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ASST. PROF. DR. UFUK ÇELİKCAN
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ABSTRACT

SYNTHETIC DATA GENERATION FOR TRAINING AND
EVALUATION OF DEEP LEARNING-BASED COMPUTER VISION

MODELS

Abdulrahman KERİM

Master of Science,Computer Engineering Department
Supervisor: Asst. Prof. Dr. Ufuk ÇELİKCAN

June 2021, 77 pages

The recent great success witnessed in computer vision field in solving high-level vision tasks

such as visual object tracking, semantic segmentation, instance segmentation, and optical

flow recognition is predominantly dependent on the availability of large-scale datasets, which

are critical for training and testing new algorithms. Manually annotating visual data, how-

ever, is not only a time consuming process but also prone to errors and subject to privacy

issues. In this work, we present NOVA, a general-purpose framework to create 3D virtual

worlds populated with humans that provides pixel-level accurate ground truth annotations

for many computer vision tasks. NOVA can simulate several environmental factors such as

weather conditions or different times of day, and bring an exceptionally diverse and photo-

realistic set of humans to life, each having a distinct appearance and features.

To demonstrate NOVA’s capabilities, we utilized our framework to generate photo-realistic

and diverse synthetic sequences for training and testing visual object tracking algorithms.
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The main motivation was to show that the generated synthetic data, by our rendering en-

gine, constitute a good proxy of its real-world counterpart and it can be deployed to boost

the performance of learning based computer vision models. Particularly, our aim was to

demonstrate the usability of our generated data for both training and testing computer vision

models.

First, we generate two different synthetic datasets for the task of pedestrian tracking. The

first of these datasets is utilized to assess the performance of some state-of-the-art visual

trackers on various conditions. On the other hand, we employ the second one to train deep

visual trackers to improve their performances on real sequences. Our study reveals that the

tested trackers perform poorly in highly crowded scenes, or at low illumination and in foggy

weather conditions. Additionally, the experiments demonstrate that our generated synthetic

sequences indeed present a good proxy of the real sequences and it does improve the per-

formances of deep visual trackers under standard and normal conditions. Following this,

the essential question that emerged and required thorough experiments is the capability of

our synthetic data to complement the real-world one and push the limits of current available

visual object tracking datasets.

Bearing in mind the poor performance of the recent tracking algorithms at certain challenging

conditions (as revealed by our previous experiments), we considered adverse weather con-

ditions in more details. We provided a new person tracking dataset of real-world sequences

(PTAW172Real) captured under foggy, rainy and snowy weather conditions to assess the

performance of the current trackers. The considered trackers, both correlation filter -based

or learning-based, showed a poor performance under these adverse weather conditions. Our

experimental results link this deficiency to the lack of enough adverse weather training sam-

ples in the current visual object tracking datasets. To mitigate the problem, we extended

our rendering engine to further simulate more realistic adverse weather conditions spanning

foggy, rainy and snowy weather conditions. Pedestrians in rainy and snowy weathers are

simulated with outdoor cold-weather clothes. Snow banks and water puddles are simulated

to account for snow and water accumulations, respectively. Additionally, snow particles and

rain drops are generated to match the videos in real life. In parallel to that, snow tracks left by
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cars and pedestrians are simulated to give more realism. Pedestrians are randomly assigned

umbrellas and the suitable animation is set accordingly. At the same time, fog is simulated

using post-processing effects and the Enviro system. The severeness of each of the weather

conditions is randomized at run time to give more diversity for the generated sequences.

Following this and harnessing the photo-realism and diversity of the simulated adverse weather

condition, we provide a novel person tracking dataset of synthetic sequences (PTAW217Synth)

generated by our NOVA framework spanning the same adverse weather conditions. The re-

sults demonstrated that the performances of the deep trackers under adverse weather condi-

tions can be improved when our synthetically generated sequences are deployed for training.

Keywords: procedural content generation, synthetic-data for learning, rendering, visual

tracking, person tracking
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ÖZET

DERİN ÖĞRENME-BAZLI BİLGİSAYARLI GÖRE MODELLERİNİN
EĞİTİMİ VE DEĞERLENDİRİLMESİ İÇİN SENTETİK VERİ

ÜRETİMİ

Abdulrahman KERİM

Yüksek Lisans,Bilgisayar Mühendisliği
Tez Danışmanı: Yrd. Doç. Dr. Ufuk ÇELİKCAN

Haziran 2021, 77 sayfa

Bilgisayarla görme alanında görsel nesne izleme, anlamsal bölümleme, örnek bölümleme

ve optik akış tanıma gibi üst düzey görme görevlerinin çözümünde tanık olunan son büyük

başarı, büyük ölçüde eğitim için büyük ölçekli veri kümelerinin kullanılabilirliğine bağlıdır.

Bu veri kümeleri yeni algoritmaları test edilmesi için kritik önem taşımaktadır. Bununla bir-

likte, görsel verilere el ile açıklama eklemek yalnızca zaman alan bir işlem değildir, aynı

zamanda hatalara da açıktır ve gizlilik sorunlarına tabidir. Bu çalışmada, birçok değişik bil-

gisayar görme görevi için piksel düzeyinde gerçek değer ek açıklamaları sağlayan, insanlarla

dolu 3B sanal dünyalar oluşturmak için genel amaçlı bir çerçeve olan NOVA’yı sunuyoruz.

NOVA, hava koşulları veya günün farklı zamanları gibi çevresel faktörleri simüle edebilir ve

her biri farklı bir görünüme ve özelliklere sahip, son derece çeşitli ve foto-gerçekçi bir insan

grubunu hayata geçirebilir.
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NOVA’nın yeteneklerini göstermek amacıyla, görsel nesne izleme algoritmalarını eğitmek

ve test etmeamaçlı foto-gerçekçi ve çeşitli sentetik diziler oluşturduk. Ana motivasyonumuz,

oluşturma motorumuz tarafından üretilen sentetik verilerin gerçek dünyadaki karşılığı için iyi

bir alternatif olduğunu ve öğrenmeye dayalı bilgisayarla görme modellerinin performansını

artırmak için kullanılabileceğini göstermekti. Özellikle amacımız, oluşturulan verilerimizin

hem eğitim hem de bilgisayarla görme modellerinin test edilmesi için kullanılabilirliğini

göstermekti.

İlk olarak, yaya takibi görevi için iki farklı sentetik veri kümesi oluşturuyoruz. Bu veri

kümelerinden ilki, bazı son teknoloji görsel takip cihazlarının çeşitli koşullarda performansını

değerlendirmek için kullanılır. Öte yandan, ikincisini, gerçek sekanslardaki performanslarını

iyileştirmek için derin görsel izleyicileri eğitmek için kullanıyoruz. Çalışmamız, test edilen

izleyicilerin çok kalabalık sahnelerde veya düşük aydınlatma ve sisli hava koşullarında kötü

performans gösterdiğini ortaya koyuyor. Ek olarak, deneyler, oluşturduğumuz sentetik dizilerin

gerçekten gerçek dizilerin iyi bir vekilini sunduğunu ve standart ve normal koşullar altında

derin görsel izleyicilerin performanslarını iyileştirdiğini gösteriyor. Bunu takiben, ortaya

çıkan ve kapsamlı deneyler gerektiren temel soru, sentetik verilerimizin gerçek dünyayı

tamamlama ve mevcut görsel nesne izleme veri kümelerinin sınırlarını zorlama yeteneğidir.

Son izleme algoritmalarının belirli zorlu koşullarda (önceki deneylerimizin ortaya koyduğu

gibi) zayıf performansı olduğunu akılda tutarak, bu alanı daha ayrıntılı olarak ele aldık. Mev-

cut izleyicilerin performansını değerlendirmek için sisli, yağmurlu ve karlı hava koşullarında

yakalanan gerçek dünya sekanslarından (PTAW172Real) yeni bir kişi izleme veri kümesi

sağladık. Hem korelasyon filtresi tabanlı hem de öğrenme tabanlı olan dikkate alınan izleyi-

ciler, bu olumsuz hava koşulları altında zayıf bir performans gösterdi. Deneysel sonuçlarımız,

bu eksikliği mevcut görsel nesne izleme veri kümelerinde yeterli olumsuz hava durumu

eğitimi örneğinin olmamasına bağlamaktadır. Sorunu hafifletmek için, sisli, yağmurlu ve

karlı hava koşullarını kapsayan daha gerçekçi olumsuz hava koşullarını daha fazla simüle

etmek için oluşturma motorumuzu genişlettik. Yağmurlu ve karlı havalarda yayalar, soğuk

hava kıyafetleri ile taklit edilir. Kar kümeleri ve su birikintileri sırasıyla kar ve su birikinti-

lerini hesaba katacak şekilde simüle edilmiştir. Ek olarak, gerçek hayattaki videolara uyması
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için kar parçacıkları ve yağmur damlaları oluşturulur. Buna paralel olarak, arabaların ve

yayaların bıraktığı kar izleri simüle edilerek daha fazla gerçekçilik sağlanabilir. Yayalara

rastgele şemsiyeler atanır ve uygun animasyon buna göre ayarlanır. Aynı zamanda işlem

sonrası efektler ve Enviro sistemi kullanılarak sis simüle edilir. Hava koşullarının her birinin

şiddeti, oluşturulan dizilere daha fazla çeşitlilik sağlamak için çalışma zamanında rastgele

hale getirilir.

Bunu takiben ve simüle edilmiş olumsuz hava koşullarının fotoğraf gerçekçiliğinden ve

çeşitliliğinden yararlanarak, aynı olumsuz hava koşullarını kapsayan NOVA çerçevemiz tarafından

oluşturulan sentetik dizilerin (PTAW217Synth) izlediği yeni bir kişi veri kümesi sunuyoruz.

Sonuçlar, olumsuz hava koşullarında derin izleyicilerin performanslarının, sentetik olarak

oluşturulmuş dizilerimiz eğitim için devreye alındığında iyileştirilebileceğini gösterdi.

Anahtar Kelimeler: prosedürel içerik üretimi, öğrenme için sentetik veriler, işleme, görsel

izleme, kişi takibi
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Chapter 1.

Introduction

The rapid progress in the field of computer vision and other AI related disciplines has been

significantly driven by learning based methods, most notably those based on deep learning.

Getting the best out of these approaches, however, broadly depends on the availability of

large training data, and hence a major bottleneck on the way towards solving many computer

vision tasks is the lack of diverse, accurate and large scale datasets. Manually curating such

large datasets is labor-intensive and often error-prone. Although Amazon’s Mechanical Turk

or similar services can alleviate those issues, these tools are very expensive, especially for

small research groups, if one wishes to capture the real-world in its full glory. But maybe

more importantly, such crowdsourcing platforms become impractical for collecting ground

truth data for some computer vision tasks (e.g. optical flow estimation). A neat idea to

overcome these difficulties is to utilize synthetic data for machine learning, which has gained

momentum over the past few years.

