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Kanser tedavi süreci birçok yönden belirsizlik içermektedir. Hastalığın dinamik değişen 

doğası ve hastalığı evrelemek için kullanılan testlerin belirli bir oranda sapma içermesi 

hastalığın gerçek durumunu bilmeyi zorlaştırmaktadır. Hekimler, diğer birçok hastalıkta 

olduğu gibi kanser tedavi kararlarını da stokastik bir ortamda vermektedir. Bu çalışma, 

kısmi gözlemlenebilir Markov karar süreçlerini kullanarak kolorektal kanseri tedavi 

sürecini matematiksel olarak modellemeyi amaçlamaktadır. Kısmi gözlemlenebilir 

çevrenin tedavi seçenekleri üzerindeki etkisini anlamak için hastanın gerçek sağlık 

durumunun gözlem durumu olarak tanımlanan kandaki karsinoembriyonik antijen 

seviyesi değişimi ve bilgisayarlı tomografi sonuçları üzerinden tahmin edildiği kısmi 



 

 

 

ii 

gözlemlenebilir Markov karar süreci modelinin sonuçlarını hastanın gerçek sağlık 

durumunun tam olarak bilindiğini varsayan temel bir Markov karar süreci modeliyle 

karşılaştırılmalı değerlendirmesi yapılmıştır. Önerilen modelin çıktıları Surveillance, 

Epidemiology ve End Results veritabanındaki 5 yıllık sağkalım sonuçlarıyla 

karşılaştırılmıştır. Modelin etkinliğinin anlaşılması için bir dizi varsayımsal senaryo 

sunulmuş olup modelleme sürecinde karşılaşılan bazı kısıtlamalardan bahsedilerek 

gelecekteki çalışmalar için önerilerde bulunulmuştur. 

 

 

Anahtar Kelimeler: Kısmi Gözlemlenebilir Markov Karar Süreçleri, Dinamik Karar 

Modelleri, Kolon Kanseri, Karar Destek Sistemleri, Markov Karar Süreçleri 
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ABSTRACT 

 

 

A PARTIALLY OBSERVABLE MARKOV DECISION PROCESS 

APPROACH FOR CLINICAL DECISION SUPPORT IN CANCER 
TREATMENT: IMPLEMENTATION FOR COLON CANCER 
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Supervisor: Assist. Prof. Banu YÜKSEL ÖZKAYA 
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The cancer treatment process involves uncertainty by its nature. Since the disease evolves 

continuously and diagnostic tests used to detect the level of the disease are not totally 

accurate, the actual state of the disease remains unknown.  Therefore, physicians should 

make treatment decisions in a stochastic environment. This study aims to develop a 

mathematical model of the history of the colorectal cancer treatment process by using 

partially observable Markov decision process. To understand the impact of the partially 

observable environment on modeling the history of the disease, a comparative analysis of 

the outputs of the partially observable Markov decision process model, in which the 

patient's actual health status is estimated from  the blood carcinoembryonic antigen level 

change and computed tomography results as observational states, with a basic Markov 

decision process model that assumes the patient's actual health status is fully known. has 
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been made. The output of the proposed model has been compared to 5-year survival 

outcomes that come from Surveillance, Epidemiology, and End Results database. A series 

of hypothetical scenarios have been presented to understand the effectiveness of the 

model and some limitations encountered in the modeling process have been mentioned 

along with suggestions for future studies will be made. 

 

 

Keywords: Partially Observable Markov Decision Process, Dynamic Decision Models, 

Colorectal Cancer, Clinical Decision Support, Markov Decision Process 
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1.INTRODUCTION 

 

In healthcare, physicians often make stochastic decisions when faced with decision-

making problems regarding the diagnosis, treatment, and screening of a disease. Because 

such decisions are fraught with uncertainty, predicting the long-term consequences of the 

prescribed medication as well as the future consequences of the decisions made is 

challenging. In addition to the stochastic decisions of the physicians, the patient's 

responses to the treatment protocol are also among the main causes of uncertainty. Thanks 

to the ability to overcome these challenges, the use of quantitative models becomes more 

and more important. Furthermore, according to 1999 research by the Institute of 

Medicine, medical errors were the major cause that led to death in the United States, with 

roughly 100,000 deaths each year. The annual cost of medical errors was estimated to be 

over $ 37.6 billion, with $ 17 billion of that being attributed to preventable errors 

(Donaldson et al., 2000). Therefore, making efficient, and accurate medical decisions is 

one of the major concerns in the healthcare system.  

 

In theoretical framework and in practice, many mathematical models, such as stochastic, 

Bayesian networks, and decision trees, are being studied to support clinical decision-

making. Among others, Partially Observable Markov Decision Process (POMDP) are 

one of the most convenient modeling methods, with the ability to represent hidden states 

as medical decisions are often made in dynamic and highly stochastic environments. For 

example, medical cases such as “drug infusion”, “ischemic heart disease”, and “breast 

cancer screening & treatment” have been modeled with POMDP (Schaefer et al., 2005). 

In order to perform robust modeling of diagnosis, treatment, and screening policies, it is 

essential to represent the patient's actual health conditions in the model. Actual health 

condition refers to the patient's overall health state and includes all known and 

undiscovered and/or unknown diseases and potential diseases with a high risk of 

development. In other words, it is an indicator of the patient's entire medical history. It is 

hardly possible to determine the actual health condition precisely. Because it depends on 

several variables such as the margin of error in the tests applied, the experience and 

knowledge level of the examining doctor, and the patient's statement of symptoms and 
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any yet unknown factors and/or measurements of an undiscovered characteristics 

Therefore, physical examination, detailed anamnesis, and various biomedical tests 

specific to the suspected disease are used to predict the patient's actual health condition. 

Thanks to POMDP models having the ability to represent hidden states it allows us to 

model the actual health state in a partially observable environment. The use of POMDP 

models is becoming more common for the more realistic modeling of the imperfect 

(partially observable) environment as Markov Decision Process (MDP) models assume 

that the actual state is fully known, which is unlikely in the real world. 

 

1.1. Aim of Study 

This thesis uses a POMDP framework to investigate the history of Colorectal Cancer 

(CRC) in order to address the following research questions: 

1. What is the impact of unobservable health conditions on treatment policies and 

survival? 

2. Does the proposed POMDP model provide an accurate representation for CRC 

treatment process? 

3. Are the results obtained from the proposed POMDP model compatible with the 

literature and guidelines? 

4. Is the model robust to model the different scenarios? 

 

In order to investigate these research questions, Firstly, we propose a novel POMDP 

model to find the optimal treatment policies. We then solve the POMDP model to present 

our performance metrics (Quality adjusted life years, life years and 5-year survival rates). 

Next, we compare our model with current guidelines, studies and authorities in the 

literature. Finally, we present some hypothetical scenarios to analyze the robustness of 

the model. 
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1.2. Outline of Thesis 

A summary of each section of the thesis is given as below: 

 

In Chapter 2, we present a methodological literature review of the POMDP/MDP studies 

in healthcare.  To deeply understand CRC modeling, we also review some colorectal 

cancer-based studies that used methods other than POMDP/MDP for modeling. We 

review the literature in two main categories as cancer-related and non-cancer-related 

studies within the framework of the thesis. We use three sub-categories as diagnostic, 

treatment, and screening to show the range and the context of the studies clearly. 

 

In Chapter 3, we present a brief summary of CRC. We provide a background information 

on CRC and how the disease progresses over time. We explain the prognostic factors of 

the disease and give some epidemiological statistics about the disease. We also mention 

diagnosis procedures, treatment options, and screening policies. 

Chapter 4 provides the general POMDP/MDP modeling details and mentions the most 

commonly used solution algorithms to understand the theoretical background of the 

study. 

 

In Chapter 5, we present our POMDP model of the colorectal cancer treatment process. 

We explain the model parameters in detail and provide the assumptions to clearly frame 

the thesis. Chapter 6 presents our numerical results. In particular, we provide scenario 

analyses to investigate the robustness of the model and perform detailed sensitivity 

analysis for further analysis and investigation. 

 

And finally, in Chapter 7, we discuss the results of the model, compare them with the 

findings in the literature, and current guidelines and present several recommendations for 

further studies.  
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2.LITERATURE REVIEW 

 

In medicine, most decisions are made under conditions of uncertainty. Some known sources of 

uncertainty include a patient's actual health status, treatment response, measurement device 

sensitivity and precision, and physicians' clinical experience. Thanks to the ability to deal with 

uncertainty, the use of decision models in healthcare has increased significantly over the last two 

decades. Markov Models, Bayesian Networks, and Decision Trees are some of the commonly used 

decision-support models. Among the others, POMDP is one of the most appropriate clinical decision 

support models due to their capacity to represent the unobservable actual health status. Because the 

course of the disease is still unknown and there are too many treatment options, cancer is one of the 

diseases that are suitable to mode with POMDP. In fact, all stages of disease management, which are 

screening, diagnosis, treatment, and surveillance, can be modeled with Markov models. Since the 

detection time and age, treatment options, screening, and surveillance procedures can affect the 

patients’ mortality and morbidity, mathematical modeling and finding the implementable good 

solutions can help improve the patients’ quality of life and increase the survival rates. In this chapter, 

studies using POMDP for clinical decision support were carefully reviewed and categorized. 

Although the literature covers a wide variety of such models, we focused on two main categories 

which can support the framework of the thesis and make it clearer. These categories are cancer-related 

applications and non – cancer-related applications of POMDP. Although the literature presents these 

applications in a variety of contexts, we primarily focused on diagnostic, treatment, and screening 

models. We present all reviewed studies in Table 2.1 to frame the concept of review clearly and the 

contribution of the thesis. 

  

2.1. Cancer-Related Applications 

The science of oncology consists of uncertainty that includes the sensitivity and precision of 

diagnostic tests, actual disease stage, possible comorbidities, side-effects, and treatment decisions 

affected by patients, family members, and oncologists. Predictive decisions can be made in all stages 

of disease management, from screening to hospitalization. Although periodic screening can provide 

early diagnosis, the question of whom and when to screen is an important and major part of predictive 

decisions due to factors such as high cost and possible complications. Identifying the stage of the 

disease accurately for diagnosed cancer patients is also a prediction problem that is affected by the 
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physician's experience and the accuracy of monitoring agents. Treatment policies, such as risk-based 

choices regarding surgery, chemotherapy, and radiotherapy, are also affected by the predictions. In 

bladder cancer, “radical cystectomy” versus “transurethral resection”, in lymphoma “single-agent” 

versus “combination chemotherapy”, for gastric cancer “post-resection monitoring” versus “adjuvant 

chemotherapy”, and for breast cancer “modified radical mastectomy” versus “breast-conserving 

surgery” are all examples of risk-related decisions. (Vickers, 2011). Decision to initiate palliative 

therapy is survival prediction for patients who are in the terminal stage. Besides the probabilistic 

decisions, the cost of cancer is an issue that needs to be taken into consideration (Bullement et al., 

2019). Decision models can represent the stochastic framework and offer cost-effective optimal or 

near-optimal solutions. Therefore, the integration of mathematical models in cancer management 

processes increases day by day. In this section, we focus on studies related with POMDP applications 

as clinical decision support. The applications in the literature are examined under three categories as 

diagnostic, treatment, and screening models. 

 

2.1.1. Diagnostic Models 

Decision models can assist physicians in diagnosing the disease and determining the right time to 

start the treatment by providing a myopic view. Diagnostic models are often intertwined with 

screening models. That is because screening models monitor disease progression from the origin. 

However, we found it more convenient to examine models under separate categories that aim to find 

the right time to start treatment and confirm the diagnosis of the disease. In this section, some 

diagnostic studies in the literature are reviewed. 

 

Based on mammographic characteristics and demographic factors, Chhatwal et al. (2010) suggested 

a POMDP model to determine the optimal time to send a woman for biopsy. They formulated the 

problem as a discrete-time POMDP with a finite period. The decision epochs begin at the age of forty. 

The Mammography Bayesian Network was used to predict the likelihood of cancer related on 

mammographic characteristics and demographic factors. The risk scores (probability of cancer) used 

in the study were determined according to the probabilities obtained from Mammography Bayesian 

Network. The actions that the radiologist can take are specified as a “biopsy” or “an annual 

mammogram”. They defined the reward function as the total expected Quality Adjusted Life Years 

(QALYs). They have found that the decision for biopsy should be made by considering the age of the 
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patient. Additionally, they compared the model with radiologist decisions and claimed that the model 

created outperformed radiologists in the biopsy decision-making problem. 

 

 Ayvaci et al. (2018) presented a stochastic modeling approach to optimize "risk-sensitive diagnostic 

decisions” following a mammography examination. The study aimed to find the maximum utility, 

defined as quality-adjusted survival time.  They developed a methodology for assessing patients' risk 

preferences based on post-mammography decisions. In the model, “biopsy", "short-term follow-up", 

and "routine mammography" are options that a radiologist can suggest. They used a discrete-time 

MDP model. To ensure the MDP model is risk sensitive, the reward function of the model is created 

using "invertible utility functions".  The model aims to find the maximum expected survival time. 

The state space represents "the risk status of cancer”. They stated that Decision-Maker (DM) should 

consider the fact that loss of welfare is unavoidable for survival in situations where risk preferences 

are involved. Instead of using a risk-neutral approach, they suggested using an intensive "follow up" 

and "biopsy" plan, in which the myopic nature of medical judgments is more compatible. 

 

 Zhang (2012) proposed a POMDP model to investigate bladder cancer surveillance policies. The 

proposed model aims to find the optimal surveillance policy. They concluded that "age" and 

"comorbidity" have a substantial impact on the optimal surveillance policy. They used QALYs metrics 

as reward criteria. They also stated that as the age of the patient decreases, the follow-up period should 

be frequent, and patients with comorbidities should be followed less frequently, and hence less 

disutility of cystoscopy is, the more intensive surveillance is required. They also modified the 

POMDP model to include a novel "urine-based biomarker test" in the surveillance and compared the 

optimal policy to heuristic policies. They concluded that adding a biomarker does not improve 

optimal policy, but that biomarkers can significantly improve the heuristics policies. 

 

2.1.2. Treatment Models 

In oncology, it is vital to give the right treatment to the right patient at the right time. An oncologist 

should decide the efficient treatment options for each patient while considering the comorbidities if 

any exist, and side effects of treatment. All the available treatment options have serious potential for 

side effects. Physicians should decide whether chemotherapy, radiotherapy, surgery, palliative care, 

or combination therapy should be given to each patient in cancer treatment. Meanwhile, if a patient 
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develops drug sensitivity, physicians can dynamically change the treatment option. Thanks to the 

dynamic nature and myopic view, POMDP models are suitable for cancer treatment modeling. In this 

section, some of the treatment models in the literature are presented. 

 

Cubbage (2004) modeled “the natural history of colorectal cancer” with a discrete vent simulation.  

He compared simulation models with Markov models and concluded that the discrete event 

simulation is more appropriate for modeling course and treatment of CRC. He set the model as a 

population study in which he demonstrated a patient lifetime in the simulation. He also considered 

adenoma incidents in the model as well as cancer incidents.  He compared the model's results to the 

cumulative cancer risk in Surveillance, Epidemiology, and End Results Program (SEER) database 

and preexisting models in the literature. According to this study, about 2.5 percent of the population 

loses almost 10 years of their expected lifespan, meaning that colon cancer shortens the average 

lifespan by 0.24 years. He emphasized that the model was robust when compared to a similar model 

in the literature.  

 

Erenay et al. (2011) studied “the natural history of Metachronous Colorectal Cancer (MCRC)” to 

predict some of the unknown parameters of the disease. In this study, they used discrete event 

simulation to model the course of the disease. They used the real patient data of 284 CRC patients 

from Mayo Clinic. In the model, they simulate the progression of cancer for 5-years as post-treatment 

of primary CRC. In conclusion, even the CRC- related and all-cause mortalities are significantly 

associated with age (they found that 5- years MCRC incidence is gender related (P = 0.005).  They 

found estimated annual probabilities of transition from “adenomatous polyp” to MCRC” and from 

“MCRC to metastatic MCRC”, “annual mortality probabilities of MCRC”, and metastatic MCRC 

treatments within the study framework. They emphasized that the gender factor (more common in 

women) is also as important as an age factor for MCRC.  

 

Joranger et al. (2020) proposed a CRC model using a semi- Markov model to estimate the survival 

rate, lifetime treatment costs, and changing treatment strategies costs. They used real patient data of 

2049 CRC patients. The study was a cohort study, and they used patients with age>70. They described 

health states in the model as “alive without relapse”, “alive with relapse”, and “dead”. They used 

QALY as an objective criterion. They considered recurrence and palliative treatment in their model. 

They constructed different treatment scenarios and compared them in terms of cost, survival, and 
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QALY gained. They computed the estimated treatment cost for a 70-years old CRC patient and found 

out that the use of palliative therapy increases the cost by up to %29. They found that cancer treatment 

increased Life Years (LYs) by 6.05 years. In conclusion, according to their model, the overall CRC 

treatment costs are low to health gain, and palliative therapy is a major part of the treatment cost.  

