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ABSTRACT

INVESTIGATION OF STRESS DISTRIBUTIONS BETWEEN A FRICTIONAL
RIGID CYLINDER AND LAMINATED GLASS FIBER COMPOSITES

Korhan Babacan YILMAZ

Doctor of Philosophy, Department of Mechanical Engineering
Supervisor: Prof. Dr. Bora Yildirim
Co - Supervisor: Assoc. Prof. Dr. Baris Sabuncuoglu
April 2021, 116 pages

Surface and sub — surface stresses, and edges of contact patch between a rigid
cylinder and laminated glass fiber composites are evaluated in this thesis. A novel
and modern system of analysis based on Cholesky decomposition, Gauss
elimination, Hermite orthogonal polynomials, Fourier transforms and singular
integral equation (SIE) is developed to obtain analytical results. Numerical results
are obtained in order to verify the precision of the analytical method using an
effective and self mesh adaptive computational model built on augmented contact
formulation (ACF) and finite element method. The effectiveness of the new
analytical formulation was shown by a perfect match between these results. The
formulations have been introduced for various interaction properties, material
parameters, friction related terms, and lamina order in order to monitor the effects
on surface and sub — surface stresses, and edges of contact patch. The findings
and discussions addressed can be of value to the structural design of laminated

glass fiber composites under extreme contact conditions.

Keywords: Laminated glass fiber composites, Augmented contact formulation
(ACF), Singular integral equation (SIE), Frictional sliding contact, Cholesky
decomposition, Tribology



OZET

SURTUNMELI RIJIT SILINDIR IiLE LAMINE CAM ELYAF KOMPOZITLER
ARASINDAKI STRES DAGILIMLARININ iINCELENMESI

Korhan Babacan YILMAZ

Doktora, Makina Muhendisligi Bolumu
Tez Danigmani: Prof. Dr. Bora Yildirim
Es — Danigsman: Dog¢. Dr. Baris Sabuncuoglu
Nisan 2021, 116 sayfa

Bu tez calismasinda, rijit bir silindir ile lamine glass fiber kompozitler arasindaki
yuzey ve yuzey - altt geriimeleri ve temas patikasinin kenarlari
degerlendirilmistir. Analitik sonuclar elde etmek icin Cholesky ayrisimi, Gauss
eliminasyonu, Hermite ortogonal polinomlari, Fourier donusumleri, ve tekil
integral denklemine (TID) dayanan yeni ve modern bir analiz sistemi
gelistirilmigtir. Analitik yontemin hassasiyetini dogrulamak igin, artirilmis temas
formulasyonu (ATF) ve sonlu elemanlar yontemi Uzerine insa edilmis efektif ve
kendi kendine ag uyarlamali bir hesaplama modeli kullanarak sayisal sonuclar
elde edilmistir. Yeni analitik formdlasyonun etkinligi, bu sonuglar arasinda
mukemmel bir eslesme ile gosterilmistir. Formulasyonlar, ylzey ve yuzey — alti
gerilmeleri ve temas patikasinin kenarlari tUzerindeki etkileri izlemek igin cgesitli
etkilesim Ozellikleri, malzeme parametreleri, surtinmeyle ilgili terimler ve lamina
sirasl igin tanitilmistir. Ele alinan bulgular ve tartismalar, asiri temas kosullari

altinda lamine kompozitlerin yapisal tasarimi i¢in degerli olacaktir.

Anahtar Kelimeler: Lamine cam elyaf kompozitler, Artirlmig temas
formulasyonu (ATF), Tekil integral denklem (TID), Surtunmeli kayan temas,

Cholesky ayrigimi, Triboloji
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1. INTRODUCTION

1.1.Background

Tribology and understanding the tribological behavior of products are very
important in “Material Science” and “Engineering Mechanics” thematic fields, and
“Surface, Coating, and Film” subfield. The tribology is the investigation science
of interacting surfaces that are in motion with each other. The locution “Tribology”
was first appeared in a technical report, where its scope was defined as research
and evaluation of friction, lubrication, and wear mechanisms in products and real
life engineering applications [1]. In general, tribological community provides
benchmarks to industry using various types of conventional and unconventional
materials to improve characteristics of interacting surfaces that are in continuous
motion. These benchmarks are closely related to “Contact mechanics” thematic
field and “Surface, Coating, and Film” subfield. In virtue of technological
advances, research on tribology are greatly increased because almost all of the
products used in enginering applications required to be design more effectively
and accurately to prevent the unnecessary material loss happening from high

wear, high surface friction and inadequate lubrication characteristics.

A native contact mechanics problem consists of minimum two perpetual in motion
elastic or one elastic and one rigid surface (means very stiff compared to other
surface). As mentioned before, general purpose of these type of problems is to
provide highly qualified and efficient benchmarks to be used in mechanical,
thermal and/or dynamic design stages of engineering applications involving both
conventional and unconventional materials. Among the literature, first study that
investigated the mechanical behavior of these type of surfaces was carried out
by considering a contact problem between two smooth curved elastic surfaces in
which the contact was assumed to be frictionless [2]. After this study, many
comprehensive studies were built and presented to the open literature. Reader
can refer to spacious survey presented by [3] for further information on contact

mechanics problems.



1.1.1. Contact conditions

In engineering applications for the transfer of loads, moments or displacements
between products in assemblies, several types of contact conditions may be used
with regard to the field of usage. The most common ones used in industrial

applications are explained briefly below.

The sliding contact is a very specific type of contact condition and is very
important in appropriately determining wear, fatigue, and friction components in
engineering applications as it allows tangential displacement to contact patch
without a relative motion along the normal direction. In general, sliding contacts
can be used to model the sliding movement of the surfaces in assemblies under
Coulomb’s law of static friction. A 2 — D graphical representation of a simple
sliding contact problem is presented in Fig. 1, where a rigid cylindrical punch

transmits both normal and tangential loads to the finite thick elastic layer.

10T I
_ q ‘Jiﬁ;":'lr y .\ x
[}1 - - i b Flastic Ih

fayer

Iayar
UL LLLLLL LS LIS LS LS LS LS LS LIS LS LS IS LS Vs AL LS LSS LSS SIS IS LSS LS PSS S IS

Fig. 1. 2 — D graphical representation of a simple sliding contact problem
The receding contact is an extension of sliding contact condition and its
application is considerably more difficult as contact patch between the elastic
layers’ shrinks or expands when the load is applied or decreased, respectively.
Therefore, proper investigation of wear and fatigue components not only at the
surface but also at the interface is crucial in determining the contact performance.
In Fig. 2, a 2 — D graphical representation of a simple receding contact problem
is presented by considering a rigid cylindrical punch and two finite thick elastic
layers.

In partial slip contact condition, the contact stress generates a tangential
displacement at the interface because of the dissimilarity at the lower and upper

contact interfaces; slip or partial slip may generally take place and this result in

2



two distinct contact boundaries on same surface. Monitoring these slip regions is
essential in successfully determining the wear components. Yet, these regions
can be prevented by applying a little bit more friction at the contact patches. The

slip zones are presented in Fig. 3 between —a, —b and a,b.

Rolling contact is one of the most important contact types used in engineering
applications. In this type of contact, the rolling motion of one body over another
body can cause fatigue and surface wear due to the repetitive stresses at the
contact region happening from stick and slip zones [4] (see Fig. 4). These type of
contact could be seen in anti — friction bearings, train wheel assemblies and

crankshaft housings for engines.

a
FElastic [ h
1
—¢ fayear
o x —\(\Tjij—» g2 ()
! Flastic
' faver [h'l 72 ()
—— P —— - |
—c Elastic A /..-I-EZ o)
layer 2 47£- < |’\—Cf2 x)
PAAS LSS LSS LSS AL S TSI S LSS S AT SIS 7777 DR - yvwvywy) X

d
! Elastic A,
' fayer
LA LS LS LSS S S AT L LSS AL S TS LS SIS S SSS

Fig. 2. 2 — D graphical representation of a simple receding contact problem

]
Py ()
Al .
! r'y -b —n - B
i Elastic | |, - | Elastic | |,
layer i Jayar
A A A A A7 A

Fig. 3. 2 — D graphical representation of a simple partial slip contact problem

3




In general, the deformation and temperature fields play the most important role
in thermos — mechanical contact problems. Since the constitutive relations are
dependent on temperature, these fields are coupled. In this type of contact,
frictional forces or deformation mechanisms usually generate heat. Application of
thermo — mechanical contact problems has a wide range including shrink fit
problems, temperature loading and frictional heating, metal forming processes,
and cooling of electronic and mechanical devices [5]. A very simple model for a
thermo — mechanical contact problem is depicted in Fig. 5 with a constant heat

transfer coefficient between the surfaces.

Rolline
direction

i : .l_\_\_\_\_\_\_\_\_\_‘_ ----- =
| ./ Elastic 1}1\’ M
T layer - g

LSS A LSS LTS LSS LS ILS S LSS SIS SIS S s
I~
| | [
—a/ b a

Stick  Flastic Slipzone
zone  laver

Fig. 4. 2 — D graphical representation of a simple rolling contact problem

4 IZ
iP i
i

ip1 (x)
/-"-l—

o () I
_____ x |i ¥ lr‘" A 4 X
Ay b
Hastic - Flastic
R | h
iayer B layer

45
LSS LS LLLLLLLSSLLLLL LS LSS L L LS LS LSS s LSS LSS LSS AL LSS AL S LSS LSS LSS

Fig. 5. 2 — D graphical representation of a simple thermo — mechanical contact
problem



1.1.2. Material types and material models

There are different types of materials used in contact mechanics applications
regarding their physical and mechanical properties. These materials can either
be manufactured or be found in nature in homogeneous/unhomogeneous and/or
isotropic/anisotropic (conventional/unconventional) forms. A material with a
uniform composition throughout its body can be considered as homogeneous,
where certain types of plastics, ceramics, glass, and metals are the common
examples for homogeneous materials. Conversely, unhomogeneous materials
have a non — uniform physical properties along their bodies. In engineering
applications, they can be manufactured using step — by — step or continuous
gradation methods [6 — 8]. Turbine blade coatings, bullet — proof vests, armored
planes, bonded laminates, dental implants, and thermal — barrier coatings, wear
resistant surfaces, and concrete can be common examples for these type of

materials [9 — 14].

In material isotropy, mechanical and thermal properties show similarity in all three
principal directions. Due to this resemblance, applied tensile loading only causes
elongation in that principal direction and two other principal directions produce
zero shear strain. If one of the principal directions is normal to the plane of

isotropy (for instance, —x global direction is normal to —yz plane), then the

material can be called as transversely isotropic. Transversely isotropic materials
are a type of anisotropic materials, where the unidirectional composites are the
most common example. Furthermore, if a material has three distinct but mutually
perpendicular planes of symmetry, then it exhibits an orthotropic behavior. Due
to this discrepany between the planes, the thermal and mechanical properties
differ in all three principal directions, where wood and continuous fibers with
single lamina orientation can be the examples for orthotropic materials.
Moreover, if a material has single plane of symmetry, then it can be named as
monoclinic material. Rotated fibers and multilayered composites are most

common examples for monoclinic materials.



1.2.Literature review on contact mechanics regarding analytical methods

The solution of contact mechanics problems regarding isotropic materials were
well established in literature. Assuming a classical uncoupled tangential contact
problem between two elastic and linear spheres under constant normal loading,
positions of stick and slip regions on contact patch were illustrated. It was shown
that stick region appears at inner domain while slip region emerges at the edges
of the contact patch [15]. Some comprehensive contact problems about two
dimensional stress systems, infinite elastic solids, basic equations of 2 — D theory
of elasticity and solution of stress functions were presented in [16 — 17]. An
indentation problem for an elastic half — plane and an axisymmetric punch was
studied under frictional contact conditions. It was found that, progressive increase
of normal force affected maximum indentation and dimensionless normal

displacement on contact patch [18].

Solution of contact problems involving material anisotropy and transversely
isotropy is quite difficult than the ones with isotropic materials. In these solutions,
extra — added linked and unlinked stiffness constants bring complexity to solution
of mathematical equations. Using tangential and normal loading conditions,
stress fields generated by sliding contact on transversely isotropic spheres were
investigated [19]. It was concluded that Hankel transforms were quite capable in
evalution of integrals for surface stresses. Closed — form solutions for surface
tractions and stresses were presented using sliding friction for transverse
isotropy; shown that Green’s functions could be used to solve contact problems
and field equations [20]. Later, a three dimensional sliding contact problem
between a layered half — plane and a spherical indenter was considered and
stress fields related to failure and cracks were presented [21]. It was shown that,
material type and membrane thickness greatly affected the structural behavior of
coated surface and stiffness. Different types of interfacial contacts were
investigated by loading a transversely isotropic layer with a rigid spherical
indenter. Presented results from approximate solutions brought a good
agreement with the previous results from literature [22]. Important benchmarks
and infinitesimal deformation simulations were conducted by loading an
anisotropic elastic layer with various types of rigid indenter profiles [23]. Stress

and deformation behavior of cellular materials were studied using two — scale
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rough contact modeling. It was found that, anisotropic topology of material was
fairly prominent on tribological behavior [24]. Effect of material anisotropy on the
pressure distribution and contact patch was investigated using semi — analytical
methods and elementary solutions [25]. It was shown that, symmetry axes on
contact patch and stiffness along normal loading direction influenced pressure
distribution on contact patch. Then, Knoop, Berkovich and Vickers indenters were
used to load an anisotropic elastic surface to investigate the surface stresses and
surface elasticity. It was shown that, displacement fields were closely related to
anisotropic behavior of material and indenter profile [26]. Exact analytical
solutions for the contact behavior of scintillattor materials used in high — energy
physics and medical applications were presented in terms of complex and real
eigenvalues [27]. It was concluded that, optimizing punch profile and increasing
elastic coefficient ratio reduced strength of stress singularities. Afterwards,
contact mechanics and friction behavior of transversely isotropic solids were
investigated using Persson’s theory. Findings showed that, anisotropy should be
considered in analytical equations [28]. A new analytical model on adhesive
contact of anisotropic materials were validated using Kendall — Roberts —
Johnson theory and van der Waals force method. It was found that, surface
mechanical property and elastic modulus in tangential direction affected
maximum adhesion force on contact patch [29]. A novel iterative algorithm based
on Lenard — Jones potential was developed to solve displacement and sub —
surface stress fields for elastic solids [30]. Then, previous study was extended by
considering multi — layered elastic solids [31]. Subsequently, an experimantal and
numerical study were conducted to assess the contact and friction behavior of
transversely isotropic viscoelastics, where different types of specimens were
utilized [32]. Combined effects of anisotropy and interface behavior on the
indentation moduli were investigated using dual variable and position methods.
Findings showed that, deformation mechanisms and changes in indentation
moduli in thin — interlayer models were quite remarkable [33]. Exact and
numerical solutions for a three — dimensional contact problem between two
transversely isotropic bodies were presented within the framework of nonlinear

boundary integration method [34].



Solution of contact mechanics problems with material orthotropy, monoclinic
materials and laminated composites are also very difficult because of extra —
added linked and unlinked stiffness constants, and lamina orientation angles.
Analogy between the frictionless contact response of metal and polymer based
composites was investigated using Fourier and Hilbert transforms [35]. It was
shown that, stiffness constants in longitudinal and transverse directions
influenced the deformation response of composite layers and concluded that,
surface behavior of layered composite half — planes was mainly related to the
amount of local bending around contact patch. Later, a high resemblance
between contact and fracture mechanics was perceived. Based on this, a contact
mechanics problem between two different types of indenter profiles and an
orthotropic half — plane was considered. It was concluded that, indenter problems
could be solved using methodologies belonging to fracture mechanics [36]. Three
— dimensional contact analyses of spherical indenters were carried out using
graded carbon fiber diffused epoxies. Experimental and numerical results
showed that, orientation — graded specimens were more durable than cross — ply
ones in loading direction [37]. Some contact examples and benchmarks
regarding low transverse properties of composite half planes were presented
analytically using Hilbert and Fourier transforms. Compared results showed that,
transverse cracks weakened layers’ performance under fatigue loads [38].
Afterwards, microhardness tests for polymer composites were carried out in
terms of contact mechanics. Findings showed that, centrifugation condition was
one of the most important stages in successfully adjusting particle distribution
[39]. A general solution procedure for calculating surface stresses and contact
patch on orthotropic materials was presented by diversifying geometrical
parameters of problem [40]. By eliminating logarithmic singularities using direct
asymptotic solutions, a contact problem between an orthotropic strip and a rigid
punch was considered and some numerical examples were provided for different
values of strip thicknesses [41]. Contact stiffness due to surface roughness of
composite braking material samples was investigated using surface contact
fracture theory and G — W model. It was found that, contact stiffness was
generally greater than bulk stiffness, where the contact compliance happened at
light loading scenarios [42]. A new mathematical model based on numerical

integration method was generated to solve contact problems involving orthotropic
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materials. It was shown that, interfacial contact patch and detailed stress fields
could be easily obtained [43]. Rheological properties of polymer — matrix
composites and their correlations with surface friction, roughness and material
type were investigated in terms of contact mechanics. Brief analytical and
experimental investigations showed that, thin composite films and monolayers
could be used as lubricant material in modern engineering applications such as
in memory storage devices and microelectromechanical systems [44].
Subsequently, closed — form solutions for an orthotropic medium loaded by
different types of rigid indenters were presented using Krenk’s notation and
singular integral equations. Presented numerical results showed that, effective
Poisson’s ratio and stiffness ratio parameters had negligible effects on stresses
and powers of stress singularities [45]. A new theoretical model to solve frictional
sliding contact mechanics problems of monoclinic materials was proposed using
Fourier transforms and Cauchy based integral equations. Results were given to
show the influences of geometrical and material parameters, where underlying
physics of the problem was discussed [46]. Frictional contact behavior of a rigid
punch on a monoclinic half — plane with varying shear modulus in an arbitrary
direction was investigated [47]. It was found that, proper evaluation of orientation
angle, gradation parameter, and surface friction was very important in designing
strong wear resistant surfaces. Mode | and Il surface crack problems for
orthotropic materials were investigated using analytical methods. It was
concluded that, changes in material orthotropy and surface friction were greatly
influenced mixed — mode stress intensity factors [48]. After that, a sliding contact
problem for a coating / substrate system was considered by choosing an
orthotropic coating material [49]. It was concluded that, soft coatings brought
better surface performances in terms of surface wear and stress intensities. Using
Gauss — Jacobi integration method and Fourier transforms, a highly parametric
study on the contact behavior of an orthotropic layer was presented [50]. Findings
showed that, soft surfaces could bear stresses more dispersedly than hard
surfaces, which could increase surface performance in terms of wear and
lubrication. Later, a dual approach solution for an orthotropic coating / isotropic
substrate system was presented in terms of analytical and numerical solution
methods, where the effects of material orthotropy, surface friction, and

geometrical parameters were investigated [51]. It was monitored that, surface
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cracks tended to be happen more on hard — coated surfaces than the soft —
coated ones. Other comprehensive studies on material orthotropy, monoclinic

and composite materials could be found in [52 — 54].