The large-scale benchmark datasets that were collected in the past few years [9–12] has lead

to the unprecedented progress in deep learning based computer vision approaches. Although

the exponential increase in the amount of digital data today can make data collection easier

than before, manual labeling of large volumes of examples with high quality and accurate

labels still requires too much effort and comes with a tremendous cost. Our proposed NOVA

framework, with its procedural and automated generation capabilities, provides a solution

to this daunting data collection/annotation challenge by letting the users create and render

3D virtual worlds containing human agents with different characteristics in real-time. The

authors in [6] previously proposed a similar framework but their focus is mainly on human
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action recognition and thus their framework has limited functionalities. On the other hand,

in our proposed NOVA framework, the users have full control of the scenes, scene elements

and humans, along with the illumination and weather conditions, allowing to study various

factors affecting the success of their algorithms during development time and opening up a

possibility being used in a wider range of computer vision tasks.

In the second part of the thesis work, person tracking in adverse weather conditions is consid-

ered in details. The adverse weather conditions are limited to snowy, rainy and foggy. A new

real dataset called PTAW172Real is collected and annotated for assessing the performance

of the trackers under these challenging conditions and we show their poor performance un-

der such conditions. We link the degradation in performance to the lack of enough training

sample under these conditions. We provide a solution by using our NOVA engine to generate

a synthetic dataset, PTAW217Synth, that provides diverse and rich training sequences under

adverse weather conditions. Our results show that using our synthetic sequences for training,

we can boost trackers performance on real videos under these adverse conditions.

The recent improvements in game technologies have made the creation of photorealistic and

physically accurate games possible. Since designing virtual worlds from scratch can be very

expensive and requires highly skilled artists, it is possible to make use of the games that are

already available. Making modifications on an open-sourced game or capturing the informa-

tion sent by the game to graphics card can help to generate large synthetic datasets. However,

the fact that commercial games do not represent a proxy of many real-world scenarios poses

an essential problem with this approach, limiting its benefits.

Another way to create large synthetic datasets is to design the virtual world based on the

needs. While it usually requires more effort to create and configure, this approach makes

it possible to produce a high-fidelity proxy of the targeted scenarios. With the advances in

graphics engine capabilities within the past decade, the photorealistic and physically-based

simulations realized by using these engines allowed to minimize the gap between real and

virtual world data.

Procedural generation has been proposed as a solution for creating realistic looking environ-

ments in relatively short amounts of time, making it easier and cheaper for users to generate

virtual worlds from scratch. In its simplest form, a procedural generation framework follows

some systematic recipes and generates scenes, populations and actions, based on the given

set of instructions. Our work contributes to this line of research, in which we pay special
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attention to the human generation aspect - in addition to offering a comprehensive variety of

automatic ground truth annotation features that are partially available in other synthetic data

generation frameworks.

Recently, convolutional neural networks (CNN) have shown a remarkable progress in various

computer vision tasks such as object detection [13], object tracking [14], semantic segmen-

tation [15], depth estimation [16], optical flow estimation [17], and person Re-Identification

(ReID) [18]. While utilizing CNNs for computer vision field can improve both generalizabil-

ity and accuracy, CNNs have an intrinsic restriction in terms of the data needed for training.

Usually, better performance comes with deeper and larger CNNs which give a higher de-

gree of non-linearity and more freedom in solving complex tasks. However, that introduces

more variables for tuning. Unfortunately, training such models requires more data and more

powerful computing devices. The introduction of cheap general purpose graphics processing

units (GPGPUs) alleviated hardware limitation. However, the scarcity of large-scale datasets

for training supervised learning methods remains as the main bottleneck for many computer

vision tasks, especially, the ones that require enormous efforts for annotation, such as seman-

tic segmentation and visual object tracking. Besides, for some others such as optical flow and

depth estimation, it becomes extremely hard or even impossible to provide large-scale anno-

tated datasets.

In addition to the need for large scale datasets, another requirement is a high level of diversity

to allow deep learning models to work well in practice and not overfit to certain attributes.

However, obtaining suitable datasets that are large and diverse from real world is not a sim-

ple task. Thus, small scale and mostly normal attributes tend to be the main features of

the available datasets. Consequently, most of the available datasets tend to focus on normal

scenarios under typical light conditions and camera parameters. The first reason behind this

is the assumption that the computer vision model is going to be tested under these normal

circumstances such as clear sky, optimal lighting, and standard recording conditions. While

the second is the difficulty of obtaining datasets under rare conditions. Unfortunately, train-

ing computer vision models under these normal conditions causes unexpected behaviour or

complete failure in adverse conditions.

Visual object tracking (VOT) is one of the major tasks in computer vision field that is es-

sential for higher-level tasks such as pedestrian detection, action recognition, or trajectory

estimation. Therefore, it is vital for many real-world systems such as self-driving vehicles,
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automated retail or visual surveillance. Failure of such systems under adverse conditions can

lead to property damages or human injuries.

In this work, we focus on person tracking under adverse weather conditions such as snowy,

rainy and foggy weather conditions. Thereby, to assess the performance of the state-of-

the-art trackers in person tracking in video feeds taken under such adverse conditions, we

collect a novel real dataset, PTAW172Real, that consists of 172 videos featuring weather

with heavy snow, rain or fog. Our experiments expose the poor performance of the state-of-

the-art trackers when tested on PTAW172Real and this can be linked to the limited number

of videos taken under adverse weather conditions in the current VOT datasets that these

trackers were trained with. We offer a remedy for the lack of data availability by using our

NOVA engine to generate a synthetic dataset, PTAW217Synth, that provides diverse and

rich training sequences under adverse weather conditions. To the best of our knowledge,

no work has been done to validate the usability of synthetic data for person tracking under

adverse weather conditions. In this work, we show that using synthetic data, we can bridge

the aforementioned gap and improve the performance of the learning-based trackers under

adverse weather conditions.

Our main contributions in this work can be summarized as follows:

• We present a novel procedural content generation engine called NOVA. It is capable

of generating large-scale and photo-realistic videos of human agents performing vari-

ous actions on many different scenes along with the annotations for various computer

vision tasks.

• Using our NOVA rendering engine, we generate two synthetic datasets specifically

designed for person tracking. While we use the first dataset to assess the performance

of existing visual trackers on various conditions, we employ the second one to train

deep visual trackers to boost their performances on real sequences.

• Our experiments demonstrate that the existing trackers perform poorly in highly crowded

scenes, or in scenes captured at night and in foggy weather conditions. Moreover, our

generated synthetic sequences present a good proxy of the real sequences in that when

used as training data, it improves the performances of deep visual trackers.
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• We present a novel real dataset called PTAW172Real for visual object tracking un-

der adverse weather conditions. The dataset contains 172 videos manually annotated

covering snowy, rainy and foggy weather conditions.

• We highlight the poor performance of the state-of-the-art trackers under adverse weather

conditions with PTAW172Real.

• Using our NOVA rendering engine, we procedurally generate a new dataset called

PTAW217Synth made up of synthetic sequences under adverse weather conditions

complete with automatically-generated per-frame annotations including bounding boxes

at pixel-level accuracy, occlusion state and other relevant metadata such as time-of-day

and camera type. The dataset consists of 217 sequences for person tracking spanning

the three adverse weather conditions.

• We show that fine-tuning the pre-trained models on our synthetic dataset PTAW217Synth

is able to improve the performance of the deep trackers. Similarly, we also show that

training from scratch on only our synthetic training dataset can achieve comparable

results to training on large scale real datasets.

5



Chapter 2.

Related Work

Creating realistic scenery, humans, actions and materials that mimic their actual world coun-

terparts has been a major aim since the early days of video games. However, such a goal was

not possible until recently. The ability to create photorealistic and physically accurate games

motivated many researchers to investigate the possibility of utilizing them for the task of

synthetic data generation. The works in this scope fall under either of the two main method-

ologies. The first is to adapt a specific game for the task of generating the synthetic dataset

as in the works by Richter et al. [5, 19] where Grand Theft Auto V game was adapted to

generate synthetic datasets. Essentially, they exploited the communication between the game

and graphics hardware via injection of a middleware between the two to pull the necessary

information for the desired annotations. Another work [20] modified Half-Life 2 game to

evaluate a surveillance camera system. Using their proposed Object Video Virtual Video

(OVVV) framework, they were able to generate bounding boxes and accurate segmentation

labels for arbitrary number of frames automatically. In addition to that, they discussed how it

is possible to integrate some noise and deformation techniques to produce more natural and

realistic scenes. Similarly, [21] deployed a photorealistic video game to generate a large set

of synthetic images, which were used to train a convolutional neural network for depth es-

timation and image segmentation. They concluded with many experiments that pre-training

on synthetic data or training on both synthetic and real data achieve similar or better results

compared to using only organic data for the training process. Nevertheless, using existing

video games has the significant disadvantage of lacking diversity, as it does limit the number

of scenarios, environments, actions, objects, and humans that can be included in a synthetic

dataset.
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The second methodology adopts using a graphics engine for data generation rather than in-

dividual video games. [22] used this concept by providing a plugin for Unreal Engine to

generate ground truth for certain computer vision tasks by making some modifications on

the internal data structures of a game and controlling a virtual camera to explore the scenes.

Similarly, [23] used an open source driving simulator framework, VDrift, to generate a syn-

thetic dataset, which incorporates high resolution images with their corresponding ground

truth labels for semantic segmentation, depth and optical maps, specifically for multiclass

image segmentation. A conditional random field model was trained with the synthetic data

and used to analyze how various combinations of features affect the segmentation perfor-

mance.

As an alternative, it is possible to refer to the open source animation movies to modify the

rendering process to generate certain annotations along with the movie frames. One work

[24] used this method for generating a synthetic optical flow dataset. They showed that op-

tical flow statistics of their synthetic sequences and real video sequences are in agreement.

Moreover, the dataset provided was larger than Middlebury [25] and KITTI [26] which al-

lowed further studies on optical flow research. However, the inability to modify the scene

structure of the animation constitutes the main drawback with this approach, making it even

more limited for the purpose of synthetic data generation than using available photorealistic

games.

Perhaps the most unrestricted way of creating arbitrarily large datasets together with their

automated ground truth labels is taking the approach of using a graphics engine further by

making use of procedural generation techniques in virtual world creation. De Souza et al.

[6] investigated the possibility of adapting this concept with ragdoll physics, random per-

turbations and muscle weakening to generate a wide range of human actions systematically

with their corresponding labels. They have defined 17 actions and showed that integrating

the real-world data with their generated synthetic data can enhance the recognition perfor-

mance. Another work [27] applied the concept of procedural generation to generate labeled

crowd videos. As a proof of concept, it was shown that integrating their generated synthetic

data with real-world data can improve the crowd behavior classifier’s accuracy and the over-

all performance of pedestrian detection noticeably. Wrenninge et al. [28] demonstrated a

photorealistic and diverse synthetic dataset that can be generated entirely procedurally. The

ability to parameterize the scene generation process and the fact that these parameters are

not correlated are the main contributions of this work. They showed that training on their

7



synthetic dataset and fine-tuning on organic dataset gives better performance compared to

training only on the latter one only.