 

Goulionis and Koutsiumaris (2010) proposed a POMDP model to provide “Early Prostate Cancer”. 

treatment support. This study developed an extended policy iteration model for prostate cancer 

treatment. In the model actions were defined as “watchful waiting”, “radiotherapy”, and “surgery”. 

The aim of the model is minimizing the total discounted costs. The estimated overall cost is defined 

from the range of the approximate costs of prostate cancer screening and treatment. They 

reconstructed the POMDP model as a belief MDP, as control policies are information vectors 

containing all the information necessary to choose an action at a given time. The authors did not 

recommend that the model results be used to directly influence treatment policy. They did, however, 

present proposed models that could be useful for testing potential treatment alternatives at a low cost, 

in a short time, and without putting patients at risk. 

 

Nouri (2019) studied the POMDP method to optimize radiotherapy planning. Cancer patients are 

given radiation therapy to kill tumor cells and prevent them from spreading. Usually, the prescribed 

radiation therapy is given to the patient over several treatment sessions (fractional treatment plan) to 

prevent fatal damage to surrounding healthy organs, called organs at risk. According to the current 

guidelines, treatment is prescribed as an equal dose of radiation to the patient over multiple treatment 

sessions. This procedure ignores, some uncertainties associated with tumor dynamics, biological 

response to radiation, and organ movement that occur during radiation therapy. The proposed 

POMDP model is implemented in two cases of prostate cancer and pediatric ependymoma. The model 

aims to maximize the expected bioequivalent dose of the tumor under the organ at risk survival 

constraint. According to the model findings, the author suggested using lower doses for earlier 

sessions and higher doses for subsequent sessions.  

 

2.1.3. Screening Models 

In cancer treatment, the time of diagnosis and treatment epoch is vital for many aspects. Early 

diagnosis can increase the chances of survival while reducing the treatment costs. For example, the 
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10-year survival rate for Stage 3 colon cancer is 52% whereas it is 92% for Stage 1 colon cancer 

(McLeish et al., 2002). Because early detection of cancer is crucial to the outcome of treatment 

processes, researchers' efforts to develop effective screening technologies to diagnose cancer at an 

early stage have led to the development of many screening methods, such as “clinical breast 

examination”, “mammography”, and “magnetic resonance imaging”, “colonoscopy”, “fecal occult 

blood test”, “sigmoidoscopy” etc. The development of computer-aided modeling technologies has 

increased the use of clinical decision support systems. For this reason, decision support models have 

been widely used in cancer screening. In all decision support models such as Bayesian Network, 

Decision Trees, etc. POMDP models provide an efficient framework to optimize screening decisions 

since their nature allows that the representation of the unobservable health status of a patient. Alagoz 

(2011) presented a brief tutorial for mammography screening to demonstrate the development and 

application of a POMDP model for cancer screening. In this section, some of the screening models 

in the literature are reviewed.  

 

 Leshno et al. (2003) proposed a POMDP model to evaluate the cost-effectiveness analysis of CRC 

screening for the average-risk population, which includes the age range over 50 years old.  They 

compared the effectiveness of the following strategies: “No screening”, “one-time colonoscopy 

screening”, “colonoscopy (10-year interval following colonoscopy)”, “annual fecal occult blood 

testing”, “annual fecal occult blood testing and sigmoidoscopy in the 5-year interval”, “annual 

detection of altered human DNA in the stool”. They evaluated the incremental average cost-

effectiveness ratio for each strategy (additional expected cost divided by additionally expected 

effectiveness). The authors suggested that screening the average-risk asymptomatic individuals is 

highly cost-effective. “One-time colonoscopy” or “annual fecal occult blood testing and 

sigmoidoscopy in the 5-year interval” would be the preferred test for screening, starting screening at 

age 50.  

 

Erenay et al. (2014) presented a POMDP model to optimize the colonoscopy screening policies. The 

goal of the model was to maximize total QALYs. In the model, they represented the patient’s health 

states such as without lesion, having adenomatous polyp, and having CRC. The model led to the 

conclusion that the proposed optimal policies recommend more frequent colonoscopy screening than 

the related guidelines. In addition, the proposed model recommended that women with a history of 

CRC should be screened more frequently than men whereas women without a history of CRC should 
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be screened less frequently than men. This result emphasized the role of gender in optimal CRC 

screening decisions. According to the model younger patients should be screened more frequently 

than older patients. This result contradicts with guidelines that recommend screening starting at the 

age of 50.  

 

 Zhu (2010) modeled the natural history of CRC with POMDP. The model's states are probabilistic 

representations of a patient's health status. At the beginning of each year, the patient can choose 

whether to get a colonoscopy in the consecutive year. The POMDP model was used to include the 

uncertainty since the patient's initial condition is not known by the DM. In the model, the planning 

horizon is between age 40 and 100. The state was defined as the size and the number of adenomas. 

The actions that can be taken by a physician is either perform colonoscopy or wait until the next 

decision epoch. If the action is a colonoscopy observation state is defined according to the type of 

adenomas. Otherwise, the observation state is defined as either normal or symptomatic. They used 

the incremental cost-effectiveness ratio to evaluate the CRC screening policies whereas the 

effectiveness of a screening policy is measured by the total QALYs. They concluded that the optimal 

start age for patients, who receive a one-shot colonoscopy, is 65. According to the referenced 

guidelines, the optimal start age has been given as 61. 

 

Ayer et al. (2012) has developed a POMDP model for a personalized mammography screening policy 

based on previous screening results and individual risk characteristics. Mammography is known as 

the most efficient method for breast cancer screening.  The model contains unobservable disease 

evolution, mammography test features, and two detection strategies as "self" and "screen”. As an 

objective function, they used the maximization of the total expected QALYs. The study considers ages 

over 40.  The state set of the model is defined to include the presence of cancer if any, the prognosis 

of the disease, and the state of death. They compared the model’s result with the current guidelines 

and showed that the proposed personalized screening model gave better results compared to the 

guidelines in terms of total expected QALYs. 

 

In lung cancer detection, the low dose computed tomography is used to detect individuals at high risk. 

However, the outputs of this tomography contain a significant level of false positives. Petousis et al. 

(2019b) proposed a new approach to reduce the false positive rate of lung cancer screening while 

improving true positive rate. They combined machine learning and sequential decision-making 
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methods to construct a predictive model of personalized cancer screening. They presented a POMDP 

framework for learning that gradually improves the screening action selection based on previous 

observations. They trained a dynamic Bayesian network and applied inverse reinforcement learning 

to generate a reward function. In the model, they used three state which are “no cancer” which implies 

healthy status, “uncertain” which implies suspicious state with some abnormalities, and “lung cancer” 

which implies diagnosed lung cancer. Defined actions are to “continue screening with a follow-up 

tomography” or to “recommend an intervention”. Observations in the model are “annual screens and 

interpretation” and “diagnostic intervention findings”. A Dynamic Bayesian Network was used to 

determine the observations as a probability. They used inverse reinforcement learning to 

determine the reward function. (Petousis et al., 2019a). In conclusion, the proposed model reduced 

false positive rates while keeping true positive rate high. Furthermore, the model diagnosed a 

significant number of cancers earlier than the doctors. 

 

 “Cytology” and “Human Papillomaviruses -DNA” are primary screening tests for cervical cancer. 

(Obulaney et al., 2016). Because pre-cancerous lesions evolve slowly, cervical cancer is preventable 

with an efficient screening policy. Human Papillomaviruses -DNA test results are more accurate than 

cytology, yet it is a high-cost test and inaccessible in many communities. Namen Leon et al. (2015) 

proposed a finite horizon POMDP model to define the starting age and test frequency for a patient 

both tests. In the model, they defined the state space with virus infection and cancer stage to represent 

the actual health state. The decision-maker can take one of the three actions as “wait”, “cytology”, 

and “Human Papillomaviruses -DNA” tests for all decision epochs. They solved the model by using 

Monahan’s algorithm with Eagle’s reduction. In conclusion, the results outperformed the guidelines 

in terms of QALYs. 

 

2.2. Non-Cancer-Related Applications 

In medicine, all decision-making steps involve some type of uncertainty. First of all, each patient is 

unique in terms of treatment response. Therefore, physicians should make treatment decisions 

considering the common side effects, rare but highly mortal side effects, comorbidities -if any exist, 

age, gender, and weight of the patient. The diagnosis and treatment approaches of physicians vary 

depending on their theoretical knowledge and clinical experience. In addition, the etiology of most 

diseases is still unknown. Therefore, treatment policies are usually symptomatic rather than oriented 

towards eliminating the causes. The time of diagnosis, the age of the patient, and the treatment policy 
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may affect mortality and morbidity. Physicians are often intuitive when deciding on a patient-specific 

diagnostic and treatment. Especially for chronic diseases like diabetes mellitus, hypertension, and 

heart failure early diagnosis has a crucial effect on survival and quality of life. For such diseases, 

diagnosis and screening models can help to increase the effectiveness of treatment and surveillance 

and decreasing the cost of the procedure. However, there is always a treatment refusal probability for 

the patient. There might also be a shortage of resources for the decision-maker to consider i.e., blood, 

cadaveric organs, bone marrow, etc. Considering all, determining the most appropriate treatment 

policy for each patient in this uncertain environment turns into a very complex decision-making 

problem. Mathematical models can be used as supportive agents to close the gap in the clinical 

experience of physicians. Quantitative models can help track patients’ medical history, improve 

personalized medicine, and eventually reduce mortality. Thanks to the ability to deal with uncertainty, 

MDP/POMDP are also suitable modeling methods for many diseases other than cancer. In this 

section, some studies in the literature are reviewed under three categories. 

 

2.2.1. Diagnostic Models 

Treating a disease begins with diagnosis. Since the diseases progress over time, the time of diagnosis 

affects the success rate. Early diagnosis can help improve the survival. However, detecting disease at 

the beginning of its existence is not an easy task. Especially in Turkey, due to the high number of 

patients per physician and the high patient density, early diagnosis may be missed in some diseases 

where the examination time per patient is short. Due to the increase in the workload of the physicians 

with the Covid-19 pandemic, it has become difficult for the patient to access the specialist. All these 

have further reduced the possibility of early diagnosis in diseases such as cancer, where early 

diagnosis is of vital importance. Physicians use up-to-date guidelines to make the correct diagnosis. 

Disease definitions, diagnostic criteria, and diagnostic tests can change dynamically depending on 

scientific developments. Also, a diagnostic test can give false-negative or false-positive results. 

Therefore, no single diagnostic test is sufficient to diagnose a particular disease. Mathematical models 

are suitable tools to support the decisions for diagnosis and hence they can help reduce the burden of 

physicians by assisting them mathematically and statistically. In this section, some of the studies that 

used POMDP for diagnostic modeling are presented. 

 

Sehr and Bitmead (2017) investigated a version of Stochastic Model Predictive Control with the dual 

optimal policy structure. They propose a POMDP modeling approach to system dynamics with a 
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finite horizon stochastic optimal control problem and demonstrated that the problem can be solved 

with a dual optimal control policy. They explained that the benefit of the dual approach could 

maintain optimality in contrast with the common version of Stochastic Model Predictive Control. 

They presented a case scenario of a hypothetical patient who was being treated for an illness that 

could be controlled but not cured. They described the disease in three-stages with respect to the 

disease level. They demonstrated the use of a costly diagnostic test to update current information 

without impacting patient status in the proposed scenario. They stated that if there was no duality in 

control input, diagnostic tests would result badly for treatment recommendations. 

 

Latha and Vetrivelan (2019) studied on heart disease prediction model using POMDP. Heart related 

disease is one of the most common cardiovascular diseases. The risk factors for heart related disease 

are high blood pressure, increased blood viscosity, diabetes, obesity, etc.  The patient's health 

condition is monitored using observable values and belief states and evaluated with the integrated 

POMDP directed graph. The model aims to accomplish early diagnosis by alerting the patient and 

sending an ambulance by means of fog computing. Physicians can access and track patient situation, 

heart disease risk factors, medical history via “iFogSim”. In the model, they track the patient’s blood 

viscosity as a state and the goal is maximizing the expected long-term rewards. 

 

The Covid-19 pandemic has brought some problems with diagnostic tests. Testing is essential to 

control the spread of the disease. With common testing of infected individuals and their close 

contacts, the environment can be quarantined on time to reduce the spread. However, the source of 

test kits is not limitless and needs to be used smartly. Therewith, not all infected individuals are 

symptomatic and asymptomatic individuals are highly risky to spread of disease.  Singh et al., (2020) 

studied the development of efficient testing strategies for Covid-19 using POMDP.  In the model, 

they aimed to find the minimum number of infected individuals to be tested as soon as possible, under 

the test capacity constraint. They modeled the social contacts as a time-varying, weighted, and 

undirected graph. An individual’s disease status is an unknown parameter until confirmed by 

observations. The available actions are defined as test and quarantine. They assumed that the virus 

could infect only one person during two consecutives periods and, they ignore some limitations of 

the real world like test accuracy, actual contact graphing limitations. Even so, they mentioned some 

sub-optimal solutions.   

 



 

 

 

14 

2.2.2. Treatment Models 

After diagnosing the disease, physicians should decide on the treatment procedure that is to be 

implemented for the patient. Since treatment policies may change with age, comorbidities, and the 

disease situation it is also essential to give the right treatment to the right patient. To accomplish that, 

physicians should evaluate the demographic characteristics and medical history of the patients as well 

as possible side effects of the treatment. The treatment process is stochastic and dynamic so could 

change in every step according to the patient’s response or new treatment options. For physicians, it 

is crucial to track current guidelines to keep up to date. Treatment models can help to find optimal 

personal treatment policy, and artificial intelligence-supported models can help to keep up to date. In 

this chapter, some of the studies in the literature using POMDP are mentioned briefly. 

 

 Ibrahim et al. (2016) developed a mixed Markov model to personalize "anticoagulation therapy" for 

stroke prevention. There are two stages to the research. The doctor analyzes the patient's sensitivity 

to warfarin during in the initiation stage, which is modeled with POMDP. That is the model's 

unobservable feature. Warfarin is an anticoagulant medication that is widely prescribed in worldwide. 

Adjusting a stable dose of warfarin is an important issue for cardiology. 

The physicians use their established belief about patient sensitivity to estimate the optimum warfarin 

dose in the maintenance stage, which is modeled using an MDP. The purpose of model is minimizing 

the total discounted expected risk. The length of the initiation stage is substantially influenced by the 

initial belief regarding the patient's health state, according to the findings. It was also reported that 

the myopically optimal policy performs similarly to the optimal POMDP strategy in terms of average 

risk and time in therapeutic range. 

 

 Bennett and Hauser (2013a) developed a “non-disease-specific computational/artificial intelligence” 

framework to investigate optimal treatment methodology. This framework consists of two potential 

functions: “various health policies, payment methodologies”, and a clinical artificial intelligence 

framework - "an artificial intelligence that can think like a doctor". They used POMDP and dynamic 

decision networks to build a model that learns from clinical data and can establish complex strategies 

with the simulation of alternative scenarios. The model maintains beliefs about the patient's state of 

health and acting as an online agent obtaining new observations. The aim of the model is to 

maximizing improvements in patient health while minimizing the cost of treatment. They claimed 
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that, despite its in early stages, the study outperformed established case rate/cost per service models. 

This highlights the applicability of these approaches to human decision-making performance. 

 

Patients suffering from “End-stage liver disease” apply to a waiting list to reach a cadaver liver 

transplant. Patients can get partial information about the “Liver transplant waiting list” through the 

United Network for Organ Sharing (UNOS) liver allocation system's website. This system aims to 

help patients make better predictions about their queue order on the waiting list.  (Sandikçi et al., 

2008)  proposed a POMDP model to decide which potential liver would be accepted and which would 

be rejected. The decision to admit a transplant is based on the actual health status of a patient and the 

components of the waiting list. They explained the concept of the privacy price of the patient, which 

is the expected number of life lost days related to a lack of accurate waiting list information. They 

proposed two versions of the POMDP model. The first version assumes excellent backlog 

information and gives upper limits on the price of real privacy in comparison. The second version 

relaxes the assumption of “perfect information” and gives an admissible representation of the waiting 

list. The study highlighted that when a patient knows her location on the list is near the top, she is 

considerably more selective, and as her position drops, she gets less selective. However, the study 

has some limitations regarding the traceability of liver transplantation procedures.  

