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The diversity of the methods for geodata collection has increased significantly in recent 

years. The need for automated approaches for updating geodatabases has also increased 

in parallel to this development. In addition to the novel machine learning (ML) 

methods, the contributions of non-professionals and volunteers are immensely required 

to achieve this goal. Geographical Information Systems (GIS) on the web and on mobile 

devices provide the required tools and methods for utilizing geoinformation (GI) 

contributed by individuals of all backgrounds. Thanks to the increasing attention on the 

volunteered geographic information (VGI) approaches and the Citizen Science (CitSci) 

projects, the contributions of non-professionals to participatory GIS efforts can be 

utilized gradually. On the other hand,to improve the accuracy of data obtained by 

volunteers, new algorithms and platforms can help with semi-automatic GI extraction. 

By incorporating novel artificial intelligence (AI) methods, such as the deep learning 

(DL) algorithms, into WebGIS, the semi-automatic GI extraction task can be facilitated. 

As a result, volunteers with limited experience on GI collection and in particular image 

interpretation can be assisted in performing proper processing and making informed 

decisions with AI guidance. In this thesis, a DL-assisted WebGIS framework was 
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developed to detect buildings, to delineate their rooftop boundaries, and to compare 

with existing building vectors to serve for change detection, and accordingly database 

updating. The input aerial and satellite images provided by the users can be processed 

by using pre-trained DL models for building detection. The detected rooftops can be 

vectorised in the proposed system, and a change detection component reveals the 

alterations between the existing and the detected vector data. Thus, the framework 

supports vector modification and drawing, and final products are stored in a spatial 

database management system (DBMS). The framework is adaptable and various DL 

methods can be integrated into the framework for different image segmentation 

problems. It is expected that with the availability of such systems, more users can 

support the geodata collection, updating and analysis processes, which are crucial for 

different applications such as environmental monitoring, spatial planning, digital twin 

creation for land management and simulations, etc. 
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Coğrafi veri toplama yöntemlerinde çeşitlilik son yıllarda önemli ölçüde artmıştır. Bu 

gelişmeye paralel olarak coğrafi veri tabanlarının güncellenmesi için otomatik 

yaklaşımlara olan ihtiyaç da artmıştır. Makine öğrenimi (ML) yöntemlerinin 

kullanımına ek olarak, alanında profesyoneli olmayan kişilerin ve gönüllülerin katkıları 

bu hedefe ulaşmak için son derece gereklidir. Web ve mobil tabanlı Coğrafi Bilgi 

Sistemleri (CBS), uzmanlığı olsun olmasın farklı özgeçmişe ve becerilere sahip kişiler 

tarafından sağlanan coğrafi bilgilerin (CB) kullanımı için gerekli araçları ve yöntemleri 

sağlar. Gönüllü coğrafi bilgi (GCB) yaklaşımlarına ve Vatandaş Bilimi projelerine artan 

ilgi sayesinde, profesyonel olmayanların katılımcıların CBS ortamına katkılarından 

kademeli olarak yararlanılabilir. Öte yandan, yeni algoritmalar ve platformlar, 

gönüllüler tarafından toplanan verilerin doğruluğunu artırmak için yarı otomatik olarak 

CB çıkarımına yardımcı olabilir. Derin öğrenme (DÖ) algoritmaları gibi güncel yapay 

zeka (YZ) yöntemlerini WebCBS ara yüzlerine dahil ederek, yarı otomatik coğrafi bilgi 

çıkarma görevi gerçekleştirilebilir. Sonuç olarak, coğrafi bilgi toplama ve özellikle 

görüntü yorumlama konusunda sınırlı deneyime sahip gönüllülere, yapay zekâ 

rehberliği ile doğru işlemeyi gerçekleştirme ve bilinçli karar verme konusunda yardımcı 

olunması mümkündür. Bu tezde, binaları tespit etmek, çatı sınırlarını belirlemek ve 
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mevcut bina vektörleriyle karşılaştırarak değişiklik tespiti ve veri tabanı güncellemesine 

olanak sağlaması için DÖ destekli bir WebCBS uygulaması geliştirilmiştir. Kullanıcılar 

tarafından sisteme yüklenen hava veya uydu görüntüleri, bina tespiti için önceden 

eğitilmiş DÖ modelleri kullanılarak işlenebilir. Tespit edilen çatılar sistemde vektör 

formata dönüştürülebilmekte ve değişiklik tespit bileşeni kullanılarak mevcut ve tespit 

edilen vektör verileri arasındaki değişiklikleri çıkarmak mümkün olmaktadır. 

Geliştirilen uygulama ile vektör düzenleme ve çizimler desteklenebilmekte ve nihai 

ürünler bir mekânsal veri tabanı yönetim sisteminde (VTYS) saklanabilmektedir. 

Geliştirilen uygulama uyarlanabilir özelliklere sahiptir ve farklı görüntü bölütleme 

problemleri için uygulamaya çeşitli DÖ yöntemlerinin entegre edilmesi mümkündür. Bu 

tür sistemlerin kullanılabilirliği ile çevresel izleme, mekânsal planlama, arazi yönetimi 

ve simülasyonlar için dijital ikiz oluşturma gibi farklı uygulamalarda CB toplama, 

güncelleme ve analiz süreçlerini daha fazla kullanıcının destekleyebilmesi 

beklenmektedir. 

 

 

Anahtar Kelimeler: WebCBS, Sivil Bilim, Derin Öğrenme, Uzamsal Veri Tabanı 

Güncelleme, Değişiklik Tespiti 
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1. INTRODUCTION 

 

In this section, the main motivation and the objectives of this thesis are explained. The 

main concepts elaborated in this study are discussed briefly, and the organization of the 

thesis chapters is presented. 

 

1.1 Motivation 

 

Advances in geospatial technology enable researchers to easily access high resolution 

remotely sensed data. Information extraction and interpretation of such data is a 

fundamental research topic for many researchers. The provision of timely, accurate, and 

up-to-date information on building footprints and rooftop boundaries is of high 

importance for government authorities and many industries such as defense, 

telecommunication, insurance, etc. Many applications, ranging from the evaluation of 

financial loss after disasters to real estate taxation, military mission simulations, 

infectious diseases (e.g., COVID-19 pandemic), urban planning, etc., require building 

footprint information or rooftop boundaries for proper evaluation. 

 

Manual extraction of building rooftop boundaries is a time-consuming and labor-

intensive task, especially for urban areas that contain large numbers of buildings. 

According to the United Nations (UN), by 2050, metropolitan areas will inhabit 68 

percent of the world’s population (United Nations, 2019). This reveals the need for 

extensive planning in building related problems including establishing and updating the 

building databases in an accurate and efficient way. Considering this prospect, 

automatic or semi-automatic solutions for building detection and updating are 

immensely required. 

 

Thanks to advances in Information and Communications Technology (ICT), the web 

and mobile-based geospatial solutions have become essential for geospatial data 

collection and interpretation. Considering the amount of the data in regional 

applications due to the high resolution requirements, contributions of people from any 

background have also become essential for achieving this task. Thanks to the 
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development and widespread use of collaborative approaches in geospatial applications, 

the task of geodata collection and analysis benefits from the contributions of non-

mapping professionals. Such efforts are mentioned under different terms in the 

literature, such as participatory geographic information system (GIS), volunteered 

geographic information (VGI), crowdsourced geographic information, citizen science, 

etc. (See et al., 2016). In recent years, volunteered participation in geospatial initiatives 

has increased and a well-known example can be given from the OpenStreetMap (OSM) 

Project (Open Street Map, 2022), which has approximately 8 million participants. This 

situation gives an important opportunity for the accomplishment of tasks that are 

traditionally performed by mapping professionals in the field or with the help of 

remotely sensed imagery. Thus, the detection of changes in the field, and the precise 

determination and measurement of object geometries can be carried out by non-

professionals as well.  

