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ABSTRACT 

 

 

DESIGN AND MANUFACTURING OF A NEW TYPE MONORAIL 

CRANE, MOVING ON BOTH HORIZONTAL AND ANGULAR RAILS 

ALSO CLIMBING ON VERTICAL RAILS, BY USING FINITE 

ELEMENT ANALYSIS 

 

 

GÜRBÜZ YILMAZ 

 

Graduate Science, Deparment of Mechanical Enginnering 

Supervisor: Prof. Dr. BORA YILDIRIM 

June 2014, 170 sayfa 

 

This study has been prepared in cooperation University and Industry, 1505, with 

the support of TUBITAK. The reason why this project is needed, because buildings 

having curvilinear geometries is required to design a monorail crane moving not 

only on horizontal rails but also climbing on vertical and curvelinear rails. However, 

loads can be easily transformed or moved to a high point of a building only by 

means of curvilinear and vertical rails. At the beginning of design, firstly, the angle 

between rail and wheel has been optimized considering both isotropic half space 

assumption and Finite Element Method. After estimated the optimum angle 

between rail and wheel, the design of wheel has been examined by Finite Element 

Method. The section area and second moment of inertia of rails used has been 

optimized or designed in terms of the higher load that the monorail crane is able to 

remove and transform and stresses occurred on rail has been examined with the 

assumption of Hertz contact Stresses. Spur gears and worm – gear mechanism, 

driving the wheels of monorail crane, has been examined considering both AGMA 

Stress and Strength Equations and Finite Element Method. Lastly the shafts of 

monorail crane have been examined in terms of both classical mechanics and 

Finite Element Method.  

 

Key words: Finite Element Method, Solid Mechanics, Fatigue, Contact Stresses, 

Horizontal – Vertical and Curved Rails, Wheels having angular shapes, Friction,  
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ÖZET 

 

YATAY VE AÇILI RAYLAR ÜZERİNDE HAREKET EDEBİLEN 

AYRICA DİKEY RAYLARA TIRMANABİLEN YENİ TİP BİR 

MONORAY VİNCİNİN SONLU ELEMANLAR METODU İLE 

TASARIMI VE ÜRETİMİ 

 

GÜRBÜZ YILMAZ 

 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Danışman: Prof. Dr. BORA YILDIRIM 

Haziran 2014, 170 sayfa 

 

Bu çalışma, 1505 ÜNİVERSİTE SANAYİ İŞ BİRLİĞİ TÜBİTAK projesi desteğiyle 

hazırlanmıştır. Bu projeye ihtiyaç duyulmasının sebebi, günümüzdeki binaların dış 

yüzey geometrilerinin eğrisel olması, monoray vinç sistemlerinin sadece yatay ve 

dikey eksenlerde değil, aynı zamanda eğrisel eksenli yönlerde de hareket 

edebilme kabiliyetine sahip olmasını gerektirmiştir.  Böylece istenilen yükler, yatay 

–dikey ve eğri rayların vasıtası ile bir binanın istenilen uzaklığına ve yüksekliğine 

kadar taşınabilecektir. Tasarım başlangıcında, ilk olarak ray ve tekerlek arasındaki 

açının değişimine göre temas gerilimleri ”isotropic half space metodu” ve “sonlu 

elemanlar metodu” ile incelenmiş olup, bu açı değeri optime edilmiştir. Bulunan 

optimum açı değerine gore tekerleğin analizi fem ile yapılmıştır. Rayın kesit alanı 

ve atalet momenti, vincin maksimum taşıyabileceği yüke göre optime edilmiş olup 

ray üzerinde oluşan temas gerilimlerinin hesaplanmasında Hertz Gerilim varsayımı 

yapılmış ve buna gore rayın analizi tamamlanmıştır. Tekerleklerin hareketini 

sağlayan düz dişlilerin ve sonsuz vida-karşılık dişli mekanizmasının tasarımı, hem 

Agma Gerilim ve Dayanım denklemlerine gore hemde fem kullanılarak analizleri 

yapılmıştır. Son olarak millerin analitik hesapları ve fem ile analizleri yapılmıştır.  

 

Anahtar Kelimeler: Sonlu Elemanlar Metodu, Katı cisim mekaniği, Yorulma, 

Temas Gerilmeleri, Yatay – Dikey ve Açılı Raylar, Açılı çarklar, Sürtünme.  
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α   angle, angular location of the neutral 
ν   Poisson’s ratio 
σ  Normal stress 
σa, σm  alternating and mean stresses in fatigue applications  
σ1 σ2 σ3  principal stresses 
σvM   Von Mises stress 
τ   shear stress 
ω   angular speed (rad/s) 
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1.1 FINITE ELEMENT METHOD  

 

1.1.1 Introduction 

 

The finite element method has emerged in the 21st century and become a 

pivotal tool for the numerical solution of engineering problems. However, this 

method is used in many applications in the study of deformation, stress analysis, 

heat flux, fluid flow and other problems. With the advances in computer technology 

and CAD systems, the complex enginnering problems can be easily modeled. 

Even, many of the alternative configurations can be studied or tested on a 

computer before the first prototype is built. When it comes to why FEA is needed, 

because it helps designers, (The Finite Element Method, O.C. Zienkiewicz-R.L. 

Taylor) 

 

 To reduce the amount of prototype testing, 

 

  To simulate designs that are not suitable for prototype testing. 

 

Finite Element Analysis determines the response of a design and simulates 

the response under loading conditions. The design is modeled using elements and 

each element has equations that describe the respond design under the influence 

of loads. The total response of all elements gives the full response of the design. 

The elements used in model have unknowns in finite number; hence the name is 

called finite elements. This method determines the total respond of design as 

approximate and at this point the real question arises that How good is the 

approximation?. Unfortunately, there is no easy answer for this question. For 

design, a complex region defining a continum is discretized into simple geometric 

shapes called finite elements. The material properties and the governing 

relationships are embedded in these elements and expressed in terms of unknown 

values at element corners. In design of fem of an assembly process, only 

considering the loading and constrain, results in ast of equations. By solving these 

equations, we can approximate the behaviour of the continuum model.  
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1.1.2 The structural element and the structural system 

 

                                                  A typical element (1) 

Fig. 1.1.1 A typical structure built up from interconnected elements. 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

Fig. 1.1.1 shows that a two-dimensional structural assembly linked from 

distinct components and interconnected at the nodes numbered 1 to 6. If we know 

the characteristics of each elements, by labelling ang associating with nodes such 

as 1, 2, 3, we can calculate the forces acting at the nodes by defining the 

displacements, distributed loadings and initial strains of these nodes. The forces 

and the displacements of nodes are defined by suitable components in a 

coordinate system. As an example, by listing the forces acting on all the nodes of 

the element (1) we can write as a matrix eq. as 

 

               

1
1

1 1
2
1
3

q

q q

q

 
 
 
 
 
 
 

   
11

1
1

U
q

V

 
 
 

       etc. (1.1.1) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

We can write the following eq. considering also the corresponding nodal 

displacements  
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1

1
2

3

a

a a

a

 
 
 
 
 

      
1

1
1

u
a

v

 
 
 

   (1.1.2) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

If we assume element as linear elastic, the characteristic relationship 

becomes in the form 

 

 0

1 1 1 1 1
pq K a f f  

 
 (1.1.3) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

In the above eq. the first of the terms corresponds to the forces triggered by 

displacement of the nodes and  
1

pf  corresponds to the nodal forces which is 

required to balance any distributed loads acting on the element and 
0

1f is the nodal 

forces required to balance any initial strains, if the nodes are not exposed to any 

displacement. 

 

 As a starting analysis or an experiment may be unique definition of 

stresses or internal reactions at a point of the element in terms of the nodal 

displacements. Thus we can write such stresses in matrix l  definition as follows, 

 

 0

1 1 1l Q a      (1.1.4) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

In Eq.1.1.4, the two term gives the stresses due to the initial strains if there 

is no nodal displacement takes place. The matrix Ke is known as the element 

stiffness matrix and the matrix Qe as the element stress matrix for an element (e).  

 

If the joints in Fig. 1.1.1 were considered as rigid, the last of these 

corresponding to a moment and a rotation respectively.  
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For an element which is rigidly jointed, a structure three-dimensional the 

number of individual nodal components would be six. Thus we can write as  

 

 

11

22

..

..

e

e

e

e
mm

aq

aq

q and

aq

   
   
   
      

    
   
   
   

     

  (1.1.5) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

In eq. 1.1.5 e

iq and ia  corresponds to the same number of components or 

degrees of freedom. And the stiffness matrices of the element would clearly be 

square as it is shown in below eq; 

 

 

. .

. . .

. . .

. . .

. . .

e e e

ii ij im

e

e e

mi mm

K K K

K

K K

 
 
 
 
 
 
 
 

  (1.1.6) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

in which e

iiK  are submatrices which are in square and of the size l x l, where l is 

the number of force components to be considered at each node.  

  

1.1.3 Assembly and analysis of a structure 

 

To be able to obtain the total solution of Fig. 1.1.1, two conditions of 

displacement compatibility and equilibrium have to be satisfied. 

Any system of nodal displacements  can be listed in the following form, and 

for whole two dimensional structure satisfies the compatibility condition 

 



5 

 

 
.

.

n

a

a

a

 
 
 

  
 
  

 (1.1.7) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

Since the conditions of the whole equilibrium have been satisfied, the 

equilibrium equaitons needs to be satisfied and the resulting equations of each 

element contains unknowns in terms of displacements, we can determine the 

behaviour of structural element. When it comes to how we can determine the 

resulting equations, we can calculate the internal forces or the stresses easily by 

using eq. (1.1.4). 

 

To clarify this, lets imagine a structure loaded by external forces r: 

 

1

.

.

n

r

r

r

 
 
 

  
 
  

 (1.1.8) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

and assuming that those forces applied on the nodes with the distributed loads on 

the elements. As an example, from Fig 1.1.1,  as the joints were assumed to be 

pinned 

 

 
i

i

i

X
r

Y

 
  
 

 (1.1.9) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

and considering all the force components we can write; 

 

 
1 2

1

......
m

e

i i i i

e

r q q q


     (1.1.10) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 
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Substituting the forces contributing to node i from the definition (1.1.3) and 

noting that nodal variables ai, are common we can write  

 

 
1 1 2 2

1 1 1

......
m m m

e e e

i i i i

e e e

r K a K a f
  

   
      
   
    (1.1.11) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

 
0

e e e

pf f f   

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

The summation again only concerns the elements which contribute to node 

i. If all such equations are assembled we have simply 

 

 Ka r f   (1.1.12) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

In Eq. 1.1.12 we can write the submatrices as  

 
1

m
e

ij ij

e

K K


 (The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

  (1.1.13) 

 
1

m
e

i i

e

f f


 (The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

 

1.1.4 The boundary conditions 

 

 The eq.’s of 1.1.12 can be solved by substituting the prescribed support 

displacements. In the example of Fig. 1.1.1, where both components of 

displacement of nodes 1 and 6 are zero, which means that the following 

  

 1 6

0

0
a a

 
   

 
(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 
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Clearly, above eq. is equivalent to reducing the number of equilibrium 

equations, we can reduce the sum of unknowm displacement components to eight  

by deleting the first and last pairs. It is, nevertheless, always convenient to 

assemble the equation according to relation (1.1.12) so as to include all the nodes. 

If all the equations of a system are assembled, we need to make summation as  

 

 11 1 12 2 1 1.......K a K a r f     

 (The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) (1.1.14) 

 21 1 22 2 2 2.......K a K a r f    etc. 

 

 

1.2 PLANE STRESS AND PLANE STRAİN 

1.2.1 Introduction 

 

In fem problems of plane stress and plane strain, the field of displacement 

is defined as u and v displacement in Cartesian coordinate system, being 

orthogonal x and y axes. The strains and stresses have three components in the 

xy plane. In plane stress assumption, all other components of stresses become 

zero and therefore do not affect internal work while in plane strain assumption the 

stress in a direction perpendicular to the cartesian coordinate system is not zero 

but the strain in that direction is zero, and this stress do not change the internal 

work. If it is required this could be explicitly evaluated from the three main stress 

components. 
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1.2.2 Element characteristics 

1.2.2.1 Displacement functions 

 

 

Fig. 1.2.1 An element of a continuum in plane stress or plane strain numbered in 

an anticlockwise order. (The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

Fig. 1.2.1 shows a triangular element with nodes i, j, m and the 

displacements of a node have two components 

 

 

i

i

i

u
a

v

 
  
   (1.2.1) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

and the displacement of six components are listed as a vector  

 

i

e

j

m

a

a a

a

 
 

  
 
   (1.2.2) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

In an element, the displacements can be defined by these six componenets. 

By defining two linear polynomials, we can represent the components as  

 

1 2 3u x y      

 (The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) (1.2.3) 
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4 5 6v x y      

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

The six constants of two linear polynomials can be evaluated easily by 

solving the two sets of three simultaneous equations. But to be able evaluate 

those equations, the nodal coordinates has to be entered and the displacements 

equated to the appropriate nodal displacements. . 

 

 

1.2.2.2 Strain (total) 

 

Within any element, the total strain can be defined by its three components 

since they affects the internal work. Thus 

 

 

x
x

y

y

xy

y x

0

u
0 Su

v

 
 
  
    
        

       
  

     (1.2.4) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

By substituting Eq. (1.2.7) we obtain the following eq. 

