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ABSTRACT

VARIATIONS OF STAR COLORING ON GRAPHS

Alaittin KIRTIŞOĞLU

Master of Science, Mathematics Department
Supervisor: Assoc. Prof. Dr. Selma ALTINOK BHUPAL

Co-Supervisor: Assoc. Prof. Dr. Lale ÖZKAHYA
June 2021, 28 pages

This thesis is constructed on a variety of coloring types in five chapters. Following the Intro-

duction chapter, elementary definitions and methods used throughout the work are presented

in Chapter 2.

Chapter 3 presents some results on acyclic and star colorings that forbid bicolored copies of

cycles and paths on four vertices, respectively. Non-repetitive and k-distance colorings are

closely related to the star coloring, and these colorings are also presented here to provide a

perspective on the star coloring.

Pk-coloring is a proper coloring with no bicolored paths with k vertices. Chapter 4 is devoted

to products of graphs, in particular, cylinder, 2-dimensional grid, and 2-dimensional tori that

are the variations of products of paths and cycles. We find exact values of Pk-chromatic

numbers of these graph families for k = 5, 6.

The probabilistic method is a fundamental tool to show that the desired object exists with a

positive probability under random construction. In Chapter 5, we provide general bounds on

the Pk-coloring. Moreover, we obtain similar bounds considering colorings with no bicol-

ored cycles.

Keywords: Graphs, Star coloring, Acyclic Coloring
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ÖZET

ÇİZGELERDE YILDIZ RENKLENDİRME VARYASYONLARI

Alaittin KIRTIŞOĞLU

Yüksek Lisans, Matematik
Danışman: Doç. Dr. Selma ALTINOK BHUPAL

Eş Danışman: Doç. Dr. Lale ÖZKAHYA
Haziran 2021, 28 sayfa

Bu tez, beş bölümden oluşup çeşitli boyama türlerine odaklanmaktadır. Giriş bölümünden

sonra, ikinci bölümde çalışma boyunca kullanılan temel tanımlar ve metodlar tanıtılır.

Üçüncü bölümde, sırasıyla iki renkli döngüleri ve yolları yasaklayan döngüsüz ve yıldız

boyama üzerine literatürdeki bazı çalışmalar sunulmaktadır. Tekrar etmeyen ve k-mesafeli

boyamalar, yıldız boyamayla yakında ilişkili olduğu için, yıldız boyamaya bir bakış açısı

kazandırmak adına bu bölümde tartışılır.

Bir G çizgesinde Pk-boyama, komşu köşelerin farklı renklere sahip olduğu bir boyamadır ve

çizgedeki k köşeye sahip yolların iki renkli olmasını yasaklar. Dördüncü bölüm, yolların ve

döngülerin çarpımları olan silindir, 2 boyutlu kafes ve tori gibi çizge çarpımlarına ayrılmıştır.

Bu bölümde, bu çizge ailelerinin Pk-kromatik sayıları k = 5, 6 için tam olarak belirlenir.

Olasılıksal yöntem, istenen bir objeyi rastgele inşa ederek, objenin varlığının pozitif olasılığa

sahip olduğunu göstermek için kullanılan temel bir araçtır. Beşinci bölümde, herhangi bir

çizgenin Pk-kromatik sayısına yönelik genelleştirilmiş sınırlar bulunmuştur. Benzeri sınırlar,

iki renkli bazı döngüleri içermeyen çizgeler için elde edilmiştir.

Anahtar Kelimeler: Çizge Teorisi, Döngüsüz Boyama, Yıldız Boyama
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1 INTRODUCTION

The main goal in graph coloring is to color the vertices or edges with the minimum number

of colors under certain conditions. However, it can be very difficult to solve problems for

some graph families. The coloring of graphs has its roots in the four-coloring problem. This

problem asks if it is possible to color any planar map divided into contiguous regions using

four colors with different colored neighbors for each region. This problem could not be

solved for more than 100 years. After many false proofs and counterexamples, a computer-

assisted proof was presented in several hundred pages of an article [3].

A coloring is called proper coloring if no two neighboring vertices have the same color.

Many variations of the proper coloring were defined after the four-color problem. For in-

stance, the proper coloring without containing any bicolored copy of a fixed family of sub-

graphs is another well-studied problem. More coloring problems can be found in [4]. In this

thesis, we will focus on the star and acyclic colorings, where bicolored copies of paths on 4

vertices and cycles are not allowed, respectively. In addition, we introduce generalizations

of these colorings and provide some results.

Star and acyclic colorings are defined in 1973 by Grünbaum [5]. He proves that it is possible

to obtain an acyclic coloring of every planar graph using nine colors, and conjectures that

five is enough. Finding a chromatic number for a given family of graphs may not be always

computationally fast. In fact, researchers often try to find a bound on the chromatic number.

The following bounds given by Alon et al. in [6] are the best available asymptotic bounds

for the acyclic chromatic number. This bound holds for any graph with ∆(G) = d.

