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ABSTRACT

FIXED WING UAV TARGET GEOLOCATION ESTIMATION FROM
CAMERA IMAGES

ALI KESKIN

Master of Science, Department of Mechanical Engineering
Supervisor: Assoc. Prof. Dr. Bilsay SUMER

September 2021, 102 pages

In this thesis, a target geolocation measurement model for a fixed wing unmanned aerial
vehicle which equipped with an image processing system and standard sensors has been
created. The measurement model begins to calculate the position of the relevant stationary
target when the moment the target of interest is selected in the image. The Extended
Kalman filter, which uses the pixel position of the target in the image plane, position, and
angular position of the aircraft, is developed for the measurement model. Different from
previous studies, the deviation of camera placement angles has been taken into account
in the designed filter. In the flight tests, the target position was calculated with an accuracy
of 5 meters, from a distance around 400 meters, in a time interval of 15-20 seconds. Also,
camera placement angle errors were calculated with a precision of 1 degree. In addition,
a loitering maneuver control algorithm has been designed that uses the pixel position of
the target on the image plane. This control algorithm holds the target in the camera field
of view and desired distance between UAV and target. Unlike the common loitering
control algorithms such as waypoint navigation, this loitering maneuver control algorithm

is designed independently from any GPS measurement. Hence, it will work regardless of
\'



GPS, as long as the angular positions of the aircraft are measured correctly. The control
algorithm is designed as modular, so it can be used in any fixed-wing aircraft which has
an image processing system and standard sensors. It can be easily implemented as an

outer loop for roll attitude controllers.

Keywords: Target geolocation, Image based GPS denied loitering, Image based

target line of sight estimation
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OZET

SABIT KANAT iHA’LAR ICIN KAMERA GORUNTULERINDEN HEDEF
KONUM KESTiRiMi

ALI KESKIN

YUuksek Lisans, Makina Miihendisligi Bolimu
Tez Damismani: Dog. Dr. Bilsay SUMER

Eylul 2021, 102 sayfa

Bu tez ¢alismasinda goriintii isleme sistemine sahip ve standart algilayicilarla donatilmig
sabit kanath bir insansiz hava araci icin ilgili hedefin cografi konumunu hesaplayan
l¢iim modeli olusturulmustur. Ol¢iim modeli, goriintiide ilgilenilen hedefin secildigi
andan itibaren ilgili sabit hedefin konumunu hesaplamaya baslar. Olgim modeli igin
hedefin goruntt dizlemindeki piksel konumunu ve hava aracinin konumunu, hizin1 ve
acisal pozisyonunu kullanan genisletilmis Kalman filtresi kullanilmistir. Tasarlanan filtre
de onceki galismalardan farkli olarak kamera yerlesim agilarinin sapmasi dikkate
alinmistir. Ucus testlerinde yaklasik 400 metre uzakliktan, 15 - 20 saniye siire araliginda,
5 metre hassasiyetinde hedef konumu hesaplanmistir. Ayrica, kamera yerlesim aci
hatalar1 da 1 derece hassasiyetinde hesaplanmistir. Ek olarak, hedefin goriintl diizleminde
bulunan piksel konumunu referans alan ve hava aracinin hedef etrafinda dolanmasini
saglayan kontrol algoritmasi tasarlanmistir. Bu kontrol algoritmasi, hedefi kamera goris
alaninda tutar ve IHA ile hedef arasindaki mesafeyi kontrol eder. Tasarlanan bu
algoritma, nokta navigasyonu gibi mevcut manevralardan farkli olarak herhangi bir GPS

Ol¢iimiine ihtiya¢ duymamaktadir. Dolayist ile bu algoritma GPS'den bagimsiz olarak
vii



hava aracinin agisal pozisyon bilgileri dogru dlcildiigii siirece calisacaktir. Kontrol
algoritmas1 moddler olarak tasarlanmistir ve bu sayede goriintii isleme sistemine ve
standart algilayicilara sahip bir sabit kanat hava aracinda kullanilabilir. Yuvarlanma agisi

kontrolciileri igin bir dis dongii olarak kolaylikla uygulanabilir.

Anahtar Kelimeler: Hedef konum kestirimi, Goriintii bazhh GPS’den bagimsiz hedef

etrafinda dolanma manevrasi, Goriintii bazh hedef goriis hatti hesaplama
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1. INTRODUCTION

1.1 Unmanned Air Vehicles

Unmanned Air Vehicles (UAV) are autonomously or remotely controlled flying vehicles
without an onboard crew or pilot, and the whole system that contains necessary equipment
such as UAVs, ground control station landing, and launching mechanism is called as
Unmanned Air System (UAS) [1]. UASs are widely used in civil applications as well as
military applications. Since UASs are controlled remotely, they are an ideal choice rather
than manned systems for dull, dirty, and dangerous missions [2]. Therefore, in military
applications, UASs have commonly been used in intelligence, surveillance, and
reconnaissance (ISR) missions. In addition, usage UASs with lethal payload for military
applications is increasing. These UASs, which are also known as ‘“kamikaze / suicide
drones” are called loitering munitions (LM). Figure 1-1 shows examples of ISR and LM
UAVs.

g7

l »

Figure 1-1: Top Left to right, Togan [3] and Kargu [4] rotary wing UAV, bottom Alpagu
[5] fixed wing UAV.



1.2 Motivation and Objective

In recent years application areas of UAS’s are growing due to the development of other
disciplines. Especially due to improvements in vision processing, image sensors have
become the main and standard sensor for UASs. One of the aims to widening UAS’s
application areas is to decrease external control. In other words, increasing the autonomy
of UAS increases its application areas. Therefore, knowing the location of a point of
interest becomes essential to increase UAV’s autonomy. By using target location, UAS
performs more tasks autonomously or more optimally. However, the target position is not
always available, especially in unknown territories. Thanks to the sensors of UAV, using
target location in the camera, UAV’s attitude, and positions, the target position is
estimated. Figure 1-2 shows a general flow chart of the target position estimation process.
Camera images are taken by the vision system, point of interest is continuously tracked
and estimated its pixel location. Then pixel locations are combined with UAV inertial
measurements to obtain the Line of Sight (LOS) vector and target position.

UAV Position & Velocity

Inertial
Navigation
System

UAV Attitude

L X ) ¥

/" Line of Sight _ i ) / Target Position _ Target
\_ Estimation /7 -neofsiont Y, Estimation /  Position

Camera ,| Vision | Target Position

System in Image

—

Figure 1-2: Target position estimation flowchart

Knowing the target position is handy for LM and ISR missions. For example, Figure 1-3
shows the target-approach maneuvers of Switchblade UAS [6] in one of its patents [7].
This patent is about maneuver with a gimballed camera without losing target in camera
images. In Figure 1-3, the left figure shows maneuver with two fixed cameras, one is side-
looking, and the other is front looking. In this case, during this maneuver, the target is
lost that is losing target in a field of view (FOV) of the camera, so that gimballed camera
is used. The maneuver is re-designed, as shown in the right figure. However, for the fixed
camera situation, even if the target lost event is inevitable, this maneuver is performed

fully autonomously by using the target location. While UAV loiters around the target, the
2



target position is estimated by combining image and inertial sensor measurements of
UAS. Then using this estimated target location, the target-approach maneuver is done.
After the loss event is finished, when the target is in the FOV of the front camera, using
target location, target position in the image is estimated and transferred to the vision
system to start target tracking in the image. So that, UAV is guided by a vision system in
diving into the target phase. Also, for the gimballed case, the target-approach maneuver
is done more optimal way using the target location. Knowledge of target location is useful
for many other missions. For example, in the case of forest fire, fire location is estimated
and reported. Location of illegal activities in borders is reported. Also, estimated
stationary target positions may be used to locate UAV in GNSS denied situations.

r\\/-353
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Figure 1-3: Switchblade target-approach maneuvers. The left figure shows maneuver with

a fixed camera, and the right shows maneuver with a gimballed camera [7]

Target position estimation accuracy depends on target and UAV positions. This
dependency is called as precision of dilution [8]. Estimation accuracy is increased by
designing a proper flight path. Generally, flight paths are designed by using the target
position. Still, UAV can maneuver around target by using target positions in image, UAV
sensors, camera parameters, and orientation. Thanks to the image sensor, UAV can loiter

around target without using Global Navigation Satellite System (GNSS) measurements.



One of the objectives of the thesis is to design a control system such that UAV
autonomously tracks the desired target, independent from GNSS data. Another objective

is an investigation of target geolocation methods and analyzing their performances.

1.3 Necessary Sub-Systems and Sensors

In this section, required subsystems and sensors that are used in this work are mentioned.

1.3.1 Inertial Measurement Unit (IMU)

Inertial measurement wunit (IMU) combines accelerometers and gyroscopes.
Accelerometers and gyroscopes are both placed perpendicular to three axes so that IMU
measures accelerations and rotational rates at three principal axes [9]. In addition, some
of IMUs consist of a barometric pressure sensor and compass to increase the degree of
freedom of the measurement. Figure 1-4 shows commercial IMUs with a different degree

of freedoms.

6-axis family of IMU 7-axis family of IMU 9-axis family of IMU
o - .
) .
- ' V\) g
\'c., .wr"" pg\ .\@ ~
=1 g " )‘;,?) e W
=1 e L = LN

> © e

3-axis gyroscope + 3-axis accelerometer +
3-axis gyroscope + 3-axis accelerometer 3-axis gyroscope, 3-axis accelerometer, and 3-axis compass
barometric pressure sensor

Figure 1-4: IMU [10]

1.3.2  Global Navigation Satellite System (GNSS)

Satellites, ground control stations, and receivers are parts of GNSS. Satellites orbit around
Earth and continuously transfer signals. These signals are captured by the receiver’s
antenna. Based on the time difference between satellite and receiver, the distance between
satellites is estimated [9]. Distance from four or more satellites enables to determine the

position of the receiver.