1.3.Aim and scope

Explained in previous sections, the easiest way to transfer loads, moments, and
displacements between parts used in engineering applications is to apply contact.
In the proper nature of micro crack and wear resistant materials and surfaces,
understanding the tribological behavior of these parts is a key. Several detailed
research related to isotropic materials, material anisotropy, transversely isotropy,
and orthotropy have been performed. An in depth analysis showed that, few
studies on literature relating to monoclinic materials and laminated composites
were performed because additional added related and unrelated constatns of
stiffness and variance in lamina orientation introduced difficulty to mathematical
equations’ solutions. In these studies, owing to the aforementioned
complications, only the frictionless and / or frictional contact behavior of a single
layer composite or a composite coated surface was investigated. To fill this gap,
a contact mechanics problem between a frictional rigid cylinder and laminated
glass fiber composites with different orientations is considered in this study. The
purpose of this research, following the explanations, is to present a novel solution
framework based on analytical and finite element methods that can be used to
predict the frictional sliding contact behavior of laminated glass fiber composites.

With regard to the target, it is possible to detail the scope of this study as

e Developing a novel analytical method based on Cholesky decomposition,
Gauss elimination, Hermite orthogonal polynomials, Fourier transforms

and singular integral equation (SIE)

e Developing a highly effective computational model based on augmented

contact formulation (ACF) and finite element method

e Presenting the usage of quailifed parametric work to test the accuracy and
efficacy of the analytical and finite element methods

e Employing benchmarks to be used in industry
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1.4.Problem definition

It would be best to begin by describing the geometry of a single composite lamina
before proceeding with the problem definition of laminated glass fiber composites
as analytical method presented in Section (2) started with the formulations
belonging to a single composite lamina. Presented in Fig. 6., a single composite
lamina composed of embedded glass fiber, has a thickness h and width W , is
considered prior to built up analytical method. It is pressed by a rigid cylinder has
a radius of R using both concentrated normal p and horizontal forces Q =7P
under plane strain and frictional contact conditions regarding Coulomb’s static

law of friction. The bottom surface is assumed to be fully bonded to a rigid

substrate to prevent rotations and translations.

3D view 12,3 Plane strain view
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Fig. 6. Geometry of a single composite lamina

Furthermore, laminated glass fiber composite considered in this study composed
of m number of laminae and consists glass fibers embedded in an epoxy matrix
with 0 and 90 degree rotations. To limit layer transition and to easily seek the

effect of lamina order on results, [0,,] and [90,,] configurations and [0, /90,]

s H

[90,/0,]. , [05/90,],, and [90,/0,], configurations are chosen. The problem

2! 2
geometry is presented in Fig. 7, where each laminated glass fiber composite
assumed to has a total thickness h and total width W of 4.5mm and 90mm,
respectively. Identical to a single composite lamina, a rigid cylinder, with a radius
of R is used to load the laminated glass fiber composite. It is subjected to a
concentrated normal force p and a horizontal force Q =7P under plane strain
conditions. For the surface friction, Coulomb’s static law of friction is used, where

the coefficient of friction denoted using 5. The bottom surface of the laminated
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glass fiber composite is assumed to be fully bonded to a rigid substrate, where

all rotations and translations are fixed on —x, —y, and -z global and —1, —2,

and —3 local directions. Note that, for the configurations considered m=12,

where each lamina has a thicness h of 0.375mm.

Plane strain view

p1 ()

1Z
i P 91 (%)
—a ="

Fig. 7. Geometry of a laminated glass fiber composite

Furthermore, in Table 1, individual glass fiber and epoxy matrix material
parameters are presented.

Table 1. Material parameters for individual glass fiber and epoxy matrix

Parameter Name Value Parameter Name Value
E, (GPa) 72.1 E. (GPa) 2.56
40 60
V, (%) 50 V_ (%) 50
60 40
u, (GPa) 29.1 1 (GPa) 0.9
v, 0.22 v, 0.35
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2. ANALYTICAL METHOD

2.1. Calculations for the material parameters for a single composite lamina

Calculations for the material parameters start with the evaluation of properties of
a single composite lamina. Using the individual glass fiber and epoxy matrix
material parameters [55], formulation is implemented to obtain lamina properties

as given in following:

E,=E\V, +E\V, (1a)
E, = E, (1b)
E,
st
E.=E, (1c)
fy =——t (1d)
U
1— _Hm
/’lyz = /lxy (16)
Hy = Ly (1f)
Ve =viV 1V, (19)
Vi =V, (1h)
E .
Vix =Vy E_il (1)
Vi =V, (1h)
1-v
v, =V “ 1j
vz = Uy 1-v, (1))
v, =V (2k)

where E, , V,, E,,and V_ are the elastic moduli and volume fractions; ., v, ,

M, , and v represent shear moduli and Poisson's ratios of glass fiber and epoxy

13



matrix, respectively. It is known that, some common engineering materials and
two — ply reinforced composites exhibit material orthotropy, where the material
has orthogonal planes of symmetry and material property is independent along

symmetry planes. The constitutive relation for material orthotropy can be written

as
O ] C, C, C; O 0 0 [ &u]
ny CZl C22 C23 O O O Syy
o, |Cy Cp Cy 0 0 0| &,
o, |0 0 0 C, 0 0/, @
.| |0 0 0 0 Cy 0|7
o, [0 0 0 0 0 Cullr

where C; (i=12,...,6,j=12,...,6) represents the global stiffness constants

along —x, —y, and —z global directions and they can be obtained in terms of

lamina properties given in Eqg. (1) as follows:

B 1- ViV

Cll - !
E, E A

_ 1- VoV

C - ]
2 ELE.A

C44 =/uyz' CSS =/uxz’

where

vy, —vpv, v

_ Vyx + szvyz
12

E, E,A

VYV
23

E,E.A

Cee =Hy

X" Xz

v, —2V. V. V

xy " yz" zx

E.E.E

XX Yy —zz

v, +V.,V,
BTEE A (32)
yy —2z
1-v v
33 = E éyX (3b)
XX Yy
(3¢)
(4)

Note that, the global stiffness matrix [Cu] (i=12,..,6,j=12,..,6) given in

Eq. (2) is symmetric by nature. Therefore, C,=C,,, C,=C,,and C,=C,,.
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2.2. Calculation of transformed rotated stiffness constants for a single

composite lamina

Before providing calculation of transformed rotated stiffness constants Cij , itis

needed to relate global stresses (o,,, o, 0,, o,,, 0, and o) and global

w' Tz
strains (&, £+ €44 7yr Vie» @Nd y, ) with local stresses (oy,, 0y, 0y, 0y,
o, and o,,) and local strains (&, &,,, &5, Vs, Vi3> @Nd y,,), respectively. To

perform that, the following rotation matrix is introduced:

Q, =cos(e, ;) (5a)
re rt, ot

Q=rt, rt; rtg (5b)
r, rtgort,

where rt, (i=12,..,9) represents counterclockwise rotation cosines and sines

between global and local directions, respectively. Using Eq. (5) and some

trigonometrical manipulations, the global stresses (o, o,,, 0,,, o,,, 0, and
o,,) can be related with local stresses (o7, 0,,, 033, 0y, 033, @Nd a,) as
[0'123] = [Tl] |:O-xyz } (6a)
| cos?d sinfd 0 0 0  2sindcosd |
sin’0 cos’d 0 0 0  —2sindcosd
0 0 1 0 0 0
= 6b
[r.] 0 0 0 cos® —sind 0 (66)
0 0 0 sing cosd 0
| —cos@sind cosfsind 0 0 0  cos’6sin’d |

Identically, global strains (&,,, €, &€, 7,,+ V> @nd y,,) can be related with

local strains (&y,, €, €33, Va3s 113, @Nd 73,) @S

[5123] = [TZ][gxyz] (7a)
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[ cos?0 sinffd 0 0 0 singcosé |
sin?@ cos’d 0 0 0 —sindcosd
0 0 1 0 0 0
_ 7b
[T.] 0 0 0 cosfd -sind 0 (75)
0 0 0 sin@ cosd 0
| —2cos@sind  2cosfsing 0 0 0  cos’gsin’d

Using following notations, transformed rotated stiffness constants Cij (

i1=12,..,6,j=12,...,6) which forms transformed rotated stiffness matrix [Cij]

(i=1,2,..6, }=12,.... 6) can be obtained as
[0 =TI 20 (82)
EAE R (8b)
|Gy J=[n]7 [ ][] (80)

Transformed rotated stiffness matrix [C_u] (i=12,..,6,j=12,..,6) given in

Eq. (8c) represents material behavior of a single composite lamina having an
arbitrary orientation through —z direction which leads a material symmery on

—xy plane. Thus, constitutive relation for material orthotropy presented in Eq. (2)

transforms to following for a single composite lamina:

(0,7 [Ca G2 Cs 0 0 Culrg]
o, |Cu Cu Cu 0 0 Cyuls,
Ou| (G Cx G 0 0 G ©
oy, 0 0 0 C, C. O |7
Ox 0 0 0 C, C, 0|7
ol e, Co G 0 0 gl
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2.3. Derivation of displacement equations and stress — displacement

relations for a single composite lamina

Using infinitesimal strain theory, strain — displacement relations can be expressed

in component form as

XX:%J, gyy:%, gzz:%\;v (10a)
o[22, a0
:, :i[%%j -1, (100)

Utilizing Eg. (10) and symmetry conditions for transformed rotated stiffness
constants (C,=C,,, C,,=C,,, C,, =C,,, and C, =C,, ), Eq. (9) can be further

expressed as

—ou — OV —OwW ou ov
O'xx=C11&+C125+C3 pe +Cle{ay axj (11a)
—0ou —Oo —=—OW —(0ou ov
Uyy: 12&+C225+C23 pe +C26(5+&j (11b)
—O0ou —OoV ——Oow ou ov
0, :C13&+C23@+C33 o +C36(8y 6Xj (11c)
—(ov ow) —(ow adu
Oy, = Cu (& + Ej +Cy (& + Ej (11d)
o 8W 8_u (11e)
* ay 8x az
—8 — OV — OW ou ov
=C, ©ox +Cy 5‘y+C36 o +C66(8y+8xj (11f)

Then, using Eqg. (11) along with equilibrium equations in terms of displacement

components [56] following relations can be generated:
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— p? A2 __ 2 . 2 2 2 A2y, A2
Cn@ l: +C,, oV +C, oW +C16(—a ! +8_\2/+_6 ! ]+C26 6}—\2/+C36—a W
OX OXoy oxoz OXoy OX° 0yox oy oyoz (12a)
—( A? 2 _ (A2 2 (a2 2
+Cp 8_\2/+8_W +C,; a—W+8—l2J +Cq a—li+ oV +F =0
oz- ooy O0L0X 0z oy® Oyox
— 0 —0Uu —ov —ow —(0ov du oV ) —ow
C12_+C16_2+C22_2+C23_+ 26 T ot Tl
OyOoX OX oy oyoz oxoy oy° oyox OXoz (12b)
([ 7? 2 __(x 2 - 2 2
+C,, a_\2/+8_w +Cp a—w+8—l; +Cq 8_u+8_\2/ +F =0
or° ooy 00X 0z OXoy oX
— U — oV —ow —(du 0V ) —[ v w
ClS +Czs +C33_2+C36 —= T | ~~T 57
16).(0/4 ozoy oz 010y 010X oyoz oy (12¢)
C

—( 0N o'w o°'w du ) =—(ow o
+C + + + +Cq| —5 + +F =0
OX0Z OXoy Oyox oyoz OX~ Oxoz

For two dimensional environment under plane strain conditions, u=u(x,z) ,
v=V(x,z), w=w(x,z), ou/oy=0, ov/oy=0, and ow/0dy=0. Neglecting body
forces along —x, —y, and —z global directions, Eq. (12) reduces to following set

of two dimensional equilibrium equations relations in terms of displacement

components:

— o —ow —ov —ov —( d'w
¢,—+C,—+C,—+C,—+C,| —+— |=0 13a
Yox? Boxaz Cox? *orr *lewox o7t (132)
—0u — 0w —ov —( 0w S| — oW

o R aa e [@7 "G e =0 (130)

=0 (13c)

C +C +C +Cp—+C | —+
13 33 45 axaz 55 axz axaz

— U —o'w — v — v —(dw du
oxXoz ozt ® ozox

Identically, Eq. (11) reduces to following set of stress — displacement relations:

—ou —OW —oV
Oy = C11&+C135+C16 & (14a)

—O0oUu ——OW — o0V
ny :ClZ&+C235+C26& (14b)

—ou —OW — oV
0, :Cl3&+CSSE+C36 & (14c)
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—ov —(Oow ou
Gyz :C44E+C45 (&—FE) (14d)
— o —(Ow odu
_C Y, g [aw, 14e
Oy, L 55(8)( 62) ( )

(14f)

2.4. Derivation of stress components and kj, mj, and nj expressions for a

single composite lamina

Before deriving the stress components for a single composite lamina, it is needed

to introduce following Fourier transform of displacements forehand:

u(x, z) = 1 T u(&, 2)e'dé (15a)
2r °,

v(X,z) = 1 T V(& 2)e'd & (15b)
2r °,

W(X, z) = % T w(& z)e ' 9d e (15¢)

where u(&,z), v(& z), and w(&, z) are transformed displacement components of

displacements u(x,z), v(x,z), and, w(X,z), respectively and can be obtained

using

u(,z)=y Ae" (16a)
=

B 6

V(& 2)=) Ame" (16b)
=

W(g,2) =) 1AKe" (160)
i1
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Note that, £ shown in Eq. (15) and Eqg. (16) denotes an equation variable such

as x and y, and 1 is imaginary unit (! :\/—_1). Substituting Eq. (15) into Eq.

(13), following set of ordinary different equations can be obtained:

— - =AW — - —d’v —d%u — .dw
—Cllfzu—C13|§E—C16§2V+C45F+C55F—C55|§E=O (17a)
—— = = . dw —d* —du — _dw —,-
Clefzu—C%IfE—FCM?+C4SF—C45I§E—CGG§2V:0 (17b)
— du —d’w — _dv —,  dv —_,— — .du
—C13I§E+C33F—C36|§E—C45I§E—C55§2W—C55|§E=0 (17C)

To obtain stress components for a single composite lamina, it is needed to derive
the partial derivatives of Fourier transforms given in Eg. (15) forehand:

aug;, 2 :%_ ijﬁ;Aje”ﬁz e-'fXde;: :H—lgjzel:Aje”ﬁz}-'fng (18a)
aug;, 2) :%: I}:“Aje”jfz e"fng::o (18b)
%:%i IOJZZAje”ﬁZ e"‘fxd(fi:i(gAjnjfe”sz}"‘fxdf (18c)
mgz)zg:(igAjmje”jfz e'fng}zo (18e)

o0

:§ [ > 1Ake™ [edé

L \—© =1

oy g[z 1A K™ ]e'fng (189)

a n;cz —1&x
EYRRPY JZ;'AJ"J-G“’E e'¥ds |=0 (18h)
| \—© ]=

ow(x,z) (=& }
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8\N y 8 T n.&z —Ix & nicz —1&x
# szlAkeﬁ”J 5d§} j(lgéAjkjnjeﬁ}fdg

— j=1

(18)

Then, stress components for a single composite lamina can be obtained by

substituting Eq. (18) into Eq. (14):

o :i]}—lgiA.e”'{Ze"&(C —~C.k:n, +C m.)d§

XX 271_ 2 ~ | 11 137507 16°"]
17 o néz_—1ex ([~ ~ ~

o, =5L—|§§Aje #1719 (C, ~Cogn; +Cyo; dE

ZZ

l ¢ n:&z __|&x ~ ~
zz_j_|§ZAe 1719y ~Cigkn +Cg; ) d&

j=1

© g _ —
o, :2i I ‘sz_ll Aienjgze_léx (C44mjnj +C45(ki +ni))d§

—00

1 7.9 NiEZ _1Ex
XZ:ZJ;QZJZ_;A’E) gl (C m;n; +Cog (k; +n, ))d§
o, = 217[%0—I§J2Ae“"5Z "5X(Cl6—C_36kjnj+C_66mj)d§

To obtain expressions for k,, m;, and n, (1=12,...,

(19a)

(19b)

(19¢)

(19d)

(19e)

(19f)

6) firstly presented in Eq.

