heuristic to create similar distributions of individual concepts (atoms) but different

distributions of combinations of concepts [79]. We use the 97 verb classes and 300 noun

classes in the EK-100 dataset as the atoms. In particular, we assign each sample to a split

based on the atomic and compound divergence (similarity) leveraging Chernoff coefficient

Cα(P∥Q) =
∑

k p
α
k q

1−α
k ∈ [0, 1] [197] while using weighted distributions. In order to

make the distribution of atoms similar between the train and the test splits, we use α = 0.5

for atomic divergence. Here, we set α = 0.1 to reflect the importance of having certain

compounds to exist in P (train) instead of the probabilities them matching exactly for the

P (train) and Q (test). Following this logic, we define compound divergence and atom

divergence for U which corresponds to train split, and W which corresponds to test split,

using the following equation.

DC(U∥W ) = 1 − C0.1(FC(U) ∥FC(W ))

DA(U∥W ) = 1 − C0.5(FA(U) ∥FA(W ))
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Figure 6.2 Overview of multimodal Audio, Vision, and Language baseline model which
incorporates global image features, object level image features, audio features as well
as textual features using two crossmodal self-attention blocks with an LSTM decoder to
predict next utterances.

where FA(T ) denotes frequency distribution of atoms, and the FC(T ) describes compound

distribution for a given set T and DA and DC denote atom and compound divergences,

respectively. We calculated divergence scores for each data sample until we achieve the

atomic divergence between the train and the test sets DA < 0.02 and compound divergence

between the train and the test sets DC < 0.6, which represents a sweet spot in terms of target

distributions as described before (see Fig. 6.4). Finally, we randomly divide this test set into

two sets with similar distributions, one for validation and the other for testing.

The resulting EK-100-SYS dataset has 8,766 instances, which are split into 4,407 training,

2,184 validation, and 2,175 test instances. We use these splits to train and evaluate our

models on future utterance prediction and action anticipation tasks.

6.3. Models for Future Utterance Prediction

We benchmark a text-only model, along with several multimodal models to assess the

importance of different modalities in systematic generalization.
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6.3.1. Text-only Unimodal Baseline (L)

Our first baseline is a text-only model to assess potential biases in the dataset [198].

This model is a 1-layer attention-based encoder-decoder neural model based on LSTM

network [199] with a hidden size of 256 units. The decoder learns a time-step dependent

context over the encoder hidden states [200]. The model is trained using only the textual

utterances x1:K from the microsegment as the input, and the next utterance xK+1 as the target,

i.e. to predict p
(
xK+1|x1:K

)
. The model uses 200D word embeddings over a vocabulary of

unique words in training samples where vocabularies are not shared between the encoder and

the decoder. We use the same textual encoder and decoder in all multimodal baselines (See

Appendix A for the number of trainable parameters and the vocabulary sizes).

6.3.2. Multimodal Baselines

We also evaluate several multimodal baselines that operate over combinations of the textual,

visual, and audio modalities, as illustrated in Fig. 6.2.

6.3.3. Vision and Language (VL)

Our Vision and Language baseline encodes both textual and visual context for the future

utterance prediction task. In particular, the model encodes the textual utterances x1:K of

each action from microsegments and the keyframe images v1:K to predict the next utterance

xK+1, i.e. p
(
y = xK+1|x1:K ,v1:K

)
. This model is adapted from a model that parses a visual

scene and learns cross-modal self-attention [201] over textual inputs and visual data.

The visual inputs are encoded using pre-trained CNN, and the textual inputs are encoded

using an LSTM. More specifically, for the visual modality, we extracted two types of

features: one type represents global visual features, and the other represents object-level

features. For the global features, we used a pre-trained ResNet50 model [165] with ImageNet

weights [138]. Object-level features were extracted using a pre-trained Faster-RCNN object
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detector [202] with a ResNet-101 backbone [165] pre-trained on MSCOCO [89] and then

finetuned leveraging the EK-100 dataset. We extract visual features from 5 objects for

each keyframe. The resulting representation of a visual keyframe is the concatenation

of the global and the object-level features. The vector concatenation is then, using a 1D

convolution, projected into a lower-dimensional space. The textual inputs are encoded using

an LSTM with 200D word vectors through a 256D hidden layer. We then encode the visual

and textual modalities by a cross-modal self-attention mechanism, CM. In this model, we

consider two modalities α and β, sequences of each modalities are denoted as Xα ∈ RTα×dα

and Xβ ∈ RTβ×dβ , respectively and T(·) corresponds to the length of the sequence and d(·)

represents the dimension of the feature. In this model, α is the language modality, and β

is the visual modality. In the cross-modal attention, the textual features are the keys, and

the visual features are the queries and values, for aligning visual features to textual features.