1.3.3  Inertial Navigation System (INS)

INS uses outputs of inertial sensors to compute navigation state data such as attitude,

position, and velocity [9]. GNSS generally aids them in estimating more precise positions.

1.3.4  Vision System

The vision system tracks objects which are selected by a user in camera images. Also, the
vision system returns their pixel locations. Following a desired moving object in real-
time, image sequences are called object tracking. Kanade Lucas Tomasi (KLT) algorithm
is one of the simple and effective technique [11]. KLT algorithm finds feature points from
a region of interest to track it in images. A good feature is defined as “feature to be good

if it can be tracked well” [12]. Figure 1-5 shows successive sequential target tracking.

Figure 1-5: Vision system successive target tracking [5]

1.3.5 Air Data System

Air data system measures total and static pressures then it converts these pressure values

into airspeed and barometric altitude [13]. The system contains pitot and static pressure
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sensors. Also, it may include 5-hole or 7-hole pitot tube probe or alpha-beta vane to
measure aerodynamic flow angles. This system is not required for target geolocation, but
it is essential for controlling UAV longitudinal motion (altitude and airspeed) for GNSS

denied situations.

1.4 BACKGROUND

In this section, the technical basics that are used in this thesis are described.

1.41  UAV Attitude (Euler Angles)

Angular position (attitude) of UAV is described with three angles [14]. These three angles
are roll (¢), pitch (8) and yaw or heading (1) angles that are called as Euler angles.

Roll Angle

Roll defines rotation around the front to back axis of the UAV. With this movement, the
wings move up and down asynchronously. Left wing upwards and right wing down is

defined as positive roll angle. Figure 1-6 and Figure 1-7 show positive roll angle.

Figure 1-6: Top diagonal view of a UAV with a positive roll angle [15]



Figure 1-7: Rear view of a UAV with positive roll angle [15]

Pitch Angle

Pitch angle is rotation around the side-to-side axis of the UAV. With this rotation, the
nose of the UAV moves up and down around the center of gravity. While UAV nose up
movement is defined as positive pitch, the nose-down movement is defined as negative

pitch. Figure 1-8 and Figure 1-9 shows positive pitch motion.

Figure 1-8: Top diagonal view of a UAV with a positive pitch angle [15]

%

Figure 1-9: Right-side view of a UAV with a positive pitch angle [15]




Yaw Angle

Yaw angle is rotation around the vertical axis of the UAV. Defines right and left motion
of nose of UAV in the horizontal plane. Right nose movement is defined as positive, and

left nose movement is negative. Figure 1-10 and Figure 1-11 show positive yaw motion.

Figure 1-10: Top diagonal view of a UAV with a positive yaw angle [15]

Figure 1-11: Top view of a UAV with positive yaw angle [15]

1.4.2 Coordinate Frames

Since velocity, position, and orientation (if represented as a rotation vector) are all
vectors, they require a reference frame to define them. There are different types of
coordinate frames. Generally, cartesian or circular frames are used in aviation. The
coordinate frame is defined by its origin and perpendicular unit axes. Depending on the
application, different coordinate frames can be used [16]. In the following sections,

coordinate frames that are used in this work are described.



Earth Centered Earth Fixed Coordinate Frame (ECEF)

Earth centered means that origin of ECEF frame (F£) is on the center of mass of the
Earth. Earth fixed implies that this frame rotates with Earth. X (X£) and Y (Y£) axes are
on the equatorial plane, X axis directs to Greenwich meridian, Z (Z£) axis on the spin
axis of Earth and Ye axis is perpendicular to both X£and ZEaxes [13]. ECEF frame is
mostly used as an inertial frame that is a non-accelerating and non-rotation frame.
Generally, geodetic coordinate system that is a polar coordinate system is used to define
a position in this frame [16]. In geodetic frame Earth is considered as ellipsoid and latitude

(6,4¢), longitude (6;,,,) and altitude (h) are used to describe position in ECEF frame.

z @ = latitude
North Pole A = longitude
a = major axis

b = minor axis
X, ¥,z = ECEF position

Prime Meridian
(0°longitude)

a X
X : Equator >

(0° latitude)

‘

Figure 1-12: ECEF and NED frames

North-East-Down (NED) Coordinate Frame

NED is a right-handed cartesian coordinate frame. As its name suggests, its axes are
oriented North, East, and Down, respectively. It is used as a reference frame to describe
the attitude of UAVS. Its origin is in the center of mass of UAV, and it is called vehicle

carried coordinate frame (FV).



i (north)

e
j" (east)

k" (into the earth center)

Figure 1-13: Vehicle carried coordinate frame [17]

NED frame origin can be places desired location in space. So that, it can be used as an

inertial frame to simplify equations and called a local geographic frame [18].

P .
./ '_..--"Il‘ -,
// / —-—\{‘3}""’ : E y \\‘
) o RN
oS Ny /v
v g
DESES <, /

Figure 1-14: Local NED coordinate frames at different locations [18]

Body Fixed Coordinate Frame

Body fixed frame (FZ), shown in Figure 1-15, is a right-handed cartesian coordinate
frame. This frame is fixed to the body of an object and rotates and moves with it, and its
origin is in the center of mass of the object. As seen from the figure, X (X&) axis points
nose of UAV, Y (YB) axis is in the right-wing direction and Z (ZB) axis points

downward. Inertial sensor measurements are described in this frame [13].
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B

Z

Figure 1-15: Body coordinate frame [16]

Gimbal Coordinate Frame

Gimbal coordinate frame (F¢) is used to represent angular position of the gimbal with
respect to the body coordinate frame. It can be assumed that the origin of this frame is in
the center of mass of the UAV since the dimensions of small UAVs are short. Gimbal
azimuth (Y gimpar), gimbal elevation (64;mpq;) and gimbal roll (¢ 4impq) angles are Euler
angles of this frame (3-2-1 rotation) with respect to the body frame. Generally, gimbals
rotate around two axes so that gimbal roll can be neglected. Figure 1-16 and Figure 1-17
shows UAV with gimbal azimuth and gimbal elevation angles.

3D Plot
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Figure 1-16: Top view of UAV with 90-degrees gimbal azimuth angle

11



3D Plot

Figure 1-17: Top diagonal view of UAV with a -45-degrees gimbal elevation angle

Camera Coordinate Frame

As shown in Figure 1-18, the camera coordinate frame (F¢) is right-handed cartesian
coordinate frame where its origin is located at the optical center. Z axis is in the direction

of the camera lens, X is in the right direction and the Y axis is downward direction.

Figure 1-18: Camera coordinate frame [17]

Image Coordinate Frame

Image coordinate frame is a 2D cartesian coordinate frame that is used for representing
pixel positions (e, €,) of an object in image. The origin of this frame is on the center of
the image, +X axis is in the right direction, and +Y axis is downward. For example, Figure
1-19 shows the positions of UAV, target, and camera in NED frame. Figure 1-20 shows

the image plane that is captured target by the camera in Figure 1-19.
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3D Plot

W

Figure 1-19: World position of UAV, target, and camera
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Figure 1-20: Image plane in pixels

However, in general, target location in pixels in the image frame is normalized to
eliminate differences depend on image sensor sizes. In this work, as shown in Figure 1-21,
the image frame is normalized such that the origin is center of the frame, and both

maximum X-Y coordinates are +0.5, and minimum coordinates are -0.5.
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Normalized Image Plane

Vertical Axis
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Figure 1-21: Normalized image frame

1.4.3 Coordinate Transformations

As mentioned before, different coordinate frames can be used. Sometimes it is necessary
to change a vector coordinate frame to simplify equations.

Rotation Matrix

Rotation matrices are used to transfer a vector into a new coordinate frame. Rotation
matrices are formed by applying three sequential rotations. After each rotation, a new
coordinate frame is formed, and a new rotation is done by using this new frame coordinate
axis. These rotation angles are called Euler angles [19], and they describe the orientation
of coordinate frame with respect to another one. In this work, 3-2-1 rotation is used for
rotation matrices. Consider frame a with XYZ axes, frame b with xyz axes and three

rotation steps are:

14



1. Rotation around Z axis forms a’ frame with X’Y’Z’ axes.

Y

Figure 1-22: Z axis rotation of frame a

X' cosyy sinyp O][X
Y'|=]-siny cosy O]|Y (1.1)
A 0 0 111z
2. Rotation around Y’ axis forms a’’ frame with X’’Y’’Z’’ axes.
"
)
6 1
= 7
Figure 1-23: Y’ axis rotation of frame a’
X" cos@ 0 —sin8][X
v'[=1] 0 1 0 Y 1.2)
AN sinf 0 cosO 1LZ
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3. Rotation around X’ axis forms b frame with xyz axes.

¢

Figure 1-24: X’ axis rotation of frame a’’

X 1 0 0 X"
[y] =|0 cos¢p sing||y” (1.3)
z 0 —sing cosgllz"”
Hence rotation from frame a to frame b becomes:
x 1 0 0 J[cos® 0 —sinf][cosyp siny O][X
[y] ={0 cosg sinqb] [ 0 1 0 ] [—simp cosp Of|Y (1.4)
z 0 —sing cosgllsind 0 cosh 0 0 111z
Rotation matrix (R2) from frame a to frame b is:
RE = RE:($)R% (O)RE (1) (1.5)
clcyp cOsy —s0
R = |s¢psOc) — cpsyp  spsOsy + copcy sqbc@] (1.6)
cpsOcyy + spsyY  cpsOsyY — spcyY  cpch

where c6 = cos (6) and s = sin (8) and ¢, 6,y are the Euler angles. Using rotation

matrix, any vector in a frame (P%) can be described in b frame (P?).
PP = Rb « pa (1.7)

Since rotation matrices are orthogonal matrices [19], inverses of them are equal to their

transpose.