 

 

i

e

i j m j

m

a

Ba B ,B ,B a

a

 
 

      
 
   (1.2.5) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

with a typical matrix Bi given by, we can write; 
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0

0
1

0 0
2

i

i

i
i i i

i i

i i

N

x b ,
N

B SN , c
y

c b
N N

y x

 
 
   

   
            

 
    (1.2.6) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

 

1.2.2.3 Elasticity matrix 

 

In general linear elastic behaviour and the relationship between stresses 

and strains is linear and given as 

 

  0 0D         (1.2.7)                          

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

The matrix form of above eq. can be written as follows and  

 

 

0

x x

y y

xy xy

D

 

   

 

    
    

      
    
      (1.2.8) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

can be explicitly stated for any material.  

 

Plane stress - isotropic material 

For plane stress in an isotropic material, the strain equations can be written 

in terms of stresses as  
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0

0

0

2 1

yx
x x

yx
y y

xy

xy xy

v

E E

v

E E

( v )

E


 


 


 

  

   


 

 (1.2.9) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

By solving the above eq. for the stresses, we can write in matrix form as D matrix, 

 

2

1

1 0
1

0 0 1 2

v v
E

D v
v

( v ) /

 
 


 
    (1.2.10) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

and the initial strains can be writen as 

 

 

0

0 0

0

x

x

xy



 



 
 

  
 
   (1.2.11) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

in which E is the elastic modulus and v is Poisson’s ratio. 

 

Plane strain - isotropic material 

For plane strain assumption, in addition to plane stress components a 

normal stress σz exists. Then we can write the strain components in terms of 

stresses as 

 

0

0

0

2 1

yx z
x x

yx z
y y

xy

xy xy

v v

E E E

v v

E E E

( v )

E

 
 

 
 


 

   

    


 

 (1.2.12) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 
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and in addition to those components, the strain in z direction can be written  

 

0 0
yx z

z z

vv

E E E

 
      

 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

And the stress in the z direction 

 

0 0z x y zv( ) E      
 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

By eliminating σz and solving for the three remaining stresses the matrix D 

becomes as 

 

1 0

1 0
1 1 2

0 0 1 2 2

v v
E

D v v
( v )( v )

( v ) /

 
 

 
  
    (1.2.13) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

and the inital strains become in the form 

 

 

0 0

0 0

0

x z

o y z

xy

v

v

 

  



 
 

  
 
   (1.2.14) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 
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1.3 THREE DIMENSIONAL ANALYSIS 

1.3.1 Introduction 

 

 There is a difference between the elements of two dimensional and three 

dimensional problems in finite element method as it is emphasized previously. The 

simplest two-dimensional continuum element is a triangle, whereas, in three 

dimensions the continuum element is a tetrahedron, which is an element with four 

nodal corners. Tetrahedron element is one of ordering of the nodal numbers or is a 

suitable representation of a body divided into such elements.  

 

1.3.2. Tetrahedral element characteristics 

 

Fig. 1.3.1 A tetrahedral volume (The Finite Element Method,O.C. Zienkiewicz-R.L. 

Taylor) 

 

Displacement functions of a tetrahedral volume can be written as 

 

 

u

u v

w

 
 

  
 
   (1.3.1) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

A linear variation can be defined by the four nodal values and we can write, 

for instance, 
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 1 2 3 4u x y z    
 (1.3.2) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

By equating the displacement vslues at the nodes we obtain  four equations 

in the form 

 

 i 1 2 i 3 i 4 iu x y z    
 (1.3.3) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

from which α1 to α4 can be evaluated. By using a determinant form, i.e., 

     

 

i i i i i j j j j j m m m m m

p p p p p

1
u [ a b x c y d z u a b x c y d z u a b x c y d z u

6V

a b x c y d z u ]

            

   
 (1.3.4) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

With 

 

i i i

j j j

m m m

p p p

1 x y z

1 x y z
6V det

1 x y z

1 x y z



 (1.3.5) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

In eq.1.3.5 v represents the volume of the tetrahedron. By expanding the other 

relevant determinants into their cofactors we obtain the following coefficients 

 

 

j j j

i m m m

p p p

x y z

a det x y z

x y z



   

j j

i m m

p p

1 y z

b det 1 y z

1 y z

 

 (1.3.6) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

j j

i m m

p p

x 1 z

c det x 1 z

x 1 z

 

   

j j

i m m

p p

x y 1

d det x y 1

x y 1

 

 (1.3.7) 
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The state of displacement of a point is defined by three displacement 

components, u, v, and w, in the directions of the three coordinates x, y, and z. 

Thus 

 

 

i

je

m

p

a

a
a

a

a

 
 
 

  
 
 
            with     

i

i i

i

u

a v

w

 
 

  
 
   (1.3.8) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

At an arbitrary point, we can write the displacements  as 

 

 
e e

i j m pu IN , IN , IN , IN a Na     (1.3.9) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

with shape functions as 

 

i i i i
i

a b x c y d z
N

6V

  


 (1.3.10) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

In eq.1.3.9 I is a three by three identity matrix.  

 

 

1.3.2.1 Strain Matrix 

 

Six strain components are relevant in full three-dimensional analysis. The 

strain matrix can be defined as in the form 
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x

y

z

xy

yz

zx

u

x

v

y

w

z
Su

u v

y y

v w

z y

w u

x z

 
 
 

 
    

  
   

      
      

    
    

   
      

  
 
  

     (1.3.11) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

Using Eqs (1.3.4)- (1.3.8) it can be shown that  

 

 
e e e

i j m pSNa Ba B ,B ,B ,B a        (1.3.12) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

in which 
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, , 0

y x 0, d , c

N N d 0, b0, ,
z y

N N
, 0,

z x

 
 
 

 
   
   

   
   

    
    
    
   

      
  
 
  
     (1.3.13) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 
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1.3.2.2 Elasticity Matrix 

 

The D matrix relating the six stress components to the strain components 

can contain 21 independent constants in a complete anisotropy. Thus, 

 

 

x

y

z

0 0

xy

yz

zx

D

 
 


 
  

       
 
 
 
    (1.3.14) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

Although no difficulty presents itself in computation when dealing with such 

materials, it is convenient to recapitulate here the D matrix for an isotropic 

material. This, in terms of the usual elastic constants E (modulus) and v (Poisson’s 

ratio), can be written as 

 

 

    

 

 

1 v, v, v, 0, 0, 0

1 v, v, 0, 0, 0

1 v, 0, 0, 0E
D

1 2v / 2, 0, 01 v 1 2v

1 2v / 2 0

1 2v / 2

 
 


 
 

  
   

 
 

   (1.3.15) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

 

1.3.2.3 Stiffness, stress, and load matrices 

 

Since the strain and stress components are constant within the element, the 

stiffness matrix defined can be explicitly integrated. The general ij submatrix of the 

stiffness matrix will be a three by three matrix defined as in the form 
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e T e

ij i jK B DB V
 (1.3.16) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

where Ve represents the volume of the elementary tetrahedron. The nodal forces 

due to the initial strain become, 

 

 e T e

i i 0f B D V    (1.3.17) 

(The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

with a similar expression for forces due to initial stresses. Distributed body forces 

can once again be expressed in terms of their bx, by, and bz components or in 

terms of the body force potential.  

 

 

 

Fig. 1.3.2 A systematic way of dividing a three-dimensional object into 'brick'-type 

elements. (The Finite Element Method,O.C. Zienkiewicz-R.L. Taylor) 

 

 

 

 

 

 

 

 

 



19 

 

1.4 ASSUMPTIONS AND ESTIMATES OF MONORAİL CRANE 

DESİGN 

 

In this study by considering or determining the force-time function in the 

lifting cable or wire, and the torque-time function acting on the shaft of the wheel 

during any one cycle, we can estimate gear ratio, power and torque requirements 

for the motor. 

 

Assuming, the nominal load depends on the number of weights to be lifted 

at one time and the weight of any structure used to support the weights and 

assuming 100 weights from the truck, one at a time in 30 min, requires that the 

average weight rate be 100/30 = 3.3 weight/min, or approximately 18-sec average 

period per weight.  Since some of this time must be used to return the empty lift to 

the ground, we can not use the entire 18 sec to lift the load.  We must also allow 

some time for manual loading and unloading of the weights at top and bottom 

therefore we can assume that 1/3 of the period is used to load/unload, 1/3 to lift, 

and 1/3 to lower.  This allows 6 sec per weight, if we lift only one weight at a time.  

The average velocity of the lift would then have to be 0.6 meter / 6 sec = 0.1 

meter/sec.  

 

The maximum load to be lifted on the machine is 500 kg.  The dead-load is 

only the weight of the motors, reductors, rope, and any platform or structure used 

to support the weights.  Since this structure has yet to be designed, its weight is 

unknown.  We will assume that we can keep this deadweight under 75 kg.  The 

total nominal load will then be 575 kg for the lift phase, and 75 kg for the lowering 

phase. 

 

At steady state, the load on the rope may be the above that weights.  

However, at start-up, the load can be significantly higher due to the need to 

accelerate the load to its steady-state velocity and also due to the fact that there 

are both spring and mass in the system.  A combination of spring and mass in a 
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dynamic system allows oscillations to occur as the kinetic energy of the moving 

mass is transferred to potential energy in the elastic spring and vice versa.  The 

rope is a spring.  When the slack in the rope is suddenly taken up against the 

mass of the load, the rope will stretch, storing potential energy.  When the force in 

the stretched rope becomes sufficient to move the load, it will accelerate the mass 

upward, increasing its velocity and transferring the springs potential energy to 

kinetic energy in the mass.  If the mass accelerates sufficiently it will take the rope 

slack again.  When the mass falls to take up the slack, the cycle repeats.  Thus, as 

it starts up, the force in the rope can oscillate from zero to some value significantly 

greater than the steady-state nominal load.  To calculate the dynamic loading 

requires writing and solving the differential equations of motion for the system. 

Fig.1.4.1a shows a simplified schematic of the portion of the dynamic system 

containing the lift mass and the rope spring.  Fig.1.4.1b shows the system 

modeled as a lumped mass supported by a spring and a damper.  Fig.1.4.1c 

shows a free-body diagram (FBD) of the mass acted upon by its weight W, the 

spring force Fs, and the damper force Fd 

 

 

(a) Dynamic system                      (b) Lumped model                   (c) FBD 

Fig.1.4.1 
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Writing Newton's 2nd  law for this FBD gives; 

 

  F m a  (a) 

..

2s d

W
F F W y

g
    where Fs  and Fd  is 

  
 
  0,

0,

2121

2121





dd

ss

FelseyyifyycF

FelseyyifyykF
 (b) 

1 2( )sF k y y                       
. .

1 2( )dF c y y   

  y
dt

d
yy

dt

d
y

2

2

  (c) 

 

The initial conditions are:  when t = 0: y1(0) = 0, y'1(0) = 0, y2(0) = 0, y'
2(0)=0.  

From which Fs(0) = 0 and Fd(0) = 0. Solving equation a for y'' 

  WFF
m

y ds 
1

 (d) 

.. . .

2 1 2 1 2( ) ( )m y k y y c y y W      

 
.. . .

2 1 2 1 2

1
( ) ( )y k y y c y y W

m

 
      

 (e) 

In the above eq. we know that 
.

1 1,y v y vt  and 2yy  ; and assigning 

values for v, k, m and W and we estimated required speed of monorail crane as 

0.1 /v m s  

Payload weight is ; 
2575

575 58.5
9,81

W kg sn
W N m

g m
     

Assuming deflection as 0.001 m  in the rope and rope stiffness can be 

calculated as follows 

3575
575.10 /

0,001

F
F k x k N m

x
      

y1 

y2 
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 The critical damping cc is easily calculated from the known mass and spring 

constant values.  This system is only lightly damped by the ropes internal friction.  

Assuming that its ratio of actual damping to critical damping, z, is about 10% (ζ = 

0.10) and using this to be able to calculate a damping value for equation (e), we 

find Cc and c as follows 

3575 10 sec
2 2 58,62 11611,46

58,62
c

k x kg
c m x x

m m
    

sec
0,1 11611,46 1161,1c

kg
c c x

m
    

 

Equation (e) is a nonlinear, second-order differential equation that can only 

be solved by numerical methods.  Therefore, we rewrite the second-order equation 

as two, first-order differential equations as 

 

 WFF
m

y
dt

d

dt

d

WFF
m

y
dt

d

ds

ds












1

1
2

2

 

and taking derivatives as in the form 

 WFF
m

y
dt

d

dt

d
D

dt

d
D

y
dt

d
D

ds 



1
12

1

 

Or, in matrix form, 

 



















WFF
m

y
dt

d

D

ds

1
 

Matlab's differential equation solving functions (ode45) can solve this 

problem by creating a function that evaluates the D vector. By defining the initial 

conditions, where the first element is the initial value of y and the second is the 

initial value of y' and using Runge-Kutta solver, called ode45 in Matlab, to integrate 

function. The acceleration of the load over the first second of operation is shown in 

Fig. 1.4.2a.  The periods of negative acceleration (at a limiting value of g) during 

which the load is in free-fall and the rope is slack with no tension. The force in the 
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rope can also be calculated from the integration results. The force in the rope over 

the first second of operation is shown in Fig. 1.4.2b.  From the below fig.s we can 

see that the tension force rises to over four times with the nominal load on the first 

oscillation and then drops to zero as the rope goes slack since it cannot support a 

compressive force.  This pattern repeats for 3 cycles, at which point the damping 

has reduced the oscillations to the point that the rope is always in tension.  After 

about 10 cycles, it has settled down to the value of the nominal load which is 575 

kg. 

 

 

Fig. 1.4.2 Acceleration and Cable Force at Startup of Load-Lift  

   

The torque required to drive the wheel shaft depend on the dynamic loads 

on the diameter of wheel selected.  Too small a diameter will cause high stresses 
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and wear on the rope.  A large wheel diameter will increase the required torque 

and increase the package size. The torque required on the shaft is 10 times the 

tension in the rope and will have the same time variations as shown in Fig. 1.4.2. 