(16), it is needed to calculate the second order partial derivatives of Fourier

transforms given in Eq. (15) along with Eq. (13) as

aZU(X Z) 82 s n:éz .| T 6 n:éz —

= A" e dE = | =£7 D AT g

= axiz 5__[@5 2A ¢

62u X, Z 62 (% niéz | —1éx | niéz | —1éx
a(2 ):_2 J.zAjejﬁf Ifdg_jé:[z 2 ﬁf}lédéj
Z 0z A= ]

u(X,2) & [ T<& . e | s I 6 .
az(ax ):826x UZA@ ’ Je N df}: j"gz[ZAJ”ie ’

—o J=1 j=1

2 - 2
OX OX = =}

ov(x,z)  &° {

21

T iAjmjenjfzje_léxdf} = T & [26: Am;e"™

(20a)

(20b)

(20c)

(20d)



ov(x,z) &
ot o

T iAjm,-e'J "f*di} I éz(ZAmnz”fz}'f*dé (20e)

ov(x,z) o* |[ < nez | o i s .
= Am.e"’ [e'Xd | £2 A m;n,e "¢ e 20f
020X 010X J;Z i c|= J; d ,1 ¢ @

Ox? = e

82w(x Z) 0° HT ilA K enjng —|§xd§:| T |§2( 6 kjenjcfz }—Iéxdg (20g)

82W(X ) _0 KT ZG: IAjkje"jgzje'fxdé}= T 1&* [ZA k;ne ”J”}'fxdé (20h)

i1

aZW(X Z) 62 [N njsz | 4—1&x T i —1&x .
ooz l:[.[jj IAk;e s je fdf} jf [ZAJkJnJe } &g (20i)

After some mathematical manipulations, Eq. (13) trasforms into following:

L 6 - P -
j —£2Y Ae"e| €, —Cpk;n, +Cgm, —Cygmin? —Cyq (kN + nf)]dg =0 (21a)
= -

—00

0 6 _ - - _ L
j‘ —522 Ajen,-ézefléx Cis —Cyekn; —C44mjn1? —Cps(kjn; + nl?) +CogM, ]dg =0 (21b)
S j=1 -

o0

6 ——
J'—§ZZA].e”J":Ze"‘§X Cyan; —Cokin? +Comin, +Cogmin. +Cyg (K, +1, )}dgg 0 (21c)
i1 -

—00

As sub — equations in Eq. (21) are equal to zero, multiplying terms outside square

brackets can be omitted. Thence, Eq. (21) yields to following equations:

—C,, +Cyak;n, =Cgm, +Cpmn? +Cy (k;n, +17) =0 (22a)
~Cyg +Cyekin; +Cyymin’ +Cyg(k;n; +1°) ~Ceem, =0 (22b)
Cyan, —Cagk;n? +Cymyn, +Ciemin; +Ceg(k; +n,) =0 (22c)

Solving Eqg. (22), a characteristic equation in terms of n, (J=12,...,6) can be

obtained as

L, +Lni+L,n+1, =0 (23)
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where

EE— _2 —_—
L =Cq(Cps —C11Cos) (24a)
_2 — —_— — — — —— —_— — —_— —

I—z = _(ClB C33 - 2C16 (C13 (Cse + C45) + Cse C55) + C13 (C13 + 2C55 )Cee (24b)
+ Cll ((Cse + C45)2 - C44 Css - C33 Cse ))

Ls = (C13 C44 - 2C13 C45 (C36 + C45) + C36 C55 + 2(:13 C44 Css (2 4C)
- C33 (C11 C44 - 2C16 C45 + C55 Cse ))
— —

I-4 = _C33 (C45 - C44C55) (24d)

After obtaining n, (j=12,...,6) by solving Eq. (24), m; and k, (j=12,....,6)

can be found using

m = CsCos +Ca) 1 Coo(Cos + Cos) + Coa s+ Cea o) (25)
J (Cy +C45)2n,? +(Cys —C33nj2)(C55 _C44nj2)

o _ Cia+Cis+(Cy +Cie)m))n,

_ > 26
! ~Cys +Cysn’ (26)

2.5. Boundary conditions and singular integral equation (SIE) for a single

composite lamina

Presented in Fig. 6, boundary conditions at the top and bottom surfaces of a

single composite lamina can be written as

_(-p(X) —a<x<b
oa(%.0)= { 0 x<-a,x>b (278)
o,(x,0)=0 (27b)
_(-np(x) —a<x<b
% (X.0)= [ 0 x<-a,x>b (27¢)
u(x,—h)=0 (27d)
v(x,—h)=0 (27e)
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w(x,—h)=0 (27f)

where p(X) represents the surface contact stress. To calculate A, (j=12,..,6

) constants appearing firstly in Eq. (16), it is needed to obtain inverse Fourier
transforms of displacement and stress components presented in Eq. (15) and Eg.

(19) regarding boundary conditions of the problem as

6 - -
0, (x,0) =—1£)" A" (Cyy ~Cykn; +Cye; ) (28a)
i1
6 — —_—
oyz(x,O):(;ZAjenjgz(CMmjnj+ 45(kj+nj)) (28b)
-1
S néz ([~ ~
0o (%,0) =& Ae" (C45mjnj+C55(kj+nj)) (28¢)
i1
- & n;éz
u(g,z)=> Ae" (28d)
-1
- 2 ni&z
V(& 2)=) Ame" (28e)
i1
— § niéz
W(é,z)=Y 1Ake™ (28f)
i1

By combining Eq. (27) and Eq. (28), and applying boundary conditions, a set of

equtions can be created to obtain A, (j=12,...,6) constants as

6 _
1" A (Cly = Cigkn; +Cygm; ) == p(x) (29a)
=1
6 _
§ZAj(C44mjnj+ 45(kj+nj)):0 (29b)
i=1
6 _
/;ZAJ- (C45mjnj +C55(kj +nj)):_77p(x) (29¢)
j-1
6
> A" =0 (29d)
j=1
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6
—nigh
> mAe" " =0 (29€)

6
-nighy _
; lk,Ae " =0 (29f)

where, A, (j=12,....,6) constants can be obtained by solving Eq. (29) with any

system of equation solvers. As the profile of cylinder is rigid, deformed shape of
the surface for a single composite lamina should be identical to the shape of the

cylinder. Therefore,

w(x,0)=—0+ f(x) (30a)
ow(x,0)
= f(x) (30b)

where 6 and f(x) represent penetration depth and profile function, respectively.

For a rigid cylinder, the profile function can be written as,

f(x) = % (31a)

£1(x) =% (31b)

where R denotes the radius. Using Eq. (15c) and (31b), Eqg. (30b) can be
expanded as

aw(x0 _ 1 ez g
~ j|( |§){Z Je e = f(x) (32)

where A; (j=12,...,6) constants consists A’ and qu sub — constants, which

are formed by surface contact stress p(x) and surface in — plane stress q(X).
The expressions for surface contact stress p(X) and surface in — plane stress

q(x) can be written as

[OE i p(t)e'*'dt (33a)

25



a(x) = [ 7p(t)e'dt (33b)

Furthermore, Eq. (32) can be written in an open form regarding Ajp and A? sub

— constants as

—5W(X,O)_i°° - X P (w4 AdA(y) g e f0
ox  2r .[ I I'f)(;(Aj p(x)+qu(X))kjje Xdé = f(x) (34)

—0

Inserting EqQ. (33) into Eqg. (34) results to following equation:

ox _zﬁfw'( 'f)jzllAjk,-up(t)e dt}e dz

b (35)
+%_J; | (_ISZ),Z_:‘ A?kj (_J;,] p(t)elétdt}—léxdg _ £ (-a<x<b)

where —a and b denotes the edges of the contact patch. Then, arranging Eq.

(35) following equation can be obtained:

8W(X,0) _ %j; p(t) |:IO Mloelf(tx)d§:| dt

OX
; ) (36)

+% j np(t){ jw Nloe'f(”)dg} dt=f'(x) (~a<x<bh)

where

My, = |(—|§)Z Ajpkj :ngjpkj (37a)
j=L j=L

N10:|(—|§)ZA?|(J. :é:ZA?kj (37b)
j=1 j=1

Introducing following relations

T M,e'*¢™Mdé = —ZT Im[M,,Jsin(&(t—x))dé (38a)

T Ne'“‘™Mdé = ZT Re[M,,]cos(&(t—x))dé (38b)

Inserting EqQ. (38) into Eq. (36) yields to:
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17 T
;_ja p(t)[_([Mlsm(f(t—x))df} dt

(39)
b 0
+1jnp(t)[j Nlcos(g(t—x))dé}dt = f'(X) (~a<x<h)
ﬂ’-—a 0
where
6
M, ==Im[M,]=IM,=1E> ARk, (40a)
j=1
6
N, =Re[M,] =Ny =&Y Ak, (40b)
j=1
To obviate the singularity in Eqg. (39), two new constants are introduced:
9Igim M, =y, (41a)
!;im N, =y, (41b)
Then, Eq. (39) becomes
1 i . T 1%
— [ PO [ (M =1 )sin(5-x))dg + [y sin(£(t-0))d¢ |di+— [7p()
-a 0 0 -a
(42)

ﬁ(Nl —,)cos(&(t— x))df+Tw2 sin(f(t—x))dg} dt = f'(x) (—a<x<b)

0

Applying Fourier integral transformation [57] to Eq. (42), following singular

integral equation (SIE) for a single composite lamina can be obtained:

ﬁn P(X) +l j. p(t) {i + K (x,1) +77K2(x,t)} dt = 1 f'(x) (-a<x<b) (43)
74 T, t—X

L4
where
Kl(x,t):T%(Ml—wl)sin(g(t—x))df (44a)
K, (%,t) =T%(Nl—yxz)cos(§(t—x))d§ (44b)

Note that, following equilibrium equation should also be satisfied:
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b

T o, (X, 0)dx = j p(t)dt =P (45)

—a

Introducing following normalizations to modify the boundaries of singular integral
equation (SIE) in Eq. (43)

b+a b-a
t=——r+—0
> 5 (46a)
b+a b-a
> + > (46b)

Then, singular integral equation (SIE) in Eq. (43) and equilibrium equation in Eq.
(45) transform to following equations:

L)+ ] b ﬁ%(& Derkn) (PR (@Ta)
2

T o,,(x,0)dx :.[ p(r)dr = % (47b)

where

K (s,T) :bLZaT(Ml—z//l)sin(éibLza(r—s)Ddf (48a)

K, (s,1) =bL2aT(N1 —z//z)cos(g[bL;(r—s)Ddf (48b)

2.6. Solution of singular integral equation (SIE) and calculation of contact

stress at the surface for a single composite lamina

The principal solution of singular integral equation (SIE) given in Eq. (47a) can
be defined as follows:

p(r)=g(r)A-r)"@+r)” (49)

where
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o= 1| |n{’7'/’2/"”1_'}+N0 (50a)

2zl | ny, ly,+1

1 ly, -1
f=———In| TV22VA" (50b)

2zl | ny, ly, +1

N, and M, appearing in Eq. (50) are arbitrary integers and can be obtained by

utilizing —1<Re[a, f]<1. Using Gauss — Jacobi quadrate [58], singular integral

equation (SIE) presented in Eqg. (47a) can be converted to following numerical

form:

S 1 = v 1.,

20| K HKo(s0) =0 1) k=120.N=7)  (5Y)
i=1 i~ >k 1

where s, and r, are the roots of related Jacobi polynomials.
PeAr =0  (i=12,..,N) (52a)

Note that, y is the index of singular integral equation (SIE) and it may vary
according to indenter profile (for this study y =(a+ f)=-1 as a rigid cylinder is

used). Similar with Eq. (47a), Eq. (47b) can be converted to following numerical

form:
NN 2P
le g(n)——ﬂ(ma) (53)

where W," is weighting constant and can be defined as

W =

{_E(ZN +a+f+2)T(N+a+DI(N +,8+l)2(“+ﬂ’} 1 (54)

I (N +1)! I'(N+a+p+2) Pl pley

To determine the exact values of the edges of the contact patch —a and b, it is
needed to acquire g(r) forehand. To obtain it, Eq. (51) needs to be discretized
for more than one value of N by monitoring approximate error between
calculations. After that, unknown values for the edges of the contact patch —a

and b can be obtained using Eq. (53) by employing root finding or bracketing

methods. Then, surface contact stress over contact patch for a single composite
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lamina can be found using Eq. (49). Here, a simple discretization example is

presented using Eq. (51) by takingN =2:

W]
1 1
W2 {
2 Sl

+K, HCH A )+77K (s,,1, )}

K (s, r1)+nK_2(81,r1)}g(n)+

1 _ _
WlN |:I’ s +K1(521"1)+77K2(52’r1)}g(r1)+
17>

WZN{ ! +K,(s,,1,) +77K, (sz,r)}
=S,

Wl{ !
I —S;

WZN[ 1 +K(s3,r)+77K (sa,r)}
I’2—53

where Eq. (55) can be simplified as

[Al[X]=[B]

+ K, (83, 1) + 7K, (55, rl)} g(r)+

WlN _ +E(S1’ rl) +77K_2(517 r1)j| WzN
Lh—>

w2 +E<sz,r1)+m<_2(s2,rl)} w;
L=

WlN . }S +E(33’ r1)+77K_2(S3’ r1)} WzN

L 173

|

30

=5

27 92

_rz_ 3

g(r)
g(r,)

g(r)—__(a_—i_bs +Bj

w, RLU 2 & 2

g(r)—__[aLbs +b__aJ
w, RL 2 2% 2

g(r)—__(aLbs +b__aj
y, RU 2 2 2

+E(s1,r2)+m<_2(sl,r2)}

+K, (sz,r)+77K (s,,1,)

+K, (85, 10) +nK, (s3,r)}
1 1(a+b a)
- Sl -
w, RU 2 2

1 1(a+b b— a)
=| —=| —s,+—
v, RU 2 2

b—

1 1(a+b a)
Ly RU 2 2 )]

(55a)

(55b)

(55¢)

(56a)

(56b)



2.7. Calculation of in — plane stress at the surface for a single composite
lamina

In — plane stress at the surface for a single composite lamina can be defined as

(wsp(X)+H(X) —a<x<b
(X O)_( H(x) x<-a, x>b 57)

where

b
H =1 [ p(t)[w AT 4 K, (x,1) +77K4(x,t)} dt (58)
T, t—x
Sub — equations form Eq. (58) can be written as

K, (x,t) = I —y;)cos(&E(t—x))dé (59a)

K, (X,t) = _[ —y,)sin(&(t—x))d& (59b)

To modify boundaries of singular integral equation (SIE) in Eg. (58),

normalizations presented in Eg. (46) can be used. Then, Eq. (58) transforms to
following equation:

H(x)—— j p(r) %+E(s,r)+m<_4(s,r) bLz""dr (60)
Ry

where

E(s,r):bizaw(wlz—ws)cos(é[“Ta(r—s)Dd: (61a)

= b+a : b+a

K4(s,r)=T (NZ—%)Sln[f(T(r—S)Ddf (61b)

Similarly, sub — equations that from Eq. (59) can be presented as

M, =—1&D" A7 (Cyy —Cygkjn; +Cygm) ) (62a)
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6 - N
N, = 1| —1ED° AY(C,y ~Cgkn +Cygm ) (62b)
j=L

!'_TO M, =y, (62c)
!J_TO N, =y, (62d)

Employing Gauss — Jacobi quadrate, singular integral equation (SIE) in Eq. (60)
can be transformed into numerical form to obtain surface in — plane stress over

contact patch for a single composite lamina.

2.8. Calculation of in — plane stress at sub — surface for a single composite
lamina

To calculate in — plane stress at sub — surface, it is needed to obtain K,(x,t)and
K,(x,t) (see Eq. (59)) in symbolic form of equation variable & for each desired
vertical location (between 0 and h ). To handle that, M, and N, sub - constants
need to be acquired beforehand. Then, y, and y, sub — constants can be
obtained to form M, -y, and N, -y, in integral equations. After that, K,(x,t)

and K,(x,t) can be calculated for these vertical locations to be used in singular

integral equation (SIE) (see Eq. (60)).