Let the Query be denoted as Qα = XαWQα , the Keys are represented as Kβ = XβWKβ
,

and the Values are denoted as Vβ = XβWVβ
, where WQα ∈ Rdα×dk ,WKβ

∈ Rdβ×dk

and WVβ
∈ Rdβ×dv are learnable weights. The cross-modal self-attention from β to α is

formulated as a latent adaptation Yα ∈ RTα×dv as described in Eq. 7.

Yα = CMβ→α(Xα, Xβ)

= softmax

(
QαK

⊤
β√

dk

)
Vβ

(7)

The output Yα has the same length as Qα, but it is represented in the feature space of Vβ . This

enables the model to fuse different modalities, learning an alignment between the visual and

textual features. Finally, there is a self-attention layer [105] over the aligned vision and

language features, which are the input to an attention-based LSTM decoder that generates

the next utterance.

6.3.4. Audio and Language (AL)

The Audio and Language baseline has the same structure as the Vision and Language

baseline. The key difference is that we represent the additional context using audio
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features instead of visual features. In particular, the model encodes both the textual

utterances x1:K and the accompanying audio data a1:K to predict the next utterance xK+1, i.e.

p
(
xK+1|x1:K , a1:K

)
. The audio features are 512D vectors extracted using VGGSound [203],

which is pre-trained on 200K videos from YouTube videos totaling up to 550 hours of audio

data. Here, the model learns a cross-modal attention block over the audio and the textual

features, analogously to using the visual and textual features as inputs to an LSTM-based

decoder.

6.3.5. Object and Language (OL)

The Object and Language baseline uses the same architecture as Vision and Language

baseline, but we represent the visual context using the tags of the detected objects instead

of the CNN visual features to explicitly encode the visual content. In this model, we embed

object tags as a secondary set of textual features to our model along with the input utterances.

Here, the object tags are represented as 292-dimensional one-hot encoded vectors (based on

the number of unique tags) and projected to 256D with a simple linear layer. In this case, the

cross-modal attention mechanism aligns object tag features with language features.

6.3.6. Audio, Vision, and Language (AVL)

In the Audio, Vision, and Language (AVL) baseline, we leverage the audio, visual, and

textual data using two cross-modal self-attention blocks. We use textual utterances x1:K of

each action along with the visual features v1:K from the keyframes, and the VGGSound audio

features a1:K to guess the future utterance xK+1, i.e. p
(
y = xK+1|x1:K ,v1:K , a1:K

)
. In the

AVL baseline, input fed to the self-attention layer before the decoder is the concatenation

of the audio-aligned textual features from the audio-textual cross-modal block with the

visual-aligned textual features from the visual-textual cross-modal block.
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6.3.7. Object, Audio, and Language (OAL)

We perform an extra experiment to determine whether adding an extra modality to the OL

baseline model improves its performance by coupling the object tags with audio features.

Here, we include the extracted audio features from each microsegment to the OL model and

train accordingly.

6.3.8. Pretrained Vision and Language (PVL)

In order to understand the importance of pretraining on a large scale aligned audio, visual,

and linguistic data, we also utilize the Merlot Reserve model [204]. This model learns

multimodal video embeddings over video frames, text, and audio. We extract multimodal

vision and language features through its pre-trained encoder while considering the same

decoder network as the other baseline models. We report our experimental results with this

pre-trained transformer baseline.

6.4. Models for Action Anticipation

Different than the future utterance prediction task which is formulated as a conditional

language generation problem, the action anticipation task requires (grounded) language

understanding. We modify the architectures of the models described in the previous section

to adapt them to this task. In particular, we replace the final layer in these models with two

new fully connected layers and finetune the pre-trained models by considering a classification

objective that involves predicting either the VERB or the NOUN in the anticipated action.