Due to the advancements in real-time rendering, the number of synthetic datasets that can be

used for a wide spectrum of computer vision tasks has seen a considerable boost in the recent

years. PHAV (Procedural Human Action Videos) [6] dataset is an example of a large scale

synthetic dataset that was generated procedurally. It is mainly proposed for action recogni-

tion, and contains around 6 million frames in total. LCrowdV (Labeled Crowd Video) [27]

dataset, which was produced by applying procedural modeling and rendering techniques, can

be used for tasks such as pedestrian count, flow estimation and object detection and has more

than 20 millions frames. On the other hand, there is VKITTI (Virtual KITTI) [8] dataset of

approximately 21 thousand frames which can be used for multi-object tracking, scene level

and instance level semantic segmentation and depth estimation in addition to object detection

and optical flow estimation. SYNTHIA (Synthetic Collection of Imagery and Annotations)

dataset [7], with more than 200 thousand images, is purposed for semantic segmentation and

scene understanding of outdoor scenes for autonomous driving tasks. However, being spe-

cially designed for driving scenarios makes it inapplicable for many other computer vision

tasks. Another similar and recent dataset is ParallelEye [29] which was generated by taking

images from a synthetic car moving in a virtual city and contains around 40 thousand frames.

It can be used for several tasks such as object detection, semantic and instance segmentation,

and optical flow.

As discussed above, using computed generated imagery has become an important research

direction especially for data-hungry deep learning approaches. That being said, the existing

frameworks have some drawbacks. For instance, the main limitation of the frameworks pro-

posed in [5, 19, 24] is that they do not allow to configure the virtual environments as they

use existing computer games or computer generated movies while generating annotations for

synthetic data. NOVA framework, on the other hand, lets the user to play with the environ-

ment along with the environment conditions such as weather, time of day, crowdedness and

camera types. Moreover, including new features like new environments, new objects, or new

character animations can be easily done due to its flexible design that supports procedural

generation as opposed to the tools such as UnrealCV [22] which is just a plug-in for the

Unreal game engine or the frameworks such as VDrift [23] that only supports driving based

scenarios.
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Another advantage of NOVA lies in the annotations it supports. As compared to the frame-

works suggested in [20, 21], NOVA allows to extract a richer set of annotations for a user

generated scene. These include accurate annotations for some low-level vision tasks such as

scene depth, optical flow and surface maps, and annotations for some high-level tasks such as

object detection, visual tracking, semantic segmentation and instance segmentation. Besides,

from the human agents perspective, our main focus is not the human action recognition as in

[6] or crowd behavior learning and counting in [27]. With the capability of procedurally gen-

erating a large and diverse set of synthetic humans and their character animations, it suggests

a more generic solution which opens many possible applications.

With the proposed NOVA framework, our main aim is to further advance the efforts in com-

puter vision by facilitating the automated creation of new arbitrarily large synthetic datasets

with an extensive variety of ground truth annotations. NOVA lets users easily create photo-

realistic 3D virtual worlds containing procedurally generated humans, and allows to obtain

frame and pixel-level annotations about a scene and its elements in real-time, making it a ver-

satile framework for automatic data collection and labeling pipeline for a wide range of tasks

including but not limited to visual tracking, crowd counting, semantic segmentation, opti-

cal flow estimation, and depth estimation. It can simulate several illumination and weather

conditions such as fog, rain, snow, daytime, nighttime, which help to test both favorable and

adverse settings for these tasks. Furthermore, procedural generation capabilities of NOVA

allows to generate unique synthetic humans with very diverse characteristics regarding body

shape, gender, age and clothing, making NOVA a perfect tool for generating realistic-looking

synthetic data for problems involving persons.

Despite the fact that deploying synthetic data in computer vision field has just started re-

cently, a number of works investigated the usability of synthetic data for different computer

vision tasks. In general, synthetic data can be employed for both training and testing pur-

poses. For training, they can be used as the only training data, or to augment the real ones. It

is possible to apply synthetic data for pre-training or fine-tuning learning models as well.

One work [30] investigated the usability of synthetic data for instance segmentation and

object detection. They concluded that training on both synthetic and real data achieves better

results as compared to training on a small set of real data. At the same time, they show that

fine-tuning on their augmented data can achieve even better results. Similarly, Cheung et

al. [27] proved that synthetic data can be used with real data to improve accuracy for crowded
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scene understanding. They show that using their generated synthetic dataset, LCrowdV, with

real datasets can improve the accuracy as compared to using these real datasets alone.

Varol et al. [31] demonstrated the usability of synthetic data for human depth estimation

and part segmentation. They prove that training on synthetic and real images increases the

accuracy for semantic segmentation and reduces the root-mean-squared-error for depth es-

timation. In the same way, Barbosa et al. [32] extensively studied the advantages of using

their generated synthetic dataset, SOMAset, for the task of person ReID. They show that

pre-training on their synthetic dataset then fine-tuning on real datasets achieves better results

as compared to training only on real datasets.

Under the scope of visual object tracking, Gaidon et al. [8] provided a detailed analysis on

the advantages of using synthetic data for the task of multi-object tracking. They show that

training on their synthetic dataset then fine-tuning on real datasets achieves the best results

as compared to only training on synthetic or real datasets.

Similarly, Zhang et al. [33] used image-to-image translation method to generate synthetic

thermal infrared tracking videos using the RGB ones. They show that training on their

synthetic videos then fine-tuning on real ones or training on both synthetic and real videos

achieve better results as compared to training on the available small scale real datasets.

Similar to the previously mentioned works, we also investigate the advantages of using syn-

thetic data for training learning-based models. However, this work sheds light on the limita-

tions of the available real and synthetic visual object tracking datasets. As shown in Fig. 4.1.,

the adverse weather conditions seem to be underrepresented in most of the available real and

synthetic VOT datasets. This causes the state-of-the-art trackers perform poorly under these

challenging weather conditions. Bearing this in mind, we present synthetic data as a legit-

imate solution for the lack of the adverse weather conditions in the real datasets. To this

end, we utilize our procedural content generation engine NOVA to generate a visual object

tracking dataset to be used in the training of general purpose visual object trackers. The gen-

erated dataset is specifically designed for tracking people under adverse weather conditions

in outdoor environments.
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Chapter 3.

NOVA Rendering Engine

FIGURE 3.1.: A sample of 21 synthetic humans (in focus) from a set containing 9112 unique
humans generated by NOVA.

3.1. NOVA: Framework of Rendering Virtual Worlds with

People for Computer Vision Tasks

Cem Aslan did the procedural generation of synthetic humans that are based on UMA and the ground-truth
generation parts. All the remaining aspects of the rendering engine were done in the scope of this work.
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Algorithm 1: Algorithm for Synthetic Humans Spawning
SPs← Current Scene Predefined Spawning Points;
Spawncenter ← Get Generated Camera Position;
Spawnradius← Get Pedestrians Sparsity Value;
foreach SP ∈ SPs do

if SP is within the camera view volume then
SP.dist2Cam← Get Current Spawning Point Distance to Camera;
if SP.dist2Cam < Spawnradius then

Activate SP;

Peds← Get All Pedestrians;
foreach Ped ∈ Peds do

SPrandom← Randomly Pick an activated SP;
Ped.position← SPrandom.position ;

Our framework NOVA is built on the widely used Unity graphics engine. The framework,

when all annotations are enabled (except bounding boxes, which are computed offline) and

the number of synthetic humans to be generated is set to vary between 5 and 15, runs at real-

time speeds (rendering between 42 and 60 frames per second on average) using current gen-

eration hardware (Intel Core i7-7700HQ, GeForce GTX 1070, with SSD and 32GB RAM).

Readers are referred to visit the project website https://graphics.cs.hacettepe.

edu.tr/NOVA for an online demo of the framework that allows to observe all procedural

generation and visual ground-truth annotation features of NOVA at real-time by adjusting

various scene-level attributes.

NOVA consists of the following data generation and annotation features to facilitate the cre-

ation of arbitrarily large datasets for a diverse array of computer vision tasks from pedestrian

detection to scene understanding.

3.1..1 Humans

NOVA populates an environment with synthetic humans on a random selection of predefined

spawning points that are within the view volume of the generated camera. A sparsity param-

eter is used to control the distribution of the spawning points, which determines the level of

human crowdedness in the view as explained in Algorithm 1.
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TABLE 3..1: Statistics about unique item variations in the procedural generation of synthetic
humans. Possible variations in color are additionally provided inside parentheses.

Facial Items

Item Male Female
Hair 4 (48) 3 (32)
Eyebrows 2( 24) 2 (24)
Beard 8 (96) - / -

Clothing and Accessory Items

Item Male Female
Upper-Body Clothing 7 (28) 7 (28)
Lower-Body Clothing 6 (240) 13 (520)
Outerwear 2 (80) 3 (120)
Shoes 5 (40) 10 (80)
Bags 3 (12) 3 (12)
Other 2 (4) 3 (18)

The synthetic humans are procedurally generated at run-time by making use of several con-

tent creation layers which consist of a predefined set of categorizable, annotatable features

as well as procedural, low-level randomizations to these features. The low-level random-

izations further enhance the variations realized by the hand-tailored annotatable features in

order to substantiate uniqueness in generated humans in arbitrarily large sets (Fig. 3.1.). This

population process is built upon the publicly available UMA system [34].

To procedurally generate a synthetic human, a unique body and face shape are first created

from either male or female base meshes. The attribute set to morph the body mesh is cal-

culated from a base set of pre-determined body attributes. For each gender, there are three

sets of height types (short, average, tall), three sets of weight types (thin, athletic, over-

weight), and two sets of age types (child, adult) available. One from every attribute type is

randomly selected and the values are blended together considering their effects on different

morph points. For instance, a tall child, while being taller than the average of the children

generated, would still be shorter than an average adult. Once a distinguishable and annotat-

able body type (e.g., ‘short athletic adult male’) is realized from the blended attribute set,

it is further randomized by applying a rather small white noise with uniform distribution to

each morph point on the body in order to ensure uniqueness while still resembling the tagged

body type. This process theoretically allows to create infinitely many unique bodies which

can be categorized into 36 major body types [35].

Then, a set of clothes and facial attributes are generated for the synthetic human from a set

of recipes, which create a content instance by mixing and recoloring several recipe items in

unique ways (Table 3..1). For example, a recipe for creating a beard texture contains three

options for beard masks which are randomly selected in varying numbers, blended together
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(if more than one mask is selected) and used for applying a beard matched to the human’s

hair color, potentially generating eight different beard shapes. On the other hand, a recipe

for choosing a shoe is relatively simple and selects one of the shoe meshes provided for the

corresponding gender.

A shared color system is used for applying colors, such that, each recipe chooses a color

from a set of different palettes for skin, hair and clothing types. These colors are then mul-

tiplied with one of the alternative mask textures in order to yield variety in hair and skin

textures and clothing patterns. The resulting colored and patterned textures are then used as

the diffuse channel of the material while others (specular channel, gloss channel, etc.) are

kept unchanged in order to retain correct physically-based material properties. This recol-

oring scheme allows us to further diversify the created humans while still keeping an easily

categorizable generation system.