Ry = (R = (R (1.8)
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Vehicle Carried Frame to Body Frame Transformation

Using equation (1.6), rotation matrix from vehicle to body coordinate frame with roll,

pitch, and heading Euler angles becomes:

ccyp cOsy —s0
RE = [s¢psOcy) — cpsy  spsOsy + cpcy sgbc@] (1.9
cpsOcy + spsyp  cpsOsyp —spcyy  cpch
Body to vehicle coordinate frame rotation matrix from equation (1.8):
clcy sPpsOcy — cpsyp  cpsOcy) + spsy
R} = |cOsyY spsOsyp + cpc) cpsOsyh — sqba,b] (1.10)
—s60 s¢ch cpch

Body Frame to Gimbal Frame Transformation

In the case of a three-degree rotation gimbal, transformation matrix from the body frame

to the gimbal frame is similar to rotation matrix from vehicle to body coordinate frame.

cOycy cOysy —s6,
RS = |SpgsOgchg — cpgshy  SPgsbysihg + chgchy  spgcly (1.11)
CPhgsOychy + spgshy  cpgsOyshy —spgcpy  chpgchy
For two-degree rotation gimbal (¢, = 0) rotation matrix becomes:
cgchy  cOgspy  —sb,
RE =| —s¥g  c¥y 0 (1.12)
sOgcpy  sOysyP, by
And rotation from gimbal to body frame:
chgchy  —spy  sbyc,
RE = [clgsg g sOgsthy (1.13)
—sby 0 cty

Gimbal Frame to Camera Frame Transformation

The camera frame is a rotated form of the gimbal frame with right Euler angles. Figure
1-25 shows both coordinate frames.
17



Figure 1-25: Camera and gimbal frames

As seen from Figure 1-25 camera frame is rotated form of gimbal frame with ¢ = 90,6 =

0 and ¢ = 90. Hence rotation from gimbal to camera frame and inverse rotations are:

0 1 0

RE=10 0 1 (1.14)
100
0 0 1

RE=[1 0 0 (1.15)
010

1.4.4 Camera Calibration

Camera calibration is a process that estimates the parameters of an image sensor. Extrinsic
and intrinsic parameters are the main two groups of these camera parameters. While
intrinsic parameters define sensor’s inertial characteristics, extrinsic parameters are used
to transform sensor’s position into 3D world coordinates [20]. Intrinsic parameters are
[21]:

e Focal length is the distance between the image sensor and the optical center.

e Principal point is the point where the principal axis is perpendicular to the image

sensor. The principal axis is a line that passes through the optical center.

e Skew coefficient defines the angle between pixels x and y axes.
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e Distortions are divided into two groups such as radial and tangential distortions.
Figure 1-26 shows the effect of radial distortion on images. Tangential distortion

represents parallelism between image sensor and lens, as shown in Figure 1-27.

Figure 1-26: Radial distortion effect on image, left with radial distortion [21].

Zero Tangential Distortion

Tangential Distortion

Vertical plane

Camera
SENS0r

Lens and sensor are parallel

Camera lens

Lens and sensor are not parallel

Vertical plane

Camera
SEnsor

Camera lens

Figure 1-27: Tangential distortion [22]

Estimated parameters can be used for [23]:

e Lens distortion correction,

e Estimation size of an object in world coordinates,

e Estimation position of camera or object in the real world,

e 3D scene reconstruction.
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In this work, camera parameters by using Camera Calibration Toolbox of MATLAB
[22]. Then, these parameters are used to estimate the target LOS vector from the pixel

location of the target in the camera frame.

The first step of camera calibration is taking several images of the checkerboard at
different locations and orientations. An example image is shown in Figure 1-28.

Figure 1-28: Example images for camera calibration

After corners in the checkerboard are detected, an optimization algorithm is used to
determine intrinsic camera parameters. The optimization algorithm minimizes the error
between detected corners and reprojected corners by using camera parameters [20], [23],

[24]. Figure 1-29 and Figure 1-30 shows detected corners and reprojected corners.
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Detected points
Checkerboard origin
+ Reprojected points

Detected points
Checkerboard origin g
+ Reprojected points

Figure 1-30: Detected and reprojected points-zoomed

Here, in Table 1.1, camera parameters are tabulated.

Table 1.1: Econ camera parameters

Image Size [pixels] [3840, 2160]
Focal Length [pixels] [3083.94, 3169.55]
Principal Points [pixels] [1896, 1096]
Radial Distortion [0.0346, -0.3734, -0.26933]
Tangential Distortion [-0.018, -0.0235]
Skew 0
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Using horizontal and vertical pixel sizes (My, My,) and focal lengths (fy, f/) in pixels,
horizontal (fovy) and vertical (fovy ) field of view angles of the image sensor is

estimated as:

fovy = 2atan (ZMI} ) (1.16)
*JH

fov, = 2atan (21‘;11} ) (2.17)
4

The estimated field of view angles of the image sensor is tabulated in Table 1.2.

Table 1.2: Econ camera estimated field of view angles

Vertical Field of View Angle [deg] 37.63

Horizontal Field of View Angle [deg] 63.81
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1.5 Layout of Thesis

Section 1 is the introduction section. In this section, definitions about the study, objective
of the study, necessary systems for study, and background mathematical materials are

introduced.

Section 2 is the literature review. In this section, previous works are explained.

Section 3 describes test environments such as flight and simulation test environments. In

this section, how the simulation environment is developed is explained.

Section 4 describes LOS vector and LOS angles estimation. Also, how to improve this

estimation is explained.

Section 5 describes image based loitering maneuver around the target. Improvements and

flight and simulation results are shown in this chapter.

Section 6 describes the stationary targets position estimation method. Flight test results

and comparisons between other methods are shown.

Section 7 is the conclusion section and summarizes the results that are obtained in this

thesis.
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2. LITERATURE SURVEY

This section summarizes the studies in the literature on target position estimation and

vision-based target tracking.

2.1 Target Geolocation

Target geolocation in UAV can be divided into two sub-categories, such as target
geolocation from a single UAV and a group of UAVs [25]. Moreover, these categories
can be divided into two subgroups depending on the sensor used [26]. The first group is
passive methods which use target image from the camera to localize the target, and the
other one is subjective methods use active sensors such as laser to estimate the distance

to the target.

In [27], Cazaurag, et al. develop a triangulation method for target geolocation from a
single multirotor UAV with a passive camera sensor. The developed method is that the
UAV first centers target in the camera image and record its own position and bearing
angle (angle between UAV and target) then moves new location re-align itself to target
and record new position and new bearing angle. These two positions and bearing angle
measurements are used to estimate target location by using triangulation method. Figure
2-1 shows triangulation method. Even if this method is simple, however, triangulation
method suffers from measurement errors [28] and this method measures only 2D position

of the target.

X2, Ys)

Target (X,Y)

Figure 2-1: Object triangulation [27]
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Sohn, et al. improved this triangulation method by converting it into a minimization
problem [29]. In his work, he used a single-antenna GPS receiver with no IMU and
gimballed camera. Camera gimbal is controlled by a proportional integral controller to
center the target in camera image. LOS vector is calculated from pixel location of the
target in image axis by using pin hole camera model. To locate the target, LOS vectors
and UAV position vectors are transferred into ECEF (Earth centered Earth fixed)
coordinates then nonlinear optimization method is used to estimate the distance to the
target. Minimization algorithm minimizes measurement errors. To improve estimation,
wind estimation and compensation for attitude from measurements are used since UAV
attitude are not measured directly (due to UAV not being equipped with IMU). However,
as mentioned by himself, the suggested localization algorithm is not implemented in real
time estimation. This is due to the optimization algorithm which is not proper for real
time estimation since it requires storing almost all LOS and position data. Also, today's
IMU is a standard sensor for all UAVs and a considerably cheap sensor.

To estimate target location in real time, other works convert the triangulation method to
single shot estimation method by combining LOS vector estimation with DTED (Digital
Terrain Elevation Data) or flat earth assumption. Sensor measurement errors are reduced
by using RLS (Recursive Least Squares) filter [30] [31] or EKF (Extended Kalman filter)
[32] [33] [34] [35] [36]. Redding, et al. in their work [30], present single shot geolocation
method with RLS filter to reduce errors. Also, they investigate error sources and
estimation sensitivities to each source. After, Barber, et al. enhance geolocation accuracy
with bias estimation, flight path selection, and wind estimation [31]. In bias estimation,
online minimization method is proposed such that LOS angle biases which make the
positioning variances minimum, are calculated by the quasi-Newton method while UAV
loitering around the target. However, in this bias, estimation errors due to image depth
will be calculated as elevation angle bias because of terrain model errors (level 2 DTED
has a 30-meter resolution [37]). Also, quasi-Newton methods are not proper for real time
applications. Flight path selection finds optimal altitude and loiter radius which decreases
errors in attitude and position errors. Heading angle of UAV is measured with wind
calculation and course angle but they assume that “MAV is not equipped with
magnetometer” so that wind calculation is applicable. However, this assumption is
extremely poor assumption because most UAVs have a magnetometer sensor. Even if
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UAV does not have magnetometer, heading angle can be estimated by GPS and
gyroscope sensors [38]. Therefore, wind estimation is not necessary to increase

geolocation accuracy.