 

2.2.3. Screening Models 

The main purpose of screening a disease is to provide early diagnosis. Because it can prolong the 

survival time and meanwhile reduce the cost of treatment. Some diseases such as “cancer”, “ischemic 

heart disease”, and “diabetes” can be prevented, at least their prognosis can be controlled with early 

diagnosis. One of the advantages of periodic screening of the population is that it can reduce treatment 

costs and saves physician time. It's hard to find solutions to questions about who should be screened 

and when. The screening procedure is very costly. In the meantime, it is not always possible to reach 

people who have not yet had the disease. Some diseases are inherited genetically. In such cases, the 

family should be screened after the diagnosis is made. Some disease risk increases with age or gender 

even if it is not genetic i.e., osteoporosis, heart failure, hypertension, etc. For such diseases, a 

screening policy can be followed from a certain age, or screening policies based on gender can be 

implemented. Screening models aim to determine the optimal screening interval, and most models 

are compared to current guidelines from cost and age range points of view. In this section, some of 

the screening models in the literature are reviewed. 
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 Vozikis and Goulionis (2009) proposed a POMDP model Parkinson's disease. Parkinson's disease is 

a common neurological disorder that can cause a decrease in quality of life for both the patients and 

their families.  The study aimed to determine the critical threshold value required for a surgical 

operation to minimize the total lifetime cost. In the model, actions that physicians could choose was 

defined as medical treatment with incomplete monitoring and surgical operation. The proposed model 

creates a simulation of the disease monitoring. In conclusion, they were able to find the optimum 

average cost policy. In the study, it was also emphasized that the model is sufficient in terms of 

estimation the clinicians’ decisions by implementing it in clinical practice.  

 

Tuberculosis is a contagious disease and can cause death if not treated properly. Early diagnosis is 

vital as it can help prevent the spread of the disease. There are two types of diagnostic tests for 

Tuberculosis as skin test and the blood test. The skin test is more cost-effective but less sensitive than 

a blood test. Kiani et al. (2020) proposed an MDP model to decide on the type of Tuberculosis test to 

minimize the overall costs. For this purpose, they grouped healthcare workers into multiple risk 

groups according to their job and department, and the birth country. They used Approximate Dynamic 

Programming to find a “near-optimal” solution and they suggested a simple policy that could be used 

by healthcare facilities. The proposed policy outperformed the guidelines in terms of costs.  

 

Cipriano et al. (2018) searched for optimal information collection policies within the MDP framework 

on a “birth-cohort hepatitis C virus” screening model. The study was designed as a cohort study that 

focuses on 50 year old patients at a causal hospital visit. In each period, the policymaker can choose 

between actions defined as screening the current 50 year old group and purchasing sample 

information on the parameters that influence the decision. The goal is maximizing the expected net 

monetary benefit and they suggested that it may be optimal to delay information gathering until 

information affect decision-making more rapidly. They emphasized that for hepatitis C virus 

screening, the proposed cost-optimal policy outperformed current guidelines, given the initial beliefs.  
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2.3. Summary of Literature 

With the widespread transfer of medical data to the electronic environment, the use of mathematical 

models in medical science is increasing. Mathematical models not only contribute to the 

understanding of modeled diseases but also enable obtaining useful statistics about the course of the 

disease and evaluation of treatment policies over many criteria. In the previous section, we gave a 

brief summary of the studies on Markov modeling in the medical field. We have shown the studies 

mentioned in this section by categorizing them into several categories. These categories are the type 

of disease, category of the study (diagnostic, screening, and treatment), type of study based on target 

data (population or cohort), objective function, and methodology used. In addition, we give the year 

of the study, and the data type of the real or non-real data as R, N, respectively. In Table 2.1, we 

present our proposed model with the specified categories to show the place of our study in the 

literature. 
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Table 2. 1. Reviewed studies in the literature with the contribution of our work 

Study Disease Category of 
Study 

Type of Study 
(Data) 

Objective Function 

(Cost/Reward) 

Method Data 

(R/N) 

Leshno et al. 

(2003) 

Colorectal 

Cancer 

Screening Cohort 

(age>50) 

Discounted LYs earned, costs 

(cost effectiveness analysis) 

POMDP SEER 

Cubbage (2004) Colorectal 

Cancer 

Treatment Population Years of life loss Discrete Event Simulation SEER 

Sandikçi et al. 

(2008) 

End-stage liver 

disease  

Treatment Cohort Maximizing the patient’s 

expected total remaining life  

POMDP UNOS  

Vozikis and 

Goulionis (2009) 

Parkinson’s 

Disease 

Screening Cohort Minimizing the total lifetime 

cost 

POMDP R 

Goulionis and 

Koutsiumaris 

(2010) 

Prostate Cancer Treatment - Minimizing the expected total 

discounted cost  

Discrete-time POMDP N 

Zhu (2010)  Colorectal 

Cancer 

Screening Population QALYs/ Cost Effectiveness 

Ratio 

POMDP From many 

sources 
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Chhatwal et al. 

(2010) 

Breast Cancer Diagnostic  Cohort Study 

 (age >40) 

QALYs Finite-period discrete-

time POMDP 

R 

Erenay et al. 

(2011) 

Colorectal 

Cancer 

Treatment Cohort 

(50<age<79) 

Estimating unknown parameters 

(survival, incidence, etc.) 

Discrete Event Simulation R 

Zhang, (2012) Bladder Cancer Diagnostic Cohort QALYs POMDP R 

Ayer et al. (2012) Breast Cancer Screening Population 

(age>40) 

QALYs Finite Horizon POMDP From many 

sources 

Bennett and 

Hauser (2013a) 

Non-disease 

specific 

Treatment Population Maximizing the improvement in 

patient health, Minimizing cost 

of treatment 

POMDP/DDN/AI R 

Erenay et al. 

(2014) 

Colorectal 

Cancer 

Screening Cohort 

(age>50) 

QALYs POMDP From many 

sources 

Namen Leon et 

al. (2015) 

Cervical Cancer Screening Population QALYs Finite Horizon POMDP N 
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Ibrahim et al. 

(2016) 

Atrial 

Fibrillation 

Treatment Cohort Minimizing the cumulative 

discounted expected risk 

POMDP/MDP R 

Sehr and 

Bitmead (2017) 

Hypothetical 

Disease 

Diagnostic - Minimizing total expected costs POMDP N 

Cipriano et al. 

(2018) 

Hepatitis C 

Virus 

Screening Cohort 

(age >50) 

Maximize the expected net 

monetary benefit 

MDP N 

Ayvaci et al. 

(2018) 

Breast Cancer Diagnostic Cohort  

(age > 40) 

Maximize the total expected 

quality adjusted longevity  

Finite-horizon discrete-

time MDP 

R 

Nouri (2019) Prostate cancer/ 

Pediatric 

ependymoma  

Treatment Population Maximizing the expected 

biological equivalent dose of 

tumor  

POMDP R 

Petousis et al. 

(2019b) 

Lung Cancer Screening Cohort 

(nodules>6mm) 

Maximizing early disease 

detection while minimizing false 

positives 

POMDP/Dynamic 

Bayesian Network 

NLST 

Latha and 

Vetrivelan 

(2019) 

Heart Disease Diagnostic Population Maximizing the expected long-

term rewards 

POMDP N 
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Kiani et al. 

(2020) 

Tuberculosis Screening Cohort Minimizing the overall costs MDP R 

Singh et al. 

(2020) 

COVID-19 Diagnostic Population Minimizing total number of 

infected individuals 

POMDP N 

Joranger et al. 

(2020) 

Colorectal 

Cancer 

Treatment Cohort 

(Average age 

=70) 

Estimate expected lifetime cost, 

survival & QALYs 

Semi Markov Model R 

Our work Colon Cancer Treatment Cohort 

(age >50) 

Maximizing the expected LYs, 

QALYs  

POMDP N 
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3.BACKGROUND ON COLORECTAL CANCER 

 

Colorectal cancer is the world's third most frequent cancer as the second highest cause of 

cancer-related fatalities. According to Global Cancer Observatory (GLOBOCAN) 2020 

data, new colorectal cancer cases were 1,880,725; and the number of deaths due to CRC 

were 915,880, the incidence and mortality ranking of CRC in Turkey is the same as the 

worldwide ranking (Sung et al., 2021a). Despite the high incidence and mortality rates, 

in early detection, colorectal cancer is not dangerous and is highly curable. Thanks to 

developing screening methods and increasing treatment options, mortality rates have 

decreased by approximately 25% in the past 25 years (Mayer, 2018).The course of the 

disease and survival rates depend on many factors such as tumor grade, gender, age, and 

family history. The five-year relative survival is 90.6% in patients diagnosed at a localized 

stage, and in a regional stage the rate is 72.2% and in patients with distant metastases is 

only 14.7% (Surveillance Epidemiology and End Results Program, 2018). The 

probability of developing CRC in the whole population is 4.2%. The risk for men (4.3%) 

is slightly higher than for women (4%) (Sung et al., 2021b) The CRC incidence among 

people under 50 is extremely low and increases with age. Individuals who have a first-

degree relative with CRC are twice as likely to develop it (Altekruse et al., 2010). In this 

section, we briefly explain the fundamental characteristics of colorectal cancer with the 

help of textbooks, current guidelines, and experts' help and we also present several 

measures and methods to analyze the lifetime of patients. 

 

3.1. Overview for Colorectal Cancer 

In this thesis, our objective is to develop and evaluate a mathematical model in order to 

demonstrate the colorectal cancer treatment history. To deeply understand the model, it 

is essential to understand the nature of colorectal cancer and current treatment protocols. 

Therefore, we give a brief background for CRC. 

 

The colon and rectum are the last parts of the human digestive system where the 

absorption and excretion of digested food take place. The sections of the colon are shown 

in Figure 3.1. 
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Figure 3. 1.  Parts of the colon (National Cancer Institute, 2022) 

 

While the exact cause is still unknown, the transformation of healthy colonic mucosa into 

invasive carcinoma is thought to result from a series of molecular size disruptions that 

include microsatellite instability and chromosomal instability. In most cases, colorectal 

adenomas are at the origin of cancer (Mayer, 2018). The following section describes the 

formation and progression of cancer in detail. 

 

3.1.1. Molecular Pathogenesis 

A polyp is a protrusion that can be seen from the surface of the mucosal surface. Polyps 

are pathologically divided into three groups as “juvenile polyps”, “hyperplastic polyps”, 

and “adenomatous polyps”. Only “adenomatous polyps” are categorized as 

precancerous among these three types of groups, and only about 1% of “adenomatous 

polyps” progress to malignancy. “Adenomatous polyps” are found in the colons of 30% 

of middle-aged people and 50% of the elderly. Once adenomas are detected, colonoscopy 

should be performed periodically in such patients as the risk of developing colorectal 

carcinoma is higher than average. Since adenomatous polyps become clinically 

significant in about 5 years, the recommended frequency of colonoscopy is every 3 years 

(Mayer, 2018). The following Figure 3.2 describes the progression of the normal colon 

to carcinoma. 
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Figure 3. 2.  Adenocarcinoma sequence from normal colon to carcinoma (Kumar et al., 

2013) 

 

Figure 3.2. shows the transformation of a normal colon to adenocarcinoma in four steps. 

(Kumar et al., 2013) In the first step, the normal colon with cancer suppressor genes 

mutation is shown. This step is the beginning of the history of CRC, and it is almost 

impossible to detect cancer at this step. Mutations continue cumulatively, which puts the 

mucosa at risk. Later, the process continues with additional loss of cancer suppressor 

genes that lead to adenoma formation. Eventually, cumulative gene mutations develop 

into adenocarcinoma. 

 

3.1.2. Risk Factors of CRC 

Most occurrences of colorectal cancer are caused by environmental factors rather than a 

genetic background. Nonetheless, up to 25% of patients have a family history (Mayer, 

2018). Regarding the incidence, geographical differences are mostly related to dietary 

habits and unrelated to genetic differences. Diet, particularly diets rich in animal fat and 

calories, is an important causative role. Therefore, the incidence rate is higher in upper 

socioeconomic populations living in urban areas than in lower socioeconomic 

populations. Polyps can become cancerous due to factors including such animal fat 

consumption, insulin resistance (obesity), and fiber deficiencies. Smoking is one of the 
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reasons, which is thought to be associated with the incidence of colorectal adenoma, 

especially in smokers over the age of 35 (Mayer, 2018). Individuals with chronic 

“inflammatory bowel disease” are also at an increased risk of cancer. Both diseases have 

the same symptoms, such as “bloody diarrhea”, “abdominal cramps”, and “congestion”. 

Therefore, it is difficult to detect cancer for patients suffering from inflammatory bowel 

disease”. 

 

3.2. Diagnosis and Treatment Methods 

At the onset of the cancer, the majority of patients usually do not show any symptoms 

until the disease progresses and metastasis occurs. This is one of the reasons why 

screening is so vital for the early detection of precancerous and/or invasive cancer. 

Depending on where the tumor is located, the symptoms may vary. The most common 

symptom is iron deficiency anemia with an unknown cause (for postmenopausal women 

and all men). The other common symptoms are changes in bowel habits, abdominal 

cramping, occasional obstruction, and fatigue. These symptoms may lead physicians to 

another disease. For example, the rectal bleeding and altered bowel habits can lead the 

physicians to both CRC and hemorrhoids. Therefore, differential diagnosis is crucial to 

make the accurate and correct diagnosis. For the diagnosis of colorectal cancer, 

physicians make a physical examination, take clinical anamnesis, and examine blood 

measurement (complete blood count, biochemical tests) and Positron Emission 

Tomography and Computed Tomography (PET/CT) results, and then they perform 

colonoscopy and take a sample for biopsy. If any cancerous lesion is detected, then the 

treatment protocol begins.  

 

3.2.1. Cancer Staging 

There are several ways to classify cancer as pathological. The most used ones are 

American Joint Committee on Cancer (AJCC) classification, Modified Astler-Coller 

Duke's, and SEER classification. Duke's classification classifies cancer as A, B, C, D. 

SEER uses a more general three-fold classification as regional, distant, and metastasis. 

Among these classifications, the most detailed and widely used one is the AJCC 

classification. There are several editions as 5th, 7th, and 8th. The 7th and 8th editions are 
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extended versions of the 5th edition. In Turkey, oncologists are frequently using the 5th 

edition. Therefore, we used the AJCC 5th edition in the thesis for classification. 

 

TNM Classification Method: In the TNM abbreviation, T, N and M refer to “depth of 

tumor penetration”, “lymph node involvement”, and “distant metastases”, respectively. 

The stage of the disease is assumed to be determined by surgical resection and 

pathological analysis (biopsy) of samples. Colorectal cancer often metastasizes to the 

liver, and other common sites of metastasis are the lungs and bones (Kumar et al., 2013). 

Stage 0 (Tis; N0; M0): The newly formed malignancy is isolated in the “inner lining of 

the colon”. 

Stage I (T1–2; N0; M0): Superficial lesions, regional lymph nodes are not involved, and 

tumors cannot extend beyond the “submucosa (T1)” or “muscularis (T2)”. 

Stage II (T3-4; N0; M0): Tumors pass through “the muscularis propria” however, spread 

to lymph nodes does not occur 

Stage III (TX; N1-2; M0): Regional lymph nodes involvement are observed. 

Stage IV (TX; NX; M1): Metastatic spread to areas such as liver, lungs, or bones 

 

 

Figure 3. 3. Colorectal cancer staging (Mayer,2018) 
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Figure 3.3 shows pathologic staging of CRC (Mayer, 2018). In Stage I, II, and III the 

cancer is local. In Stage IV, it requires a multidimensional treatment protocol as the tumor 

spreads throughout the body. 

 

3.2.2. Treatment Procedure of CRC 

The treatment procedure may differ according to the tumor stage, patients’ age, 

comorbidities, and medical history. The primary treatment of colorectal cancer is a 

surgical operation, if possible. If a patient is not suitable for immediate surgery, 

chemotherapy, radiation therapy or combination therapy can be applied. Recently, 

targeted therapy has been being used in cancer treatment, but this option is still in the trial 

phase. 

 

Surgical Operation: The primary treatment for colorectal cancer is the complete removal 

of the tumor, if possible. The surgery is performed to remove malignant tissue and clean 

the colon. Before surgery, physical examination, Carcinoembryonic Antigen (CEA) level 

measurement, biochemical assessment of liver function, comprehensive CT scan, and 

colonoscopy (if possible) are done to detect concurrent polyps. A careful surveillance 

policy should be followed for 5 years after resection which includes CEA levels 

measurement, and CT scan.  The examinations should be performed at 3–6-month 

intervals. The probability of recurrence of colon cancer in recovered patients is 3-5%, and 

the probability of developing adenomatous polyps is > 15%. Since recurrences after 

surgery mostly occur within the first 4 years, it is reliable to use 5-year survival as an 

indicator (Mayer, 2018). 