The average power required can be easily found from the change in potential 

energy over the time desired.  To raise a 575 kg load to a high 0,6 m in 6 sec 

requires 

Weight xheight
P

time
  

 

 575 9,81 0,6
565

6
vertical

x x
P FxV W    

 

Assuming a friction coefficient between the rail and wheel; the horizontal 

power can be calculated as follows; 

 

 575 9,81 0,3 0,6
169,25

6
horizantal f n

x x x
P F xV F x xV W     

 

Since there will be losses in the gears, assumingthe efficiency as 0,85 we 

can calculate the last values of required power of motor as 

 

, ,

169,25 565
200 665

0,85 0,85
new horizantal new verticalP W P W     

 

When the motor types and powers are taken into account, it is desirable to 

keep it at or below this level since larger horsepower motors will require higher 

voltage than 110V. This average power is based on the nominal load.  The peak 

load at startup requires more power.  Rather than size the motor to accommodate 

the transient start-up load, another approach is to provide sufficient flywheel in the 

system to supply the transient pulse of energy to get it past the start-up phase.  It 
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is possible that the rotational inertia of the spur gears will supply enough flywheel 

effect assuming that the monorail crane is up to speed before the slack is first 

taken out of the rope. The average wheel angular velocity is determined from the 

required average linear velocity of the rope which is 0.1 m/sec.   

 

Fig. 1.4.3 Geometry of the wheel  

 

,

100 55
77,5

2 2
wheel ort

D d
D mm

 
  

 

,

2

wheel ort

wheel wheel

D
xW V

 

0,0775 6 1

2 60sec
wheel

m dk
xW x

dk
  

2,6 / secwheelW rad  

 

Now that we find the angular velocity, the torque values can be calculated,  

in terms of both horizantal and vertical climbing conditions; 

 

wheelwheel wheelP T x W
 

   
. .

665 2,6 200 2,6wheel wheelvert hor
T x T x 

 

   
. .

256 77wheel wheelvert hor
T N m T N m   
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To be able to transfer power from motors to the wheel, it would be a good 

idea to use spur gears on the shafts. But, here there is an another good point to 

diminish in manufacturing time and to be able to obtain more rigid wheel, we would 

manufacture wheel and spur gear from the same cylindrical part as shown below. 

 

 

Fig. 1.4.4 Geometry of the gears 

 

The tooth numbers for gear and pinion has been chosen as 36 and 17 

respecticely. Then, we can calculate the angular velocity of the pinion as 

 

,

1

,

36
2,118

17

gear tooth

pinion tooth

N
i

N
  

 

 

1 1 2,118 2,6 5,5 /CD
CD AB

AB

i i x x rad sn


 


    

 

 

30 5,5
52,5

30
CD CD CD

x
N x N rpm





   

 

 

 , max

,; 0,60
gear pinion

gear

gear pinion

pinion

P
Assume

P
   
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665
1110

0,6
pinion CD EFP W P P   

 

 

Since CD shaft would take the required power from motor, before 

transfering the power, a reductor, in which has worm – gear mechanism, should 

be used.   

 

 

 

Fig. 1.4.5 Geometry of worm - gear  

 

Since DC shaft is jointed to the FE shaft, WCD equals to WFE. WCD = WCD = 

5,5 rad / sn corresponds to 52,5 rpm approximately. When it comes to the worm 

and gear features, lets assume a single thread worm and 33 tooth gear to be able 

to obtain the required velocity.
 

max

; 30 %
wormgear

Assume  
 

 
 

max

max

1110
, 3700

0,3

EF EF
GHworm gear

GH worm gear

P P
Since P W

P



    

 

3700GH motorP W P 
 

5,5 /CD EF rad sn  
 

,

2

33
33

1

gear tooth

worm

N
İ

İ
  

 

2 33 181,5 /
5,5

GH GH
GH

EF

İ rad sn
 




    
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Electric motors are made in only a few standard rotational speeds, the most 

common of which are 1740 rpm and 3450 rpm.  

 

Fig. 1.4.6 Motor 

 

181,5 / 1734
30

motor GH motor motorW W rad sn n x n rpm


    
 

 

The common type motor is 1740 rpm. Then if we use the 1740 rpm motor, 

frequency of the motor becomes; 

 

1740
29

60 60

motorn
f Hz  

 

 

To summarize the parameters determined from this preliminary design 

study, we are looking to design a system that has a 0,37 kW, and 1740 rpm, 230-

400V AC electric motor, driving a 1:33 reduction worm-wheel set, that, in turn, 

drives a 100-mm-dia wheel at 52,5 rpm. These constitute a set of task 

specifications for our design. 
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2.0 WHEEL 

2.1 Introduction to frictional contact with isotropic half-space 

assumption 

There are two solids Ω1 and Ω2 in terms of contact system as seen below 

Fig.2.1a.   

    

Fig. 2.1 a) Two solids Ω1 and Ω2                 b) The frictional indentation of a cone into 

a half-pace. 

 

As it can be seen from Fig. 2.1a, conical contact regions with a vertex angle 

of 2Ø0 exists between rail and wheel. Since the materials are isotropic for both 

type of materials, this corresponds to isotropic half-space assumption 

axisymmetrically about the central axis of the rail. The resultant force is P, which is 

along the cone axis and is perpendicular to the half-space surface. During the 

indentation, sliding with Coulomb friction occurs between the cone and space 

surfaces, except at the apex. With isotropic half-space asumption contact with 

normal loading and tangential loading equations are given as follows; 

 

2.1.1 Contact with Normal Loading 

The contact pressure is the same as an isotropic half-space (Sneddon, 

1948; Elliott, 1949) and can be described as 
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1

2
( , ,0) cosh , 0 ,z

P a
r r a

a r
 



  
    

   (2.1.1) 

 

where a is the radius of the contact area which needs to be determined. To be 

able to obtain the displacements and stresses introduced by this pressure eq., we 

should  replace “the concentrated force “N” eq.  into “the half - space subjected to 

a normal force N Eq”. as follows; 

 

The half - space subjected to a normal force N eq. is given by 

 1 0 0 1 1 1 1( , , ; , ) ln / ( )r z r H N R z s     
 

 

By replacing that equation  with 
1 2

0 0 0 0[ cos ( / ) / ( ) ]P h a r a r dr d 

 integrating 

over the whole contact area 0 0(0 , 0 2 )r a      , the displacement functions can 

be found as follows; 

 

 

1 12

1 1

2 22
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3
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( , , ) ( , , )
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( , , ) 0
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r z r z

a s
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r z r z

a s

r z
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 

  
 

 

 


 




 (2.1.2) 

where  

 
2

1

0 0 0

00 0

( , , ) cosh ln ( )

a
a

r z R z r dr
r



   
   

 
   (2.1.3) 

 

This integral can be expressed in terms of elementary functions as 

follows (Hanson, 1992a)  
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2 2
1 2 2 2 2 21 2 1

2 2
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2 2
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z r z
r z z z r

 

  
       

    
 

     
  

 (2.1.4) 
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The displacements and stresses can then be derived by simple 

differentiations when using elastic equations 

 
 

 
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 
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 


   
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  

  (2.1.5a)  
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The radius of the contact area, a, in these expressions can be determined 

by the compatibility of deformation (Hanson, 1992a). According to Fig. 2.1b, it is 

clear that the normal displacement at the half-space surface in the contact region 

can be written as 
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where 
0cota  . However, Eq. (2.1.5b) specifies that at the surface, 
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Since the normal displacement at the contact interface must be continuous, 

the right hand sides of Eqs. (2.1.6) and (2.1.7) must be the same. This gives rise 

to 
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When the resultant force P is known, the contact parameters shown in Fig. 

2.1b can be determined from 

 

 0 02 tan , 2 cot , 1
2

a HP HP b


   
 

    
 

 (2.1.9) 

 

 If, instead of the indentation force, the indentation depth to be pd b    

then the radius of contact area, a, and the indentation force, P, can be calculated 

by 
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If the half-space is isotropic, 2(1 ) / ( )H v E   and the results reduce to 

those of Sneddon (1948) except for the incorrect definitions of two parameters, as 

pointed out by Hanson (1992a). 
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2.1.2 Contact with Tangential Loading 

Now using, 
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to replace the concentrated tangential force Q, into a half-space subjected to 

tangential forces equations, and integrating over the contact area, 

0 0(0 ,0 2 )r a      ,we find the following displacement functions: 
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where 2( , , )r z was given by Eq. (2.1.4) and 2( , , )r z is defined by (Hanson, 

1992a) 
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The displacements and stresses are correspondingly: 

 

 

 
 

2
11 2 2 2 2

2 2 22
11 2

3/2
2 22 2 2 2_

2 22 2 2 2 2 2 2

22 2 2

[ sin ln

4 3
ln ] [ ]}

3 3

j j

j j j j

j j j

jj j ji

j j j j j

s lHP
U f a l a z l l r

a s s s r

r za z a l l
z z r z r z f e l a

r r r









  
         

   

  
        


 



34 

 

 1 2 2 2 2 2 2 2 23 132
23 3 23 23 3 3 3 32

66

{ [ sin ln ( ]
2

Ps l
f a l a z l l r z z r z r z

a c r

  
            

 
 

 
 

3/2
2 22 2 2 2_

32 2 23 13 23
232 2 2

4 3
[

3 3

i
r za z a l l

f e l a
r r r



        


 (2.1.19) 

 

  
2_

2 2 2 2

2 22
11 2

[ ln( ) ln
2 2

j ji i

j j j j

j j j

sHP r r
w f e f e l l r z z r

a s s s

 








 
        

 
  

  (2.1.20) 

 2 2 2 22
2 1 2

2

2

2 2 2

j j j j jz z r rl al l ra

r r r

  
   . 

 

 

2 2 2 2
2_

2166
1 2

11 2

( 1)2 j jj ji i

j j j

l a r zk sHPc
f e f e

a s s s r r

 






        
  
 

  (2.1.21) 

 

 

2 2 2 2
2 _

2 366
2 2

11 2

2 j jj i i

j j j

r z l asHPc
f e f e

a s s s r r

 


   
    
  

 

  

2 2 2 4 4 2 2
22 2 2 2 3

1 2 3 3 23 2 2

4 4 5
(12 4 3 16 ) [

3 3

j j j j i

j j

j

l a a z z r r z Ps
l l r a fe

r r ar r z





   
      
 
 

 

2 2 2 2 2 2 2 4 4 2 2_
3 23 233 2 2 2 3 3 3

23 3 3 3 2 2

3

4 4 5
(12 3 16 )

3 3

i
r z l a l a a z z r r z

f e l r a
r r r r r r z


        

         
       

(2.1.22) 

 

 

2 2 2 2
2_

21

2
12 1

( 1)
2 ( )

j ji i j

z

j

l a r zP
f e f e

a s s r r

 


 



         
   
 

  (2.1.23) 

 

   
2

1 2 2 2 2

2 22
12 1

( 1) [ln( ) ln ]
2 ( )

j

z j j j j

j

P
f l l r z r z

a s s








      


  



35 

 

 
  

2 2 2 2 2 2 2_
2 12 2 2 2 2

23 23 3 32 2 2 2

2
[ln( ) ln

2

j j j ji
a l a l z r z a P

f e f l l r z r z
ar r r a





                  

 
 2 2 2 2 2 2 2_

23 23 3 32

2 2 2

2
i

a l a l z r z a
f e

ar r r



        
  

 (2.1.24) 

30 32.5 35 37.5 40 42.5 45 47.5 50 52.5 55 57.5 6060
0.8

0.811

0.822

0.833

0.844

0.855

0.866

0.877

0.888

0.899

0.91

0.921

0.932

0.943

0.954

0.960.96

Cone angle of rail(Degree)

V
e
rt

ic
a
l 
d
is

p
la

c
e
m

e
n
t 
(E

-6
)

 

 

Finite Element Method

Half Space Assumption

 

Fig. 2.2 Vertical Displacement variation of rail with different cone angles  
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Fig. 2.3 Total Displacement variation of rail with different cone angles 
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Fig. 2.4 Von Mises Stress variation of rail with different cone angles 
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Fig. 2.5 Contact Pressure variation of rail with different cone angles  
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Fig. 2.6 Max. Contact Stress variation of rail with different cone angles 

 

 

2.1.3 Conclusion 

 

 In this study, fem results of rail – wheel and the results of isotropic half 

space assumption has been examined. The fem results of the rail and wheel in 

assembly position are shown at the end of this study and given on the following 

page in the table 2.1. For both type of solution, different angles from 30 to 60 have 

been analyzed and it has been found that there is a good matching between the 

results obtained Isotropic Half Space Assumption and Finite Element Method. 

From the above figures, we can conclude that the following comments; 

 

The vertical and total displacement results of rail found with fem and 

isotropic half space assumption gives good approximation on the rail angles 

between 30º and 50º. 

Von Mises Stress results, found in found with fem and isotropic half space 

assumption, are nearly the same when the angle is 45º. 
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Contact Stress and Contact Pressure variation results found with fem and 

isotropic half space assumption, diverge between the angles at which from 30º to 

40º converges from 40º to 50º and again starts to diverge from 50º to 60º. But at 

the cone angle of rail 45º, the most convergence values occur. However, it is 

appropriate for us to use 45º  cone angle while designing a wheel.   

 

FINITE ELEMENT RESULTS 

Cone 

Angle 

( Ø0 ) 

Max. 

Vert. 

Displ. 

(E-6) 

Max. 

