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Integration of Distributed Renewable Energy Sources (RES) into the existing 

energy system becomes more challenging as the number of RES increases due 

to their intermittent and variable nature. One way to address this issue is to use 

Local Electricity Markets (LEM) where consumers and producers can actively 

participate in trading locally produced electricity within their own Local Energy 

Communities (LEC). However, knowing the production value in advance (usually 

for a short period) is crucial for the formation of prices, evaluation of bids, and 

creating offers in local energy markets. Therefore, short-term load forecasting, 

which is an important parameter that helps electricity grid operators make 

decisions such as purchasing and selling electricity, load balancing, and 

maintenance planning, plays a significant role in system operations. 

The aim of this study is to examine the possible role of a solar power plant whose 

short-term production value is estimated in advance through simulation in the 

local electricity day-ahead market and the effects it may have on electricity prices. 
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Additionally, this study aims to pre-shape pricing by obtaining bids before the day 

electricity will be supplied in this market. 

In the first stage of the study, a high-capacity solar power plant was selected, and 

day-ahead electricity generation was estimated for this plant using past electricity 

production data and meteorological data from the plant's region. Due to the high 

variety and volume of the data, Big Data Analytics method was used in this 

analysis, and the analysis was carried out using machine learning techniques in 

Python programming. Three different models were examined, and the Light GBM 

model provided the best result for the day's electricity generation estimation In 

the second stage of the study, the forecasted electricity generation values for the 

modelled day were used in the local electricity market simulation model. Grid 

Singularity, an open-source and online software, was used to verify simulated 

scalable scenarios and evaluate LEMs economically. Firstly, a community was 

identified under Grid Singularity, and local market players were added for this 

community. Then, three different scenarios were developed to examine price 

formation, profitability, and the community's self-sufficiency thoroughly. In the first 

scenario, a solar power plant was not included in the community, and local market 

players were forced to meet all their electricity needs from the grid. In the second 

scenario, a solar power plant with high installed capacity was added to the 

system, and the simulation was run in this way. Finally, in the third scenario, two 

batteries with separate capacities of 10 kWh and 30 kWh were added to the 

system, unlike the second scenario, and the simulation was run again. In 

situations where solar energy could not be provided, local consumers purchased 

electricity from the battery, and it was observed that this increased the self-

sufficiency of the community. When the results of all scenarios were evaluated, 

self-sufficiency rates were obtained as 0%, 65.0%, 69.0% & 77.0% (by depending 

on the battery power) respectively. The values indicates that the community can 

utilize the green electricity generated in the local market at the stated 

percentages. However, achieving these percentages fully is not possible due to 

the fact that solar energy is the primary renewable energy source in the 

community, and the production of the solar power plant is subject to fluctuations 

in meteorological values throughout the day. Moreover, it was achieved that 

penetration of substantial quantity of renewable energy into the system resulted 
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in a decrease of 26.7% and 30% in the average market price of electricity in the 

second and third scenarios, respectively, as compared to the first scenario. As a 

result, it has been observed that the integration of a high-capacity solar power 

plant into the local electricity market lowers market prices. Additionally, it has 

been emphasized that knowing the production that this plant will generate one 

day in advance allows market participants to take effective positions in the 

market. 

 

 

Keywords: Big Data Analytics, Local Electricity Market, Machine Learning, 

Battery, Renewable Energy, Short Term Solar Power Generation Forecast 

Modelling 
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ÜRETİM TAHMİNİNİN YEREL ELEKTRİK PİYASASI ÜZERİNDEKİ 

ETKİSİNİN İNCELENMESİ 

 

 

Ozan Oğulcan DEMİRTAŞ 

 

 

Yüksek Lisans, Temiz Tükenmez Enerjiler Anabilim Dalı 

Tez Danışmanı: Prof. Dr. Ayşen SİVRİKAYA 

Eş Danışman: Doç. Dr. Tunca DOĞAN 

Nisan 2023, 89 sayfa 

 

Dağıtımlı Yenilenebilir Enerji Kaynaklarının (RES) mevcut enerji sistemini 

besleme entegrasyonu, kesintili ve değişken olduğu için RES sayısı arttıkça bu 

durum daha da zorlaşmaktadır. Bu sorunu ele almanın bir yolu, tüketicilerin ve 

üreticilerin kendi Yerel Enerji Toplulukları (LEC'ler) içinde yerel olarak üretilen 

elektriğin ticaretine aktif olarak katılabilecekleri Yerel Elektrik Piyasalarını 

(LEM'ler) kullanmaktır. Fakat, yerel enerji piyasalarında belirli bir süre öncesinden 

(genellikle kısa süreli) üretim değerinin bilinmesi, fiyatların oluşması, tekliflerin 

alınıp değerlendirilmesi açısından önem arz etmektedir. Bu nedenle elektrik 

şebekesi operatörlerinin elektrik enerjisi satın alma ve satma, yük değiştirme ve 

bakım planlaması gibi kararlar almasına yardımcı olan önemli bir parametre olan 

kısa süreli yük tahmini, sistem operasyonlarında önemli bir işlev görür. 

Bu çalışmanın amacı önceden kısa süreli üretim değeri tahmin edilen bir güneş 

enerjisi santralinin simülasyon yoluyla elde edilecek bir yerel elektrik gün öncesi 

piyasasındaki olası rolünün ve elektrik fiyatları üzerinde doğuracağı sonuçların 

incelenmesidir. Ayrıca bu çalışmada, bu değere elektriğin temin edileceği günden 
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önce ulaşılması ile verilecek tekliflerin önceden alınarak piyasadaki fiyatlamaya 

önceden yön verilmesi hedeflenmiştir. 

Çalışmanın ilk aşamasında, yüksek kapasiteli bir güneş enerjisi santrali seçilmiş 

ve bu seçilen tesisin geçmiş elektrik üretim verileri ile santralin bulunduğu 

bölgenin geçmiş meteorolojik verileri kullanılarak santral için gün öncesi elektrik 

üretim tahmini yapılmıştır. Verilerin çeşitliliği ve fazlalığı nedeniyle bu analizde 

Büyük Veri Analitiği yöntemi kullanılmış ve Python programlamada makine 

öğrenmesi tekniği ile analiz gerçekleştirilmiştir. 3 farklı model incelenmiş ve 

elektrik üretim tahmini yapılan gün için en iyi sonucu Light GBM modeli vermiştir. 

Çalışmanın ikinci aşamasında, üretim tahmini yapılan gün için yapılan sözkonusu 

tahmini üretim değerleri yerel elektrik piyasası simülasyon modelinde 

kullanılmıştır. Simüle edilmiş ölçeklenebilir senaryoların doğrulanması ve 

LEM'lerin ekonomik açıdan değerlendirilmesi için açık kaynaklı ve çevrimiçi bir 

yazılım olan Grid Singularity kullanılmıştır. Öncelikle Grid Singularity altında bir 

topluluk belirlenmiş ve bu topluluk için yerel piyasa oyuncuları eklenmiştir. Daha 

sonra fiyat oluşumu, karlılık ve topluluğun öz yeterliliğini tam olarak incelemek 

için 3 farklı senaryo geliştirilmiştir. İlk senaryoda, güneş enerjisi santrali topluluğa 

dahil edilmemiş ve yerel piyasa oyuncuları tüm elektrik ihtiyaçlarını şebekeden 

karşılamak zorunda bırakılmıştır. İkinci senaryoda ise birinci senaryodan farklı 

olarak yüksek kurulu güce sahip bir güneş enerjisi santrali sisteme eklenmiştir. 

Son olarak 3. senaryoda 2. senaryodan farklı olarak sisteme ayrı ayrı 10 kWh ve 

30 kWh kapasiteye sahip iki batarya eklenmiş ve simülasyon tekrar 

çalıştırılmıştır. Güneş enerjisinin sağlanamadığı durumlarda yerel tüketiciler 

bataryadan elektrik satın almış ve bu durumun toplumun kendi kendine 

yeterliliğini artırdığı görülmüştür. Tüm senaryolardaki sonuçlar 

değerlendirildiğinde, ilk senaryoda %0, ikinci senaryoda %65,0, üçüncü 

senaryoda ise batarya gücüne göre sırasıyla %69,0 ve %77,0 oranlarında 

topluluğun kendi kendine yeterlilik oranları elde edilmiştir. Bu değerler yerel 

piyasada üretilen temiz elektriğin belirtilen oranlarda topluluk tarafından 

kullanılabildiği anlamı taşımakta olup, bu oranların %100 olarak elde 

edilememesinin temel nedeni ise toplumdaki yenilenebilir enerji kaynağının 

güneş olması ve güneş santralinin üretiminin gün içinde değişen meteorolojik 

değerlere bağlı olmasıdır. Öte yandan, yüksek oranda yenilenebilir enerjinin 
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sisteme girişinin ortalama elektrik piyasa fiyatını birinci senaryodaki duruma göre, 

ikinci senaryoda %26,7 oranında, üçüncü senaryoda ise %30 oranında 

düşürdüğü gözlemlenmiştir. Sonuç olarak, yüksek kapasiteli bir güneş enerjisi 

santralinin yerel elektrik marketine entegrasyonun piyasa fiyatlarını düşürdüğü 

gözlemlenmiş olup, öte yandan bu santralin yapacağı üretimin bir gün önceden 

bilinmesinin piyasa katılımcılarının piyasada etkin pozisyonlar almasına olanak 

sağladığı vurgulanmıştır. 

 

 

Anahtar Kelimeler: Büyük Veri Analitiği, Yerel Elektrik Piyasası, Makine 

Öğrenmesi, Batarya, Yenilenebilir Enerji, Kısa Süreli Güneş Enerjisi Üretim 

Tahmini Modellemesi 
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1 INTRODUCTION 
 

The integration of Distributed Renewable Energy Sources (RES) into the existing 

energy system is challenging due to the intermittent and variable nature of these 

sources, which becomes more complex as the number of RES increases. To 

address this problem, Local Electricity Markets (LEMs) can be utilized, allowing 

consumers and producers to actively participate in trading locally generated 

electricity within their Local Energy Communities (LECs). By using LEMs, the 

demand and supply of energy can be balanced at the local level, thereby reducing 

reliance on the wholesale market and minimizing the need for extensive electricity 

transmissions to or from the grid. The successful integration of Local Energy 

Community members into local energy markets with a high degree of automation 

requires interoperable information and communication technology such as 

blockchain. This technology can connect members through a market platform for 

peer-to-peer electricity trading, minimizing transaction costs.[1] 

Short-term generation forecasting is crucial in local energy markets for price 

formation and evaluation of offers and bids. It helps electrical grid operators make 

important decisions such as purchasing and selling electrical energy, load 

switching, and maintenance planning. [2] However, forecasting short-term energy 

demand has become increasingly difficult because of the complexity of the power 

system due to the installation of smart grids and renewable energy sources such 

as wind and solar.[2] Despite this, it is possible to carry out accurate estimation 

analyses by using accurate historical data. Big Data Analytics is the most 

preferred analysis method in this regard, providing effective results for short-term 

forecasting, particularly for solar power plants. Short-term energy forecasting is 

especially vital for solar power plants, as it allows the system to be balanced day-

ahead based on forecasts provided by the demand side to the day-ahead 

planning system. 

The term "Big Data" refers to a novel concept that encompasses diverse digital 

content in varying volumes, which cannot be effectively processed using 

traditional database techniques. It comprises a mixture of structured, semi-

structured, and unstructured data generated in large amounts and at high speeds. 
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A wide range of industries generate Big Data by either creating new data or 

digitizing existing ones. Knowledge in this field is a crucial factor for organizations 

seeking to gain a competitive edge. [3] 

Using Big Data analytics, it is feasible to approximate the electricity generation 

value by analysing a vast amount of historical data from various renewable 

energy power plants. In order to verify the accuracy of the suggested technique 

for predicting short-term demand, actual data is employed to authenticate the 

model, and subsequently, the precision of the analysis is evaluated.[4] In the 

literature, there are numerous studies[5] that utilize data analytics methods based 

on historical data to forecast electricity generation from renewable energy plants. 

However, no study has explored the impact of the forecasted value on electricity 

prices in local electricity markets. Therefore, this study endeavours to explore this 

impact. 

This thesis aims to explore how an increased penetration of renewable energy 

sources affects the prices of local electricity markets in the day-ahead market. To 

assess this impact, a simulation of the electricity market will be conducted. For 

the sake of accuracy, the simulation will focus on a local electricity market (LEM), 

which is better suited for the integration of many distributed renewable energy 

sources into the market than the national grid, resulting in efficient integration. 

Furthermore, in case of any potential electricity shortage or surplus, LEMs can 

interact with the wholesale electricity market.[6] In order to produce more 

accurate results, the generation data for the solar plant that will be included in the 

simulated local energy market will be anticipated one day in advance using 

historical data from the plant's location and previous generations of the chosen 

plant. Thus, with this study it will be emphasized the importance of having 

knowledge of the day-ahead price a day before. For market players and traders 

to plan their strategy in energy markets, day-ahead price forecasting is crucial.[7] 

Several meteorological conditions that can affect generation should be taken into 

account in order to assure accurate forecasting of solar power plant output. It is 

also important to assess how compatible these factors are with actual generation. 

To achieve more realistic results, the Big Data Analytics method will be employed, 

utilizing both historical meteorological data and previous generation data from the 

power plant. Big Data Analytics is a computer science technology that can be 
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used to effectively process data from multiple sources, even those that may not 

be related, which is a challenge with traditional data analysis methods.[8] 

Consequently, this research aims to contribute not only to the comprehension of 

how a high-capacity solar power plant influences market prices (known as the 

merit order effect) in the local electricity market, but also how the anticipation of 

electricity quantity value affects market variables such as bids, offers, self-

sufficiency, profitability, and price formation. Additionally, this research could also 

encourage nations to switch from a single grid system to local energy markets. 

Due to the global expansion in the number of renewable power plants, this 

transformation may result in more local electricity markets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 
 

2 THEORETICAL BACKGROUND AND LITERATURE 
 

This section comprises three main parts. Firstly, the theoretical framework of 

electricity markets, including its models and components, is presented. Secondly, 

an overview of relevant studies in the literature exploring the relationship between 

renewable energy generation and electricity market prices is provided. Finally, 

the theoretical concept of local electricity markets and their components are 

explained. 