Ω

(
d

4
3

(logd)
4
3

)
= a(G) = O(d

4
3 )

There have been several improvements in the constant factor of the upper bound, which we

mention in this thesis. Similar results are obtained by Fertin, Raspaud, and Reed in [7],

showing χs(G) ≤ d20d3/2e. We will provide a generalization of these results in Chapter 5

1



As well as the general bound, some particular graph families have been also studied. Espe-

cially, products of regular graphs take a wide portion in the literature. For example, various

bounds on the star chromatic numbers of hypercube, grid, tori, cycles, and complete bipartite

graphs are shown in [7]. More recent results on the acyclic coloring of grid and tori can be

found in [8] and [9]. Similarly, grid and hypercube are studied in [10]. Moreover, [11], [12],

and [13] investigate the acyclic chromatic number for products of trees, products of cycles

and Hamming graphs. Finding the exact values of all these chromatic numbers has been a

longstanding problem.

Chapter 2 includes a quick review of essential definitions and theorems used throughout the

work. In Chapter 3, we describe coloring types and furthermore discuss the literature. In

Chapter 4, we present the acyclic and star colorings of cartesian products of graphs in the

literature and work on generalizing these to Pk-coloring for k = 5, 6. Finally, in Chapter

5 we present lower bounds on Pk and Ck-chromatic numbers and generalize these results

showing some bounds for all graphs.

2



2 BACKGROUND

In this chapter, we review elementary definitions, coloring in graphs, counting, and proba-

bilistic methods in combinatorics, which we need throughout the thesis. In general, we use

the notations and terminology given by West [14].

2.1 Graph Terminology

The use of graphs is introduced by L. Euler in the 18th century. He finds a method to solve the

famous Königsberg bridge problem that asks if there exists a walk crossing each of the seven

bridges of Königsberg (now Kaliningrad, Russia) once and only once [15]. The left image

in Figure 2.1 shows us islands that are marked with letters and seven bridges connecting

islands. On the right image, the graph is drawn, in which islands are shown as vertices and

bridges as edges connecting these vertices to make the problem easier and save the shape

from unnecessary components.

FIGURE 2.1: Königsberg problem [1].

For a graph G, V (G) and E(G) are used to denote vertex and edge sets respectively.

If uv is an edge, then u and v are called adjacent vertices or neighbors. The degree of a

vertex v indicates the number of neighbors of v and the maximum of all degrees in a graph

is called the maximum degree denoted by ∆(G).

A graph H is a subgraph of a graph G if all vertices and edges of H are contained in G.

A subgraph H of G is called induced G[X] if E(H) contains all the edges of G with both

endpoints in V (H).

A path on k vertices, denoted by Pk, is a graph in which the vertices can be ordered such that

the edges are consecutive pairs of vertices. Similarly, a cycle on k vertices, denoted by Ck

3



is a graph defined similarly, where the edge set is E = {vivi+1 : 1 ≤ i ≤ k − 1} ∪ {v1vk}.

Observe that deleting an edge from Ck produces Pk. The distance between vertices u, v,

denoted by d(u, v), is the number of edges in the shortest path connecting u and v. A tree T

is an acyclic graph, in which every pair of vertices is connected by some path.

The cartesian product of two graphsG = (V,E) andG′ = (V ′, E ′) is denoted byG�G′ and

its vertex set is V × V ′. For any vertices x, y ∈ V and x′, y′ ∈ V ′, there is an edge between

(x, y) and (x′, y′) in G�G′ if and only if either x = y and x′y′ ∈ E ′ or x′ = y′ and xy ∈ E.

G(4, 5)

Q4
K4 K2

C3 P4 C3 C3

FIGURE 2.2: Cartesian products of graphs

A d-dimensional grid is Pn1�Pn2�...�Pnd
of paths on n1, n2, ..., nd vertices. It is denoted

by G(n1, n2, ..., nd). In general, G(n1, n2, ..., nd) is also known as a graph whose vertices

are of the form v = (v1, v2, ..., vd) such that 1 ≤ vi ≤ ni for each 1 ≤ i ≤ d. The edges

consist of pairs that have exactly one coordinate different. Figure 2.2 shows 2-dimensional

grid G(4, 5) which is also called lattice. A d-dimensional hypercube Qd is G(n1, n2, ..., nd)

such that ni = 2 for all 1 ≤ i ≤ d. A cylinder is Pn�Cm of a path on n vertices and cycle on

m vertices, which contains 2-dimensional grid G(n,m) = Pn�Pm as a subgraph. Finally, a

d-dimensional tori TG(n1, n2, ..., nd) is Cn1�Cn2�...�Cnd
with ni ≥ 3 for all i. Figure 2.2

provides some examples of grid, hypercube, cylinder and tori.

2.2 Coloring of Graphs

The roots of graph coloring are based on the four-coloring problem which asks whether one

can color any planar map using four colors with no two neighbors receiving the same color.

After more than 100 years of effort, Appel and Haken [3] proved that it is possible. In Figure

2.3, we see an example of maps colored by using four colors and the graph representation of

the map.
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FIGURE 2.3: Four-coloring of Germany map and its graph [2]

To state differently, vertex coloring of a graph G is a function f : V (G) 7→ Z. It is called

proper if f(u) 6= f(v) for neighboring pairs u, v. The smallest number of colors achieving

that for a graphG is called the chromatic number ofG, χ(G). Hence,G is called k-colorable

for any k ≥ χ(G).

In addition to proper coloring, avoiding bicolored copies of a given subgraph in a graph is

also widely studied. The following colorings are well-known examples for avoiding bicol-

ored particular subgraphs.

Definition 2.1. An acyclic coloring of a graph G is a proper coloring in such a way that

any cycle in G has at least three colors, with acyclic chromatic number, a(G), being the

minimum number colors needed.