In EKF methods same procedure is applied as in RLS such that LOS vector is converted
to the target location by using flat earth or DTED for just only initial guess of EKF. After
that, target location measurements are combined with model equation and are filtered by
EKF. Beard and McLain [33] suggest EKF filter with state vector as target position vector
and distance between UAV and target. UAV position vector is used as a measurement
vector. Hosseinpoor, et al. uses same filter with RTK GPS (Real time kinematics) to
increase geolocation accuracy based on thermal video images [32]. Monda localizes
riverine environment targets so that altitude of the target becomes known [34]. In EKF,
2D position and velocity vector of the target is used as state vector and 2D pixel locations
of the target in the image are used as measurement vector. Also, he develops a gimbal
control algorithm to maintain the target in the center of the camera. Dobrokhodov, et al.
instead of using target position estimate and range to target as an EKF state, uses angle
between ground speed vector, the vector perpendicular to the LOS, range to target, and
LOS angle rate. [35]. Velocity tangent to LOS and Angle between ground speed vector

and the vector perpendicular to the LOS is used as measurement vector.

Another target geolocation method that differs from the above methods is image
registration. In this method, a satellite image or any reference image for flight zone is
compared with an image taken from UAV camera. Since this method aims to match
reference images with captured ones, there is no need for accurate additional
measurements such as UAV position and attitude or DTED for range estimation [39],[40].
Even so, there are two main issues with this method. The first one is finding reference
images. Reference images for flight zone may not be available or may be costly. Another
issue is the change in environments. For example, snow on terrain hides all known
landmarks to match the referenced image. Even if this method is perfectly accurate, it is

not applicable to most of the missions.
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On the other hand, calculation methods are different from subjective methods. Since these
methods use active distance measurement sensors such as LASER, the geolocation
problem becomes a single shot problem. There is no need for flat earth assumption or
DTED for the range estimation [25]. This method aims to increase estimation accuracy
by eliminating measurement errors. He [26] suggests a maximum likelihood estimation,
where Wang [25] proposes RLS filter to eliminate measurement errors. Figure 2-2 shows
the workflow of single eye localization [26]. However, the biggest problem here is the
weight of the range sensor. Long distance measurement sensors will be heavy compared

to small UAVs, weighing around 2-4 kilograms.

Pitch, Roll, Heading Transformat'\;n from tl;e The Longitude
of the UAV; N camera c:or inate to the and the Latitude
Azimuth, Pitch of Input: N_orl -East-Down . of the UAV
coordinate by the rotation

the payload .
pay matrices |

Calculate the target

The LASER distance, the . 8
X location in the

x, y coordinate of the .

Input—®» camera coordinate —
target on the screen,
by the camera
the focal length
geometry

Figure 2-2: Single eye localization work flow [26]
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Geolocation methods based on multiple UAVs [41],[42],[43],[44] and [45] mostly focus
efficient data communication between UAVs, optimal flight plans etc. Geolocation with
agroup of UAVs estimates target location faster than a single UAV because of the number

of measurements. However, this thesis focuses on geolocation with a single UAV.

2.2 Flight Path Design

Ross uses down looking camera and develops a path planning algorithm based on “Direct
Collocation with Nonlinear Programing” [46] in his research [40]. UAV roll angle and
longitudinal acceleration are control inputs. The cost function is defined as ensuring
maximum target observation. Cost function minimizes control efforts, the distance
between target and UAV, and time when the target is not centered in the camera image.

This down looking camera concept is not proper for reconnaissance and surveillance
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missions. Since fixed wing UAV continuously moves, target loss event occurs. In

addition, for targets in motion, this system fails.

Dobrokhodov, et al. developed an exceptionally good tracking algorithm based on camera
images of the target [35], [36]. The algorithm loiters around the target by keeping the
ground velocity perpendicular to the LOS vector. For this loiter motion heading rate is
used as a control command. For gimbal control, the gimbal angle is controlled to keep the
target in the camera center. The only deficiency of this algorithm is the GPS dependence

for the tracking. Since the algorithm uses the ground velocity, it fails during GPS loss.
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3. TEST ENVIRONMENTS

3.1 Introduction

To design and analyze performance of estimation methods, it is necessary to have a test
environment. A real flight test is the final test result to validate and show the performances
of designed or investigated algorithms. However, due to the cost of the flight test, a
simulation test environment is developed for pre-analysis. After all pre-design and
analyses are finished, flight tests are done.

3.2 Flight Test Environment

For flight tests, FX79 flying wing UAV is used. It is equipped with right looking camera,
GPS, IMU, INS, air data system, and vision tracker system. As a system, it consists of a

launcher and ground control unit. It has a unique autopilot ability.

Figure 3-1: Flight test setup, UAV and the launcher

Table 3-1: Properties of test UAV

Wingspan 2000 m
Length 862 mm
Total weight 2.2 kg
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3.3 Simulation Environment

3.31 UAYV Simulation

UAYV Model is used by target tracking controls. Generally, dynamic modeling of UAVs
focuses on open loop modeling where control surface deflections and throttle are input,
position and velocities are output. However, the control loop designed in this work for
the flight path in Section 5 outputs reference roll angle (¢,..r). Hence, there is no need
for a fully dynamic model of UAV. Closed loop form of the model where only reference
angles are taken as input is sufficient. Moreover, the control loop for flight path design
focuses on lateral dynamics so that longitudinal motion can be considered as a constant.

The first step of building a dynamic lateral model of a UAV is representing roll dynamics.
The reference roll angle (¢,.f) is taken as input, whereas roll angle is an output (¢) in
the model. To represent the closed loop dynamics, a transfer function model with three
poles and two zeros is used, and transfer function parameters are found by using
MATLAB System Identification Toolbox [47]. Flight data, which is used for system

identification, is shown in Figure 3-2 and Figure 3-3.

14.04.2021 Flight Test - Roll Angle Control

Angle [deg]

1] 10 20 30 40 50 60 70 80 20
Time [s]

Figure 3-2: 14.04.2021 flight log data — Reference roll and roll angles
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Figure 3-3: 14.04.2021 flight log data — 2D position

The estimated parameters of closed loop roll transfer function are given as follows:

¢ _ 0.4229s® + 0.6845s + 0.01389
Bres  S3 + 1.149s52 + 0.6803s + 0.01491

(3.1)

Figure 3-4 shows model roll outputs and flight data roll angle. The root mean square error
is around 3.8 degrees which can be considered as an accurate model.
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a0 . . . . . . . . )
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Figure 3-4: Model and flight roll angles
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The next step is the estimation of heading rate () and track rate (j). Heading and track

dynamics are modeled to consider wind effects. Model is developed based on works done

by Rysdyk [48], Osborne, and Rysdyk [49]. Track rate is approximately modeled as a

function of ground speed (), gravitational acceleration (g) and roll angle (¢) [50],[33].
9

X=%EM@

)(=f)‘(dt

Heading angle depends on ground speed, track angle, wind speed (V;,) and direction (1, ).

(3.2)

%sumx)+l@ﬂn0M0) (3.3)

¥ =atan <Vg cos(y) + V,cos(yy,)

The final step is the estimation of ground speed and position. Relation between ground
speed, airspeed, and wind speed is given in Equation (3.4) which is commonly called

wind triangulation.
V,=Vy+V, (3.4)

Using Equation (3.4) and cosine law, ground speed is estimated as:

Vg=JwLHﬁ—2%mamw~¢M+n) (3.5)

Hence position in the NED frame XY plane is:

. . (3.6)
XN = -[Xth, YE = jYEdt,

Figure 3-5 shows the flow chart of lateral dynamics simulation. In this work, longitudinal
autopilot holds altitude and airspeed, so that airspeed is considered as input. Simulation

step per tick time:
e Take inputs: Airspeed, reference roll, wind speed, and direction,
e Estimate roll angle using equation (3.1)

e Estimate track rate and track angle using equation (3.2),
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e Estimate heading angle using equation (3.3),
e Estimate ground speed using equation (3.5),

e Convert ground speed NED speeds and positions using equation (3.6).

Airspeed

eference Roll %‘Roll Dy

Wind Speed

roundSpeedI : NED

Velocities

Track Rate

Heading

(1)
<P

NED
Position

ind
Direction

W [

Figure 3-5: Flowchart of UAV lateral dynamics simulation

3.3.2 Camera Simulation

The aim of camera simulation is to map a 3D target position into a 2D image frame with
pixel locations. Figure 3-6 shows the relation between world and pixel coordinates.
Converting world coordinates to pixel coordinates is generally modeled by using pin hole
[21], [23], [51] or classical polynomial distortion camera model [52]. In this work, the
classical polynomial distortion camera model and estimated camera parameters are used
to simulate the camera. The camera parameter estimation is detailed in the Camera
Calibration section.
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fe,¢)

Camera Coordinate
System

Figure 3-6: Object in world and pixel coordinates [53]

This mapping starts with estimation target vector from camera position (Ft‘{lrget). UAV

position can be used as the camera position.
2V —_ pV 514
Ttarget - Ptarget - PUAV (3-7)

The target vector is transferred to camera coordinate frame by using rotation matrices in
equations (1.9), (1.12), and (1.14).