 

2.1 General Characteristics of the Electricity Markets 

 

The Electricity Market is a market consisting of generation, transmission, 

distribution, market operation, wholesale, retail sales, import and export activities 

of electrical energy and business & transactions related to these activities. Due 

to the fluctuation of electricity consumption based on months, days, and hours of 

the day, it is crucial to maintain a balance between the demand and supply of 

electrical energy every second. As a result, all operations in the electricity market 

are centered around achieving this balance.[9] 

The primary aim of the electricity market is to offer affordable, reliable, and 

uninterrupted high-quality electrical energy. To achieve this objective, generation 

and trade activities have been shifted to a competitive structure to open the 

electricity market to competition and eliminate its natural monopoly 

characteristics.[10] 

The two concepts that form the basis for the formation of more competitive 

electricity market are restructuring and deregulation. Existing companies can 

undergo restructuring, which may involve separating certain functions, merging 

others, or even creating entirely new companies. With the regulation, the prices 

of natural monopoly suppliers are determined and the entry of new players into 

the market is restricted. Regulation involves determining prices for natural 

monopoly suppliers and limiting the entry of new market players, while 

deregulation involves removing control over prices and allowing the entry of 

competitive suppliers into the market [11]. 
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The first step in the liberalization of the electricity market was taken by Chile in 

the early 1980s and Chile was described as the pioneer of electricity reform.[12] 

On the other hand, deregulation of electricity market accelerated in the United 

States and the United Kingdom in the 1990s and has led to significantly increase 

grid efficiency as it allows for more competition.[13] 

In a regulated market, the costs of energy, transmission, and distribution are set 

by regulatory and governmental entities. The market operates in a vertically 

integrated structure, and consumers are not permitted to choose their supplier. 

In contrast, in a deregulated market, prices are determined by the "invisible hand" 

of the market and market structure is horizontal. Different parts of the network are 

managed by different players, and competition is created among market 

participants.[13] 

2.1.1 Components of Electricity Market 

 

The main components of the electricity market are electricity generation 

companies, electricity transmission companies, electricity distribution companies, 

wholesale and retail companies and independent system operator.[14] 

Electricity generation companies are companies that generates electricity. These 

companies are also responsible for the operation and maintenance of existing 

electricity generation plants.[15] 

Electricity transmission companies consist of the transmission system, which is 

the most important element in the transmission of electricity from the power plants 

to the end users. The efficient and safe operation of the transmission system is 

essential for efficiency in the electricity markets.[15] 

Electricity distribution companies transmit electricity to customers in certain 

geographic areas. A distribution company is a regulated electricity company that 

constructs and maintains transmission cables from the transmission network to 

the end users.  Providing maintenance and voltage support as instant services 

are under their responsibility as well.[14] 

Retail companies are nascent establishments in competitive electricity market 

industry. They have legal permits to sell electricity retail. The retailer purchases 

electricity and other necessary services in order to supply the required electricity 
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to its customer and to sell electricity-related products and services in various 

packages. The retailer can also make an agreement with the end users indirectly 

through aggregators.[15] 

On the other hand, wholesale refers to the sale of electrical energy and/or 

capacity for the resale. Trading takes place between power generation 

companies and intermediaries in markets. The intermediaries buy the electricity 

from wholesale companies and then resell it to retailers or other intermediaries. 

Transactions for buying and selling can be determined by agreements between 

companies or through organized wholesale markets. Power supply companies 

can vend to eligible consumers on both wholesale and retail bases.[15] 

Providing the independent operational control of the grid, the independent system 

operator plays a role in managing transmission tariffs, ensuring system security, 

coordinating maintenance programs and long-term planning. The Independent 

System Operator functions autonomously and is not affiliated with any market 

participant, including transmission owners, generators, distribution companies, or 

users. Its responsibility is to ensure that all transmission system users are granted 

unrestricted access in a fair and impartial manner. The Independent System 

Operator holds the power to allocate and manage some or all resources, 

including implementing load reductions necessary to safeguard the system's 

security. This includes tasks such as eliminating transmission violations, 

stabilizing the balance between supply and demand, and maintaining the 

required network frequency. In addition, the Independent System Operator also 

sends appropriate economic signals that will motivate all market participants to 

invest in resources related to supporting efficient use and reducing 

constraints.[15] 

There are typically two fundamental structures for independent system operators, 

which vary based on their goals and jurisdiction. The first structure is primarily 

focused on maintaining transmission security during power market operations. In 

this model, the independent system operator operates under a coordinated, multi-

party commercial framework and does not have a role in the market itself. Its 

primary function is to provide security. As an example, The California 

independent systems operator has this kind of structure. Moreover, the 
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independent system operator has no authority over forward energy markets and 

has very limited control over the planning of actual generation units.[15] 

In the second structural model of the independent system operator, the power 

exchange is an integral part of the independent system operator operations. The 

power exchange system is an independent, non-government and non-profit 

organization that provides a competitive market through auctions for electricity 

trading. Power exchange calculates the market clearing price based on the 

highest bid. In some market structures, although the power exchange acts as an 

independent system operator, the independent system operator and the power 

exchange are separate entities.[15] 

2.1.2 Electricity Market Models 

 

There are three types of electricity market models: Pooling model, bilateral 

agreements model, and hybrid models.  

The pooling model involves a centralized market that balances the market for 

buyers and sellers in the electricity market. Electric power buyers and sellers 

submit their price offers to the pool for the amount of electricity they wish to trade. 

In this market, sellers compete to supply power to the entire grid rather than to 

individual customers. If a market participant sets a high bid, they may not be able 

to sell their power, whereas buyers compete to purchase electricity, and if their 

offers are too low, they may not be able to acquire power. Producers with low 

production costs are incentivized in this market model. 

In the pooling model, the independent system operator implements economic 

distribution and sets an independent (spot) price for electricity, giving clear 

signals to market participants for their consumption and investment decisions. 

The dynamics of the electricity market provide the motivation for spot market 

prices to equal the marginal costs of the most efficient power plants. In this 

market, winning bidders sell electricity at the spot market price offered by the 

winning bidder with the highest price.[16] 

An alternative market model to the power pooling model is physical bilateral 

agreements model. According to this model, sellers and buyers set independent 

prices for the agreed-upon amount of electricity in their trade. Bilateral 
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agreements model is characterized as a market-oriented model that allows for 

greater interaction between producers and buyers.[17] Sellers are power 

generation companies, and buyers are retail companies and eligible consumers. 

At the same time, the producers switch their positions to buyer here when they 

are unable to generate electricity due to power plant maintenance or breakdowns. 

Similarly, consumers can move to the position of seller. The terms and conditions 

of these contracts are determined independently of the system operator.[18] 

The hybrid model is formed by combining various features of the bilateral 

agreements model and the pooling model. The hybrid model put forwards that 

purchase of electricity from pooling model is not mandatory and customers can 

make power supply contracts with suppliers or choose to purchase electricity at 

spot market prices. The pooling model provides services to all participants who 

choose not to sign bilateral agreements. Additionally, the system allows 

customers to negotiate power purchase contracts with suppliers, and suppliers 

can select the appropriate customers while offering customized pricing and 

services tailored to individual consumers.[16] 

2.2 The Effects of Renewable Energy Generations on the Electricity 

Market Prices 

 

Renewable Energy Sources (RES) are the most rapid growing sources for the 

electricity generation. Since 1990, the annual growth rates for photovoltaics and 

wind energy globally exceeded 30% and 20% respectively.[19] These outcomes 

have been reached thanks to supporting schemes and significant cost reductions 

for renewable energy systems. Moreover, the total installed capacities of PV and 

wind systems are expected to exceed the aggregated gas capacity in 2023 and 

total coal capacity in 2024. These developments in renewable energy sector are 

expected to contribute to mitigate the adverse effects of climate change crucially. 

As a result, the economy of power systems is changing all over the world due to 

lower implementation prices and benefits to the climate of PV and wind energy 

systems. In addition to that, lower implementation prices and environmental 

benefits of renewable energy may contribute to the tendency of consumers and 

producers to renewable sources as electricity generation source and thus to 
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increase renewable electricity generation.[19]  There are several advantages of 

PV, and wind power systems: 

• Their installed capacities increase rapidly 

• They are intermittent sources based on stochastic wind speed or solar 

irradiation. However, this can be managed by conducting supply analysis 

based on historical meteorological and generation data of these systems 

• Their costs are almost stable 

• Capacity additions on those systems are generally driven by support 

schemes like feed-in-tariffs[19] 

As a result, the fast growth of these systems was started being seen as a major 

driver for decarbonisation globally. Another outcome of renewable energy 

sources is that penetration of these systems into wholesale market brings a 

decrease in the electricity prices in the wholesale market. This effect is called as 

“merit order effect of renewables” and it has been extensively discussed in the 

literature [19] 

Increase in penetration of RES into wholesale electricity market has significant 

effect on electricity market prices since the marginal costs of RES are close to 

zero. Related cost for generation of the energy is attributed to construction of 

generator (Capex) totally. Thus, this contrasts with the generators of fossil-fuelled 

whose operational costs are dominative because of fuel and emissions.[20] 

Renewable Energy Generations play price taker role since the generation cost of 

them are always lower than market prices. Consequently, penetration of 

renewable energy generations to the grid, will reduce the cost of wholesale 

market prices since the conventional electricity generations with higher marginal 

cost are partly displaced with renewable generations. As a result of this, supply 

curve is shifted to the right and this effect is named as “Merit-Order Effect” in the 

literature.[21] Displacement of conventional generation also causes a reduction 

in the average price which renewable energy producers receive on the market. 

This term is referred to as “market cannibalisation”.[22] 

Merit order effect has effects on not only for RES suppliers but also for the energy 

policy and the prospects of decarbonisation of energy systems successfully. 

Therefore, it is essential to comprehend the scope and evolution of the merit-
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order effect in order to establish policies that effectively support both national and 

global decarbonization goals without unfairly disadvantage any stakeholders. 

This could have a variety of effects on how RES development will go in the future, 

such as how support policies will be created.[23] 

In the literature, a lot of studies that have been carried out illustrated that RES 

generation decreases the wholesale electricity market prices. For instance, 

Ketterer[24], Paschen[25], Zipp[26], Benhmad & Percebois[27] & de Lagarde and 

Lantz[28] provided evidence about the merit order effect for Germany. Similar 

results have been achieved for other European countries, such as Denmark[29], 

Spain[30], Portugal[31], Ireland[32], Italy[33], Great Britain[34] and the Baltic 

states[35]. Outside of Europe, there are also studies from Australia[36], 

Canada[37], Massachusetts[38] and Texas[39] that show the merit order effect. 

Based on the regression study (Halttunen et al.,2020) of electricity price on the 

variables of renewable energy (VRE) penetration, load, and seasonality, Figure 

1 summarizes the merit-order effect on several countries’ wholesale market. The 

change in price for a constant increase in VRE output (example: €/MWh per GW 

of output) is how the merit-order effect is commonly described in absolute terms. 

[23] 

 

Figure 1. The annual average merit-order effect across 37 markets[23] 
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As might be expected, market prices were expected to fall further as the 

penetration of renewable energy increased. However, the results of the study of 

Halttunen et al. showed that merit-order effect gave weaker results with higher 

RES penetrations.[23] The relative merit-order effect ranged from €0.08.to €0.89 

/MWh, with a mean of €0.41.±0.21 /MWh (median €0.44 /MWh), focusing on the 

eight markets with RES penetration of above 20% (South Australia, Denmark, 

Germany, Ireland, Portugal, Spain, & Great Britain). The relative merit-order 

effect is larger in the other 29 markets, averaging €0.79.±0.60/MWh (median: 

€0.61/MWh), where RES penetration is less than 20%. [23] 

In addition, the merit-order effect has intensively been investigated in the 

literature and the studies have revealed that there are many factors that affect 

the size of merit order effect. These are technology type of renewables, market 

size, penetration rate of RES into grid, etc.[23] 

In the following sections, the local electricity market and its components will be 

introduced first. Then, the big data analytics method will be employed to forecast 

the electricity generation amount of a selected solar power plant based on 

previous electricity generation and meteorological data. This forecasted value will 

be used in an online simulation software for local electricity market modelling to 

analyse the impact of penetration of high-capacity renewable electricity on market 

prices. 

2.3 Local Electricity Market 

 

Since LEMs have been grouped into several categories and used in a variety of 

use scenarios, there is no universal definition of them in the literature. LECs, 

microgrids, P2P trading, energy sharing, and energy exchanging are the other 

terms that are similar to LEMs, as noted in [40], which leads to confusion. For this 

reason, general terms of it which were introduced by European Commission are 

described in the below sections. 

2.3.1 Local Electricity Market Definition 

 

In 2016, European regulatory agencies proposed a novel electricity market model 

that is decentralized, intelligent, and networked to achieve energy policy 

objectives such as decarbonization, affordability, and supply security in the power 
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sector[41]. This plan also suggests that consumers become prosumers so they 

can be more involved in their energy purchases and help to maintain the stability 

of the power system. In keeping with this goal, the European Commission coined 

the word "Local Electricity Communities (LECs)" and characterized it as an 

effective method of producing local energy at the community level and involving 

all consumers, prosumers, and producers in LEMs to enable them to trade 

localized energy.[1] Figure 2 represents the LEM schematically. 