 

Chemoradiation/radiation therapy: The purpose of chemoradiation therapy is to 

prevent the cancer spread to other organs and/or lymph nodes. The use of radiation 

therapy alone as a primary treatment is not suggested. Radiation therapy combined with 

chemotherapy, on the other hand, can substantially reduce relapse and enhance overall 

survival (Mayer, 2018). 
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Chemotherapy:  The purpose of chemotherapy is to prevent cancer cells from feeding 

and to enable the cancer cells to shrink and disappear. Chemotherapy cures can provide 

a median survival of 2 years in metastatic disease. In addition, monoclonal antibodies 

(targeted therapy) are effective in advanced cases by targeting the epidermal growth 

factor receptor. Targeted therapy responds particularly well in recurrent cases (Mayer, 

2018). 

 

Adjuvant Therapy: The purpose of adjuvant therapy is to increase the effect of surgery 

with combining it with chemo and/or radiation therapy. Adjuvant therapy can be applied 

pre-and post-surgery. It is recommended in patients with a high probability of recurrence. 

Adjuvant therapy can reduce the risk of recurrence and improve response rates in patients 

with stage II and III tumors (Mayer, 2018) 

 

In the thesis, we considered the treatment protocol as a treatment type, not on a drug basis. 

Also, we ignored radiation therapy for computational simplicity. We determined 

treatment methods as surgery, chemotherapy, adjuvant chemotherapy, and 

chemoradiotherapy. 

 

3.3. Screening Policies 

Effective screening programs can prevent the formation of colorectal cancer by 

eliminating adenomatous polyps, and early detection of cancerous polyps increases the 

success rate of treatment. The cost of screening is much lower than the cost of treatment 

and healthy individuals are the most important issue. Therefore, it is an important step in 

cancer treatment. Individuals with a family history of cancer and the elderly population 

over the age of 50 are the targets of these programs. Screening methods include rectal 

examination, stool test, imaging, and endoscopy. According to guidelines, healthy 

persons with no family history should be screened without colonoscopy every five years. 

After the age of 50, the entire population should be screened and colonoscopied every ten 

years.(National Comprehensive Cancer Network, 2022) 
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4.THEORATICAL BACKGROUND 

 

This chapter first introduced the basics of the MDP model, which has the same theoretical 

background as the POMDP model. As explained later in this section, POMDP is a relaxed 

version of MDP where system states are not fully observable. After the MDP model 

explanation, we present the theory of the POMDP models in this framework. After 

explaining the theory, frequently used exact and approximate solution methods are given. 

Finally, we briefly explained QALY metrics and give some methods for utility calculation. 

 

4.1. Markov Decision Process 

MDPs, also known as “Stochastic Dynamic Programming” or “Stochastic Control 

Processes”, are sequential decision-making models used to determine the optimal 

solutions when the environment changes over time and/or the outcomes of the decisions 

are uncertain. MDPs are an extended version of Markov chains with an integrated 

decision set and state-based reward function (Braziunas, 2003). At each decision epoch, 

an agent or a DM chooses an action based on information gathered from the current 

system state that is conditionally independent of the history. Therefore, the decision-

making procedure conforms to the Markov Property (Memoryless; depends on the history 

of the process only through the current state). MDP is a powerful mathematical modeling 

tool that can be used to solve a wide variety of real-world issues due to its capability to 

handle stochastic and dynamic nature. Thanks to the state-based immediate one-stage 

reward function that allows the agent to learn the environment online, MDP is also 

applicable for reinforcement learning.  

 

4.1.1.MDP Model Formulation 

An MDP can be characterized by a 4- Tuple process (S, A, T, R) with states, actions, 

transition probabilities, and reward function. The process progresses with all its 

components at a specified point over time known as the decision epoch. The decision 

period can be either discrete or continuous in a finite or infinite horizon, depending on 

the scope of the model (Puterman, 2014). For the sake of clarity, the finite-horizon 

discrete-time model is explained below: 
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The elements of MDP model for time period t, where t	=	{1,	2,	….,	N} are: 

• a set of states, S: Representatives of the environment/ the system in the model (st	ϵ	S) 

• a set of actions, A: All possible actions that a DM can choose at state s (0	ϵ	As) 

• the transition probability function, T:	S	×	A →	P(6, 0, 6′)=	 

P(6!"# = 6′|6! = 6,	0! = 0): The probability of reaching the next state, s'	at time t	+	

1 upon choosing action 0 in state s	at time t. All probabilities are stationary, so it is 

independent of t. 

• the reward function, R: S	×	A → R	(s,	0): The expected reward or cost of choosing 

action 0 whenever in state s. 

 

The scope of the model is explained as follows: At a certain time t, the DM/the agent 

chooses an action from the action set of the state s, As. The declaration of the chosen 

action generates a reward based on the state-dependent reward function and moves the 

agent to the next state based on transition probabilities. This decision-making process 

repeats for each decision point over time. (See Figure 4.1.) The model aims to determine 

the optimal policy structure. (π:	S	→	A) that guides the DM to choose the most efficient 

action in each time period t		to minimize/maximize a particular objective function such 

as “the average reward per unit time”, “the total reward” or “the expected total discounted 

rewards”. The optimal policy (π) is an action-selection strategy that leads DM to the 

optimal objective function, called the value function. Optimal policies may be stochastic 

or deterministic, stationary, or non-stationary according to the model framework. 
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Figure 4. 1. A finite part of an MDP 

 

4.1.2. Value Function 

The aim of the model is to find a policy π, which gives us the optimal objective function 

namely the optimal value. The most frequently used optimization criteria are “the 

expected total rewards”, “the average reward per unit time”, or “the expected total 

discounted rewards”. For a maximization problem, the following Bellman equations can 

be recursively solved to generate value functions. (Bellman and Kalaba, 1965) 

   

@!
∗(6) = {A(6, 0) + ∑ P(6, 0, 6%). @!"#

∗ (6′)&%'( })'*!
+),   for t	ϵ	{1,	2,	...,	N-1} and s	ϵ	S	  (4.1) 

@-
∗ (6) = A-(6)  for all s	ϵ	S	         (4.2) 

 

The Bellman equations give the optimal utility (value) function, u* for a particular system 

state, s at time	t. Applying equations for each state along the planning horizon gives an 

optimal policy map. The optimal action 0* is chosen to maximize the right-hand side of 

the Equation (4.1) while Equation (4.2) is the boundary condition where A-(6) represents 

the expected total reward in state s and in period N. The period N represents the end of 

the planning horizon, in which the overall future results obtained. Therefore, usually no 

decisions are made in period N. 
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The optimal value function that maximizes the expected total discounted reward for a 

finite horizon MDP problem can be obtained by iteratively solving Equation (4.3) (Shani 

et al., 2013). For calculating the expected total discounted rewards, a predefined discount 

factor,	λ where 0	≤	λ	<	1 is applied to value function. When λ	=	1, the optimization 

criterion turns into the expected total reward. 

 

I!
∗(6) = {A(s, 0) + λ	∑ P(6, 0, 6%). I!"#

∗ (6′)&%'( })'*!
+),   for t	ϵ	{1,	2,	...,	N-1} and s	ϵ	S			(4.3) 

 
where I!∗(6) is the optimal value function of state s.	

	

4.1.3. Optimal Policy 

The policy π*	(6)	is the optimal stationary action selection strategy when the system is in 

state s. In order to find the optimal policy π*, Equation (4.5) must be solved recursively 

by using Equation (4.4). 

I∗(6) = {A(s, 0) + λ	∑ P(6, 0, 6%). I∗(6′)&%'( })'*!
+),    for s	ϵ	S			   (4.4) 

π*	(6)	=	argmaxπ	I∗(6)     for s	ϵ	S			   (4.5) 
 
where π*	(6)	is the optimal policy and I∗(6) is the optimal value function for state s.	

 

4.1.4. Applications of MDP 

Because of the Markovian and myopic features, MDP models are efficient tools for a 

wide range of real-life applications. Thanks to the advances in artificial intelligence, 

which has led to real-time learning and improvement more accurately, the MDPs have 

become suitable for different areas such as medical decision-making (Schaefer et al., 

2005), the robot industry (Spaan and Vlassis, 2004). For further reading see Chapter 2. 
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4.2. Partially Observable Markov Decision Process 

The state that reflects the environment we are examining with 100% accuracy is called 

the actual state. MDPs assume that the system state is the actual state. However, in most 

real-world applications, the environment is affected by a variety of hidden and observable 

parameters. POMDPs assume that the environment is not fully observable as it is in real 

life. Therefore, it adds a new expression to the model, the observation state, which is an 

estimation of the actual state. The observation state is based on the collected observations 

about the system state. In other words, POMDP is the general form of MDPs with the 

integrated observation state when the system state is not fully known. The observations 

state,	O!  is a probabilistic function of actual (core) system state, 6!.  (O!	=	y.	6!  where y	

is the probability factor between 0 and 1and if y	= 1, POMDP is reduced to the classical 

MDP model). Unlike MDP, the POMDP model also keeps a record on an internal 

information (belief) state as a representation of the history of the process which is called 

the belief state. POMDP models can be reduced to continuous belief- state MDPs by 

substituting POMDP's belief states for MDP's system states. The need to keep track of 

the complete history through the belief state concept makes the process non-Markovian. 

On the other hand, maintaining a belief state is still Markovian (memoryless) since the 

next belief state is determined only by the current belief state and current action and 

observation. 

 

4.2.1. MDP Model Formulation 

A POMDP is an n- Tuple process (S,	A,	Z,	T,	O,	R) with states, actions, observations, 

transition probabilities, observation probabilities, and reward function. S, A, T and R are 

MDP elements as defined in Section 4.1.1, known as the underlying MDP of the POMDP. 

The decisions can be taken at discrete points or continuously and in a finite or infinite 

horizon, depending on the scope of the model (Monahan, 1982). For the sake of clarity, 

the finite-horizon discrete-time POMDP model with a total of N periods is explained 

below:		
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The elements of POMDP model for time period t, where t	=	{1,	2,	….,	N} are: 

• a set of states, S: Represents the actual (core) states of the environment in the model, 

(6!	ϵ	S) 

• a set of actions, A: All possible actions that a DM can choose in state s. (0	ϵ	As) 

• a set of observations, Z: Set of all possible observations that can be realized during 

the process. (O!		ϵ	Z)	 

• a transition probability function, T:	S	×	A → 	P(6, 0, 6′)=	 

P(6!"# = 6′|6! = 6,	0! = 0): The probability of reaching the next state s'	at time t + 

1 by choosing action 0 when in state s at time t. 

• an observation function, Z:	S	×	A	→	Z	(s′, 0, O)	=	P	(O!"#=	o	|	0! = 0,	6!"# = 6′) : 

The probability of observing o, given the chosen action 0, and reaching state s′.  

• a reward function, R:	S	×	A → R	(s,	0): The expected reward/cost of choosing action 

0 in state s. 

 

4.2.2. Value Function and Optimal Policy 

After adding the observation state and observation probabilities to the MDP value 

function, the discounted POMDP value function takes the form in Equation (4.6).  

 

I!
∗(6) = {A(s, 0) + λ	∑ P	(6, 0, 6’). ∑ Z	(6’, 0, O)&%'( . I!"#

∗ (6′)&%'( })'*!
+),    (4.6) 

for t	ϵ	{1,	2,	...,	N-1} and s	ϵ	S			        
 

The policy π*	(6)	is the optimal stationary action selection strategy when the system is in 

state s. In order to find the optimal policy π*, Equation (4.7) and Equation (4.8) must be 

solved recursively. 

 

I∗(6) = {A(s, 0) + λ	∑ P(6, 0, 6%). ∑ Z	(6’, 0, O)&%'( . I∗(6′)&%'( })'*!
+),  for s	ϵ	S			  (4.7) 

π*	(6)	=	argmaxπ	I∗(6) for s	ϵ	S			        (4.8)
      
where π*	(6)	is the optimal policy and I∗(6) is the optimal value function for state s. 
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The scope of the model is explained as follows: At specified time period t, the DM/the 

agent chooses an action from the action set of the actual(core) state s. With the declaration 

of the chosen action the system generates a reward, and the agent moves to the next state 

according to the transition probabilities and the DM acquires an observation associated 

with the actual state as an output of previous action. Since the actual state is not fully 

observable, the DM receives an estimation of the actual state based on the observation 

received and the previous action, which is the belief state, and the belief state is updated. 

This decision-making process repeats for each decision point over time (See Figure 4.2). 

The purpose of the model is to find an optimal policy structure (π:	S	→	A) that maps the 

states to the actions. Optimal policies may be stochastic or deterministic, stationary or 

non-stationary according to the model framework. The decision network of POMDP is 

shown in Figure 4.2. 

 

 

Figure 4. 2. Decision network of a finite part of a POMDP  

 

For a more detailed background on the concept of POMDP theory, one can refer to 

Lovejoy (1991) and Monahan (1982) 
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4.2.3. Representation Methods of POMDP 

Model representation is an important step in solving POMDP efficiently. Two methods 

are commonly used in the literature. The first is the continuous belief state MDP 

approach, which is based on modelling POMDPs as MDPs. Although this approach 

transforms a finite-state POMDP model into a continuous state MDP model, it still 

reduces the computation time. The second is the policy tree approach, where the POMDP 

model is represented by policy trees. It also eases the calculation, and the policy tree 

representation is generally used in policy iteration and heuristic search algorithms.  

 

4.2.3.1. Belief-MDP  

To understand the belief state MDP, we must first understand the concept of belief status. 

Unlike MDP, a POMDP model also keeps a record on an internal belief, b	(information) 

state as a representation of the history of the process.  

• a belief state, b: b	=	P	(s	|h) After witnessing history h, the probability of being in 

state s 

where h	is: ℎ! = (0.,	O#,	0#,	O/,0/,	O0,……,	0!1#,	O!)		

 

The belief state b	ϵ	B	is a probability function of the actual state. For s	ϵ	S, b(s) ϵ [0, 1], 

and ∑ X(6)&	3	( 	=	1. The belief state can be updated online according to the Bayes rule 

(state estimator). At any time period t, the agent evaluates the belief state, X! using a state 

estimator based on the prior belief state X!1# , the last action 0!1# , and the current 

observation O! as presented in Equation (4.9).  

 

b(s′)	=	P	(s′|o,	0,b)	=	
4(&’,),8).∑ <=&,),&">.?(&)#"$!

∑ 4(&’,),8)#"$! ∑ <(&,),&").?(&)#"$!
 for s	ϵ	S	    	(4.9) 

 

The initial belief state X. is given by the DM or chosen at random. Since the belief state 

is the probability distribution over the system states, the belief space B(s) is also a 

probability space. If the probability of being state 6#=	p, then probability of being state	6/ 

is 1 - p to satisfy ∑ X(6)&	3	( 	=	1.  
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Therefore, the belief space of two state POMDP is a line segment as presented in Figure 

4.3. As the number of states increases, the belief space becomes hyperplanes. To keep it 

simple, the rest of this study uses one-dimensional belief space for representations. 

 

Figure 4. 3. Belief space representation for a two state POMDP 

 

POMDP models can be written as MDP models whose system states are belief states. The 

optimal solution of the POMDP is the optimal solution of the belief MDP. This belief 

MDP is a 4- Tuple processes (B,	A,	T,	R) where: 

• infinite set of belief states, B: (b	ϵ	B) 

• a set of actions, A: (0	ϵ	As)  

• transition function, T: P(X, 0, X′)=	∑ Z(X%|X, 0, O). Z(O|0, X)8	∈	A  where Z(X%|X, 0, O) 

= 1 if state estimator (b,	0,	o) = X%, Z(X%|X, 0, O) = 0 otherwise. 

• the reward function, R:	r	(X,	0) =∑ X(6)A(6, 0)&	∈	(  

 

The belief state is a probability distribution. Therefore, the belief MDP is in continuous 

space even if it is the discrete state space of the respective POMDP. For this version of 

POMDP, policy π maps belief states to actions (π:	B	→	A). For belief-MDP, the value 

function is a set of |S	| dimensional vectors, called α-vectors (See Equation 4.10). Each 

α-vector is a value that created by selecting a particular action 0 , (α	 ϵ	 V). The 

corresponding value computed by Equation 4.11. Since the reward function r	(X,	0) is 

linear. “For the finite-horizon POMDPs, the optimal value function is piecewise-linear 

and convex” (Sondik, 1971). The purpose is finding the optimal policy π*	that gives the 

maximum expected total future value. The optimal policy π*	 is found by recursively 

solving Equations (11) and (12). 
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I(X)	=	]	 · 	X	=	∑ ](6)X(6)&	∈	( 	       (4.10) 
I∗(X)	=	 {_	(X, 0) + `	 ∑ P(X, 0, X′). I∗(X′)8'A })'*!

+), 				 for o	ϵ	Z  (4.11) 

π*	=	argmaxπ	I∗(X.)	 where X. is the initial belief    (4.12) 
 

To better illustrate the concept of the belief MDP, we give a belief space demonstration 

for a case involving two actions and two observations (actions as 0#, 0/ and observations 

as  O#, O/). In Figure 4.4. the red point represents the current belief state, and the black 

points represent the next possible belief states based on actions, and observations. For a 

given action, the sum of the probability of subsequent belief states is always 1. 