 

Instead of terrestrial measurements, interpretation of Earth Observation (EO) data, 

particularly the optical images acquired on different platforms such as satellite or 

airborne can be easier for non-professionals to extract the geodata. As an example, 

easily recognizable objects such as buildings or roads can be delineated precisely by 

volunteers from almost any background. However, limitations or difficulties still exist, 

especially in urban areas due to the volume of the data or unclear object boundaries 

caused by shadows, image quality, vegetation, etc. Several studies in the literature (e.g., 

Can et al. 2020, 2021; Yalcin et al. 2021; Li et al., 2022) have shown that such tasks can 

be supported by spatial analysis and artificial intelligence (AI) methods, which facilitate 

the mapping speed and help to increase the spatial data quality. Thus, as a spatial-data 

related sub-branch of AI, the GeoAI has the potential to provide great support for 

geodata collection and analysis by both geomatics professionals as well as non-

professionals (Janowicz et al., 2020; Li, 2020). 

 

Yet, proper tools and platforms that are accessible and easy-to-use for non-professionals 

are needed to be developed to exploit the full potential of volunteer contributions and 

GeoAI. Considering its potential and essentiality, a web-based Geographic Information 

System (WebGIS) framework utilizing open source technologies was proposed here to 

elaborate how deep learning (DL) methods can assist in vector database updating tasks 

for building rooftops. The proposed framework is scalable and can be adopted by 



 

 3 

government institutions, mapping agencies and VGI collection and analysis projects. As 

an example, the framework can be used by government institutions for detecting newly 

constructed buildings (without proper construction permissions) or those that are under 

construction. In addition, mapping agencies can integrate the framework into their 

systems to automatically monitor and reveal the need for changes in their vector 

databases if any significant differences are detected in current aerial images by the DL 

assistance. The VGI projects, such as the OSM, can integrate the framework into their 

system so that the volunteers can add, edit, and update current changes that were 

detected by the framework. Rather than observing the changes manually, the volunteers 

can utilize the DL assistance and modify the model prediction results in parts that 

require modifications. The proposed framework reduces the time spent on manual tasks 

for the map updating process and uses DL for guidance to support both experts and 

citizen scientists.  

 

1.2 Concepts 

 

Although the definitions of GIS vary depending on the perspective and various 

notations exist (Maguire, 1991), the detailed definition by Goodchild (2001) can be 

used here as; “A geographic information system (GIS) is best defined as a software 

system designed to provide services related to geographic data. Such services include 

storage, analysis, transformation, maintenance, editing, visualization, modeling, and 

many more.”. It can also be stated that “Geographic information systems are a special 

class of information systems that keep track not only of events (e.g. environmental 

disasters), activities (e.g. construction), and things (e.g. facilities, institutions, or 

natural resources), but also of where they happen or exist” (Adam, 2013). The main 

components of GIS are in general considered as software, hardware, data, methods, and 

people. People include different kinds of contributors to the system, such as mapping 

professionals (e.g., geomatics engineers, surveyors, etc.), GIS administrators, planners, 

land owners, or any other end users, etc. The functional components of a GIS are 

presented in Figure 1.1 (Huisman and de By, 2009). 
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Figure 1.1Functional elements of Geographic Information System (Huisman and de By, 

2009).  

 

The VGI was first used by Goodchild (2007) to define the geographic information (GI) 

collected by users. The concept was also intertwined with neogeography, geographic 

citizen science, crowdsourced GI, mashup, participatory sensing, web mapping, etc. 

(See et al., 2016). The VGI projects have become increasingly popular with the 

developments in ICT technologies and the availability of low-cost positioning sensors 

on mobile devices, which have enabled nearly every location to become reachable. With 

the widespread use of mobile technologies, people from almost every country, 

language, and age group have become potential data providers. While VGI has been 

seen as a valuable approach in the literature for different applications such as land 

administration (Moreri et al., 2018), smart cities, digital twins, health, etc., concerns 

related to legal and ethical regulations, data quality (Antoniou et al., 2017), and 

reproducibility and replicability (Ostermann and Granell, 2017), exist. 

 

Citizen Science refers to voluntary engagement in scientific processes, independent of 

technical or research expertise. Also, citizen science is used to describe groups or 

networks of individuals who serve as observers in a particular field of study (Goodchild, 

2007). Scientists, applied users, and people working to achieve the Sustainable 

Development Goals of the 2030 Agenda are increasingly relying on data supplied by 

citizen scientists (de Sherbinin et al., 2021). Currently, a wide range of studies involve 

citizen science to cover data needs (Xu et al., 2022, Taylor et al., 2021, Senzaki et al., 

2020, Yalcin et al., 2020). Considering the fact that several geospatial data collection 

efforts carried out by volunteers do not contribute to the scientific knowledge 
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generation, i.e., inconsistent with the ten principles of citizen science compiled by the 

European Citizen Science Association (ECSA, 2015), it can be stated that the citizen 

science and VGI have common and even complementary aspects but are not completely 

overlapping (Kocaman and Gokceoglu, 2018). 

 

GeoAI is a newly developing branch of AI, which benefits from the developments in AI 

techniques, hardware resources, high-performance computing (HPC) methods, and the 

availability of a large amount of high resolution geospatial data (Janowicz et al., 2020). 

In particular, the DL, computer vision and natural language processing (NLP) 

techniques support the progress (Janowicz et al., 2020). The three pillars of GeoAI 

defined by Li (2020) are shown in Figure 1.1. 

 

 

Figure 1.2. The three-pillar definition of GeoAI (modified after Li, 2020). 

 

The DL is a machine learning (ML) technique that utilizes a neural network with three 

or more layers, and it is a kind of representation learning as illustrated in Figure 1.2. 

Representation learning is an approach which employs the ML to find not only the 

mapping from representation to output but also the representation itself (Goodfellow et 
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al., 2016).  The DL architectures involve multiple models in different layers, which 

allow learning from data at increasing degrees of abstraction (LeCun et al., 2015).  

 

Figure 1.3. A Venn diagram that shows relationships in artificial intelligence 

(Goodfellow et al., 2016). 

 

Figure 1.3 shows an illustration of a DL model. A computer sees an image as a 

collection of pixel intensity values. In order to identify an image, a function is needed to 

map such pixel values to object identity. The DL tackles this problem by decomposing 

the required complex mapping into a series of layered simple mappings, each of which 

is specified by a separate layer of the model (Goodfellow et al., 2016). The DL methods 

are making remarkable progress in overcoming problems that have long evaded the AI 

area. The DL architectures can successfully detect fine structures by modelling non-
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linear relationships in highly dimensional problems and thus are useful for various 

application areas in science, industry and public institutions (LeCun et al., 2015). 

 

Figure 1.4. Deep learning model illustration (Goodfellow et al., 2016) 

 

The Convolutional neural networks (CNNs) is a sub-class of neural networks, which 

models neighborhood information in a grid-like structure, and applicable to 

multitemporal datasets or imagery. The CNNs benefit from the local information by 

utilizing shared weights and pooling over a specified neighborhood  in a DL structure 

with multiple layers (LeCun et al., 2015). Local connections enable every neuron to 

make connections between localized regions of the input grid instead of each cell of the 

grid. Shared weights are also known as kernels, which are defined weights of the 

corresponding feature map. Shared weights allow specification of similar features 

detected at various locations in the data. This approach may reduce the dimensionality, 

i.e. the unknown parameters existed in the network. Pooling simplifies the information 

that is provided from the convolutional layer (Nielsen, 2015). 

 

A CNN is composed of several stages, as illustrated in Figure 1.4. For example, when 

considering dog identification problem using images, the first few layers of the typical 
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convolutional network are responsible for extracting low level features like edges and 

corners. These features are then increasingly aggregated into more complex features that 

resemble the real things of interest, such as Samoyed dog or arctic fox in the last few 

layers.  

 

 

Figure 1.5. Application of a CNN architecture to a Samoyed dog image (LeCun et al., 

2015). 

 

1.3 Objectives 

 

The main objectives of this thesis are: 

- to design and train a DL model for the automatic extraction of building rooftop 

boundaries from aerial imagery; 

- to design a WebGIS framework and software architecture with the functionality 

of (i) vectorization of the detected building rooftops using existing methods in 

the literature; (ii) the detection of changes between two vector datasets; (iii) 

visualization of the aerial image and the vector data with the help of a web map 

viewer; (iv) vector data modification on the web map editor; and (v) data 

upload, modification and download;  

- and to develop a system prototype with the required tools and user interfaces. 