Definition 2.2. A star coloring of a graph G is a proper coloring with no bicolored P4, with

star chromatic number, χs(G), being the minimum number colors needed.

By these, we have

χ(G) ≤ a(G) ≤ χS(G).

In this thesis, we are only interested in acyclic coloring, star coloring, and the related variants

defined in Chapter 3.
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2.3 Counting on Graphs

The product and sum rules are very commonly used in counting objects, including graphs.

In this section, we first explain these rules and the pigeonhole principle. Then, we give a

basic upper bound on the numbers of Pk including a fixed vertex in a graph, which we use in

Chapter 5.

The pigeonhole principle says that if there are at least r + 1 objects, then we cannot place

them into smaller number of boxes and have at least one object in all the boxes. For instance,

in a group of more than twelve people, there are at least two people who were born in the

same month according to the pigeonhole principle. We use this simple principle in Theorem

4.6 when we color vertices of P3�P3 with three colors.

The rule of sum helps to count the objects in m disjoint sets/cases S1, ..., Sm stating that

| ∪ Si| =
∑
|Si|. The rule of product says that if there are m options at a point and ni

possibilities for each option i, then the number of possible ways is n1n2...nm.

One application of the sum and product rules, also used in this thesis, is the proof for showing

that the number of Pk’s containing a vertex v is at most dk
2
edk−1, where d is the maximum

number of neighbors of v. To see this, we count how many Pk’s are possible to include v in

G. We determine unsymmetric positions of v on Pk. Otherwise, we count some paths twice.

Recall that Pk is a path consisting of ordered vertices v1, v2, ..., vk and the edges vivi+1 for

all 1 ≤ i ≤ k− 1. Since vertices in the first half of v1, v2, ..., vk are symmetric to the vertices

in the second half, there are at most dk
2
e different positions for v (k may be odd). For any

position of v, we can choose an adjacent vertex of v in d ways, and so an adjacent vertex of

this new vertex in d−1 ways (one of them is already v). Since there are exactly k−1 vertices

on Pk except v, the maximum number of Pk’s for each position is d(d− 1)k−2 ≤ dk−1 by the

rule of product. Hence, the total number of Pk’s through v is at most dk
2
edk−1 by the rule of

sum.

2.4 The Probabilistic Method

It is possible to show that an object exists satisfying a given property, without producing a

specific example. To do that, a random object is constructed in probability space, and then
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it is shown that the probability of such an object is non-zero. Thus, we conclude that the

desired object must exist in one of the random instances.

The probability function (or distribution) is defined on a set S as Pr : S 7→ [0, 1], where∑
x∈S Pr(x) = 1. Mostly, one calls S the sample space. An event A is a subset of the

sample space. In this work, we only consider the uniform distribution on S, that is

Pr(x) =
1

|S|
for all x ∈ S

In a probability space, we call events A and B independent if and only if Pr(A ∩ B) =

Pr(A)Pr(B). The conditional probability of A given B is calculated using the same for-

mula, only replacing Pr(A) with Pr(A|B), assuming Pr(B) 6= 0.

In combinatorics, one may wonder about the existence of a graph satisfying some properties.

However, one may not be able to construct such graphs so easily, because there are exponen-

tially many possibilities to check. Instead of constructing an object directly, one randomizes

over all the possible configurations and then shows that the probability of the randomized ob-

ject is non-zero. Consequently, the main idea behind the method is the random construction

of an object.

To guarantee that the ”good” event happens, one investigates what is needed to satisfy

Pr(f(x) ≥ t) > 0. For that, one needs to determine the ”bad” events A1, A2, ..., An that

prevent the realization of this. Thus, the above condition is rewritten as

Pr

 n⋂
i=1

Ai

 > 0. (1)

This simple fact means that the object with desired ”good” properties exists.
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3 STAR COLORING AND ITS VARIATIONS

The acyclic coloring in Definition 2.1 was introduced in 1973 by Grünbaum [5]. Past 40

years, acyclic coloring has been studied on planar graphs with large girth [16], cographs

[17], subcubic graphs [18], graphs of maximum degree 5 and 6 [19, 20], including its NP-

completeness [21].

For any graph G, with |V (G)| = n, |E(G)| = m, a(G) ≥ 2n+1−
√

∆
2

, where ∆ = 4n(n −

1) − 8m + 1 [10]. This result provides an optimal lower bound for some graph families.

For instance, it implies that a(T ) ≥ 2, a(Cn) ≥ 3, and a(Kn) ≥ n, since m = n − 1

in a tree, m = n for cycles and m = n(n−1)
2

for complete graphs. Moreover, it can be

calculated that a(G) ≥ 2 + bm/nc is a slight approximation of the lower bound. Applying

this approximation, Fertin et al. obtain the lower bound below.

2 +

d− d∑
i=1

1

ni

 ≤ a(G(n1, ..., nd)) ≤ d+ 1. (2)

In particular, a(G(n1, ..., nd)) = d+ 1 when
∑d

i=1
1
ni
≤ 1.

These results have implications onQd using ni = 2 for each i. Moreover, a(G(n1, ..., nd)) =

d + 1, when ni ≥ d for all i. So, the first question that comes to our mind is whether a(Qd)

is near the lower bound, since each ni is equal to the smallest value 2 for Qd. Jamisson, and

Matthews [12] support our doubts proving that a(Qd) = d+4
2

, if d+4
2

is a Fermat prime of the

form Fn = 22n + 1. Any coloring of Q3 with three colors contains a bicolored cycle, and we

show such an example at the right side in Figure 4.1.