Total 

Disp. 

(E-4) 

Max.  

Von 

Mises 

Stress 

(E9) 

Max. 

Cont. 

Press.

e (E8) 

Max. 

Cont 

Frict. 

Stress 

(E8) 

Max. 

Cont. 

Total 

Stress 

(E8) 

Max. 

Cont. 

Penetr. 

(E-5) 

30 0.856 0.718 0.258 0.723 0.217 0.723 0.396 

32.5 0.859 0.660 0.243 0.643 0.189 0.661 0.339 

35 0.872 0.617 0.231 0.586 0.172 0.612 0.288 

37.5 0.862 0.567 0.208 0.601 0.180 0.628 0.314 

40 0.858 0.531 0.188 0.672 0.201 0.702 0.327 

42.5 0.852 0.510 0.188 0.711 0.212 0.743 0.357 

45 0.847 0.495 0.185 0.733 0.220 0.765 0.387 

47.5 0.833 0.469 0.175 0.772 0.229 0.806 0.395 

50 0.828 0.458 0.161 0.790 0.226 0.823 0.420 

52.5 0.825 0.449 0.162 0.824 0.205 0.851 0.430 

55 0.863 0.459 0.184 0.819 0.187 0.840 0.444 

57.5 0.892 0.483 0.184 0.834 0.179 0.853 0.464 

60. 0.933 0.523 0.198 0.863 0.163 0.878 0.573 

 

Table 2.1 Fem results of the Conical Contact System  
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2.2. WHEEL ANALYTICAL AND FEM RESULTS (45º ANGLE) 

2.2.1 Wheel Contact Stress Results  

 

 

Table. 2.2 Wheel material properties (Ansys ncode Material Library) 

 

 

The contact-patch geometry, material constants, patch half-width, geometry 

const. and average and maximum contact pressures, principal stresses in the 

contact zone, tangential pressure and  applied stress components  can be 

calculated from Hertzian Contact Eq.s( See  Hertzian Contact Eq.s ) as follows; 

 

The material constants; 
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Since our wheel contact region is conical, we should integrate the geometry 

const eq. 
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The patch half-width can be calculated as, 
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where a is the half-width of the contact patch. The rectangular contact-patch area 

is  

then; 

2 2 3,65 3 0,03182 2,32 4Area x a x L x E x E      

 

 The average and maximum contact pressures can be found, 
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2 2 3468,36
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x F x
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The tangential pressure is found, 
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max max 0,3 19,1 5,7f p x Mpa  
 

 

With μ = 0.3, the principal stresses in the contact zone will be maximal on 

the surface (z = 0) at x = 0.3a from the centerline. The applied stress components 

can be found  in tems of both the normal force the tangential forces as follows, 
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Then we can solve for the total applied stresses along the x, y, and z axes. 

 

18,22 3,44 21,66x xn xt Mpa        
 

18,22 0 18,22z zn zt Mpa        
 

0 5,44 5,44
n txz xz xz Mpa       

 

 

 Since the rollers are long, we expect a plane strain condition to exist. The 

stress in the third dimension is found from elasticity equations, 

 

  0,3( 21,66 18,22) 11,96y x z         
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Unlike the pure rolling case, these stresses are not principal because of the 

applied shear stress. The principal stresses can be found by using a cubic root-

finding solution as -11.96 Mpa, -14.225 Mpa and -25.655 Mpa. By using Tresca 

and Von-Mises yield equations; Tresca and Von Mises stresses have been found 

as 6.8475 Mpa and 12.72 Mpa respectively.  

 

 

2.2.2 Wheel Fem Results  

 

 

Fig. 2.7 Mesh view of the wheel 

 

Fig. 2.8 Directional deformation distribution of the wheel 
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Fig. 2.9 Total deformation distribution of the wheel 

 

 

 

Fig. 2.10 Equivalent elastic strain distribution of the wheel 
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Fig. 2.11 Maximum Shear Stress distribution of the wheel 

 

 

Fig. 2.12 Von Mises Stress distribution of the wheel 
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Fig. 2.13 Safety factor of the wheel 

 

 

Fig. 2.14 Damage distribution of the wheel 
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Fig. 2.15 Mean biaxiliaty of the wheel 

 

 

Fig. 2.16 Min. stress distribution of the wheel 
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Fig. 2.17 Max. stress distribution of the wheel 

 

 

Fig. 2.18 Life of the wheel 
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2.2.3 Conclusion  

 

In this study, a wheel having an angle of 45˚ has been examined. The hertz 

contact equations have been used to be able to estimate Von Mises stresses 

occurring on the wheel, assuming plane strain condition. By using fem, it has been 

found that Max. Von Mises stresses occurs in the middle of region of the wheel as 

32, 739 Mpa. On the surface of the wheel, the Von Mises Stress have been found 

as 11,804 Mpa. Compared to the Von Mises Stresses found by hertz contact 

equations and fem a good matching have been observed.  

 

Fatigue calculations of wheel have been calculated by fem-Ansys ncode. 

While the wheel moves on the rail, fluctuating stresses occur and therefore 

Constant amplitude, Proportional loading criteria have been considered. 

 

Mean Biaxiliaty values have been found greater than 1 means that pure 

biaxial stress state occurs and smaller  than -1 means that pure shear occurs on 

the wheel. 

 

Damage and life results have been found by Ansys-ncode as Beyond Cutoff 

which means that wheel has infinite life. These results are very important in terms 

of fatigue calculations of any material in engineering applications. 
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3. BEAMS 

3.1 Introduction 

 

In general, beams are used in many structural applications. Any structural 

member exposed to loads transverse to its length behave as a beam. Some 

examples of beams are rails, machinery shafts, springs, and frames, which they 

may be under the influence of normal and shear stresses. For this reason, it is 

pivotal for enginneers to estimate how those stresses distribute within beams to be 

able to predict the right locations of the estimation of maximum stresses. In many 

applications beams are subjected to bending stresses, shear stresses or 

combination of those stresses. 

 

3.2 Rail Materials 

 

In this monorail crane design, the material used for rail is an aluminum 

alloy. The reason why aluminum material chosen in this study because aluminum 

can be easily extruded and extrusion is a basic manufacturing type that allows to 

produce inexpensive shapes of rails. Aluminum is produced in both “pure” and 

alloyed forms. The most common alloying elements used in aluminums are 

copper, silicon, magnesium, manganese, and zinc. There are many advantages of 

aluminum but the main advantages of aluminum are its low density, ductility, 

excellent workability, castability, and weldability, corrosion resistance, high 

conductivity, and reasonable cost. Compared to steel it is 1/3 as dense, about 1/3 

as stiff, and generally less strong and compared in terms of the strengths of low-

carbon steels and pure aluminum, the steel is about three times as strong. 

However, pure aluminum is rarely used in engineering applications because 

aluminum alloys provides us better specifications. For example aluminum is not 

only too soft but also weak. Besides those specifications, aluminum alloys have 

significantly greater strengths than pure aluminum. 

 The higher-strength aluminum alloys have tensile strengths in the 480 to 

620 MPa range, and compared to yield strengths with mild steel strengths they are 
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twice of mild steels. (See Mechanical Enginnering Design, R. G. Budynas and J. 

Keith Nisbett).  

Aluminum competes successfully with steel in some applications, though 

few materials can beat steel if very high strength is needed. (See Fig. 3.2.1 for 

tensile strengths of some aluminum alloys). Fig. 3.2.2 shows tensile-test 

engineering stress-strain curves for three aluminum alloys. Aluminum’s strength is 

reduced at low temperatures as well as at elevated temperatures. Hardenable 

property of some aluminum alloys can be increased by heat treatment, strain hard-

ening or precipitation and aging. 

 

 

Fig. 3.2.1 Ultimate Tensile Strengths of Some Aluminum Alloys (From Fig. 2.20, p. 

56, in Robert L. Norton, Machine Design,) 
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Aluminum alloys having high-strength are about 1.5 times harder than soft 

steel. With making good surface treatments such as hard anodizing can make the 

surface more harder than the hardest steel. 

 

 

Fig. 3.2.2 Tensile Test Stress-Strain Curves of Three Aluminum Alloys (From Fig. 

5.17, p. 160, in N. E. Dowling, Mechanical Behavior of Materials, Prentice-Hall, 

Englewood Cliffs, NJ., 1993) 

 

In enginnering materials, aluminum is among the most easily worked, 

though it tends to work harden.  Castability, machinebility, weldability, hot and cold 

formability of aluminums are good compared to many materials. In generally, 

aluminum alloys are classifed as either wrought or cast. Wrought aluminum alloys 

are produced with different shapes such as I-beams, angles, channels, bars, strip, 

sheet, rounds, and tubes.  

 

“The Aluminum Association numbering system for alloys is shown in Table 

3.1. The first digit indicates the principal alloying element and defines the series. 

Hardness is indicated by a suffix containing a letter and up to 3 numbers as 

defined in the table. The most commonly available and most-used aluminum alloys 

in machine-design applications are the 2000 and 6000 series. 

 

The oldest aluminum alloy is 2024, which contains 4.5% copper, 1.5% 

magnesium, and 0.8% manganese. It is among the most machinable of the 
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aluminum alloys and is heat treatable. In the higher tempers, such as -T3 and -T4, 

it has a tensile strength approaching 483 MPa, which also makes it one of the 

strongest of the aluminum alloys. It also has high fatigue strength. However, it has 

poor weldability and formability compared to the other aluminum alloys. 

 

The 6061 alloy, used in the rails of monorail crane machine, contains 0.6% 

silicon, 0.27% copper, 1.0% manganese, and 0.2% chromium.   “The aluminum 

6061 alloys are widely used in structural applications because of its excellent 

weldability. Its strength is about 276 to 310 MPa in the higher tempers. It has lower 

fatigue strength than 2024 aluminum. It is easily machined and is a popular alloy 

for extrusion, which is a hot-forming process. The 7000 series is called aircraft 

aluminum and is used mostly in airframes. These are the strongest alloys of 

aluminum with tensile strengths up to 676 MPa and the highest fatigue strength of 

about 152 MPa@108 cycles. “( Richard G. Budynas & J. Keith Nisbett, Advanced 

Strength and Applied Stress Analysis, McGraw-Hill, 2006) 

 

 

Table 3.1 Aluminum Association Designations of Aluminum Alloys 

 

Series  Major Alloying Elements Secondary Alloys 

1xxx Commercially pure (99%) None 

2xxx Copper (Cu) Mg, Mn, Si 

3 xxx Manganese (Mn) Mg, Cu 

4xxx Silicon (Si) None 

5xxx Magnesium (Mg) Mn, Cr 

6xxx Magnesium and Silicon Cu, Mn 

7xxx Zinc (Zn) Mg, Cu, Cr 

Hardness Designations 

xxxx-F As fabricated  

xxxx-O Annealed  

xxxx-Hyyy Work hardened  

xxxx-Tyyy Thermal/age hardened  
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3.3 RAIL DESIGN AND FEM RESULTS 

3.3.1 Horizontal Rail 

 

While the wheel of monorail crane machine moves or climbs on rails, a 

contact area occurs between the rail and wheel. For this reason, we need to 

estimate the shape of this area in terms of contact mechanics. The difference 

between the classical mechanics and contact mechanics is the first one deals 

solely with bulk material properties, while the second one deals with bulk 

properties that consider surface and geometrical constraints. When two bodies 

having curved surfaces, as it is in rail and wheel, the stresses developed in the two 

bodies are threedimensional. Contact-stress problems arise in the contact of a 

wheel and a rail, in automotive valve cams and tappets, in mating gear teeth, and 

in the action of rolling bearings. Typical failures occuring by contact stresses are 

cracks, pits, or flaking in the surface of materials.  

 

 

Fig. 3.3.1 Two right circular cylinders held in contact by forces F uniformly 

distributed along cylinder length l and contact stress has an elliptical distribution 

across the contact zone width 2b. (Machine Design, Robert L. Norton) 

 

The most general case of contact stress occurs when each contacting body 

has a double radius of curvature, that is, when the radius in the plane of rolling is 

different from the radius in a perpendicular plane, both planes taken through the 
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axis of the contacting force. The equations for the area of contact, deformation, 

pressure distribution, and contact stresses on the centerline of two bodies with 

static loading were originally derived by Hertz in 1881. The presence of tangential 

sliding forces has a significant effect on the stresses compared to pure rolling. 

Figure 3.3.1 shows two cylinders of length l and diameters d1 and d2, the area of 

contact is a narrow rectangle of width 2b and length l, and the pressure distribution 

is elliptical. The half-width b is given by the following equation 

 

   2 2

1 1 2 1

1 2

1 / 1 /2

1/ 1/

E EF
b x

l d d

 



  



 

The maximum pressure is; 
max

2F
p

bl
  

 

The equations above for two cylinders in contact are also valid for the 

following contact conditions. 

 

 

Fig. 3.3.2 Cylinder on a flat plate; a flat plate is a cylinder with an infinitely large 

radius (Machine Design, Robert L. Norton) 

 

Since the rail and wheel contact condition is the same cylinder – flat plate 

contact condition, we can calculate the radius of ellipse on the rail as following; 
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 

   2 9 2 91 0,33 / 68,9 10 1 0,3 / 200 102 2950
0,346

1 127,577 /1000

0,1

x xx
b mm



 
           
 
  

 

 

  

Fig. 3.3.3 Section of rail 

 

  

Fig. 3.3.4 Ellipse occuring between rail and wheel 
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The section of rail should be symmetric about its neutral axis. But there are 

some restrictions on rail section, which I mean since it will be linked to the wall, 

there should be a screw space on the rail used. Therefore design of rail should be 

symmetric about its one way but it is needless to make a symmetric section about 

other way as seen above fig.s. 