 

It is expected that the proposed system can demonstrate the potential of the GeoAI for 

building updating and unveil potential issues for further research and development. 
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1.4 Organization of the Thesis 

 

This thesis includes six chapters. After the Introduction, the related works in the 

literature are presented in Chapter 2. Chapter 3 provides the technical background and 

the main components required in a WebGIS platform with a focus on GeoAI 

functionality. Chapter 4 presents the overall workflow and the details of the proposed 

WebGIS framework and the DL method employed for building extraction. Examples of 

the application interface are also given in this Chapter. Discussions are provided in 

Chapter 5. Conclusions and future work are given in Chapter 6. 
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2. RELATED WORK 

 

 

In this section, the recent literature on the DL methods for building segmentation from 

aerial images together with WebGIS platforms developed for Citizen Science and VGI 

projects is provided.  

 

2.1 The DL Architectures for Building Extraction 

 

 Deep convolutional neural networks (DCNNs) were often utilized for semantic 

segmentation and classification of aerial imagery (e.g., Shi and Zhu, 2018; Bittner et al., 

2018; Wu et al., 2018; Yang et al., 2018). Several studies (Ronneberg et al., 2015; He et 

al., 2017; Chen et al., 2018) demonstrated remarkable performance in pixel based 

classification problems by using appropriate training datasets and the DL architecture. 

The outputs, on the other hand, are still rarely used or favored in an end-to-end system 

that aims to update a geodatabase. However, the DL-based methods have a high 

potential for semi-automated assistance to both experts and citizen scientists by 

recommending classification tags, verifying tags, updating notifications, quality analysis 

on the output, change detection caused by natural hazards, and so on. Allowing the 

usage of DL models to update a geodatabase would considerably increase the efficiency 

of human interpretation operations, especially for identifying areas of change. .Thus, 

time and labor expenses may be significantly  reduced and interactive techniques can 

assure more precise and semantically complete data in a shorter period of time.  

 

Marmanis et al. (2018) proposed a DCNN architecture that clearly specifies and extracts 

the boundaries between many semantic classes while segmenting high-resolution 

airborne images. A variety of semantic segmentation architectures were investigated in 

the study, including the usage of class boundaries, multi-scale processing and multi-

network ensembles. The proposed model, whose example predictions are shown in 

Figure 2.1, had the best F1-score of 95.2 percent for the “Building” class in the ISPRS 

Vaihingen benchmark dataset.  
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Figure 2.1. Example predictions in ISPRS Vaihingen benchmark dataset (Marmanis et 

al., 2018). 

 

Yi et al. (2019) proposed a novel CNN architecture called DeepResU-Net that 

successfully performed pixel wise urban building classification from very high 

resolution imagery and produced accurate results. DeepResU-Net achieved higher F-

measure, Cohen’s kappa score, and overall accuracy (OA) by 3.52, 4.67, and 1.72 

percent respectively than U-Net architecture. Jiwani et al. (2021) used a modified 

version of the DeepLabV3+ architecture with a dilated ResNet backbone to propose a 

novel approach for building footprint extraction from  satellite imagery. The proposed 

approach achieved state-of-the-art outcomes with 92.6, 96.3 and 83.4 percent F-measure 

respectively, on benchmark datasets, resulting in better quality graphics independent of 

the image resolution, scale, or urban density. 
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Li et al. (2021) incorporated multiple DL models to extract building footprint polygons 

from airborne imagery. The proposed method uses a pixel-by-pixel approach to 

compare model accuracy and generates building footprint geometries that are almost fit 

to the ground truth  data as for edges, vertices, and shapes with 92.6,85.1 percent 

precision and confidence respectively in the WHU building dataset. Kada and Kuramin 

(2021) used PointNet++ and KPConv to classify building rooftops with several classes 

using point cloud data acquired by airborne laser scanning (ALS) with an Jaccard score 

of 0.948. 

 

Another frequently utilized strategy for semantic segmentation problems using the DL 

is to combine several types of data sources and spectral bands. Through data stacking, 

different kinds of data sources can be merged with the RGB and provide additional 

information while training the DL architectures. Without changing the model structure, 

feeding the n-band input instead of three-band (RGB) input enables to use additional 

data. Hazirbas et al. (2017) proposed FuseNet, which is a prominent architecture for 

data fusion. The authors claimed that the depth information was not properly capitalized 

through stacking the RGB and depth information. Sun et al. (2021) used a frame field 

learning approach with the combination of true orthophotos and normalized digital 

surface models (nDSMs) to extract building outlines automatically. The height 

information provided by nDSM improved accuracy and regularity and achieved 70 

percent average intersection over union score on the test set. Incorporating height 

information to RGB improved the IoU score by 12 percent when comparing the RGB 

images only results.  

 

Bittner et al. (2018) were able to incorporate spectral (RGB and PAN images) and 

elevation information (nDSMs) from various sources and segment buildings in complex 

urban areas using fully convolutional networks (FCNs), resulting in building masks 

with the same raster resolution and 85.5 percent overall accuracy. It was demonstrated 

that combining spectral data with additional data and using the proposed approach 

resulted in slight improvements, particularly when predicting the building outlines. 

However, the minor improvements were a huge step forward because previously 

proposed approaches for building extraction algorithms were not particularly flexible 
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and could not be easily generalized   across different urban areas with various building 

types.  

 

Zhao et al. (2021) proposed an approach for extracting building outlines by utilizing 

CNN architecture for extracting features and a recurrent neural network (RNN) for 

polygon vertices decoding to generate regularized building outlines. This was achieved   

by combining traditional feature engineering based methods into a single end-to-end DL 

architecture. The authors have made several modifications to PolyMapper’s (Li et al., 

2019) work, including the backbone, detection, and recurrence modules improvements. 

Xu et al. (2018) proposed a new approach for extracting urban districts from very high 

resolution airborne images that incorporated the DL and guided filtering. The 

segmentation accuracy of the ISPRS Potsdam and Vaihingen datasets was improved by 

0.43 and 2.9 percent, respectively, using the proposed approach. 

 

Buyukdemircioglu et al. (2022) have utilized nDSM data together with the true 

orthophotos in order to extract building footprints using DL. The authors have 

investigated the effects of nDSM on extracting building footprints and also the 

performances of the U-Net and LinkNet architectures with different backbones, and 

showed that combining nDSM data with the true orthophotos has increased F1-score 

while decreasing validation loss significantly. They achieved a Jaccard score of 0.926 

on test dataset using LinkNet architecture with ResNet-50 backbone trained on the 

dataset includes nDSM. The results for the test area produced by their proposed models 

trained on the nDSM included dataset are shown in Figure 2.2. 
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Figure 2.2. Results for the test area  (a) True orthophoto, (b) Ground truth, (c-h) the 

proposed models(Buyukdemircioglu et al., 2022). 

 

2.2 WebGIS Platforms for VGI and Citizen Science Applications 

 

Although the DL-based techniques may greatly enhance intelligence for geodatabase 

updating task, the VGI obtained via mobile- and web-GIS platforms can also help DL 

architectures (Chen and Zipf, 2017). The DL methods and the WebGIS integration offer 

enormous promise for properly and quickly organizing, analyzing, and visualizing 

geospatial data when combined with the increased computing capacity of mobile 

devices. The WebGIS platform architectures are constantly developing as a result of 

advancements in computer technology and their requirements. Several review articles 

summarize the work done thus far (e.g. Agrawal and Gupta, 2017; Rowland et al., 2020) 

and interested readers may refer to those publications for further information. Decision-

makers can also benefit from DL-based decision support systems including the 

interactive interfaces provided by such platforms.   

 

Fan et al. (2021) proposed a platform that allows 3D building modelling using VGI 

data. A study conducted by Can et al. (2019) showed that the quality of the data 

provided by citizen science (CitSci) based data collection projects can be evaluated with 

the help of CNNs. In a recent work, Can et al. (2020) proposed a WebGIS framework 

that employs a CNN-based quality assessment tool in a GeoAI platform (called 
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GeoCitSci.com). In addition, Can et al. (2021) have proposed a framework for semi-

automated geodatabase updating and demonstrated how DL based decision support 

systems would be useful for CitSci based applications. 

 

Toro Herrera et al. (2021) have proposed a web platform that aims to enhance 

monitoring of water resources. The proposed platform allows uploading, publishing, 

and managing the water quality maps with the visualization of the water quality 

parameters map through the WebGIS interface. Balla et al. (2022) have also developed 

an analytical web tool that aims to determine and geovisualize water quality. 