The resulting meshes from the recipe-based generation process are skinned onto the skeleton

with the body mesh and the additional texture masks which are used to cull the body parts

that will be covered by these meshes are added onto the base mesh textures during sampling.

Fig. 3.1. shows an arbitrarily chosen subset of a sample of 9112 unique humans generated by

NOVA. Although the instances in the figure are arranged with respect to perceptual similarity,

it can be seen that even the humans in the small subset are still easily distinguishable from

one another.

The animations for the humans are procedurally generated by blending between several mo-

tion captured animation sets including standing idle, walking, running and arguing. In order

to create a unique motion instance at each time, two of these sets are randomly chosen and

blended together. The blending is handled using linear interpolation, such that a blended ani-

mation is an average of the separate animations weighted randomly by uniformly distributed

blending parameters. As the humans are created using a common rig structure that adapts

automatically, each can be assigned a randomly blended animation with seamless instant

mapping.

The employed motion sets are limited to the ones that are most commonly encountered within

the compatible real-world datasets. Additional sets of motions can be easily incorporated into

the framework to advance variety. It should be noted that the duration of the generated video

sequences is not limited by the duration of the motion clips and NOVA can generate video

sequences of arbitrary duration by looping the blended animations as needed.
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The blended animations involving locomotion are kept consistent with the environment ge-

ometry by using Unity’s navigation mesh system which facilitates path planning and obstacle

avoidance along a path. The destination of a path is assigned randomly by NOVA and if the

destination is reached before the sequence ends, a new one is assigned.

3.1..2 Environments

Currently, NOVA can create sequences in three outdoor environments (a town square, a sub-

urban street and a metropolitan urban district) and one indoor environment (a subway station)

(Fig. 3.2.(a)). Each environment is equipped with at least 20 different spawn points, which

are selected at random during population process. Lighting in the 3D environments is para-

metrically generated to simulate different hours of a day (Fig. 3.2.(b)) and weather types

based on sun direction and altitude (Fig. 3.2.(c)). The skybox, which provides ambient light-

ing for the 3D environments, and the weather effects are procedurally generated using the

Enviro system [36].

Moreover, NOVA also makes use of HDR cubemaps that are captured from real-life (Fig.

3.2.(d)). In this case, the synthetic human receives directional lighting from the virtual sun

and ambient lighting from the cubemap by using the image-based lighting method [37]. In

order to blend the generated human with the environment further, the shadow that would be

cast by the human on the ground is simulated by using a transparent plane, which receives

shadow from the human’s mesh. Although the background seems more realistic compared

to the 3D environments, the drawback to using cubemaps is that illumination and weather

changes can not be applied to them procedurally without ending up looking non-realistic in

general.

3.1..3 Cameras

NOVA simulates different camera types as follows.

Surveillance Cameras: include both static and PTZ type surveillance cameras. The PTZ

camera performs panning, tilting and zooming to keep the human being tracked in its field-

of-view.
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(a) Sample images of the 3D environments. First row: a subway station. Second row from left: a metropolitan urban district, a town
square, and a suburban street.

(b) Different times of day

(c) Various weather conditions

(d) Samples using HDR cubemaps [38] captured from real-world

FIGURE 3.2.: Illustrating the diversity in NOVA’s computer-rendered synthetic environ-
ments.
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Algorithm 2: Algorithm for Non-Surveillance Camera Operation
Activate Camera Paths for the Specified Camera Type;
Set Camera Parameters;
IDtracked← ID of the Synthetic Human Being Tracked;
IDtracked.Collider.Radius← Higher Collider Radius Value than Others;
foreach CameraPathCollider ∈ Active Camera Path Colliders do

if CameraPathCollider is triggered by IDtracked.Collider then
Set the Camera Attached to CameraPathCollider as the Active Camera;
IDtracked.Collider.Radius← Regular Collider Radius Value;
Set the Active Camera to Follow and Look at the Object Rotating about
IDtracked.Joints.Hip;

while IDtracked is occluded do
Wait;

Start Recording;

(a) RGB image (b) Bounding box (c) Body segmentation (d) Body pose

 

 

 

 

 

 

 

     Character Level Textual Annotations : 
        3489_labels.json 

  “gender”: “male”,  

  “bodyType”: “average_athletic_adult_male”,  

  “sleeveLength”: “long_sleeve”,  

  “lowerBodyClothingType”: “pants”,  

  “upperBodyClothingColor”: “red”,  

  “hasOverClothing”: “no”,  

  “overClothingColor”: “null”,  

  “lowerBodyClothingColor”: “dark_blue”,  

  “shoeColor”: “black”, 

  “hairColor”: “blonde”, 

  “hairType”: “medium”,  

  “beardType”: “goatee”,  

  “hasBagInHand”: “no”,  

  “handBagColor”: “null”, 

 

     Frame Level Textual Annotations : 
        3489_1_2_0_0_2_0.png 

 “character_id”: “3489”, 

 “environment”:“suburban”, 

 “position_index”: “2”, 

 “weather_index”: “0”, 

 “hour_index”: “1”, 

 “angle_index”: “2”,  

 “postfx_preset_id”: “0”, 

 

(e) Textual annotations

FIGURE 3.3.: Sample of human-level annotations automatically generated for a synthetic
human.

Non-Surveillance Cameras: include UAV and ground-level camera types. The first one sim-

ulates a camera attached to a UAV while the second one imitates a pedestrian carrying a

camera and recording others. For each type, there is a predefined set of camera paths, which

has a separate camera assigned per path, in each environment. The non-surveillance camera

operation is outlined in Algorithm 2. To avoid having the tracked human always right in

the middle of the view, the camera follows a virtual object rotating in an orbit around the

human’s hip instead of tracking the human directly.
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3.1..4 Ground Truth Annotations

NOVA automatically generates ground-truth annotations on-the-fly as the simulated scene is

procedurally created and photorealistically rendered for each frame. All annotations, except

the textual metadata, are at the pixel-level.

For each screen-space annotation, a separate camera is created and each camera uses different

shaders, shader-specific parameters and culling parameters in order to create that annotation’s

frame. An effects shader containing sub-shaders for the annotations is set to each of these

cameras as replacement shader which then uses the sub-shader with the matching render type

of the specified annotation. That is, the camera renders the scene as it normally would, i.e.,

the objects still use their own materials, but the actual shader that ends up being used for

annotation is changed, overriding shaders for regular rendering, and, instead, outputting the

annotation.

Optical Flow. For the optical flow pass, the pixel motions are encoded in screen UV space to

a screen-sized RG16 (16-bit float per channel) texture. Color encoding is done according to

per-pixel motion vectors with respect to the camera. This information comes from an extra

render pass into which moving objects are rendered and their motion is constructed with

respect to inter-frame differences. Different optical flow annotation schemes can be applied

by changing mappings for the encoding in order to make it compatible with existing datasets.

Fig. 3.4.(b) exemplifies two such alternative encoding schemes. Optical flow sensitivity can

be adjusted as desired so that the amount of movement that is to be observed is encoded in a

normalized manner.

Surface Normals. During the surface normals pass, surfaces are color encoded according

to their orientation with respect to the camera (Fig. 3.4.(c)). Encoding is done using stereo-

graphic projection into a 16 bit value which is packed into two 8 bit channels of a screen-sized

texture. This information comes directly from the G-buffer.

Depth Map. For the depth map creation, pixels are gray-level indexed based on per-pixel

distance to the camera (Fig. 3.4.(d)). The information for depth map textures comes directly

from the actual depth buffer which is also a product of the G-buffer rendering.

Instance Segmentation. For every frame, each distinct entity within the camera view is

assigned a unique identifier color representing its object ID (Fig. 3.4.(e)). The view is then
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(a) RGB image (b) Optical flow

(c) Surface normals (d) Depth

(e) Instance segmentation (f) Semantic segmentation

FIGURE 3.4.: Sample of scene level annotations automatically generated by NOVA.

rendered by outputting the respective color without additional shading to obtain the instance

segmentation pass.

Semantic Segmentation. Entities within the camera view are also assigned colors based

on layers representing their category, e.g., human, vehicle, road (Fig. 3.4.(f)). The assigned

colors are then rendered without additional shading to obtain the semantic segmentation

pass. The variety of categories can be expanded as desired by defining additional layers. The

layers should be assigned to the respective objects or their prefabs during the content creation

process.
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While creating instance segmentation and semantic segmentation frames, unique object iden-

tifiers and layers are encoded into RGB color values, set into a block of material values and

passed into the replacement shaders [39] to be used. This process is repeated every time a

change occurs in the scene, e.g. when a new human is generated.

NOVA can also provide the class and instance -level segmentation maps for which only

a set of chosen objects are culled, e.g., to generate ground truth data for person tracking,

everything except the synthetic humans in the frame are culled. These masked versions

work in the same fashion as their non-masked counterparts but are rendered using a separate

camera instance that only uses that set’s layer for culling.

Bounding Box. For the bounding boxes, NOVA provides a segmentation that masks each

human in view with a different color. This segmentation is used for min-max calculations to

compute the per-frame bounding box for each human. Since this process takes considerably

more time than the other annotations NOVA generates, especially for crowded simulations,

the second step is carried out offline once all the other data is generated at real-time.

Body Part Segmentation. Body part segmentation of a synthetic human (Fig. 3.3.(c)) is

generated by assigning separate vertex colors to each vertex for torso, head, arms and legs.

For this, NOVA checks the bone weights of every vertex of a human mesh when it is first

generated. Each vertex is assigned to one of the six colors for the respective body part

depending on the weights of the bones that the vertex is connected to. The colors are then

linearly interpolated during the fragment stage to achieve the final result. This process allows

scalability as it can be carried only once when a synthetic human is first generated, allowing

to keep using GPU for skinning with a higher frame rate during rendering.

Body Pose. To create the body pose information of a synthetic human in a frame, the posi-

tions of the skeletal joints are transferred into the screen-space and output as values normal-

ized with respect to image size. In addition to the screen-space positions of the joints, NOVA

also outputs a depth value per joint which can be used to resolve conflicts such as overlapping

or occlusion. The output is in textual metadata form to allow flexibility in visualization. For

instance, the body pose visualization in Fig. 3.3.(d) is compatible with the keypoint detection

format of COCO dataset [10].

Other Textual Annotations. Some other attributes (see Fig. 3.3.(e)) of a generated human

that are not suitable to be output as image modalities are output as textual metadata. Most of

these attributes were chosen to reflect the ones which are present in existing datasets of real
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TABLE 3..2: Distributions of attributes across the sequences in our synthetic person tracking
dataset generated by using NOVA.

Attribute Crowdedness Camera Altitude Times of the Day Weather Condition Occlusion Scale Variation
Sub-Attributes 1 Person 3 People 10 People Low Medium High Sunset/Sunrise Midday Night Normal Snow Fog Lightstorm Low High No Yes
# of Sequences 36 36 36 36 36 36 36 36 36 27 27 27 27 80 28 58 50

images purposed for person re-identification. Furthermore, a set of frame level annotations

most of which identify miscellaneous environment parameters that were used to generate the

frame are also included in the textual annotations of that frame. The frame level annotations

include the environment type, weather and time of day markers, and applied post-fx presets

(if any).