 

Figure 2 Schematic Representation of a LEM[42] 

Local renewable energy production facilities compete on the same market at the 

wholesale level as centralized power plants with large capacities. There is a 

minimum amount of energy that power plants must produce in order to be able to 

sell their energy on the wholesale electricity market (WEM), as bids to supply 

energy on the WEM cannot be unreasonably low. The integration of small and 

decentralized power plants is hindered by their inability to generate the required 

amount of energy to participate in the wholesale electricity market.[43] The 

adoption of peer-to-peer markets at the local level removes the need for 

prosumers to compete with centralized power plants on the WEM. Due to the 

coexistence of LEMs and the WEM, as well as the fact that both markets utilize 

the same electrical grid, the idea of local electricity markets should be taken into 

consideration when planning to implement the wholesale electricity market. This 

suggests that new market-regulatory frameworks developed for the integration of 
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local peer-to-peer(P2P) marketplaces into the WEM should ensure the 

coexistence of various market types.[44] 

As it was indicated in the previous paragraph, market mechanisms are the most 

important parts of LEMs. In LEMs, market mechanisms can be implemented as 

P2P or Order Book Mechanism. Fundamentally, the order book market 

mechanism involves a solitary price, referred to as the market clearing price, 

which is paid by consumers and received by prosumers/producers. Conversely, 

in the P2P market mechanism, prices can vary for each individual trade since 

they are one-to-one transactions. [1] 

By setting their own prices, LEMs seek to maximize the use of distributed RES 

inside LECs while also promoting the active participation of LEC members in the 

local energy trading platform[45]. Another objective is for LEMs to aid distribution 

system operators and their operations in managing grid bottlenecks and 

addressing electricity balance issues at the local level [6]. To establish an 

appropriate market for the exchange of local energy, it is necessary to establish 

a set of rules that define how the market participants interact with one another 

and engage in trade. 

Consequently, a decentralized market mechanism and its physical parameters 

are the basis for the design of LEM. In the context of market matching and pricing 

procedures, electricity is sold and purchased on LEM trading platforms. 

Moreover, LEMs facilitate information flow among all market participants, 

whereas electrical flows occur on the grid infrastructure. Furthermore, LEMs 

encompass renewable energy producers in addition to residential and business 

users and prosumers, who may engage in the trading of local electricity via 

LEMs.[1] 

2.3.2 Advantages of Local Electricity Market 

 

There are four main advantages that are offered by LEMs. These advantages are 

described below. 

• Customer Level Advantage: In Local Electricity Markets, market 

participants that can generate their own electricity, by optimizing the use 

of local energy sources (including RES and Energy storage) they can 
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consume their own generated electricity and at the same time they can 

sell the excess of the electricity in the local market. This customer type is 

called as “prosumer” in LEM. When compared to the traditional electricity 

"price-taker consumers," this gives them a greater degree of energy 

independence and control, which are crucial driving force for them to 

participate in LEMs.[46][47] 

• Network Operators Level Advantage: The customer-owned distributed 

energy sources generation found in LEMs will have a variety of effects on 

how distribution and transmission networks run on a daily basis. The 

addition of Distributed Energy Resources (DER) capacity, as well as 

enhanced flexibility and more effective overall network operations, can 

lessen the need for network operators to undertake additional investments 

and reinforcements in the distribution grid.[47] 

• Advantages for Providers of Energy, Technology and Service Level: 

The use of contemporary technologies and ongoing product innovation will 

be crucial for LEMs. Opportunities will arise for market participants in this 

situation to realign their strategy and create new goods and/or services in 

response to changing consumer needs. As its models and governance 

mechanisms change, new market participants will appear. Most of the 

time, these actors will act as third-party brokers between consumers and 

network and market operators. For instance, by offering their core 

services, aggregators benefit both operators and customers while making 

money at the same time. Another illustration is energy services companies 

(ESCOs), which can provide clients with significant value by lowering their 

energy demand. Moreover, a significant move towards increased market 

transparency can be achieved by aligning ESCOs' revenue with the 

savings achieved for their clients. In the area of proactive information 

exchange between stakeholders, a crucial component of LEMs, new 

business opportunities will present themselves. This interchange will be 

driven by information and communication technologies (ICTs), which are 

crucial for making the distribution network more effective and adaptable. 

The expansion of new participants into current LEMs will be prompted by 

the existence of sizable commercial prospects to create and offer relevant 

flexibility and energy management services.[47] 
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• National Level Advantages: A significant project with numerous 

advantageous societal effects is the transition from a conventional energy 

model to a new paradigm grounded in decentralized and customer-centric 

energy production and distribution. LEM initiatives not only acknowledge 

but also extend the paradigm of sustainability by pledging improved 

market openness, more just power allocation, and a more even distribution 

of systemic expenses and incentives, all of which are fundamental to 

societal development. By facilitating the increase of clean energy 

production, particularly from renewable energy sources (RES), LEMs 

make a meaningful contribution to reducing local and global greenhouse 

gas emissions. This is in harmony with the goals of the Paris Climate 

Agreement and the Nationally Determined Contribution (NDC) of 

participating nations. [47] 
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3 METHOD: BIG DATA ANALYTICS 
 

3.1 Big Data Analytics 

 

The data volume and data diversity in the world are increasing rapidly. With the 

introduction of internet technologies and social media into every stage of our lives 

and even our mobile phones, people can make the data available even in their 

daily activities. Manually operated vehicle requirements of yesterday are referred 

to as smart devices today and almost all of them generate data with sensors. The 

increasing generation of such dense and diverse data from different sources has 

created a new concept which is “Big Data”. Big Data is a set of structural, semi-

structural and unstructured data produced in high volume, speed, and variety. 

Since Big Data is heterogeneous data in different volumes and consists of various 

digital contents, it cannot be processed using traditional database techniques.[48] 

Figure 3 summarizes the advantages of using Big Data analytics. As it can be 

understood from the figure, Big Data has several advantages such as, cost 

reduction, effective decision-making, creates new products & services. 

 

Figure 3. Advantages of Using Big Data Analytics[49] 

There are 3 main components (3V) that characterize Big Data analytics which are 

variety, velocity, and volume. In addition to 3V, which defines Big Data Analytics, 

in some sources, Veracity and Value components are also included as main 
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components and makes that 5V instead of 3V. In Figure 4 below, components of 

Big Data are represented [48]. 

 

Figure 4. 5V Components of Big Data[50] 

Definition of these components are explained below separately. 

Volume: The size of the data, which is expressed in measures such as 

Gigabytes, Terabytes, Petabytes, can also be expressed as volume. Large 

amounts of collected data constitute the volume dimension of Big Data. 

Velocity: The data obtained for processing can be produced at variable speeds. 

While large volumes of static data can be a problem, fast generated data also 

creates processes that need to be managed.  

Veracity: Veracity refers to the accuracy and reliability of Big Data. The data 

must be dependable enough to be utilized in making business decisions. The 

high diversity of Big Data complicates the process of ensuring the quality and 

reliability of the analysed data. In such cases, the data must be pre-processed to 

obtain the correct data. 

Variety: Different data sources cause data diversity. The data obtained can be 

structural, semi-structural and unstructured. The diversity dimension of Big Data 

is provided because the types of used data can differ. 
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Value: Data that does not turn into information and does not produce value is 

useless. With classical data analysis methods, it is difficult to analyse large 

amounts of data and the desired values are not produced. It is possible to 

produce important and valuable outputs for systems with the analysis of Big 

Data.[51] 

3.1.1 Applications of Big Data Analytics 

 

Big Data analytics provides many benefits and convenience and facilitates 

effective analysis, so it is used in many areas such as, banking sector, 

communication, media and entertainment sectors, healthcare sectors, education 

sector, production sector, government services, insurance sector, retail and 

commerce sector, transportation sector and lastly in energy sector. [48] 

3.1.1.1 Application of Big Data Analytics in Energy Sector 

 

Big Data Analytics has been widely used in Energy Sector. First of all, with the 

better and qualified sources, it provides better workforce management, hereby 

identification of operational problems before the system failures. In this way, it 

enables operators to review the problem easily and quickly. For instance, using 

smart meters that collect information every 15 minutes is a more effective way of 

controlling customers' consumption information and energy infrastructure 

compared to traditional meters that gather data only once a day. Energy Big Data 

encompasses not just smart meter readings but also a vast quantity of data from 

additional sources such as weather data and geographic information systems. 

One instance of integrating data from energy generation and consumption, 

geographic information systems, and weather - including temperature, 

atmospheric pressure, humidity, cloud cover, wind speed, and wind direction - is 

to assist in locating new renewable energy generation devices, ultimately 

enhancing power generation and energy efficiency[48]. 

3.1.1.2 Application of Big Data Analytics in Renewable Energy Sector 

 

There are lots of main advantages of using Big Data Analytics in renewable 

energy industry. The main advantage is that by using historical meteorology data, 

future weather conditions can be forecasted. Similarly, as mentioned in the 
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previous section, historical operational data can also facilitate the effective 

organization of operation and maintenance processes. Also, use of historical 

operational, meteorological, and technical data can reduce renewable energy 

generations costs, making renewable energy projects more reliable and 

creditable. As it is indicated previously renewable energy projects are counted as 

risky projects since generation of energy depends on natural resources and the 

environmental conditions. However, by using Big Data analytics, historical 

meteorological data belong to the project site can be analysed and this enables 

financers to know whether this project will generate expected energy amount in 

the future or not. In addition, Big Data allows market players to forecast the 

number of future generations of related plants, which in turn facilitates the 

identification of the market value of energy in advance [52]. 

3.1.2 Techniques Used in Big Data Analytics 

 

Since many areas started to utilize Big Data, scientists have created a wide range 

of methods and tools for collecting, organizing, analysing, and visualizing big 

data. They still fall short of fulfilling a range of needs. To get a high value from 

Big Data Analytics, new techniques are needed to be developed. To extract the 

important information from Big Data, multidisciplinary approaches are required. 

Numerous fields are involved in Big Data techniques, such as statistics, data 

mining, machine learning, neural networks, social network analysis, signal 

processing, pattern recognition, optimization strategies, and visualization 

techniques. These disciplines have a wide variety of specialized methodologies, 

which constantly overlap [53]. The used techniques are illustrated in Figure 5. 
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Figure 5. Techniques in Big Data Analytics[53] 

Data mining: Clustering analysis, classification, regression, and association rule 

learning are just a few of the methods used in data mining, which is a collection 

of methods for identifying valuable information (patterns) in data. Comparing 

typical data mining techniques to Big Data mining presents greater challenges 

and to ease these challenges machine learning and statistical methodologies are 

used.  

Neural networks: The artificial neural network (ANN) is an established method 

with numerous applications. Pattern recognition, image analysis, adaptive 

control, and other fields all make use of it successfully. The majority of the ANNs 

for artificial intelligence that are currently in use are based on control theory, 

classification optimization, and statistical estimations. 

Visualization methods: These techniques are used to produce tables, pictures, 

diagrams, and other types of understandable data displays. Big Data visualization 

is more challenging than visualizing standard, relatively small data sets due to 

the complexity involved in managing the 3Vs or 4Vs (i.e., volume, velocity, 

variety, and veracity). 
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Machine learning: A significant branch of artificial intelligence called machine 

learning aims to create algorithms that let computers develop new actions based 

on actual data. Machine learning is characterized by its capacity for intelligent 

decision-making by gathering autonomous information. To handle Big Data, 

machine learning techniques are needed to scale up, including supervised 

learning and unsupervised learning. 

Traditional data analysis methods are inadequate for fully harnessing the benefits 

of Big Data. The sheer volume of information available for analysis makes it 

impractical, if not impossible, to verify every assumption made about the data. 

Additionally, the complexity of Big Data means that potential linkages and 

relationships between data can be easily overlooked. Due to its high throughput 

and excellent performance with massive data sets, machine learning is a great 

tool for uncovering hidden correlations or links between data. Because the 

machine learning algorithm "learns" from the current data and applies the 

discovered rules on new entries, the more data we have, the more valuable it 

becomes.[54] 

This thesis focuses on forecasting the electricity generation of a solar power plant 

by using different types of meteorological and the realized past electricity 

generations data, it applies the machine learning technique. 

3.1.2.1 Machine Learning 

 

A subdomain of computer science called "machine learning" is used to evaluate 

data and automate the creation of analytical models. Algorithms for machine 

learning are designed to learn from the data that is already available. When 

models are introduced to fresh data sets, they adjust on their own, which is a trait 

that results from machine learning's iterative feature, and this is a crucial part of 

machine learning. For the purpose of generating certain and repeatable decisions 

and results, these models are learning from earlier calculations. New machine 

learning approaches have been developed in recent years by researchers that 

work compatible with Big Data.[54] Google’s autonomous car and the 

recommendation systems of Amazon or Netflix can be given as examples to 

these developments. In Google’s autonomous car example, the vehicle is 

outfitted with software that processes and analyses all data received in order to 
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provide safe navigation. The concept of machine learning is exemplified by this 

application example.[55] On the other hand, in 2014, a constrained Bolzman 

machine and a form of matrix factorization served as the foundation for the Netflix 

recommendation engine. These are illustrations of real-world applications of 

machine learning.[54] 

Because machine learning is effective with vast and varied amounts of data, 

interest in it has grown. Additionally, computing processing is more efficient and 

powerful. As a result, models are created quickly and automatically for the 

analysis of big and complicated data as well as for faster delivery and more 

accurate results. The usage of these models produced extremely accurate 

forecasts that allowed for the taking of smarter decisions and intelligent actions 

in real time without the involvement of humans. 