Another type of coloring that Grünbaum [5] introduced together with acyclic coloring is star

coloring. Star coloring is studied on locally planar graphs [22], bipartite planar graphs [23],

graphs with girth at least five [24], sparse graphs [25] and subcubic graphs [26], and on many

more graph families, including its NP-completeness [27].

In general, acyclic and star colorings are closely related and a(G) ≤ χS(G), hence the lower

bounds for a(G) also apply to χS(G). Albertson et al. [27] prove the following result.

χS(G) ≤ a(G)(2a(G)− 1)
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3.1 Non-repetitive Coloring

A finite sequence of symbols x = x1x2...xn is called repetitive if it contains the same con-

secutive subsequences. Otherwise, we say that the word x is non-repetitive. For instance,

2312315 is a repetitive sequence, while subsetsub is non-repetitive. The non-repetitive se-

quence has its origin about 100 years ago. In 1906, Axel Thue proves the existence of

arbitrarily long non-repetitive sequences with three letters [28] (see for English [29]). Al-

though there are many applications of the non-repetitive sequence ranging from group theory

to number theory, we are only interested in the graph-theoretical perspective in this section.

A coloring of a graph G is called non-repetitive, if the sequence of colors on any path in G is

non-repetitive. The Thue chromatic number of G, denoted by π(G), is the minimum number

of colors needed for a non-repetitive coloring of G.

A sequence of any proper coloring on P3 cannot contain a repetitive sequence, and so

π(P3) = 2. This result implies π(Cn) ≤ 4, n ≥ 3. Because, adding an edge to Pn pro-

duces Cn, and the number of colors increases at most one. Moreover, the Thue chromatic

number of cycles is detailed by Currie [30].

Because any color sequence of a bicolored P4 is a repetitive sequence such as 1212, nonrepet-

itive property yields a star coloring. However, results on π(Pn) and π(Cn) reveal that deter-

mining π(G) is nontrivial even for paths and cycles. Brešar et al. [31] show that π(T ) ≤ 4

assigning a coloring function to vertices of any tree T .

Non-repetitive coloring is a topic that is studied on many graph families with different vari-

ants. We only present related results with star and acyclic colorings in order to compare

them. Grytczuk [32] shows π(G) ≤ 16∆(G)2 for any graph G. Similarly, Alon et al. [33]

find O(d2) for the edge coloring version of this problem.

3.2 k-Distance Coloring

A k-distance coloring is a coloring of the vertex set of a graph such that if any pair of vertices

with distance at most k receive different colors. The k-distance chromatic number of a graph

G, denoted by χk(G), is the smallest number of colors, r, needed for a k-distance coloring
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of G. Besides, any 2-distance coloring of a graph is also a star coloring, since χ2(P4) = 3.

Therefore, we have

χ(G) = χ1(G) ≤ a(G) ≤ χS(G) ≤ χ2(G) = χ(G2)

for any graph G. Here, G2 is the square of G, which has the same vertex set as G and has

all edges of G in its edge set, only with additional edges between pairs of vertices with some

common neighbor.

The 2-distance coloring of graphs is introduced in 1969 by F. Kramer, and H. Kramer [34],

[35]. In these years, Wegner [36] claims that χ2(G) ≤ d3d
2
e + 1, if G is a planar graph with

maximum degree d ≥ 8. It is shown by Havet et al. in [37] that this claim is asymptotically

true. The best upper bound today is d5d
3
e + 78 [38], which is still bigger than the Wegner’s

claim.

The 2-distance coloring and related problems are widely studied on particular graph families.

For any d-dimensional hypercube, Wan [39] shows that 2d ≤ χ2(Qd) ≤ 2dlog2(d+1)e+1. Fertin

et al. [10] determine the exact value for grids as χ2(G(n1, n2, ..., nd)) = 2d + 1. For the

general bound on χ2, Alon, and Mohar prove the following.

Theorem 3.1. [40] Let G be a graph with maximum degree d and girth g.

• If g ≤ 6, there exists a function ε(d) that tends to 0 as d tends to infinity such that

(1− ε(d))d2 ≤ χ2(G) ≤ d2 + 1

• If d ≥ 2 and g ≥ 7, χ2(G) = Θ( d2

logd
).

In summary, if G does not contain ”small” cycles, we have the tight bound χ2(G) = Θ( d2

logd
)

We see in Chapter 5 that best known upper bounds on the acyclic and star chromatic numbers

are slightly better than O( d2

logd
).

10



4 Pk-COLORING OF GRAPHS

The Pk-coloring of a simple graph G, where k ≥ 4, is a proper vertex coloring of G such

that there is no bicolored copy of Pk in G, and the minimum number of colors needed for a

Pk-coloring of G is called the Pk-chromatic number of G, denoted by sk(G).

A special case of this coloring is the star coloring, when k = 4, introduced by Grünbaum [5].

Hence, χs(G) = s4(G) and all of the bounds on sk(G) in Chapter 4 and 5 can be applied to

the star chromatic number using k = 4.

4.1 Related Work

In this section, we discuss the 2-distance, acyclic, and star chromatic numbers of the grid,

cylinder, and tori in small dimensions. Our aim is to provide an idea for Section 4.2 and 4.3

including our results on the P5 and P6-chromatic numbers of these graphs.