3.2. Experimental Analysis

In this section, using visual tracking as a test bed, we demonstrate how the proposed frame-

work can be used to create realistic-looking and diverse synthetic datasets with auto-generated

ground truth annotations. In our analysis, we specifically carry out two different sets of ex-

periments. First, we demonstrate how our framework can be used to generate synthetic se-

quences with various challenging scenarios to evaluate the limits of state-of-the-art trackers

(Sec. 3.2..3). Second, we show how our synthetically generated sequences can be utilized for

training to boost the performance of deep-learning based visual trackers (Sec. 3.2..4). Before

the analysis, we first briefly review the existing datasets proposed for tracking (Sec. 3.2..1)

and present the evaluation measures used in our experiments (Sec. 3.2..2).

3.2..1 Existing Tracking Datasets

Tracking humans in videos is one of the most important topics in computer vision, with ap-

plications ranging from video surveillance to activity analysis. However, the widely-used

benchmark datasets such as OTB100 [3], VOT [40, 41] and TC128 [4], which are indeed

proposed for evaluating generic object trackers, have relatively small number of instances

containing humans as objects of interest. Some datasets provide tracking sequences un-

der very specific conditions, e.g. UAV123 [42] that presents sequences for low altitude UAV

cameras and NUS-PRO [2] that contains videos that are mostly recorded by moving cameras.

There exists some datasets that are specifically built for evaluating human trackers, such as
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FIGURE 3.6.: Real vs. synthetic sequences. In terms of appearance, the sequences in (a)
NUS-PRO, (b) TC128, (c) UAV123, (d) OTB100, (e) VOT, and (f) MOT datasets (first three
frames in each row) are compatible with the synthetic ones produced by (g) NOVA (last two

frames in each row).

DUKEMTMC [43], CamNeT [44], MOT [1] and NLPR-MCT [45], but these are mainly

limited in both size and variability since obtaining annotated data for this task is difficult and

time consuming. Either the sequences are captured with fixed cameras so the backgrounds

are in general static or the lightning conditions do not vary much. To alleviate such short-

comings, in our experiments, we specifically focus on the task of tracking humans and use

NOVA to generate two different datasets containing sequences with different levels of diffi-

culty. Fig. 3.6. shows some sample sequences from our synthetic datasets, together with real-

world sequences from NUS-PRO [2], TC128 [4], UAV123 [42], OTB100 [3], VOT [40, 41],

and MOT [1] datasets. It is seen that NOVA is able to generate sequences that are compat-

ible with the real-world sequences. We provide a more detailed comparison between our

synthetic sequences and the curated real sequences used in the experiments in the supple-

mentary material.
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3.2..2 Evaluation Measures

In our experiments, we consider precision and expected average overlap (EAO), two com-

monly used metrics in evaluating visual trackers. Precision calculates the distance between

the center of tracker bounding box and ground truth bounding box and checks whether this

center error is within specified limits. We employ the conventional threshold of 20 pixels and

consider the tracking as accurate for a frame if the center error is smaller than this value. We

then extract the percentage of accurately predicted bounding boxes for each sequence in our

dataset. EAO, on the other hand, is used to express accuracy and robustness of the tracker

performance with a single score. At the beginning, the tracker is initialized and allowed to

track the target until the end of the sequence or failure. When the tracker fails, it is reinitial-

ized again and this process is repeated a number of times (3 times in our case). The mean of

the average overlaps between the predicted and the ground truth bounding boxes gives EAO.

3.2..3 Using Synthetic Data to Evaluate Visual Trackers

Data Generation. To assess the limits of current state-of-the-art trackers, we use NOVA to

generate a new synthetic dataset called VirtualPTB1 (Virtual Person Tracking Benchmark

#1), unique in terms of its characteristics. As can be seen in Table 3..2, it includes sequences

with different adverse weather conditions, crowdedness levels, and challenging factors due

to different times of day and camera altitudes. VirtualPTB1 consists of 108 sequences, which

are on average 5 secs long and have more than 13K frames altogether, along with per-frame

bounding boxes for the persons of interest. The sequences are annotated with a total of

17 attributes from 6 different classes. Fig. 3.7. presents sample frames from VirtualPTB1

exhibiting the diversity and the photorealism of the generated sequences.

Visual Trackers. To analyze how the state-of-the-art generic object trackers perform on Vir-

tualPTB1, we have selected six different correlation filter based tracking approaches, which

perform well on the existing tracking benchmark datasets. These are ECO [46], BACF

[47], and context aware (CA) [48] versions of MOSSE, [49], DCF [50], SAMF [51] and

STAPLE [52].

Results. In Fig. 3.8. and Fig. 3.9., we demonstrate the overall performances of the trackers

on VirtualPTB1. As can be seen from Fig. 3.8., there are only a few sequences where the
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FIGURE 3.7.: VirtualPTB1, our proposed synthetic tracking dataset, consists of 108 se-
quences, each with a unique set of attributes. The first frames of each sequence are shown
here, illustrating the variations in crowdedness, camera altitude, weather conditions and

times of day.

 

 

  

 

 

 

 

 

 

  

FIGURE 3.8.: Heatmap showing the precision of each tracker on each sequence of Virtu-
alPTB1. The last row (Max) indicates the maximum performance achieved by the set of
trackers on each sequence. The last column (Average) shows the average precision of a spe-
cific tracker over all sequences. Each color indicates different scene attribute. Gray, red,
green and orange bars demonstrate scene crowdedness, camera altitude, time of day and
weather condition, respectively, for a specific sequence below them by color variations that

indicate their sub-attributes as given in the legend.

trackers give highly accurate results. In the remaining ones, they fail to precisely track the

persons of interest, demonstrating how challenging VirtualPTB1 is. According to the preci-

sion rates, ECO tracker outperforms the others. BACF tracker and context aware versions of

STAPLE and SAMF have nearly the same average precision scores although the sequences

they show good performances are different. The examined trackers make use of different
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FIGURE 3.9.: Precision plot of the evaluated trackers on our dataset.

approaches and, hence, exhibit nonidentical performances on VirtualPTB1. Another key ob-

servation is that these scores are relatively low as compared to those reported in benchmark

datasets containing real-world sequences [46–48]. This is in line with our design objectives

for VirtualPTB1 as it introduces certain challenges which are mostly not present in the avail-

able benchmark sets. Sample qualitative tracking results can be found in the supplementary

video.

Our detailed analysis reveals that tracking people in highly crowded scenes causes the track-

ers to lose the target very frequently as the persons of interest are highly likely to be occluded

by the other persons. Moreover, it is noticed that the trackers perform poorly at night time

and in foggy weather conditions. Under these circumstances, the trackers mostly cannot

distinguish the tracked person from the background. Similarly, high camera altitude poses

certain challenges as well since such altitudes cause the target to appear very small and,

consequently, very hard to track. In Fig. 3.10., the corresponding precision plots for these

challenging attributes are shown. Please refer to the supplementary material for an extended

presentation and discussion of the results.
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3.2..4 Using Synthetic Data to Train Visual Trackers

Data Generation and Collection. For our second set of experiments, we employed NOVA

to generate a set of synthetic sequences that can be used to train deep learning based track-

ers. Here, we consider different training scenarios including synthetic and real sequences,

and also a hybrid of those. In contrast to the former part, we carry our analysis on real test

sequences for this set of experiments. In particular, NOVA is used generate 97 synthetic se-

quences and their ground truths annotations with pixel-level accuracy. However, to match the

characteristics of the available real datasets, we limit the weather attribute to normal weather

conditions, namely, clear-sky and three different variations of cloudy weather conditions. At

the same time, we vary all other procedural generation parameters such as time of day, cam-

era type, scene crowdedness and environment. In creating this set, it was aimed to mimic the

general pattern of the existing real-world datasets, maintaining both the photorealism and the

diversity at compatible levels.

In addition to the created synthetic dataset, we collect 125 real-world sequences from OTB100 [3],

VOT [40, 41], TC128 [4], UAV123 [42], NUS-PRO [2] and MOT [1] datasets. We especially

pick the sequences containing humans in outdoor environments and under normal weather

conditions. Finally, we randomly divide these 125 real sequences into training and testing

parts, where 97 sequences were selected for training and 28 for testing.

Please refer to the supplementary material for some sample frames from the synthetic and

real-world sequences used. The synthetic sequences along with a file containing the links

to the real-world sequences are provided at our project website under the name HybridPTB

(Hybrid Person Tracking Benchmark).

Visual Trackers. We employ two state-of-the-art deep trackers in our experiments, namely

CFNet [53] and DiMP [54]. Correlation filter based tracking (CFNet) is a deterministic,

end-to-end representation learning tracker which considers correlation filter (CF) as a differ-

entiable layer in a CNN architecture. This allows the error gradients to pass through the CF

layer and tune the CNN features. DiMP, on the other hand, is a deep-learning based tracker

that depends on Siamese architecture which accounts for the target and the background infor-

mation while predicting the target object’s location. The parameters of the tracker is learned

in an end-to-end manner using a discriminative loss function.
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FIGURE 3.10.: Precision plots for the four challenging cases. Crowded scenes, night time,
foggy weather and high camera altitude all cause a clear performance degradation.

Training Protocol. We consider training scenarios for the two deep trackers in two different

schemes, as follows.

Training from Scratch. In the first scheme, we train each tracker from scratch by randomly

initializing the model parameters using a different training set in each training scenario. The

first scenario involves training the trackers using only the synthetic sequences generated by

NOVA (E1). For the second one, the trackers are trained by employing only the real se-

quences from the training split of the dataset we collected (E2). Finally, in the last scenario,

we consider a hybrid approach and explore the advantages of expanding the set of real se-

quences with the synthetic ones and training the trackers using this combined set (E3).

Fine-Tuning. For this scheme, instead of training the trackers from scratch, we perform

fine-tuning considering their pre-trained versions again in three different scenarios. In the

first and the second scenarios, the trackers are fine-tuned considering only the synthetic se-

quences (E4) and only the real training sequences (E5), respectively. The third scenario in-

volves fine-tuning using the hybrid set containing both the synthetic and real sequences (E6).