 

La Guardia et al. (2021) have proposed a system that aims to choose a new location for 

the P2G plant in the territory of Sicily in a semi-automated way. The system utilizes 

MATLAB and QGIS for GIS processing and employs the WebGIS tool for the 

visualization of a new P2G plant.  

 

Atasoy et al. (2021) have proposed a 4D visualization and geo-analytics platform. The 

platform allows the visualization of multi-temporal and multi-platform geospatial data 

after disasters by providing user-friendly interfaces to geoscientists and citizen 

scientists. In addition to visualization, the platform also includes geo-analytic tools such 

as change detection for the assessment of post-disaster damage. 

 

Nunes et al. (2022) have proposed a methodology that employs a WebGIS platform for 

the assessment of indoor radon potential. The WebGIS platform enables citizens to 

visualize indoor radon potential for a corresponding building location. In addition to 

visualization, the platform also includes a data collection option. The users are able to 

provide radon measurement data for the assessment of indoor radon concentrations.  

 

Patera et al. (2022) have proposed a WebGIS application that aims to support marine 

spatial planning. The application allows users to visualize different kinds of conflicting 

activities that exist in the study area and employs five geoprocessing tools. Users can 

provide feedback about conflict assessment and management plans through the link 

involved in the WebGIS application to resolve conflicts in the study area. The authors 

have stated that the WebGIS application makes participation and active involvement of 

the public possible in marine spatial planning and that raises awareness. 
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3. TECHNOLOGICAL BACKGROUND 

 

In this section, the technical concepts and technologies used in this thesis are briefly 

explained. Figure 3.1 shows the basic components of WebGIS in a client/server 

architecture.  In the figure, the client defines the web browser or a mobile application. 

When a user accesses a geospatial application through a web browser, the respective 

client-side scripts and templates are requested from the web server. The web server 

sends the scripts and templates for the requested page to the client. The templates may 

include a variety of elements such as graphics, user interface, web map interface, or just 

plain text.  

 

 

 

Figure 3.1. The basic components of a WebGIS. 

 

The scripts provide the functionalities for the templates. For example, when a user 

clicks the zoom in symbol in the web interface, the respective function is triggered. The 

web browser runs the script and sends the request to the web server. The web server 

handles the request, and if the requested portion of the map is not present in the cache 

on the server, the data will be forwarded to the map server. The map server generates a 

response using the configuration parameters provided in the request and the data is 

parsed from the relevant data source, which can be a file storage or a spatial database. 

The data is then converted to the required map format by the map server prior to the 

delivery to web server. Finally, the script runs on the web browser on the user side to 

get the response from the web server and to finalize the zoom in task. 
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3.1.  Client/Server Architecture 

 

A client-server architecture consists of both a client and a server, with the client 

continually sending requests and the server responding to those requests (Oluwatosin, 

2014). The requests and responses are handled via various protocols. Most commonly, 

the Hypertext Transfer Protocol (HTTP), which allows communication between client 

and server, is used. As a geospatial service, the Web Feature Service (WFS), which is 

an Open Geospatial Consortium (OGC) standard (OGC WFS, 2022) uses HTTP to 

create, modify, and exchange vector data on the Internet. As a data exchange format, the 

Geography Markup Language (GML) (OGC GML, 2022) enables the encoding and 

transfer of geographic information by WFS. Further data exchange formats and web 

services for geospatial applications can be found in the OGC resources (OGC 

Standards, 2022). 

 

3.2.  User Interface 

 

A user interface enables the interaction of the user with the application. There exist 

numerous tools in order to design and develop user interfaces, such as Bootstrap 

(Bootstrap, 2021), Bulma (Bulma, 2022), Foundation (Foundation, 2022), etc. The 

Bootstrap is among the most popular open source front-end framework and includes 

several features that enable the developer to build and design responsive web pages 

quickly. Although several prebuilt components exist in Bootstrap, the requirement 

specific components need to be designed from scratch. In the proposed framework, 

JavaScript (JavaScript, 2022), HyperText Markup Language (HTML) and Cascading 

Style Sheets (CSS) were used to modify existing Bootstrap components and create new 

components from scratch.  

 

3.3.  Web Map Interface  

 

Different from the generic concept of a user interface, a web map interface includes 

interactive web maps and respective functionalities. Currently, several JavaScript 
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libraries such as Openlayers (Openlayers, 2022), Leaflet (Leaflet, 2022), Mapbox 

(Mapbox, 2022), Cesium (Cesium, 2022), and Google Maps (Google Maps, 2022) that 

allow to integrate 2D and 3D web maps into web applications are available. Openlayers 

is a very powerful library with a strong user and developer community. It is easy to use 

and has the ability to customize and extend its functionalities using 3rd party libraries 

such as OL-LayerSwitcher (ol-layerswitcher, 2022), jQuery (jQuery, 2022). The jQuery 

can be used for Document Object Model (DOM) manipulation and Asynchronous 

JavaScript and XML (AJAX) calls when requesting data from a web map server, and 

thus is preferred here. 

  

3.4.  Web Application Frameworks 

 

The web application frameworks are composed of web services, web resources, and 

web application programming interfaces (API), and are designed to develop web 

applications. The Django (Django, 2022) and the Flask (Flask, 2022) are the most 

popular web application frameworks for the Python environment. Examples of the other 

frameworks that are currently available can be given as FastAPI (FastAPI, 2022), 

Tornado (Tornado, 2022), Sanic (Sanic, 2022), web2py (web2py, 2022), Masonite 

(Masonite, 2022). 

 

The Django framework includes many features that perform common web development 

tasks such as authentication, content administration, etc. and thus makes web 

development easier. In addition, Django has a contrib module, which includes several 

frameworks for different tasks. One of them is GeoDjango (GeoDjango, 2022), which 

extends the Django model fields for OGC geometries and raster data, and utilizes 

functionalities for querying and manipulating geospatial data and vector/raster 

operations. Compared to Django, the Flask is more flexible and simple. The Flask 

requires fewer dependencies, so it is easy to develop small web applications. In 

addition, the Flask is also easy to extend for large scale web applications but requires 

further implementation while developing the application-based dependencies. For 

example, the Object Relational Mapping (ORM) framework is included in Django; thus, 

it is easy for the developers to handle the database operations easily. The Flask does not 

have the ORM framework and if a Flask web application needs a database operation, 
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the developer must spend more time developing the database operations. Therefore, the 

Django technologies are preferred and utilized here. 

 

3.5.  Database Management Systems 

 

Elmasri and Navathe (2015) defines database management system (DBMS) as “A 

database management system (DBMS) is a computerized system that enables users to 

create and maintain a database.”. A DBMS usually has an interface that enables a user 

to perform various operations such as creating or deleting a database, querying, storing, 

updating data, etc. There exist several open-source DBMSs, namely PostgreSQL 

(PostgreSQL, 2022), MySQL (MySQL, 2022), MariaDB (MariaDB, 2022), MongoDB 

(MongoDB, 2022) etc. The PostgreSQL is one of the most popular open source DBMS 

with the PostGIS extension which enables spatial data storage and management 

(PostGIS, 2022). With PostGIS, it is possible to store geometries in the database and 

perform spatial queries. Several tools and features are offered through psycopg 

(pyscopg, 2022), which is a PostgreSQL adapter for Python. With the psycopg adapter, 

it is possible to use PostgreSQL features in a Python environment. Here, PostgreSQL 

and PostGIS were preferred for the implementation. 

 

3.6.  Web Servers 

 

A web server aims to respond to client requests through transfer protocols such as 

HTTP, SMTP (Simple Mail Transfer Protocol), FTP (File Transfer Protocol). A web 

server is composed of software and hardware components. The software controls how a 

client accesses the hosted content, and the hardware stores the contents and allows them 

to be shared between connected clients. The Apache (Apache, 2022) and the NGINX 

(NGINX, 2022) are the most popular open-source web server software.  
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3.7.  Web Map Servers 

 

A web map server is software that allows communication between a web server and a 

database that includes geospatial data. A web map server aims to share geospatial data 

for web mapping applications. Examples of the most popular open source web map 

servers are the GeoServer (GeoServer, 2021) and the MapServer (MapServer, 2022). 

Unlike the MapServer, the GeoServer supports transaction operations in WFS, which is 

an OGC standard method to access and modify vector data over the web. A WFS 

transaction operation involves editing, so the operation enables clients to modify 

existing features or create new features in the corresponding data store. 