2.9. Transition of equations from a single composite lamina to laminated

glass fiber composite

Proofs and explanations presented in previous sub — sections for a single
composite lamina can be expanded for laminated glass fiber composite having

identical or dissimilar orientations on m number of laminae through —z direction.

2.9.1. Material parameters

Similar to sub — section (2.1), calculation for the material parameters for a single
composite lamina and laminated glass fiber composite is identical as either of

them use individual glass fiber and epoxy matrix material parameters.

32



2.9.2. Transformed rotated stiffness constants

Considering sub — section (2.2), it is needed to relate global stresses (o Oy

m,xx ? m

1 O-m,zz’

o-m,yz !

&

Omnxr @Nd o ) and global strains (¢, 2zt Ymyz® Yo ®

m,xx ! ‘9m,yy !

and y,, ., ) with local stresses (o and o, ,,) and local

mi11? Om22r Omazr Opozr Opiao

strains (& Yoz Vmazr @nd y,_ ) for m number of laminae. To do

m,11? 8m,22 ! 8m,33 !

that, rotation matrix presented in Eg. (5) needs to be expanded forehand:

Qunij =C0S(cty s Uy (63a)
r,, rt., rt.;

Qm,ij = rtm,2 rtm,5 rtm,8 (63b)
I’tm’3 I’tm’6 I’tm9

where rt_. (i=12,..,9) represents counterclockwise rotation cosines and sines

between global and local directions, respectively. Then, following relations can

O,

m,zz ’

cTm,yz '

be presented to relate global stresses (o, ,,, o, Opnxr @Nd o )

yy !

and global strains (¢

m,xx !

&,

m,yy ! &

mzz s Ymyzr Ymxe » @Dy ) with local stresses (

Omi1? Om22r Omazr Opozr Oz and O-m,12) and local strains (‘9m,11’ Em221 €maz

Vm231 Yma3» and 7m,12) :

|:0m,123 1= [Tm,l:| [O' m,xyz:| (64a)
[ cos?, sinffg, 0 0 0 2sind, cosd. |
sin’g, cos’d. 0 O 0  -2sin@ coséd,
0 0 1 0 0 0
m1l= : 64b
[T 0 0 0 cosd, —sind, 0 (64b)
0 0 0 sing, cosé, 0
| —cos@,sing, cosg sind, 0 0 0 cos’6,sin’g, |
[gm,123] = ':Tm,z i| [gm,xyzj| (64C)

33



cos’8, sin’g, 0 0 0 sing, cosd, |
sin’g, cos’d. 0 0 0  —sing cosd,
0 0 1 0 0 0
1= _ 64d
[Tn] 0 0 0 cosd, —sind, 0 (64d)
0 0 0 sing, cosé, 0
| —2cos@,sing,  2cosg,sing, 0 0 0  cos’g,sin’g, |

After that, transformed rotated stiffness constants Cm,ij (i=12,..,6

J=12,..,6) which forms transformed rotated stiffness matrix [Cm,ij] (

1=12,..,6,j=12,...,6) can be obtained as

:val] [Um,xyz] = ':Cij :H:Tm,Z:H:gm,xyz:' (65a)
(e )= [Ton] [Cy ][ Tz J[eme ] (65b)

Co = [T ] (€ ][ Te] (650)

2.9.3. Displacement equations and stress — displacement relations

Proofs and explanations for Egs. (10) — (12) are given in sub — section (2.2).
Therefore, they are not included in here. Considering Eq. (13), two dimensional
equilibrium equations relations in terms of displacement components for m

number of laminae can be given as

o%u,, o'w,, o, =0V, o'w, o,
Cont P +Cis L +Cs rYa +C s e +C 55 [ﬁ + pe J =0 (65a)
ou, =——ow, ——ov, —1(0dw, ou, oV,
Cinis Ea +Cs oz +Chu 5 +Chss [% + P J+ Chnes Y 0 (65b)
oy —o0'w. —0v. —0v. —(0°w. du
Cons——+C, 3—"+C, ,,—"+C ,—+C | —-+—" =0 65
13 5 A R o2 M3 oAy TS oo m.55 ( ol oxer ] (65¢)

Similarly stress — displacement relations presented in Eq.(14) can be broaden as,

ou oW, ———0oV
-C_,—"+C_,—"+C_ , —" 66
O-m,xx m,11 aX m,13 82 m,16 OX ( a)
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ou oW ov
Oz =Chis a_;"'cm,sa 8_Zm+Cm 36 a_;

oV ow, ou
O-m,yz = Cm,44 E + Cm,45 ( OX + oz j

ov ow. o,
Om,xz C 45 P +Cm,55( X +EJ

ou ov

o . =C T+C SGan+C —n
= oz

m,xy m,16 ax m m,66 ax

(66b)

(66c¢)

(66d)

(66€e)

(66f)

2.9.4. Stress components and kj, mj, and nj expressions

Regarding Eq. (15) and Eq. (16), the Fourier transforms of displacements for m

number of laminae can be widen as

y(x2) == [ U (6 2)e " ds
(kD) == [ V(6. 2)e " ds

W, (02) == [ w6, 2)e g

(67a)

(67b)

(67¢)

where the transformed displacement components become

Un(&,2) = Z A, "
Vn(&,2) = 26: A, M, €™

_ 6
Wm(éa Z) = z IAn,jkm,je it
j=1

(68a)

(68b)

(68c)

Identically, stress components presented in Eg. (19) transform to following:

27

1 B 6 P i
Gm,xx = I _Ié: A\n,je ‘Jé € N (Cm,ll _Cm,13km,jnm,j +Cm,16mm,j )df (698)
j=1

—00
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1 ° & M iSZa-1Ex (~ ~ |
0 vy :z:[o_lgg Aﬂ,je ¥ € o (Cm,12 _Cm,23kmj m, j +Cm 26m )d§ (69b)
l w J M iSZa-1Ex (~  ~ |
Gm,zz :Z:[O_Igg An,je i € o (Cm,13 _Cm,33kmj m, j +Cm 36m )df (690)
:ingG:An e™i%e "5X(C m n . +C (k N ))d(f (69d)
o Jha i m, 44" 'm, j ' m, j m,45
:iffzﬁl% emie "‘5X(C My M+ Crrss (K j + 1 .))dg5 (69e)
271'_00 =i j m,45" " 'm,j’ 'm, j m,55 m,j m,j
o :iT_wiAﬂ .e"m*j‘fze"‘fx(c -C_.k +C_ oM, )dé (691)
Xy 272_ = N m,16 m,36°'m, j m j m,66

—00

Note that, Eq. (17) and Eq. (18) are not needed to widen stress components for
m number of laminae, therefore they are not included here once again. In the

same way, Egs. (20) — (22) are also omitted. Furthermore, Eq. (23) and Eq. (24)

become
6 4 2 _ O
|wn,4nm,j + Lm,Snm,j + Lm,znm,j +L= (70)
where
2
Lm,l = Cm,55 (Cm,16 _Cm,llcm,GG) (71a)
2
Lm,2 = _(Cm,16 Cm,33 - 2Cm,16 (Cm,13 (Cm,36 + Cm,45) + Cm,36 Cm,55) +

Cm,13 (Cm,13 + 2Cm,55)Cm,66 (71b)
+ Cll ((C36 + C45)2 - C44 C55 - C33 Cse ))

2 2
Lm,3 = (Cm,13 Cm,44 - 2Cm,l?s Cm,45 (Cm,36 + Cm,45) + Cm,36 Cm,55 + 2C:m,13 Cm,44 Cm,55
- Cm,33 (Cm,llcm,44 - 2Cm,le Cm,45 + Cm,ss Cm,66 ))

(71c)

2
Lna = _Cm,33(Cm,45 _Cm,44Cm,55) (71d)

Solving Eg. (70) yields n_ . (J=12,....,6) values for each laminae. Then, Eq.
(25) and Eqg. (26) can be expanded to obtain m,_; (]=12,..,6), and Kn; (
j=12,..,6)as
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L Cm,le (_Cm,SS + Cm,33n§1,j ) - nri,j (Cm,13 (Cm,36 + Cm,45) + Cm,36Cm,55 + Cm,33Cm,45nr121,j )
" (Cm,se + Cm,45)2 nri,j + (Cm,ss - Cm,33nr$1,j )(Cm,ss - Cm,44nr$1,j)

(72)

— (Cm,lS +Cm,55 + (Cm,36 +Cm,45)mm,j)nm,j

2
m,j

k

(73)

m, j

_Cm,55 + Cm,ssn

2.9.5. Boundary conditions and singular integral equation (SIE)

Considering geometry of laminated glass fiber composite given in Fig. 7, Eq. (27)
in sub — section (2.5) can be expanded for m number of laminae. In order to avoid
confusion, the boundary conditions are separated and given separately for each

lamina. Thus, boundary conditions of the top surface of the first lamina are given

as follows:
_(-p(¥) —a<x<b
%2(%.0)= ( 0 x<-a,x>b (742)
0.,,(x,0)=0 (74b)
_(—np(x) -a<x<b
G“Z(X’O)_[ 0 x<-a,x>b (74c)

At lamina interfaces, boundary conditions are almost identical to each other,

therefore a single explanation for them can be written with ease:

u. (x,—ch)—u_,,(x,—ch) =0 (75a)
v, (x,—ch)—v_,(x,—ch) =0 (75b)
W, (x,—ch)—w,_,, (x,—ch) =0 (75c)
o, »(X,—ch)—o,, ,, (x,—ch) =0 (75d)
O,y (X,—Ch)—o, , (X,—ch) =0 (75e)
O (X, =€) =0y, (X, —CN) =0 (75f)
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where (c=12,...,m-1) and h=h/m. Then, boundary conditions at the bottom

surface of m" lamina can be presented as

u,(x,—mh) =0 (76a)
V.. (X,—mh) =0 (76b)
w._ (X,—mh) =0 (76¢)

To obtain symbolic expressions for A ; ( j=12,....,6) constants, firstly appeared

in Eg. (68), it is needed to obtain inverse Fourier transforms of stress and
displacement expressions for each lamina (see Eg. (28), Eq. (67), and Eqg. (69))
in advance. Then, combining them with Egs. (74) — (76), following set of
equations can be created:

_IézAi ( 113 C133k11n11 +C136m ) —p(x) (77a)
6 I I

gzl A (C1,44m1,jn1,j +Css (kl,j +Ny; )) =0 (77b)
=

fZ’A& ( 145, 5 +C155(k1 +1 ))=—77I0(X) (77¢)
6 h 6 h

AT D A e =0 (77d)

i1 =1

J h d h

2m A e =D, A e =0 (7€)

=1 =1

6 h 6 h

ok A e =Y Ik AL e =0 (77f)

=1 i1

6
I éz A:,jencngh (Cc 13 Cc 33kc JnC j +Cc 36m )
(779)

6
nc+1‘ 'étCh —
+ I 62 A:+1,je : (Cc+1,13 - Cc+l,33kc+1,jnc+1,j + Cc+1,36mc+1,j ) - O
j=1
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6
e, jsch
QZZA:,jen o (Cc 44mc JnC j +Cc 45(kc,j +nc,j))
j=1

6 (77h)
c+1,j§ h =
- éjz A%+l,jen C (CC+1,44mc+1,an+1,j + CC+1v45 (k‘”l!j RRLYY )) =0
=1
Ne, 1‘5 h
SZZA: e (Cc ssMe M +Cogs (kc,i e ))
(770)
Neat, j hi~
- fz Ab.lyje 198 (Cc+1,45mc+1,jnc+l,j + Cc+l,55 (kc+l,j + nC+1rj )) =0
1
6 Ny, ;Emh
Z An,je ™= =0 (773)
i1
6 —Np i€mh
me’jAn'je m,j — 0 (77k)
i1
6 h
Zlkm,jAn,je_nm’jgm =0 (770
j=1

where (c=1 2,...,m-1) and h=h /m again. For the configurations considered in

this study m=12. Thus, 6m number of equations needs to be created. To further
explain this, an example is given in the following, where Eq. (77) is expanded for

a four — lamina order:

_Ié:ZAi ( 113 C133k11n +C136m ) —p(x) (78a)

YA (Craamy iy +Cog (K 41y, )) =0 (78b)
j=1

‘fZA& ( WELNILY +C155(k1 +y ))=—77p(X) (78c)
6 h 6 h

YA e™MT-Y A e =0 (780)
j=1 j=1

Zml,ipiie_m’jgh _Zmz,JAz,ie_nz'jéh =0 (78e)
i-1 i=1
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Deriving symoblic expressions dependent on equation variable & for A, (

j=12,...,6 ) constants with conventional system of equation solvers are

impossible (for instance, for m=4, the number of equations are 24 and for m=12
, the number of equations are 72). For this reason, numerical values starting from
zero to a predefined upper limit based on mathematical calculations are

appointed to equation variable & . Then, A (J=12,..,6) constants are

obtained numerically for each & using Cholesky decomposition and Gauss

elimination [59 — 60]. Note that, there is no change in the preperation of singular
integral equation (SIE) proofs (see Egs. (30) — (48)) for a single composite lamina

and laminated glass fiber composite except for explanations between A; (
j=12..,6)and A, ; (]=12,...,6) constants. To obtain K, (x,t)and K,(x,t)

(see EQ. (43) and Eq. (44)) in singular integral equation (SIE), it is needed to

obtain M, and N, sub — constants for each ¢ . To perform that, A ; (

1=12,....,6) constants needs to divided into AE,J- and A?,’j sub — constants as
explained in sub — section (2.5). After that, related y, and y, sub — constants
can be calculated numerically for each & . However, to utilize K (x,t) and K,(x,t)
in singular integral equation (SIE), sub — constants that form 1/y, (M, —y,) and
17y, (M, —y,) in related integrals need to be converted into symbolic form. To
do that, Hermite orthogonal polynomials and interpolating splines order of at least
8" can be used and 1/, (M, ~y,) and 1/y,(M,-y,) can be converted to

symbolic form of equation variable & [61]. Subsequently, K, (x,t)and K,(x,t)
can be implemented properly into singular integral equation (SIE). Curve fit plots

for 1/y,(M,—y,) and 1/y, (M, -y, ) for [90,/0,]  configuration are shown in

Appendix 1.
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2.9.6 Solution of singular integral equation (SIE) and calculation of contact
stress at the surface

Considering sub — section (2.6), Egs. (49) — (56) are valid for calculation of
contact stress at the surface for laminated glass fiber composite. Therefore, no

further explanation is presented here.

2.9.7 Calculation of in — plane stress at the surface

Considering sub — section (2.7), proofs presented in Egs. (57) — (62) can be used
to calculate in — plane stress at the surface for laminated glass fiber composite.

However, to calculate it properly, it is needed to obtain K,(xt) and K,(x,t)

beforehand (see Eq. (59)). To perform that, M, and N, sub — constants for each

¢ need to be obtained using previously dismantled Aﬁ,j and Ai,j sub —
constants,. Then, y, and y, sub — constants can be acquired numerically to be
used in M, -y, and N, —y,. In order to calculate integrals in Eq. (59), M, —y,
and N, -y, need to be converted to symbolic form of equation variable ¢ by
employing Hermite orthogonal polynomials and interpolating splines order of at
least 8" . After that, K;(x,t) and K,(x,t) can be added into singular integral

eqguation (SIE) to acquire in — plane stress at the surface.

2.9.8 Calculation of in — plane stress at the sub — surface

Identical to calculation of in — plane stress at the sub — surface for a single
composite lamina, it is needed to obtain K,(x,t)and K,(x,t) (see Eqg. (59)) in
symbolic form of equation variable £ for each desired vertical location (between
0 and h ). However, sub —constants M,, N,, v, and y, thatform K,(x,t)and
K,(x,t) are in numerical form at each vertical location. For this reason, M, —y,
and N, -y, need to be converted to symbolic form of equation variable ¢ by

employing Hermite orthogonal polynomials and interpolating splines order of at
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least 8" . Then, K,(x,t) and K,(x,t) can be calculated for these vertical locations

to be used in singular integral equation (SIE) (see Eq. (60)).
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3. FINITE ELEMENT METHOD

3.1. Literature review on contact mechanics and computational advances
regarding finite element method, layered structures, and laminated
composites

Finite element method is a unique numerical technique in solving boundary value
problems (BVPs) and partial differential equations (PDESs) approximately by sub
— dividing problem domain into simpler parts named as finite elements. Structural
analyses, numerical solution of heat, mass transfer, and contact mechanics
problems, thermo — chemical, thermo — chemo — mechanical and bio —
mechanical problems are the most obvious examples for the finite element
method. The historical background of finite element method goes back to mid
1940s, where the scientific pillars were firstly constructed because of the need
for solving complex structural problems in mechanical and aeronautical
engineering. The first two studies were conducted to solve the stress fields in
continous plane elastic solids with element discretization methods [62 — 63]. In
that studies, two different and unique approaches were presented and concluded
to the identical comment in which they named these discretized units as finite

elements.