Results. In Fig. 3.11., the results of our quantitative analysis are presented with the aver-

age overlap scores for DiMP and CFNet trackers obtained with each training scenario and

compared to the baseline scores. Given the stochastic nature of DiMP tracker, we report the

average and the standard deviation of its results for five repetitions. While training the track-

ers from scratch, using the synthetic sequences achieves better results as compared to using
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FIGURE 3.11.: EAO scores obtained with the six different training scenarios as compared
to those of the baselines. Error bars on the DiMP results give the standard deviation of the
EAO score. Fine-tuning the baselines on a mixture of synthetic and real sequences improves
the performance. At the same time, training on synthetic sequences alone achieves better

results compared to training solely on real sequences.

real sequences. Basically, this advantage can be attributed to the diverse and realistic na-

ture of our synthetically generated sequences, which cover different environments, including

indoor and outdoor ones, diverse weather conditions, multiple time of days, various cam-

era types and distinctive humans. These factors enrich the generalization capability of the

trained trackers, allowing them to learn better features and lead to more accurate results even

on the real testing sequences. Moreover, comparable performances with the baseline mod-

els are achieved using only 97 synthetic sequences. Note that, in their original setting, the

baseline CFNet model was trained using 3862 sequences with more than 1 million frames

while the baseline DiMP model was trained by four different datasets, namely, LaSOT [55],

GOT10k [56], TrackingNet [57], and COCO [10], which amount to a much larger set than

the number of our training sequences. As for our fine-tuning experiments, we found out that

fine-tuning the baseline models of DiMP and CFNet trackers on the mixture of synthetic

and real sequences improves their performances to a greater extent as expected. The gain is

especially significant for CFNet, whose baseline model was pre-trained on ILSVRC Video

dataset that does not contain humans as objects of interest. Another important observation

is that fine-tuning the baselines only on our synthetic sequences seems more advantageous

than fine-tuning on real-world sequences alone. This further demonstrates the advantage of

using our synthetic data. It is worth noting that, these results are also taken to indicate that

the domain gap due to the differences between the synthetic and the real-world sequences
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seems to be minimal. Although the trackers were trained on NOVA’s synthetic sequences

and testing was carried out on real-world sequences, i.e., our training and test sequences do

not share the same level of photorealism, it is seen that using synthetic person sequences

during training let the trackers learn more fine-grained features for person tracking, and, in

return, leads to better performances.

3.3. Discussion

As a case study, we considered visual tracking and employed our proposed NOVA frame-

work to create two different datasets for different purposes. The first dataset, VirtualPTB1,

includes 108 sequences with automatically generated ground truths and and a total of 17

scene level attributes. Under short-term tracking scenarios, the sequences demonstrate a

wide variety of factors including weather conditions, times of day, overall crowdedness of

the scene, camera altitude, occlusion and scale variation. Our thorough analysis of various

state-of-the-art trackers on VirtualPTB1 sheds light on trackers’ weaknesses in adverse con-

ditions such as high crowdedness, high camera altitude, night time, and foggy weather. Our

second synthetic dataset, on the other hand, consists of 97 sequences with normal weather

conditions. We have used this dataset to train two deep trackers, CFNet and DiMP. Our re-

sults reveal that using our synthetic sequences during training leads to a performance boost

in several aspects for both of these trackers. Thus, it is shown that the variety and the level

of realism of the scene attributes in our dataset make it a good proxy of the real-world for

evaluating and training visual trackers.

3.4. Conclusion

In this work, we have presented a novel engine called NOVA for creating photorealistic 3D

rendered worlds containing synthetic humans, along with ground truth annotations at scene,

object and pixel -levels. The proposed framework automates data collection and labeling

pipeline for a wide range of low and high-level computer vision tasks. In particular, the

engine emphasizes procedural generation of humans, which makes NOVA unique compared

to existing systems. It allows to produce diverse arrays of human agents, in terms of body

shape, clothing, gender and age characteristics, accessories and action variety. Moreover,
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NOVA allows to play with weather and illumination conditions within the created 3D virtual

worlds, establishing it as a test bed for evaluating adverse cases such as low light, night-

time, rain, snow, or fog. These capabilities make NOVA a distinct and versatile framework

to quickly generate arbitrarily large amounts of synthetic data for a multitude of computer

vision tasks. These large synthetic datasets can be used in model training to boost the perfor-

mance of state-of-the-art learning based computer vision models. Our results show that the

scenes that are either highly crowded, or taking place at night or at foggy weather conditions

pose certain challenges for the state-of-the-art trackers. It is also seen that using synthetic

data generated by NOVA for training can boost the performance of learning-based trackers

on real videos.

An online demo of NOVA and videos illustrating NOVA’s capabilities are available at the

project website https://graphics.cs.hacettepe.edu.tr/NOVA along with Vir-

tualPTB1 and HybridPTB, featuring the synthetic sequences generated by NOVA for the first

and the second set of experiments, respectively.
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Chapter 4.

NOVA Adverse Weather Conditions

FIGURE 4.1.: On the left half, sample frames from the currently-available real (top-left quar-
ter) [1–4] and synthetic (bottom-left quarter) [5–8] visual object tracking datasets demon-
strate the lack of adverse weather conditions. The right half presents sample frames from
sequences spanning raining, foggy and snowy weather conditions from PTAW172Real (top-
right quarter) and PTAW217Synth (bottom-right quarter) datasets that we introduce in this

work.
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4.1. Extensions to NOVA Framework

To procedurally generate synthetic sequences of pedestrians under adverse weather condi-

tions, we use the NOVA rendering engine [58], which is designed with the goal of allowing

researchers with no experience in computer graphics to generate high quality datasets with

accurate and dense annotations. NOVA operates in two modes. The first is to generate a

single sequence while the other is to generate a full dataset. The first mode gives the user

full control of the sequence being generated where it is possible to specify the environment,

the weather condition, time of day, camera type, number of cars and number of pedestrians

and their density. The dataset mode requires nothing to be specified except the number of

sequences to be generated so that NOVA varies the other parameters automatically.

For the particular task of person tracking this work deals with, NOVA generates, for each

frame, a bounding box specifying the exact location of the person(s) being tracked in the

frame and the occlusion state, that is, whether any other object or person in the scene occludes

the person(s) being tracked at that instant. In addition to these, a supplementary metadata

are provided with each sequence denoting the environment, weather condition, time of day,

camera type, number of people and cars and people density.

One of the major highlights of NOVA is its capacity to procedurally generate highly diverse

and photorealistic sets of synthetic humans. So much so that, each generated human is practi-

cally unique in appearance due to the practically infinite number of recipes (combinations of

parameters that are assigned randomly on the fly but in cohesion with each other) that NOVA

uses in creating them. In this work, we further develop this aspect of NOVA by incorporating

premade synthetic humans from Microsoft Rocketbox Avatar Library [59].

Since the main aim of this work is to enhance the performance of the trackers under adverse

weather conditions, we also extended other capabilities of NOVA toward photorealistic sim-

ulation of the generated humans under adverse weather conditions. The environment is built

to change dynamically to match the corresponding weather condition and time of the day.

Accordingly, the textures of buildings are changed to have lit windows at nighttime. Fur-

thermore, we implemented the following for the three weather conditions to facilitate the

generation of synthetic sequences with similar visual characteristics to the ones observed in

the real-world videos captured under adverse weather conditions.
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Snowy Weather Condition. First, the variety of clothing used to generate humans in snowy

weather is restricted only to outdoor cold-weather clothes. At the same time, humans are

randomly assigned umbrellas. An umbrella is attached to the right or left hand at random.

The animation of the character is set to match the umbrella mode, i.e., open or close. Snow

tracks left by cars and pedestrians are simulated. Furthermore, snow banks and melt snow are

created on the pavements and roads to give a higher degree of realism. For this, a set of street

light poles in the scene are selected at random to determine the positions of the snow banks.

Then, from a predefined set of snow banks, one snow bank is instantiated for each position.

After that, snow materials are assigned at random to the snow banks. Following this, the

scale and rotation of these models are randomized to allow for even more diversity. On the

other hand, the melt snow is simulated by the same snow shader that is used to simulate

accumulated snow but with the accumulation parameter set to a random smaller number than

the one used for accumulated snow. Making use of the particle system and post-processing

effects, falling snow particles and blizzard were randomly introduced to the simulation, as

well.

Rainy Weather Condition. Similar to the snowy weather condition, humans in rainy weather

are also generated with outdoor cold-weather clothes; and umbrellas are given to some of the

generated humans in the same way. In addition, water puddles are simulated to account for

water accumulation due to the rain. This is realized by using a puddle shader that is assigned

to some of the ground materials (pavements, roads etc.) randomly. For the heavy rain, the

rain splash is activated and additional water puddles are instantiated from a predefined set of

water puddles. Rain drops are generated using the particle system. Furthermore, rain drops

falling on camera lens are simulated using post-processing effects to match the characteristic

of the rainy videos in real life.

Foggy Weather Condition. The clothes of the people produced in the foggy weather simula-

tion are not limited to a specific category, but instead are randomly selected. Additionally, the

fog is simulated using post-processing effects and the Enviro system [36]. The fog density is

randomized at run time to give more diversity.
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FIGURE 4.2.: Chromatic aberration, motion blur and both effects are demonstrated in the
first, second and third rows, respectively. The first column shows the original frame while

the second displays the result of applying the effect(s).

Motion Blur and Chromatic Aberration. These camera effects were simulated addition-

ally to match the camera degradation observed in real-life adverse weather videos. Using

post-processing, NOVA simulates these two effects procedurally and parametrically. Thus,

how severe the effect of these two degradations is randomly configured at run time to provide

further diversity in the generated synthetic sequences. In Fig. 4.2., the impact of using these

effects over the generated sequences is shown with a sample of images.
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TABLE 4..1: Dataset statistics of PTAW172Real.

Class
Min

Frames
Max

Frames
Mean

Frames
Total

Frames Videos

Rain 108 1755 498 31888 64

Snow 113 960 394 24010 61

Fog 106 750 328 15394 47

All 106 1755 407 71292 172

4.2. PTAW172Real and PTAW217Synth Datasets

4.2..1 Real-World Data Collection for PTAW172Real

For the aim of analysing the performance of the recent general purpose visual trackers under

adverse weather conditions, we collected real-world videos from YouTube spanning snowy,

rainy and foggy weather. Keywords such as “adverse”, “extreme”, “heavy”, and “severe”

were used together with the weather names to initiate searches on the Youtube video-sharing

platform. Following this, the query results were checked and only the videos satisfying the

adverse weather conditions were selected. The acquired videos were edited to assure that

the object is not occluded and clearly visible in the initial frame. At the same time, the

lengths of the videos were modified as needed to keep them around 400 frames per video

to provide compatibility with the sequences in the available visual object tracking datasets.

Statistics showing the minimum, maximum, average and total number of frames are given

in Table 4..1. The number of videos in the dataset is 172 and the total number of frames is

over 71 thousand. The collected videos are at 24 frames per second (FPS) and average time

period per sequence is around 17 seconds. Sample frames from the collected PTAW172Real

dataset are shown in Fig. 4.3..

We used the VGG Image Annotator tool [60, 61] for annotating the dataset. We annotated

every 5th frame be drawing a bounding box around the person of interest. The accessories

such as handbag etc. that a person can carry were excluded and the tightest box was drawn.

When the person was partially or fully occluded, the estimated location of the person was

considered. Additionally, each video was associated with four attributes regarding object

occlusion, scale change, background clutter and abrupt camera motion. Fig. 4.4. gives the

hierarchical distribution of the attributes in PTAW172Real dataset.
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FIGURE 4.3.: PTAW172Real, our real person tracking dataset, consists of 172 sequences.
Each row shows a specific adverse weather condition, namely rain, fog, and snow.

FIGURE 4.4.: The sunburst chart shows the different attributes distribution across
PTAW172Real dataset. The inner circle shows the weather conditions, outer circles show
occlusion (FO:Full Occlusion, PO: Partial Occlusion), scale change (LSC: Large Scale
Change, SSC: Small Scale Change), background clutter (BC: Background Clutter, NBC:
No Background Clutter) and abrupt camera motion (ACM: Abrupt Camera Motion, NACM:

No Abrupt Camera Motion).