Since paths and cycles are almost the same graphs, one may expect that χ2(Cm�Cn) and

χ2(Pm�Pn) = 5 have the same value. However, Sopena and Wu [41] assert a surprising

result in Theorem 4.1, which shows that 2-distance coloring makes a big difference between

2-dimensional grid and tori.

Theorem 4.1. [41] If m,n ≥ 3 Then,

χ2(Cm�Cn) =


7 if (m,n) = (4, 4), (3, 5)

9 if (m,n) = (3, 3)

9 otherwise.

For the acyclic coloring, Theorem 4.2 gives the exact values of the acyclic chromatic num-

bers of cylinder and tori.

Theorem 4.2. [13] For all m ≥ 2, a(Pm�C4) = 4, and a(Pm�Cn) = 3 where n 6= 4.

Moreover, a(C3�C3) = 5 and a(Cm�Cn) = 4 when (m,n) 6= (3, 3).
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FIGURE 4.1: Colorings of C3�C3 and Q3

By the particular case of (2), we have a(Pm�Pn) = d + 1 = 3 for all m,n ≥ 2. This

result provides a lower bound for Pm�Cn and Cm�Cn, which contain Pm�Pn as a sub-

graph. Therefore, showing an acyclic coloring with three colors is enough to prove that

a(Pm�Cn) = 3 where n 6= 4 in Theorem 4.2. For the other results, Jamisson and Matthews

first provide a lower bound proving that there is no acyclic coloring of these graphs with

three colors. Then, they show an acyclic coloring for the upper bounds using some copying

techniques similar to the one we use in Chapter 4. Figure 4.1 shows a coloring of C3�C3

with four colors including bicolored cycles.

If G is a product of the trees, T1, T2, ..., Td, then dd+3
2
e ≤ a(G) ≤ d + 1 [11]. Moreover,

they show a(T1�T2) = 3 and a(T1�T2�T3) = 4, where each tree has at least two vertices.

The lower bound holds because any product of trees contains a product of T2’s that is the

hypercube. For the upper bound, they assign an acyclic coloring function on the vertex set.

The star coloring is also studied on the grid, cylinder, and tori in small dimensions. Theorem

4.3 gives the chromatic number of products of two paths.

Theorem 4.3. [7] χS(G(2, 2)) = 3, χS(G(2,m)) = χS(G(3,m)) = 4 for m ≥ 4, and

χS(G(m,n)) = 5 for m,n ≥ 4.

Han et al. [9] work on star colorings of Pn�Pm and Cn�Cm. The following theorem says

that χS(Pn�Cm) and χS(Cn�Cm) are equal to χS(Pn�Pm) except in finitely many cases.

Theorem 4.4. [9] If m ≥ 3 is even, χS(P3�Cm) = 4. Otherwise, χS(Pn�Cm) = 5 for

n,m ≥ 3. For 2-dimensional tori, χS(Cn�Cm) = 5, where n,m ≥ 30.

In Figure 4.2, we show a coloring of C3�C5, which contains a few bicolored P4’s.

For m,n < 30, Akbari et al. [8] determine the value of χS(Cn�Cm) in Theorem 4.5 using

similar techniques.
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FIGURE 4.2: A coloring of C3�C5

Theorem 4.5. [8] χS(C3�C3) = χS(C3�C5) = 6. If m,n ≥ 3 and m,n /∈ {(3, 3), (3, 5)},

then χS(Cm�Cn) = 5.

Furthermore, Han et al. [9] show that χS(Pi�Pj�Pk) = 6 for i, j, k ≥ 4, and χS(C3�C3�Ck) =

7 for k ≥ 3, and χS(C4i�C4j�C4k�C4l) ≤ 9 for i, j, k, l ≥ 1.

4.2 P5−coloring of Graphs

Theorem 4.3 and Theorem 4.5 show that four colors are enough for a star coloring of the

cylinder, 2-dimensional grid, and tori. In this section, we ask whether four colors are enough

for the Pk-coloring of these graphs.

Theorem 4.6.

s5(P3�P3) = s5(C3�C3) = s5(C3�C4) = s5(C4�C4) = 4.

Proof. We start by showing that s5(P3�P3) ≥ 4. Assume that there is a coloring of P3�P3

using three colors. Note that each color appears at most 3 times in consecutive columns. If a

color, say a, appears 3 times, then a color, say c, appears exactly once on these consecutive

columns. In this case, the vertices colored a and b contain a bicolored P5. Hence, each color

is used exactly twice and all colors appear in any consecutive columns.

Suppose that a is used twice in a column. Then, in a consecutive column, either b or c is used

twice, which is impossible in a proper coloring using {a, b, c} only. Thus, each column has

colors a, b, c exactly once. According to this property, if the vertex at the center of P3�P3

has, say color a, then some pair of vertices at opposing corners have color a as well. When
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the remaining vertices are colored, there is always a bicolored P5, thus s5(P3�P3) ≥ 4.

1 2 3 4

2 1 4 3

3 4 1 2

4 3 2 1

(3)

Since C3�C3, C3�C4 and C4�C4 contain P3�P3 as a subgraph, 3 colors are not enough.

Such a coloring can be obtained as in (3) by taking the first three or four rows/columns

depending on the change in the grid dimension.

Theorem 4.7 follows from Theorem 4.6.

Theorem 4.7. s5(G(n,m)) = 4 for all n,m ≥ 3.