>C — pCpGpBRV
Ttarget - RGRB RVrtarget (3-8)

Normalized x,, and y,, vectors and normalized distance to center vector (r) are calculated

as:
=C =C
Ttargetx rtargety
Xn = 7C ’ Yn = 2C
target, target, (3_9)

2 =2+ 57

Using radial distortion (k4, k,, k3) and tangential distortion (p;,p,) parameters both

distortions are calculated and added to x,, and y,,.
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dx, = x(k;7? + kyr* + k31r°)

(3.10)
dy, = y(kr? + kor* + k37°)
dx, = 2p,xy + pz(r2 + 2x%)
(3.10)
dy, = p1(r? + 2y?) + 2p,xy
Xqg =X, +dx, +dx
d n r t (3.12)

Ya = Yn +dy- +dy;

After distortions are added, the relation between final pixel locations in image frame and

distorted (normalized) vectors is:

€x = fulxqg+s*yq) +c, —0.5My

(3.13)
€y = fyya + ¢, — 0.5My
Finally, pixel locations can be normalized by using pixel sizes:
€x
L=
Mp
ey (3.14)
y Mv

3.4 Simulation Environment Results
34.1 UAYV Simulation Results

UAYV Model Validation

Flight tests have been done to measure the performance of the model. The first flight

results are shown in Figure 3-10, Figure 3-9, and Figure 3-10.
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Figure 3-7: UAV flight path
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Figure 3-8: Model and flight roll angles
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Figure 3-10: Model and flight track angle rates

Other tests are given in UAV Model Validation Flight Test section. Mean error and
standard deviation between flight and model data are estimated. Results are shown in
Table 3.1.
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Table 3.1: UAV model mean error and standard deviations

Roll Angle [deg] Heading Rate [deg/s] Track Rate [deg/s]

Flight NO Mean Std Mean Std Mean Std
V1 1.03 3.71 0.84 7.01 1.32 3.72
V2 0.39 3.5 0.87 6.75 1.03 2.70
V3 2.00 3.63 1.76 6.21 1.61 2.56

UAYV Model at Different Wind Conditions

UAV model performance at wind conditions is investigated model 2D position at

different wind conditions are shown in Figure 3-11, Figure 3-12.

Wind Direction: 90deg
400 F AirSpeed: 30m/s—————
Roll Angle: 25deg

MNorth [m]

=100

=200 —\f\ind Speed = 0m/s
e \f\ind Speed = Smis

Wind Speed = 10m/s

-300 [

0 100 200 300 400 500 600 70O 8OO 900 1000
East [m]

Figure 3-11: UAV 2D position at different wind speeds
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Figure 3-12: UAV 2D position at different wind directions

The relation between heading angle and difference between ground speed and airspeed at

different wind speeds is shown in Figure 3-13. The same relation but at different wind

directions is shown in Figure 3-14.
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Figure 3-13: UAV model speed difference versus heading angle at different wind speeds

39



Ol . -
X -90.6302 X -0.437141 X 90.4117
Y 4.99974 Y 4.99987 Y 4.99989

Wind Direction = -180deq [
Wind Direction = -S0deg |
Wind Direction = Odeg

Wind Direction = 90deg

o0

=200 <150 -100 -50 1] 50 100 150 200
Heading [deg]

Figure 3-14: UAV model speed difference versus heading angle at different wind

directions

3.4.2 Camera Simulation Results

The performance of the camera model is analyzed by using flight tests. In flight tests, the
target is tracked and its pixel location is estimated by the vision system and UAV flight
data and vision system data are recorded. In these tests, the camera is fixed with 0 degrees
azimuth and -13 degrees elevation angle with respect to the body frame. Figure 3-15
shows target and UAV positions, respectively. Target position is measured with the same

grade GNSS system.
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Figure 3-15: Target and UAV positions

Next, using the equations given in Camera Simulation, pixel locations of the target in the
image frame are re-calculated by using flight data. Figure 3-16 and Figure 3-17 shows

absolute errors in pixels for x and y axis. Figure 3-18 percentage absolute error.
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Figure 3-16: Flight and re-estimated pixel locations of the target in y-axis of camera frame
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Figure 3-17: Flight and re-estimated pixel locations of the target in x-axis of camera frame
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Figure 3-18: Percentage absolute errors
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Other test results are given in Camera Model Validation Test section. Estimated mean
and percentage mean absolute errors are tabulated in Table 3.2.

Table 3.2: Camera model absolute and % absolute errors

Mean Absolute Error % Mean Absolute Error
Flight Test No €x €y €y €y
1 35.8 27.6 0.9 2.6
2 41.3 19.2 1.0 1.8
3 66.3 46.0 1.7 4.3
4 54.0 26.2 14 24

3.5 Conclusion

The primary purpose of this chapter is to develop a mathematical model of both UAV and
camera system. These mathematical models are used in the upcoming chapters. To that
purpose, a simple UAV model is developed that satisfies the requirements of flight path
design control algorithms. Same as, camera model is developed, which maps 3D world
positions to camera frame pixel locations. To validate models, flight tests are done. Both
models’ accuracies are estimated.
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4. LOS VECTOR ESTIMATION

4.1 Introduction

The aim of this chapter is that converting the pixel location of the target in image plane
to inertial frame coordinates. The LOS vector is used in FLIGHT PATH PLANNING and
TARGET POSITION ESTIMATION sections. Principally, this estimation process is
inverse of mapping 3D position to 2D pixel location that is mentioned in section Camera

Simulation.

4.2 Estimation LOS Vector in Camera Frame from Pixel Locations

The first step of estimating the LOS vector is converting the pixel location of the target
in the image plane to the camera frame. Figure 4-1 shows the camera and image frame
and target positions on these frames. Where £ is target vector in camera frame (LOS
vector) and %, £5 , €5 are components. L is distance of target to camera frame origin.
These target positions and distances are in metric units. €, €,, €, are projected target
position image frame in units of pixels and f, F are focal length and distance from camera
frame to the target position in image frame in pixels. P conversation unit that converts

pixel units to metrics.

/ ;
/. Pe |— \
/_. - "-.- "L \
P 1/ Pe, '
Fe ‘---——_Z-'C : Pe T '
/// . XIA
e ')" r
/vr' "(.
Ye yd
X
image plane

Figure 4-1: Camera and image frame [33]
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The vision system, while tracking the target, returns its pixel locations. Hence, using both
camera parameters and target pixel locations, £¢ is estimated. For this transformation,

pinhole and polynomial distortion camera models are investigated.

421 Pinhole Camera Model

Pinhole, which is also called perspective projection, is the simplest camera model. In this
model, light arrays that are emitted from objects pass through aperture (pin hole) and
collide with the image sensor [52]. This model ignores distortion effects that are
mentioned in the Camera Calibration section. Hence, governing equations are formed
based on triangular similarities [52], [54], [55].

abject barrier film

apeariure

~

Figure 4-2: Pinhole camera model representation [54]

Referring to Figure 4-1, using Hypotenuse of triangle:

F= /e§+632,+f2 (4.1)

L=J42+%2+é2 (4.2)

And using triangular similarities, equalities in 4.3 are found:

C Cc
G_ea &  fr_e& (4.3)
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Then, £¢ in matrix form becomes:

oL gx] (4.4)
=—|€y .
Flr

As seen from Equation (4.4), the target vector in the camera frame depends on the distance
to the target, which is unknown. This is the reason of that camera does not contain depth

information so that unit target vector (LOS¢) is used.

C

€x
LOS¢ = f— = l €y (4.5)
L F

f

4.2.2  Classical Polynomial Distortion Model

The main improvement of this method compared to the pinhole model is that this method
considers distortions. Basically, this method is inversion of the model described in section
Camera Simulation. This method is generally used for removing distortion effects in
images [56]-[58].

Normalized pixel locations are converted such that:

€, = €, x My, 46)
€y =€, % M, '

By taking the inverse of equation (3.13), distorted target vectors in the camera frame are

found.

€y — ¢y + 0.5My

YVa =
fv (4.7)
_ €x —Cx +0.5My
Xqg = i —S*Yg

Now distortion values should be removed from x; and y, to estimate normalized target
vectors. However, distortion values in Equations (3.10) and (3.11) depend on x,, and y;,.
It means that there is no analytical solution to this problem. Equation (3.10), (3.11), and
(3.12) can be rewritten as:
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[;Z] = [)ycﬂ +f (n Yn) (4.8)

where f is a function that represents distortions both radial and tangential.

dx, + dxt]

[ yn) = [dyr +dy, (4.9)

Even if there is no analytical solution for Equation (4.8), it can be solved numerically. To
do this, fixed-point iteration method is used [56], [59]. Due to iterations, this method is
considered slow [56]. However, in this work, fixed-point iteration is done for only one
pixel location, not for the whole image.

[yt ] = [52] = £ Gt (410

Ynipa

Now using undistorted normalized vectors, the LOS vector in the camera frame can be

found using equalities in Equation (4.11).

LOS;

LosE ~

Losy (4.11)
Los¢ "

LOSE* + LOSE* +LOSE™ = 1

4.3 Converting LOS Vector into Vehicle Frame

LOS vector in the camera frame is not practical, so it should be transferred into a proper
one. In this case vehicle frame is the best one for the LOS vector. LOS vector in the
vehicle frame represents the target direction vector with respect to UAV. This rotation
can be done by using Equations (1.15), (1.13), and (1.10).

LOSY = R}, « RE « RS + LOS® (4.12)

Instead of direction vector, LOS vector can be represented in circular form, such as

azimuth (y,0s) and elevation (6,,5) angles as shown in Figure 4-3.
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Figure 4-3: Azimuth and elevation angles

LOSy
LOSY

0,05 = —asin (LOSY)

Yros = atan< (4.13)

4.4 Estimation Errors and Improvements

4.4.1  Vision System Lag

One of the error sources in the estimation is the time differences between data. In other
words, delays in systems cause estimation errors. The main delay source is the vision
system. The first camera captures an image, then the vision system reads the image and
then processes the image. This sequence falls vision system data behind the other sensors
data. A chronometer is placed in front of the camera and the vision system image is shown
in the ground control station. Then with an external camera, a photo that captures both
chronometer and vision system is taken. Vision system lag is measured around 200-300
ms by taking a photo of the chronometer with an external camera (Figure 4-4). The delay
IS not growing in time leads to a constant value which allows a simple compensation

algorithm.

e o2

Figure 4-4: Time difference between vision system (right) and real (left)
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This lag effect can be removed by arranging data. As described in the above section, LOS
angle is the function of UAV attitude angles and target pixel locations in the camera
frame. This delay affects target pixel locations, so that pixel location lags the attitude
angles. Future pixel data are not used, but previous attitude values are used to synchronize
both data. Hence, the solution to this problem is that previous attitude angles
corresponding to the delay are utilized in the model.