6.5. Experimental Setup

In this section, we explain the methodology we used for our experiments and describe the

measures we used to evaluate the performance of our baseline models, along with the training

details.
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6.5.1. Evaluation Metrics

For assessing the baseline performance, we use a set of metrics. In particular, we use

BLEU [41], Exact Match (EM), and Categorical Accuracy (CA) metrics. For BLEU, we

use the NLTK toolkit and report unigram BLEU scores. For EM, we calculate an accuracy

score between the generated text sequence and the groundtruth. CA uses the verb and noun

categories in EK-100 and calculates the categorization accuracy based on noun category

match between the predicted sequence and groundtruth, e.g. the verbs slice, dice, and chop

fall into the same verb category cut, and the nouns mozzarella, paneer and parmesan are

grouped into the same noun category cheese.

6.5.2. Training Details

In all baselines, we use the same set of parameters outlined as follows. In particular, we

utilize SGD optimizer and the momentum parameter to 0.9 and optimizer is initialized with

1e − 1 as learning rate, and also 128 instances were used as batch size. Additionally,

we use the ReduceOnPlateau scheduler to reduce the learning rate during training when

validation loss metric plateaus. To train the models for future utterance prediction, we

employed cross-entropy loss and initialized network weights via uniform distribution, and

used a dropout rate of 0.3 for both the encoder and the decoder. We used an early stopping

strategy and stopped the training if validation BLEU did not improve after a certain threshold

(patience = 50). We clipped gradients and set the gradient threshold to 0.1, and used a

4-head attention mechanism in the crossmodal block in all our multimodal models. As a

preprocessing step, we replace multiword tokens with a single word. For example, each

occurrence of “olive oil” is replaced with “olive oil”. While training the models for action

anticipation, we again used early stopping but stopped the training if validation loss did not

improve after a certain threshold (patience = 5).
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6.6. Results

6.6.1. Future Utterance Prediction

Table 6.1 Future utterance prediction results. Using audio, visual, or object features always
improves performance compared to the language-only unimodal baseline. The reported
results are the mean and standard deviation using over three independent runs.

Inputs BLEU val BLEU test EM val EM test CA val CA test

L 10.88 ± 0.7 10.55 ± 1.0 0.91 ± 0.4 0.61 ± 0.4 2.18 ± 0.6 2.16 ± 0.9

VL 19.49 ± 1.2 19.43 ± 0.7 4.60 ± 0.8 4.62 ± 0.4 8.62 ± 0.6 8.38 ± 0.3

AL 24.38 ± 0.9 25.21 ± 1.3 6.54 ± 0.4 6.29 ± 0.5 12.46 ± 0.7 11.67 ± 1.1

AVL 19.53 ± 0.1 20.10 ± 0.1 4.70 ± 0.1 4.72 ± 0.2 8.77 ± 0.3 9.13 ± 0.5

OL 24.36 ± 0.8 25.60 ± 1.4 6.13 ± 0.4 6.17 ± 0.3 12.28 ± 0.7 12.52 ± 0.4

OAL 24.97 ± 0.4 25.55 ± 0.5 6.17 ± 0.4 5.72 ± 0.6 12.39 ± 0.7 12.06 ± 1.0

PVL 26.48 ± 0.7 27.78 ± 0.5 6.73 ± 0.7 7.23 ± 0.5 13.27 ± 0.5 14.28 ± 0.7

Table 6.1 shows the results of the future utterance prediction experiments. As can be seen,

all of the multimodal models outperform the language-only baseline. Models that use visual

features (VL) improve by 9 BLEU, 4 EM, and 10 CA points compared to the language-only

model. Using visual features with a pre-trained model brings the largest overall improvement

in performance; BLEU, EM, and CA increase by approximately 17, 6, and 19 points,

respectively. However, using the combination of audio, visual, and language features (AVL)

or using audio features in addition to object tags (OAL) do not bring further improvements,

highlighting the difficulty of fusing multiple modalities. The performance of PVL shows

the benefit of using pre-trained multimodal representations, as opposed to fusing separate

unimodal encodings.

Table 6.2 Object-level attention accuracy at different layers of the crossmodal attention block in the
VL model.