 

3.8.  Deep Learning Frameworks 

 

A DL framework is composed of software packages that are used for designing and 

developing the DL models. The DL frameworks provide predefined layers such as 

convolutional layers, batch normalization layers, long short-term memory (LSTM) 

layers, activation layers, etc., and often include widely used DL architectures like 

VGG16, ResNet50 (e.g., see Tensorflow Keras Applications, 2022, Torchvision 

Models, 2022). In addition, most DL frameworks include extensions that can be used 

for many purposes other than the DL, such as signal processing, numeric calculations, 

image processing, etc. There exist many open source DL frameworks, such as 

TensorFlow (Abadi et al., 2015), Caffe (Jia et al., 2014), PyTorch (Paszke et al., 2019), 

and Apache MxNet (Chen et al., 2015). Although each of them has its own advantages 

and disadvantages, the TensorFlow was preferred here as it provides comprehensive 

documentation and has a strong user community. In addition, the TensorFlow provides 

a vast number of tutorials, samples, and codes. Thus, the DL implementation stage is 

rather easy and time-saving, which allows more time for the research and algorithm 

development by letting people to develop ideas faster in a short time period, which must 

be spent on how the framework works. 
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3.9.  Python Tools for Geospatial Data Processing 

 

The Python is a widely preferred programming language for geospatial applications. 

Many commercial and open source geospatial software provide Python APIs, such as 

ArcGIS from ESRI (ESRI, 2022), QGIS (QGIS, 2022), Geomatica from PCI Geomatics 

(PCI Geomatics, 2022), ENVI from L3Harris Geospatial (L3Harris Geospatial, 2022), 

ESA SNAP (ESA SNAP, 2022), Google Earth Engine (Google Earth Engine, 2022), 

etc. In addition to software, there are a large number of Python libraries that allow 

developers to implement their own software for geospatial processing. The GDAL/OGR 

(GDAL/OGR contributors, 2021), GeoPandas (Jordahl et al., 2020) and GeoAlchemy 2 

(GeoAlchemy 2, 2022) are examples of the open source Python libraries that were also 

utilized in this thesis.  

 

The GDAL/OGR provides data translation and processing utilities and supports a wide 

range of raster and vector data formats. With GDAL, one can georeference the DL 

predictions if the affine transformation parameters such as pixel resolution, upper left 

corner coordinates, rotations, etc., are known; or geolocate a satellite image using 

rational polynomial coefficients (RPCs). Also, GDAL can be used in vector operations. 

One can produce raster masks from GeoJSON or vectorize raster masks into vector 

formats or calculate intersections between two geometries. Many commercial tools, 

such as ERDAS from Hexagon (Hexagon, 2022), ArcGIS from ESRI, FME from Safe 

Software (Safe, 2022), MapInfo from Precisely (Precisely, 2022) employ the GDAL for 

different kinds of tasks (Software Using GDAL, 2022).   

 

The GeoPandas extends the capabilities of the Pandas environment (the Pandas 

Development Team, 2020) in order to work with geographic data. The GeoPandas is 

used for processing vector data. In addition to the vector data processing capabilities, 

GeoPandas provides visualization tools. With the visualization tools, one can easily 

observe the results of the processing, visualize features that are included in the vector 

data, or make interactive maps. Since GeoPandas inherits many standard pandas 

methods, all functionalities of pandas work also in GeoPandas. The Geopandas includes 

many functionalities that are useful for geospatial analysis, such as overlay analysis, 

affine transformations, spatial joins, aggregations, and geocoding, etc.   
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GeoAlchemy 2 is a geospatial extension to SQLAlchemy (Bayer, 2012). The 

SQLAlchemy is a toolkit that allows developers to work with databases in Python. 

SQLAlchemy supports the object-relational mapper (ORM). The ORM allows 

developers to construct databases like modules following an object-oriented approach. 

The SQLAlchemy establishes connections between Python object models and 

databases. Basically, it maps the models into raw SQL queries and performs operations 

in the database. The GeoAlchemy 2 can be used for working with PostGIS. With the 

GeoAlchemy 2, PostGIS functionalities can be defined in Python object models like 

spatial queries, spatial relationships, etc. 

 

  



 

 23 

4. PROPOSED WEBGIS FRAMEWORK 

 

 

In this section, the user requirements and the overall workflow of the thesis 

implementation are explained, and the system architecture developed is presented in 

detail. In addition, the system components such as the web map interface, change 

detection, geospatial analysis, and the data management are described extensively. 

Furthermore, the DL and the vectorization methods employed here are provided, and 

several examples of the user interfaces are given. 

 

4.1.  User Requirements  

 

Figure 4.1 denotes the use case diagram for the proposed DL supported WebGIS 

framework and defines the functional requirements for the framework. The data 

requirements vary depending on where the proposed framework is implemented. For 

simplicity, the user has been restricted to uploading the aerial image in GeoTIFF format 

and the vector data in ESRI Shapefiles (SHP) format. All uploaded data should include 

a Coordinate Reference Systems (CRS) definition. Additional raster and vector formats 

can be added to the system for extending the capability of working with a variety of 

data.  
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Figure 4.1. The use case diagram of the proposed WebGIS application. 

 

The proposed system allows the user to view uploaded data and visualize the changes in 

existing vector data. The performance of the view functionality depends on the 

connection speed and the server capabilities, as well as the size and resolution of the 

uploaded data. A subsystem for modifying features in the vector layers is available in 

the proposed system. The questions of the number of concurrent users and the data 

security issues on the client side are left out in this thesis. 

 

For the change detection functionality, the configuration of the server directly affects 

the performance of the framework. In the proposed framework, the user can run change 
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detection, but the performance analysis is not assessed and left for further research and 

development. The following questions are left out:  

- How many users can run change detection operations concurrently? 

- How will server capacity be distributed when multiple change detection requests 

exist? 

 

All the functional requirements listed in Figure 4.1 are satisfied by the proposed 

WebGIS framework. Since the aim of the proposed framework is to demonstrate the 

potential of GeoAI for updating buildings, a more generic requirements analysis has not 

been carried out and the performance of the framework was not assessed. The 

requirements will change depending on the number of users and the amount of data to 

be processed. The performance of the framework also depends on these requirements.  

 

4.2. Overall Workflow 

 

Considering the main user requirements explained in the previous section, the proposed 

WebGIS architecture is composed of four main components, namely change detection, 

geospatial analysis, data management, and a web map interface component (Figure 4.2).  

  

 

 

Figure 4.2. The system package diagram of the proposed WebGIS application. 

 

The web map interface component includes three subcomponents, which are the 

toolbox, the map editor and the map viewer. The toolbox includes functionalities that 
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allow the user to be able to upload data, run change detection and download updated 

vector data. The map editor enables users to modify features in vector layers that are 

available in the user session. The map viewer aims to show the active layer that is 

available in the current layer stack. The OSM and the Bing Maps Aerial layers (Bing 

Maps, 2022) are available in the proposed architecture. By default, the Bing Maps 

Aerial is shown to the user as base map and the user is able to change visibility of layers 

through the layer switcher in map viewer interface.  

 

The data management component is responsible for controlling and managing the data. 

The component follows pre-defined validation rules before saving data to a database or 

file system. The validation step is only applied to the data that is provided by the user. 

The other components also use the data management component for data reading and 

writing purposes.  

 

The change detection component requires a georeferenced aerial image and produces 

georeferenced vector data, which includes the building rooftop boundaries detected by 

the DL model. The tasks that are employed in the change detection component can be 

divided into preprocessing of aerial image, detection of building rooftop boundaries 

using the DL model and producing georeferenced vector data by vectorizing the raster 

outputs that are provided by the DL model.  

 

The geospatial analysis component requires two sets of vector data. One of them is 

provided by the user and the other one is the output of the change detection component. 

The geospatial analysis component aims to find the differences between the two vector 

datasets and to create the georeferenced vector data from the differences. The output of 

the geospatial analysis component is the vector data that includes polygons. Each 

polygon is the difference between corresponding polygons in the two vector datasets. 