Solution of sliding contact conditions using finite element method and reducing
solution times by improving computing efficiency had received great attention in
literature regarding layered structures and laminated composites. Effect of lamina
orientation, macro matrix cracks, and delamination of layers were studied with
finite element method by employing a contact mechanics problem between a
laminated orthotropic beam and a rigid indenter. Findings were presented in
terms of stress distributions and notch depths. It was found that, they were greatly
affected by lamina orientation and shape of the indenter [64]. A new numerical
method based on finite elements were presented to prevent micro crack
formations around local yield positions for hard coated surfaces bonded to
layered structures [65]. Then, a novel numerical algorithm was advanced to
reveal surface stresses and contact kinematics of surfaces. It was concluded that,
mortar finite elements have been found to be very effective in simulations

compared to conventional finite elements [66]. After that, a contact algorithm
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based on numerical methods was developed to investigate relations between
surface roughness and lamina orientations. Analogy with experimental methods
showed that developed contact algorithm could successfully predict dense
contact regions and wear areas resulting from surface roughness and lamina
orientations [67]. Contact capacities and efficiency of graded finite elements were
investigated and parametric benchmark studies were presented to be served as
a basis for onward studies [68]. To investigate the effect of surface friction on
three dissimilar contact types, new and novel finite element simulations were
carried out by pressing surfaces with Berkovich nanoindenters. It was revealed
that, surface friction had great effect on post — processed results [69]. To assess
the strength of contact surface and endurance limit of interlayers, an interesting
multi — axial loading test was presented by employing ceramic laminates and rigid
indenters. It was found that, interlayers could fail before the contact surface under
intense loads [70]. Then, precision and effectiveness of element based and
segment based mortar finite element integration types were compared, some
numerical models were presented regarding computational contact mechanics
[71]. Normal contact stress and wear depths were presented for a finite thick layer
loaded by a rigid sphere. It was found that, dual mortar method based on
Lagrangean shape functions were quite capable in modeling fretting wear effects
[72]. Subsequently, accuracy of isogeometric dual mortar contact formulation was
compared with classical finite element method. It is concluded that, isogeometric
dual mortar contact formulation yielded smoother contact pressure distribution
over contact patch [73]. Frictional contact effects and surface shape changes due
to wear were investigated using Lagrangean finite elements. The results showed
that, iterations between Lagrangean shape functions yielded faster convergence
and robustness [74]. Two — scale asymptotic homogenization method was used
to obtain elastic properties of a laminated shell composite with defective interface
contacts. Results were compared with finite element and spherical assemblage
model and concluded that, two — scale asymptotic homogenization method could
be used in contact problems [75]. Three different contact conditions were utilized
to investigate performance of Lagrange multipliers, where several numerical

examples were provided using mortar finite elements [76].
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3.2. Advantages of finite element method

Finite element method is the most extensive numerical method to solve and
analyze complex industrial problems. It is quite capable and accurate in modeling

because mixed boundaries, material non — linearities

, and geometrical defects can be easily taken into account. Displacements,
stresses, strains, strain — rates, damage, temperature, and forces can be easily
implemented [77]. With the visualization of the problem, interior and exterior of
complex geometries and erratic shapes can be optimized and configured.
Problem related specifications can be readily adapted to increase accuracy and
to decrease physical need in design and/or benchmark stages as trascribing
these specifications physically can be excessively time consuming. Thus, safe
simulation of potentially dangeous problems can be achieved. Furthermore,
simultaneous calculation of physical parameters and/or desired results can be

acquired to rapidly increase analyze performance.

3.3. Modeling of laminated glass fiber composite

Finite element modeling of laminated glass fiber composite is implemented in this
sub-section, where the numerical models are prepared using ANSYS Mechanical
APDL R2020. Detailed examples and comments for finite element types,
augmented contact formulation (ACF), model preparation, adaptive mesh

refinement and solution descriptions are given below.

3.3.1. Finite element types

Laminated glass fiber composite considered in this study is modeled using 8 —
noded quadrilateral PLANE183 solid finite elements, where the element
geometries and stress output are illustrated in Fig. 8. Using this element type;
guadratic displacement behavior, irregular and regular mesh types, plane strain,
plane stress, and generalized plane strain conditions can be implemented. This
element offers successful prediction of creep, large deflection and stress,
plasticity, elasticity, hyperelasticity, and stress stiffening behavior. It can be used
as an axisymmetric or planar symmetric finite element, where symmetry

conditions need to be defined in advance. It can also be utilized to model
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enhanced stress formulations in cyclic symmetry analyses to apply cyclic

loadings and to increase solution efficiency. Some important necessities and

restrictions for this element regarding contact mechanics are presented below:

To obtain a numerical solution, the area of the finite element must be
greater than zero.

To utilize symmetry conditions, vertical axis must be the axis of symmetry.
Stress stiffening and pre — stress effects are always included in nonlinear
analyses.

To use mixed contact formulation, sparse solver must be activated.
Rezoning and nonlinear contact adaptivity are not supported.

Linear perturbation and material force evaluation are not supported.

B,AH

Rectengular Degenerated triangle Triangle

Fig. 8. Element geometries and stress output of PLANE183 finite element

To represent rigid cylinder TARGE169 target segment elements are utilized,

where the element geometries and 2 — D segment element types are given in Fig.

9 and Fig. 10, respectively. Translational and rotational displacement, forces,

moments, magnetic potential, temperature, voltage, concentration, and pore

pressure can be imposed on target segment elements. It can be used for both

pair — based and general contact types. In pair — based contact type, 2 — D target

segment elements are associated with 2 — D contact line elements using an

identical real constant set involving interaction properties, material parameters,

and friction related terms. The target surface can be either flexible or rigid. For

flexible — flexible contacts, one of the flexible surfaces must be identified using

TARGEL169 target segment elements. For flexible — rigid contacts, rigid surface

must be represented by TARGE169 target segment elements. Modeling of target
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surface in flexible — rigid contacts is quite simpleforward as elements will not
overlay and intertwine with solid finite elements, complex rigid target surfaces can
be modeled. In general contact type, contact surfaces are generated
automatically by an embedded sub — routine, which scans interacting geometric
shapes and physical parts in the model. Unline pair — based contact type, 2 — D
target segment elements and 2 — D contact line elements are not associated with
these interaction properties, material parameters, and friction related terms.
Therefore, there is no real constant set sharing. Furthermore, some important
necessities and restrictions for this element regarding contact mechanics are

presented below:

e TARGE169 target segment elements must be defined in global
workspace.

e [For parabolic segment elements, third target point must lie at the middle
of the parabola.

e Linear pertubation is not supported.

e Monitoring contact birth and death is not supported.

Target segments

=]

Surface Node

Counterclockwise — Arc Circle
A
4 A
@ I [ ]
4 E ¢ Pilot node or point

Clockwise — Arc Parabola

Fig. 10. Segment element types of TARGE169 target segment elements

49



To represent sliding contact behavior between 8 — noded quadrilateral
PLANE183 solid finite elements and TARGE169 target segment elements,
CONTA172 contact line elements are utilized (see Fig. 11 for element geometry).
This element type is well applicapable to 2 — D structural and coupled — field
contact analyses, where it can be utilized for both pair — based and general
contact types. Coulomb and shear stress friction models can be implemented for
both flexible — flexible and rigid — flexible contacts. It also allows dissociation of
flexible surfaces, where interface delamination of layered structures and
laminated composites can be examined. Moreover, some important necessities
and restrictions for this element regarding contact mechanics are presented

below:

e CONTAL172 contact line elements must be defined in global workspace.

e To utilize symmetry conditions, vertical axis must be the axis of symmetry.

e Utilization with axisymmetric harmonic elements is not supported.

e |t can also be utilized with TARGE170 target segment elements to define
3 — D pair — based and general contacts.

e User — defined contact is not supported.

e Monitoring contact birth and death is not supported.

Note that, additional information for finite element types and their utilization in
ANSYS Mechanical APDL R2020 can be found in [78 — 80].

Associated target surface

\_/\_/l Caontact element X

Contact Normal N
Surface solid element 4

Fig. 11. Element geometry of CONTA172 contact line element

3.3.2. Augmented contact formulation (ACF)

To model dis — continuities resulting from interaction properties, material
parameters, and friction related terms, an augmented contact formulation (ACF)
based on Lagrange multiplier and penalty methods is utilized in ANSYS
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Mechanical APDL R2020. The aim is to increase contact accuracy by capturing
strong and weak spots, as they create numerical ill — continuities at the surface
of laminated glass fiber composite. In augmented contact formulation (ACF),
governing non — linear contact equations consist of two different sets; a set
without numerical ill — continuities and a set with numerical ill — continuities
associated to dis — continuities. Solutions can be obtained by resolving non —
linear equations with residual controlled iterative algorithms, such as Newton —
Raphson and bisection methods. To model contact behavior between laminae,
bonded contacts are utilized, as no separation or interlaminar debonding are
wanted [81 — 83].

3.3.3. Preperation of the model, adaptive mesh refinement, and solution

details

Prepared finite element model and deformed shape of laminated glass fiber
composite are presented in Fig. 12, wherein plane strain conditions are applied.
Parametric benchmarks are created by diversifying interaction properties,
material parameters, friction related terms, and lamina order. Regardless of
lamina order and post — processing path, 378383 total number of 8 — noded
quadrilateral PLANE183 solid finite elements are utilized along with 2
TARGE169 target segment elements, and 2326 CONTA172 contact line
elements. To improve solution efficiency without decreasing accuracy, an
adaptive mesh — refienement sub — routine is prepared. Element size is
automatically adjusted by comparing approximate absolute error between
surface contact and in — plane stress distributions peaks at x=0.0 and z=0.0,
edges of the contact patch, and sub — surface center — line in —plane stress
distributions peaks at x=0.0 and z=-1.125mm in each iteration. In transition
regions, 8 — noded quadrilateral PLANE183 solid finite elements are connected
using 6 — noded ones. For the element behavior and element formulation, plane
strain conditions and pure displacement element formulation are utilized,
respectively. To hinder rotation and translation of rigid cylinder through —z and
—x global directions, pilot node for TARGE169 target segment elements is

restricted. ldentically, the bottom surface of the laminated glass fiber composite
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is fixed, where all rotations and translations are restricted —x, —y, and —z global

directions. To further increase the understanding, solution details are shown in

Fig. 13 in an iterative scheme.

12
| P

Post — processing region

Fig. 12. Finite element model and deformed shape of laminated glass fiber

composite

Dafina analysis type as
structural

!

Input configuration angles for
0 and 90 degree rotations

!

Input tha corresponding
material parameters for glass
fiber and epoxy matrix

I

Caleulate and input
transformed rotated stiffhess
constants using sub - section

21

I

Sat the location of keypoints
for rigid eylinder and
comprising laminae regarding
lamina order

Create lines and areas from
keypoints

!

Define problem parameters
and friction refated terms

I

Input a prior finite element
size to be used by adaptive
mesh refinement

I

Input element behaviorand
formuration as plane strain and
pure displacemeant

Define augmented contact
formulation based on
Lagrange mufiiplier and
penalty methods and pilot
node for TARGE169 target
segment elemants

Obtain edges of contact patch,
surface and sub - surface
contact and in - plane stress
for six different configurations

I

Compare numerical results
with the ones generated using
analyticalmethod

!

Is the
calculated
error between
the compared
results within
the limits ?

NO

FPost - process desired results

Fig. 13. Iterative scheme

3.3.4. Accuracy of adaptive mesh refinement and solution times

To increase accuracy for results on post — processing regions, a prior mesh

sensitivity analysis is conducted. Using coarser finite elements away from regions
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of interest provided an extensive decrease on solution time without comprimising

solution accuracy. Numerical validation is performed for [903/03]S configuration,

where approximate absolute error comparison between surface contact and in —
plane stress distributions peaks at x=0.0 and z=0.0, edges of the contact
patch, and sub — surface center — line in —plane stress distributions peaks at
x=0.0 and z=-1.125mm are presented in Tables 2 — 4 for increasing number

of finite elements in each iteration.

Table 2. Accuracy of adaptive mesh refinement — 1
R=100mm, P=100N/mm, n=0.4, V. =%40, h =4.5mm, h=0.375mm,

W =90mm, m=12

# of # of

iteratio element

Gl,zz (O, 0) O-l,xx (0, 0) |8a| (%)’ Gl,zz (0’ O) |ga| (%)1 O_l,xx (0’ O)

0 S (MPa) (MPa) (MPa) (MPa)
1 436 -17.64 -22.93 100.0 100.0
2 2874 -24.32 -32.11 27.5 28.6
3 25889 -34.55 -38.97 29.5 17.4
4 53245 -46.61 -51.42 25.9 24.3
5 99522 -57.29 -59.41 18.5 13.6
6 256152  -64.82 -62.76 11.7 5.2

7 378383  -65.71 -63.33 1.3 0.9

After numerical models are prepared in ANSYS Mechanical APDL R2020,
computational solutions are obtained using a simulation environment with a 16
core, 32 thread CPU running at 4.5GHz base speed and 64GB of RAM. Each
parametric solution takes less than 450 seconds to compute owing to adaptive

mesh refinement.
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Table 3. Accuracy of adaptive mesh refinement — 2

R=100mm, P=100N/mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm,
W =90mm, m=12

pof - wot Ry IO e o)
iteration elements  (mm) (mm)

1 436 -1.348 1.622 100.0 100.0

2 2874 -1.152 1.496 17.0 9.2

3 25889 -0.994 1.358 15.8 8.7

4 53245 -0.926 1.239 7.3 7.7

5 99522 -0.893 1.143 3.6 5.7

6 256152 -0.871 1.081 2.5 9.4

7 378383 -0.865 1.068 0.6 1.2

Table 4. Accuracy of adaptive mesh refienement — 3

R =100mm, P=100N/mm, 5 =0.4, V; =%40, h =4.5mm, h=0.375mm,
W =90mm, m=12

# of # of O3 O, le.] (%), l&.] (%)
iteratio  element  (0,-1.125) (0,-1.125) o0,,(0,-1.125) o, (0,-1.125)
n S (MPa) (MPa) (MPa) (MPa)
1 436 -3.56 -0.77 100.0 100.0
2 2874 -7.24 -0.92 50.8 16.3
3 25889 -0.12 -1.04 20.6 11.5
4 53245 -10.11 -1.15 9.7 9.5
5 99522 -10.87 -1.21 6.9 4.9
6 256152 -11.34 -1.24 4.1 24
7 378383 -11.46 -1.26 1.0 1.5

54



4. RESULTS AND DISCUSSION

In this section, the study findings are presented. By diversifying interaction
properties, material parameters, friction related terms, and lamina order, the
results of analytical and finite element methods are contrasted. The compared
results are surface contact and in — plane stress distributions, edges of the
contact patch, sub — surface center — line in —plane stress distributions, and sub
— surface in — plane stress contours. It can be noted that, results from both

methods are matched perfectly. Following limits, 50N/mm<P <200N /mm

00<7<0.8 , 100mm<R<200mm , and %40<V, <%60 and six different
configurations for lamina order [0,,], [90,,], [0,/90,] , [90,/0,] , [0,/90,],, and

[903 / 03]2 are utilized to post — process results. Firstly, the effects of interaction

properties, material parameters, and friction related terms on surface contact and
in — plane stress distributions and edges of contact patch are investigated in sub
— section (4.1), where comparisons are described in Figs. 14 — 25 and Tables 5
— 28, respectively. Comparisons are then shown in Figs. 26 — 27 for surface
contact and in — plane stress and sub — surface center — line in — plane stress
distributions for six different configurations for lamina order in sub — section (4.2).
After that, in sub — section (4.3), comparisons for sub — surface in — plane stress
contours for six different configurations for lamina order are given using analytical

and finite element methods, where Figs. 28 — 29 have been added.

4.1. Effects of interaction properties, material parameters, and friction
related terms on surface contact and in — plane stress distributions

Comparison of surface contact and in — plane stress distributions and edges of
contact patch for unidirectional configurations [0,,] and [90,, | are given in Figs.

14 — 17 and Tables 5 — 12. Effect of concentrated normal force P on surface
contact and in — plane stress distributions and edges of contact patch is

presented in Fig. 14, where the remainder interaction properties and friction
related terms are taken as R=100mm , p=04 , V,=%40 , h =45mm

h=0.375mm, W =90mm , m=12. Increase in concentrated normal force P
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causes the rigid cylinder to penetrate deeper into the surface of laminated glass
fiber composite. Thus, resulting compressive and tensional peaks on surface
contact and in — plane stress distributions are greatly increased and contact patch
is widened (see Table 5 and Table 6 for the edges of contact patch). For higher
values of P, successful monitoring of these peaks in surface contact and in —
plane stress distributions is very important as high peaks may cause
unpredictable and instant micro cracks at the surface of laminated glass fiber
composite. In industrial applications where the product is used as a coating or a
mechanical barrier, micro cracks may adversely affect surface performance. To
prevent these local failures, surface optimization can be conducted with respect

to concentrated normal force P .
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Fig. 14. Comparison of surface contact and in — plane stress distribution for
R=100mm, =0.4, V; =%40, h =4.5mm, h=0.375mm, W =90mm, m=12,

solid lines represent finite element method, dotted lines represent analytical
method

In Fig. 15, effect of Coulomb’s static coefficient of friction 77 on surface contact
and in — plane stress distributions and edges of contact patch is illustrated.