Layer1 Layer2 Layer3 Layer4 Layer5
8.6 9.8 10.4 8.8 9.8

To further investigate the behavior of the VL baseline, we examine the role of different

layers in the crossmodal attention block in predicting which object regions correspond to

the nouns in the target utterance. A model succeeds in this prediction task if the attention
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weight to the expected object region is maximized. In Table 6.2, we report these object-level

attention accuracies. We observe that the middle layers and final layer maximize attention

to the expected object region. This indicates that to achieve better generalization, the VL

model needs to use the semantic information encoded in the latter layers of the crossmodal

attention block.

Inputs (utterances and auxiliary modalities) Prediction (future utterance)

Image

Text clean bowl . open dishwasher . open drawer .

GT : place bowl
L : put fridge
OL : close bin
VL : wash bowl
AL : close bowl
AVL : place bowl
OAL : place bowl
PVL : close bowl

Image

Text turn on tap . rinse chopsticks . take fork .

GT : rinse fork
L : put down bowl
OL : rinse fork
VL : put fork
AL : put fork
AVL : place bowl
OAL : rinse fork
PVL : rinse fork

Figure 6.3 Future Utterance Prediction qualitative results. Each model considers different
combinations of input modality, as described in Section 6.3.. The targets, rinse fork and
place bowl have not been observed by during the training phase; the multimodal inputs
from Object, Audio, and Language are needed to predict them.

We demonstrate a qualitative baseline comparison in Fig. 6.3. In training time, place bowl,

or rinse fork compounds have never been observed by the models. In both of these examples,

text-only unimodal model fails to generalize to novel compositions whereas OAL baseline

predicts the target composition correctly for both examples.

6.6.2. Action Anticipation

We report the results in Table 6.3 on the action anticipation task. We present the results

for the val and test sets to demonstrate that this task poses a more challenging case for the

models. The trend in performance is in line with those for the future utterance prediction task

results. Even though there is not one particular model that outperforms the remaining models,

multimodality improves the overall compositional generalization in the action anticipation
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task. Once again, the Object and Language and the Pretrained Vision and Language models

perform strongly in both measures.

Table 6.3 Quantitative comparison of baselines for action anticipation task for predicting compound
action (nouns and verbs). We report the mean across three runs. Best results are
highlighted in bold, while the second-best results are underlined.

EM val EM test CA val CA test

L 2.32 ± 0.6 1.99 ± 0.3 6.34 ± 0.7 6.02 ± 0.9

VL 2.16 ± 0.2 2.02 ± 0.0 7.45 ± 0.3 7.12 ± 0.6

AL 5.03 ± 0.5 4.45 ± 0.9 12.04 ± 1.4 11.36 ± 2.6

AVL 3.23 ± 0.3 2.84 ± 0.6 9.95 ± 0.5 8.76 ± 0.9

OL 4.74 ± 1.0 5.31 ± 0.5 13.30 ± 1.6 14.50 ± 1.2

OAL 6.09 ± 0.7 5.14 ± 1.1 13.26 ± 0.4 12.48 ± 1.3

PVL 6.39 ± 0.5 6.68 ± 0.3 14.06 ± 0.1 14.92 ± 0.3

6.7. Related Work

Compositionality. Much recently, the compositionality problem has been investigated

in various settings. [78] analyzed the capacity of artificial neural networks in linguistic

compositionality. [75] examined systematicity and compositionality with a human-like

number of examples. [77] investigated compositional generalization, in terms of a model’s

performance to composing unseen combinations of concepts when describing images. [205]

explored compositionality in sentence embeddings for understanding how words combine

for generalizing to unencountered words and phrases. [206] examined compositionality in

sentence vector representations by probing the compositional information prevalent in the

embeddings using a set of composition methods. [207] analyzed measuring compositionality

in the aspect of representation learning e.g. a learned embedding. [74] investigated

systematic generalization in a VQA-like setting. [76] examined compositionality in terms

of systematic generalization for a meta-learning setting. [208] considered learning entire

rule systems from examples instead of learning to predict the correct output given a

novel input. [209] studied the emergence of systematic generalization in a situated agent

setting where the agent learns to perform tasks based on textual instructions and visual

observations. [62] proposed gSCAN dataset by extending the SCAN dataset to a 2d

grid world setting for situated language understanding using grounded instructions. [210]
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suggested a transformer-based method for analogical reasoning in language acquisition setup

coupled with visual data to pick up novel words.