 

The detailed description of each component is given in the next sub-section.  
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4.3. The WebGIS Architecture 

 

The overall architecture of the proposed WebGIS application is given in Figure 4.3. A 

list of all technologies used in the framework is presented in Table 4.1. The application 

is composed of two parts, which are the client and the remote application server. The 

client part of the system provides an interface to the user. The user provides data, 

initiates tasks and requests data through the interface. All requests from the user are 

handled by the remote application server. Django, an open source web application 

framework, is used to enable communication between a client and a remote application 

server through HTTP.  

 

 

 

Figure 4.3. The overall system architecture of the WebGIS system with the technologies 

employed. 

 

Table 4.1. A list of the technologies used in the proposed framework. 

 

Technology Main use purpose / functionality Client/Server Link 

JavaScript Providing functionality for UI 

components and Openlayers 

implementations   

Client https://www.javasc

ript.com/ 

Bootstrap Developing UI components Client https://getbootstra

p.com/ 

CSS Styling side bar Client https://www.w3.or
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g/Style/CSS/Overv

iew.en.html 

HTML Structuring client side application Client https://html.spec.w

hatwg.org/multipa

ge/ 

jQuery DOM manipulation and AJAX 

calls,  

Client https://jquery.com/ 

Django Running corresponding functions 

with handled request 

Server https://www.djang

oproject.com/ 

GDAL/OGR Reading raster data, 

georeferencing deep learning 

model predictions, vector data 

processing 

Server https://gdal.org/ 

scikit-image Preprocessing and post-processing 

images  

Server https://scikit-

image.org/ 

GeoPandas Geometric operations for vector 

data and vector data processing 

Server https://geopandas.

org/en/stable/ 

Tensorflow Running pretrained model Server https://www.tensor

flow.org/ 

PostgreSQL/ 

PostGIS 

Storing raster and vector data  Server https://www.postgr

esql.org/ - 

https://postgis.ne

t/ 

GeoServer Publishing vector and raster data  Server https://geoserver.o

rg/ 

GeoAlchemy 2 Using PostGIS geometry in  

SQLAlchemy 

Server https://geoalchemy

-

2.readthedocs.io/e

n/latest/ 

 

 

 

 

 

https://www.postgresql.org/
https://www.postgresql.org/


 

 29 

4.3.1. The Web Map Interface Component 

 

The web map interface component runs on the client side of the system. The component 

includes user interface and web map interface elements. The user interface elements are 

composed of a navigation bar and a vertical side bar. Web map interface includes a map 

viewer element. 

 

The navigation bar includes a modal element and a dropdown menu (Figure 4.4). The 

modal element, named “Detected Changes” in the interface, includes a list group that is 

formed by list items. Each list item is created dynamically after the change detection 

operation is finished. When the modal element is formed, it is shown to the user and 

added to the navigation bar. The user can click on each list item. The map viewer is 

triggered by this action and locates the user on the map where the difference occurred. 

In the initial stage of the system, the modal element is not available in the navigation 

bar. 

 

 

Figure 4.4. The navigation bar with the modal element and dropdown menu. 

 

The dropdown menu, named “Toolbox” in the interface, includes items, which trigger 

modal dialog elements and functions. “Load Shapefile” and “Load Aerial Image” 

options under the Toolbox menu trigger the modal dialog elements (Figure 4.5). These 

elements include data description forms and enable the user to upload data. The other 

options, “Detect Changes” and “Download”, initiate change detection and download 

operations, respectively.  
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Figure 4.5. The dropdown menu (Toolbox). 

 

The vertical side bar, named “Map Editor” in the interface, includes “Add”, “Edit” and 

“Delete” options (Figure 4.6). The options initiate related functions and enable the user 

to apply the selected option to available vector dataset. The vertical sidebar is only 

accessible if vector data exists in the current session. 

 

 

Figure 4.6. The Map Editor interface with the “Add”, “Edit” and “Delete” options. 

 

The map edit button (Figure 4.6) opens the Map Editor menu and waits for the user’s 

selection. When the user clicks the map edit button, the icon of button changes. This 

means the selected operation of the map editor menu would be applied until the user 

clicks the map edit icon again. After clicking the button, all the modifications are 

applied to the existing vector data. 

 

The map viewer element is composed of the viewer, zoom in-out buttons, a map edit 

button, and a layer switcher (Figure 4.7). The viewer is the interactive map area that is 

used for visualization and operational purposes. By default, Bing Map Aerial and 

OpenStreetMap are available as base maps. The user can visualize the uploaded data 

through viewer if the data was uploaded successfully to the system.  
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Figure 4.7. The map viewer element with the viewer (purple box), zoom in-out buttons 

(A), the map edit button (B) and the layer switcher (C). 

 

The layer switcher (Figure 4.8) is a panel element that includes the list of existing layers 

in the system with checkboxes. Checkboxes enable the user to control layer visibility. 

From bottom to top, the order of the layers is as follows: “Bing Maps Aerial”, “OSM”,  

“Aerial Image (Uploaded)”, “Vector Data  (Uploaded)” and “Results”. In the initial 

state of the system, the layer switcher only includes the “Bing Maps Aerial” and “OSM” 

layers. After each successful operation, the corresponding layer is added to the layer 

switcher and made available to the user. The user can activate layers through 

checkboxes. The viewer is triggered by the layer switcher and shows only active layers. 

 

 

Figure 4.8. The layer switcher 

 

4.3.2. The Change Detection Component 

 

The change detection component runs on the remote application server. Figure 4.9 

shows the workflow diagram of the change detection component. The initial task of the 

component is to request existing aerial image from the data management component. 
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After successfully obtaining the aerial image, the change detection component defines 

configurations for further processing steps. The configurations can be listed as; creating 

and validating temporarily available paths, creating a log file, validating pre-trained 

model weights file and setting predefined variables according to the image for use in the 

preprocessing step. 

 

 

 

Figure 4.9. The workflow diagram of the change detection component. 

 

After the completion of configuration setting, the component starts the preprocessing 

task. The preprocessing task is composed of scaling, tiling, and radiometric operations. 

The scaling aims to rescale the uploaded image resolution to the default image 

resolution. The default image resolution is equal to 30 cm, which is actually the 

resolution of the images that were used in DL model training. The tiling operation 

subdivides the uploaded aerial image by 256 x 256 so that each tile will be used in the 
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pre-trained DL model. In order to reconstruct the uploaded aerial image, all steps and 

configurations such as tile index, overlapping ratio, etc. are saved to a temporarily 

available logging file. The final step of the preprocessing task is radiometric operations. 

In this operation, normalization and contrast enhancement are applied to each image 

tile. 

 

All the image tiles that were produced in the preprocessing task are used in the pre-

trained DL model. The pre-trained DL model produces predictions for each image tile. 

The DL architecture used in this thesis is explained in Section 4.4. 

 

The post processing task includes Gaussian Smoothing, tile merging, georeferencing 

and raster to vector conversion. The Gaussian Smoothing is applied to each image tile 

prediction. After the completion of the Gaussian Smoothing operation, all image tile 

results are merged according to the configurations that were created in the 

preprocessing step. The output of the merging operation is the raster, which has the 

same extent and spatial resolution as the uploaded aerial image. Then, a georeferencing 

operation is applied to the resulting raster using the georeferencing information of the 

uploaded aerial image. Next, raster to vector conversion is applied to the georeferenced 

resulting raster by using the approach proposed by Sahu and Ohri (2019) with 

modifications that are explained in Section 4.5. The output of this operation is a 

georeferenced vector file that includes polygons created from the segmentation results. 

Finally, the vector file is saved to the database through the data management 

component.  

 

4.3.3. The Geospatial Analysis Component 

 

The geospatial analysis component runs on the remote application server. Figure 4.10 

shows the workflow diagram of the geospatial analysis component. The geospatial 

analysis component is triggered when the change detection component finishes its 

processes. The geospatial analysis component requests two vector files from the data 

management component which are the user-provided vector file and the resulting vector 

file from the change detection component. When obtaining the two vector files 

successfully, the component starts the geometry validation process for each vector file. 
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The geometry validation process eliminates the possible irrelevant features such as 

lines, points, etc., and aims at selecting the polygon geometries from each dataset and 

creating a data frame for each selection. After the geometry validation, the component 

checks the CRS of each vector data frame to see if the two CRS are the same or not. If 

there are differences between two vector data frames’ CRS, the component transforms 

one CRS to another so that the CRSs of the vector files will be the same. 
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Figure 4.10. The workflow diagram of the geospatial analysis component. 