Proof. Note that 4 = s5(G(3, 3)) ≤ s5(G(n,m)) for all m,n ≥ 3. Since there exists some

integer k for which 3k ≥ n,m and G(n,m) is a subgraph of G(3k, 3k), s5(G(n,m)) ≤

s5(G(3k, 3k)) for some k. Hence, we show that s5(G(3k, 3k)) = 4. In Theorem 4.6, a P5-

coloring of C3�C3 is given by the upper left corner of the coloring in (3) by using 4 colors.

By repeating this coloring of C3�C3 k times in 3k rows, we obtain a coloring of G(3k, 3).

Then repeating this colored G(3k, 3) k times in 3k columns, we obtain a P5-coloring of

G(3k, 3k) using 4 colors. There exists no bicolored P5 in this coloring.

In the following, we generalize the previous cases by making use of the well-known result

below.

Theorem 4.8 (Sylvester, [42]). If r, s > 1 are relatively prime integers, then there exist

α, β ∈ N such that t = αr + βs for all t ≥ (r − 1)(s− 1).

Theorem 4.9. Let p, q ≥ 3 and p, q 6= 5. Then s5(Cp�Cq) = 4.

Proof. By Theorem 4.6, one observes that 4 colors are needed. By Theorem 4.8, p and q are

linear combinations of 3 and 4 using nonnegative coefficients. By using this, we are able to

tile the p× q-grid of Cp�Cq using these blocks of 3× 3, 3× 4, 4× 3, and 4× 4 grids. Recall

that the coloring pattern in (3) also provides a P5-coloring of smaller grids listed above by
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using the upper left portion for the required size. Therefore, using these coloring patterns on

the smaller blocks of the tiling yields a P5-coloring of Cp�Cq.

Corollary 4.10. Let i, j ≥ 3 and i, j 6= 5. Then, s5(Pi�Cj) = 4.

Proof. Since Pi�Pj is a subgraph of Pi�Cj, Theorem 4.7 gives the lower bound. By Theo-

rem 4.9, we have equality.

4.3 P6−coloring of Graphs

In addition to P5-coloring, we also investigate P6-coloring of products of paths and cy-

cles. We already have s6(Pn�Pm) ≤ s5(Pn�Pm) and s6(Cn�Cm) ≤ s5(Cn�Cm) by

the definition of Pk-coloring. Moreover, our main purpose in this section is to show that

s6(Pn�Pm) = s6(Cn�Cm) = s5(Cn�Cm) = s5(Pn�Pm) for m,n ≥ 3 and m,n 6= 5.

Theorem 4.11. s6(G(4, 4)) = 4.

Proof. Since s6(G(4, 4)) ≤ s5(G(4, 4)) = 4, we prove s6(G(4, 4)) ≥ 4. Assume that f is a

coloring of G(4, 4) using the colors {1, 2, 3} only. We consider possible colorings on the C4

at the center of the grid, call it C.

Case 1: C is bicolored. Assume that C has only two colors, 1 and 2. Then, either x or y

shown in Figure 4.3 has color 3. Assume that f(x) = 3. This implies f(y) = 2. To avoid a

bicolored P6, we have f(q) = 3. This implies that f(w) = 2, and therefore f(z) = 3 so that

V (C) ∪ {z, w} is not bicolored. However, this yields a bicolored P7 as seen in Figure 4.3.

1

2

2

1

3

2

2 33

1

2

2

1

3 x

y

w qz

FIGURE 4.3: Possible colorings in Case 1.
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Case 2: C has all three colors. We assume that the repeating color on C is 1.

Case 2.a: Color 1 is also used on the pair of vertices in opposing corners as in Fig-

ure 4.4a. Note that x and y cannot have the same color, otherwise there is a bicolored P6.

Same holds for w and z. Hence, both 2 and 3 appear as colors on the pairs {x, y} and {w, z},

yielding a bicolored P6.

FIGURE 4.4: Possible olorings in Case 2.

Case 2.b: Color 1 is not used on both of the vertices in opposing corners as in Fig-

ure 4.4a. Assume that one of the vertices at the corners is colored 2 as in Figure 4.4b.

This case is also symmetric to the case when this color is 3. This implies that f(x) = 3

and f(y) = 1 yielding a bicolored P5. To avoid a bicolored (with colors 1 and 3) P6, it is

necessary that f(j) = f(k) = f(z) = 2. However, this produces a bicolored P6 seen in

Figure 4.4c.

Corollary 4.12. s6(G(n,m)) = 4 for all n,m ≥ 4.

Proof. By Theorem 4.7, we have s6(G(n,m)) ≤ s5(G(n,m)) = 4. And, by Theorem 4.11,

we have equality.

Corollary 4.13. s6(Cm�Cn) = 4 for all m,n ≥ 4 and m,n 6= 5.

Proof. By the definition of Pk-coloring and Theorem 4.9, s6(Cm�Cn) ≤ s5(Cm�Cn) = 4

for all m,n ≥ 3 and m,n 6= 5. Since G(4, 4) is a subgraph of Cm�Cn for all m,n ≥ 4 and

by Corollary 4.12, s6(Cm�Cn) ≥ s6(G(4, 4)) = 4.
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5 GENERAL BOUNDS ON Pk AND Ck-COLORINGS OF GRAPHS

5.1 Lower Bounds

For the Pk-coloring, in 2020, Hou, and Zhu [43] find a lower bound on sk(G) depending on

the maximum degree d in G. For all ≥ 5, they prove that

Ω

(
d

k−1
k−2

(logd)
1

k−2

)
= sk(G).