Unrelated interaction properties are taken as R=100mm , P=100N/mm ,
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V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12. Increase in 77 slanted

surface contact stress distributions to leading edge of the contact patch (see
Table 7 and Table 8 for the variation of —d and b for varying values of Coulomb’s

static coefficient of friction 77). Resulting compressive peaks are not affected

because there is no relation between concentrated normal force P and
Coulomb’s static coefficient of friction 77. On the other hand, increase in 77
drastically affected resulting peaks on surface in — plane stress distributions (see
the connection between 77 and Q=7P ). Monitoring these tensional peaks is
crucial in designing strong wear resistant surfaces. The tensile peaks on the
surface can be minimized by using surface lubricants, hard interlaminar layers,
and applying a homogeneous distribution to individual glass fiber and epoxy

matrix material parameters. Surface wear will therefore decrease.

Table 5. Edges of contact patch for unidirectional configuration [0,, ] for varying
P

R=100mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12

Analytical
Concentrated FEM
method le| (%), —a  |g|(%),b
normal force p
-a b -a b (mm) (mm)
(N/mm)
(mm)  (mm)  (mm)  (mm)
50 -0.584 0.694 -0.596 0.708 2.0 2.0
100 -0.812 0.972 -0.824 0.976 1.4 0.4
200 -1.142 1.342 -1.156 1.352 1.2 0.7
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Table 6. Edges of contact patch for unidirectional configuration [90,,] for varying

P

R=100mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12

Analytical
Concentrated FEM
method & (), —a  |&] ()b
normal force p
-a b -a b (mm) (mm)
(N/mm)
(mm)  (mm) (mm)  (mm)
50 -0.674 0.808 -0.660 0.812 2.1 0.4
100 -0.918 1.112 -0.924 1.132 0.6 1.7
200 -1.262 1544 -1.276 1.556 1.0 0.7
17=0.0,0.4,0.8 7=0.0,0.4,0.8
0.0 1 120.0
-20.0 60.0
-40.0 | 0.0
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Fig. 15. Comparison of surface contact and in — plane stress distribution for
R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,,

m=12, solid lines represent finite element method, dotted lines represent
analytical method
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Table 7. Edges of contact patch for unidirectional configuration [0,,] for varying

7
R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical FEM
Coulomb’s stati
oulomb’s static method |gt|(%),—a |gt|(%),b
coefficient of
friction @ b @ b (mm) (mm)
(mm)  (mm)  (mm)  (mm)
0.0 -0.878 0.878 -0.888 0.888 1.1 1.1
0.4 -0.812 0.972 -0.824 0.976 1.4 0.4
0.8 -0.736 1.048 -0.748 1.064 1.6 15

Table 8. Edges of contact patch for unidirectional configuration [9012] for varying

n
R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,
m=12

Analytical FEM
Coulomb’s stati
oulomb’s static method 606, —a || @)b
coefficient of
friction 7 @ b @ b (mm) (mm)
(mm)  (mm) (mm)  (mm)
0.0 -1.020 1.020 -1.008 1.008 1.1 1.1
0.4 -0.918 1.112 -0.924 1.132 0.6 1.7
0.8 -0.832 1.250 -0.840 1.252 0.9 0.1

Effect of rigid cylinder radius R on on surface contact and in — plane stress
distributions and edges of contact patch is shown in Fig. 16, where n=0.4,

P =100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12. For high

values of R, resulting surface contact and in — plane stress distributions peaks
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are decreased and contact patch is increased (see Table 9 and Table 10). Thus,
a more equal stress distribution is monitored. If an application requires the use of
lower values of R for rigid cylinder, proper surface lubrication may be needed to
reduce the surface wear. Lower values of R may cause surface contact and in —

plane stress distributions to concentrate at one point.

In Fig. 17, effect of glass fiber volume fraction V, on surface contact and in —
plane stress distributions and edges of contact patch is given, where n=0.4,
P=100N/mm, R=100mm, h =45mm, h=0.375mm, W=90mm, m=12. In
engineering applications, the highest achievable fiber volume fraction V, is

around %70 due to manufacturing processes. Adding to much fiber volume may
decrease the strength of laminated glass fiber composite as there will be no
space for the epoxy matrix components to bond with fibers, choosing an optimal

value for fiber volume fraction V, is very important. Therefore, %40, %50, and
%60 fiber volume fraction V, are chosen for parametric studies. For higher
values of V, , laminated glass fiber composite became more stiff in loading

directions. Therefore, higher compressive and tensional peaks are observed.
This stiff behavior has a potential to lead unpredictable and instant micro cracks
at the surface of laminated glass fiber composite, which may instantly reduce
surface performance. To observe the variation on edges of contact patch for

unidirectional configurations [0,,] and [90,], see Table 11 and Table 12,
respectively.

In Figs. 18 — 25 and Tables 13 — 28, comparison of surface contact and in — plane

stress distributions and edges of contact patch for configurations [03/ 903]5 ,

[90,/0,]. , [0,/90,], , and [90,/0,], are presented. Explanations related to

2 )
surface contact and in — plane stress distributions and edges of contact patch for

unidirectional configurations [0,,] and [90,,] are also valid for configurations
[0,/90,] . [90,/0,]. , [0,/90,], , and [90,/0,], . One of the interesting
observations that differed from unidirectional configurations [0,,] and [90,,] is

that the compressive and tensional peaks in surface contact and in — plane stress

distributions decreased for configurations started with 0 degree rotation and
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increased for configurations started with 90 degree, respectively. Lamina order
affected total stiffness of laminated glass fiber composite in normal and horizontal
loading directions. Furthermore, surface contact and in — plane stress

distributions shifted to leading edge of contact patch more specifically.
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Fig. 16. Comparison of surface contact and in — plane stress distribution for
n=04, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12,

solid lines represent finite element method, dotted lines represent analytical
method
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Table 9. Edges of contact patch for unidirectional configuration [0,,] for varying

R
n=04, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,
m=12
Analytical
4 FEM
Rigid cylinder method 5] (%), —a  |&|(%),b
radius R (mm) —a b _a b (mm) (mm)

(mm)  (mm) (mm)  (mm)

100 -0.812 0.972 -0.824 0.976 1.4 0.4
150 -0.968 1.154 -0.988 1.168 2.0 11
200 -1.121 1339 -1.140 1.348 1.7 0.6

Table 10. Edges of contact patch for unidirectional configuration [90,,] for

varying R

n=04, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
! FEM
Rigid cylinder method .| %), —a  |&|(%),b
radius R (mm) —a b _a b (mm) (mm)

(mm)  (mm)  (mm)  (mm)

100 -0.918 1.112 -0.924 1.132 0.6 1.7
150 -1.100 1.339 -1.100 1.339 0.7 0.6
200 -1.242 1530 -1.242 1.530 1.4 0.1
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Fig. 17. Comparison of surface contact and in — plane stress distribution for
n=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12, solid lines represent finite element method, dotted lines represent
analytical method

Table 11. Edges of contact patch for unidirectional configuration [9012] for

varying V.,

n=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
% FEM
Fiber volume method le| (%), —a |g|(%),b
fraction v, (%) — _a b -a b (mm) (mm)
(mm) (mm)  (mm)  (mm)
40 -0.812 0.972 -0.824 0.976 14 0.4
50 -0.742 0.889 -0.752 0.896 1.3 0.7
60 -0.675 0.812 -0.688 0.832 1.8 2.4
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Table 12. Edges of contact patch for unidirectional configuration [90,,] for
varying V,

n=04, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
¢ FEM
Fiber volume method le| (%), —a |g|(%),b
fraction vV, (%)  _a b -a b (mm) (mm)

(mm) — (mm)  (mm)  (mm)

40 -0.918 1.112 -0.924 1.132 0.6 1.7
50 -0.836 1.038 -0.840 1.048 0.4 0.9
60 -0.764 0.948 -0.772 0.956 1.0 0.8

4.2. Effects of lamina order on surface contact and in — plane stress and

sub - surface center — line in — plane stress distributions

Effects of lamina order on surface contact and in — plane stress and sub — surface
center — line in — plane stress distributions and comparisons for six different
configurations for lamina order are illustrated in this sub — section, in which Figs.
26 — 27 present the relevant details. Following generalization can be made for

surface contact and in — plane stress distributions for six different configurations
for lamina order [0,], [90,,], [0,/90;], , [90,/0,] , [0,/90,],, and [90,/0;],:

2 )
configuration started with 0 degree rotation resulted in higher compressive and
tensional peaks as 90 degree rotation resulted in a softer behavior in normal

loading direction than 0 degree. Seen from Fig. 26, [90,,] configuration is softer

than [0,] in normal loading direction. Therefore, lower compressive and

tensional peaks are monitored. Due to this soft behavior and smooth penetration
on the surface, a wider contact patch is observed. On the other hand, no

considerable variation is observed on surface contact stress distributions

between [0,/90,] , [90,/0,] , [0,/90,],, and [90,/0,], configurations as they

demonstrated near identical stiffness behavior in normal loading direction, where
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the laminae except the one in contact contributed to overall stiffness.
Furthermore, a remarkable variation in horizontal direction of loading is then
observed for surface in — plane stress distributions. Since the surface stiffness of
laminated glass fiber composites started with 90 degree rotation is much lower
than 0 degree rotation, surface in — plane stresses are more uniformly spread
across the contact patch and lower tensional peaks are found. Even so, changes

on edges of contact patch are negligible for these configurations.

Considering lamina order, the stiffness in normal and horizontal loading directions
varies between configurations. For each laminated glass fiber composite, this can

cause sub — surface center — line in — plane stress distributions to be different

(see Fig. 27). In unidirectional configurations [0,,] and [90,,], total stiffness
along normal and horizontal loading directions is constant and [012] configuration

is properly stiffer than the opposite one in both loading directions. Thus, on the
surface, higher compressive peaks are found for center — line in — plane stress
distributions. Therefore, away from surface, stress values are decreased faster
than those in the configuration of [90,,]. Stiffer behavior lead to stresses that

concentrate on the surface rather than extending to the sub — surface of the
laminated glass fiber composite.

For [0,/90,] and [90,/0,], configurations, contact effect is diminished specially

after the mid — plane where y=-2.250mm, as sub — surface center — line in —

plane stress values are demonstrated a very close behavior for varying values of

concentrated normal force p . However, at y=-1.125mm , a substantial
difference is observed at the area of lamina angle shift. The sub — surface center
— line in — plane stresses for the configuration of [90, /03]S changed in first three
laminae in a broader stress band relative to [0, /90, ]. . This showed that first three
laminae of 90 degree rotation served as a cushion and the next six laminae of
0 degree rotation transmitted a decreased load. For [0,/90,] configuration,

owing to high stiffness, almost the entire loading is focused on the contact patch.
At the lamina angle shift area, high compressive and tensional peaks are

observed where y =—-1.125mm . Proper analysis of these peaks is very important
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to prevent interface cracks and interlaminar debonding. Behavior of [0,/90,],

and [90,/0,], are similar to [0,/90,]. and [90,/0,] configurations. Therefore,

identical expressions can be made. In comparison, an improved compressive and

tensile stress peak region is tracked at y=-2.250mm for the [0,/90,],
configuration. Compared to [0, /903]5 , the explanation for this discrepancy is that

the three 90 degree rotation laminae are unable to absorb the stresses and thus
the above peaks are found in the second lamina angle shift area. Furthermore,

less compressive and tensile peaks are found for the [90,/0,], configuration as

the first three 90 degree rotation laminae distributed stresses.
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Fig. 18. Comparison of surface contact and in — plane stress distribution for
R=100mm, =04, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12,

solid lines represent finite element method, dotted lines represent analytical
method
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Table 13. Edges of contact patch for configuration [0, /903]5 for varying P

R=100mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12

Analytical
Concentrated FEM
method le| (%), —a  |&|(%),b
normal force p
-a b —a b (mm) (mm)
(N/mm)
(mm) (mm) (mm) (mm)
50 -0.582 0.704 -0.596 0.716 2.3 1.6
100 -0.832 0.974 -0.840 0.984 0.9 1.0
200 -1.168 1.372 -1.180 1.380 1.0 0.5

Table 14. Edges of contact patch for configuration [903 /03]S for varying P

R=100mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12

Analytical

Concentrated FEM
method l&| (%), —a |&|(%),b
normal force p
-a b -a b (mm) (mm)
(N /mm)
(mm)  (mm)  (mm)  (mm)
50 -0.621 0.792 -0.632 0.800 1.7 1.0
100 -0.865 1.068 -0.872 1.080 0.7 1.1
200 -1.185 1.494 -1.200 1.500 1.2 0.4
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Fig. 19. Comparison of surface contact and in — plane stress distribution for
R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12, solid lines represent finite element method, dotted lines represent

analytical method

Table 15. Edges of contact patch for configuration [0, /903]S for varying

R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,,

m=12
Analytical FEM
Coulomb’s stati
oulomb’s static method |gt|(%),—a |gt|(%),b
coefficient of
friction 7 - b - b (mm) (mm)
(mm)  (mm) (mm) (mm)
0.0 -0.892 0.892 -0.908 0.908 1.76 1.76
0.4 -0.832 0.974 -0.840 0.984 0.9 1.0
0.8 -0.760 1.080 -0.772 1.080 1.5 1.8
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Table 16. Edges of contact patch for configuration [90,/0,] for varying 7

R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical FEM
Coulomb’s static
- method ] ). ~a ] ()b
coefficient of
. —-a b —-a b mm mm
friction 7, (mm) (mm)
(mm) (mm) (mm)  (mm)
0.0 -0.966 0.966 -0.972 0.972 0.6 0.6
0.4 -0.865 1.068 -0.872 1.080 0.7 1.1
0.8 -0.768 1.198 -0.780 1.200 1.5 0.1
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Fig. 20. Comparison of surface contact and in — plane stress distribution for
n=04, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12,

solid lines represent finite element method, dotted lines represent analytical
method

69



Table 17. Edges of contact patch for configuration [0,/90,]  for varying R

n7=0.4, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
FEM
Rigid cylinder method le,| %), —a  |&|(%),b
radius R (mm) -a b -a b (mm) (mm)

(mm)  (mm)  (mm)  (mm)

100 -0.832 0.974 -0.840 0.984 0.9 1.0
150 -1.010 1.198 -1.028 1.200 1.7 0.1
200 -1.184 1.375 -1.192 1.380 0.6 0.3

Table 18. Edges of contact patch for configuration [90, /03]5 for varying R

n7=04, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
N FEM
Rigid cylinder method le,| %), —a  |&|(%),b
radius R (mm) -a b -a b (mm) (mm)

(mm)  (mm)  (mm)  (mm)

100 -0.865 1.068 -0.872 1.080 0.8 11
150 -1.050 1.311 -1.052 1.316 0.1 0.3
200 -1.184 1.494 -1.200 1.496 1.3 0.1
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Fig. 21. Comparison of surface contact and in — plane stress distribution for
n=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12, solid lines represent finite element method, dotted lines represent

analytical method

Table 19. Edges of contact patch for configuration [0,/90,], for varying V,

n7=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
% FEM
Fiber volume method e (%), —a |g|(%),b
fraction v, (%) — _a b -a b (mm) (mm)
(mm)  (mm)  (mm)  (mm)
40 -0.832 0.974 -0.840 0.984 0.9 1.0
50 -0.762 0.905 -0.776 0.920 1.8 1.6
60 -0.690 0.825 -0.708 0.836 2.5 1.2
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Table 20. Edges of contact patch for configuration [90,/0,], for varying V,

n=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
% FEM
Fiber volume method l&| (%), —a |g|(%),b
fraction v, (%)  _a b -a b (mm) (mm)
(mm) (mm) (mm) (mm)
40 -0.865 1.068 -0.872 1.080 0.7 1.1
50 -0.793 1.005 -0.810 1.014 2.1 0.8
60 -0.732 0.912 -0.744 0.928 1.5 1.7
P =50,100,200 N / mm P=50,100,200 N / mm
0.0 120.0
-20.0 60.0 .
-40.0 | 0.0 e
0,..(x.0) (MPa) 4, |0, (x.0) (MPa) 4,
-80.0 -120.0
-100.0 -180.0
-120.0 [0 /.907‘]3 240.0 [0 /90"]3 ;
-16 -12 -08 -04 00 04 08 12 16 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0
x (mm) x (mm)

P =50,100,200 N / mm

0.0 120.0
-20.0 60.0
-40.0 0.0

0,..(x.0) (MPa) 4o

| 0, o (x,0) (MPa)

P =50,100,200 N / mm

-80.0 -120.0
-100.0 -180.0
[90,/0,], [90,/05],
-120.0 T -240.0 =
-6 <12 08 -04 00 04 08 12 16 300 20 -10 00 10 20 3.0
x (mm) x (mm)