442 Measurement Errors

The main error source is the measurement errors and LOS estimation depends on attitude
angles, gimbal angles, and pixel locations. Since pixel locations are measured by the
vision system, errors in these measurements are not further decreased. Attitude angles
and gimbal angles are aligned with each other and errors in these angles are not
distinguishable [30],[31]. Therefore, Barber suggests an optimization method for gimbal
angles such that bias in gimbal angles that cause minimum variance in position estimation
is found by an online quasi-Newton method [31]. However, these methods are not proper
for the real time applications.

In this work, an offline gimbal bias angles estimation method for a stationary camera
(non-gimballed) is used. In this method, after flight tests are done, bias angles in camera
placement are estimated, such as minimizing error in LOS angle estimations between
using positions and using camera models. Hence, cost function (J) is defined sum of

square errors between LOS estimation from position (105 pos, OLospos) and LOS

estimation from camera (V.05 cam OL0s,cam)
2 2
J= (BLOS,pos - QLOS,cam) + (l/)LOS,pos - l/)LOS,cam) (4-14)
Estimation of bias errors is converted to the following optimization problem.

mip J W, 0) (4.15)

4.5 Results

Flight tests, which are accomplished for camera simulation in the Camera Simulation

Results section, are used to analyze the LOS estimation. Tracking target location in ECEF
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frame is measured during these tests. Using target location and UAV location, LOS
azimuth and elevation angles are estimated. These results are considered as ground truth
and compared with the estimation method described in this section. For flight test 1,
Figure 4-5 and Figure 4-6 show estimated LOS angles from both pinhole and distortion
models and position data. Figure 4-7 and Figure 4-8 show LOS elevation and azimuth
angles.
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Figure 4-5: LOS elevation angles
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Figure 4-6: LOS azimuth angles
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Figure 4-8: Estimated LOS azimuth errors.

Results of the other three tests are shown in LOS Estimations. Mean error and standard

deviations for both models are tabulated in Table 4.1 and Table 4.2.
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Table 4.1: Pinhole model LOS estimation performance

Pinhole Model LOS Elevation Error [deg] LOS Azimuth Error [deg]
Flight Test Mean Std. Mean Std
1 -1.36 1.24 1.48 0.78
2 -0.65 0.89 0.75 1.03
3 -1.35 1.22 0.90 0.71
4 -1.56 1.30 1.45 1.38

Table 4.2: Distortion model LOS estimation performance

Distortion Model LOS Elevation Error [deg] LOS Azimuth Error [deg]
Flight Test Mean Std. Mean Std
1 -1.11 1.12 0.86 0.75
2 -0.21 0.89 0.14 0.92
3 -0.51 1.06 0.33 0.66
4 -1.17 1.03 0.85 1.34

As seen from the above figures and tables, the distortion model performs better than the
pinhole. The reason for that is distortion model uses much more parameters than the

pinhole model. However, the pinhole model is used due to its simplicity.

In addition, the effect of lag in the vision system is investigated. As mentioned above,
attitude angles are shifted to previous ones and the same estimated methods are applied
for flight test one. For different numbers of data shifts, the standard deviation of LOS

elevation and azimuth angles are shown in Figure 4-9 and Figure 4-10.
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Figure 4-10: LOS azimuth (left) and elevation (right) angles estimation for 0, 5 and 10
data shifts.

Both azimuth and elevation standard variations reach their minimum value with the same
number of data shifts according to the results. These test data are logged with 50 Hz and
there is 250 ms time delay due to the vision system. The time delay is consistent with
chronometer test measurements. For flight test one, mean and standard deviations for both
LOS estimation methods are re-calculated and tabulated in Table 4.3 and Table 4.4.

53



Table 4.3: Pinhole model LOS estimation performance comparison with data shift

Pinhole Model LOS Elevation Error [deg] LOS Azimuth Error [deg]
Flight Test Mean Std. Mean Std

1 -1.36 1.24 1.48 0.78

1 with 5 data shifts -1.39 0.75 1.46 0.40

Table 4.4: Distortion model LOS estimation performance comparison with data shift

Distortion Model LOS Elevation Error [deg] LOS Azimuth Error [deg]
Flight Test Mean Std Mean Std
1 -1.11 1.12 0.86 0.75
1 with 5data shifts -1.14 0.65 0.84 0.36

The data shift greatly affects error standard deviations in both estimations but slightly
changes the mean error. Another improvement is the estimation of bias in parameters.
The minimization is solved by MATLAB “fminsearch” function [60]. Minimization is
done by using all gimbal angles and camera FOV angles parameters for the pinhole
model. Figure 4-11 shows the cost function value at each optimization iteration and the

final values of parameters are tabulated in Table 4.5.
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Table 4.5: Pinhole model parameters and gimbal angles after optimization

bg [ded] 6 [deg] Wy [degl | FOV, [deg] | FOV), [deg]
Before 0 -13 0.0 37.6 63.6
After 0.5 -14 0.0 36.5 60.3

LOS angles are re-estimated for pinhole camera model using the analyzed parameters and

data shift improvement, Flight test 1 results with and without improvements are tabulated

in Table 4.6. Figure 4-12 and Figure 4-13 shows LOS angles estimation from the position,

with and without improvements. From these results, obviously, it is seen that the

performance of estimation is significantly increased by the improvements. Both mean

error and standard deviation between estimation and measurement by using position data

decreases. However, there are still exits errors and estimations are not perfect. This is due

to the other errors exist in the estimations, such as pixel location and position data errors.

More accurate sensors or INS system or vision system is necessary to decrease or remove

these errors, but this is not the focus of this work.
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Table 4.6: Pinhole model LOS estimation performance comparison with improvements

Pinhole Model LOS Elevation Error [deg] LOS Azimuth Error [deg]
Flight Test 1 Mean Std Mean Std
No improvement -1.36 1.24 1.48 0.78
With Improvement -0.12 0.64 0.52 0.31
4
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Figure 4-12: LOS elevation estimation with and without improvements
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Figure 4-13: LOS azimuth estimation with and without improvements
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4.6 Conclusion

As a conclusion for this chapter, two methods that are pinhole and distortion camera
models, are investigated for estimation of LOS vector or angles. Both methods are
described and tested with flight data. Their performances are compared with the LOS
angles estimation by using position data of UAV and target. Almost similar results are
obtained by both LOS estimation methods. This is due to the used image sensor which
has exceptionally low distortions. Therefore, it is concluded that the pinhole model is
used instead of the distortion model since it is quite a simple method in implementation
and computation wise. However, it will be inevitable to use the distortion model in cases

where sensor distortions are excessive.

Errors sources and improvement of these errors are described. These improvements are
applied and tested with the same flight data. Results are presented and it is seen that

improvements exceptionally increased LOS estimation performance.
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5. FLIGHT PATH PLANNING

5.1 Introduction

Controlling UAV such that holding the target in LOS is the main purpose of this chapter.
Loitering around the target is a common maneuver for fixed wing UAVs because UAV
in loiter motion holds the target in a fixed position with respect to itself. It means that, for
gimballed or fixed camera placed in right azimuth angles, the target is always on FOV of

the camera. Therefore, continuous target tracking is the goal of this chapter.

As mentioned LITERATURE SURVEY section, the tracking algorithm, developed by
Dobrokhodov, performs well. The control philosophy of that method is keeping UAV
ground velocity perpendicular to the LOS vector. Therefore, perfect controls guarantee a
circle (loiter) around the target. In the gimbal control gimbal continuously align itself
with respect to the LOS vector. This is a virtuous method, but the ground velocity is
GNSS dependent. If GNSS fails, this control system also fails. Hence, a new control
philosophy that is holding the LOS vector at a right angle with respect to UAV body

frame is proposed in this thesis.

5.2 Method

It is necessary that the image sensor must be placed at the right angle or rotated by a
gimbal system for continuous target tracking in loitering around the target. Therefore,
LOS azimuth angle is held at the right angle, simply by holding the target in the center of
the camera frame. In this method, €,, measured from the vision system, is used as control
input for the control system. To hold the target in the image center, horizontal pixel
reference value (e,,¢5) is set as zero. Output reference roll angle (¢, ) is generated and
this reference angle is executed by the attitude hold mode of the UAV autopilot. This
configuration leads the control system to be modular. The control system implementation
is easy to accomplish because autonomous UAVs generally have attitude control mode
which is one of the main control modes. The control loop of this method is shown in

Figure 5-1.
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Figure 5-1: Control loop of target tracking

However, this loop does not have control over the distance to the target. Due to
distributions such as wind, UAV converge or diverge to target undesirably. Moreover,
the pilot/operator may desire to approach or get away from the target. Therefore, thanks
to the LOS elevation angle, that is done by adding an outer loop to the controller. The

schematic of control loops is shown in Figure 5-2.

QLOa

VisionSystem

uav

Autopilo

Controller
Cuter loop

l ?LOS.)‘EJ”

Figure 5-2: Cascade controller loop of target tracking

The horizontal distance between target and UAV (Ry) is the function of LOS elevation
angle and altitude between them. Consider flat earth model where UAYV altitude from
ground (hy,e; ), this altitude also becomes the height difference between UAV and target.
In that case, 0,05 is related with horizontal distance and h,;; with trigonometric
relations. Using equation (5.1), 6¢sy is predefined depend on the UAV mission. By

changing this value Ry is arranged.

h““) (5.1)

Dhos = atan
Los = atan Ry

Optimum altitude for minimum errors in estimation, mentioned in [31], is autonomously
controlled by implementing longitudinal control loops. However, this system is not

implemented because autonomously altitude change is not proper for military
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applications. For that reason, for longitudinal controls, altitude hold and speed hold
modes in autopilot are used and controlled remotely by the pilot.