Below, we present bounds using a result of Erdős, and Gallai.

Theorem 5.1. [44] For any graph G,

1. if |E(G)| > 1
2
(k − 2)|V (G)|, then G contains Pk as a subgraph,

2. if |E(G)| > 1
2
(k − 1)(|V (G)| − 1), then a member of Ck is a subgraph,

for any Pk with k ≥ 2, and for any Ck with k ≥ 3.

As also observed in [7], the subgraphs induced by any two color classes do not contain Pk

yielding the following observation for any graph G on n verties and m edges.

sk(G) ≥ 2m

n(k − 2)
+ 1,

for any k ≥ 3. To see this, let sk(G) = x and below, let Ei,j be the set of edges induced by

the color classes Vi ∪ Vj as defined as in [7]. By the observation above, we obtain that

|E(G)| =
∑
(i,j)

|Ei,j| ≤
∑
(i,j)

1

2
(k − 2)(|Vi|+ |Vj|) ≤

n

2
(k − 2)(x− 1),

where the first inequality follows from Theorem 5.1.

The Ck-coloring (k ≥ 3) is a proper vertex coloring of G without any bicolored copy of

members from family Ck = {Ci : i ≥ k}. The minimum number of colors needed in a Ck-

coloring of a graph G is written as ak(G). If a graph does not contain a bicolored Pk, then it

17



does not contain any bicolored cycle from the family Ck = {Ci : i ≥ k}. Hence, inequalities

given below hold for all k ≥ 3.

ak+1(G) ≤ ak(G) ≤ sk(G) and sk+1(G) ≤ sk(G)

As before, we have a lower bound for Ck-coloring as ak(G) ≥ 1
2
(2n + 1 −

√
∆), for any

k ≥ 3, where ∆ = 4n(n−1)− 16m
k−1

+1. To see this, let ak(G) = x and consider aCk-coloring

of G. Similarly, by Theorem 5.1, we have

|E(G)| ≤
∑
(i,j)

1

2
(k − 1)(|Vi|+ |Vj| − 1) = (k − 1)[2n(x− 1)− x(x− 1)],

which gives 0 ≥ x2 − (2n+ 1)x+ (2n+ 4m
k−1

). Let ∆ = 4n2 − 4n− 16m
k−1

+ 1. We note that

∆ ≥ 1, since k ≥ 3 and m ≤ n(n−1)
2

. Thus, we have x ≥ 1
2
(2n+ 1−

√
∆).

5.2 Lovasz Local Lemma

The Lovasz Local Lemma (LLL) is introduced in 1973 (published in 1975) by Lovasz and

Erdős [45]. It is a fundamental tool of probabilistic combinatorics to show that the desired

object exists with a positive probability under random construction. To show the existence,

LLL uses ”bad” events such that the intersection of complements of these events gives the

desired object. There are many new versions and improvements for LLL. The first version

is divided into two cases called symmetric and general. In 1991, Beck [46] proves that there

exists an algorithmic version of LLL to compute that none of the bad events occur. Moser

and Tardos [47] give a polynomial-time algorithm, which earn them the Gödel Prize in 2020.

In this thesis, we only focus on the general case.

As we mention in Section 2.4, avoiding bad events A1, A2, ..., An with positive probability

is to show that

Pr

 n⋂
i=1

Ai

 > 0. (4)
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An event Ai is mutually independent of a set of events {Bi | i = 1, 2..., n} if for any subset

B of events or their complements contained in {Bi}, we have Pr(Ai | B) = Pr(Ai). Thus,

if A = {Ai | i = 1, 2..., n} is a set of mutually independent events and 0 < Pr(Ai) < 1 for

all i, then

Pr

 n⋂
i=1

Ai

 =
k∏
i=1

Pr(Ai) > 0, (5)

yielding that none of the bad events occur. Lovasz local lemma allows that some of Ai’s

could be dependent. To indicate the dependence between these events, a dependency graph

is constructed as follows.

For a collection of eventsA = {A1, A2, ..., An}, the dependency graph is defined as a graph,

in which the vertex set is A and the edge set is the set of pairs of {Ai, Aj} that are not

mutually independent.

Theorem 5.2. [45] Let H = (V,E) be a dependency graph for A1, A2, ..., An and suppose

there are real numbers y1, y2, ..., yn such that 0 ≤ yi ≤ 1 and

Pr(Ai) ≤ yi
∏

(i,j)∈E

(1− yj) for all 1 ≤ i ≤ n. (6)

Then Pr(
∧n
i=1 Āi) ≥

∏n
i=1(1− yi).

To use this tool, the desired object is constructed randomly. Then, bad events are defined,

which prevent the realization of the object. After counting the maximum number of events,

one constructs a dependency graph and finds the degrees of vertices. The proof of Theorem

5.3 is an example of this process.

5.3 Upper Bounds

In 1976, Erdős [48] conjectures for a graph G with maximum degree d that a(G) = o(d2)

as d tends to infinity. Alon, McDiarmid, and Reed [6] confirm this conjecture, showing

a(G) ≤ d50d
4
3 e and the following lower bound.