Among the prior work, the closest work to ours is [80] in which the authors investigated

compositionality and generalization in a novel word acquisition setting from narrated videos.

They suggested training a model using a masking strategy with a reference set where the

model learns to map the masked words in the target tokens using the reference set examples

in the same episode which is an image-text pair sequence. Another work that is closely

similar is [211], where the authors create a setup to examine the systematic generalization

in unseen compound acquisition setting from paired image-caption streams. They concluded

that continual learning methods show little systematic generalization when trained in a

shifting compound distribution. In our study, we focus on systematic generalization to

novel compositions where models need to generalize to unseen compositions and hence

learn how to learn primitive elements and concepts in the training set to generalize to novel

compositions (e.g. see Fig.6.1), whereas in [80], the models learn to map target words from

the reference set examples consisting of image-text pairs, and [211] investigate how well

continual learning models systematically generalize under shifting compound distributions

in a visually grounded setting.

Visually Grounded Reasoning. Neural reasoning models have shown good generalization

across biased data splits toward addressing this problem. [61] proposed the CLEVR-CoGenT

dataset derived from the CLEVR dataset to test the systematic generalization of models on

visual reasoning tasks. [212] investigated how models generalize to previously unseen scenes

in real buildings utilizing natural language navigation instructions that are grounded with

visual information. [213] studied how models translate grounded instructions to robot actions

to accomplish household tasks in novel environments. Related to our work, [214] predicted

future utterances from multimodal data using instructional videos and used the transcribed

speech as text where the goal is to rank correct utterances among candidates. However,

we focus on predicting future utterances by generating utterances to assess the systematic

generalization abilities of models trained on different and multiple multimodalities.

106



6.8. Experimental Setup

Systematicity Split (EK-100-SYS). Fig. 6.4 illustrates the atomic and compound

distributions over the constructed training, validation, and test splits of our proposed

systematicity setup. As can be seen, while these splits have similar distributions over atoms,

training, and val/test splits do differ in terms of compounds.
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Figure 6.4 For train/val/test splits for systematicity split setup, the plot at the top demonstrates the
distribution of atoms while the plot at the bottom shows the distribution of compounds.

Choosing Keyframes from Videos. In our experimental setup, we choose and use

representative images from each microsegment. While choosing such a representative image

for each video sequence, we follow a simple heuristics-based strategy. In particular, we run

an object detector on the video frames and select the frames containing the maximum number

of object proposals captured by the object detector as the representative frames.

Table 6.4 Model sizes and their training times along with the vocabulary sizes considered in our
experiments.

Model Parameters Training Time

L 2,827,218 10 mins

OL 6,833,874 35 mins

VL 7,301,074 18 mins

AL 6,907,858 31 mins

AVL 15,331,026 37 mins

OAL 14,863,826 39 mins

PVL 6,973,394 31 mins
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Model Sizes and Training Time. In Table 6.4, we illustrate baseline model sizes and

training time for the future utterance prediction task. All of our models are implemented

with PyTorch and trained with Nvidia 1080Ti GPUs.

Further Analysis. In Table 6.5 we provide how models generalize for isolated verbs

and in Table 6.6 we provide generalization performance for isolated nouns for the action

anticipation task.

Table 6.5 Quantitative comparison of baselines for action anticipation task for predicting target
verbs. We report the mean across three runs. Best results are highlighted in bold, while
the second-best results are underlined.

EM val EM test CA val CA test

L 19.05 ± 0.1 18.97 ± 0.2 38.55 ± 0.4 40.21 ± 0.7

VL 21.15 ± 0.3 19.69 ± 0.5 38.64 ± 1.0 37.67 ± 1.2

AL 19.45 ± 0.6 19.44 ± 0.9 37.02 ± 1.4 37.02 ± 2.2

AVL 20.52 ± 0.4 19.58 ± 0.5 38.75 ± 1.4 38.70 ± 1.1

OL 18.94 ± 0.6 18.79 ± 0.2 38.51 ± 1.1 38.98 ± 1.1

OAL 18.82 ± 1.2 19.59 ± 0.7 36.09 ± 1.1 37.17 ± 1.8

PVL 18.88 ± 0.6 19.36 ± 0.2 35.00 ± 0.9 36.23 ± 1.1

Table 6.6 Quantitative comparison of baselines in the action anticipation task for predicting target
nouns. We report the mean across three runs. Best results are highlighted in bold, while
the second-best results are underlined.