Supervised learning and unsupervised learning are the two different categories 

of machine learning approaches. Supervised learning, which is based on a 

defined classification model from which the computer should learn, is frequently 

employed in challenges in which the data should be classified. On the other hand, 

unsupervised learning is used when the computer must learn how to do a task 

without any instructions. This kind of learning generalizes it close to the real 

world. Even though supervised learning is more effective than unsupervised 

learning, in reality unsupervised learning is more frequently used.[54] 

3.1.2.1.1 Machine Learning Applications for Solar Energy Forecasting 

 

Today, the globe is moving toward redefining the energy balance and utilizing 

renewable energy sources to generate electricity. Sen et. al suggests that more 

environmentally friendly and long-lasting electrical system can only be created if 

bigger proportions of renewable electricity can be added to the energy mix.[56] 

But the energy context is characterized by fluctuating prices, shifting demand, 

and unstable renewable energy production. In this situation, since it is the 

cleanest and most abundant renewable energy source available, the most 

promising renewable option for generating electricity is solar energy. However, 

when it comes to solar energy, instability in the energy generation is influenced 

by the materials used to make photovoltaic (PV) cells as well as other elements 

like non-stationary meteorological variables. Therefore, it is crucial to employ a 
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suitable model for predicting the production of renewable energy that can learn 

from past meteorological data and assist in the energy sector's operational 

optimization and decision-making. In other words, in order to make solar power 

plants more competitive in the energy market and less dependent on fossil fuels 

for economic and social growth, solar energy forecasting is a crucial 

component.[57] 

PV forecast models are divided into two groups in literature, namely indirect and 

direct forecast models. The former utilizes various methods to predict solar 

radiation on different time scales, which is then transformed into power using 

panel characteristics. On the other hand, direct forecasts are made directly from 

the generated power of the plant.[58],[59] In addition, there are four distinct 

categories into which methods for predicting solar energy can be classified: 

statistical, physical, artificial intelligence (AI), and hybrid.[57] Nevertheless, Liu et 

al. state that AI, and in particular, Machine Learning (ML) techniques, have been 

widely employed in this area due to their significant learning and regression 

capabilities. [60]  

3.1.3 Applications of Big Data Analytics to Local Electricity Markets 

 

There are two different electricity market types which are centralized and 

decentralized. In the centralized market traditional single grid connection system, 

which is also called vertical system has been adopted. Under the Vertical System, 

local energy producers and consumers have limited access to the electricity 

market, but they may participate in central energy or frequency markets if they 

gather to a sufficient scale. However, from the consumer's perspective, the 

current vertical business model may not be beneficial for local energy producers, 

especially those who use renewable technology, as it provides limited options for 

utilizing their output. In particular, the grid only recycles a very small amount of 

the extra intermittent energy from prosumer renewable resources in their raw 

form. 

In decentralized market type, which is Local Electricity Market, adopted system 

is Horizontal System. The Horizontal System allows for the horizontal sharing of 

renewables among flexible users and energy producers, which encourages 

customers to share responsibility for maintaining network security and reducing 
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the costs associated with the exclusive central control of Distribution Network 

Operators (DNOs) when integrating low-carbon technologies into the system. It 

would also enable customer flexibility to resist the local supply uncertainty.[61] 

Schematic representation of Vertical and Horizontal Transactions are given in 

Figure 6. As it can be understood from the figure, in vertical market type, excess 

amount of electricity generated by producers is purchased by grid at a relatively 

low price (£0.03/kWh) and it is recycled by the grid and sold to consumers at a 

higher price (£0.17/kWh). However, in horizontal market type, producers can sell 

their renewable electricity at a better price (£0.10/kWh) to the consumers directly 

by using a trading platform which can be accessed by producers and consumers. 

 

Figure 6. Vertical and Horizontal Systems[61] 

In local electricity market, prosumers are thought to be able to trade without using 

the central system by cooperating horizontally. Such regional market activities 

would send out signals and encourage local consumers to alter their patterns of 

demand and follow the output of regional producers, absorbing the uncertainty 

locally. The prevalent half-hourly energy trading system is made for conventional, 

centralized, large-scale generating. Distributed renewable energy producers 

differ greatly from one another in many ways. Pricing and balancing intermittent 

electricity generation with demand flexibility depends on determining the amount 

of generated electricity that can be sold over time and space. The amount of 

energy that atypical solar energy producer can provide to a central power market 

change significantly over time. Figure following displays an example PV 

generator’s daily output together with its average diurnal value. 
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Figure 7. Daily generations of a PV system over a year (The red curve shows 
the average diurnal value)[61] 

The uncertainty in electricity generation from renewable sources can make it 

challenging for markets to balance supply and demand within the local 

community. Energy might be traded in multiple time blocks (from seconds and 

minutes to hours), in various quantities, and, most importantly, with various 

supply reliability on a P2P local energy market. To provide an energy trading 

system that is multi-time, multiscale, and multi-reliability and is optimized for 

tracking supply/demand levels and their variability, Big Data analytics will be 

essential. In this regard, Big Data Analytics can support the creation of Local 

Energy Markets (LEMs) in the following ways[61]: 

-Resource characterisation is necessary to comprehend the biggest and 

smallest trade units, the biggest and the smallest time blocks, and the biggest 

and the least reliable supply sources.[61] 

-Probability forecasting: This will be utilized to predict the probable amount 

of energy to be produced and consumed during the bidding periods, which 

range from seconds to hours. To evaluate the uncertainty associated with the 

prediction, a probability distribution of each supply and demand level will be 

estimated for each bidding period.[61] 

-Ultrafast settlement: The related surpluses or shortages would need to be 

resolved because there may be substantial uncertainty between forecast 
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energy and real-time trade. Big Data analytics may enable quick trading and 

settlement, depending on the P2P market's size and time frame.[61] 

Due to the interdependence of real-time forecasting, pricing, and matching, very 

effective data processing is needed to handle a potentially very large number of 

offerings. To ensure that the market accurately represents the availability and 

condition of the offerings, forecasting must be done quickly and accurately. In 

local electricity markets, quality of matching is determined by forecasting of 

generated electricity amount and pricing. 

Big Data analytics will be a crucial enabler because they can inform consumers 

and market players, set prices, and balance demand flexibility with intermittent 

generation through in-depth analysis of metered data along with socioeconomic 

and weather data. Moreover, market operation must be more effective than the 

central half-hourly market for local markets to compete, and this effectiveness 

can be provided by Big Data analytics. 

As previously mentioned in earlier sections, this study will highlight the 

significance of knowing the day-ahead electricity generation quantity and price a 

day in advance. This is because day-ahead forecasting of generation and price 

is crucial for local electricity market participants and traders to reduce supply risk 

in the market and to effectively plan their trading strategies[7]. For this reason, 

Big Data analytics is used to forecast day-ahead electricity generation of chosen 

solar power plant of simulated local electricity market in this thesis. 
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4 SOLAR POWER PRODUCTION FORECAST WITH BIG DATA 

ANALYTICS 
 

This chapter gives the details of the technical and spatial characteristics of the 

solar power plant to be used for the thesis, the characteristics, and types of data 

to be used for the forecasting analysis, and finally the results of the forecasting 

analysis. 

4.1 Specifications of Chosen Solar Power Plant 

 

The main focus of this thesis is on a simulated local electricity market that 

comprises a solar power plant. The plant consists of 99,708 photovoltaic panels 

and covers an area of 519,220 square meters, with a total installed capacity of 

26 MW. Its annual electricity production averages at 36,000 megawatt-hours, 

which is sufficient to meet the daily energy needs of 10,000 people, including 

housing, industry, metro transportation, government offices, and environmental 

lighting.[62] When considering only household electricity demand, the solar plant 

is capable of powering 12,000 homes.[63] Additionally, the latest Turkey National 

Electricity Grid Emission Factor for solar power generation plants has been 

calculated as a combined margin emission factor of 0.6488 tCO2/MWh by the 

Ministry of Energy and Natural Resources of the Republic of Turkey. Based on 

this value, it can be said that the power plant has approximately reduced 23,356 

tons of CO2 emissions for the generation of 36,000 megawatt-hours. [64][63] 

4.1.1 Location of the Solar Power Plant 

 

The power plant is located in the city of Niğde in the Central Anatolian Region of 

Türkiye. The location of the city is illustrated on the map of Türkiye given in Figure 

8. 
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Figure 8. Location of City Niğde on the map of Türkiye[65] 

4.1.2 Climate Conditions of the Location 

 

Niğde is situated in the northern hemisphere and generally has a warm and hot 

climate. The city receives more rainfall during winter than summer and has an 

average annual temperature of 9.1°C, with average annual precipitation 

measured at 513 mm.[66] Furthermore, the graph presented with Figure 9 

illustrates the average daily sunshine hours per month in Niğde. As evident from 

the graph, July has the highest number of sunny hours per day in Niğde, with an 

average of 12.35 hours of sunshine and a total of 382.95 hours of sunshine 

throughout the month [66]. Conversely, Niğde experiences the least number of 

daily sunny hours in January, with an average of 6.36 hours per day and a total 

of 197.19 hours of sunshine over the course of the month. A total of 3347.52 

hours of sunshine are recorded annually in Niğde, with an average of 109.91 

hours per month. [66] 
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Figure 9. Average Daily Sun hours per Month in Niğde, Türkiye[66] 

On the other hand, when analysing Türkiye's irradiation map, it can be observed 

that Niğde falls under the area that receives a total solar radiation of 1650-1700 

KWh/m2-year, as depicted in the Figure 10[66]. 

 

Figure 10. Solar Irradiation Map of Türkiye.[67] 
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4.2 Forecasting analysis 

 

This section outlines the procedures for the forecasting analysis and provides key 

information about the data utilized in the analysis. 

4.2.1 Input Variables and Forecast Variable 

 

Many studies in the literature have utilized big data analytics methods to forecast 

data in solar power plants by compiling and analysing historical data [68]. Table 

1 is a summary of some of the studies conducted in this field in the literature. 

Table 1. Examples of solar power plant generation forecasting studies from the 
literature 

Study, Year 
Forecasting 

period 
Input Variables 

Forecasted 

output 
Data Period 

Zhang et al., 

2015[69] 
24-h ahead 

Site 1 = Wind speed, 

Temperature of ambient, 

temperature of cell, 

Site 2 = cloud cover, 

GHI, fog, wind speed, 

temperature of ambient            

Site 3 = Altitude of Solar, 

GHI, cloud cover, DNI, 

Temperature of ambient 

Solar power 

Site 1 = 1st 

July 2010– 31st 

December 

2011 

Site 2 = 1st 

January – 31st 

December 

2006 

Site 3 = 1st 

January – 31st 

December 

2011 

Lima et 

al.,2016[70] 
24-h ahead 

Weather data by model 

of WRF., Observational 

ground data 

solar 

irradiance 

2009 &2011 

including 

seasons rainy 

& dry  

Wang et 

al.,2017[71] 

15-min ahead. 

30 min ahead. 

1h ahead. 

2h ahead 

Retroactive Solar 

generations 

Solar 

Generations 
Jan-Dec (2015) 

Hossain et 

al.,(2017)[72] 

Day ahead.  

 1-h ahead 

Avg. solar irradiance 

Temperature.  

Module temperature 

wind speed. 

Retroactive PV output 

Solar 

Generations 

1st January 

2015–30th 

September 

2016 

(12months) 

Mohammadi 

et 

al.,2015[73] 

Daily and 

monthly 

Solar radiation. 

 Duration of sunshine. 

Min, avg., max, 

temperatures. 

Relative humidity.  

Water vapor pressure 

Solar 

Radiation 

(Horizontal) 

From Jan 1992. 

to Dec 2005 



31 
 

Ekici, 

2014[4] 
Next-day 

 Avg. &max ambient 

temperatures 

Duration of sunshine 

Solar insolation (Day 

before) 

Solar 

insolation 

(Daily) 

2000–2003 

 

In a review study which was carried out for solar photovoltaic generation 

forecasting method by Sobri & Koohi-Kamali & Rahim[5], the most important and 

used parameters in the previous forecasting analyses were examined, such as, 

solar irradiation, past PV generations, temperature and wind speed. Then, the 

meteorological parameters specified in the following section were narrowed 

accordingly.  

4.2.2 Forecast Horizon (Dataset preparation) 

 

This thesis utilizes the data for the selected solar power plant’s retroactive 

generations, which is retrieved from Transparency Platform of EPİAŞ. 

Transparency Platform provides reliable, fair, and transparent data to Türkiye's 

energy markets. EPİAŞ, in compliance with the Board Decision, gathers 

information from relevant institutions, organizations, and businesses to publish 

data on its Transparency Platform, including information on the marketplaces 

where it conducts trades.1 The data span covers the period between 9th October 

2019 and 18th September 2021 for the chosen solar power plant for this study. 

Since the plant started its operation the oldest data that could be reached was 

09.10.2019.  

In addition to retroactive generation data, this study also employs historical 

meteorological data at the power plant's location for the forecast modeling. These 

data were obtained from Solcast DATA API, a platform developed by Solcast that 

provides forecast, live, and historical solar irradiance, PV power, and weather 

data.2 The meteorological data for the period between October 9th, 2019 and 

September 18th, 2021 were retrieved using the coordinates of the region via the 

Solcast DATA API toolkit.  

 
1 6282-4 decision of the Energy Market Regulatory Board dated 13/05/2016 
(https://seffaflik.epias.com.tr/transparency/ ) 
2 https://toolkit.solcast.com.au/legacy-live-forecast  

https://seffaflik.epias.com.tr/transparency/
https://toolkit.solcast.com.au/legacy-live-forecast
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The types of meteorological data have been listed below separately. 

• Air Temperature: the temperature of the air two meters above ground. 

• Solar Azimuth Angle: the angular distance between the sun's horizontal 

rays and true north, with positive values in the west and negative values 

in the east which varies between -180 and 180. When the value is -90, the 

sun is in the east, 0 is in the north, and 90 is in the west. 

• Cloud Opacity: the cloud-induced attenuation of incoming sunlight ranges 

between 0% (no clouds) and 100% (full attenuation of incoming sunlight). 

• Dewpoint Temperature: the temperature at 2 meters above sea level 

where dewpoint is present. 

• Diffuse Horizontal Irradiance (DHI): a horizontal surface's exposure to 

diffuse radiation which is called diffuse sky radiation as well. Irradiance 

that is scattered by the atmosphere makes up the diffuse component. 

• Direct Normal Irradiance (DNI): Irradiance coming from the sun's 

direction (10th percentile clearness). Additionally known as beam 

radiation. 

• Clear-sky Global Horizontal Irradiance (GHI): the diffuse illumination 

that a horizontal surface receives (if there are no clouds). It is known as 

diffuse sky radiation. In the case of a clear sky, the diffuse component is 

irradiance that is scattered by the atmosphere (i.e., no water or ice clouds 

in the sky). 

• Precipitable Water: water that falls as rain across the entire air column. 

• Relative Humidity: relative humidity at a height of two meters. The 

percentage of water vapor needed for saturation at the same temperature 

that makes up relative humidity. 50% indicates that the air is 50% 

saturated. 

• Snow Depth Water Equivalent: the liquid-water equivalent of snow 

depth. 

• Surface Pressure: the air pressure at the ground level. 

• Wind Direction (10m): Wind direction at 10 meters above the ground. 

Zero represents true north. It varies from 0 and 360. When the value is 

270, the wind's direction is west. 