Ω

(
d

4
3

(logd)
1
3

)
= a(G) = O(d

4
3 ).
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Although those are the best available asymptotic bounds, there are some improvements in the

constant factor of the upper bound. Ndreca, Procacci, and Scoppola [49] reduce this upper

bound to d6.59d4/3 + 3.3de. Furthermore Sereni, and Volec [50] lowers it to 2.835d3/2 + d,

by using the entropy compression method. Recently Gonçalves et al. [51] improves it to
3
2
d

4
3 +O(d) for all d ≥ 24.

In particular, Alon, McDiarmid, and Reed provide the result a(G) ≤ d32
√
γde, where G has

no copy of the complete bipartite graph K2,γ+1, for γ ≥ 1. Gonçalves et al. [51] reduce this

upper bound to d(1 +
√

2γ + 4)de.

Fertin, Godard, and Raspaud [7] show that χs(G) ≤ d20d3/2e. This upper bound is improved

in the constant factor by Ndreca, Procacci, and Scoppola [49] to χS(G) ≤ d4.34d3/2 +1.5de.

Alon, McDiarmid, and Reed [6] claim that sk(G) = O(d
k−1
k−2 ) for all k ≥ 4, introducing the

Pk-coloring of graphs. After about a quarter century, Esperet, and Parreau [52] confirm this

claim for even values of k ≥ 4 and improve the bound in Fertin et al. [7] for k = 4. In 2020,

Hou, and Zhu [43] find a slightly better upper bound on sk(G), for all k ≥ 5, showing that

sk(G) ≤

1 +

⌈
k

2

⌉ 1
k−3

 d
k−1
k−2 + d+ 1.

Furthermore, this result independently improves our current work presented in Theorem 5.3.

Their method is based on an algorithmic approach that is slightly different than ours.

Theorem 5.3. For any graph G, sk(G) ≤ d6
√

10d
k−1
k−2 e for any k ≥ 4 and d = ∆(G) ≥ 2.

Proof. Assume that x = dad
k−1
k−2 e and a = 6

√
10 and the vertex set ofG is colored uniformly

at random by f : V 7→ {1, 2, ..., x}. We aim to show that f does not produce a bicolored Pk

with positive probability.

Below are the types of probabilistic events that are not allowed:

• I (Au,v): f(u) = f(v) for uv ∈ E(G).

• II (AP ): The path P , a copy of Pk, is colored properly with two colors.
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By definition of our coloring, none of these events are allowed to occur. We introduce a

dependency graph H , where the events of above become the vertices. For two vertices

A1 and A2 to be adjacent in H, the subgraphs corresponding to these events should have

common vertices in G. The dependency graph of the events is called H, where the vertices

are the union of the events.

Observation 1. For all v ∈ V (G), at most

• d pairs {u, v} are associated with an event of Type I, and

• k+1
2
dk−1 copies of Pk containing v, are associated with an event of Type II.

Proof. The first claim is true because ∆(G) = d. To see the second observation, let us label

the vertices of a Pk containing v as x1, x2, ..., xk. The maximum number of Pk’s with xi = v

is dk−1. Considering that 1 ≤ i ≤ k, there are at most dk
2
edk−1 copies of Pk containing v

considering the symmetric positions on the path.

Lemma 5.4. The maximum possible number of neighbors of type j for a type i vertices:

I II

I 2d (k + 1)dk−1

II kd k
2
(k + 1)dk−1

Proof. Consider a vertex Au,v in H for the first row. We have 2d since this vertex may be

adjacent to events Au,z and Av,x for some x, z ∈ V (G). Similarly, Au,v may be adjacent to

events AP , where P is a Pk containing u or v. There are at most (k+1)dk−1 such events. For

the second row, a path P that is a copy of Pk may have kd events intersecting it. Similarly,

there may be at most (k + 1)dk−1/2 other Pk’s containing some particular vertex of P.

Observation 2. The probabilities of the events of type I and II are respectively

• Pr(Au,v) = 1
x
, and

• Pr(AP ) = 1
xk−2 .
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To apply Theorem 5.2, we choose the weights yi as below:

y1 =
1

3d
, y2 =

1

2(k + 1)dk−1
.

Below are the conditions that are to be satisfied for (6) to hold.

1

x
≤ 1

3d

(
1− 1

3d

)2d(
1− 1

2(k + 1)dk−1

)(k+1)dk−1

(7)

1

xk−2
≤ 1

2(k + 1)dk−1

(
1− 1

3d

)kd(
1− 1

2(k + 1)dk−1

) k
2

(k+1)dk−1

(8)

Since

(1 + x)n ≥ 1 + nx for x ≥ −1 and any nonnegative integer n, (9)

it is sufficient to verify the following to satisfy (7), and we observe that it holds when a =

6
√

10 ≥ 18 and k ≥ 4.

1

ad
k−1
k−2

≤ 1

3d

(
1− 2d

3d

)(
1− (k + 1)dk−1

2(k + 1)dk−1

)
=

1

18d

We can rewrite (8) as below.

1

a
≤
(

1

2(k + 1)

) 1
k−2
(

1− 1

3d

) kd
k−2
(

1− 1

2(k + 1)dk−1

) k(k+1)dk−1

2(k−2)

By (9), it is sufficient to verify the following to satisfy (8). We omit the use of ceiling for

simplicity.

1

a
≤
(

1

2(k + 1)

)1/k−2(
1− k

3(k − 2)

)(
1− k

4(k − 2)

)

Since all factors on the right are decreasing for k ≥ 4, (8) is verified.
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