 

3.3.1.1 Horizontal Rail Fem Results  

The rail has been meshed with tetrahedron and used 73021 element and 

349064 nodes. 

 

Table. 3.2 Material properties of the rail ( Ansys ncode material prop.) 

 

Fig. 3.3.5 Mesh view of the rail 
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Fig. 3.3.6 Directional deformation distribution of the horizontal rail 

 

 

Fig. 3.3.7 Total deformation distribution of the horizontal rail 

 

 

Fig. 3.3.8 Equivalent elastic strain distribution of the horizontal rail 

 



58 

 

 

Fig. 3.3.9 Maximum Shear Stress distribution of the horizontal rail 

 

 

Fig. 3.3.10 Von Mises Stress distribution of the horizontal rail 

 

3.3.1.2 Rail fem fatigue results 

 

 

Fig. 3.3.11 Mean biaxiality ratio of the horizontal rail 
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Fig. 3.3.12 Damage distribution of the horizontal rail 

 

Fig. 3.3.13 Max. stress distribution value of the horizontal rail 

 

Fig. 3.3.14 Min. stress distribution value of the horizontal rail 
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Fig. 3.3.15 Life of the horizontal rail 

 

3.3.1.3 Fem results of the horizontal rail transporting two weights 

 

Fig. 3.3.16 Mesh view of the rail with contact regions 

 

 

Fig. 3.3.17 Directional deformation distribution of the rail transporting two weights 



61 

 

 

Fig. 3.3.18 Total deformation distribution of the rail transporting two weights 

 

Fig. 3.3.19 Equivalent elastic strain distribution of the rail transporting two weights 

 

 

Fig. 3.3.20 Von Mises Stress distribution of the rail transporting two weights 
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3.3.1.4 Fatigue results of the horizontal rail transporting two 

weights 

 

Fig. 3.3.21 Damage distribution of the rail transporting two weights 

 

Fig. 3.3.22 Mean biaxiliaty ratio distribution of the rail transporting two weights 

 

Fig. 3.3.23 Min. stress distribution of the rail transporting two weights 
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Fig. 3.3.24 Max. stress distribution of the rail transporting two weights 

 

 

Fig. 3.3.25 Life of the rail transporting two weights 
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3.3.2 Vertical Rail 

       

(a)                                                                (b) 

Fig 3.3.26 (a) Front  view of  vertical rail (b) Back  view of the vertical rail 

 

 

3.3.2.1 Vertical Rail Fem Results 

 

 

Fig. 3.3.27 Directional deformation distribution of the vertical rail 
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Fig. 3.3.28 Total deformation distribution of the vertical rail 

 

Fig. 3.3.29 Equivalent elastic strain distribution of the vertical rail 

 

Fig. 3.3.30 Maximum Shear Stress distribution of the vertical rail 
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Fig. 3.3.31 Von Mises Stress distribution of the vertical rail 

 

3.3.2.2 Vertical Rail Fatigue Results 

 

Fig. 3.3.32 Damage distribution of the vertical rail 

 

Fig. 3.3.33 Mean biaxiliaty ratio distribution of the vertical rail 
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Fig. 3.3.34 Max. stress distribution of the vertical rail 

 

Fig. 3.3.35 Min. stress distribution of the vertical rail 

 

Fig. 3.3.36 Life of the vertical rail 
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3.3.3 Curved Rail Fem Results 

3.3.3.1 S rail type 

 

 

 

Fig. 3.3.37 Mesh view of the S rail 

 

 

Fig. 3.3.38 Directional deformation distribution of the S rail 

 

 

 

Fig. 3.3.39 Total deformation distribution of the S rail 
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Fig. 3.3.40 Equivalent elastic strain distribution of the S rail 

 

 

Fig. 3.3.41 Maximum Shear Stress distribution of the S rail 

 

 

Fig. 3.3.42 Von Mises Stress distribution of the S rail 
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Fig. 3.3.43 Damage distribution of the S rail 

 

 

Fig. 3.3.44 Mean biaxiliaty ratio distribution of the S rail 

 

 

Fig. 3.3.45 Min. stress distribution of the S rail 
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Fig. 3.3.46 Max. stress distribution of the S rail 

 

 

Fig. 3.3.47 Life of the S rail 

 

3.3.3.2  Bended Rail With 90° Curvature 

 

Fig. 3.3.48 Mesh view of the 90° curvature rail 
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Fig. 3.3.49 Directional deformation distribution of the 90° curvature rail 

 

 

Fig. 3.3.50 Total deformation distribution of the 90° curvature rail 

 

 

Fig. 3.3.51 Equivalent elastic strain distribution of the 90° curvature rail 
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Fig. 3.3.52 Maximum Shear Stress distribution of the 90° curvature rail 

 

 

Fig. 3.3.53 Von Mises Stress distribution of the 90° curvature rail 

 

 

Fig. 3.3.54 Damage distribution of the 90° curvature rail 
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Fig. 3.3.55 Mean biaxiliaty ratio distribution of the 90° curvature rail 

 

 

Fig. 3.3.56 Min. stress distribution of the 90° curvature rail 

 

 

Fig. 3.3.57 Max. Stress of the 90° curvature rail 
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Fig. 3.3.58 Life of the 90° curvature rail  

 

3.3.3.3 Bended Rail With 75° Curvature 

 

Fig.3.3.59 Mesh view of the 75° curvature rail 

 

Fig. 3.3.60 Directional deformation distribution of the 75° curvature rail 
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Fig. 3.3.61 Total deformation distribution of the 75° curvature rail 

 

 

Fig. 3.3.62 Equivalent elastic strain distribution of the 75° curvature rail 

 

 

Fig. 3.3.63 Maximum Shear Stress distribution of the 75° curvature rail 
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Fig. 3.3.64 Von Mises Stress distribution of the 75° curvature rail 

 

 

Fig. 3.3.65 Damage distribution of the 75° curvature rail 

 

 

Fig. 3.3.66 Mean biaxiliaty ratio distribution of the 75° curvature rail 
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Fig. 3.3.67 Min. stress of the 75° curvature rail 

 

 

Fig. 3.3.68 Max. stress of the 75° curvature rail 

 

 

Fig. 3.3.69 Life of the 75° curvature rail 
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3.3.3.3 Bended Rail With 135° Curvature 

 

 

Fig. 3.3.70 Mesh view of the 135° curvature rail 

 

 

Fig. 3.3.71 Directional deformation distribution of the 135° curvature rail 

 

 

Fig. 3.3.72 Total deformation distribution of the 135° curvature rail 
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Fig. 3.3.73 Equivalent elastic strain distribution of the 135° curvature rail 

 

 

Fig. 3.3.74 Maximum Shear Stress distribution of the 135° curvature rail 

 

 

Fig. 3.3.75 Von Mises Stress distribution of the 135° curvature rail 
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Fig. 3.3.76 Damage distribution of the 135° curvature rail 

 

 

Fig. 3.3.77 Mean biaxiliaty ratio distribution of the 135° curvature rail 

 

 

Fig. 3.3.78 Min. Stress of the 135° curvature rail 
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Fig. 3.3.79 Max. Stress of the 135° curvature rail 

 

 

Fig. 3.3.80 Life of the 135° curvature rail 

 

 

3.4 Conclusion 

 

 In this study, a rail made of aluminum 6061-T6 has been examined. The 

optimum requirements of rail, such as section area and second moment of inertia 

has been optimized or designed in terms of the higher load that the monorail crane 

is able to remove and transform. To be able to predict the shape of contact region 

on the rail, the Hertz contact equations have been used and it is estimated that an 

eliptical area occurs on rail. Since the buildings in today have highly complicated 
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or curvilinear shapes, this required that the rails should not only be as horizontal 

but also be bended in some common angles such as S - 75º - 90º and 135º. 

 

 Firstly horizontal rail have been examined and Von Mises stress have been 

found in the middle of the horizontal rail as 45 Mpa. Also a horizontal rail carrying 

two weights (425 kg’s) have been considered and found the Von Mises Stresses 

as 28 Mpa. Those stress values are very small compared to yield stress of rail, 

Al6061. Total deformations of both type of rails can not be considered as a failure 

criteria. Max. And Min Stresses have been calculated for horizontal rail carrying 

500 kg load as 76 Mpa, -74 Mpa and horizontal rail carrying two 425 kg loads as 

52 Mpa -58 Mpa respectively and found life and damage values as infinite life. 

 

Secondly vertical rail have been examined and Von Mises stress have been 

found in the middle of the vertical rail as 69 Mpa. Total deformationf of vertical rail 

can not be considered as a failure criteria. Max. And Min Stresses have been 

calculated, life and damage values found as infinite life. 

 

Lastly, rails bended as S - 90º - 75º and 135º have been examined and Von 

Mises stresses found 35 MPa – 45 Mpa -  96 Mpa and 110 Mpa respectively and 

compared yield stress value of Al 6061, it can be said that bended rails satisfy the 

design requirements. Total deformations of all bended rails are very small and can 

not be considered as a failure criteria. Damage results and life results of the four 

curved rails show different results, because of having different lengths and loading 

conditions. But all of the damage values are high from 1 and life results values are 

high from 1e6. Max. stress distribution and Min. stress distribution results occuring 

by loads are also convenient in terms of yield stress Al6061.  
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4. GEARS 

4.1 Introduction 

 

In engineering applications, gears are used to transmit torque, power and 

angular velocity. In monorail crane machine, two types of gears, operating on 

parallel shafts of wheel and reductor, and a worm gear, transfering motion from 

electrical motor to shaft, have been used. 

 

4.1.1 Gear Materials 

 

Metals and alloys are limited in terms of gears transmitting significant 

powers. Table 4.1 shows some gear materials. The most common materials of 

gears are steels, cast irons, and malleable and nodular irons. In applications, high 

corrosion is needed bronzes are preferred as gear material. With the appliying 

surface or through hardening to gears, sufficient strength and wear resistance can 

be obtained on the tooths of gears.  

 

Cast irons are also used for gears in some applications.  Because, the there 

are outstanding advantages of gray cast irons compared to other type of cast irons 

such as low cost, ease of machining, high wear resistance, and internal damping 

(due to the graphite inclusions), which makes them acoustically quieter than steel 

gears. Also, they have low tensile strength, which requires larger teeth than steel 

gears to obtain sufficient bending strength. Nodular irons have higher tensile 

strength than gray Cl and retain the other advantages of machinability, wear 

resistance, and internal damping, but they are more costly. The combination of a 

steel pinion and a cast iron gear is often used. Steels are also commonly used for 

gears because having superior tensile strength to cast iron and are cost 

competitive in their low-alloy forms. Many steels need heat treatment to get a 

surface hardness that will resist wear, but soft steel gears are sometimes used in 

low-load, low-speed applications or where long life may not be a prime concern. 

Small gears are typically through-hardened and larger gears flame are hardened  

by induction to minimize distortion.  
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Some surface methods such as carburizing or nitriding make lower-carbon 

steels case hardened. A case-hardened gear has the advantage of a tough core 

and a hard surface, but if the case hardening method is not deep enough, the 

teeth may fail in bending fatigue beneath the case in the soft, weaker core 

material. If high accuracy is needed, some manufacturing methods can be used 

such as grinding, lapping, and honing to remove the heat treatment distortion from 

hardened gears. 

 

AGMA Elastic Coefficient Cp in Units of [psi]0.5 ( [(MPA)]0.5) 

Pinion 

material 

Ep 

Psi 

(MPa) 

 

Steel 
Malleable 

Iron 

Nodular 

Iron 

Cast 

Iron 

Aluminum 

Bronze 

Tin 

Bronze 

Steel 
30E6 

(2E5) 

2300 

(191) 

2180 

(181) 

2160 

(179) 

2100 

(174) 

1950 

(162) 

 

1900 

(158) 

 

Malleable 

Iron 

25E6 

(1.7E5) 

2180 

(181) 

2090 

(174) 

2070 

(172) 

2020 

(168) 

1900 

(154) 

1850 

(152) 

Nodular 

Iron 

24E6 

(1.7E5) 

2160 

(179) 

2070 

(172) 

2050 

(170) 

2000 

(166) 

1880 

(156) 

1830 

(152) 

Cast Iron 
22E6 

(1.5E5) 

2100 

(174) 

2020 

(168) 

2000 

(166) 

1960 

(163) 

1850 

(154) 

1800 

(149) 

Aluminum 

Bronze 

17.5E6 

(1.2E5) 

1950 

(162) 

1900 

(158) 

1880 

(156) 

1850 

(154) 

1750 

(145) 

1700 

(141) 

Tin 

Bronze 

16E6 

(1.1E5) 

1900 

(158) 

1850 

(154) 

1830 

(152) 

1800 

(149) 

1700 

(141) 

1650 

(137) 

 

Table 4.1 Some metals and alloys for gears (Machine Design, Robert L. Norton) 

 

 

 

 



86 

 

4.2 SPUR GEAR DESİGN 

4.2.1 Spur Gear Analytical And Fem Results 

4.2.1.1 Spur Gear Analytical Study, Gear tooth and Gear Mesh 

Parameters 

 

In this study, AGMA Stress and Strength Equations ( Shigley’s Mechanical 

Enginnering Design, Richard G. Budynas – J. Keith Nisbett) have been used for 

the design of spur and worm gears. In spur gears, assuming center distance is 

increased 2%, the new pressure angle and the torques and transmitted loads on 

the gear teeth and the mean and alternating components of transmitted load on 

each gear have beebestimated. The pinion shaft passes 1850W at 52,5 rpm. The 

pinion has 17 teeth, a 20° pressure angle, and, the gear has 36 teeth.  