• Wind Speed (10m): the speed of the wind at 10m above the ground level. 
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• Solar Zenith Angle: the angle formed by the zenith and the sun's direction 

(directly overhead). The zenith angle is 90 degrees at sunrise and sunset 

and 0 degrees when the sun is directly overhead. 

• Albedo Daily: Visible light's average surface reflectance during the day, 

represented as a proportion between 0 and 1. The number 0 stands for 

total absorption. The number 1 stands for total reflection. This figure is an 

interpolated daily average and does not account for reflectivity's diurnal 

angular dependence.[74] 

As previously noted, the literature on forecasting was scrutinized to identify the 

parameters that were most important and commonly employed. Subsequently, 

the meteorological parameters that had been previously listed were refined 

accordingly. In summary, in the forecasting analysis in this thesis, besides 

retroactive electricity generation data, the variables used are cloud opacity, 

precipitation, direct normal irradiance, temperature and wind speed. 

4.2.3 Examination of Input Variables Used in the Analysis 

In this analysis, both for the retroactive electricity generations and the 

meteorological data, the data span covers the period between 9th October 2019 

and 18th September 2021. Distribution of all input variables that were used in the 

analysis are illustrated in the given graphs below. The data used in this study is 

hourly and covers a period of two years. To clearly illustrate the distribution of the 

data, representative meteorological and past PV generation input variables were 

filtered for each day of the two-year data, specifically for daytime (12:00) and 

night-time (00:00) periods. 
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a) Day-time input variables (12:00) 
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b) Night-time input variables (00:00) 
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As there is no electricity generation or DNI data during the night-time, graphs for 

these variables are not included. The graphs that show the distribution of input 

variables demonstrate that the selected location has a high potential for DNI since 

it receives consistent irradiation throughout all seasons. Additionally, the 

distribution of other variables such as temperature, cloud cover, precipitation, and 

wind speed are consistent with seasonal norms. 

4.2.4 Applied Forecast Method 

 

The steps followed before starting the forecasting analysis are summarized 

below: 

• Defining the Problem and Determining the Data Requirement 

• Data Discovery 

• Data Processing, Cleaning 

• Model Selection 

• Standardization 

• Creating the Training and Test Set 

• Parameter Selections 

• Visualization of Output and Metrics 
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This thesis predicts the next day's generation quantities of Solar Power Plants in 

hourly frequency for the day-ahead local electricity market. Therefore, while the 

dependent variable is the generation data, the independent variables affecting 

the generation of solar power plants are weather events and breakdown-

maintenance conditions. This is a regression problem as the dependent variable 

is the generated electricity values. The difference between estimated generation 

and actual generation is expected to be minimized. To measure this, an error 

metric such as mean absolute error, root mean squared error or normalized root 

mean squared error, which are used in the literature to solve the optimization 

problem, can be used. Generally, the closer the error metrics mentioned are to 

zero, the more successful the analysis will be. 

In this forecast analysis Python was used since it enables to use of machine 

learning thanks to its libraries. Python is a general-purpose programming 

language that mainly supports object-oriented programming and functional 

programming to a certain extent. The procedure of the forecasting started by 

opening necessary libraries for machine learning in Python. Afterwards, historical 

generation data and meteorological data was introduced to the software. Then 

the data was checked for missing values and the distribution of the areas in the 

data was examined. For the details of the weather data and generation data, 

firstly, the processes of obtaining the number of rows and columns and obtaining 

the statistical outputs were applied. Results of these processes are given in Table 

2 and Table 3 separately. 

Table 2. Statistical Outcomes of Generation Data 

For Generation Data 

Number of Rows &Columns of the 
Input Generation Data  

17064 & 2 

Mean 6.656 

Std 9.298 

Min 0 

25% 0 

50% 0.07 

75% 13.45 

Max 30 
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Table 3. Statistical Outcomes of Weather Data 

For Weather Data 

  

Meteorological Parameters that are used in 
the Model 

cloud_c
over 

precipita
tion 

Irradiati
on 

temperat
ure 

wind_sp
eed 

Number of Rows & Columns of the Input 
Weather Data  

17064 & 
6 

17064 & 
6 

17064 
& 6 

17064 & 
6 

17064 & 
6 

Mean 0.2 11.4 228.1 284.9 2.0 

Std 0.3 4.8 340.7 9.2 1.6 

Min 0.0 1.6 0.0 257.7 0.0 

25% 0.0 7.6 0.0 277.6 0.9 

50% 0.1 11.0 0.0 285.0 1.6 

75% 0.4 14.6 498.0 292.0 2.6 

Max 1.0 29.0 1038.0 308.9 14.1 

 

In the next step, the data was processed and cleaned by removing duplicate 

values and filling in any missing values. The drop duplicates method was used to 

remove any duplicated values, and all data intended as input for the model was 

checked for completeness. Although there were no null values in the dataset, 

some rows may have been expected but had no records due to the dataset's 

structure. The appropriate number of rows and columns were determined to 

ensure that the model period matched the total number of hours between the start 

and end dates. The resulting number of rows and columns matched the time 

period of the model, indicating that the input data contained information for all 

hours. 

After cleaning and processing, the categorical data was transformed into 

numerical data to make it suitable for the model. This process was applied to all 

generation and weather data used in the model, and calendar features were 

added to the dataset. The correlation function was used to examine the linear 

relationship between variables, and the plot of the results of this analysis is 

presented in Appendix-1. 

The accuracy of the model was improved in the following stage by applying a 

delay to the radiation data using the lag creator function. It is necessary to create 

"lagged" copies of the time series in order to investigate any potential serial 

dependencies (such as cycles) in the data. Lag means to advance the times in 

an index by one or more steps, or to advance the times in the values of a time 

series by one or more stages. In both scenarios, the observations from lagged 
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series will seem to have occurred at a later time. By introducing a delay to a time 

series, past values can be made to seem current with the values that are being 

predicted (in the same row, in other words). So, when describing serial 

dependence, lag series might be a useful characteristic.[75] 

Then, by using scikit-learn library and importing minmax scaler into the script, 

normalization process was applied to reduce the model's sensitivity to the scale 

of the features by bringing each feature between 0 and 1.  

To measure the performance of a specific component, data was divided by date 

rather than using the train-test split function when creating the training and test 

sets. Since the primary objective of this thesis is to highlight the significance of 

forecasting the market price for the following day from the viewpoint of a market 

maker, and subsequently, taking a position in the market. Thus, to achieve this, 

the final day of dataset was used for testing, and the rest of the data was utilized 

as training dataset. In other words, the data from 9 October 2019 to 17 September 

2021 was set aside as the training set and the data from 18 September 2021 was 

designated as the test set as a result. However, even if the analysis is performed 

for just one day, to demonstrate that the approach used is robust, the model will 

be run again by changing the training and test datasets at regular intervals. In 

addition, to observe the seasonality effect of the model, a daily forecasting 

modelling study will be conducted for each month within the last year’s data. 

In the follow-up, the error metric was decided upon. As the solar production 

values during the night are 0, the mean absolute percentage inaccuracy is not a 

reliable metric. In the literature, normalized root mean square error (NRMSE) is 

most frequently employed.[5]. However, NRMSE is explicitly defined in the model 

as an external error metric because this is not a part of the Scikitlearn3 library. 

On the other hand, besides NRMSE, Root mean square error (RMSE) and R2 

metrics were also determined to examine the error of the analysis. [5] 

Mathematical formulas of RMSE and NRMSE are given in Equation (1). 

 
3 Scikit-learn is one of the most widely used Python packages for data science and machine 
learning. 
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(1) 

  

where max and min reflect the variable's maximum and minimum values for the 

time period under consideration, and m and s stand for "measured" and 

"simulated," respectively.[76] 

Consequently, for NRMSE, a number between 0 and 1 is generated, with 

numbers closer to 0 denoting models that fit data better.[77]. For RMSE, better 

results are achieved with a lower RMSE. Lastly, if the R-squared value is close 

to 1, it indicates that the regression model is a good one as it explains a significant 

portion of the variation in the response variable values. 

 

Random Forest and Hyperparameter Selection 

It is possible to specify every possible configuration combination to test. 

GridSearchCV, a method that examines all defined combinations, can be used to 

do this. This tool is applied to improve the accuracy of Random Forest model[78]. 

Random Forest algorithm is a type of machine learning model that randomly 

produces various models and creates classification by training each decision tree 

on a different observation sample over multiple decision trees.[79] At this part of 

the model, by using GridSearch tool, the parameter set that gives the highest 

accuracy was found.   

The random forest model was first tested without the GridSearchCV 

enhancement, and then it was tested again using the same test set but with the 

parameters that produced the smallest error. Without the GridSearchCV 

enhancement, the Random Forest model's NRMSE value was determined to be 
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0.244; with the upgrade, it was found to be 0.144. GridSearchCV with 

enhancement produced more accurate results because its NRMSE value is 

closer to zero. 

Modelling with Lightgbm (LGBM) 

In 2017, as a component of the Microsoft DMTK project focused on distributed 

machine learning, the boosting algorithm called LightGBM was developed. [80] 

In contrast to other boosting algorithms, LightGBM offers several benefits 

including speedy processing, efficient handling of large datasets, low usage of 

system resources such as RAM, accurate prediction capabilities, support for 

parallel learning, and compatibility with GPU (Graphics Processing Unit) learning. 

According to the article “LightGBM: A Highly Efficient Gradient Boosting Decision 

Tree” in which the model was introduced, compared to other models, LightGBM 

operates at a speed that is 20 times faster.[80] For this reason, the NRMSE value 

was recorded as 0.044 with the use of the LGBM model. When compared to 

GridSearchCV models, the LGBM model gave the most accurate result because 

NRMSE value is the one that is closest to zero.  

4.3 Results of the Analysis 

 

Among the applied models, the Light GBM model gave the best performance. 

After LGBM, the algorithm with high performance has been obtained by the 

random forest with improvement of GridSearchCV. Table 4 summarizes the error 

metric values of the applied models for the forecasting analysis. 

Table 4. Error metric values of applied Models 

Error Metrics NRMSE RMSE R2 

Random Forest without improvement of GridSearch 0.2436 6.5409 0.6242 

Random Forest with improvement of GridSearch 0.1437 3.7479 0.8766 

Light GBM 0.0435 1.1358 0.9887 

 

Figure 11 is displaying the correlation between the estimated and real value 

based on the LGBM model's findings. The test set only covers the date of 

September 18, 2021. Below result represents what has been forecasted and what 

was actually achieved on 18.09.2021. The x-axis indicates production in MWh, 

while the y-axis indicates time in hours. 



42 
 

 

Figure 11. Model Results (LGBM) 

 

4.3.1 Evaluation of the Model 

 

For the accuracy of the applied and adopted model (LGBM), the same analysis 

was also carried out by using different training and test periods among input 

variables. First of all, 25% of the input variables was used as a training set and 

the remaining data was evaluated as test set. In other words, the data from 9 

October 2019 to 3 April 2020 was set aside as the training set and the data from 

4 April 2020 to 18 September 2021 was designated as the test set as a result. 

According to this arrangement, achieved result is given in Figure 12. The x-axis 

indicates production in MWh, while the y-axis indicates time in hours. As can be 

seen from the graph, there is a significant overlap between the estimation and 

actual generation values. 
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Figure 12. Model Results (LGBM) (25% training data set & 75% test data set) 

Secondly, the same model was run again by using 50% of the data as a training 

set, and 50% of the data as test set. In this scenario, the data from 9 October 

2019 to 28 September 2020 was set aside as the training set and the data from 

29 September 2020 to 18 September 2021 was designated as the test set as a 

result. It can be seen that in this scenario, model is able to see varying of the 

input variables throughout a year including all seasons. Result of this scenario is 

represented with Figure 13 below. The graph illustrates that obtained result for 

this scenario gave more successful results compared to scenario 1. 

 

Figure 13. Model Results (LGBM) (50% training data set & 50% test data set) 
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Lastly, the model was run again by changing the periods of training and test sets 

as 75% training data input, 25% test data input. In this one, the data from 9 

October 2019 to 25 March 2021 was set aside as the training set and the data 

from 26 March 2021 to 18 September 2021 was designated as the test set. This 

data set arrangement was resulted like in the graph which is provided in Figure 

14. Among the three scenarios, the most successful model results have been 

achieved with this scenario. 

 

Figure 14. Model Results (LGBM) (75% training data set & 25% test data set) 

 

According to different scenarios adopted in the forecasting model above, model 

performances were checked accordingly. Thus NRMSE, RMSE and R2 error 

metrics were calculated for each scenario separately. Outcomes of the analysis 

are provided in Table 5. 

Table 5. Error metric values of LGBM for different training-test periods 

 Error Metrics 

Training-Test Percentages NRMSE RMSE R2 

25%-75% 0.1000 3.0023 0.9024 

50%-50% 0.0783 2.3487 0,9385 

75%-25% 0.0702 1.9691 0.9589 

 

The results from analysing the model's errors indicate that there is little difference 

between using a 50% or 75% training set. The model covers most of the potential 

situations it may encounter within a year, and this is used as the training data set, 
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accounting for 50% of all data. Therefore, using one year's worth of data as 

training is sufficient, as the 75% scenario did not differ significantly from the 50% 

scenario, meaning extreme values are not excluded from the training set. The 

objective of the analysis was to obtain electricity generation data for a specific 

day (September 18, 2021), and almost all of the data set was utilized as training 

set, which led to a higher accuracy in the results obtained. 

To examine the seasonal validity of the applied and adopted model (LGBM), the 

same forecasting analysis was run by testing a chosen single day from each 

month within last 1 year of the data set. To be able to be compatible with targeted 

estimation day for the analysis, which is 18 September 2021, from 18 October 

2020 to 18 September 2021, the same model was applied for the same day of 

each month within the last year of the dataset. In other words, to investigate the 

impact of seasonality on the model, a single day from each month of the 

preceding year was selected and utilized as the test dataset. In this analysis, the 

dataset preceding the selected test date was used as the training dataset. 