 

Figure 4. 4. Discretized belief space demonstration  

 

In belief space, transition from the current belief state to the next belief state satisfies the 

Markovian property indicating it is independent from the history (only depends on current 

state). Since the space is continues the value function is an arbitrary function over belief 

space. In Figure 4.5. the value function over belief space B(s) is shown.  

 

Figure 4. 5. One dimensional belief state - space demonstration 
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4.2.3.2. Policy Trees 

A finite horizon POMDP can be expressed by a finite number of policy trees, as shown 

in Figure 4.6.  In a t-step(horizon) POMDP, nodes represent the current actions and 

branches represent the observations. For the t-step policy tree with one step remaining, 

DM chooses an action, with two steps remaining DM chooses an action, collects an 

observation, and chooses another action. Using this logic, the total number of 

observations is given by Equation (4.13), where T equals the last step and O is number of 

observations. 

 

∑ |a|! =
|C|%1#
|C|1#

!DE1#
!D.          (4.13) 

 
A policy tree is constructed for each action in the action set, where |A| is the number of 

actions the number of all possible trees is given by Equation 4.14. 

 

|b|
|'|%()
|'|()           (4.14) 

 

 

Figure 4. 6. Representation of a t-step policy tree for an action. 

 

As pi represents a policy tree and P is the set of all policy trees P	=	{c#, c/, c0, . . , cF}, 

IG(6) is the expected future value in state s, where IG(6) is calculated by Equation (4.7) 

for	each	cϵ	Z. As mentioned in previous section, POMDP can be represented as a belief 
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MDP, where IG(X) is the expected future value starting from the belief b.	Therefore,	we 

can write the value functions of policy tree p for each state with a-vectors,	where IG(6) 

is value function of policy tree p for state s. 

	

 aG =	< IG(6#), IG(6/), IG(60), … , IG(6-) >   for 	c	ϵ	Z	,	6	ϵ	g   (4.15) 

 

IG(6) is multiplied by the belief state to convert it to the belief version. As given in 

Equation (4.16), the modified value function IG(X) is: 

 
IG(X) = ∑ X(6)IG(6)&Î(   for	c	ϵ	Z	     (4.16) 

 

Where IG(X)	is value function of policy tree p for belief b. Finally, the optimal value 

function of a t-step policy tree from the belief b is given in Equation (4.17). 

 
I!
∗(X)= 	X	GÎH

+), .	aG         (4.17) 

 

As seen in Equation (4.16), IG(X) is linear for each policy c	ϵ	Z	. Therefore, IG∗(X) is 

piecewise linear and convex by the Equation (4.16). 

 

4.3. Solution Algorithms 

In an MDP, the model includes uncertainties arising from selected actions, e.g., 

immediate rewards and/or subsequent states can be random (myopic feature). In a 

POMDP, the model contains some other uncertainties in addition to those that already 

exist in the MDP model. These additional uncertainties are information about the initial 

state and the actual(core) state in the partially observable environment. Therefore, the 

solution of POMDP models is much more difficult and more complex than that of MDPs. 

For the continuous system/belief state model, the value function grows exponentially 

which makes the exact solution of POMDP is PSPACE - Complete. It means in input size 

the problem is in polynomial space (PSPACE) and every other problem in PSPACE can 

be transformed to it in polynomial time (Papadimitriou and Tsitsiklis, 1987). For ease of 
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computation, discretization of the belief space is usually an efficient preparation method 

that can result in near-optimal solutions with a good performance. As we mentioned in 

Section 4.2.3.1, POMDP can be represented as a continuous space belief MDP, and the 

finite horizon value function is “piecewise linear and convex” (Sondik, 1971). Therefore, 

we can discretize belief space with finite number of a	- vectors. In Figure 4.7. discretized 

one-dimensional belief space is presented. In figure, the corresponding value functions of 

each action 0#, 0/,	00  are shown by the vectors I#, I/, I0  referred as a	- vectors. 

 

 

Figure 4. 7. One dimensional belief state - space demonstration 

 

4.3.1. Exact Solution Algorithms 

The computation time is quite high and grows exponentially as new states are added for 

finding the exact solution of POMDP (PSPACE-Complete). However, belief MDP 

notation provides MDP solution algorithms that can also be applicable to POMDP. These 

are policy iteration and value iteration. The logic of these two algorithms is explained in 

this section and some of the other most used exact solution algorithms which used to 

reduce complexity, mentioned at the end of this section. For more detailed information, 

you can refer to Shani et al. (2013),  Pineau et al. (2006). 

 

4.3.1.1. Policy Iteration 

Policy iteration algorithms iteratively increments the policies until they find the optimal 

or near-optimal policy. For a maximization problem, the policy π' is superior of policy π 
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if and only if the expected overall value of π'	is greater than the expected overall value of 

π for all possible states: 

 

π	'	>	h		⇔	∀s,	vπ’(s)	>	vπ(s)	 for 	 s	ϵ	S      (4.18) 

where, vπ(s) is the value function of state s corresponding to the policy π.  

  

In the policy iteration algorithm, a finite state controller t, is defined to keep track of the 

iterations and an initial policy is determined on a random or rule basis, called “the policy 

evaluation step”. Starting from this initial policy, the method used to determine an 

optimal or near-optimal policy is applied iteratively, called “the policy improvement 

step”. The policy iteration algorithm can be summarized as follows: 

Step 1. Set t	=	0, choose an initial policy h. 

Step 2. “Policy Evaluation”: Compute the value function of h!, where h! is the policy of 

the step t 

Step 3. “Policy Improvement”: Search a better policy which will provide higher value 

function 

Step 4. If a better policy does not exist stop, otherwise, increment t by 1, and return to 

step 2.  

 

Restriction by discretization or by selecting restricted region of the belief space can lead 

to near-optimal solutions. For the infinite horizon model, the decision epoch, t	is infinite. 

As t	à	¥ policies h., h#, h/, … , h! converges to the optimal policy h∗. In the literature, 

(Sondik, 1971) proposed a policy iteration algorithm for finite horizon POMDP. Since 

the reward function of belief MDP, r (b, a) is linear, due to (Sondik, 1971), the optimal t-

step value function of belief b, I!∗(X)  is a “piecewise linear and convex” function. 

Therefore, the value function is representable with lines, planes, and hyper-planes (α 

vectors) according to the number of states (Sondik, 1971). The optimal value function is 

found by selecting the upper surface of the α-vectors. In Figure 4.8., every line represents 

a value function for a specific action, the red line presents the optimal value surface. 
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Figure 4. 8. 2- dimensional belief state - space demonstration 

 

In the Figure 4.9., the optimal policy is presented. The rectangular filled areas over the 

horizontal axis are called regions and they represent the optimal actions that gives higher 

value for each belief. 

 

Figure 4. 9. The optimal policy representation with region 

 

4.3.1.2. Value Iteration 

In the value iteration method, finite horizon optimal value functions I.∗, I#∗, I/∗, … , I!∗  are 

computed to obtain the infinite horizon optimal policy π*.  As in the policy iteration 

method, a finite state controller t		is defined to keep track of the iterations. As t	à	¥ the 

gap between the optimal value function and the optimal t-horizon value function 

converges to 0 (Howard, 1960) as presented in Equation (4.19).  

 

    	 |I∗(6) − I!
∗(6)|&	3	(	

+),
!	à	¥	
IJ+ 	=	0	   (4.19) 
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To get the optimal value function, the Bellman error ε, the maximum difference between 

two consecutive finite horizon value functions, is used. For t = 0, I.(6) = 0	for		6	ϵ	g by 

definition. The optimal value functions calculated iteratively by Equation (4.20) while 

|I!"#(6) 	−	I!(6)|&	3	(
+),  > ε. As explained Section 4.2.3.1, we can rewrite POMDP as 

belief MDP. The value iteration algorithm for a belief MDP can be summarized as 

follows: 

Step 1. Set t	= 0 and I.(b) = 0 for all 	X	ϵ	n.  

Step 2. If  |I!"#(X) 	−	I!(X)|?	3	K
+),  > ε, calculate I!"#(X) for all bϵ B 

 
I!
∗(6) = 	 [	A(6, 0) + ∑ Z(6, 0, 6%)I!"#

∗
&"a

+), (6′)]     (4.20) 
I!
∗(X) = 	 [	∑ X(6)& A(6, 0) + ∑ Z(X%|X, 0)I!"#

∗
?%a

+), (X′)]    (4.21) 
 

Where I!∗(6)  and I!∗(X) are calculated by Equation (4.20) and Equation (4.21) 

respectively. Since the optimal finite-horizon value function is “piecewise linear, and 

convex”, the value function is representable with α-vectors (Sondik, 1971). For a more 

detailed background about value iteration algorithms, you can refer to Monahan (1982), 

Bellman (1966), and Howard (1960) 

 

4.3.1.3. Other Exact Solution Algorithms 

In this section, we summarize some other commonly used exact solution algorithms in 

the literature. These algorithms can give good results, especially for small-size problems.  

 

The first method is Monahan Enumeration (Monahan, 1982), which computes all vectors 

in the belief space, including redundant ones. The algorithm uses the following 

domination condition: For a vector not to be redundant, there must be at least one belief 

point over the belief space with a greater value than the others. The algorithm works as 

follows: Create a list that contains every vector in the belief space and mark all the 

vectors, then select a marked vector from the list. If the selected vector satisfies the 

domination condition, unmark this vector and keep the vector in the list, otherwise remove 

the vector from the list. Do this until all vectors in the list are unmarked.  
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The second is Sondik's One Pass Algorithm (Sondik, 1971), which starts with the random 

selection of a set of belief points over the belief space. The algorithm works as follows: 

First, an empty target list and a search list containing all selected beliefs are defined, and 

a point is selected from the search list. Then, the optimal value vector and corresponding 

action for this point are found and the selected vector is added to the target list. Next, a 

region around the selected point is defined where the selected vector is dominant. Finally, 

neighboring points at the corners of the selected region are selected and they are added to 

the search list. This procedure is continued until the call list is empty. 

 

There are some other commonly used exact solution algorithms in the literature. One is 

the Witness Algorithm which is an action-based forward policy tree search algorithm 

(Littman, 1994).The other one is the Incremental Pruning algorithm which is also an 

action-based algorithm, and it considers one observation at a time. The algorithm allows 

pruning redundant vectors (Zhang and Liu, 1996) 

 

4.3.2. Approximate Solution Algorithms 

In this section, we give some approximate solution algorithms used to reduce the 

computation time. These algorithms can provide sub-optimal or near-optimal solutions. 

Firstly, we introduce a basic approximation method in the literature, namely “Point-Based 

Value Iteration (PBVI)”. We also mention some other algorithms at the end of this 

section. 

 

4.3.2.1. Point Based Value Iteration 

The PBVI is a value iteration algorithm that only considers a small set of belief points and 

applies value iteration to these points (Pineau et al., 2006). The PBVI algorithm is an 

anytime algorithm that combines value iteration steps and belief set expansion steps. It 

starts with an initial set of belief points to which it applies the first set of backups. In 

PBVI, only one (best) vector for each belief point is maintained. It then enlarges the set 

of belief points by choosing reachable belief points and finds a new solution for the 

expanded set. To do this, it uses each action to produce new beliefs. Then, calculate the 

L1 distance from all belief points. The new point is then furthest from every point in the 
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set. It generates one belief from each belief. PBVI provides a set of solutions that 

interpolate value backup iterations with extensions of the belief set and gradually reduces 

computation time and solution quality. Figure 4.10. shows a PBVI demonstration. 

 

 

Figure 4. 10. PBVI demonstration 

 

4.3.2.2. Other Approximate Solution Algorithms 

Reinforcement learning is one of the most recent methods proposed to solve POMDP 

approximately. The goal of reinforcement learning is for an agent to operate in the world 

in order to maximize rewards. The environment is represented as a “stochastic finite state 

machine” with inputs as “agent actions” and outputs as “observations and rewards the 

agent gets”. The agent’s goal is finding a policy and a state-update function that will 

calculate the total of the maximum expected future rewards. (Doshi et al., 2008) 

 

There are also some greedy approaches to solve POMDP such as the Monte Carlo 

Method, useful for continuous state space, help to find an approximate belief space. 

(Thrun, 1999) 

 

4.4. The Quality Adjusted Life Years 

The Quality Adjusted Life Years (QALY) is a type of cost utility analysis metric (for more 

information, please refer to Scuffham et al. (2008) which allows us to measure the 

morbidity as well as the mortality. To put it more clearly, it allows for the calculation of 

survival and quality of life at the same time. Mathematically: 
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QALY = Time × Utility 

Here, the "Time" represents the length of time that a patient is expected to spend in a 

particular health condition, and the "Utility" represents the well-being of the patient also 

known as “Health Related Quality of Life (HR-QOL)”. For HR-QOL,1 represents a 

perfect health condition and 0 means death. Values between 0 and 1 represent a person's 

quality of life. For instance, if the expected duration in a specified health state is 5 years 

and utility is 0.8, then the expected quality adjusted life year for this specified health state 

is 5 x 0.8 = 4. The perception of quality of life may differ geographically, genetically, and 

sociologically. Moreover, even if all these are the same, they may differ depending on 

age and gender. In the literature, there are direct and indirect elicitation methods for the 

computation of QALY utilities. “Time Trade-off”, “Standard Gamble”, and “Visual 

Analogue Scale” are the most widely used direct elicitation methods which are explained 

below: 

Time Trade-off: In this method (Gudex, 1994), the patient is asked to choose between 

two scenarios which are: (i) impaired health state for t years and (ii) perfect health state 

for x years, where x < t.  The patient is asked the same question for varying x values until 

reaching the indifference point. At this point HR-QOL utility for health state i (hi) is: 

 

ℎJ =
,
!
                 (4.20) 

 

Standard Gamble: In this method (Gafni, 1994) the patient is asked to gamble between 

certain remaining life years and either perfect health (with probability p) or death (with 

probability q), where p + q = 1. The patient is asked to gamble for varying q probabilities 

until reaching the indifference point.  At this point, the HR -QOL utility is determined as 

the p value. 

 

Visual Analogue Scale: In this method (Crichton and Clin Nurs, 2001) the patient is 

asked directly to give a utility weight for specified health state in the given scale. For 

example: For 0 is the worst and 10 is the best, patient assign a number for health state.  

There are also indirect methods known as generic preference- based measures to elicit 

utility weights. Which includes standardized generic utility questionnaires. For 
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preference- based measures time trade off or standard gamble methods used to calculate 

utilities. The most frequently used generic utility questionnaire is “EQ-5D” (Shaw et al., 

2005). The “EQ-5D questionnaire” is consisted of five dimension which are: “mobility”, 

“self-care”, “usual activities”, “pain/discomfort” and “anxiety/depression”. Each 

dimension includes three statement that patients asked to choose one of them. Some of 

the other generic utility questionnaires are: “Health Utility Index” (Feeny et al., 2002) and 

“QLQ- C30” (Fayers and Bottomly, 2002) for cancer specific utilities. The target group 

for HR-QOL questionnaires can be general population, healthcare professionals, patients, 

or patient’s relatives. 

 

4.5. Applications of POMDP 

The real-world environment, which requires myopic planning in uncertain and partially 

observable situations, can be accurately modeled by POMDPs. Therefore, in the 

literature, POMDP studies progress in a wide spectrum due to its suitability in many 

different areas. Robot planning (Spaan and Vlassis, 2004), spoken dialogue systems 

(Williams et al., 2006), reinforcement learning (Doshi et al., 2008), artificial intelligence 

(Bennett and Hauser, 2013) healthcare (Schaefer et al., 2005) are some of the common 

and frequent application areas in the literature. For more detailed information on the 

application areas see Cassandra (1998)
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5.METHODOLOGY 

 

In the literature, although there are some studies for POMDP modeling of colorectal 

cancer screening and surveillance (Zhu, 2010), (Erenay et al., 2014), (Leshno et al., 2003) 

as far as we know there is no study that specifically addresses the colorectal cancer 

treatment model with a POMDP modeling approach. In addition, there is a recent study 

modeling the CRC treatment process with semi-Markov models by (Joranger et al., 2020). 

On the other hand, there are a few studies related to the treatment of some other types of 

cancer, for example, the prostate cancer treatment model, (Goulionis and Koutsiumaris, 

2010) 

 

In this study, the colorectal cancer treatment procedure is examined within the POMDP 

modeling framework. In medicine, physicians make medical decisions about patients' 

health based on their theoretical knowledge and mostly on their professional experience. 