 

After the CRS checking and transformation step, a spatial overlay is performed using 

the two vector data frames. The differences, which are the form of polygon geometry, 

are calculated for each feature in the vector data frame. After obtaining the difference 

polygons, area based thresholding is applied. Finally, a georeferenced vector file is 

produced using the polygons that were the outputs of the thresholding step. The 

resulting vector file is saved to the database through the data management component.   

 

 

4.3.4. The Data Management Component 

 

The data management component runs on the remote application server. The component 

aims to perform data related tasks, which are data input-output processes, data 

transactions, and management of the spatial database management system and the file 

system.  

 

On the client side of the system, the component can be triggered by several operations 

such as loading a shapefile, loading an aerial image and modifying existing vector data. 

The “Load Shapefile” operation accepts a ZIP file that includes shapefile with the file 

extensions. When the zip file is uploaded through the “Load Shapefile” option, the data 

management component creates a temporarily available path according to the upload 

date. The component extracts ZIP file into the path and reads shapefile. After reading 

the shapefile, the component checks the geometries in the shapefile to determine 

whether the missing or invalid geometries exist or not. Next, the coordinate reference 

system is checked by the component. If the shapefile passes all validation steps, the 

component produces a well-known text representation of each geometry and saves the 

geometries to the PostgreSQL database. After successfully saving the shapefile, the 

shapefile is published automatically through Geoserver.  

 

The “Load Aerial Image” operation triggers the data management component. In this 

operation, the component checks the aerial image and reads the geospatial information 
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contained in the image. The component uses this information to define global variables 

such as spatial resolution, image width and height, CRS, etc. in the system so that the 

variables can be used by the other components. After validating the aerial image, the 

component creates a temporarily available path for the image and saves the image to 

that location. Next, the component saves the image path to the database and publishes 

the image automatically through Geoserver. 

 

The other components also exploit the data management component for the 

corresponding data reading and writing processes. The data management component 

utilises PostgreSQL with the PostGIS extension as a spatial database management 

system for storing vector data and Geoserver for publishing both vector and raster data. 

 

4.4. The DL Method for Segmentation 

 

In this thesis, LinkNet based DL architecture was used. Instead of the original LinkNet 

encoder, a pre-trained squeeze and excitation network, SE-ResNeXt with a 32 x 4d 

template, was used as an encoder and integrated into the model. Figure 4.11 shows the 

DL architecture that was trained and used for segmentation.  

 

The proposed DL architecture can be divided into three parts, namely the encoder, the 

skip connections, and the decoder part. The encoder part consists of the SE-ResNext-50 

model, which was pretrained on the ImageNet database.  The skip connections part 

includes four convolutional layers with a 1 x 1 kernel size. Each layer in skip 

connections part takes an input from the corresponding block in the encoder part and 

applies convolution operation. After the operation, the output of the operation is added 

to the corresponding block in the decoder part. The decoder part includes five blocks. 

Each block consists of convolution layers with a 3 x 3 kernel size and an up-sampling 

layer. Each decoder block takes inputs from the previous block and the corresponding 

layer in the skip connections part. After any convolution layers in both the encoder and 

decoder parts, batch normalization is applied to the outputs of the convolution layers. 

 

The Inria Aerial Image Labeling dataset (Maggiori et al., 2017) was used for the model 

training. The training set includes color image tiles. Each tile has a dimension of 5000 x 
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5000 pixels with a 30 cm resolution.  There are 180 image tiles. The image tiles were 

split into training (144 tiles), validation (16 tiles) and test (20 tiles) sets. 

 

Figure 4.11. The DL architecture used for segmentation. K: Kernel Size (width x 

height), F: Filter Size, S: Stride, PS: Pooling Size 

 

The images were cropped so that each image would have a size of 256 x 256. The 

radiometric data augmentation techniques, which are random brightness and contrast 

changing, gamma stretching, embossing, blurring, contrast limited adaptive histogram 

equalization, randomly dropping color channels, and multiplying image to random 

number, were applied to the batches of cropped images during the training process.  
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Because of computational resource limitations, the batch size was restricted to 8. The 

DL model was trained for 68 epochs using the RMSProp optimizer with cosine learning 

rate decay and the combination of binary cross-entropy and Dice loss. 

 

4.5. Vectorization of Building Segments 

 

An approach developed by Sahu and Ohri (2019) was followed here for the 

vectorization of building segments with some modifications. The building segments 

were vectorized using the GDAL/OGR library (GDAL/OGR contributors, 2021). For 

simplifying the building segments produced by the GDAL/OGR library, the Douglas-

Peucker (Visvalingam and Whyatt, 1990) line simplification algorithm was applied. An 

iterative method was carried out in order to define a tolerance value that is the distance 

between the initial and the output geometries for the Douglas-Peucker algorithm,. The 

iterative approach seeks the tolerance value that minimizes the average area changes of 

the geometries in the building segments. After the simplification, the final building 

segments are generated and a vector dataset is produced. Not all the operations that exist 

in the Sahu and Ohri (2019) approach, such as the minimum bounding box estimation, 

separating the connected building vectors, etc., were needed in the raster to vector 

conversion in this thesis. In addition, the iterative search was not included in the Sahu 

and Ohri (2019) approach.  

 

It must be noted that different approaches exist in the literature for the vectorization of 

building segments. Further improvements can be carried out as future research. 

 

4.6.  The User Interfaces 

 

User interfaces of the implemented GeoAI platform are demonstrated in Figures 4.12 - 

4.25. In Figure 4.12, the menu that enables users to upload vector and raster data is 

shown. In Figure 4.13, the layer selection menu is shown. By default, the vector data 

layer from the OSM and the Bing Maps Aerial layer are available in the platform. 

Figure 4.14 shows the demo vector data that were fetched from the OSM and uploaded 
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to the platform. The user can change the visibility of the layer through the layer 

selection menu. In Figure 4.15, the map editor menu that allows users to add, modify, 

and delete features in available vector data is shown. The user can access this menu by 

clicking the map edit button if the vector data are available on the platform.  

 

 

Figure 4.12. The menu for uploading vector and raster data (Can et al, 2021).  

 

 

Figure 4.13. The layer selection menu (Can et al., 2021). 
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Figure 4.14. Uploaded vector data fetched from the OSM (Can et al., 2021). 

 

 

Figure 4.15. Map editor menu (Can et al., 2021). 

 

In Figures 4.16 and 4.17, the modification operation on an existing feature through the 

map interface is demonstrated. Figure 4.18 shows the example raster data uploaded to 

the platform.  In Figure 4.19, the “Detect Change” button is shown. The user can run a 

change detection operation by clicking this button. After finishing the change detection 

operation, a differences list that includes list items for navigating the user to the area of 

change is shown in Figure 4.20. The list can also be accessed by the “Detected 
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Changes” button on the navigation bar. The user can also observe changes by changing 

layer visibility through the layer selection menu as demonstrated in Figure 4.21. Figure 

4.22 shows the missing building detected by the platform through a demo application. 

(Can et al., 2021). The user can use the map editor menu and add missing buildings by 

either drawing them from scratch or modifying the output of the change detection 

operation (Figures 4.22 – 4.24). In Figure 4.25, the download option for the updated 

vector data is shown under the toolbox menu. 

 

 
 

Figure 4.16. Modifying feature through web map interface (Can et al., 2021). 
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Figure 4.17. Finalizing the modification (Can et al., 2021). 

 

 

Figure 4.18. Uploading the raster data to the platform (Can et al., 2021). 
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Figure 4.19. Change detection operation available in the toolbox menu (Can et al., 

2021). 

 

 

 

Figure 4.20. Differences list that shows the detected changes (Can et al., 2021). 
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Figure 4.21. The output of the change detection operation is available as “Results” layer 

(Can et al., 2021). 

 

 

Figure 4.22. Missing building detected by the platform. (Can et al., 2021). 
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Figure 4.23. Adding detected building polygon to the user provided vector data (Can et 

al., 2021). 

 

 

Figure 4.24. Drawing functionality of web map interface (Can et al., 2021). 
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Figure 4.25. Download option for the updated vector layer (Can et al., 2021). 
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5. DISCUSSION 

 

The aim of this thesis is to illustrate how the DL methods can help with different 

geospatial data processing and analysis tasks, such as change detection and map 

updating.  