 

Fig. 4.1 Assembly view of the spur gears 

 

The gear ratio is easily found from the given tooth numbers on pinion and 

gear; 

36
2,118

17

G
G

p

N
m

N
  
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 The torque on the pinion shaft; We have used a reductor that has worm 

gear mechanism having an efficiency 0,5 % in it.  

motor motor motorP T xW  

2 2 1740
182,2 /

60 60
motor

xn x
W rad sn

 
    

 

Since motor outshaft is linked to the worm, we obtain the wormgear power by 

multiplying the motor power with the efficiency of the worm – gear.  

 

 worm gear
motor worm gear outP x P


   

 
3700 0,5 1850

worm gear out
P x W



   

pinion pinion pinionP T xW  

1850 5,5pinionW T x
 

336 .pinionT N m  

max min max min336 0 336 0
168 . 168 .

2 2 2 2
a m

T T T T
T N m T N m

  
       

52,5 0,875 secCDN rpm revolution per 
 

 

The transmitted load is the same on gears and can be found from the 

torque and radius of any one of the gears; 

 

2 2 336
13177

0,051
t

xT x
F N

d
    

 

The radial component of load; 

 

tan 13177 tan 20 4796r tF F x x N     

 

The total load is, 
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13177
14023

cos cos20

tF
F N

 
    

 

 The repeated loads on any pinion or gear tooth are; 

 

 
13177

6588,5
2 2

t
t alternating

F
F N    

 
13177

6588,5
2 2

t
t mean

F
F N    

 

A suitable face width; 

 

4 4 3 40faceb x xm x x mm   
 

 

The circular pitch is 

 

3 9,42cp m x mm   
 

0,34
9,42

d

c

p mm
p

 
  

 

 

The base pitch measured on the base circle is 

 

cos 9,42 cos20 8,85b cp p x mm   
 

 

The pitch diameters and pitch radii of pinion and gear are, 

 

  3 17 51t pP
D m x N x mm  

 

  3 36 108t GG
D m x N x mm  

 

 

The nominal center distance C is the sum o f the pitch radii: 
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    51 108
79,5

2 2

t tp G
D D

C mm
 

  
 

 

The addendum and dedendum are found, 

 

3 1,166 3 1,166 3,49a m mm b xm x mm      

 

The whole depth h, is the sum o f the addendum and dedendum. 

 

2,166 2,166 3 6,498th a b m x mm    
 

 

The clearance is the difference between dedendum and addendum. 

 

3,49 3 0,49c b a mm      

 

The outside diameter of each gear is the pitch diameter plus two addenda: 

 

       

       

2 2 17 2 3 57

2 2 36 2 3 114

o t pp p

o t GG G

D D m N m x mm

D D m N m x mm

      

      
 

 

The contact ratio is can be found, 

 

       

       

2 2 2 2

2 2 2 2

cos cos sin

25,5 3 25,5cos20 54 3 54cos20 79,5sin 20 14,2

p p p G G GZ r a r r a r C

mm

        

       
 

 

14,2
0,296

47,92
p

b

Z
m

p
  

 

 

If the center distance is increased from the nominal value due to assembly 

errors or other factors, the effective pitch radii will change by the same 

percentage. The gears' base radii will remain the same. The new pressure angle 
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can be found from the changed geometry. For a 2% increase in center distance 

(1.02x): 

 

,1 1 1
cos cos20

cos cos cos 22,89
1,02 1,02 1,02

pbase circle p

new

p p

r r

r r





   
     

           
      

 

Even though the transmitted load is the same, the bending stress in the 

teeth of each size gear will be different because of its slightly different tooth 

geometry. The diametral pitch value is 51 mm, the face width 40 mm, and the 

quality standard is No.6. The gears are straddle-mounted with bearings 

immediately adjacent.  

The pinion is a grade SAE 1050 steel (St = 538 Mpa, Sut= 717Mpa, 

quenched and tempered) with a hardness of 650 Brinell tooth surface and through-

hardened core.  

The gear is SAE 1030 steel, through-hardened also, with a Brinell hardness 

of 495, tooth surface and core. Poisson’s ratio is 0.30, JP = 0.56, JG = 0.47, and 

Young’s modulus is 210Gpa. The loading is smooth because of motor and load. 

Assume a pinion life of 108 cycles and a reliability of 0.90, and use YN = 

1.3558xN−0.0178, ZN = 1.4488xN−0.023. The tooth profile is uncrowned. This is a 

commercial enclosed gear unit. Assuming uniform loading, Ko = 1. To evaluate Kv, 

with a quality number Qv = 6, 

 

d m b
b t o v s

P K K
F K K K

F J


 
  
   

 

Wt, Pd, F, Ka, Km, Kv, and Ks are common to all gears in the set and J, KB 

and KI are potentially different for each gear.  

Based on the assumption of uniform load and source, the application factor 

Ko can be set to Ko = 1 

The load distribution factor Km is determined, from equation seen below, 

where five terms are needed. They are, where face width is 40 mm when needed: 
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0,0375 0,0125 1 17
10

pf

F
C F F in

d
    

 

 0,5 0,0375 0,0125 0,04 0,463pfC x   
 

 

Uncrowned: Cmc = 1, 

Bearings immediately adjacent,: Cpm = 1 

Commercial enclosed gear units: Cma = 0.15 

Ce = 1 

Thus, 

 

 1 ( ) 1 0,463 1 0,15 1 1,613m mc pf pm ma eK C C C C C x x      
 

 

The velocity factor Kv can be calculated from equations seen below, based 

on the assumed gear-quality index Qv and the pitch-line velocity Vt. 

 

6.1
( )

6.1
v

V
K Cut or milled profile

 

6.1 0,875
1 1 0,45

6.1 6.1
v

xmxN xmx
K m

π π

 

yv tK x F

b xm xY n


    

 1 0,45 14023538

5 40 0,303

m x

x xmxmx


  

3m mm  

0,051 0,875 0,14 /tV xD xn x x m s   
 

6.1 0.14
1.023

6.1
vK

 

2/30,25(12 6) 0,8255B     

50 56(1 0,8255) 59,77A      

 

Then, the dynamic factor is 
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59,77 200 0.14
1,089

59,77
v

x
K

 
   
   

To determine the size factor, Ks, the Lewis form factor is needed. From 

tables, with NP = 17 teeth, YP = 0.303. Interpolation for the gear with NG = 51 teeth 

yields YG = 0.4103.  

 

     

     

0,0535 0,0535

0,0535 0,0535

0,8433 0,8433 3 40 0,303 1,055

0,8433 0,8433 3 40 0,4103 1,064

s P

s G

K m F Y x x

K m F Y x x

  

  
 

 

Assuming constant thickness gears, the rim-thickness factor KB = 1. The 

speed ratio is 
/ 36 /17 2,12G G Pm N N  

. The load cycle factors given in the 

problem statement, with N(pinion) = 108 cycles and N(gear) = 108 / mG = 108 / 2,12 

cycles, are 

 

 

 

0,0178
8

0,0178
8

( ) 1,3558 10 0,977

( ) 1,3558 10 / 2,12 0,989

N p

N G

Y

Y





 

 
 

   0,46 0,37

0,658 0,0759ln(1 0,95) 0,885

j jP G

Z

Y Y

Y

 

     

 

With a reliability of 0.9, KR = 0.85. From Fig.s, the temperature and surface 

condition factors are KT = 1 and Cf = 1, with mN = 3 for spur gears, 

 

cos sin cos 20 sin 20 2,12
0,786

2 1 2 2,12 1

t t G

N G

m x
I x

m m

      
     

     

191pC Mpa
 

 

Next, we need the terms for the gear endurance strength values, 

 

   

   

0,533 88,3 0,533 650 88,3 434,75

0,533 88,3 0,533 495 88,3 352

t BP

t BG

S H x Mpa

S H x Mpa

    

    
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   

   

2,22 200 2,22 650 200 1643

2,22 200 2,22 495 200 1298

c BP

c BG

S H x Mpa

S H x Mpa

    

    
 

   

   

0,023
8

0,023
8

1,4488 10 0,948

1,4488 10 / 2,12 0,965

N P

N G

Z

Z





 

 
 

 

For the hardness ratio factor CH, the hardness ratio is HBP / HBG = 650 / 

495 = 1,3. 

 

 

' 3 3 3 3 38,97(10 ) ( / ) 8,29(10 ) 8,97(10 ) (1,3) 8,29(10 ) 3,3710BP BGA x H H x          

Thus,  

'1 ( 1) 1 0,00337 (2,12 1) 1,00378H GC A m x        

 

Pinion tooth bending, 

 

 
1 1 1,613 1

14023 1 1 1,089 1,055 335
40 3 0,56

m b
t o v sp

K K x
F K K K x x x x x x Mpa

b m J x


   
     

  
 

 
 

 

   / 434,75 0,977 / 1 0,85
1,5

335

t N T R

F P

P

S Y K K x x
S



   
      

  

 

 

Gear tooth bending;  

 

 
1 1 1,613 1

14023 1 1 1,089 1,055 390
40 3 0,48

m b
t o v sp

K K x
F K K K x x x x x x Mpa

b m J x


   
     

  

 
 

 

   / 352 0,97 / 1 0,85
1,2

390

t N T R

F G

P

S Y K K x x
S



   
      

  

 

 

Pinion tooth wear; 

 

 

1/2

1,613 1
191 14023 1 1 1,089 1,055 769

51 40 0,786

fm
c p t o v sp

p P

CK
C F K K K x x x x x x Mpa

d F J x


   
     

   
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 
     / 1643 0,948 / 1 0,85

2,3
769

C N T R

H P
C P

S Y K K x x
S



   
     
   

 

 

Gear tooth wear; 

 

 
 

 
 

1/2 1/2

1,055
769 766

1,064

S G
c cG P

S P

K
x x Mpa

K
 

   
     

   

 

 
     / 1298 0,965 1,00378 / 1 0,85

1,9
766

C N H T R

H G
c

S Z C K K x x x
S



   
     
   

 

 

It would be a good estimation by finding the bending of the gear using an 

infinite life in bending, the endurance limit is estimated as follows; (Sut of the pinion 

is 717 Mpa) 

 

' 0,5 0,5 717 358,5e utS S x Mpa    

 

To obtain the surface finish Marin factor ka for machined surface, a = 4,51 

and b = −0.265. Then the surface finish Marin factor ka as 

 

0,2654,51 717 0,79b

a utk a S x     

 

The next step is to estimate the size factor kb. The sum of the addendum 

and dedendum is 

 

1 1,25 1 1,25
0,75

3 3
l

P P
    

 

 

The tooth thickness t as 
 

1/2
4t lx

 when 3 / 2x Y P .Therefore, For 17 

teeth, the Lewis Form Factor is 0,303 and 51/17 3P mm  . 

 

3 3 0,303
0,1515

2 2 3

Y x
x

P x
  
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Then  

1/2(4 ) (4 0,75 0,1515) 0,4545t lx x x    

 

We have recognized the tooth as a cantilever beam of rectangular cross 

section, so the equivalent rotating-beam diameter is  

 

1/2 1/2 1/20,808( ) 0,808( ) 0,808(1,5 0,4545) 0,668ed hb Ft x   
 

 

Then ; 

 

0,107 0,107

0,668
0,918

0,3 0,3

e
b

d
k

 

   
     
     

 

The load factor kc is unity. kd = ke = 1. In general, a gear tooth is subjected 

only to one-way bending. Exceptions include idler gears and gears used in 

reversing mechanisms. I will account for one-way bending by establishing a 

miscellaneous-effects Marin factor kf. For one-way bending the steady and 

alternating stress components are σa = σm = σ/2 where σ is the largest repeatedly 

applied bending stres. If a material exhibited a Goodman failure locus 

 

'
1a m

e ut

S S

S S
 

 

 

Since Sa and Sm are equal for one-way bending, by substituting Sa for Sm 

and solving the preceding equation for Sa, 

 

'

'

e ut
a

e ut

S S
S

S S


  

 

By replacing Sa with σ/2, and in the denominator replace Se’ with 0.5Sut to 

obtain; 
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' '
'2 2

1,33
0,5 0,5 1

e ut e
e

ut ut

S S S
S

S S
   

   

' ' '/ 1,33 / 1,33f e e ek S S S  
 

 

However, a Gerber fatigue locus gives mean values of; 

 

2

'
1a m

e ut

S S

S S

 
  
   

 

Setting Sa = Sm and solving the quadratic in Sa gives, 

 

2 ' 2

' 2

4
1 1

2

ut e
a

e ut

S S
S

S S

 
    

 
   

 

Setting Sa = σ/2, Sut = Se
’/ 0.5 gives, 

 

 
'

2 '

2
1 1 4 0,5 1,66

0,5

e
e

S
S      

    

 

and kf = σ/Se’ = 1.66. Since a Gerber locus runs in and among fatigue data and 

Goodman does not, therefore kf = 1.66. The second effect to be accounted for in 

using the miscellaneous-effects Marin factor kf is stress concentration. For a 20◦ 

full-depth tooth the radius of the root fillet is denoted rf, where 

 

0,3 0,3
0,1

3
fr

P
  

 

0,1
0,22

0,4545

frr

d t
  

 

 

Since D/d = ∞, the approximation value initially can be taken as D/d = 3, 

giving Kt = 1.68 and q = 0.62. 
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1 (0,62)(1,68 1) 1,42fK    
 

 

The miscellaneous-effects Marin factor for stress concentration can be 

expressed as 

 

1 1
0,704

1,42
f

f

k
K

  

 

 

The final value of kf is the product of the two kf factors, that is, 1.66(0.704) = 

1.17. The Marin equation for the fully corrected endurance strength is 

 

' 0,79 0,918 1 1 1 1,17 358,5 304,2e a b c d e f eS k k k k k k S x x x x x x Mpa    

 

For a design factor of nd = 5, applied to the load or strength, the maximum 

bending stress is 

 

304,2
60,8

5

e
all

d

S
Mpa

n
     

 

14023 0,14
54 60,8

0,003 0,04 0,303

t vF xK x
Mpa Mpa

mxbxY x x
      

14023 0,1 1402,3tP F xv x W   is below the 1850 W , 

 

Lastly, the factor of safety of the drive based on the possibility of a surface 

fatigue failure can be estimates as follows; EP = 207 Gpa, νP = 0.292, EG = 207 

Gpa, νG = 0.292. 