The theoretical knowledge usually consists of current guidelines and textbooks which are 

universal. However, environmental factors such as geography, genetic background, social 

and economic structure affect the course and progress of the disease and hence, the 

available and useful treatment options. Physicians learn about the effects of these 

environmental factors in the local background from the first day they start their 

profession. The level of professional experience that includes the perception of hidden 

environmental factors affects the physician's heuristic decisions. Therefore, based on the 

professional experience and knowledge, the decisions may vary among the doctors. In 

this chapter, we present the methodology of our POMDP model, and used solution 

algorithm. Since we have no actual data to evaluate the model properly, we tried to present 

an efficient scenario analysis to examine the effect of the doctor's perceptions about 

partially observable states, which we will explain in the next chapter.  
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5.1. Model Formulation 

The characteristics of the POMDP model have been constructed using the current 

guidelines, studies from the literature, and expert opinions of the oncologists having 

experience in CRC. We used 6-month follow-up periods as decision epochs and run the 

model by taking t	=	{1,	2,	3,	4,	5,	6,	7,	8,	9,	10} to calculate 5-year QALYs and LYs. We 

did not have access to real patient data to establish the model. For this reason, we obtained 

the transition and observation probabilities with the help of experts. We used the 

transition probabilities from experts to see the perception of clinical expertise. Finally, 

we got help from the evaluators check to see if the output of our model was proper. 

 

5.1.1. System State (Actual / Core State) 

In medicine, patients’ actual health status contains uncertainties from many points of 

view. Firstly, as mentioned earlier, the experts' perception and knowledge are one of the 

important dimensions of uncertainty. Moreover, measurement tests used for decisions 

about patients’ health status have a certain level of sensitivity and accuracy. Still with 

recent medical knowledge, there are unknown or unrevealed factors and/or indicators 

about a human’s health. Therefore, understanding of a patient’s actual health status may 

differ from time to time as well as from doctor to doctor. Quantitative models are efficient 

tools to model such kind of uncertainty. Thanks to the uncertainty to be included, POMDP 

models showed significant improvement in healthcare modeling recently. In this thesis, 

we define a patient’s health state st with cancer stages (explained below), recovery, and 

death situations. st	ϵ	S where S ϵ {Cancer Stage, Recovery, Death} 

 

The first element of the system state is the cancer stage as represented by the 5th edition 

of AJCC. As explained in Chapter 3, in AJCC 5th edition, cancer is examined in 5 stages 

which are defined with TNM classification. Stage 0 means carcinoma in situ (there is no 

current cancer but may occur in the future). Stage I means the cancer is localized. Stage 

II means cancer has progressed locally but in an early stage. Stage III means cancer 

progressed locally but in late stages. Stage IV means that distant metastases occurred. In 

this thesis, we used a 4-staged demonstration (See Assumption 2). Therefore, Cancer 

Stage ϵ {Stage I, Stage II, Stage III, Stage IV} 
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The second element is the state of recovery. Recovery state is an absorbing state. If the 

patient in the system has responded well to the treatment and completely recovered from 

cancer the treatment process is terminated.  

 

The last element is the death situation. Death state is also an absorbing state. If the patient 

dies during the treatment, the treatment process is obviously terminated. When all 

elements are included, the final version of the system state is s	ϵ	S: {Stage I, Stage II, 

Stage III, Stage IV, Recovery, Death} 

 

5.1.2. Observation State 

In situations where the environment is not fully observable, the DM makes decisions on 

actions according to the previous observations and the past actions. For most healthcare 

applications, the observation states of the POMDP models are defined as the symptoms 

as specified by the patients and several laboratory results. Since the symptoms are 

indicators of the patient’s health state. After doctors decide on the treatment option for a 

patient, they monitor some of the specified symptoms and laboratory findings and the 

results. These symptoms could be “headache”, “lassitude”, “nausea”, “vomiting”, “sleep 

disorder”, etc., and the laboratory findings identified as disease specific. In this thesis, the 

observations of the model are defined as the change in the blood measurement result of 

Carcinoembryonic Antigen (CEA) and CT scan evaluated during the treatment and 

surveillance procedure. Which are commonly used to understand the patient’s health 

status. 

 

The first element of the observation state is the CEA, a general cancer marker for all 

cancers and is the most used blood measure for the surveillance of CRC. Higher CEA 

means a higher tumor burden. However, the CEA value itself does not make sense when 

evaluated alone. Physicians check the change in the level of CEA to understand the 

condition of the disease. If the CEA level rises by more than 10 units, it means that the 

patient’s condition has worsened and the disease has progressed, otherwise this means 

that the patient may be in stable or in a better condition. In this thesis, we represent CEA 
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with two values. We use CEA+ to represent increments greater than 10 units and CEA- to 

represent insignificant changes or a possible decrease. CEA	ϵ	{CEA+,	CEA-} 

	

The second element of the observation state is the CT scan, which is a frequently used 

technique to study the body composition of patients. The physician evaluates the CT result 

in two ways. Therefore, we used two elements to represent the CT. We use CT+ if the 

patient’s condition worsens (positive findings) and use CT- if the patient’s condition does 

not change significantly (negative findings). CT	ϵ {CT+,	CT-} 

 

Lastly, the final version of the space of the observation states is found by the Cartesian 

product of the two subsets. Hence, O!		ϵ	Z:	{(CEA+,	CT+), (CEA-,	CT+), (CEA+,	CT-), 

(CEA-,	CT-)} 

 

After a selected treatment option is applied at a certain decision point and the patient 

reaches the next decision epoch, physicians receive an observation as output and estimate 

the patient’s health status based on this observation. If the observation status is O!  is	

(CEA+,	 CT+) the cancer stage of the patient is estimated to progress, and treatment 

policies are adjusted accordingly. For all other observations, the patient is considered to 

be in the regular state and the follow-up process continues. 

 

5.1.3. Available Actions 

In colorectal cancer, the main purpose of the treatment procedure is to perform a surgical 

operation. However, depending on the clinical condition of the patient and the stage of 

the disease, it is not always possible to implement this option. If a patient has some 

comorbidities such as “diabetes”, “heart disease”, “chronic obstructive pulmonary 

disease” or another active type of cancer, the surgical operation can be taken out from the 

available options and oncologists continue with other medical options. In case the patient 

has late-stage distant metastases, palliative care is applied to relieve the patient's pain. For 

the rest, the goal of the treatment is to make the patient operable. In the early stage of the 

disease, oncologists prescribe combination therapy like adjuvant chemotherapy or 

chemoradiotherapy to control tumor spread. In this thesis, we defined the available 
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actions that oncologists can choose for the treatment of colorectal cancer as 0	ϵ	b& :	

{Surgery, Chemotherapy, Adjuvant Chemotherapy, Chemoradiotherapy} for s	 ϵ	 S. 

Available actions are summarized below (See Chapter 3 for more detailed information) 

 

Surgery: Surgery is the main treatment option for CRC e.g., it can be performed as 

colectomy (removal of all colon) and block resection of lymph nodes. 

 

Chemotherapy: Chemotherapy is used to reduce the spread of cancer by disrupting tumor 

metabolism. In Stage IV, chemotherapy may be used as neoadjuvant therapy to restore 

the respectability of initially unresectable metastatic disease or as palliative care. 

 

Adjuvant Chemotherapy: Adjuvant therapy is a combination therapy in which pre-and / 

or postoperative chemotherapy can be applied to prepare the patient for surgery or to 

support the postoperative recovery process. Particularly for Stage II and Stage Ⅲ, 

adjuvant chemotherapy is a treatment option that can help increase the likelihood of 

survival. 

 

Chemoradiotherapy: Chemoradiotherapy is another combination therapy that combines 

chemotherapy and radiotherapy. Chemoradiotherapy is used to slow the spread of the 

disease in the treatment of CRC. 

 

Surgery is the only recommended treatment for Stage I in the treatment of CRC (National 

Comprehensive Cancer Network, 2022). Therefore, we defined surgery as the only 

available action for Stage 1 when constructing the model. For Stage II, III and IV all 

actions are available. 

 

5.1.4. Transition Probabilities  

As explained in the previous section, the transition probability P (s,	0,	s	′) is P (6!"# =

6′|6! = 6,	0! = 0). Recovery and Death states are absorbing states (there are no exit 

transitions from these two states). Therefore, a total of 60 possible transitions are defined 
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and transition probabilities for all action and states have been calculated based on expert 

knowledge and presented in Figure 5.1.  

 

In determining the probabilities, we get help from a total of five physicians. We used the 

simple mean method to calculate the final probabilities. We also grouped the experts as 

oncologists and non-oncologists to understand the impact of clinical experience in the 

scenario analysis (see Chapter 6.5.3) and calculated the probabilities separately. The 

oncologist group consists of two oncologists having10-15 years of experience, working 

in two different geographical areas who face CRC patients every day. The non-oncologist 

group consists of two physicians having 3-5 years of experience who encounter CRC 

patients through consultations (One in internal medicine and one in emergency medicine). 

Their knowledge is mostly from textbooks, medical education, and clinical from active 

CRC patients who need additional treatment for additional issues. For example, CRC 

patients with diabetes, high blood pressure, cardiac arrest, etc. Finally, we get help from 

an additional oncologist to check the model outputs to see if the model adequately 

represented the CRC environment in Turkey. The transition probabilities were obtained 

from each of the four physicians through an online survey and hence the expert opinions 

were taken independently and separately.  

 

The transition probabilities presented in Figure 5.1. were computed by taking the simple 

average of 4 transitions probabilities obtained. In Chapter 6, we will also consider the 

transition probabilities computed only from the oncologist and from the non-oncologist 

group.  
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Figure 5. 1. Transition probabilities of POMDP model as a function of actions 

(Actions: Surgery, Chemotherapy, Chemoradiotherapy, Adjuvant Chemotherapy) 

 

5.1.5. Observation Probabilities 

As explained in previous section, the observation probability.	Z	(s′, 0, O)	=	P	(O!"#=	o	|	

0! = 0,	6!"# = 6′) and depends on action 0 and the next state s′.	The physicians will 

observe the change in the CEA levels and CT findings as observation about patient actual 

health status. Similar to the transition probabilities, the observation probabilities in the 

model are also defined with the help of expert knowledge and shown in the Table 5.1. For 

Stage I, where surgery is the only available action, the observation probabilities for other 
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treatment options are determined uniformly. In addition, for Recovery and Death states 

the observation probabilities are determined uniformly 

 

Table 5. 1. Stage and treatment dependent quality of life utilities from literature 

  (CEA-, CT-) (CEA-, CT+) (CEA+, CT-) (CEA+, CT+) 

Surgery 

Stage I 

Stage II 

Stage III 

Stage IV 

 

0.94 

0.88 

0.75 

0.32 

 

0.06 

0.06 

0.06 

0.31 

 

0 

0.06 

0.13 

0.06 

 

0 

0 

0.06 

0.31 

Chemotherapy 

Stage II 

Stage III 

Stage IV 

 

0.88 

0.811 

0.13 

 

0.06 

0.063 

0.44 

 

0.06 

0.063 

0.19 

 

0 

0.063 

0.24 

Adjuvant Chemotherapy 

Stage II 

Stage III 

Stage IV 

 

0.88 

0.811 

0.37 

 

0.06 

0.063 

0.33 

 

0.06 

0.063 

0.14 

 

0 

0.063 

0.16 

Chemoradiotherapy 

Stage II 

Stage III 

Stage IV 

 

0.88 

0.811 

0.38 

 

0.06 

0.063 

0.26 

 

0.06 

0.063 

0.20 

 

0 

0.063 

0.16 
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5.1.6. Reward Function 

In this thesis, we use two types of reward functions. One of them is “The Quality-Adjusted 

Life Years (QALYs)”, and the other one is “The Life-Years (LYs)”. We assume that there 

is no cost to perform the actions from the patients’ point of view for computational 

simplicity.  

 

For every decision epoch LYs equals to 0.5. To calculate QALYs we obtain the utilities of 

choosing action 0 from the state s from the studies by Huang et al. (2021) and Huang et 

al. (2018) as presented in Table 5.2.  

 

Table 5. 2. Stage and treatment dependent quality of life utilities from literature 

 Utility References 

Stage dependent Stage I 

Stage II 

Stage III 

Stage IV 

0.77 

0.66 

0.56 

0.50 

Huang et al. (2018) 

Treatment dependent Surgery 

Chemotherapy 

Adjuvant Chemotherapy 

Chemoradiotherapy 

0.65 

0.83 

0.80 

0.72 

Huang et al. (2021) 

 

In our model, we defined utilities as combination of stage and treatment dependent 

utilities. To obtain combined utilities we multiplicate stage and treatment dependent 

utilities. In Table 5.3. we present the recovery and death included combined utilities 

corresponding all the stages and actions.
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Table 5. 3. Combined utilities 

 Stage I Stage II Stage III Stage IV Recovery Death 

Surgery 0.5005 0.429 0.364 0.3185 1 0 

Chemotherapy 0.6391 0.5478 0.4648 0.4067 1 0 

Adjuvant Chemotherapy 0.616 0.528 0.448 0.392 1 0 

Chemoradiotherapy 0.5544 0.4752 0.4032 0.3528 1 0 

 

As we mentioned in Chapter 4.4 QALY is Utility x Time. Since we use 6 months follow 

up periods as decision epochs we multiply each utilities by 0.5. QALYs corresponding 

combined utilities are shown in Table 5.4. 

 

Table 5. 4. Used QALYs in the model  
 

Stage I Stage II Stage III Stage IV Recovery Death 

Surgery 0.25025 0.2145 0.182 0.15925 0.5 0 

Chemotherapy 0.31955 0.2739 0.2324 0.20335 0.5 0 

Adjuvant Chemotherapy 0.308 0.264 0.224 0.196 0.5 0 

Chemoradiotherapy 0.2772 0.2376 0.2016 0.1764 0.5 0 

 

In the model framework the reward function R	(s,	s′,	0)	works as follows. When the action 

0 chosen, a patient moves from state s	to	state	s′  and the DM receives an observation O 

as an indicator of patient actual health state. The patient gets the reward according to 

observation O and R	(s,	s′,	0).
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5.1.7. Initial Belief State 

In a partially observable environment, defining the initial belief is one of the most 

important issues in modeling. As explained in the previous chapter, the initial belief is a 

probability function over system states. If the initial belief is deterministic (the initial 

belief is known with certainty), then the belief probability for this particular state is equal 

to 1, and the others are 0. If the initial belief is stochastic, then the initial belief is the 

probability distribution over the states and its sum is equal to 1.  

 

In this thesis, we run our model for two initial belief scenarios. Since the Recovery and 

Death are absorbing states, the initial probabilities of Recovery and Death are taken as 0 

in both scenarios. Which are: 

 

1. Definite value for all cancer stages separately for s	ϵS	– {Recovery, Death} 

X. ϵ {(1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0)}  

2. Probabilistic, in which we use the probability of incidence, prevalence and overall 

stage distribution probabilities of CRC from SEER database as X.. 

a. Initial belief of incidence s	ϵS	– {Recovery, Death} = (0.07, 0.26, 0.35, 0.32) 

b. Initial belief of prevalence s	ϵS	– {Recovery, Death} = (0.32, 0.25, 0.23, 0.20) 

c. Initial belief of overall s	ϵS	– {Recovery, Death} = (0.17, 0.22, 0.38, 0.23) 

 

5.1.8. Value Function 

In this thesis, we use the maximization of total expected future rewards as the objective 

function where the reward function uses QALYs and LYs as metrics. Therefore, our value 

function is undiscounted maximum total expected QALYs and the undiscounted 

maximum total expected LYs. Recall that in a finite horizon POMDP, the value function 

can in general be written as:   

 

I!
∗(6) = {A(s, 0) + λ	∑ P	(6, 0, 6’). ∑ Z	(6’, 0, O)&%'( . I!"#

∗ (6′)&%'( })'*!
+),  

for t	ϵ	{1,	2,	...,	N-1} and s	ϵ	S			       (4.6) 
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Since our model is undiscounted, λ in Equation (4.6) is equal to 1. As mentioned earlier, 

each epoch is a 6-month follow-up period. Since we are looking for 5-year outputs, we 

use 10 decision epochs as discrete horizons in the model. Therefore, the value function: 

 
I!
∗(6) = {A(s, 0) + λ	 ∑ P	(6, 0, 6’). ∑ Z	(6’, 0, O)&%'( . I!"#

∗ (6′)&%'( })'*!
+),  

 

for t	= {1, 2, …, 10} and s	ϵ	S: {State I, State II, State III, State IV, Recovery, Death}  

where, 

0	ϵ	b&:{Surgery, Chemotherapy, Adjuvant Chemotherapy, Chemoradiotherapy} 

O!ϵ	Z: {(CEA+, CT+), (CEA-, CT+), (CEA+, CT-), (CEA-, CT-)} 

And the optimal policy π*	is: 
 

π*	(6)	=	argmaxπ	I∗(6) for s	ϵ	S 
	

We solved the model with belief MDP representation. In which: 

• States as belief states: b	ϵ	B	 

• 0	ϵ	b&:{Surgery, Chemotherapy, Adjuvant Chemotherapy, Chemoradiotherapy} 

• transition function, T: P(X, 0, X′)=	∑ Z(X%|X, 0, O). Z(O|0, X)8	∈	A   

where Z(X%|X, 0, O)  = 1 if state estimator (b,	 0 ,	 o) = X% , Z(X%|X, 0, O)  = 0 

otherwise. 