Fig. 22. Comparison of surface contact and in — plane stress distribution for
R=100mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12,

solid lines represent finite element method, dotted lines represent analytical
method
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Table 21. Edges of contact patch for configuration [0,/90,], for varying p

R=100mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12

Analytical
Concentrated FEM
method le| (%), —a  |&|(%),b
normal force p
-a b —a b (mm) (mm)
(N/mm)
(mm) (mm) (mm) (mm)
50 -0.584 0.708 -0.596 0.712 2.0 0.5
100 -0.824 0.972 -0.836 0.980 1.4 0.8
200 -1.154 1.368 -1.168 1.372 1.1 0.2

Table 22. Edges of contact patch for configuration [90, /03]2 for varying P

R=100mm, n=0.4, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12

Analytical
Concentrated FEM
method le| (%), —a  |&|(%),b
normal force p
-a b -a b (mm) (mm)
(N/mm)
(mm) (mm) (mm)  (mm)
50 -0.592 0.794 -0.602 0.804 1.6 1.2
100 -0.845 1.080 -0.872 1.080 3.0 1.8
200 -1.182 1.496 -1.200 1.500 1.5 0.2
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Fig. 23. Comparison of surface contact and in — plane stress distribution for
R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12, solid lines represent finite element method, dotted lines represent

analytical method

Table 23. Edges of contact patch for configuration [0,/90,], for varying 7

R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical FEM
Coulomb’s static
) | method & @), —a  |&](%),b
coefficient of
friction - b - b (mm) (mm)
(mm)  (mm)  (mm)  (mm)
0.0 -0.892 0.892 -0.896 0.896 0.4 0.4
0.4 -0.824 0.972 -0.836 0.980 1.4 0.8
0.8 -0.765 1.062 -0.776 1.076 1.4 1.3
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Table 24. Edges of contact patch for configuration [90,/0,], for varying 7

R=100mm, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical FEM
Coulomb’s static
method l&| (%), —a  |&|(%),b
coefficient of
friction », - b - b (mm) (mm)
(mm)  (mm)  (mm)  (mm)
0.0 -0.968 0.968 -0.984 -0.984 1.6 1.6
0.4 -0.845 1.080 -0.872 1.100 3.0 1.8
0.8 -0.761 1.193 -0.772 1.228 1.3 2.8
R =100,150, 200 mm R =100,150, 200 mm
0.0 1 — 120.0
-20.0 60.0
-40.0 0.0 e

0,(x,0) (MPa) g | 0, . (x,0) (MPa) -60.0

-80.0 ‘ -120.0
-100.0 : -180.0
[0,/%0,], [0,/90,],
-120.0 - -240.0 e
-6 -12 08 -04 00 04 08 12 16 30 20 -0 00 1O 20 3.0
x (mm) x (mm)
R =100,150, 200 mm R=100,150, 200 mm
0.0 120.0
(&
-20.0 : 60.0
-40.0 { 0.0 W
0,..(x,0) (MPa) ¢, | 0, . (x,0) (MPa) ¢,
-80.0 ‘ -120.0
-100.0 ? -180.0
[90; /0,], [905 /03],
-120.0 - " . -240.0 <
-6 -1.2 08 -04 00 04 08 12 1.6 30 20 -0 00 1O 20 3.0
x (mm) x (mm)

Fig. 24. Comparison of surface contact and in — plane stress distribution for
n=04, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12,

solid lines represent finite element method, dotted lines represent analytical
method
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Table 25. Edges of contact patch for configuration [0, /903]2 for varying R

n7=0.4, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
FEM
Rigid cylinder method le,| %), —a  |&|(%),b
radius R (mm) -a b -a b (mm) (mm)
(mm)  (mm)  (mm)  (mm)

100 -0.824 0.972 -0.836 0.980 14 0.8

150 -0.999 1.188 -1.020 1.196 2.0 0.6

200 -1.162 1.366 -1.168 1.372 0.5 0.4

Table 26. Edges of contact patch for configuration [90, /03]2 for varying R

n7=04, P=100N/mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
7t FEM
Rigid cylinder method le,| %), —a  |&|(%),b
radius R (mm) -a b -a b (mm) (mm)
(mm)  (mm)  (mm)  (mm)

100 -0.845 1.080 -0.872 1.100 3.0 1.8

150 -1.042 1.300 -1.064 1.320 2.0 15

200 -1.191 1.484 -1.220 1.500 2.4 1.0
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Fig. 25. Comparison of surface contact and in — plane stress distribution for
n=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12, solid lines represent finite element method, dotted lines represent

analytical method

Table 27. Edges of contact patch for configuration [0,/90,], for varying V,

n7=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
% FEM
Fiber volume method e (%), —a |g|(%),b
fraction v, (%) — _a b -a b (mm) (mm)
(mm)  (mm)  (mm)  (mm)
40 -0.824 0.972 -0.836 0.980 14 0.8
50 -0.762 0.889 -0.772 0.900 1.2 1.2
60 -0.688 0.828 -0.696 0.836 1.1 0.9
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Table 28. Edges of contact patch for configuration [90,/0,], for varying V,

n=0.4, P=100N/mm, R=100mm, h =4.5mm, h=0.375mm, W =90mm,

m=12
Analytical
FEM
Fiber volume method l&| (%), —a |g|(%),b
i 0
fraction v, (%)  _a b -a b (mm) (mm)
(mm)  (mm)  (mm)  (mm)
40 -0.845 1.080 -0.872 1.100 3.0 1.8
50 -0.788 1.010 -0.808 1.020 2.4 0.9
60 -0.738 0.918 -0.744 0.928 0.8 1.0
0.0 120.0
-20.0 ‘; 60.0 *
-40.0 0.0
o, ..(x,0) (MPa) 4, O, o (x.0) (MPa)
-80.0 -120.0
-100.0 5 -180.0 5
o ol [oo), o JoL,. [ool,
-6 -1.2 08 -04 00 04 08 12 1.6 3.0 20 -0 0.0 1.0 2.0 3.0
x (mm) x (mm)
0.0 120.0
-20.0 j 60.0
-40.0 0.0
o, ..(x,0) (MPa) 4, O (x,0) (MPa) ¢
-80.0 -120.0
%0, /0 90, /0 0N, /00,1 ,[90, /0
1200 [ L] 0:]1'[ 12 1] ! Si0b [0/ (11[ 3 x] | |
416 -12 08 -04 00 04 08 12 16 3.0 20 -1.0 0.0 1.0 2.0 3.0
x (mm) x (mm)
0.0 120.0
-20.0 60.0
-40.0 0.0 9
a'I.::(.\'.O) (MPa) -60.0 (o piom (x.0) (MPa) -60.0
-80.0 -120.0
-100.0 { -180.0
/C /G
1200 I102790:1;.[90:/04], v 10:790:1,:[90:/0,],
.16 -12 08 -04 00 04 08 12 1.6 3.0 220 -1.0 00 1.0 2.0 3.0
x (mm) x (mm)

Fig. 26. Comparison of surface contact and in — plane stress distribution for
n7=0.4, P=100N/mm, R=100mm, V, =%40, h =4.5mm, h=0.375mm,

W =90mm, m=12, solid lines represent finite element method, dotted lines
represent analytical method
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Fig. 27. Comparison of sub — surface center — line in — plane stress distributions
for n=0.4, R=100mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm, m=12,

solid lines represent finite element method, dotted lines represent analytical
method

4.3. Comparison of sub — surface in — plane stress contours

Comparison of sub — surface in — plane stress contours for six different
configurations for lamina order are displayed using analytical and finite element
methods. It can be seen that, the contours formed by both methods displayed
very similar behavior. At the surface and sub-surface, the maximum compression

and tensional peak areas matched each other.
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In Fig. 28, unidirectional configurations [0,,] and [90,,] are compared. For
[90,,], as stiffness in normal loading direction is lower, sub — surface in — plane
stresses distributed more uniformly than [0,,] configuration. By testing high

stress areas around contact patch, this behavior can also be observed. Low
stiffness behavior can result in interlaminar debonding and interface cracks as

some of the contact load is still handled by the sub — surface. In comparison, the

use of unidirectional configuration [0,,] can cause unwanted wear and micro

cracks over the contact patch. To achieve optimal surface and sub — surface

efficiency, the application — oriented configuration should therefore be selected.

~— - —
[0],, FEM [0],, Anaiytical
1459 016 -57.4 33 311 1421 1022 549 147 25.4
- = - =
1238 795 -35.2 89 522 -125.2 787 -35.1 6.6 50.6
-_—y " -_—y T
[90], FEAM [90], Analytical
62,5 427 .22 517 167 614 413 21.8 -2.8 17.4
- i -
526 -32.8 13 67 26.6 492 -30.6 -13.0 7.7 27.3

Fig. 28. Comparison of sub — surface in — plane stress contours for 77 =0.4,
P =100N/mm, R=100mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,
m=12

In Fig. 29, sub — surface in — plane stress contours for [0,/90,] , [90,/0;]. ,
[0,/90,],, and [90,/0,], configurations are compared. These contours validate

the results presented in sub — sections (4.1 — 4.2), respectively. Lamina in contact
has higher stiffness in configurations beginning with 0 degree rotation; less
stress is thus moved to the sub — surface. Furthermore, low initial lamina stresses

are observed for configurations started with 90 degree rotation. Tensional peaks
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Fig. 29. Comparison of sub — surface in — plane stress contours for 7=0.4,
P =100N /mm, R=100mm, V, =%40, h =4.5mm, h=0.375mm, W =90mm,
m=12

are tracked near lamina angle shift areas at y=-1.125mm and y =-2.250mm for
[0,/90,], and [0,/90,], relative to [90,/0,]. and [90,/0,], configurations.

Another fascinating finding presented is that a tiny compressive peak zone is

monitored for [90,/0,], configuration near lamina angle shift area at

y =-3.375mm, which occured due to the direction of horizontal loading. Each of

these configurations has its own advantages and disadvantages. Tribology
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engineers need to take into account the most available configuration for the

application to obtain maximum surface and sub — surface performance.
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5. CONCLUSIONS

In this study, a contact mechanics problem between a frictional rigid cylinder and
laminated glass fiber composites with different orientations is considered. A
competent and novel parametric analysis is introduced to the industry that may
be very helpful in the design of wear and micro crack resistant laminated glass
fiber composites and composite coatings for tribology engineers. Analytical
results are obtained by introducing a novel and modern system of analysis that
relies on Cholesky decomposition, Gauss elimination, Hermite orthogonal
polynomials, Fourier transforms and singular integral equation (SIE). The
numerical results are achieved using a super efficient and self mesh adaptive
computational model based on augmented contact formulation (ACF) and finite
element method. This study can be further extended to study the dynamics of
short — fiber composites, carbon — based constructs, and nonwoven fabrics for
contact behavior and fracture. The following results can be drawn on the basis

of observations from analytical and finite element methods:

¢ A numerical model based on augmented contact formulation (ACF) and
finite element method for various interaction properties, material
parameters, friction related terms, and lamina order is used to validate the
precision of the novel analytical method.

e The consistency and speed of the integral solutions in analytical method
is significantly improved by the use of Cholesky decomposition, Gauss
elimination, and Hermite orthogonal polynomials. Instead of classical
symbolic expressions, the use of these techniques made multi — layered

contact mechanics solutions practical and achievable.

e The surface and sub — surface stress distributions and the edges of
contact patch are substantially influenced by interaction properties,
material parameters, friction related terms, and lamina order. In wear and
micro crack resistant laminated composite architecture, application —

oriented optimization of these parameters is very important.

e Surface contact stresses are more uniformly spread over the contact patch

and lower compressive stress peaks are found for unidirectional
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configuration of [90,,] relative to [0,,]. For other configurations began

with 90 degree rotation, compression peaks in surface contact stress

distributions decreased relative to the ones started with 0 degree rotation.

Configuration angle and lamina order significantly influenced surface in —
plane stress distributions. Configurations began with 90 degree rotation
resulted a more distributed stress distributions over the contact patch

compared to the configurations started with 0 degree rotation.

Configuration angle and lamina order adversely affected sub — surface
center — line in — plane stress distributions. Major variations are observed

for stress bands in the vertical position.

Developed analytical and finite element methods for sub — surface in —
plane stress contours performed successfully with each other. Created
contours showed very similar behavior, where high stress zones are

matched at surface and sub —surface.
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APPENDIX

APPENDIX 1 - Curve fit plots for 1/y,(M,-y,) and 1/y,(M,—y,) for
[90,/0,], configuration
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Sipess inlessiy factes

Onwing to innovative developmenis and the need to satisfy the reg its af dicaticns, new and
improved materials are investigated by engineers to compensate for the drawhacks of conventional materials,
There is an wrgent nesd for the cribology commundty to properly investigate the behavior of these materials
before utilizing them in real life. In this study, the shiding frictional contact between a monoclindc coating,
isotropic substrate system and a rigid cylindrical punch is provided using an analytical formuladon and findte
element method (FEM). The analytical expressions for the stress and displacement felds are presented, and the
resulting singular integral squations {SIEs) are solved numerically. Detadls of the analytical formulation and the
discredzation weed in the solution method for the SIEs are also presented. For obiaining the numerical solution,
an augmented finite element method is wed with plane strain conditions and &-node kigher order finite cle-
miznits. Accarding to the results, the analytical formulation and FEM results are consistent. Using different lamina
orientations, cosffickent of fricton, and geometnc/material parameters, provides the eribalogy community with
a highly qualified parametric stsdy that informs surface wear and surface fatgue crack initiation in contact

mechanics problems

1. Introduction

The tribalogy community can benefit from stodies that explore
benchmark problems with different types of materials and contact
conditions. The goal is to improve the charscteristics of surfaces that
are in motion in onder to reduce surface Friction, wear, andfor o im-
prove lubrication. In recent decades, more research has focused on
these problems as nearly all engineering applications require to be
designed more effectively to compensate for the extravagance of re
sources due to high wear amd high surface friction. Using unconven-
t#onal matedaks for engineering purposes provides many advantages
because one cn achieve identical or better material characteristics by
combining a number of properties that are not commonly found to-
gether in a single conventional material, such as better chemical re
sistance, higher thermal resistance, or higher strength. The contact and
material behaviors of these unconventional materials is load transfer-
ring systems should be exp) Therefore, un: ing the char-
acteristics of contact surfaces made of different materials is important
in systems design.
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mehmet. guleriaumosdu.kow (MA Giiler]),

epe.eduir (B, Yildirim).

hips://dol. org/ 101016/ mechmar 2009.103132

Engineers have used unconventional materials since eardy times,
such as such as anisotropic, transversely isotropic, orthotropic, and
manoclinic malmn]s. Kowadays, unconventional materiaks are osed in
many appli laeli tive, marine, def: constrisc-
ticn, meslicine, and aﬂ'ncrpal::'lurl:m: blade coatings, steering systems
in vehicles, bullet proof -vests, armored plates, propeller shafis, carbon
fiber car parts, dental implants, water proof ceiling parts, cylindrical
pressure vesseks, functionally graded thermal barrier coatings, and fre
insulation vests are some prevalent examples of products that use un-
conventional materials (Baumli and Al-Awzawi, 2015; He and Wang,
20VE).

Understanding wear,/friction mechanisms and investigating the re-
sullmg stress distribution/surface traction are key aspects in contacd

ics probl In umcom ] materials, such as anisotropic,
transversely isotropic, arthotropic, and monoclinic materials, solution
methods are much more complicated as there is a large number of -
dependent and dependent elastic constants in the analytical formula-
tions because material properties vary along the principle axes.
Therefore, fewer stixlies have focused on problems involving these
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types of materials. We provide some detail regarding comtact mechanics
shidies conducted with these materiale Batra and Jiang (2008) ex-
aminsd plane contact wsing Stroh’s formalism. A highly parametric
stly was wsed to delimit the parameters, and some gualified results
that serve as parable bench s for other sob methaods were
presented. The exact solutions for the interplay between two different
punches and the effect of elastic parameters on contact deformation
were presented by Zhou amd Kim (2014) Purthermore, Kser and
Mowry (1979) examined the behavior of two transversely isotropic
spheres in sliding contact. In that study, they determined the stress feld
due to the tangential load and superposed this with the case of normal
loading. A problem involving a multi-layered transversely isotropic
half-plane was studied (Koo and Eeer, 1952); a frictional spherical
punch was used as the punch profile and the variation in stresses related
0 contact failure were investigated. The frictional Hertzian contact was
examined by including surface traction amd Coulomb friction into the
amalytical equations (Hanson, 1992). It was shown that Green's func
tions are very effective in analytical problems. Later, a contact problem
was solved by assuming banded and unbomdesd contact types, allowing
the accuracy of solution methods o be checked (Ning et al., 2006).
Persson™s theory on contact mechamics problems was used o model
deformation  behavior using experimental and numerical methods
(Mokhtari et al, 2016} It was found that, wsing an unconventional
material gmtly affects the contact and friction behavior of solids
compared to classical isobropic iaks. The effect of transversely
istropic material property along a thin interlayer with various inter-
face conditions were also investigated by Liv and Pan (2018), where a
flat-ended rgid cylindrical punch profile was used and a new approach
in generating the resalts was pressnted.