 

 

1/2
1/2

2 22 2

9 9

1 1
189660,8

1 0,292 1 0,2921 1

207.10 207.10

p

p G

p G

C

E E

  

   
   
                           
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1 2

sin sin51 sin 20 108 sin 20
8,7 18,47

2 2 2 2

p Gd dx x
r mm r mm

  
       

 

1/2 1/2

1 2

1 1 13177 1,089 1 1
189660,8 1523

cos 0,04 cos20 8,7 18,47

t

v
c p

K W x
C Mpa

F r r x




     
            

       

 

The surface endurance strength of pinion for 108 cycles;  

 

   2,41 200 2,41 514 237 1475,75c BP
S H x Mpa    

 . 

 

In generally, contact stresses is not linear with transmitted load. If the factor 

of safety is defined as the loss-of-function load divided by the imposal load, then 

the ratio of loads is the ratio of stresses squared. In other words; 

 

22

2

1643
1,2

1523

c

c

Sloss of function
n

imposed load 

   
    

 
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4.2.1.2 Spur Gear Fem Results 

 

 

Fig. 4.2 Mesh view of the gear – wheel and pinion 

 

 

Fig. 4.3 Directional deformations of the gear – wheel and pinion 
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Fig. 4.4 Total deformations of the gear – wheel and pinion 

 

 

Fig. 4.5 Equivalent elastic strain distribution of the gear – wheel and pinion 
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Fig. 4.6 Maximum shear stresses of the gear – wheel and pinion 

 

 

Fig. 4.7 Von Mises Stress distribution of the gear – wheel and pinion 
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Fig. 4.8 Von Mises Stress distribution of the gear – wheel  

 

 

 

Fig. 4.9 Von Mises Stress distribution of the pinion 
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Fig. 4.10 Safety factor of the gear – wheel and pinion 

 

 

Fig. 4.11 Damage distribution of the gear – wheel and pinion 
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Fig. 4.12 Mean biaxiliaty ratio distribution of the gear – wheel and pinion 

 

 

 

Fig. 4.13 Min stresses of the gear – wheel and pinion 
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Fig. 4.14 Max stresses of the gear – wheel and pinion 

 

 

Fig. 4.15 Life of the gear – wheel and pinion 
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4.2.2 Conclusion  

 

In this study, spur gears have been examined in terms of stress, deflection 

and fatigue by considering both the AGMA Stress and Strength Equations (Spur 

Gear Design, Shigley’s Mechanical Enginnering Design, Richard G. Budynas – J. 

Keith Nisbett) and finite element modeling. 

 

In the study of analytical design, firstly the radial and tangential loads have 

been calculated by using the previous power and torque results and secondly 

bending, and wear of spur gears have been taken into consideration.  

 

In the study of fem design, materials chosen for spur gears by the results of 

analytical equations have been used and the tangential and radial forces, found in 

analytical design eq.s, have been applied on the tooths of spur gear assembly.  

 

Deflections of gears can not be considered as dangerous values for both 

type of spur gears because of very small. 

 

 Von Mises stresses of the both type of spur gears are convenient 

compared to material yield strengths. 

 

And finally, fatigue results of both spur gears in terms of damage and life 

distributions are beyond cut off which means that both have infinite life.  
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4.3 WORM GEAR 

 

In worm-gear mechanicsm, worm and worm gear of a set have the same 

hand of helix as for crossed helical gears, but the helix angles are usually quite 

different in this gear ype.. The nomenclature of a worm gearset is shown in Fig. 

4.16. The helix angle on the worm is generally quite large, while on the gear very 

small. Because of this, it is usual to specify the lead angle λ on the worm and helix 

angle ψG on the gear; the two angles are equal for a 90◦ shaft angle. The worm 

lead angle is the complement of the worm helix angle. In specifying the pitch of 

worm gearsets, the axial pitch px of the worm and the transverse circular pitch p, is 

called the circular pitch, of the mating gear. These are equal if the shaft angle is 

90◦. The pitch diameter of the gear is the diameter measured on a plane containing 

the worm axis; it is the same as for spur gears and is 

 

 G t
G

N p
d


  (4.3.1) 

 

Fig. 4.16 Nomenclature of a single enveloping worm gearset.  

(Shigley’s Mechanical Enginnering Design, Richard G. Budynas – J. Keith Nisbett) 
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4.3.1 Design of a Worm-Gear Mesh 

 

A usable decision set for a worm-gear mesh includes the following steps; 

(Shigley’s Mechanical Enginnering Design, Richard G. Budynas – J. Keith Nisbett) 

 

• Function: power, speed, mG, Ka 

• Design factor: nd 

• Tooth system 

• Materials and processes 

• Number of threads on the worm: NW 

• Axial pitch of worm: px 

• Pitch diameter of the worm: dW 

• Face width of gear: FG 

• Lateral area of case: A 

 

 

4.3.2 WORM GEAR ANALYTICAL AND FEM RESULTS 

4.3.2.1 Worm gear analytical results 

 

In this worm-gear set, a 2-tooth right-hand worm transmits 0,37kW at 1200 

rev/min to a 66-tooth worm gear have been used. The normal pressure angle of 

gear have been chosen as 14,5◦, and assumed the ambient temperature as 35◦C, 

the application factor as 1.25 and the design factor as 1; Then we can calculate 

the design requirements of worm-gear the axial pitch, the center distance, the 

lead, and the lead angle, the gear geometry, and the transmitted gear forces and 

the mesh efficiency, the lubricant sump temperature. 
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Fig. 4.17 Worm - Gear assembly view 

 

A double-start worm will require a 66-tooth worm gear for the desired 33:1 

ratio. This number of worm-gear teeth is well above the minimum recommended 

values in tables (Shigley’s Mechanical Enginnering Design, Richard G. Budynas – 

J. Keith Nisbett). Assuming a center distance of 100 mm for a trial calculation, we 

can find a suitable worm diameter based on assumptions. 

0,875

2,2
w

C
d 

 

0,875100
30

2,2
wd mm 

 

Worm-gear diameter and transverse circular pitch;  

 

2 2 100 30 170g wd C d x mm    
 

 

33 170

5

G Gd mxZ

mx mm

m





  

 

33
0,195

170

g

t

g

N
P

D
  
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16,12
0,195

x

t

p mm
p

 
  

 

 

16,12
5,12

0,3686 0,3683 16,12 5,94

0,6866 0,6866 16,12 11,06

2 30 2 5,12 40,24

2 30 2 5,94 18,12

2 170 2 5,12 180,24

2 170 2 5,94 158,12

5,94 5,

x

x

t x

o

r

t G

r G

p
a mm

b p x mm

h p x mm

d d a x mm

d d b x mm

D D a x mm

D D b x mm

c b a

 
  

  

  

    

    

    

    

   

 
max

12 0,82

2 2 2 2 30 5,12 35W

mm

F Da x x mm



  
 

 

The tangential speeds of the worm (VW) and gear (VG) are respectively 

 

0,03
5,5 0,0825 /

2 2

0,17
5,5 0,4675 /

2 2

w
W w

G
G G

D
V x x m sn

D
V x x m sn





  

  
 

 

The lead of the worm, 

 

16,12 1 16,12x wL p N x mm  
 

 

The lead angle, 

 

1 1 16,12
tan tan 9,7

30

L

d x


 

    

 

 

The normal diametral pitch for a worm gear with ψ = λ is 
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0,195
0,198

cos cos9,7

15,866
0,198

t
n

n

n

p
P mm

p mm
P



 

  

  

 

 

The sliding velocity, 

 

30 52,5
0,4183 / min

12cos 12 cos9,7

W
s

d n x x
V m

x

 


  

 

 

The coefficient of friction, 

 

0,645 0,6450,11 0,11 0,41840,124 0,124 0,116sV xf e e
     

 

The efficiency e, 

 

cos tan cos14,5 0,116 tan9,7
0,515

cos cot cos14,5 0,116 cot 9,7

n

n

f x
e

f x

 

 

 

 

 
  

   

 

The design factor used nd = 1, Ka = 1,25 and an output power  is 3700 W. 

The gear tangential force component and the torque value is  

2

3700 0,5 1850

1740
52,5

33

1850 5,5

336,36 .

out in

in
out

new CD CD

CD

CD

P P xe x W

n
n rpm

i

P T xW

T x

T N m

  

  





  

 

2 2 336,36 1 1,25
4946,47

0,17

t CD d a
G

g

xT xn xK x x x
W N

D
  

 

 

The tangential force on the worm, 
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cos sin cos cos14,5 sin9,7 0,116cos9,7
4946,47 1637

cos cos cos cos14,5 cos9,7 0,116cos9,7
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  

  

  

 
  

   

 

The materials factor Cs and the ratio-correction factor Cm; 

 

 

 

0,0011 ( 0,0011 0,4183)

2 2

0,8 0,8

1000

0,0107 56 5145 0,0107 33 56 33 5145 0,822

0,659 0,659 0,658

1000 0,17 0,035 0,822 0,658 1152192

V xs
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Since (Wt)G < (Wt )all , the mesh will survive at least 25 000 h. The friction 

force Wf is 

 

0,116 4946,47
613,68

sin cos cos 0,116 sin9,7 cos14,5 cos9,7

t

G
f

n

fW x
W N

f x     
  

   

 

The power dissipiated in frictional work Hf is; 

 

613,68 0,4183 256,7f f sH W xV x W  
 

The worm and gear powers, HW and HG, are given by 

 

1637 0,0825 960,05

4946,47 0,4675 2312,48

t

W w w

t

G G G

H W xV x W
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Gear power is satisfactory. Now, 
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The bending stress in a gear tooth is given by Buckingham’s adaptation of 

the Lewis equation, 

 

 
4946,47

90
15,866 35 0,1

t

G

G
n G

W
Mpa

P F y x x
   

 

 

Stress in gear satisfactory. 

 

1,7 1,7 2

min 43,2 43,2 100 108513,5A C x mm  
 

 

 (1 ) 1 0,5 960,05 0,5 480,025loss inH e H x W     
 

 

21740
0,13 0,13 0,571 / (min )

3939 3939

w
cr

n
h mm N m C    

 

 

480,025
35 36

0,571 108513,5

loss
s a

CR

H
t t C

h A x

    

 

 

The rated output torque 

 

0,17
4946,47 420,45 .

2 2

t G
G G

d
T W x x N m  

 

The allowable gear wear load (WG
t)all using Buckingham’s wear equation; 

 

  125 170 35 476000t

G W G eall
W K d F x x N  

 

 

which is smaller than the 1152192 N of the AGMA method.  
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4.3.2.2 Worm gear fem results 

 

Table 4.2 Material properties of the gear ( Ansys ncode material prop.) 

 

 

Table 4.3 Material properties of the worm ( Ansys ncode material prop.) 
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Fig. 4.18 Worm - Gear mesh assembly view 

 

 

Fig. 4.19 Directional deformation distribution of the worm – gear  
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Fig. 4.20 Total deformation distribution of the worm – gear  

 

 

Fig. 4.21 Equivalent elastic strain distribution of the worm – gear 
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Fig. 4.22 Maximum Shear Stress distribution of the worm – gear 

 

 

Fig. 4.23 Von Mises Stress distribution of the worm – gear  
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Fig. 4.24 Safety factor of the worm – gear  

 

 

Fig. 4.25 Damage distribution of the worm – gear  
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Fig. 4.26 Mean biaxiliaty ratio distribution of the worm – gear  

 

 

Fig. 4.27 Min. stress distribution of the worm – gear assembly view 
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Fig. 4.28 Max. stress distribution of the worm – gear assembly view 

 

 

Fig. 4.29 Life of the worm – gear 
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4.3.3 Conclusion 

 

In this study, worm-gear mechanism used in reductor of monorail crane 

have been examined in terms of stress, deflection and fatigue by considering both 

the AGMA Stress and Strength Equations (Spur Gear Design, Shigley’s 

Mechanical Enginnering Design, Richard G. Budynas – J. Keith Nisbett) and finite 

element modeling. 

 

In the study of analytical design, firstly the axial, radial and tangential loads 

have been calculated by using the previous power and torque results and 

secondly bending, and wear of worm-gear mechanism have been taken into 

consideration.  

 

Deflections of gears can not be considered as dangerous values for worm-

gear mechanism because of very small. 

 

 Von Mises stresses of the worm-gear mechanism are convenient 

compared to material (bronze-ateel))  yield strengths. 

 

And finally, fatigue results of worm-gear mechanism are in terms of damage 

and life distributions are beyond cut off which means that both have infinite life.  
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5. SHAFTS 

 

In many enginnering applications, transmission shafts are used in every 

piece of rotating machinery to transmit rotary motion and torque from one location 

to another.  In the design of monorail crane two shafts have been used, one shaft 

transfers power or torque from reductor to wheel, the other shaft balances wheel 

and takes an important role during the carry of loads. 