EM val EM test CA val CA test

L 10.15 ± 2.3 10.04 ± 2.4 15.42 ± 2.0 15.86 ± 2.2

VL 11.87 ± 0.5 12.2 ± 1.1 19.94 ± 0.2 21.17 ± 0.8

AL 23.13 ± 0.6 23.48 ± 0.8 30.65 ± 1.0 31.52 ± 1.6

AVL 16.34 ± 0.1 16.16 ± 0.6 24.98 ± 0.3 25.34 ± 0.4

OL 27.08 ± 0.8 28.12 ± 0.6 35.49 ± 0.5 36.49 ± 0.1

OAL 28.81 ± 0.4 31.28 ± 1.1 35.34 ± 0.7 38.03 ± 1.0

PVL 31.64 ± 2.8 33.33 ± 2.0 37.45 ± 3.4 39.06 ± 1.7

6.9. Discussions

In this chapter, we presented an investigation of linguistic compositionality and systematic

generalization in a perceptually grounded setting. We showed how a multimodal how-to

instructions dataset can be utilized as a challenging test bed for this purpose. We designed

the future utterance prediction and action anticipation tasks and followed a methodical

approach to generate train, test, and validation sets in our systematicity split. Additionally,
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we experimented with several baseline models and investigated models’ ability to generalize

to novel compositions and showed how multimodal data can contribute towards solving

systematic generalization problem. We found that a multimodal encoder pre-trained on video

data gave the best generalization performance. Our findings indicate that the models that

exploit visual and audio signals do indeed improve over the text-only model when they are

evaluated on the long tail of rare complex concepts. We hope our work will stimulate further

research along these directions. That being said, the textual utterances that we consider in

our work are simplistic and do not capture all of the complexities of natural language. Hence,

extending this work to a more natural source of language data will be quite interesting.

Furthermore, we highlight a few limitations of our work, which are listed below.

In our work, to analyze how visual and audio signals affect linguistic compositionality, we

proposed a new dataset called EK-100-SYS that is curated from the EPIC-Kitchens-100

dataset [9]. As mentioned, this dataset involves videos including daily kitchen activities in

natural household environments. Hence, it could be interesting to conduct future studies

in an open-domain setting to alleviate limitations of the domain-specific nature of the

EPIC-Kitchens-100 dataset.

We investigate several different multimodal models for both future utterance prediction and

action anticipation tasks. However, it is important to note that for multimodal learning how

to integrate different modalities is considered an open research problem. In the literature,

different strategies for multimodal data fusion have been proposed. Our experimental

analysis could be further extended by considering some models that fuse the modalities in a

way different than ours. More interestingly, from a systematic generalization point of view,

an analysis could also be carried out to explore the most effective fusion scheme.
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7. CONCLUSION

In the last few years, we have been observing tremendous progress in both natural language

processing as well as computer vision fields which is paving the way toward a joint

understanding of language and vision tasks.

In this thesis, we explore the problem of understanding multimodal how-to instructions with

images and text and argue that joint understanding of multimodal how-to instructions is the

next frontier in AI research. We broadly define “multimodal machine comprehension” and

investigate the proposed research problem from the point of comprehension, reasoning, and

systematic generalization.

Our emphasis is on understanding multimodal how-to instructions, such as cooking recipes

with step-by-step instructions, and analyzing everyday household task videos consisting of

multiple modalities, which are rich in context, objects, scenes, interactions, and temporal

relations and procedures. We analyze the multimodal machine comprehension problem

through three different lenses:

• We propose a multimodal machine comprehension dataset consisting of cooking

recipes with images and text (Chapter 4.)

• We propose a new neural model to understand multimodal procedures and to keep

track of the entity state changes and interactions between entities in recipes (Chapter

5.)

• We propose a systematic generalization setup leveraging a natural dataset consisting

of household actions and show the contribution of grounding towards models’

compositional generalization abilities (Chapter 6.).