4.2..2 Synthetic Data Generation for PTAW217Synth

PTAW217Synth employed in the experiments to train the deep learning trackers consists

of 217 synthetic sequences that were generated using the NOVA rendering engine. NOVA

allows to specify the attributes of the sequences to be generated. In this work, we configured

these attributes to match our goal of generating diverse synthetic sequences under adverse

weather conditions. Accordingly, the weather conditions were limited to snowy, rainy and

foggy weather. The virtual camera type to capture the simulations was set as either the

street-level camera or the surveillance camera. The simulation environment was limited to
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FIGURE 4.5.: Hierarchical view of the attributes across our training synthetic person track-
ing dataset, PTAW217Synth, generated by using NOVA.

FIGURE 4.6.: PTAW217Synth, our training synthetic tracking dataset, consists of 217 se-
quences, each with a unique set of attributes. Random frames are shown here, illustrating

the variations in crowdedness, camera altitude, weather conditions and times of day.

the streets of an urban center, since such are the most common settings in the real-world

visual object tracking datasets. In parallel to this, all other attributes such as time of day

and crowdedness were randomised to ensure the diversity of the generated sequences. The

attributes of the generated synthetic sequences are given in Fig. 4.5.. Consequently, the

diversity of the generated sequences can be noted in the sample images from these sequences

in Fig. 4.6..

Further information regarding the minimum, maximum, average and total number of frames

are shown in Table 4..2. The overall average number of frames per sequences is 500 which

translates to a duration of 21 seconds as the sequences were generated at 24 FPS. The to-

tal number of frames of the 217 sequences within the dataset is more than 108 thousand.
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TABLE 4..2: Dataset statistics of PTAW217Synth.

Class
Min

Frames
Max

Frames
Mean

Frames
Total

Frames Videos

Rain 490 510 501 34538 69

Snow 490 510 501 37577 75

Fog 490 510 499 36432 73

All 490 510 500 108547 217

FIGURE 4.7.: The figure demonstrates the weather variations simulated in PTAW217Synth.
The first and second rows present different view points of the same location. Each group
of 2x2 images shows one weather condition (from left to right: rainy, foggy, and snowy) in

increasing adversity while the leftmost image shows the same location in clear weather.

We should note that PTAW217Synth has an even distribution of sequences across the rainy,

snowy and foggy weather conditions. The sample images captured at a single location from

two different view points given in Fig. 4.7. further demonstrate the variety of the simulated

weather conditions.

A visual comparison between PTAW172Real and PTAW217Synth datasets is given in Fig. 4.8..

In each row a specific weather condition is presented. Both datasets exhibit similar visual

characteristics for the three weather conditions. The figure also demonstrates the level of

photorealism of the PTAW217Synth dataset.

4.3. Experiments

In this section, we study the performance of the state-of-the-art visual trackers in adverse

weather conditions. The poor performance is highlighted and discussed. In the second set of
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FIGURE 4.8.: A visual comparison among the synthetic PTAW217Synth (to the right) and
real PTAW172Real (to the left) datasets. Each row demonstrate specific weather condition

(from top to bottom: rainy, foggy, and snowy).

experiments, we show how the performance of the deep-learning based visual trackers can be

enhanced by training on our generated synthetic sequences. First, the evaluation measures

are discussed in Section 4.3..1. Then, the utilized trackers are described in Section 4.3..2

and the training protocol is explained in Section 4.3..3. Finally, the results are analysed and

explored in Section 4.3..4.

4.3..1 Evaluation Measures

The two widely used metrics precision and success (IoU) are employed for evaluating the

performance of the visual trackers analyzed in this work. Precision calculates the distance

between the centers of the tracker bounding box and the ground truth bounding box and then

checks whether this center error is within the specified limits. We employ the conventional

threshold of 20 pixels and consider the tracking as accurate for a frame if the center error is

smaller than this value. We then extract the percentage of the accurately predicted bounding

boxes for each sequence in our dataset. On the other hand, success measures the intersection

over union (IoU) of the tracker and ground truth bounding boxes. We take a tracking to be

successful if the IoU is larger than the common threshold of 0.50, and report the percentage

of the successfully predicted bounding boxes averaged over the sequences in our dataset.
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4.3..2 Trackers

In order to properly address the poor performance of the state-of-the-art general purpose

trackers under adverse weather conditions, two different sets of trackers were selected. The

sets present the two main approaches in visual object tracking, i.e. correlation filter -based

and learning -based tracking.

Five different state-of-the-art correlation filter based trackers were chosen for the experi-

ments. These are ECO [46], BACF [47], and context aware (CA) [48] versions of DCF

[50], SAMF [51] and STAPLE [52]. DCF , dual correlation filter, utilizes a kernelized

correlation filter (KCF) that has a similar complexity to the linear counterpart of it, which

improves tracker speed (FPS) considerably. On the other hand, SAMF , scale adaptive with

multiple features, uses a scale adaptive template size instead of using a fixed one for the

correlation filter kernel which is stated to make the tracker more robust. STAPLE, sum

of template and pixel-wise learners, fuses template and histogram scores to better handle

shape deformation which facilitates tracking deformable objects more accurately. ECO

uses a modified version of DCF to improve memory usage, tracking speed, and robustness.

BACF uses a background-aware correlation filter that utilizes specific manually extracted

features that account for both background and object of interest change over time. The con-

text aware versions of DCF [50], SAMF [51] and STAPLE [52] that we used improve

the original implementations by utilizing the global context information into the standard

correlation filter tracking algorithms.

Similarly, for investigating the benefits of training on our generated synthetic sequences, four

state-of-the-art learning based deep trackers were used. They are DiMP [54], ATOM [62],

PrDiMP [63], and KYS [64]. DiMP is an offline learning based tracker that can be trained

in an end-to-end manner. It applies both background and target information in the process of

predicting the object of interest location. The tracker is based on the Siamese tracking archi-

tecture. It learns the discriminative loss function during the training phase. ATOM, however,

is a deep-learning tracker that is trained both offline and online. Its tracking algorithm de-

ploys target estimation and classification that are learnt offline and online respectively. At

run-time, the classification component predicts the IoU between the target object and the es-

timated bounding box. PrDiMP is another learning based tracker that is based on the DiMP

architecture. However, unlike DiMP tracker, PrDiMP applies probabilistic regression con-

cept and predicts the probability density of the target given the input frame. This tracker
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is trained by minimizing KL-divergence in offline manner. KYS tracker, however, uses the

visual scene information to better enhance the target localization and tracking. KYS en-

codes this information using localized state vectors and propagates it through the sequence

to achieve better knowledge of the scene. Thus, it achieves better performance during testing.

KYS is trained offline to learn how to propagate the scene information.

4.3..3 Training Protocol

We perform two training scenarios to assess the benefits of the generated synthetic sequences

when used for training visual object trackers. For both experiments, the training was done

using the whole PTAW217Synth dataset of 217 synthetic sequences. At the same time, the

validation and testing were performed on the whole PTAW172Real dataset. For validation,

33 videos spanning the rainy, foggy and snowy weather conditions were selected at random.

While the remaining 139 videos were applied for testing.

Training from Scratch. In the first scenario, we train the trackers from scratch using only the

generated synthetic sequences. Then, the best model on the validation set is tested on the

test set. The mean and the standard deviation of the tracker performances are reported for 5

iterations to account for the stochastic nature of these trackers. Both validation and test sets

are real and contain no overlapping videos.

Fine-Tuning. In the second scenario, the pre-trained versions provided by the authors of

the four trackers are fine-tuned on our synthetic sequences. Later, the performance of these

models are stated as done in the previous case.

4.3..4 Results

The performance in terms of precision and success score are shown in Tables 4..3 and 4..4

for the studied trackers on the test partition of PTAW172Real, namely 163 videos. These

results show that the trackers from both tracking mainstreams, correlation filter based and

learning based, performed poorly under adverse weather conditions. This observation con-

firms that adverse weather conditions pose certain challenges for the state-of-the-art tracking
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TABLE 4..3: Precision results of the available state-of-the-art trackers on the adverse
weather condition real dataset, test partition of PTAW172Real.

Class ECO BACF STAPLE CA SAMF CA DCF CA ATOM DiMP PrDiMP KYS
Rain 0.59 0.50 0.46 0.38 0.22 0.61+/-0.01 0.60+/-0.01 0.61+/-0.01 0.63+/-0.02
Snow 0.56 0.53 0.49 0.46 0.35 0.60+/-0.01 0.62+/-0.01 0.59+/-0.01 0.58+/-0.01
Fog 0.67 0.65 0.59 0.42 0.37 0.73+/-0.01 0.74+/-0.01 0.74+/-0.01 0.77+/-0.02

TABLE 4..4: Success scores of the available state-of-the-art trackers on the real adverse
weather condition dataset, PTAW172Real.

Class ECO BACF STAPLE CA SAMF CA DCF CA ATOM DiMP PrDiMP KYS
Rain 0.64 0.56 0.47 0.45 0.20 0.66+/-0.01 0.63+/-0.01 0.64+/-0.01 0.65+/-0.02
Snow 0.56 0.55 0.49 0.43 0.28 0.59+/-0.01 0.61+/-0.01 0.59+/-0.01 0.57+/-0.01
Fog 0.70 0.69 0.59 0.42 0.27 0.73+/-0.01 0.73+/-0.01 0.73+/-0.01 0.78+/-0.02

algorithms. The correlation filter trackers perform worse than the deep trackers because they

are mostly online learning trackers. On the other hand, the deep trackers, which are based on

offline learning algorithms, were trained on large scale datasets, which may have contained

a number of videos under adverse weather conditions. Thus, they performed slightly better

than the correlation ones.

It seems that rain and snow particles, that partially occlude the object of interest, cause a

significant change on the visual characteristics of the trackers. Thus, it makes it hard for the

tracker to differentiate the target object from the background. This effect is particularly clear

when the size of the object of interest is relatively small. In parallel to that, fog causes both

the background and the object of interest regions to have similar visual appearance. Thus, it

makes it hard for the tracker to distinguish the target object from the background. Even so,

foggy weather condition seems to be slightly less challenging as compared to the others.

The results of our training experiments are shown in Fig. 4.9.. The IoU scores for the

four trained trackers, namely DiMP, ATOM and PrDiMP, are presented for the two training

scenarios. Moreover, these results are compared to the ones of their corresponding base-

lines. Both average and standard deviation on five iterations were reported to account for

the stochastic nature of these trackers. Training these trackers from scratch on our adverse

weather synthetic sequences achieves comparable results to the ones obtained using the base-

line for DiMP and PrDiMP. For ATOM and KYS, however, the trained models from scratch

surpassed their baselines. On the other hand, fine-tuning the pre-trained models on our syn-

thetic sequences improved the performance of the three trackers ATOM, DiMP and PrDiMP

distinctly.
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FIGURE 4.9.: IoU results obtained with the two different training scenarios as compared to
those of the baselines. Error bars give the standard deviation of the IoU results. Fine tuning

the baselines on our synthetic sequences improves the performance.