• the reward function, R:	r	(X,	0) = ∑ X(6)A(6, 0)&	∈	(  

And the value function and optimal policy π*	of belief MDP: 

 
I∗(X)	=	 {_	(X, 0) + ∑ P(X, 0, X′). I∗(X′)8'A })'*!

+), 			 	 for o	ϵ	Z 

π*	=	argmaxπ	I∗(X.) 
where, 

X.  ϵ {(1,0,0,0,0,0), (0,1,0,0,0,0), (0,0,1,0,0,0), (0,0,0,1,0,0), (0.07,0.26,0.35,0.32,0,0), 

(0.32,0.25,0.23,0.20,0,0), (0.17,0.22,0.38,0.23,0 0)}  
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5.2. Colorectal Cancer Treatment Model 

After explaining the components of the POMDP model in the previous section, we are 

ready to present how the model works. When the patient is diagnosed with cancer as a 

result of the pathological examination, the treatment process begins immediately. 

Depending on the stage of cancer, treatment options may differ as described in Chapter 

3. During each decision period, CEA levels and CT results are examined as a result of the 

previous action and used to determine the current belief states. If the patient dies or 

recovers from the disease, the treatment period ends. Otherwise, the process continues 

between 10 determined horizons. After the process is finished, the optimal total QALYs 

or optimal total LYs are returned as a value function. 

 

5.3. Solution Method 

We use the “Pomdp” package in R programming language to model and solve our 

proposed model. After the model is built, we use the “solve_pomdp” function by setting 

“Point Based Value Iteration Algorithm” as method to solve the POMDP model and 

“solve_mdp” function by value iteration method to solve reduced MDP. Pseudo code of 

general PBVI is presented in Figure 5.2.
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PBVI Algorithm 

Function PBVI 

! ß {"&} 

while  # is not converged to #∗ do 

Improve (#, !) 

!	ß	&'()*+	(!) 

Function Improve 

repeat 

for each b ϵ B do 

α ß backup (b, #)  

# ß # U {α} 

until  # is converged 

Function Expand (B) 

Initialize !()* ß B 

for each b ϵ B do 

Successors (b) ß { "’ > 0} 

!()* ß !()* U ||"’ − !||+,-./	0122344564(8)	
:;<=:>  

return  !()* 

Figure 5. 2. Point based value iteration algorithm 
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6.SCENARIO ANALYSIS 

 

In this chapter, we present the results of our numerical study where some hypothetical 

scenarios are generated to answer several research questions stated in Chapter 1. In 

particular, we want to investigate the impact of the unobservable health conditions on 

treatment policies and QALYs. We also want to see whether the proposed POMDP model 

is an accurate representation for the colon cancer treatment process and the results 

obtained from the proposed POMDP model are compatible with the literature and the 

guidelines. Lastly, we want to examine the robustness of the model for different scenarios.  

With these research questions in mind, we use the LY, QALY and 5- year cancer related 

survival metrics to evaluate the performances of the POMDP model. In order to make a 

fair comparison throughout the analysis, we use the 5-year cancer-related survival 

information obtained from SEER data. As a base case, we run the treatment model 

generated with the help of current guidelines, expert opinions, and literature. We compare 

the base case with the established scenarios, selected studies in the literature, and the 

guidelines. We examine the model outputs for different diagnosis stages, different belief 

states, and different treatment periods. We also perform a robustness analysis to examine 

the model validity for different hypothetical scenarios. Modeling the CRC treatment 

history has a high level of complexity (O (|A| x |S| x |B| x|g|/x |Z|)) where, |A| denotes 

the total number of actions, |S| denotes the total number of system states, |B| denotes the 

total number of belief states, and |Z| denotes the total number of observations. Therefore, 

we make some assumptions for computational simplicity which we explain in the next 

subsection.  

 

In the Section 6.2, we first propose the POMDP model for the base case and then present 

the corresponding MDP model with no unobservable state as a part of the first research 

question, in which we investigate the impact of unobservable health conditions on LY, 

QALY, and 5-year cancer related survival. In the Section 6.3, to answer the second 

research question, we examine whether our model accurately represents the CRC 

treatment process. Next, in the framework of third research question, we investigate 

whether the output of our model is compatible with the latest guidelines in Section 6.4. 
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Finally, as a part of the final research question, we examine whether our model is robust 

for different scenarios in Section 6.5 

 

6.1. General Assumptions 

Assumption 1: In real life, comorbidities such as heart disease, hypertension, diabetes, 

etc. may affect the choice of the treatment policy, especially when it is to be decided 

whether a patient is suitable for surgery. Likewise, synchronous cancers may affect the 

treatment policy to follow. For example, the extent of the liver metastasis provides clues 

about patient survival and is vital when deciding whether to choose curative or palliative 

therapy. Since adding comorbidities and synchronous cancers to the state space increases 

computational complexity, we assume that there is neither comorbidity nor synchronous 

cancer with CRC. 

 

Assumption 2: AJCC 5th edition includes Stage 0 means the newly formed cancer. For 

Stage 0, available actions are watchful waiting or removing nodules during colonoscopy. 

After consulting with the experts, we excluded Stage 0 in our model because this stage is 

more suitable for screening modeling and not suitable for treatment modeling, and hence 

no treatment policy needs to be followed strictly. 

 

Assumption 3: In real life practice, the quality of life naturally decreases as age increases. 

In our model, we assume that utilities (HR-QOL) are not age-dependent. Utilities obtained 

depend only on treatment and cancer stage. We combined stage and treatment-dependent 

utilities.  

 

Assumption 4: In real life practice, treatment policies are age-dependent, and model 

outcomes such as survival, mortality, and quality of life may differ according to age and 

gender. The utility values used in this thesis do not depend on age and gender, so we 

assume that age and gender do not affect model outputs. Treatment policies depend only 

on stage and observations. 
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Assumption 5: Physicians decide follow-up times based on patients and guidelines – 

National Comprehensive Cancer Network (NCNN) guideline recommends 3-6 months of 

follow-up. For this reason, in our model, with the help of the expert opinion. we assume 

that there is a 6-month follow-up period. Since we build a discrete time model for 

computational simplicity, one period in our model represents 6-month.  

 

Assumption 6: There is a treatment option as palliative therapy for CRC patients of Stage 

IV. In this case, the goal of the treatment is not to cure, as the patient is in the terminal 

(untreatable phase) stage. This cure is given to reduce the patient's pain. Due to the lack 

of data, we assume that palliative therapy is not an available option. 

 

Assumption 7: Cancer is a recurrent disease. When a patient recovers from cancer, a 5-

year follow-up is applied due to the risk of recurrence. Relapse modeling needs follow-

up data and also increases the size of the model extensively. We exclude the recurrence 

case in our model for computational simplicity. We assume that when a patient recovers, 

it is a complete recovery, and the patient leaves the system that the model is working at. 

 

6.2. The Effect of Unobservable Environment 

Recall that our first research question tries to investigate the impact of the unobservable 

environment on treatment policies and survival. To answer this question, we generate the 

corresponding MDP model to compare with the proposed POMDP model, e.g., the MDP 

model assumes that there is no uncertainty regarding the states and that the environment 

is fully known. The POMDP model is based on the most recent guidelines, expert 

opinions, and literature, as detailed in the previous chapter. We first present a recall to the 

proposed POMDP model and then present the MDP model. Finally, we compare the LYs, 

QALYs, and 5-year cancer-related survival results of the two models with each other and 

the SEER-based survival results to examine how the unobservable environment affects 

the CRC treatment policies. 
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6.2.1. POMDP Treatment Model 

We got help from experts and current guidelines to model the CRC treatment process as 

a POMDP. In Turkey, the medical board decides on the treatment policy according to the 

patient's health status (cancer stage, CT results, blood measurement results (i.e., CEA), 

clinical characteristics (age, gender, comorbidities, medical history, drug response, etc.), 

guidelines, and clinical experience. According to the guidelines, comorbidities, age, and 

other social and physical parameters affect treatment policy. Recall that, for ease of 

calculation, we assume the proposed model is not age/gender-dependent and that other 

physical conditions (i.e., smoking status, diet, etc.), comorbidities, and social status have 

no influence on the treatment decisions. In the model framework, we assume that 

physicians make decisions based on only the current cancer stage, CEA level, and CT 

scan. In most of the studies in literature, stage transitions are considered only one way. 

Some studies consider progression-free conditions. In fact, the cancer stage is a dynamic 

parameter, not a static one. If treatment is successful, the actual stage can be readjusted. 

Therefore, we have considered multidirectional transitions in our model. 

 

6.2.2. MDP Treatment Model 

As mentioned in Chapter 4.2, the observation state,	O! is a probabilistic function of the 

actual (core) system state, 6!  (O! = y.	6! à where 0 ≤ y ≤ 1). If y =1 then the state is fully 

known, which means the POMDP turns into the MDP. If we interpret it within the 

framework of the CRC treatment model, O! = 6! means that the environment is perfectly 

known, so the cancer stages are accurate, and all possible type I errors are excluded. In 

other words, the radiological (PET, CT) and pathological diagnostic methods work 

perfectly with no margin of error. In this fully known ideal and hypothetical environment, 

treatment policies are independent of physicians' experience and theoretical knowledge. 

Physicians can follow the current guidelines without a need for intuitive and case-specific 

decisions. In the proposed POMDP model, we define the observation states as the change 

in the level of Carcinoembryonic Antigen (CEA), which is highly correlated with cancer 

stages, as well as CT results, which is a method used to describe the health status of 

patients. To construct the MDP model, we assume that treatment selection and reward 

function can only be made based on the current cancer stages only.  
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6.2.3. Computational Results  

Recall that we try to investigate the impact of the unobservable environment on treatment 

policies and survival. We also evaluate the effect of the physician’s experience and 

theoretical knowledge on treatment policies. With these objectives, we run a base-case 

POMDP model and the corresponding MDP model. We compare two models based on 

LYs, QALYs, and 5-year cancer related survival results.  Along with the absolute values, 

we also present the percentage difference between the results provided by POMDP model 

and MDP model. For a particular measure (x), we define the percentage difference for x 

(Dx%) as follows: 

 

    ∆,	%	=	
(,(HCLMH)1,(LMH))

,(HCLMH)
		x	100	

	

where x(i) represents the value of x performance measure under model i. 

 

The results are presented in Table 6.1 and 6.2 
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Table 6. 1. The outputs of POMDP and MDP model 

 Initial belief      LYs 

(5 year) 

Initial belief  QALYs 

(5 year) 

Initial belief  5-year 

Survival  

POMDP 

Model 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

4.97 

4.95 

4.61 

3.58 

4.57 

4.33 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

4.87 

4.81 

4.33 

3.1 

4.33 

4.02 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

%98.8 

%98 

%84 

%43 

%83 

%73 

MDP 

Model 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

4.98 

4.95 

4.67 

3.77 

4.63 

4.43 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

4.63 

4.58 

4.1 

3.01 

4.12 

3.84 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

%99.2 

%98 

%87 

%50 

%85 

%77 

 

Table 6. 2.  %Difference between two models  

 Initial belief    LYs 

(5 year) 

Initial belief  QALYs 

(5 year) 

Initial belief    5-year 

Survival  

Dx% 

 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

-0.2 

0 

-1.3 

-5.3 

-1.3 

-2.3 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

4.9 

4.8 

5.3 

2.99 

4.8 

4.5 

Stage I 

Stage II 

Stage III 

Stage IV 

Incidence based 

Prevalence based 

-0.4 

0 

-3.6 

-16 

-2.4 

-5.5 
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In Table 6.1 and 6.2 it can be observed that both models have similar outputs in terms of 

LYs. For the early stages (Stage I and Stage II), the difference is hardly noticeable, and 

both models give almost the same results. However, in the late stages (Stage III and Stage 

IV), the difference increases as the stage increases. We think that the higher result of 

MDP in terms of LYs in the late stages indicates the effect of unobserved health factors 

in the life year estimation. In the POMDP model, progression of the disease due to 

unobservable factors can be represented and we think it is more effective in representing 

stage changes. Therefore, a decrease in life-year results can be expected in the POMDP 

model. This may be an indication of the increasing importance of observational effect as 

the stage progresses.  

 

We think that the higher outcomes in terms of QALYs in POMDP may be due to the 

benefit derived from observational treatment policies. For example, when a patient's 

condition is observed in a lower stage while it seems to be in an upper stage, the treatment 

to be applied may be given more mildly than in that upper stage. This can result in an 

increase in the patient's quality of life. As stage increase the difference between two 

model is reduced.  

 

The biggest difference in survival is also observed at Stage IV. As the cancer progresses, 

new dimensions are added to the uncertainty of the patient's overall health status. For 

example, newly occurred additional diseases, deterioration of psychological health, 

gradual deterioration of the patient's body functions, side effects of severe cancer 

treatment all affect the health status of a CRC patient. Looking at the results, it can be 

said that the difference between the two models widens as the uncertainty increases. The 

dramatic reduction in POMDP for Stage IV may be due to its ability to better reflect the 

uncertainty in the environment than MDP. Finally, the difference between LYs and QALYs 

outcomes indicates a loss in quality of life. In POMDP model this difference is smaller 

than in MDP model. We can say that small gains in the quality of life of cancer patients, 

especially in advanced stages, make huge differences. This may also indicate that clinical 

expertise is an important factor in improving the patient's quality of life. Therefore, the 

results of the POMDP model have positive returns. 
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In this section, where we investigated the effect of clinical experience on patient life 

expectancy, it was observed that the outputs of the two models showed similar trends. We 

recommend further research involving more experts for more significant results. 

 

6.3. Optimal Policies 

To explore our second research question and to find out whether our model provides an 

accurate representation for CRC treatment process with the guidelines, we compare the 

optimal actions chosen by the proposed POMDP model according to the QALYs and LYs 

metrics with the treatment policies recommended by the “ACS (American Cancer 

Society)” ACS and NCNN guidelines. As we mentioned in Chapter 3, the goal of treating 

CRC is to (have the patient ready to) perform surgery and hence, the only action available 

for Stage I is surgery.  

 

According to the guidelines, adjuvant chemotherapy is being tried for Stage II. Our model 

chooses adjuvant chemotherapy for Stage II under the QALY metric. This result shows 

that adjuvant chemotherapy gives satisfying results in terms of quality of life. 

 

For Stage III, guidelines recommend adjuvant chemotherapy over chemotherapy, if 

possible since it can help prevent the recurrence of the disease. However, state that 

chemotherapy is also an appropriate treatment. The proposed POMDP model chooses 

chemotherapy in Stage III. As stated in Assumption 7, in our model, we ignore the 

possible recurrence. This might probably explain the output that our POMDP model 

chooses chemotherapy over adjuvant chemotherapy.  

 

Finally, guidelines recommend adjuvant chemotherapy for Stage IV if the patient is 

suitable for surgical operation, and chemotherapy for other conditions. For Stage IV, our 

model chooses the adjuvant chemotherapy in accordance with model guidelines.  

 

The proposed model does not select chemoradiotherapy as an action within the model. 

This result is consistent with the fact that guidelines do not recommend 
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chemoradiotherapy as the first option. This is probably due to the HR-QOL coefficients 

and the fact that expert opinions are not biased towards chemoradiotherapy in accordance 

with guidelines. Moreover, when we changed the utilities in favor of chemoradiotherapy, 

our model also incorporates it into the optimal policy map. Hence, it can be said that our 

model outputs, in general, conform to the guidelines.  

 

For the LYs metric, our model selects surgery for all stages except Stage IV. This trend is 

also appropriate for the primary treatment of CRC to be surgery which cannot always be 

applicable due to some complications and its effects on quality of life. In cases where 

metastasis has not yet developed, surgery helps prolong the life expectancy. We present 

a small part of the model output to facilitate understanding. Table 6.3 shows a part of the 

policy map belonging to the 10th epoch α-vectors values for the 3 separate vectors. For 

this small piece of vector space, Surgery appears to yield the best results for Stages I and 

Stage III. For Stage II, it appears Chemotherapy and Adjuvant Chemotherapy have the 

same gains and outperform the Surgery. For Stage IV, the best output belongs to Adjuvant 

Chemotherapy. The effect of changing treatment policies (in terms of % Differences) 

between Chemotherapy and Surgery -2.5%, -2.9%, and -16.6% between Adjuvant 

Chemotherapy and Surgery -2.5%, 5.8%, and -22%, and between Adjuvant 

Chemotherapy and Chemotherapy 0%, -3%, 4.5% respectively. In Stage IV the effect of 

changing the treatment policy on life expectancy is higher than other stages. It may mean 

that treatment policy decisions for Stage IV are more specific. It may also be an indication 

that the quality-of-life coefficients for Stage IV have a greater effect on treatment 

selection. 