 

Due to the complexity of the buildings in terms of shape, size, diversity in roof 

materials, automatic extraction of building footprints is a major challenge. There exists 

several studies for extracting building footprints based on both the DL and the 

conventional approaches (Ok et al., 2013; Belgiu and Dragut, 2014; Huang et al., 2014; 

Bischke et al., 2017;  Huang et al., 2017;  Chen et al., 2018;  Xu et al., 2018; Sun et al., 

2018; Shrestha et al., 2018; Yuan, 2018; Liu et al., 2019; Shao et al., 2020; Guo et al., 

2021; Xu et al., 2022). Developing a system that utilizes building footprint extraction 

operation requires well defined configurations and limitations. However, the framework 

proposed here was designed and developed as simply as possible in order to concentrate 

on the overall structure. The proposed framework may be customized for specific tasks 

and tailored to certain environments with various requirements. The DL model is still at 

the center of the framework, and several DL models can be used based on the challenge 

and the datasets available. In order to train and fine tune the DL models for improving 

the prediction performance, the models require well prepared datasets and significant 

computing resources, especially for aerial image segmentation tasks. Alternatively, 

synthetic building datasets produced by GAN-based approaches proposed by Chen et al. 

(2022) can be used for model training when well-prepared datasets are not available. If 

computing resources are restricted, the model training from scratch could take many 

days to months with no guarantee of the final model’s or configuration’s success. The 

model training is an iterative process in which hyper-parameters need to be fine-tuned, 

and the model needs to be modified until the desired performance is obtained.  

 

In this thesis, a DL architecture adapted from medical image processing domain was 

utilized, and the model was modified in order to employ airborne images. Since the 

computing resources were limited, a subset of the Inria Image labelling dataset (ca. 20% 

with 36 images for training and 10 images for testing) was used in this thesis to train a 

base model. Since the Inria Image Labelling dataset includes aerial orthorectified 
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images, the proposed framework was only tested with the  images of such geometry. 

The model is expected to perform better when true-ortho images are provided. For off 

nadir images without the true-ortho processing, it is necessary to fine tune the model or 

utilize a new DL architecture, such as those proposed by Wang et al. (2022) and 

Esfandiari et al. (2021). 

 

The model performance obtained here was not optimal since only a base DL model was 

trained for a few epochs with a fraction of the Inria Image Labelling dataset, and the 

changes observed suffered from erroneous segmentation output. Since the main focus 

was the development of the overall structure of the WebGIS, the comprehensive 

assessment of building footprint extraction by the DL model was left for future work. 

However, when deploying such a system, an evaluation method should be included for 

assessing the system’s performance. Evaluation methods including matched rates, shape 

similarity, and positional accuracy metrics for extracted buildings were reviewed by 

Zeng et al. (2013), and the authors proposed a new evaluation system for the accuracy 

assessment of building extraction. Various approaches have been proposed to assess 

building footprint data (Arkin et al., 1991; Zhan et al., 2005; Avbelj et al., 2015; Xu et 

al., 2017). As a result, improving the DL model to increase the prediction performance 

and assessing the building footprint predictions are still works in progress. In addition, 

as previously indicated, alternative DL models developed especially for  building 

footprint extraction and change detection tasks (i.e., Zheng et al., 2022; Qian et al., 

2022; Wei et al., 2022; Xu et al., 2022; Gao et al., 2022;  Guo et al., 2021; Das and 

Chand, 2021; Li and Xin, 2021; Zorzi el al., 2020; Yang et al., 2020; Zorzi and 

Fraundorfer, 2019; Liu et al., 2019)  may be added into the framework. 

 

Even if the DL model included in the framework is a well-trained model with high 

accuracy, there may be cases where it does not perform well due to variations in the 

user provided raster data. In such cases, the development of solutions that allow users to 

fine-tune the DL model may contribute to the reduction of manual intervention. The 

updates made by the user in the regions where a change is detected can be further 

utilized as ground truth and a training dataset can be created from this data as well. 

After the dataset is created, the DL model can be fine-tuned with this dataset. This 

process can provide better performance of the DL model for the corresponding region, 
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but if the system is to be used on a global scale, it should be tested whether this process 

impairs the generalizability of the DL model.  

 

Utilizing the proposed framework on a global scale can be costly. In order to determine 

whether there is a change, first the raster data is passed through the DL model, then the 

model outputs are vectorized and then compared with the vector data provided by the 

user. It can be questioned how effective it is to perform these operations with very high 

resolution aerial images on a global scale. Instead, multi-scale solutions that can extract 

potential change areas from lower resolution satellite images, i.e. Sentinel-2, can be 

added to the proposed system as an intermediate processing component. As an example, 

the last modification date of the vector data and the creation date of the raster data can 

be requested from the user and the bounding boxes of the potential areas where the 

changes occur can be determined from the multi-temporal satellite images covering 

these dates. Instead of giving all very high resolution images as input to the framework, 

only the tiles containing the corresponding bounding box can be input to the system. 

Both the cost that will arise when the proposed system is operated on a global scale and 

how much this cost can be improved with intermediate hierarchical solutions are left to 

future studies.  

 

As stated by Guo et al. (2020), buildings of varying sizes, color, and roof materials 

make it difficult to separate significant aspects from extraneous ones in VHR imagery. 

Therefore, when feeding into the change detection component, the input raster image 

resolution must also be considered. Other factors influencing the success of change 

detection include image acquisition angles such as nadir and off-nadir, atmospheric 

conditions, image acquisition date, and the geographic location of the images. Errors in 

both georeferencing information and co-registration of the input data would also distort 

the results and need to be taken into account as an additional processing task. 

 

Given the completeness and scalability of the developed framework, it might be good to 

practice for additional optimization enhancements of the framework and handle the 

security related issues before deployment by mapping agencies or geospatial 

enterprises. However, if the framework is to be deployed on a worldwide basis, data 

input-output standards must also be addressed since they may pose significant 

challenges. In addition, the performance considerations such as the number of 
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concurrent users running the change detection task or modifying the vector data, as well 

as the number of requests that the servers can manage, must be taken into account by 

the relevant agencies/enterprises. 
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6. CONCLUSION AND FUTURE WORK 

 

To demonstrate how DL can facilitate geodatabase updating for building rooftop 

boundaries, in this thesis, a DL-assisted WebGIS framework was designed and 

implemented. The proposed framework has the potential to be implemented in a wide 

range of geospatial applications, especially those in which rapid data processing is 

needed or where data quality, particularly completeness, is essential. The open WebGIS 

platforms such as OSM or the ones from mapping agencies as well as geospatial firms 

may utilize the proposed framework in their image processing pipelines to improve the 

geodatabase updating tasks. 

 

The open source tools and software utilized here involve JavaScript, HTML, CSS, 

Openlayers, jQuery, Bootstrap, Django, scikit-image, Tensorflow, GDAL/OGR, 

GeoPandas, GeoAlchemy-2, Geoserver, PostgreSQL/PostGIS and Apache Tomcat. The 

selection of the technologies was based on being open source, the familiarity of the 

developer, and the integration potential. In addition, the proposed framework will be 

integrated to GeoNode (GeoNode, 2022), an open source geospatial content 

management system including most of the technologies that were used in this thesis, i.e. 

Django, Geoserver and OpenLayers. The results have shown that the implementation 

could be carried out seamlessly and that the user interface and the functionalities 

developed for this purpose fulfill the user requirements. A major advantage of the 

developed system is the ability to adapt different DL models within the system. Thus, in 

future work, different DL models and further functionality can be added for various 

geospatial analysis purposes, such as land use and land cover classification, detection of 

particular geographic features such as water bodies, roads, tree species, etc. In addition, 

the DL models for building detection can be specialized for the different types of input 

data, such as multispectral band configurations, inclusion of DSM, UAV and satellite 

imagery, etc. 

 

Thus, additional features, such as periodic monitoring and further change detection on 

the images after the determination of the areas that need to be updated, can be included 

as add-ons as future work. The proposed framework is considered to be connected to the 

GeoCitSci.com, a CitSci platform for geoscience investigations established by the 
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Geomatics and Geological Engineering Departments in collaboration at Hacettepe 

University (Kocaman and Gokceoglu, 2019; Can et al., 2019; Can et al., 2020). 

Consequently, the proposed framework may use additional DL algorithms for 

characterization of various geomorphological properties and geohazards. 
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