Obtained results for each day of these months are given in Figure 18 separately. 
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Figure 15. Model Results (LGBM) for single day from 18 October 2020 to 18 
September 2021 

 

The performance of the forecasting model was evaluated based on several 

selected scenarios. As a result, NRMSE, RMSE, and R2 error measures were 

determined individually for each scenario. Table 6 provides the analysis' results. 

Table 6. Error metric values of LGBM for single day generation estimation from 
18 October 2020 to 18 September 2021 

Date 
LGBM Error Metrics 

NRMSE RMSE R2 

18.10.2020 0.0535 1.21240 0.9800 

18.11.2020 0.0266 0.6965 0.9952 

18.12.2020 0.0378 0.9752 0.9889 

18.01.2021 0.1622 4.26070 0.7033 

18.02.2021 0.3124 7.90080 0.3389 

18.03.2021 0.1589 3.22970 0.8023 

18.04.2021 0.0842 1.82650 0.9356 

18.05.2021 0.0453 1.24710 0.9863 

18.06.2021 0.0487 1.20470 0.9851 

18.07.2021 0.0431 0.9782 0.9886 

18.08.2021 0.0110 0.26933 0.9993 

18.09.2021 0.0435 1.13580 0.9890 

 

As can be interpreted from Table 6, efficient, and similar results were obtained 

from the model except for 1-2 days. As an example, when examining the 

meteorological data for February 18th, 2021, which was the day with the least 

efficient model result, it was observed that the irradiation values were much lower 

compared to other days. It can be said that the main reason for the model's 

inefficient result for this day is the low level of irradiation, which resulted in a low 

production amount. The seasonal effect analysis began with the training set 
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comprising 50% of the entire model set and gradually increased to 99.9%. This 

suggests that to achieve accurate results, it is adequate to use a data set that 

covers all seasonal events within a one-year period. 

In conclusion, the model has gained more explanatory power as a result of 

repeating the analysis using different training and test datasets. As a result, it has 

helped us to obtain noteworthy outcomes that show the model's reliability. 

4.3.2 Comparison of the Model with other Forecasting Studies in the 

Literature 

 

To be able to evaluate the results of the applied and approved model, error 

measurements of the forecasts were also compared with the similar forecasting 

studies that have been carried out in the literature. Input variables, horizon of the 

forecasts and the data period of the studies have been considered to evaluate 

the forecast analysis of this study. Within this scope, different studies from the 

literature have been analysed and detailed in Table 7. 
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Table 7. Solar Power Forecasting Studies in the Literature 

Number 
Author and 

year 
Location 

Method of 
Forecast 

Horizon 
of 

Forecast 

Error measurement for 
Forecast 

Input Variables 
Forecast 
Variable 

Data Period 

1 
Kardakos et al. 

(2013)[81] 
Greece ANN Day ahead NRMSE = 11.26-11.42% Solar radiation PV power 

01.01.2011-
31.12.2012 

2 
Mellit et al. 
(2013)[82] 

Türkiye ANN Hourly RMSE = less than 0.2% Solar Irradiance, Temperature of Air PV power 
01.01.2011-
24.02.2012 

3 
Almonacid et al. 

(2014)[83] 
Spain Dynamic ANN 1-h ahead 

R2= close to 1 & RMSE 
=3.38% 

Solar Irradiance, Temperature of Air, Past 
PV power generations 

PV power 2011-2012 

4 
Giorgi et al. 
(2013)[84] 

Italy ANN 
1, 3, 6, 12, 

24-h 
ahead 

NRMSE=  
1h (10.91%), 3h (15.61%), 

6h (18.89%),  
12h (18.80%),  
24h (23.99%) 

Past PV Power, Temperature of the Module, 
Air Temperature, Solar Irradiance 

PV power 
05.03.2012-
5.03.2013 

5 
Teo et al. 

(2015)[69], [85] 
N/A ANN N/A RMSE = 3.8574% 

Air Temperature, Module Temperature, 
Total Daily Energy, Solar Irradiance, PV 

power 
PV power 

08.06.2014-
6.07.2014 

6 
Zhang et al. 
(2015)[69] 

USA, 
Denmark, 

Italy 
kNN, WkNN Day ahead 

NRMSE= 
 USA (9.82%, WkNN), 

 Denmark (8.72%, kNN), 
Italy (10.37% WkNN) 

USA = Air Temperature, cell.temperature, 
and.wind speed 

 
Denmark = cloud cover, GHI, fog, wind 

speed, temperature of ambient            
 

 Italy = Altitude of Solar, GHI, cloud cover, 
DNI, Temperature of ambient  

PV power 

USA = 
01.07.2010-
31.12.2011, 

Denmark 
=01.01.2006-
31.12.2006, 

Italy= 
01.01.2011-
31.12.2011 

7 
Graditi et al. 
(2016)[86] 

Italy 
Sandia, 

Regression, 
ANN 

N/A 

Sandia model: NRMSE = 
10.09% R2 = 0.978 
Regression model: 

NRMSE= 7.01 R2 = 0.980 
ANN model: NRMSE= 

6.66% R2= 0.982 

Global Radiation, Air Temperature, Wind 
Speed, Module Temperature 

PV power 2006-2012 
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8 
Hossain et al. 

(2017)[72] 
Malaysia 

Extreme 
Learning 
Machine 

Day ahead RMSE =17.89–35.39% 
Solar Irradiance, Air Temperature, 

Temperature of the Module, Wind Speed, 
PV Generations 

PV power 
01.01.2015-
30.09.2016 

9 
Shi et al. 

(2012)[87] 
China 

Support 
Vector 

Machine 
Day ahead RMSE= 2.10 

Historical Generations, Next day’s weather 
report  

PV power 
13.01.2010-
29.10.2010 

10 
Wang et al. 
(2016)[88] 

Coloane 
island of 
Macau 

Regularized 
PFLRM 

Day ahead RMSE= 59.1704 
FPC score, wind speed, intercept, pressure, 

air temperature, insulation, humidity 
PV power 

01.01.2011-
30.06.2012 

11 
Li et al. 

(2016)[89], [90] 

Coloane 
island of 
Macau 

MARS Day ahead RMSE=119.0 
Air Temperature, wind speed, dew 

temperature, air pressure, precipitation, 
insolation duration, humidity 

PV power 
01.01.2011-
20.06.2016 

12 
Massidda et al. 

(2017)[90] 
Germany MARS Day ahead RMSE= 177.8 NWP data, historical PV generations PV power 2014 

13 
Fernandez et al. 

(2012)[91] 
Spain ANN-MLP 

1-39h 
ahead 

Average RMSE= 11.79% 
Historical PV generations, Weather 

parameters 
PV power 

02.06.2007-
27.05.2008 

14 
Yang et al. 
(2014)[92] 

Taiwan SVR Day ahead RMSE= 350.2 Temperature, precipitation probability PV power 
01.05.2012-
30.04.2013 

15 
Dolara et al. 
(2015)[93] 

Italy PHANN Day ahead 

NRMSE= 20.6% (60 days 
training), 15.0% (90 days 
training), 13.4% (120 days 

training) 

Weather forecasts, clear sky model PV power 
240 days (from 

1st of Jan 
2012) 

16 
Antonanzas et 
al. (2017)[94] 

Spain 

Blended 
Model (SVR & 
DNN & XGB 

& RF) 

Day ahead NRMSE = 22.49% 
GHI, ambient temperature, humidity, speed 
of wind, position of the sun, extra-terrestrial 

irradiance 
PV power 2009-2010 
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As it was described earlier, in the forecasting model conducted in this thesis 

study, 5 different meteorological data (cloud cover, precipitation, wind speed, air 

temperature, irradiation) and past electricity generations for approximately 2 

years were used as input variables and consequently, the best results were 

obtained with LGBM. Accordingly, the NRMSE, RMSE and R2 error values were 

calculated as 4.35%, 1.14, and 0.9887 respectively.  

For example, in study number 1(Kardakos et al., 2013), it is observed that the 

length of the data period used is similar to the model studied in this thesis, which 

is 2 years. However, while 5 different meteorological data and past production 

values are used as input variables in the model in this thesis, it is seen that only 

solar radiation is used as the input variable in study number 1. The NRMSE value 

obtained in this study using the ANN model varies between 11.26% and 11.42%. 

This value is approximately 7% higher than the model used in this thesis, which 

was conducted using the machine learning method. On the other hand, in study 

number 4 (Giorgi et al.,2015), as similar to this thesis’ model, solar irradiance, air 

temperature, module temperature and past electricity generations were used as 

input variables. However, length of the data period for these variables was taken 

for 1 year only. As a result, while NRMSE value has been calculated as 4.35% in 

the model of this thesis, it has been calculated as 23.99% for day ahead 

forecasting by using ANN method in study number 4. As can also be understood 

from the previous studies conducted in the literature, the success rate of the 

models increases as the number and period of input variables used in the 

forecasting models increase, and the horizon of forecast becomes shorter. 

Taking all of this into consideration and with the comparison of the results 

obtained and similar studies in the literature given in Table 7 above, it can be said 

that the success of the forecasting analysis does not depend only on the model 

used, but also the great variety and big volume of the data used. The more 

successful results can be obtained by increasing the volume and variety of the 

used data in Big Data Analysis. 

 

 

 



52 
 

5 DESIGNING LOCAL ELECTRICITY MARKET SIMULATION 
 

The open-source and online software of Grid Singularity[95]  has been used for 

the validation of simulated scalable scenarios and LEMs evaluation from an 

economic perspective. Grid Singularity is a recognized open-source energy 

technology business that co-founded the Energy Web Foundation and created 

the Grid Singularity Exchange to put people and the environment at the center of 

the energy market (EWF). Grid Singularity models and runs networked, grid-

aware energy markets, giving every market player the greatest degree of trading 

flexibility.[95] 

5.1 Types of Spot Markets 

Bids and offers are matched in a local energy market (LEM) in accordance with 

the chosen clearing mechanism. Studies reveal that various clearing procedures 

have varying advantages and disadvantages in terms of market efficiency, 

fairness, and user options. On the exchange run by Grid Singularity (formerly 

D3A), there are three types of spot markets.[95] 

One-Sided Pay-as-Offer Market 

In the One-Sided Pay-as-Offer market, agents for energy producers, including 

prosumers (sellers), post offers with energy prices based on the trading strategy 

for the assets. 

Agents acting on behalf of buyers have the ability to review available offers in 

their local market, eliminate unaffordable options, and select the most suitable 

offer. The price of the offer is established through an agreed-upon energy rate 

between the buyer and seller, known as pay-as-offer. As a result, the trading rate 

may fluctuate for transactions completed within the same timeframe. As the 

auction is continuous, offers can be accepted at any point, even prior to the 

conclusion of each market slot once they have been submitted.[95] 

Double Sided Pay-as-Bid Market 

Buyers have the ability to submit their own offers alongside those of sellers in the 

Two-Sided Pay-as-Bid market. A Market Agent is created and managed for each 

market, which gathers and matches bids and offers submitted by trade agents 

and distributes them to other markets in the region. The Market Agent's role is to 
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transmit bids and offers to be linked marketplaces. As the auction is ongoing, bids 

and offers can be immediately matched once submitted, even before the market 

slot expires. Trade agents also have the option to reject bids and offers. The 

matching process illustrated in Figure 16 demonstrates that the market 

continually matches bids and offers.[95] As it can be seen from the figure, in this 

type of market, the consumer bided 0.12 Euros for 4 kWh. The most compatible 

offer from the producers for this offer is 0.11 Euro for 6 kWh, and consequently a 

trade was made between these two participants. On the other hand, another 

consumer bided 0.22 Euros for 8 kWh, and this bid was matched with another 

producer’s offer which is 0.14 Euro for 8 kWh, and the trade was realized between 

them. Unmatched offers are waiting in the market as unmatched until the next 

slot. 

 

Figure 16. Double Sided Pay-as-Bid Market mechanism.[95] 

Double Sided Pay-as-Clear Market 

Buyers are able to submit bids alongside sellers' offers in the Two-Sided Pay-as-

Clear market. The market receives, matches, and distributes bids and offers 

made by trading agents to other markets via the Market Agent (MA). Trade agents 
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have the option to reject bids and offers. Market Agents are established and 

managed for each market (region) to transmit bids and offers to be connected 

marketplaces.[95] 

A merit-order-effect method is currently in place for matching bids and offers, 

where bids and offers are combined and cleared within a predetermined clearing 

time. At the conclusion of each interval, offers and bids are organized in 

ascending and descending order, respectively, and the equilibrium quantity of 

energy and price is determined. The point at which the agreed-upon bid curve for 

the buyers falls below the agreed-upon offer curve for the sellers is the clearing 

point, which determines the amount of energy that is accepted trading volume for 

a particular energy rate clearing price. The lowest offers are paired with the 

highest bids. The clearing price (cents/kWh) is the matching rate. The leftover 

offers and bids, which are shown in the plot below to the right of the clearing point, 

are not cleared at this clearing point and are instead stay in the market for 

subsequent matching.[95] 

 

Figure 17. Double Sided Pay-as-Clear Market mechanism[95] 

In this thesis, in all simulated scenarios, as a spot market type, “Double Sided 

Pay-as-Clear Market” has been adopted. 
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5.2 Market Slots and Market Ticks 

 

Market Slots 

The energy spot market's default setting for time slots is 15 simulated minutes, 

resulting in 96 market slots for a one-day simulation. However, the length can be 

adjusted during simulations, allowing it to be increased up to 60 minutes. 

Bids and offers are matched either within each slot or at the end, depending on 

the market type. Assets may face penalties for any physical energy they produce 

or consume that is not exchanged if bids and offers remain open at the conclusion 

of a market slot.[95] 

Market Ticks 

Ticks are generated by splitting each slot into smaller segments. In other words, 

ticks are further division of each slot. The default configuration for a tick is 15 

seconds of simulated time, but this setting can be changed. Simulated time is the 

time unit within a simulation, as opposed to real-time, which is the amount of time 

that the simulation actually takes. For example, seven days of trade can be 

simulated in a simulation in a matter of minutes or hours, and the setup can be 

altered. There are 60 ticks in the standard 15-minute trading period since there 

are 4 ticks for a 1-minute slot by default. 