In particular, throughout this thesis, we thoroughly analyzed the multimodal machine

comprehension problem for how-to instructions with images and text. Toward understanding

multimodal how-to instructions, we presented RecipeQA, which consists of cooking recipes
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with context-question-answer triplets. To our knowledge, RecipeQA is the first machine

comprehension dataset that deals with understanding procedural knowledge in a multimodal

setting. Each one of the four question styles in our dataset is specifically tailored to evaluate

a particular skill and requires connecting the dots between different modalities. The results

of our baseline models demonstrate that RecipeQA is a challenging dataset for multimodal

machine comprehension. Furthermore, we proposed a new neural architecture called

Procedural Reasoning Networks (PRN) for the multimodal understanding of step-by-step

instructions. We presented a model which is equipped with an explicit memory unit that

provides an implicit mechanism to keep track of the changes in the states of the entities

over the course of the procedure. Using the proposed method and utilizing the RecipeQA

dataset, we significantly improved upon the previous results for the visual reasoning tasks,

indicating the proposed neural model understands the procedural text and the accompanying

images better. Additionally, we carefully analyzed our results and found that our approach

learns meaningful dynamic representations of entities without any entity-level supervision.

We explored the compositional generalization problem which stands as a serious challenge

to the real success of deep learning models and reviewed the current state of compositional

generalization research from the point of datasets, tasks, and modeling methodologies and

discussed the open research challenges and limitations in the existing literature to lay the

groundwork for our research problem. Finally, we presented an investigation of linguistic

compositionality and systematic generalization in a perceptually grounded setting. We

showed how a multimodal how-to instructions dataset can be utilized as a challenging test

bed for this purpose. We designed the future utterance prediction and action anticipation

tasks and followed a methodical approach in generating the training, validation, and test

sets for benchmarking models’ compositional generalization abilities in a multimodal how-to

instructions dataset. We experimented with several baseline models and investigated models’

ability to generalize to novel compositions and showed how grounding linguistic data with

auxiliary multimodal data can contribute towards solving systematic generalization problem.

We showed that multimodality can indeed improve models’ compositional generalization

performance even if models are not exposed to certain compositions during training time and

can better generalize to novel compositions thanks to grounding textual data with auxiliary
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modalities such as images and audio.

Throughout this thesis, we made thorough analyses on various tasks and investigated the

contribution of multimodality and grounding toward understanding how-to instructions with

images and text. Our empirical findings indicate that both in the existence of another

modality or with grounding, we showed that the models seem to benefit from this auxiliary

signal. Our world is multimodal in nature, and the richness and complexity of data, including

sensory information, visual, auditory, spatial etc. is astounding. We believe humans leverage

all these sources of rich modalities while solving various tasks without too much effort or

even thinking about them. From this perspective, we believe our empirical findings also

seem to be aligned with this phenomenon that the better we can exploit more and multiple

modalities, the better machines will perform in solving various tasks.

In conclusion, throughout this thesis, we investigated the multimodal understanding of

how-to instructions from various perspectives, reviewed the current state of the literature,

proposed methods and models to show how multimodality helps models generalization

performance in various reasoning and comprehension tasks on different datasets, and

showed how linguistic components grounded with different modalities can help models to

systematically generalize to never seen compositions even models were not exposed to these

compositions during training time.

7.1. Future work and open directions

In this thesis, we proposed two new datasets, namely the RecipeQA dataset, curated from

online cooking recipes, and EK-100-SYS, curated from the EPIC-Kitchens-100 dataset

consisting of videos including daily kitchen activities. Even though we believe cooking

recipes capture the overall characteristics and challenges of how-to instructions, hence a

good representation of the problem space, an interesting extension to our work would be

to explore different domains beyond cooking recipes, and daily household tasks, such as

building a larger-scale how-to instructions benchmark dataset to include broader categories
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and different domains e.g. auto repair or do-it-yourself type of how-to guides and conduct

future studies in an open-domain setting.

The datasets we curated, in particular, the RecipeQA and EK-100-SYS are user-generated

sources. Cooking recipes are authored by several users from the web but might include

certain biases specific to the data source. This is also true for household tasks as

well. Even though both data sources are comprised of user-generated data coming from

multiple participants and authors, these datasets might contain cultural nuances and domain

limitations or could be subject to inherent biases due to data collection and curation

approaches followed while curating these datasets. An interesting research direction could

be to collect more diverse and larger datasets to reduce potential biases that might be present

in these datasets.