 

Table 6. 3.  Policy map sample  

α-

vector 

Stage   

I 

Stage 

II 

Stage 

III 

Stage 

IV 

Recovery Death Action 

1 0.00 0.41 0.33 0.21 0.5      0 Chemotherapy 

2 0.00 0.41 0.32 0.22  0.5      0 Adjuvant 

Chemotherapy 

3 0.43 0.40 0.34 0.18    0.5      0 Surgery 
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We also present a 2-dimensional belief space of policies shown in Table 6.3 between 

Stage II and Stage III. As we explained in Chapter 4 each lines indicate an α-vector and 

corresponding values of boundary stages which are Stage II and Stage III. As can be seen 

in the Figure 6.2 Surgery and Adjuvant Chemotherapy is on the upper surface. But 

Chemotherapy is a dominated vector for this small part of policy map.  

 

 

Figure 6. 1. 2-Dimensional belief space sample 

(0#= Surgery, 0/= Adjuvant Chemotherapy, 00= Chemotherapy) 

 

Considering the results of all these analyses, we conclude that the proposed model 

complies well with the guidelines. However, we need real data to train and test with 

the objective of building a more robust model.
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6.4. Comparison with Authorities 

In this section, we wanted to analyze the effectiveness of the proposed model to answer 

our 3rd research question in which if the results of the proposed POMDP model 

compatible with authorities. Within this framework, we present a comprehensive 

comparison with outputs obtained from the SEER in Section 6.4.1 and we present an 

additional comparison including SEER data, the Turkey Cancer Statistics (TCS) 

(Turkyilmaz et al., 2021), and a local study (Gulsen Unal et al., 2019) in Section 6.4.2 

 

6.4.1. Comparison with SEER Survival 

We compare 5-year survival results with SEER survival data to see if the proposed 

POMDP is suitable for modeling CRC treatment history. With this objective, we used 

SEER*Explorer to obtain the SEER results (National Cancer Institute, 2022b). SEER is 

an enormous US based cancer database. In particular, the life expectancy data is based on 

the US population. However, SEER data is used all over the world to get statistics on all 

types of cancer. SEER used a different cancer staging system from the AJCC 5th edition, 

which includes three stages as localized, regional, and distant. Localized stage is a 

combination of Stage I and Stage II of AJCC 5th edition. Regional corresponds to Stage 

III and distant is the Stage IV. To make a fair comparison of the results of the proposed 

POMDP model and the SEER Data, we selected data that include the non-Hispanic white 

people having age > 50 from both genders in Table 6.4. 

 

Table 6. 4.  5-year Relative Survival (%) (SEER based Results) 

 5-year Relative 

Survival (%) 

95% C.I. Lower 

Limit 

95% C. I. Upper 

Limit 

Localized 94.7 94.1 95.3 

Regional 78.3 77.4 79.1 

Distant 18 17.0 19.0 

Overall 70.2 69.6 70.7 
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Figure 6. 2. Survival Analysis (5 year) 

 

In Figure 6.2 we present survival outputs of proposed POMDP, corresponding MDP and 

SEER data. As can be observed from the Figure 6.2 both models have similar trends with 

the SEER based results. However, POMDP is closer to SEER’s relative survival than the 

MDP. This may indicate that clinical expertise is an effective factor when modeling on 

treatment procedures due to the unobservable nature of the disease. We can also say that 

the 5-year survival rates found from the MDP model may provide an upper bound to the 

5-year survival rates found from the proposed POMDP model.  

 

The difference between the SEER results and the proposed POMDP can be attributed to 

geographical factors. The socioeconomic level of the population also affects the benefit 

from treatment. As stated before, SEER is a US-based database, but our model represents 

the history of the CRC in Turkey. In addition, we calculated cancer-related survival, but 

SEER data that have been used consider the relative survival of all CRC patients 

(including non-CRC-related deaths of CRC patients). Therefore, the difference may also 

indicate loss of life due to other mortality factors. 

 

Even if both US and Turkey populations are similar in terms of accessing the treatment, 

the patient's psychological condition (stress factor), access to quality food and physical 

activity affect the outcome of the treatment and therefore life expectancy and quality. 
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Moreover, the fact that health services are more accessible in Turkey compared to the US, 

for example, that cancer treatment is covered by social security insurance, may also be an 

explanation for the high survival rates for distant stage. However, our model has some 

limitations and yet not sufficient to talk about this with certainty. More research needs to 

be done to be sure in terms of data and opinion collection. 

 

Finally, as can be seen from the Figure 6.2 our model has similar trends with SEER result. 

Therefore, it can be sad that our model has promising outputs and provide a good 

representation of survival. 

 

6.4.2. Additional Comparison 

In order to evaluate the performance of the model, we now examine the obtained survival 

outputs by using the stage distribution of the targeted data as the initial belief status of 

proposed POMDP. We think the POMDP model is promising compared to the SEER and 

(Turkey Cancer Statistic, 2017) results. As % differences with target values are acceptable 

with 3.55 and 4, respectively. We also present an additional comparison with a study 

conducted at Ege University Faculty of Medicine, in which they used patient data 

admitted the university hospital and the %difference is 8. As we mentioned before, 

environmental conditions are very effective in the course of CRC. We think that these 

differences between the results of Ege University and the proposed model may be due to 

the fact that the used data is more local (Includes one hospital data.)  

 

Table 6. 5. Survival results and %Differences 

Study 5-year  

Survival 

POMDP Dx% 

SEER 

TCS 

Ege University 

65.1% 

55.5% 

54.5% 

67.5% 

57.9% 

59.4% 

3.55 

4 

8 
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In general, it can be thought that the transition and observation probabilities we defined 

with a limited number of experts perform well. The performance of the model may 

improve if the probability collection process involves more experts. Based on these 

results, we think that the proposed POMDP is a suitable tool for modeling the 

environment of colon cancer treatment. For further research, we recommend deriving 

probabilities from actual data or conducting extensive studies involving more experts. 

 

6.5. Robustness Analysis 

In this section we run the proposed POMDP model in different scenarios to understand if 

our model is robust enough with respect to the parameters used in the model. To answer 

our last research question, we mainly focused on QALYs.  

 

6.5.1. The Effect of Diagnosing Stage  

In the base-case POMDP model in Section 6.4.2, we define the initial belief with the stage 

distributions obtained from the corresponding datasets to calculate the overall results. In 

this section, we present a new scenario and run a model initiated separately for each stage 

to see how the diagnostic stage affects the QALYs obtained. 

 

 

Figure 6. 3. 5-year QALY values by stage and overall survival 
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Colon cancer progress very quietly because the colon is in an isolated part of the body. 

The transition time from Stage I to Stage II takes an average of 10 years. This situation is 

very restrictive in terms of diagnosis of the disease. Many patients do not experience or 

do not notice symptoms until they reach Stage III or even Stage IV. This means that there 

is no significant decrease in the patient’s quality of life in the initial stages (Stage I and 

Stage II). When it comes to Stage IV a dramatic decrease in the patient’s quality of life 

occurs with the cancer spread through the body.  

 

As can be observed from Figure 6.3 the QALYs decrease as the cancer stage increases. 

The lowest value belongs to Stage IV as expected. When we look at the general results, 

we see that the 5-year life expectancy of a CRC patient is equal to 4.02 QALYs. Therefore, 

it can be said that CRC causes 0.98 quality adjusted lifetime loss on the average.  

 

For a more comprehensive analysis and to understand quality perception of Turkey 

population we recommend using quality coefficients from patients in Turkey and 

transitions gathered from more experts. Due to the lack of data and the COVID-19 

pandemic (reaching experts and getting help was much more difficult and riskier than 

during non-pandemic periods) we are unable to do any further analysis. 

 

6.5.2. Changing Utilities  

In the base case scenario, we combined the stage-dependent and action-dependent utility 

functions obtained from the literature. Actually, there are many versions of utility 

functions in the literature that depend on the stage, action, age, gender, or some 

combination of several of these. As we have explained in Assumption 3 in Section 6.1., 

we do not consider age- and gender-dependent utilities in our model. To understand the 

impact of changing utilities on the model output, we run two new scenarios using only 

the stage-dependent utilities and treatment-dependent utilities for each stage and overall. 

We compared both models with the base case POMDP. The QALYs for both scenarios 

and proposed POMDP are shown in Table 6.6 below. 
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Table 6. 6.  QALY results with different utility functions 

 Proposed Model Stage-dependent Treatment-dependent 

Stage I 

Stage II 

Stage III 

Stage IV 

 

Overall 

4.87 

4.81 

4.33 

3.1 

 

4.02 

4.93 

4.87 

4.42 

3.2 

 

4.11 

4.91 

4.88 

4.5 

3.41 

 

4.21 

 

As shown in Table 6.6, the treatment-dependent utility model and the stage-dependent 

utility model produce more optimistic QALY results than the proposed model in which 

we use combined utilities. We think this may be due to ignoring one dimension of quality 

of life in each scenario.  

 

For Stage I, the stage-dependent model yields the best QALYs among all which makes 

sense since the disease is highly curable in this stage and has minimal impact on the 

patient’s quality of life. The stage dependent model outputs -1.23% differs from the 

proposed POMDP and -0.4% with treatment dependent model. 

 

For Stage II, Stage III and Stage IV treatment dependent utilities has better QALYs among 

all and QALYs deviate from the proposed MDP model with a difference of -1.5%, -3.9%, 

and -10%, respectively. We think this may be because more than one available action is 

on the table for these stages (recall the only action available for Stage I is surgery), and 

each of them has better utility coefficients than surgery. We can think that QALY results, 

which decrease as the stage progresses, may be an indication that the effect of the disease 

and the side-effects of the treatments applied on the patient’s quality of life increases as 

the stage progresses. 
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For the overall expected QALYs outcomes, we can say that the stage-dependent utility 

model yields closer QALY results to the proposed POMDP than the treatment-dependent 

one, with a difference of -2.2% and -4.7%, respectively. For a more realistic model, we 

also recommend using a HR-QOL that depends on both stage and treatment. In addition, 

we think that the inclusion of age and gender-related utilities from the targeted patient 

population (for our case CRC patients in Turkey) in the model may increase the ability of 

representation of the history of the CRC treatment process. 

 

6.5.3. The Effect of the Clinical Experience 

In the scope of this study, we now present a new scenario to understand the effect of 

clinical expertise on the QALYs. With this objective, we collect opinions on the transition 

probabilities from two separate group of physicians. The first group is an oncologist group 

who are expert in specifically cancer. The second group is also a group of physicians not 

working in the oncology field. However, their knowledge about CRC is also theoretical 

and clinical. The theoretical knowledge comes from medicine school, and clinical 

knowledge is obtained through communications with oncologist within the hospital (for 

patient consultations) and their internship in oncology department. In Table 6.7 we 

present the QALY results obtained from the POMDP model using the opinions of the 

transition probabilities of both groups. 

 

Table 6. 7. QALYs based on different expert groups 

 Proposed Model Oncologist Group Non-Oncologist Group 

Stage I 

Stage II 

Stage III 

Stage IV 

 

Overall 

4.87 

4.81 

4.33 

3.1 

 

4.02 

4.88 

4.85 

4.65 

4.17 

 

4.45 

4.91 

4.8 

3.88 

1.17 

 

3.61 
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For Stage I, the proposed model and oncologist group model is not different with -0.2% 

difference. The best outcomes come from non- oncologist group with 1.2% difference 

with proposed model. For this stage we can say that both groups have similar knowledge. 

 

 For Stage II, Stage III, and Stage IV non-oncologist group has a more pessimistic 

perception about the course of the disease than the oncologist group with %1, 16.5% and 

71% differences, respectively. The difference of both model is increase as stage 

progresses. The knowledge of non-oncologist group is mostly theoretical and comes from 

textbooks which are mostly based on US data. On the other hand, the oncologist group 

has obviously more control and more knowledge over Turkey CRC patient data. We think 

their experience had some effect, particularly on the odds of death and recovery. The non-

oncologist group estimated higher death probabilities than the oncologist group. 

 

Therefore, we think the differences of both models might be an indicator of geographical 

effect.  In addition, medicine is a multidisciplinary field in which many specialists work 

together for patients with many diseases. When a CRC patient needs to be evaluated by 

another field specialists, the patient's condition may worsen, and treatment may be 

required not only for cancer but also for comorbidities or side effects. We think that the 

non-oncologist group is facing with CRC patients in bad situations. For example, an ER 

specialist evaluates a CRC patient when the patient is in a terminal stage and is close to 

death. This may be due to the more pessimistic perception of the course of the disease by 

non-oncologists. But our study is not sufficient to make certain statements. Future works 

that involve more experts from different geographic areas and different levels of expertise 

may be more useful.
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7.CONCLUSION 

 

In this thesis, we developed a POMDP model for clinical decision support of CRC 

treatment. The model was constructed to represent the environment that is partially 

observable due to the dynamic nature of the disease and imperfect diagnostic tests. We 

made some assumptions for computational simplicity. The model represents the natural 

history of CRC, which includes the four cancer stages, recovery, and death conditions. 

The transition probabilities for this model were determined with the help of experts. Due 

to the COVID-19 pandemic, the number of experts providing opinions is not high. 

Although we reached experts working in different regions of the country, it was not 

enough to reach a general opinion and the expert opinions showed some variability. 

Despite this, our model can be considered an accurate representation of CRC history.  

Because we considered observations such as CEA level and CT results in our model that 

had not been addressed by previous studies although they are used very frequently in 

practice, this has increased the representation level of the model.  

 

In this study, we also have shown the difference between the model that considers 

observations (proposed POMDP) and the model that does not consider the observations 

(MDP model). The results showed that adding the aforementioned observations to the 

model had some effect on the QALYs gained, but further analysis was required. 

 

We have shown that our model provides treatment recommendations similar to the 

guidelines, and we consider the proposed model can be considered as a promising 

representation of the history of the CRC treatment process and our model have complied 

well with guidelines. 

 

We compared the outputs of proposed model with SEER and TCI results. We have shown 

that our model overall results are not much different with 3.55% and 4% respectively. 

This indicate that transition and observation probabilities we defined with expert’ help is 

acceptable and provide an accurate model. 
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We proposed different scenarios to understand model robustness. We investigated the 

effect of the utilities, reward function, and transitions on the modeling CRC.  

 

With this study, we present 5-year QALY and LY estimations for patients with CRC. We 

think that it can support the clinical decisions of physicians in determining the direction 

of treatment according to the patient's life expectancy.  

 

As the staging system and observation states are common to various cancer types, we 

think our model is adaptable for other cancers with the integration of specific 

probabilities. 

 

As a result, in this study, POMDP has been shown to be a convenient and a suitable 

method for modeling the history of CRC and can be used to provide clinical decision 

support. Obviously, there are several limitations of this study, which we try to explain in 

the next section.  

 

7.1. Recommendations for Future Study  

The integration of country-based utilities to the model is the key area for future research. 

Currently, the model is a good representation of the natural history of CRC but cannot be 

said to be an accurate representation for CRC patients in Turkey. 

 

For a more realistic model, we used HR-QOL that depends on both stage and treatment. 

In addition, we recommend the inclusion of age and gender-related utilities from the 

targeted patient population may increase the model’s ability of representation of the 

history of the CRC treatment process. 

 

The current model takes a homogeneous group of people >50 years old. Future studies 

could consider diverse cohorts of models from many different age ranges and genders to 

examine whether they might affect QALYs.  
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We think further research involving more experts may yield more meaningful results. In 

addition, the use of real data integrated with expert opinion may be more useful in 

obtaining transition probabilities. The cost effectiveness ratio metrics can be used by 

adding treatment costs to the model for more meaningful outcomes. This could help 

determine thresholds for treatment options. Expanding the frame by adding the screening 

process to the model allows for a more periscopic view of the CRC history. This approach 

can be used to support future medical research, particularly epidemiology studies.  

 

For the proposed POMDP model, we assumed that there are no comorbidities and 

synchronous cancers. Comorbidities and synchronous cancer susceptibility analysis may 

be included in future research. We used traditional treatment methods such as 

chemotherapy surgery adjuvant chemotherapy and chemoradiotherapy in our model. We 

suggest more alternative options can be added in future works.  

 

We also constrained the model by ignoring the recurrence of the disease. Therefore, we 

assume that a patient who reaches the recovery state is completely done with the cancer 

and never becomes a CRC patient again. Since colon cancer is a slowly progressing 

disease and we examined the 5-year time period, we assumed that the effect of this 

assumption on the outputs of the model was negligible. But, in real life there is always a 

risk of recurrence. Therefore, we think that adding the probabilities that a patient can 

transition from recovery to cancer stages will increase representational accuracy of the 

model. Especially, when the planning horizon is longer, adding the recurrence possibility 

will be quite important.  

 

 We think that relaxing all these constraints will increase the ability of representation of 

the model. A more powerful and robust POMDP model may be possible if the modeling 

methodology can be integrated with reinforcement learning. 
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