For instance, in a pay-as-bid market, the market is cleared at the conclusion of 

each tick. A Market Agent propagates an unmatched order to all nearby 

marketplaces after two ticks.[95] 

In the simulated scenarios, length of the spot market and tick length was taken 

as 60 minutes and 60 seconds, respectively. 

5.3 Description of Scenarios and Simulations 

 

Three different integration scenarios of different PV systems to the grid and 

market are explored in this study. These scenarios include different community 

structures, consumers, producers, and different load profiles. Each LEC member 

is connected to the electricity grid to generate or consume electricity and 

participate in the local electricity trade. 
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The study in Chapter 4 produced a forecasted value for the solar power plant for 

September 18, 2021. Since the main scope of this thesis is to emphasize the 

importance of predicting the market price for the next day from the perspective of 

a market maker and then using this information to take a position in the market, 

generation forecast has been made only for one day as 18.09.2021. The machine 

learning models used learn through a probabilistic distribution and attempt to 

predict real values, so there is a small margin of error in all predictions. This 

situation is valid for both daytime and night-time generation. Therefore, instead 

of predicting zero for night-time generation, it can be forecast values that are 

close to zero. Since it is known that night-time generation should be zero, when 

evaluating the results through scenarios, night-time production was considered 

negligible and ignored. In a real-world usage scenario, this is likewise the proper 

course of action. Hence, estimated generations between 0:00–05:00 and 19:00–

23:00 have been assumed to be zero and the estimated PV generations have 

been taken accordingly for use in simulation studies in order to produce more 

accurate and conservative results in local electricity market simulations. This 

estimated generation value will be utilized as the generation data for the solar 

power plant in the simulations conducted as part of the scenarios. Moreover, the 

date of 18.09.2021 is taken as the basis for the execution date in all scenarios. 

In other words, the working date of the local electricity market has been taken as 

18.09.2021 in simulated scenarios. Additionally, the capital costs of the included 

solar power plant and batteries have not been taken into account in the scenarios. 

The scenarios are explained in detail in the next sections. 

5.3.1 Scenario 1: Local Community without Solar Power Generation 

 

In this scenario, the market actors' consumption load profiles have first been 

defined. This scenario assumes that there are 10 families in this community, each 

with a unique consumption load profile, and that there are 6 different 

commercials. 



57 
 

 

Figure 18. Representation of Scenario-1 from GridSingularity Simulation 
Software 

Details of the local market players are given in below. 

Households 

Household 1 (HH1): Family with 3 children & job 

Household 2 (HH2): Young couple with job 

Household 3 (HH3): Family with 2 children 

Household 4 (HH4): Family with 2 children & job 

Household 5 (HH5): Family with 3 children 

Household 6 (HH6): Flat-sharing students 

Household 7 (HH7): Family with 1 child & job 

Household 8 (HH8): Middle-aged couple with job 

Household 9 (HH9): Retired Couple 

Household 10 (HH10): Single with 1 child 

Commercials 

• School 
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• GYM 

• Wastewater Treatment Plant (WWTP) 

• Hairdresser 

• Bakery 

• Dining Restaurant 

While average daily consumption load profiles of households were obtained from 

the library of Grid Singularity[95], average daily consumption load profiles of 

commercials were obtained from the literature. [96] In Scenario-1, there is no 

renewable energy penetration into the market. Accordingly, all consumers 

purchased electricity from the grid for their electricity consumption at a constant 

price. The market price for the electricity used from the grid has been taken as 

0.30 EUR/kWh by default in the simulation.  

5.3.2 Scenario 2: Local Community with Solar Power Generation 

 

In this scenario, the local market participants behaved similarly to the first 

scenario, with the exception of the addition of a 26 MWe solar power plant to the 

local market.  

 

Figure 19. Representation of Scenario-2 from GridSingularity Simulation 
Software 
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This scenario features a consumer with an initial buying rate of 0 cents/kWh and 

a final buying rate of 30 cents/kWh, which increases by 0.51 cents/kWh with each 

market update. On the other hand, the solar energy supplier's initial selling rate 

is set at 30 cents/kWh and decreases by 0.51 cents/kWh to reach a final selling 

rate of 0 cents/kWh. The market price for grid electricity usage remains constant 

at 0.30 EUR/kWh in this scenario. 

5.3.3 Scenario 3: Local Community with Solar Power Generation and 

Installation of Battery 

 

The situation involves introducing a 10-kWh battery to the system along with the 

second scenario. The battery is assumed to have an initial capacity or state of 

charge of 50%. The purpose is to examine how installing batteries affects market 

prices, particularly in cases where the solar plant isn't generating power and 

people are buying clean energy from the battery instead of the grid. The 

investigation seeks to comprehend the impact on market prices. Representation 

of the scenario is given in Figure 20 below. 

 

Figure 20. Representation of Scenario-3 from GridSingularity Simulation 
Software 
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In this scenario, the initial and final buying-selling rates for consumers and 

suppliers are the same as in Scenario 2. However, for the battery, an initial selling 

rate of 27.5 cents/kWh and a final selling rate of 25.1 cents/kWh have been set 

with a decrease rate of 0.04 cents/kWh per market update. Additionally, again for 

the battery, an initial buying rate of 0 cents/kWh and a final buying rate of 25 

cents/kWh have been established with an increasing rate of 0.25 cents/kWh per 

market update. 

5.4 Results of the Simulations 

 

The 3 scenarios defined above were run separately on GridSingularity, and the 

simulation results are explained separately for each scenario in the following 

sections. In all scenarios, grid fee is assumed as zero. 

5.4.1 Results of Scenario 1 

 

After scenario 1 was run, the market price remained constant as expected, and 

all electricity consumers had to purchase electricity from the grid at a fixed price, 

which is 30 cents/kWh. Therefore, the share of community electricity 

consumption that is supplied by its own renewable energy assets, which is called 

self-sufficiency of the community, has been obtained as 0.0%. On the other hand, 

details of the energy bills and the traded net energy data according to Scenario 

1 is provided in Table 8. 

Table 8. Energy bills and the traded net energy in the community (Scenario 1) 

Asset 

Bought Sold Total Balance 

Energy 
(kWh) 

Paid 
(€) 

Energy 
(kWh) 

Revenue 
(€) 

Energy 
(kWh) 

Percentag
e of 

Energy 
Demand in 

Total 
Demand 

Total (€) 

HH1 12.89 3.87 0.00 0.00 12.89 6.98% 3.87 (Paid) 

HH2 4.92 1.48 0.00 0.00 4.92 2.66% 1.48 (Paid) 

HH3 19.17 5.75 0.00 0.00 19.17 10.38% 5.75 (Paid) 

HH4 15.12 4.54 0.00 0.00 15.12 8.18% 4.54 (Paid) 

HH5 13.99 4.20 0.00 0.00 13.99 7.57% 4.2 (Paid) 

HH6 7.08 2.12 0.00 0.00 7.08 3.83% 2.12 (Paid) 

HH7 10.23 3.07 0.00 0.00 10.23 5.54% 3.07 (Paid) 

HH8 7.23 2.17 0.00 0.00 7.23 3.91% 2.17 (Paid) 
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HH9 9.08 2.72 0.00 0.00 9.08 4.91% 2.72 (Paid) 

HH10 7.12 2.13 0.00 0.00 7.12 3.85% 2.13 (Paid) 

GYM 12.84 3.85 0.00 0.00 12.84 6.95% 3.85 (Paid) 

WWTP 11.68 3.50 0.00 0.00 11.68 6.32% 3.5 (Paid) 

Bakery 12.48 3.74 0.00 0.00 12.48 6.75% 3.74 (Paid) 

School 17.43 5.23 0.00 0.00 17.43 9.43% 5.23 (Paid) 

Restaurant 10.75 3.22 0.00 0.00 10.75 5.82% 3.22 (Paid) 

Hairdresser 12.75 3.83 0.00 0.00 12.75 6.90% 3.83 (Paid) 

Grid Market 0.00 0.00 184.76 55.43 184.76 100.00% 
55.43 

(Revenue) 

Totals 184.76 55.43 184.76 55.43 0.00 -  0 (Neutral) 

 

As it can be understood from Table 8, the community members demanded 184.76 

kWh electricity on the simulated day and had to purchase electricity from the grid 

at a fixed price which is 30 cents/kWh. Trading profile and the variation of the 

electricity demand of the community during the day is given by Figure 21, Figure 

22, Figure 23 separately. 

 

Figure 21. Trade Profile of the community (Scenario 1) 
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Figure 22. Schematic representation of trading profile (Scenario 1) 

 

Figure 23. Variation of the electricity demand of the community during the day 
(Scenario 1) 

The graph in Figure 23 shows that the trend for volume and net energy was the 

same. Line has been depicted with the colour purple as a result. 

Moreover, price variation curve is provided with Figure 24. As it was mentioned 

earlier, since the only electricity supplier is grid, electricity prices remained 

constant during the simulated day. 
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Figure 24. Electricity price variation curve on the simulated day (Scenario 1) 

As a result of this scenario, community stayed neutral with 0 € savings. 

5.4.2 Results of Scenario 2 

 

As the result of Scenario 2, since there is an asset that produces renewable 

energy in the community and can sell electricity freely in the local market, the 

average market price has decreased to 22 cents/kWh. Self-sufficiency of the 

community reduced reliance on the electricity grid and was obtained as 65.0%. 

This means that the community can use the clean electricity produced in the 

community at a rate of 65.0%. The reason why this rate could not reach to 100% 

is that the renewable energy source in the community is the sun and the 

production of the solar plant depends on the meteorological values that change 

during the day. Details of the energy bills and the traded net energy data 

according to Scenario 2 is provided in Table 9. 
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Table 9. Energy bills and the traded net energy in the community (Scenario 2) 

Asset 

Bought Sold Total Balance 

Energy 
(kWh) 

Paid (€) 
Energy 
(kWh) 

Revenue 
(€) 

Energy 
(kWh) 

Total (€) 

HH1 12.89 3.12 0.00 0.00 12.89 3.12 (Paid) 

HH2 4.92 1.07 0.00 0.00 4.92 1.07 (Paid) 

HH3 19.17 4.03 0.00 0.00 19.17 4.03 (Paid) 

HH4 15.12 2.64 0.00 0.00 15.12 2.64 (Paid) 

HH5 13.99 3.3 0.00 0.00 13.99 3.3 (Paid) 

HH6 7.08 1.6 0.00 0.00 7.08 1.6 (Paid) 

HH7 10.23 1.78 0.00 0.00 10.23 1.78 (Paid) 

HH8 7.23 1.69 0.00 0.00 1.69 1.24 (Paid) 

HH9 9.08 1.75 0.00 0.00 9.08 1.75 (Paid) 

HH10 7.12 1.28 0.00 0.00 7.12 1.28 (Paid) 

GYM 12.84 2.69 0.00 0.00 12.84 2.69 (Paid) 

WWTP 11.68 2.45 0.00 0.00 11.68 2.45 (Paid) 

Bakery 12.48 2.47 0.00 0.00 12.48 2.47 (Paid) 

School 17.43 2.87 0.00 0.00 17.43 2.87 (Paid) 

Restaurant 10.75 2.27 0.00 0.00 10.75 2.27 (Paid) 

Hairdresser 12.75 2.44 0.00 0.00 12.75 2.44 (Paid) 

Solar Power 
Plant 

0.00 0.00 195474.92 15646.83 195474.92 
15646.83 

(Revenue) 

Grid Market 195353.1 
15628.2

5 
62.94 18.88 195290.16 

15609.37 
(Paid) 

Totals 
195537.8

6 
15665.7

1 
195537.86 15665.71 0.00 0 (Neutral) 

 

As it can be understood from Table 9, in total 184.76 kWh electricity was 

demanded by the community members on simulated day, while 121.82 kWh of it 

is supplied by solar power plant, 62.94 kWh had to be supplied by grid. As a 

result, overall average market price has been obtained as 22 cents/kWh. Trading 

profile and the variation of the electricity demand of the community during the day 

are given by the Figure 25 and Figure 26 separately. Since the trade between 

SPP and Grid Market has been carried out in high volumes compared to local 

market players, traded volumes of local market players are not able to be seen in 

the graph clearly. Therefore, as an example, only the trade details that has been 

taken place at 12 pm on the simulated day was shown in Figure 25. 
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Figure 25. Trade Profile of the community (Scenario 2) 

 

Figure 26. The graph that represents volume traded and net energy (Scenario 
2) 

With Figure 26 above, total volume of the generated electricity and the net energy 

profiles are illustrated. Here the net energy represents the excess amount of 

electricity that is sold to the grid. Moreover, price variation curve is provided with 

the Figure 27. It is seen that the market price is 30 cents/kWh from 00:00 to 05:00 
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and from 19:00 to 23:00. As it was mentioned earlier, since there is an asset that 

produces renewable energy in the community and can sell electricity freely in the 

local market, electricity consumers did not have to purchase all their demanded 

electricity from the grid at a constant 30 cents/kWh, consequently the average 

market price has decreased to 22 cents/kWh. 

 

Figure 27. Electricity price variation curve on the simulated day (Scenario 2) 

On the other hand, after the electricity produced in the solar power plant met the 

121.82 kWh electricity needs of the community, the excess amount of electricity 

was sold to the grid as it is illustrated in the Figure 28 below. 
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Figure 28. Schematic representation of trading between SPP and Grid Market 
(Scenario 2) 

As a result of this scenario, community had 26.80 € profit thanks to integration 

of solar power plant into local electricity market. 

5.4.3 Results of Scenario 3 

 

As a result of Scenario 3, the self-sufficiency of the community increased to 69.0 

%, in addition to the solar power plant, thanks to the 10-kWh capacity battery 

installed in the community. The battery purchases electricity from the solar power 

plant and stores it to sell to the local community consumers when renewable 

energy is not generated. This means that the community can use the clean 

electricity produced in the community at a rate of 69.0 % without buying electricity 

from the grid. However, as mentioned earlier, the community's only renewable 

energy source is the sun, and the production of the solar plant depends on 

changing meteorological conditions throughout the day, so the self-sufficiency 

rate could not reach 100%. Additionally, the insufficient installed capacity of the 

battery was another reason why the rate was not 100%. Table 10 provides details 

of the energy bills and the traded net energy data according to Scenario 3. 