 

Sometimes shafts carry gears, as in monorail crane, transmitting the rotary 

motion via gears, belts, or chains from shaft to shaft. The shaft may be an integral 

part of the driver, such as a motor shaft or engine crankshaft, or it may be a 

freestanding shaft connected to its neighbor by a coupling of some design. Shafts 

are carried in bearings, in a simply supported configuration, cantilevered or 

overhung, depending on the machine configuration. 

 

 

5.1 Introduction to Shaft Design 

 

In shaft design, both stresses and deflections should be considered. Often, 

deflection can be the critical factor, because it may cause rapid wear on the 

surface of bearings. Due to misalignment of shafts gears, belts, or chains driven 

from the shaft can also de damaged by shaft deflections. The stresses in a shaft 

can be calculated locally for various points along the shaft based on known loads 

and assumed cross sections and the deflection calculations require that the entire 

shaft geometry be defined. Therefore, a shaft is typically first designed using 

stress considerations and then the deflections. In the following study, both the 

analytical and finite element method results of two shafts used in monorail crane 

have examined. 
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5.2 Shaft analytical and fem results 

5.2.1 Wheel Shaft Force and Stress Analysis 

 

 

Fig. 5.1 Gear forces  

 

Since the gear diameters are known from sect.4 and the axial locations of 

the components are set, the free-body diagrams and shear force and bending 

moment diagrams for the shafts can be produced. From spur gear calculations 

section 4, Ft = 13166 N, FR = 4696 N and T = 336 N.m. From summation of forces 

and moments on each shaft, reaction forces at the bearings can be determined. 

For shafts with gears and pulleys, the forces and moments will usually have 

components in two planes along the shaft. For rotating shafts, usually only the 

resultant magnitude is needed, so force components at bearings are summed as 

vectors. Shear force and bending moment diagrams are usually obtained in two 

planes, then summed as vectors at any point of interest. A torque diagram should 

also be generated to clearly visualize the transfer of torque from an input 

component, through the shaft, and to an output component. 
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Fig. 5.2 Resultant forces on gear – wheel and shaft 

 

3 36
13177 711,5 .

2 2

t
xy t

D x
M F x x N m    

 

y-z plane; 

 

Fig. 5.3 a Force diagram 

 

Taking moment at point A; We find Dy 
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159 (500 9.81 98) (13177 50) 711,5yD x x x x    

11641,76yD N  

0; 0y y y TF A D F W      

11641,76 13177 (500 9,81) 0yA x     

 

Fig. 5.3 b Shear diagram 

 

 

 

Fig. 5.3 c Moment diagram 

 



126 

 

x-z plane; 

 

Fig. 5.4 a Force diagram 

 

0;A R xM F x AB D x AD   

 

4796 50 159 1509x xx D x D N    

 

0; 0y R x xF F A D     

 

4796 1509 0 3287x xA A N      

 

Fig. 5.4 b Shear diagram 

 

 

Fig. 5.4 c Moment diagram 
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     
2 2 2 21033,512 (164,4) 1046,5 .B B Bxz yz

M M M N m      

 

     
2 2 2 2710,15 ( 92) 716 .C C Cxz yz

M M M N m       

 

The bending moment is largest at the point b, where the gear is replaced.  A 

trial material for the shaft can be selected at any point before the stress design of 

the shaft, and can be modified as necessary during the stress design process.  For 

the case study, an inexpensive steel, 1020 CD, is initially selected.  

 

The critical shaft diameters are to be determined by stress analysis at 

critical locations. Since the bending moment is highest at point b, potentially critical 

stress points are at its shoulder, keyway, and retaining ring groove. It turns out that 

the keyway is the critical location.  

 

Fig. 5.5 Wheel shaft  

 

    .1046,5 . , 336 . , 0B m B altalt mean
M N m T N m M T     

 

 

 

Table 5.1 First Iteration Estimates for Stress-Concentration Factors Kt and Kts.  

(Shigley’s Mechanical Enginnering Design, Richard G. Budynas – J. Keith Nisbett) 
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Assuming generous fillet radius for gear at B. From Table 5.1, we can take 

Kt  and Kts  as 1.6, 1.5 respectively. For quick, conservative first pass, if we 

assume Kf = Kt, Kfs = Kts. and choose inexpensive steel, 1020 CD, with Sut = 469 

Mpa. For Se, 

0,2654,51 469 0,883b

a utk a S x     

Guessing kb = 0.9, on condition we can check this value when d is known. 

1c d ek k k    

0,883 0,9 0,5 469 186eS x x x Mpa   

For first estimate of the small diameter at the shoulder at point B, lets use 

the DE-Goodman criterion. (Shaft Design, Shigley’s Mechanical Enginnering 

Design, Richard G. Budynas – J. Keith Nisbett). This criterion is good for the initial 

design, since it is simple and conservative. With Mm = Ta = 0,  

 

1/3
1/2

23( )2( )16 fs mf a

e ut

K TK Mn
d

S S

        
    

 

(Shaft Design in Shigley’s Mechanical Enginnering Design, Richard G. Budynas – 

J. Keith Nisbett) 

 

1/3
1/2

2

6 6

3(3 336)16 1,5 2(2,2 1046,5)
0,0562 56,2

186 10 469 10

xx x
d m mm

x x

          
    

 

All estimates have probably been conservative, so by selecting the next 

standard size below 56,2 mm. and check, d = 50 mm. A typical D/d ratio for 

support at a shoulder is D/d =1.2, thus, D = 1.2 x 50 = 60 mm. A nominal 60 mm 

cold-drawn shaft diameter can be used. Assuming fillet radius r = d/10 =5 mm. r/d 

= 0,1. 

 

1,6 , 0,82tK q   

 

1 0,82(1,6 1) 1,49fK      
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1,35 , 0,95ts sK q   
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If we use goodman criterion; 
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If we check yielding; 

 

' ' '

max

393
2,4

127 31,5

y y

y

a m

S S
n

  
   

 
 



130 

 

Also if we check this diameter at the end of the keyway, just to the right of 

point B, and at the groove near at point B, by assuming the radius at the bottom of 

the keyway will be the standard; r / d =0,02. 

0,02 0,02 50 1r x d x mm    

 

1,9 , 0,2tK q   

 

1 0,2(1,9 1) 1,2fK      
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From the above results, the keyway turns out to be more critical than the 

shoulder. Then to be able to obtain more bigger safety factor, we can either 

increase the diameter or use a higher strength material. Unless the deflection 

analysis shows a need for larger diameters, let us choose to increase the strength. 

We started with a very low strength and can afford to increase it some to avoid 

larger sizes. We can try 1045 HR with Sut = 690 Mpa and recalculating factors 

affected by Sut ; 

 

0,2654,51 690 0,8ak x    
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0,8 0,818 0,5 690 225,8eS x x x Mpa   
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225,8 690

a m
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2fn   

 

Let’s check at the groove at E, since Kt for flat-bottomed grooves are often 

very high.  

  11641 25 292 .E xz
M x N m     

 

  1509 25 38 .E yz
M x N m     

 

     
2 2 2 2292 (38) 294,5 .E E Exz yz

M M M N m      

 

To quickly check if this location is potentially critical, just use Kf = Kt = 5.0 as 

an estimate, from Table 5.1. 

'

3 3

32 32 5 294,5
120

0,05

f a

a

K M x x
Mpa

d x


 
    

 

1/2

'

3 3

16 3 16 5 336
3 119

0,05

fs m

m

K T x x x
Mpa

d x


 

   
       

    
 

' '
1 120 119

225,8 690

a m

f e utn S S

 
     

 

1,42fn   

We can look up data for a specific retaining ring to obtain Kf more 

accurately. Appropriate groove specifications for a retaining ring for a shaft 

diameter of 50 mm are obtained from tables (Shaft Design, Shigley’s Mechanical 
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Enginnering Design, Richard G. Budynas – J. Keith Nisbett) as follows: width, a = 

2 mm; depth, t = 1,5; and corner radius at bottom of groove, r = 0.5 mm. With r / t 

= 0.5 / 1,5 = 0.33, and a / t = 2 / 1.5 = 1.33. 
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5.2.2 Wheel Shaft Fem Results 

 

 

Fig. 5.6 Mesh view of the wheel shaft 

 

 

Fig. 5.7 Directional deformation distribution of the wheel shaft 
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Fig. 5.8 Total deformation distribution of the wheel shaft 

 

 

Fig. 5.9 Von Mises Stress distribution of the wheel shaft 
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Fig. 5.10 Safety factor of the wheel shaft 

 

 

Fig. 5.11 Damage distribution of the wheel shaft 
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Fig. 5.12 Mean biaxiliaty ratio distribution of the wheel shaft 

 

 

Fig. 5.13 Max. stress distribution of the wheel shaft 
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Fig. 5.14 Min. stress distribution of the wheel shaft 

 

 

Fig. 5.15 Life of the wheel shaft 
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5.2.3 Pinion Shaft Analytical Results 

 

Fig. 5.16 Pinion shaft  

 

With the weights of electric motor and reductors, the dead weight has taken 

as 75 kg. Since the length of the shaft from the reductor to the frame link is 100 

mm, then Ma = 65 x 9,81 x 0,1 = 63,6 N.m and torque value is 336 N.m 

 

Again if we apply the same assumptions that we made with wheel shaft, 

1020 CD material, with Sut = 469 Mpa. For Se, 

 

0,2654,51 469 0,883b

a utk a S x     

 

kb = 0,9. 1c d ek k k    

 

0,883 0,9 0,5 469 186eS x x x Mpa   

 

Lets use the DE-Goodman criterion. With Mm = Ta = 0,  
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(Shaft Design in Shigley’s Mechanical Enginnering Design, Richard G. Budynas – 

J. Keith Nisbett) 

 

1/3
1/2

2

6 6

3(1,5 336)16 1,5 2(1,7 73,6)
0,029 30

186 10 469 10

xx x
d mm

x x

          
    

 



139 

 

 

Since the goodman criterion is the best conservative, all estimates have 

probably been true, so select the next standard size above 0,029 mm. and check, 

d = 30 mm. A typical D/d ratio for support at a shoulder is D/d =1,2, thus, D = 1,2 x 

30 = 36mm. A nominal 36 mm cold-drawn bigger shaft diameter can be used. 

Assuming fillet radius r = d / 10 = 3,6 mm. r / d = 0,1. 
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If we use goodman criterion; 
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1 32 96
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If we check yielding; 
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  
  

 
 

3yn   

There are two keyway between the pinion and shaft, also reducot and shaft. 

Assumeing the radius at the bottom of the keyway will be the standard; r/d =0,02. 

 

0,02 0,02 36 0,72r x d x mm    

 

2,2 , 0,65tK q   

 

1 0,65(2,2 1) 1,78fK      

 

3 , 0,75ts sK q   

 

1 0,75(3 1) 2,5fsK      

 

'

3 3
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33
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K M x x
Mpa

d x


 
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1/2
2

'

3 3

16 3 16 2,5 336
3 158,8

0,036
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m

K T x x x
Mpa

d x


 

    
        
     
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5.2.4 Pinion shaft fem results 

 

 

Fig. 5.17 Mesh view of the pinion shaft 

 

 

Fig. 5.18 Directional deformation distribution of the pinion shaft 

 



142 

 

 

Fig. 5.19 Total deformation distribution of the pinion shaft 

 

 

Fig. 5.20 Von Mises Stress distribution of the pinion shaft 
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Fig. 5.21 Safety factor of the pinion shaft 

 

 

Fig. 5.22 Damage distribution of the pinion shaft 
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Fig. 5.23 Mean biaxiliaty ratio distribution of the pinion shaft 

 

 

 

Fig. 5.24 Max. stress distribution of the pinion shaft 
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Fig. 5.25 Min. stress distribution of the pinion shaft 

 

 

Fig. 5.26 Life of the pinion shaft 
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5.3 Conclusion  

 

In this study, two shafts have been examined in terms of stress, deflection 

and fatigue by considering both the analytical shaft equations  (Shaft Design, 

Shigley’s Mechanical Enginnering Design, Richard G. Budynas – J. Keith Nisbett). 

and finite element modeling. 

 

In the study of analytical design, firstly stress concentration factors at the 

critical regions of shafts have been found or calculated from tables, and secondly 

taking into consideration maximum torques and moments, the diameters of shafts 

have been estimated by using the DE-Goodman equation. The materials of shafts  

used in monorail crane design have been also chosen from the analytical 

equations.  

 

In the study of fem design, the materials chosen by the results of analytical 

equations have been used and obtained the following results; 

 

Deflections of both shafts satisfy the shaft design requirements suggested 

by in the book, Shigley’s Mechanical Enginnering Design Richard G. Budynas – J. 

Keith Nisbett. 

 

 Von Mises stresses of the both type of shafts are convenient compared to 

shafts material yield strengths and the safety factors are good at the keyway and 

ring regions.  

 

And finally, fatigue results of both shafts in terms of damage and life 

distributions are beyond cut off which means that both have infinite life.  
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For Ø0 = 30º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 

 

 

 

 

Appendix (1) Contact results of wheel and rail in terms of different angles 



148 

 

For Ø0 = 32,5º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 35º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 =  37,5º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 40º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 42,5º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 45º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 47,5º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 =  50º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

 
 

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 52,5º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 55º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 57,5º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Ç Contact Total Stress 

  

Contact Status Contact Penetration 
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For Ø0 = 60º rail type section results 

Vertical Diplacement Total Displacement Sum 

  

Von Mises Stress Contact Pressure 

  

Contact Frictional Stress Contact Total Stress 

  

Contact Status Contact Penetration 
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