It is worth noting, that both the tracking algorithm and the training dataset affect how a spe-

cific tracker gains from training on our synthetic sequences. Both determine which training

scenario, from scratch or fine-tuning, is more beneficial. For example, DiMP and PrDiMP

trackers got the most advantage from fine-tuning. On the other hand, training from scratch

was better for KYS tracker, while the performance of ATOM was improved in both scenar-

ios. Another point to be noticed is the conspicuous difference in the level of improvement

in trackers performance across different weather conditions. This can be directly linked to

the varying distribution of the adverse weather conditions in the different training datasets

used for these baselines. So much so that, the lack of adverse weather conditions videos

in the training dataset stands out to be the main reason behind the observed performance

boost since using even a relatively small number of synthetic sequences spanning these ab-

sent features helped the trackers to outperform their baselines, given that the trackers were

originally trained on large scale datasets such as LaSOT [55], GOT10k [56], COCO [10],

and TrackingNet [57], each far exceeding PTAW217Synth in number of sequences.

It is important to note that test set contains only real sequences. Thus, the domain gap prob-

lem is not a playing factor under the scope of this analysis. In contrast, diversity of the

synthetic sequences in terms of weather conditions, times of day, lighting conditions, camera
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attributes and synthetic humans altogether enhanced the training process significantly. Addi-

tionally, the high level of photorealism of these synthetic sequences mitigated the gap across

the real and synthetic domains. Thus, training from scratch or fine-tuning on our synthetic

sequences directly improved the trackers performance.

A qualitative comparison among the tracking results achieved by the baselines and the trained

models is presented in Fig. 4.10.. It is seen that utilizing our synthetic data for training

improves the performance of the baselines under adverse weather conditions.

Additionally, Fig. 4.11. displays the success scores for the four deep trackers under full oc-

clusion, scale change, background clutter and sudden camera motion videos. In general, both

the baselines and the trained models performed the worst in sequences with background clut-

ter while the ones with sudden camera motion resulted in relatively higher performance. It

could be because the background clutter under adverse weather conditions causes the track-

ers to experience a significant difficulty in locating the object of interest since both have

similar visual appearances. On the other hand, the reason that abrupt camera motion does

not seem to be effecting trackers as much as the other attributes could be due to the fact that

the other three attributes are more closely associated with the object of interest as compared

to the camera motion which effect both background and target similarly. A table showing the

number of sequences in each weather condition for each of the four attributes is provided in

the supplementary material.

4.4. Conclusion

Our work investigated the lack of adverse weather conditions in the available general pur-

pose visual tracking datasets and highlighted the low performance of the state-of-art trackers

under these specific circumstances. As a solution, we proposed using our NOVA rendering

engine to generate synthetic sequences that span snowy, rainy and foggy weather conditions.

We trained four different deep trackers, namely DiMP, ATOM, KYS and PrDiMP, on 217

synthetic sequences generated by NOVA and tested them on the real videos that were col-

lected from YouTube and annotated meanly by us for that aim. Our analysis reveals that

applying our synthetic sequences for training purposes can bridge the data gap and improve

the trackers performance considerably.
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FIGURE 4.10.: A qualitative comparison of our trained trackers with the baselines on three
example sequences. Training on PTAW217Synth improves the trackers performance under

adverse weather conditions.

The datasets PTAW172Real and PTAW217Synth that we featured in this work are avail-

able for download at the project website https://graphics.cs.hacettepe.edu.

tr/NOVA-Adverse along with a supporting video illustrating the motivation behind this

work, a sample of sequences from PTAW217Synth and also a sample of the PTAW172Real

sequences superimposed with tracking results.
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FIGURE 4.11.: Success scores for ATOM, DiMP, PrDiMP and KYS trackers are shown for
four different attributes. Background clutter causes the trackers to perform poorly.
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Chapter 5.

Limitations and Future Work

Investigating the usability of synthetic data generated by the NOVA rendering engine is an

important aspect of this study. Here, we demonstrated that using synthetic data generated by

NOVA can both boost the performance of the state-of-the-art trackers and provide a better

medium for testing tracking algorithms under a number of challenging attributes. However,

one concern is the generalizability of these findings to other computer vision tasks such as

semantic segmentation, depth estimation and so on. Considering the procedural generation

capabilities of NOVA, including rich variety of annotations it can produce, there are various

other directions that can be explored to thoroughly address the matter. Accordingly, it is our

plan to extend this study toward exploring other computer vision tasks in future works.

The lack of performance of the trackers on NOVA’s synthetic test sequences could be par-

tially attributed to the domain gap problem, as the trackers were trained on real-world data.

However, the photorealism of the generated sequences is expected to have mitigated this gap.

In parallel to that, the improvement in performance of the deep trackers on tests with real-

world data upon having been trained on the synthetic data sheds light on the cohesion of the

synthetic data with real-world data. In addition, the fact that not just the deep trackers but

also the correlation-filter -based trackers, which rely solely on online learning, showed poor

performance on NOVA’s synthetic test sequences further signifies that the main factor at play

is the challenging nature of these sequences as the domain gap is not thought to cause such a

clear degradation in performance across the board.

Similar to the previous discussion, perhaps the domain gap problem in [65] is the one of cen-

tral concern in this scope as well. It arises mainly because the training and testing processes
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take place in two different domains i.e. synthetic and real domains, respectively. To address

this point, we paid great attention to the photorealism of the generated synthetic sequences

and most specifically the simulated adverse weather conditions. The second key issue is

that synthetic sequences are usually generated at optimal lighting and recording conditions.

Thus, the lack of image artifacts such as motion blur, chromatic aberration, noise and others

may cause models trained on it to fail once such artifacts are encountered in real sequences.

To mitigate this problem, we generate our synthetic sequences at different lighting condi-

tions and recording setups. Additionally, we simulate lens artifacts such as motion blur and

chromatic aberration. Another note-worthy issue is the fact that repetitive textures, objects,

animations, and motions frequently observed in virtual 3D worlds may cause over-fitting.

We tackled this issue by diversifying scene elements such as pedestrians, buildings, cars, and

other scene objects.

Throughout this work, we demonstrated how our generated synthetic sequences improved

trackers performance on adverse weather conditions. However, investigating the effect of

adverse weather conditions on other computer vision tasks like optical flow estimation, depth

estimation, and person re-identification are sill open questions. The boost in performance

upon remedying the lack of sample with adverse weather conditions for the VOT task could

be an indication of a similar problem in other computer vision tasks. For DiMP tracker,the

performance of the tracker when trained from scratch on real data and its baseline both show

clearly different results. This is expected since the baseline was trained on different datasets

as compared to the ones used in E2 experiments i.e. training on real data. It is an interesting

point to see that training on synthetic sequence achieves better results as compared to training

on the same number of real videos. That was linked to the fact that the real visual object

tracking datasets focus more on the standard and normal tracking scenarios. However, with

our synthetic data, more diverse attributes were attained such as different illumination and

weather conditions, various crowdedness levels, and camera setups. It is also interesting to

explore whether using our synthetic data for augmenting the lack of enough samples in one

class (cars) could improve the performance of computer vision algorithms on other classes

(pedestrians).

In the light of this study, we believe that using our rendering engine NOVA to generate

synthetic training data can bridge the gap of data scarcity in said tasks toward improvement

in both accuracy and robustness.
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As a future work, we plan to increase the procedural generation capabilities of NOVA, espe-

cially regarding the generation of dynamic scene elements other than humans. The feasibility

of using physically based rendering will be explored for enhancing the level of provided pho-

torealism. Additionally, we are planning to implement other camera types such as body-worn

cameras and third-person-view cameras along with camera artifacts such as motion blur and

chromatic aberration to simulate a wider range of real-world video captures. Analyzing the

performance of the trackers under various attributes such as different crowdedness levels,

weather conditions, times-of-days, environments, and camera setups are crucial for under-

standing the tracker’s performance and the limitations. This analysis that we have done in

the work could be extended to more extreme conditions. At the same time, studying the

distribution and statistics of scene elements like the number of people and gender distribu-

tion in both synthetic and real datasets could be a good future work to understand more the

capabilities and limitations of our generated synthetic data. That could be followed by a

detailed analysis of how a specific attribute distribution could affect the performance of a

specific computer vision model. On the other hand, studying the performance of computer

vision models in extreme settings is another research direction. For example, training on one

environment (rural environment) and testing on another environment (city with skyscrapers).

NOVA currently contains predefined small cities. However, generating cities and buildings

procedurally could be an interesting research direction. As another application of NOVA, it

could be extended to provide satellite images of these cities. Further possible applications

of NOVA is to be adopted for the task of 3D reconstruction given that NOVA can diversify

many essential environment aspects and camera parameters for this task.
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Chapter 6.

Conclusion

Our work presented a simple yet powerful approach that can handle the current bottleneck

of data scarcity. To remedy this issue, we developed a novel rendering engine called NOVA

for procedural data generation to be used in various computer vision tasks. NOVA is simple

to use tool for creating 3D virtual worlds that can be deployed to generate photorealistic, di-

verse, and large-scale accurately annotated data. NOVA supports many computer vision tasks

including both low and high-level vision problems. The procedural generation concept facil-

itates the diversity of the generated worlds and human agents. Extensive experiments were

performed to prove the usability of the generated synthetic data for both training and test-

ing computer vision algorithms. Visual object tracking was considered in particular and the

performance of a large number of state-of-the-art trackers was examined in the scope of this

work. By providing a new real-world sequences (PTAW172Real), the poor performance of

these trackers under adverse weather conditions was studied and critical observations were

reported. We offer a remedy to this problem by generating PTAW217Synth dataset with

its diverse and rich training sequences under adverse weather conditions. Our experimen-

tal results showed that applying our synthetic sequences for training purposes improves the

trackers performance considerably [58, 65].
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[1] Anton Milan, Laura Leal-Taixé, Ian Reid, Stefan Roth, and Konrad

Schindler. Mot16: A benchmark for multi-object tracking. arXiv preprint

arXiv:1603.00831, 2016.

[2] A Li, M Lin, Y Wu, MH Yang, and S Yan. NUS-PRO: A New Visual Tracking

Challenge. IEEE Transactions on Pattern Analysis and Machine Intelligence,

38(2):335–349, 2016.

[3] Y. Wu, J. Lim, and M. Yang. Object tracking benchmark. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 37(9):1834–1848, 2015. ISSN

0162-8828. doi:10.1109/TPAMI.2014.2388226.

[4] Pengpeng Liang, Erik Blasch, and Haibin Ling. Encoding color information for

visual tracking: Algorithms and benchmark. IEEE Transactions on Image Pro-

cessing, 24(12):5630–5644, 2015.

[5] Stephan R Richter, Zeeshan Hayder, and Vladlen Koltun. Playing for bench-

marks. In Proceedings of the IEEE International Conference on Computer Vision,

pages 2213–2222. 2017.

[6] César Roberto De Souza, Adrien Gaidon, Yohann Cabon, and Antonio
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