The systematic generalization problem is an open research problem that remains to be

solved. Most of the previous work focused on artificially generated data as we discussed

in the previous sections. In particular, we carefully curated the EK-100-SYS dataset

for the systematic generalization problem which is a multimodal dataset. One particular

reason for choosing the Epic-Kitchens dataset to create such as benchmark was mainly

because the RecipeQA dataset is noisier and a more complex dataset. One interesting

research direction could be to explore the transferability of our empirical findings from the

EK-100-SYS benchmark to a more noisy challenging dataset like the RecipeQA dataset to

better understand models’ compositional generalization abilities.

Throughout the thesis, we made thorough analyses with different reasoning and

comprehension tasks on the proposed datasets and investigated the contribution of

multimodality and grounding in different setups. An obvious future research direction

would be exploring the contribution of multimodality in different downstream tasks such

as navigation, entailment, word acquisition etc.

Visually grounded text processing has become an increasingly popular research field

attracting researchers from both the vision and language communities. Nevertheless, in

the existence of additional auxiliary modalities such as audio, object tags, or speech, joint
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modeling of such modalities remains an underexplored direction in the literature. Therefore

building such models that can incorporate the contextual signals coming from different

modalities in a joint fashion would be an interesting research direction to explore.

Furthermore, we explored how different modalities could improve models’ generalization

abilities through different setups and experiments. However, integrating different modalities

remains an open research problem. An interesting research direction would be analyzing

different fusion techniques, both early and late fusion strategies in the existence of additional

modalities accompanying visual and textual data such as audio, etc.

In the last few years, we have been seeing rapid progress in the development of new neural

models. Even though we did thorough empirical analyses throughout this thesis, extending

the proposed analyses with larger novel neural model baselines with greater capacity could

also be an interesting research direction.

An obvious extension of our work on compositional generalization is to design specific

architectures for the joint modeling of multiple modalities to further improve the systematic

generalization performance of neural models.

For procedural understanding, we proposed a novel neural model, namely the Procedural

Reasoning Networks (PRN). After the introduction of PRNs, there has been a great deal

of work focusing on Transformer based models, specifically for vision and language

tasks. In our proposed PRN model we used a neural backbone for processing text and

images. Nevertheless, we believe the proposed model could be improved by utilizing

a transformer-based backbone such as utilizing a vision-and-language transformer, which

could be a fruitful research direction.

A fruitful research direction would be to develop a large-scale comprehensive multimodal

benchmark dataset and evaluation methods to test models’ compositional generalization

across different comprehension and reasoning tasks.

Another interesting research direction would be exploring the embodiment of multimodal

how-to instructions setup towards developing real-world applications such as in robotics.

114



In particular, given the cooking recipe instructions, designing systems that can prepare

the actual food by interacting with real-world objects and ingredients, which remains an

open research problem and we hope our work could further stimulate research towards that

direction.

Finally, the RecipeQA dataset introduces a challenging benchmark for understanding

step-by-step how-to instructions. We hope our work would motivate further research towards

understanding multimodal how-to instructions and facilitate research in this direction both in

vision and language communities.
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Kavukcuoglu, and Pavel Kuksa. Natural language processing (almost) from

scratch. Journal of Machine Learning Research, pages 2493—-2537, 2011.

[140] Jonathan Malmaud, Earl Wagner, Nancy Chang, and Kevin Murphy. Cooking

with semantics. In ACL 2014 Workshop on Semantic Parsing, pages 33–38.

2014.

[141] Jermsak Jermsurawong and Nizar Habash. Predicting the structure of cooking

recipes. In Empirical Methods in Natural Language Processing (EMNLP),

pages 781–786. 2015.

135



[142] Jonathan Malmaud, Jonathan Huang, Vivek Rathod, Nick Johnston, Andrew

Rabinovich, and Kevin Murphy. What’s cookin’? interpreting cooking videos

using text, speech and vision. arXiv preprint arXiv:1503.01558, 2015.

[143] Ozan Sener, Amir Zamir, Silvio Savarese, and Ashutosh Saxena. Unsupervised

semantic parsing of video collections. In IEEE International Conference on

Computer Vision (ICCV). 2015.
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