5.3 Improvements

It is possible that the outer loop may generate €, .., Which is beyond the camera limits.
In other words, when the target moves out of camera FOV, the target is lost. This is the
most unwanted situation so €, ., value must be limited to eliminate that situation. Also,
this limit value works as a safety margin where the controller overshoots. Figure 5-3

visualize this limit in the image frame and Figure 5-4 shows the limited loop diagram.

Image Frame

Safety Maigin

Limit
XJ'

Figure 5-3: Limit and safety margin in the image frame

fros

VisionSystem

uav

€5
E?LOS'P# Lirnit I v ref { £ Controller }~rbrgf Autopilot

Figure 5-4: Cascade controller loop of target tracking with reference pixel limitation

Controller
Outer loop

The integral error may accumulate due to the limit on the outer loop. For example, when
the target moves faster than UAV, the distance between them increases. The outer loop
wants to hold that desired distance, but holding distance is not possible without losing the

target in camera FOV. Hence, a proper integral windup method must be added [61].
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Another issue is that target may be lost in camera FOV or the vision system may fail to
track the target. For example, another object such as a tree or building may be block target
in the image or maneuvering around a moving target may be impossible without losing
it. In these situations, the maneuver should continue without target tracking. To do that,
If the target position is estimated, then it is used as loiter waypoint and autopilot switches
to position loiter mode. If it is not or GNSS fails, a pseudo reference roll value
corresponding to the active pseudo-range is used. Pseudo reference roll value is estimated
by using the coordinated turn equation. Instead of that, the last reference roll value may

be used, such as:

_ v
¢ = atan <g_R) (5.2)

5.4 Results

54.1 Simulation Results

The control loops presented in this section are added to the simulation environment that
is designed in the TEST ENVIRONMENT section. The PID controller is chosen due to
its simplicity and tuned using simulation for the controller [61]. Tuned PID parameters

for both loops are tabulated in Table 5.1.

Table 5.1: PID parameters

Kp Ki Kd
Inner loop 0.8 0.15 0.2
Outer loop 7 0.13 0.5
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Figure 5-5: Only inner loop response (top) and cascade loop response (bottom) under 5

m/s wind conditions

Figure 5-5 shows UAV and target position for only inner loop and cascade loop
implementations. Since there is no direct control on the range, UAV position slowly
diverges as expected under the disturbance for only pixel location control. For the
cascaded controller, UAV is able to hold the distance to the target with 10% steady state
error. Figure 5-6 shows 2D positions and distance changement between target and UAV

for different initial conditions and 6, ¢ Values. Results show that UAV is able to

diverge or converge to the target depending on the 8, -
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(bottom) 2D position (left) and distance (right) graphs.

Figure 5-7 shows positions and distances for moving targets with 5 m/s and 25 m/s. UAV

is able to hold the distance for slow moving targets but for faster targets holding the

distance is not an option. Yet, UAV still tracks the targets. Figure 5-8 shows UAV and

target positions for moving and turning targets with different speeds.
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5.4.2  Flight Test Results

After promising simulation results, developed control structure is added to autopilot and
four different test flights are performed. Example tracking images in these tests are shown
in Figure 5-9.
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Figure 5-9: Successive target tracking and image-based loitering.

In the first test flight, only the inner loop is enabled, and the outer loop is closed. Figure
5-10 shows UAYV flight path with the target position and horizontal distance to the target.
During this test, wind speed is estimated as 1.1 m/s. The used wind estimation method is
based on wind triangle, and it is a similar method to [62]. Same as simulation results,

UAV position converges to the target.
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Figure 5-10: Flight Test 1 response graphs.

In flight test 2, both loops are enabled and PID parameters in Table 5.1 are used. UAV is
able to loiter around the target with some oscillations. Wind speed is estimated at around
3.8 m/s. Results are shown in Figure 5-11.
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Figure 5-11: Flight Test 2 response graphs.

After Flight Test 2, it is observed that camera misalignment has a detrimental effect on
the controller performance. Camera alignment angles are estimated as mentioned in LOS
VECTOR ESTIMATION section and they are corrected in the software. Also, both
controller loops are tuned and Flight Test 3 and 4 are performed. In these tests, UAV
loiters around the target with fewer oscillations compare to Flight Test 2. In these tests,

the estimated wind speed is less than 1.5 m/s. The results of both tests are shown in Figure
5-12.
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Figure 5-12: Flight Test 3 (top) and Flight Test 4 (bottom) response graphs.

5.5 Conclusion

In conclusion, the lateral controller, which tracks the target and holds the desired distance,
is developed. The controller is independent of GNSS measurements such as position and
velocity. Hence it works under GNSS denied environments as long as attitude
measurements are satisfactory. Also, it has a modular structure, and it is effortlessly

implemented.

Solutions for target lost situations due to maneuvering or vision system fails are
developed. Even if the target is lost in FOV of the camera, UAV may maneuver around

the target by using the estimated target location or holding the last reference roll angle.

The performance of the developed controller is tested by real flight tests. In these tests, it

Is observed that the controller performs better in less windy environments. Also, it is
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noticed that since vertical pixel location (e, ) is not taken into account when UAV reaches

high roll angles, the target goes out of the camera field of views. To prevent that in future

work, €, should be connected to the controller as a feedforward input
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6. TARGET POSITION ESTIMATION

6.1 Introduction

This chapter aims to estimate the target location in ECEF frame. It can be accomplished
by combining the UAV position with estimated LOS angles. Figure 6-1 visualizes target,
UAV positions and LOS vectors at different positions with perfect measurements and
measurement errors. Under perfect measurement conditions, the target position is easily
estimated by using the triangulation method. However, due to measurement errors,

accurate estimation is not possible just by using the simple triangulation method.

3D UAV Position & Target Lines 3D UAV Position & Target Lines

UAV Path

©  UAV Position
LOS Veetor
B Targel

UAV Path
O  UAV Position 40 4
LOS Vector
B Target

0 T " 0 — """
— —

North [m] 500 500 East [m) North [m] 500 500 East [m]

Figure 6-1: Visualization of UAV position, target position and LOS vector without (left)

and with (right) LOS measurement errors.

In this work, a new EKF algorithm is developed to estimate the target position. The
developed algorithm is designed based on [33] with taking consideration of camera
misplacement errors. These errors are considered as bias and added as a state to EKF. The
target location is measured with GPS to measure the performance of the proposed method
(Figure 6-2). Here, the GPS location is considered as a ground truth. Furthermore, the
proposed method is compared with the other methods such as minimization method [29],
RLS method [31], EKF1 method [33], and EKF2 method [34].
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Figure 6-2: Target position measurements from GPS, left geodetic frame right NED frame

6.2 Measurement Errors

As mentioned in the Introduction section, target position estimation is a function of UAV
position and LOS vector. UAV position is measured by INS system that combines GNSS
and IMU measurements. Still, this INS position measurement has errors. These errors can
clearly be seen from Figure 6-2. Here, four different position measurements for the same
stationary target have around 2 meters standard deviation. However, these position errors
have a direct effect on the position estimations. In Figure 6-3, while UAV making a
perfect circle with a radius of 400 meters around the target, the LOS vector is estimated
perfectly, and UAV positions are shifted 15 meters in X-direction. Therefore, LOS lines
intersect at 15 meters away from the target in X-direction. It means that UAV position

errors have a direct effect on the target position estimations.
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Figure 6-3: Position estimation with UAV position error (Left 3D view, right top view)
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Another error is the LOS vector estimation error that depends on the camera parameters,
camera alignment angles, and UAV angular position. That is the primary error source in
the position estimation. As seen from Figure 6-4, 5 degrees LOS error can cause 230
meters position error at 400 meters away from the target with 100 meters altitude
difference. Therefore, the LOS angle error should be taken into consideration while

estimating the target position.
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Figure 6-4: LOS angle errors (left) and effect on target position estimation (right)

6.3 Methods

6.3.1  Proposed Method

In this method, target position estimation starts whenever a target is started to track in the
vision system. At the beginning of the algorithm, UAV position (6,4, 6100, h) i
considered as the origin of the local NED frame. Then, at each step, UAV position at local
NED frame and LOS angles are estimated. Finally, the target position is calculated in the
local NED frame and then converted into the geodetic ECEF frame.

EKF filter is used to estimate stationary target position while eliminating the
measurement errors. Its states are target North-East-Down positions (Py ;. , Popn jy» Pob i)
in local NED frame, the distance between UAV and target (IL) and camera misalignment
errors which can be considered as LOS angle biases (Ay, s, A8,05). Therefore the state

is given as:
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x = | Povi, (6.1)

where

L= \/(Puavx - Pobjx)z + (Puav, — Pobjx)z + (Puav, = Pobjx)z

For stationary target and non-moving camera state derivatives with respect to time

becomes:

0
0
0
X' = f = (Puavx_Pobjx)vuavx+(Puavx_Pobjx)VuaVy+(Puavx_Pobjx)VuavZ (62)
L
0
0

And Jacobian of state equation is:

A=Vf=
0 0 0 0 00
0 0 0 0 00
0 0 0 0 00 (6.3)
Vuavx Vuauy Vuavz (Puavx - Pobjx)Vuavx + (Puavx - Pobjx)Vuavy + (Puavx - Pobjx)vuavz 0 0
T A 1.2
0 0 0 0 00
0 0 0 0 00
For the measurements, UAV position is used:
Puavx
z = Puavy (6.4)
PuavZ

Target position is related to UAV position, LOS vector, and distance between them.