 



68 
 

Table 10.  Energy bills and the traded net energy in the community (Scenario 3) 

Asset 

Bought Sold Total Balance 

Energy 
(kWh) 

Paid 
(€) 

Energy 
(kWh) 

Revenue 
(€) 

Energy 
(kWh) 

Total (€) 

HH1 12.89 3.06 0.00 0.00 12.89 3.06 (Paid) 

HH2 4.92 1.03 0.00 0.00 4.92 1.03 (Paid) 

HH3 19.17 3.99 0.00 0.00 19.17 3.99 (Paid) 

HH4 15.12 2.61 0.00 0.00 15.12 2.61 (Paid) 

HH5 13.99 3.28 0.00 0.00 13.99 3.28 (Paid) 

HH6 7.08 1.57 0.00 0.00 7.08 1.57 (Paid) 

HH7 10.23 1.78 0.00 0.00 10.23 1.78 (Paid) 

HH8 7.23 1.68 0.00 0.00 7.23 1.68 (Paid) 

HH9 9.08 1.75 0.00 0.00 9.08 1.75 (Paid) 

HH10 7.12 1.27 0.00 0.00 7.12 1.27 (Paid) 

GYM 12.84 2.64 0.00 0.00 12.84 2.64 (Paid) 

WWTP 11.68 2.44 0.00 0.00 11.68 2.44 (Paid) 

Bakery 12.48 2.44 0.00 0.00 12.48 2.44 (Paid) 

School 17.43 2.86 0.00 0.00 17.43 2.86 (Paid) 

Restaurant 10.75 2.23 0.00 0.00 10.75 2.23 (Paid) 

Hairdresser 12.75 2.43 0.00 0.00 12.75 2.43 (Paid) 

Battery 7.5 0.75 10.00 2.59 2.5 1.84 (Revenue) 

Solar Power 
Plant 

0.00 0.00 195474.92 15646.98 195474.92 
15646.98 

(Revenue) 

Grid Market 195345.6 
15627.

65 
52.94 15.88 195292.66 15611.77 (Paid) 

Totals 195537.86 
15665.

46 
195537.86 15665.46 0.00 0 (Neutral) 

 

As it can be understood from the table, in this scenario with the battery addition, 

in total 192.26 kWh (184.76 kWh of it from consumers, 7.5 kWh of it from battery) 

electricity was demanded within the local community on the simulated day. While 

121.82 kWh of 184.76 kWh is directly supplied by solar power plant, 10 kWh of it 

is indirectly supplied by solar power plant thanks to installation of battery. 

Remaining 52.94 kWh had to be purchased from grid. As a result, overall average 

market price has slightly changed. Trading profile and the summary of the 

electricity interaction of the community during the day are given by Figure 29 and 

Figure 30 below. 
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Figure 29.Trade Profile of the community (Scenario 3) 

 

Figure 30. The graph that represents volume traded and net energy (Scenario 
3) 

With Figure 30 above, total volume of the generated electricity and the net energy 

profiles are illustrated. Here the net energy represents the excess amount of 



70 
 

electricity that is sold to the grid. Moreover, price variation curve is provided with 

the Figure 31. As it was mentioned earlier, addition of battery with a 10-kWh 

capacity into local electricity market change the average market price slightly. 

Therefore, average market price has decreased to 21 cents/kWh. 

  

Figure 31. Electricity price variation curve on the simulated day (Scenario 3) 

On the other hand, after the electricity produced in the solar power plant met the 

121.82 kWh electricity needs of the community, the excess amount of electricity 

from solar power plant was sold to the grid as it is illustrated in Figure 32 below. 
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Figure 32. Schematic representation of trading between SPP and Grid Market 
(Scenario 3) 

The representation of the trade that is carried out between solar power plant and 

battery is illustrated with Figure 33 below. On the other hand, while dark purple 

arrow represents the electricity sale from solar power plant to battery, light purple 

arrow represents the electricity sales from battery to local community members. 
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Figure 33. Schematic representation of trading between SPP and Battery 
(Scenario 3) 

As a result of this scenario, even if the average market price of the electricity has 

not changed significantly, the overall profit of the local community has increased. 

Therefore, community had 30.65 € profit thanks to implementation of 10 kWh 

battery besides of solar power plant into local electricity market. 

In addition to this, Scenario 3 has been re-executed by taking the battery capacity 

of 30 kWh so that the effect of the battery on the local market can be observed 

more clearly. In this situation, solar power plant sold 22.5 kWh electricity to 

battery as it is illustrated in Figure 34. In this figure again, while dark purple arrow 

represents the electricity sale from solar power plant to battery, light purple arrow 

represents the electricity sales from battery to local community members. 
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Figure 34. Schematic representation of trading between SPP and Battery with 
an 30 kWh capacity (Scenario 3) 

As a result of this capacity addition on the battery, self-sufficiency of the 

community has increased from 69.0% to 77.0%. In other words, the community 

can use the clean electricity produced in the community at a rate of 77.0%. 

However, average market price has not changed, and it remained at 21 

cents/kWh. The overall profit of the local community has increased, and 

community had 38.35 € profit thanks to increase in the capacity on battery from 

10 kWh to 30 kWh. 
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6 CONCLUSION AND RECOMMENDATIONS 
 

A country's economic progress and degree of social welfare can be significantly 

influenced by its energy policy. The need for energy skyrocketed following the 

industrial revolution when new discoveries started to be applied widely in 

business. Energy is now regarded as one of the most fundamental inputs in the 

manufacturing process for the realization of economic and social progress. 

Nevertheless, rising energy consumption also results in rising carbon emissions. 

Increased greenhouse gas (GHG) emissions are unavoidable as a result of 

urbanization and the resulting energy demand. In order to achieve the emission 

reduction, it is required to look at the elements related to energy use that influence 

changes in GHG emissions. According to the International Energy Agency (IEA), 

renewable energy will account for the fastest increase in global energy 

consumption. Because renewable energy is a carbon-free energy source that 

may be able to help with climate change issues, there has also been an increase 

in interest in implementing green renewable energy sources in the energy 

system. 

The cost of energy produced from renewable sources may now compete with the 

traditional method of producing electricity from fossil fuels thanks to 

advancements in technology. The necessity for sustainable energy sources that 

will endure as long as the planet spins without relying on any outside source has 

also been exposed by the decrease in fuel consumed by traditional energy 

generation sources, economic considerations, and environmental problems. As 

a result, the integration of renewable energy sources into the traditional energy 

system is beginning extremely swiftly. The incorporation of Distributed 

Renewable Energy Sources (RES) into the current energy system is complicated 

because it is intermittent and fluctuates. This becomes even more difficult as the 

number of RES grows. To deal with this problem, Local Electricity Markets 

(LEMs) offer a solution. LEMs allow individuals and producers to engage in the 

trading of locally generated electricity within their Local Energy Communities. 

Local Energy Markets assist in balancing local energy demand and supply, as 

well as reducing dependency on the wholesale market and the need for lengthy 

electrical transmissions to or from the grid. The anticipation that higher 
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penetration of renewable energy will lower electricity prices, known as the merit 

order effect, is another advantageous outcome of the integration of renewable 

energy into the system. 

Keeping the cost of power generation to a minimum requires a balanced 

approach to managing supply and demand. All market players share the 

responsibility for maintaining this balance. This involves predicting the demand 

at any given time and planning the power plants that will meet that demand in 

real-time. To do this accurately, production planning and demand forecasting are 

conducted one day before electricity distribution. 

This thesis explores the use of Big Data Analytics to predict the short-term 

electricity generation of a solar power plant with a large installed capacity. It then 

evaluates how this data could affect the prices of the local day-ahead electricity 

market using simulation software. Specifically, the study investigates the impact 

of a high installed capacity solar power plant on local energy market prices. It 

also examines how anticipating the value of power generation can affect other 

factors in the local energy market, such as self-sufficiency, profitability, and price 

formation. 

Initially, a solar power plant with a high capacity was selected, and its day-ahead 

energy output was predicted by analysing retroactive electricity generation data 

for the plant and meteorological data for the area where it is located. Due to the 

large volume and variety of data, Big Data Analytics was employed, and Python 

programming was utilized to execute the machine learning technique. Out of the 

three models tested, the Light GBM model provided the most accurate forecast 

for the electricity production on the specific day (18.09.2021) for which the 

forecast was generated. 

The main objective here is to draw attention to qualitative changes by observing 

the impact of the integration of a high-capacity renewable energy system into a 

local electricity market on market prices. By doing this, it is aimed to highlight the 

significance of forecasting the market price for the following day from the 

viewpoint of a market maker and subsequently, utilizing this information to take a 

position in the market. In the local electricity market simulation that was run in 

this study, the community's electricity demand was assumed to be constant. As 
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the renewable energy facility that penetrated the system has a high capacity, it 

will be able to meet the community's electricity needs under all weather 

conditions. To ensure this, forecasting analysis has been repeated on a monthly 

basis to evaluate all months of the year for observing the effect of seasonal 

changes. As a result, it has provided an additional explanatory power to the 

approach that the electricity to be produced will be sufficient for the demand in 

the community under all circumstances. Therefore, since the price elasticity of 

demand was zero and the market was balanced only by demand, the simulation 

was run for only one specific day. Subsequently, the values obtained from the 

generation forecasting for September 18th, 2021 were incorporated into the local 

electricity market simulation model. Grid Singularity, an open-source and online 

software, was used to validate the simulated scalable scenarios and evaluate 

LEMs from an economic perspective. The first step involved using Grid 

Singularity to identify a community and then adding local market players to this 

group. The daily electricity load characteristics of these new local market 

participants were gathered from the literature. Next, three separate scenarios 

were developed to thoroughly examine price formation, profitability, and 

community self-sufficiency. 

In the first scenario, the community did not have a solar power plant, and thus all 

electricity was obtained from the grid, resulting in no change in market pricing 

and a self-sufficiency rate of 0%. In the second scenario, a high-capacity solar 

power plant was added to the system, resulting in a 26.7% reduction in the 

average power market price according to simulation results. The community's 

self-sufficiency was found to be 65.0%, indicating that the community could use 

65.0% of the locally generated clean electricity. However, this rate could not 

reach 100% due to the fact that the community relied solely on the sun as a 

renewable energy source, and the solar power plant's output was dependent on 

changing meteorological conditions throughout the day. Lastly, in contrast to the 

second scenario, the third scenario involved the addition of a 10-kWh battery to 

the system, which allowed local consumers to purchase electricity from it when 

solar energy was unavailable. This led to an increase in the community's self-

sufficiency. The inclusion of the 10-kWh battery improved the self-sufficiency rate 

from 65.0% in Scenario 2 to 69.0% in Scenario 3. Another simulation was carried 
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out with a battery capacity of 30 kWh, which further increased the community's 

level of independence from 69.0% to 77.0%. Additionally, this scenario 

demonstrated a 30% reduction in the average market price compared to Scenario 

1. 

The intermittent feature stands out as the most important obstacle to the 

widespread use of renewable energy. Lithium-ion batteries will be able to provide 

better and more widespread use of solar energy in terms of their use in energy 

storage systems.[97] With the result of third scenario, this statement has been 

confirmed. However, even in scenarios where batteries are not used, the 

penetration of a high-capacity solar power plant into the local electricity market 

has increased self-sufficiency from 0% to 65% and led to an 8 cent/kWh decrease 

in prices. On the other hand, in scenarios where the batteries with different 

capacities are included, self-sufficiency has reached up to 77%, but only a 1 

cent/kWh decrease in market prices has been observed compared to the 

scenario without the battery but with solar energy penetration. Thus, it has been 

observed that the use of batteries indirectly increases renewable energy use and 

self-sufficiency within the community, while it does not create major changes in 

market prices. 

On the other hand, the pre-establishment of electricity prices in this market, prior 

to the day of supply, showed that pricing could be determined beforehand by 

considering the bids and offers from market players. Moreover, by knowing the 

amount of electricity that will be generated one day ahead, market participants 

take positions one day in advance, thereby reducing the supply risk posed by the 

intermittent nature of renewable energy. 

As a result, while Halttunen et al.'s findings showed that the effect of increased 

adoption of renewable energy sources in the electricity market has less impact 

on the merit-order effect, this study emphasizes that incorporating solar power 

plants with high capacity into local electricity markets can lead to reduced market 

prices, improved self- sufficiency, and greater profitability for the community.  

Countries can achieve more cost-effective renewable energy prices for both 

producers and consumers by developing local electricity markets instead of 

relying solely on a national grid and increasing the renewable energy share in 
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these markets. Furthermore, creating sustainable communities in this way can 

help countries meet their obligations under the Paris Agreement to combat 

climate change and promote a cleaner world. Governments can promote the use 

of renewable energy sources in these areas by implementing incentive programs. 

In addition, the installation of renewable energy power plants in these 

communities can be certified under a voluntary carbon standard or renewable 

energy certification program, which will allow for the sale of certificates or carbon 

credits to generate additional revenue and boost the community's profitability 

rate. Moreover, these certificates could be sold to communities where renewable 

energy integration is not possible, allowing them to offset their scope-2 emissions 

by purchasing these environmental commodities, and ultimately helping them 

become carbon neutral communities. 

In conclusion, in this thesis, simulations were run for only one day to assess the 

effect of a high solar energy capacity on local electricity market prices. This was 

done since the overall local market's electricity consumption was assumed to be 

completely constant. The power plant's capacity allows it to meet market 

electricity demand even at minimum generation levels. In other words, the 

outcomes from choosing a different day would not create difference as the 

demand would not change regardless of the electricity generation. As a result, 

attention has been drawn to qualitative changes rather than quantitative changes 

in the market. As a recommendation, to obtain quantitative outcomes on the 

market price, this study could be expanded with other studies also by considering 

demand changes varying seasonal conditions. Furthermore, it is advised to carry 

out optimization evaluations to ascertain the appropriate capacity for integrating 

battery storage systems and renewable energy plants for maximal self-sufficiency 

before developing sustainable communities. This can facilitate the creation of 

efficient carbon-neutral communities. 
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