Poyj = Biay + LLOS (6.5)
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For the measurement equation, UAV position is estimated from equation (6.5) by taking

into account LOS angle biases:

Popj, — Lcos(@ros + Aos) cos (BL0s + AB0s)
h = | Popj, — Lsin (Y105 + Apos) c0s(B0s5 + AbLos) (6.6)
POij + L SiH(@LOS + ABLOS)

For initial guess of the developed EKF filter, flat earth assumption or if available DTED
can be used. In the flat earth assumption, as shown in Figure 6-5, take-off altitude is
considered as target altitude and altitude difference between target and UAV is found.

Then using LOS angles, the target position in the local NED frame is estimated.

Ah = hygy — huav,home

L __ A
7 sin(—6105)
Pi , = Buav,, + Lo cos(810s) cos(¥y05) (6.7)

Pty = Puavy, + Lo c05(8105) cos (PL0s)

PtZO = Puavzo + Ah

LIy

flat earth target Pgbj

Figure 6-5: Flat earth assumption [33]

Since the ideal system should not have a bias, initial guesses for LOS angles are all set to

zero values.

6.3.2 Minimization Method

This method is derived from equation (6.5) [29]. At each measurement step UAV position
and LOS angles are collected. After that, a nonlinear optimization method is used for
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target position estimation. In this work, a new minimization method is developed. UAV
positions and LOS angles are used to form target line equations, as shown in Figure 6-6.

For North-East plane, line equations are:

aix+by+c =0

a; = tan (¢L0$i)

b1 (6.8)

i = Puavy,,- - Puavx,,- * tan (lpLOSi)
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Figure 6-6: UAV positions and target lines
In an ideal case where there aren’t any measurement errors, these target lines should cross

each other at the target location. A point that has the smallest distance to these all lines is

the target position. Hence, the cost function becomes a sum of all distances to LOS lines.

N
. la;x + by + ¢
[Pobjxlpobjy - g}};ﬁ( ; m (69)
l:

This method has several advantages for the target position estimation since it does not
need any information other than UAV position and LOS angles. However, this is not
proper for real time estimations. It requires nonlinear minimization algorithms that are
not proper for real time and requires storing all measurement data that is not applicable

for real time systems.
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6.3.3 RLS Method

RLS method is developed by using flat earth assumption or DTED information [31]. By
using one of these, distance to the target is estimated and then target position is estimated
with LOS angles and the distance to the target is the same as in equation (6.7). After that,
measurement errors are compensated by using the RLS filter. However, it is noticed that
mentioned RLS method is a simple cumulative averaging of the target position
estimations as shown in Figure 6-7. Therefore, instead of RLS filter, cumulative

averaging can be used.

(Pobj,estnﬂ Tk PObj'meann) (6 10)
Pobj,meann+1 = n+1 )
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Figure 6-7: RLS and cumulative mean target position estimations

6.3.4 EKF Methods

To compare the performance, EKF1 method [33] and EKF2 method [34] are used. Both

EKF methods use target position and distance to target as states.

Pobjx

P,
x=| " (6.11)
Pobjz

L

Their difference is their measurement parameters. EKF1 uses UAV position as a

measurement and EKF2 uses LOS angles as a measurement.
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P uav,

P
uavy

ZEKF1 — ) ZEKF2 = [lpws] (6.12)

QLOS

I uav,

6.4 Flight Test Results

The first flight test in section FLIGHT PATH PLANNING is used. As mentioned earlier
UAV position at estimation start is considered as local NED origin. UAV position, LOS

lines and target position (GPS-measurement) are shown in Figure 6-8.

3D UAV Position & Target Lines

AN Path

©  UAV Position
LOS Vector
B Target

O Flat Earth - Estimation Paints J@&

Figure 6-8: Flight Test 1 UAV position, target lines, and target position.

Flat earth target estimation position in local NED frame shown in Figure 6-9. To be more

clear, the target is centered in this local NED frame, as shown in Figure 6-10.
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Figure 6-10: Target centered NED frame target position and flat earth estimation points
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For the EKF estimations, the process (Q) and measurement (R) covariances are shown in
Table 6.1.

Table 6.1: EKF process and measurement covariances

Q R
EKF1 diag([ 10°° 10" 105 10°%]) diag(([5 5 5])?)
EKF2 diag([ 105 105105 10°%]) diag(([57/180 57/180])?)
EKF proposed | diag([ 10°10°10°10°107107]) diag(([5 5 5])?)

Initial estimation covariance (P) is set according to the initial estimation error such as:

Pgkr1 = Pegrz = diag([600 0 60]2)

(6.13)
Pexr our = diag([60 0 0 60 51/180 51/180]2)

Estimation results for test 1 with mentioned parameters are shown in Figure 6-11, Figure
6-12, Figure 6-13, Figure 6-14, and Figure 6-15.
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Figure 6-11: Target position estimation in North-East plane view
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Figure 6-14: Target position estimation errors
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Figure 6-15: Target position estimation errors of proposed solution (Zoomed)

The Cumulative mean (or RLS) solution reaches 20 meters estimation error at the end of
the test, as seen from the graphs. EKF methods reach below 15 meters error after 15
seconds and 49 seconds. The minimization method error is 8.5 meters and as mentioned
earlier, it estimates target position by using all available data. On the other hand, the

proposed method reaches below 10 meters error after 2.6 seconds and stays below 5
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meters error after 17 seconds. Also, as shown in Figure 6-16, the proposed method
estimates LOS angle biases very accurately. In Figure 6-16, blue lines are the difference
between LOS angles estimation from GPS positions of target and UAV and LOS angles

estimations from the camera. Red lines are the proposed method’s EKF states.
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o 20 40 60 80 100 120 0 20 40 60 80 100 120
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Figure 6-16: Proposed solution LOS angle bias estimations.

However, in the above estimations, initial estimation covariance (P) is set as perfectly.
This is not possible without knowing the target location. Hence more generic initial
estimation covariance is set as given in equation (6.14), and corresponding results are

shown in Figure 6-17.

PEKFl = PEKFZ = dlag([lOO 100 20 200]2)

(6.14)
Pexr our = diag([100 100 20 200 51t/180 51/180]2)
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Figure 6-17: Estimation result with new initial estimation covariance, target estimation
positions (top), target position estimation errors (middle) and LOS angle

biases (bottom).

Here, the RLS solution is still the same, but the EKF1 method reaches 15 meters error
after 51 seconds. Proposed solution goes 10 meters error after 6.7 seconds and same as
before stays below 5 meters error after 17 seconds and able to estimate the LOS biases
accurately. Since the minimization method is not affected by changing estimation

covariance, it does not re-estimated.
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All the above solutions are done by at perfect flat earth assumption. 20 meters error added
to flat earth solution and results of methods are shown in Figure 6-18.
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Figure 6-18: Estimation result with 20 meters altitude error at flat earth assumption, target
estimation positions (top), target position estimation errors (middle), and

LOS angle biases (bottom).

As seen from the given figures, flat earth estimation errors are increased to 140 meters
and the cumulative mean method decreases this error to 37 meters. Both EKF1 and EKF2

reach 10 meters error almost 10 seconds faster than the proposed method in North-East
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plane. However, for the total error case, the proposed method error is around 5 meters
while EKF1 error is around 25 meters and EKF2 error is around 35 meters. The proposed
method is still able to estimate the LOS angles biases with some oscillations. The reason
for these oscillations is that the EKF algorithm does not have enough information about
the sources of the error. In other words, altitude error and elevation bias have the same

effect on EKF, so they are not distinguishable.

6.5 Conclusion

In conclusion, a new EKF based target position estimation method that also considers
LOS angles biases is developed. The developed method performance is measured by
flight test data and compared with other methods. As seen from the results, the proposed
method performs much better than the others when there exist LOS angle biases such as
camera misalignment. The estimation error of the proposed method is around 5 meters,

while the other best estimation error is around 20 meters.
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7. GENERAL CONCLUSIONS AND FUTURE WORK

In the Flight Path Planning section, a new loitering maneuver controller is designed such
that it works under GNSS denied environments as long as attitude measurements are fine.
In this controller, two control loops are designed which control the lateral motion of UAV.
The inner loop controls the target pixel location in the image frame and the outer one
controls the elevation angle that is related to the distance to the target. Longitudinal
motion of UAV is controlled by desired control modes such as altitude hold and speed
hold. However, the vertical pixel position of the target in the image is not considered.
Hence, future research should consider the vertical pixel location. It can be used as
feedforward input to the controller so that roll angle is limited and the target does not go
out of the camera field of view. After the flight test, it is observed that loiter performance
Is affected by elevation measurement errors. This elevation measurement error mainly
arises from camera misalignment. Thanks to work in target geolocation estimation,
camera misalignment angles are estimated, and it can be used for correction to loiter

maneuver.

In the Target Position Estimation section, a novel target position estimation algorithm
based is developed. This estimation algorithm takes into consideration of the LOS angle
biases. The performance of the algorithm is tested in real test flights and compared with
the other methods. Target position is estimated with an accuracy of 5 meters, from a
distance of approximately 400 meters, while other methods’ accuracies are around 20
meters. For target position estimation, future research should consider the coordinated
turn equation as an additional measurement for EKF. In a coordinated turn, turn radius is
related to the roll angle and heading rate. Hence, the distance between the UAV and the
target may be estimated. Therefore, it may increase the target position estimation
accuracy and decrease the estimation time. Moreover, in the future, estimation biases can

be expanded for the field of view parameters of the camera.
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APPENDICES

APPENDIX 1- UAYV Model Validation Flight Test
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APPENDIX 2 -

Camera Model Validation Test
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APPENDIX 3 -

LOS Estimations
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