‘Contact mechanics studies have abo focused on orthotropic mate-
rials. A detailed amalysis of contact problems invelving orthotropic
materials focused on using the methods for imterface crack problems
{Hwu and Fan, 1998) In another frictionless study (Shi =t al., 3003),
the stress equations for a rigid ellipscidal indenter in contact with an
arthotropic  surface were solved numerical. The formulation in
Willis (1966) and Srinivas and Bao (1970) was extended in
Swanson (2004) to caloulate the stresses on orthotropic materials. A
singular integral equation (SIE) approach, was used to investigate the
contact behavior for a thick orthotropic strip {Erbas et al., 2011). Then,
Gauss-Chebyshev integration formulas were used to provide amalytical
benchmark solutions (Alinia et al, 2018).

Stodies that considersd monoclinic materials are quite limited, yet
the behavior of the stresses and contact areas of metal and polymer-
matrix compasites under loading with a rigid parabolic punch was in-
vestigabed (Binienda and Findera, 15%4). By altering the off-axis lamina
arientation amd using different values for stifiness parameters, they
ooncluded that local bending characteristics are highly dependent on
the lamina ssquence. A contact problem for a momoclinic layer and
frictional rigid punch was considered by Zhou and Lee (2014), whers
Fourier transformation was used to reduce the problem to a SIE, and the
effect of friction on the results was demonstrated. Later, the effects of
sliding surface friction, orientation angle, and gradation parameter on
an arbitrarily oriented half-plane were imvestigated; it was conchuded
that, these type of studies can provide early benchmark results in de
signing stremg wear resistant surfaces (Chen et al, 20015)

Mamy studies have focused on investigating contact mechanics
probl with comp iomal methods. A finite element [FE) study was
conducted bo in igate the force/i ion behavior of laminated

ibe beams using the multi-point constraint methed in ABAQUS
{Mahajan, 1958} An elliptic contact loading condition was used to
investigate the critical yielding behavior of hard coatings with FE study,
and it was found that using low values for the critical yielding ratio is
very important as higher values may initiate interlayer yiekling
{Dizmo, 1999). Results from contact strength tests on ceramic laminates
under Hertzian contact conditions were comsducted to investigate the
surface and inner layer fadlure behaviors experimenially and wsing

Mleshuuics of Maleriili 137 (20190 103152

finite element method (FEM) (Ceseracciu et al., 2008). It was found that
high stresses can arise far from the contact region, which may lead o
failure in the inner layers of ﬂ\g comipasite. Imperfad contact condi-
ticns for kami d shell F were lied, where the goal was
1o determine effective elastic properties in contact areas {Guinovart
Sanjudn et al., 2017).

Mortar finite elements were used for the first time o discretize the
contact surface in frictional contact mechanics problems, and it was
shown that contact kinematics can be easily evaluated with these type
of bnite elements (McDevitt and Laursen, 20000 A new contact algo-
rithm was developed (Viradi et al, 2001}, where different types of
experiments and numerical simulations were used o predict the surface
wear and confact temperature in anisotropic materials. A contact pro-
blem for an infinitely long orthotropic plate was investigated by line-
arly and exponentially graded finite elements o investigate the effi-
ciency of graded fnite elements over conventional ones (Kim and
Fauling, 2002). It was found that using graded finite elements cm help
predict local stress concentration more accurately. Later, it was found
that unsmaothed mortar formulations for contact mechanics problems
have betier mating characteristics with non-comforming mesh struc-
tures (Tur et al., 2012 An isogeometric enrichment technigue for
contact mechanics problems involving frictional contacts and mixed-
made debonding was also presented (Corbett and Saner, 2015), where a
discretization on the contact surface for the enrichment Iu:luu.q_ne was
used; it was shown that this hnique has adv in @
surfaces. A comparison amd benchmark study for ::gm:rlt-baud acn.d
element-based imtegration methods for finite elements were conducted
im Farah et al. (2015)

An interesting study was presented by Huang amd Pelegn (2007],
where some complex nano-indentation problems for flm/substrate in-
terfaces were considered by employing different types of rigid punches
anmd interface comditions. The contact mechanics problem for an elas.
tically graded material and an arbitrary siding rigid punch was con-
siderad (Dag =t al, 2009), whers quadratic fnite elements for ale.
mental  discretization  were usesd and  the effects of lateral
inhomogeneity and friction on the resulting surface stresses were in-
vestigated. Two different types of Hertzian contact conditions were
later studied using FEM {Brexsanu, 2014) After that, the contact be-
havicr of a hard coating loaded by a rigid Aat punch was investigated
with FEM, and a new methed for calculating the elasticity limit in
coated surfaces was presented {Golisberg amd Eision, 2006).

Some studies related to contact mechanics of monoclinic materials
are discussed in the aforementioned paragraph. However, further in-
vestigation of the literature indicates that there are no preceding stucies
related to sliding frictional comtact mechanics problems invodving
mumnocdinic coated surfaces. Therefore, a sliding frictional contact pro-
blem of a monoclinic coating/isotropic substrate system with a rigid
eylindrical punch is considered in this stody under plane straoin condi-
ticns, The problem is solved analytically (SIE} and mumerically (FEM).
The novelty of this study fram investigating the Frictional
contact conditions amed lamima orientation on a coating/substrate
system by employing differemt types of composite coatings (palymer-
mutrix amd metal-matrix compesites), geometric parameters, and dif-
ferent punch profiles. Fnrlhmm the objective of this study i o
provide highly qualified benck i to be used by the tri-
bology community regarding composite coated surfaces. The results
presented in this paper clearly show the effects of lamina orientation
angle, coefficient of friction, geometric parameters, monoclinic mate.
rial type on surface and subsurface stresses.

2. Analytical formulation

A graphical rep ian of the probl idered in this study is
shown in Fig. 1, whﬂ':ﬂumbmuumadtobealnﬂhpmmd
perfectly bonded to s monoclinic ing. The i is

loaded with various types of punch profiles {cylindrical, parabolic, a'nd
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Fig. 1. Geometry af the shiding fricthonal contact problem for the monockinic coating/isotropic substrate sysbem.

flar) under plane strain conditions. The stress-displacement relations for
a momoclinic coating are

fu, fw, dw,
Ot = Oy o+ iy o 4 (4 2L

&= S i o
e = 2 -::-.% Ry )
g___,:-t‘,-,%+f1-.%.'*fh% (1c}
= Cat S+ 20y 4 0, 2 ad)
Ly = C”'ii:-'-c‘“‘:%*-z_:} [La)
T = c.,‘;‘x' * c-.,% + cm% eli}

where O represents the global stiffness coefficients along the —x, — y,
arel — 7 directions. They can be calculated in terms of the lamina

orientation anghe @ and the local stiffness coefficients C, along the — x,
— ¥y and — 3 directions as follows:

O = )y oox® 8 + KO, + 30, Jome® Ssin® d + Oy sin' 8 (Za)
iz = (O + O — 0w Joos*&sin®8 + Ca{oos? & + sin' &) [2h)
O = Ciyoos’ 8 + Coyxin® 8 2c)

£y = cos S sinSloos® (0, — Op — 20,0 + wn B0, — Oy + 20,00

(2d)
O = Cpsin® 8 + O + 20 oo S min®S + Co oot S (2o}
£ = Oy s & 4 Oy s @ (21}

(Zg)
Che = {03 — Cnjoos Psin 1]
Oy = Cyyoos® B + Caasin®d (it ]
Cys = 0oy — Cgdens Asin g )
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Lo = Casone® B + Oy wind @ {2}
e = (01 — 20z — 20nons? Ssin® & + Cas(sin®§ — cos* 6F (¥4 ]
The displacements are,
E‘,l% + G % - c',,,:z"’ - E‘,,% 0+ c,,:d_':; =0
Fuy iy Fn Fwy
Cuth c'.,?+cm¥+cu?+{c,+q,,m_n -
ot Cotl +(Car Col ol oy
Applying a Fourier transform to Eq. (3] yields
1 i
= Cudf = O — If[f:':|1+&s:l—+f'udr +C“d.f =0 [da)
d‘& di
— Cpallil — 0 — IE(Cy = =0 e
— Copkhi — FE(E, + G :IE —IE{Cy + C, :IE—E' ﬁ: li]
55° 13 &5 -ﬁ £} M 45 dt i dz! r.r}

The transformed displacement components for the monoclinic

ooating are

&
[, 2, Bl 2 i, 2 ) = 3 (1, Dy, Tyl ¥

=1 (5}
where the expressioms for ny, K, and my (j =1, 2. .6} are given in
Appendix A Moreover, the stresses on the monoclinic coating can be
foumad by substituting Fo. (5) imto (1):

- &
B, 7) = % J 1Y Ayt + Camy — Ciakyny) enE)eaf
— I=1

[Ba}
1 - &
S z) = o= f (=1 X Ay(Giz + Coumy — k)] g
- =l
{6t}
1% . .
minzh= o= { - Eﬁuti“n + Camy — Cralymg) v |ebodf
[L:14]
. - L]
wmal ) = 5= 16 T (e + Cally + e e~
e (6}
L] L]
Telx Tl = % f £ E)h,.[ﬂ‘am,n,- + Canlly + my) Je™ =] e "eaf
i (e}
1 - L]
tmlx ) = ;i [t ,E: Ay + Camy — Caakyng) e |e—egt .

The displacements amd stresses for the isotropic substrate can be
written as [Yilmaz et al., 3019],

mix, z) = %£ [(An + Axz)ed®] etgE

Fa}
_L T i
wix )= 1”£ [Ags 7] ettt o
[ . X .
walx, ¥ =E’£ [smgum[nn + [ﬁ +.:)4,:]a=»] it oo
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Mh]h:i"iﬂz[—ﬁ‘:l +[-§ﬂ+ﬁxui§ﬁ.& }-‘:]{ln"—mdg

(7d)
[
Brale 5l = 5 £p,m[im[—s + )l gty o
1, +1 .
Saaley) = ~1 £ p,[gaz. +(%- StsnfEJ“T}An]#“TW{
76
L=
wralE ¥ = — [ pa|Elaaet el
T £ ! 7g)
-1
sl b=+ fF"z [t + (= 2 s | e
(7h)
-
Eoalx. Fh = —— BT 4E
el ¥ g { Byliy o

where uz, B, and 1z are the stiffness constants of the isotropic substrate.
Kolosov's constant & = 3 —49; is used to describe the plane strain
conditions.

3. The b d and the singular i 1

y condi

The unknown coefficients Ay (f=1,2, ..6) and Ay =112, 3}
shown in Eqs. (5) and (7) can be obtained using the following boundary
conditsons (BCs);

A, 0) = { :{ﬂ x ;: J_tr 3_-?1 (Ba)
I:rl[I-D'F:{q{:J;]__W[fgu,ux;: ’ (8h)
Talx, 1) = O (Bc)
i (x, —h) = wyix, —h) (8d)
wix, —h} = v(x, —h} (Be)
wiix, —h) = wlx, =k} (80
oglr, —h) = galx, —h) (Bg)
T (x —k) = fzzlx. —h) (8h}
T (X, —k) = 7 p0x, —R) {8i)

where p(x]) is the surface contact stress and i is the coefficient of fric-
tion. The coefficients Ay and Az can be obtained from the BCs given in
Eq. (B
b
Ay = [peFAl +pAfMdd  j=1,2.8
- [9a)

)
Ay = fpleFAf + gAldd  [=123

(9b)
For gix} = 0. Aj and AJ take place and for pix) =0, Af and A3
take place. Note that, the expressions for Af, A“I. Af. and A are quite
leng, therefore they are not presented here. Furthermore, as the punch
profile iz rgid, the deformed chape of the moncclinic coating on the
contact area should be identical to the punch profile. Therefore,

wix, 0) = —3 + fix) (10a)

95



KR Vidmas efal

Mechamics of Materiok 137 (200 9) 1031532

Rigid Qvlindrical
Punch

Rigld Parsbolic
Funch

'1['1Irh|':'.r'v1-:rr|-'r:r"'vi'- 1!"-?"?"-"'.'*."'"'1"?7
"f!']¥'rfxll'l'tr
! |

i
T y

Fig. 2 Finite element model of the sliding frictional contact problem for the monoclinde coatingisctropie substrate system.

Ha (x, 0

=i )

{106)
where § & the indentation depth and fix]) is the punch profile function.
Substituting the unknowns given in Eq. (9) inte Eqg. (10) yields the
following SIE:

]
1 . 1 Coa
"t + 7 PRI e )+ K ) = 2
{—a<x<hb) (11}
where
L=
Kix, i)= — | { M) — g )sin E(4 — x)
1 ﬁ_{ W) — @y )sing df -
Kte 1) = = f (Myi5) - plem$0A — x)a
w {12h)

96

Mi(f) = B 3, Afk)

L (12c}
&
MiH=¢ Ak
E ¥ (124
p = lim M0 (136
= |l_71 AL(E) (126

Note that, the following equilibrium equation should be satsfied for
the contact problem under consideration

1]
f plA)dd = P
—- (13)

After imtroducing the following normalization conditions,
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Fig. 3. Deformed geometry of the sliding fri i contact p for the clinic coating/ P system.
L N A ! A
z - B o e PO =g@0 —wr + oy an
the SIE in Eq. (11) and the equilibri dition in Eq. (13) b where
@ A ! neale =1
V2 1 1 . ,u s = L ] [ — 23 +No
up—.mn ;{"‘”"‘“‘lm-, + K (s, ) + 5K (s, »H-;}f () z.rll"'[r.a.-/w,H] (181)
(151)
1 n#i¢ =1
= — - M,
]P(:u)dw = g 2""qu R R (18b)
-1 a+b (15b) Noand Mg in Eq. (18) are arbitrary integers and must be established
where using,— 1 < Re[a, 8] < 1. The SIE can be solved depending on its index
x=—{a+ ), where y can be = 1 or 0. Applying the Gauss-Jacobi
Ko, ) =23 B e 20, =2 e formulation presented in Erdogan (1978), the SIE in Eq. (153) can be
2 - 2 7 (16) converted to the following form:
N
v 1 1
4 sod A A g D3 b\'}“s(r.][ + K (s, 00) + 1 K (5 @) [ = —f (=),
i=1 b}

The fundamental solution of the SIE shown in Eq. (153) can be

@y — 5

k=12.N-x (19)
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Table 1
Properdes of the matenials used in this study (Biniends and Pindera, 1994).

Material types for moneckisge coatisyg

Mechanics of Materiak 137 [20019) 103132

Maote that @ = 0 for the parabolic punch, and 4§, is bounded at the right
end of the contact {5 = +1} and has an integrable singularity at the l=fi
end (s = —1). Thus, the index of the SIE is 0 (3 = 0). Egs. (19} and (20}

Parasiiter Bolatisia] nasi:
name
A (G Ep B {Ge/Ep G/ DiGyAl)  E (BAAD
FT5./434) T30 3] Eg}
E,, [GPa) 2430 448 427 402e x5
E,, (OGP} 7.2 a3 Iy 341 13749
E iG] 72 3 ny 241 1379
By (GPR] EL] 55 |-*3 168 5.1
[ EL] 55 |-*3 168 5.1
i [P} x4 4 ] B3 42.2
sy .33 [k X 20 034
- .33 [k X 20 034
iy a4 asn (L 085 adn
Mleziid jropertii o isolropic shalrae
E, (ars) By [GPa) by
125 S 025
pite] pI=T 025
500 20 0.5
- - a5

Similarly, the squilibrium condition shown in Eq. (15b) becomes
"
7 wigin) =
=1

where rand 5, are the roots of related Jacobi polynomials and WY iz a
weighting constant.

.
mla + b) (20}

Frlm=0, i=12 .. N s
B fml=0, k=12 N—p {m}
g LN+ a+ HIN+a+ DIN+ G+ o
T TN+a+E+2 e e
210

4.1. Cylindrical punch profile

By considering Fiz. 1, the following relation may be written for the
parabolic punche

o ax
_ﬂx]—ﬁ. f{.ﬂ—s 22

where R is the radiugs of the panch. As there is no contact stress at—a
and b the index of the SIE is — 1 [y = —1) (Erdogan, 1978} Therefore,
Eqgs. (19) and (20} become

N
z W?*'s'lr.l[ L b R w) + KD )
i=1 ey Sk

11 a+b b—a
=— +—,
wE oz =t )

k=12.N+1
(23a)

.
¥ W gin) =

»
= mla + b)

(Z3b)

To determine exact values for — o amd b, one requires an extra
equation, which can be acquired from Eq. (23a):

4.2 Parabolic punch profile

By considering Fig. 1, the following relation may be written for the
parabolic punche

S T
_ﬂﬂ—ﬁ. f{.ﬂ—n. x=0 (34)

98

N

gl 4 o] = LLE
Ewi";ir.] oo P )+ DK @) | = g ),
k=128 (25a)
.
3 wigin = =
= b {258)

Eqs. (25a) amd [255) contain N + 1 unknowns, which are g}, and &
can be obiained.

4.3, Flat punch profile

By considering Fig. 1, the following relation may be written for the
flat punch:
Fix) = comstane,  f (x) =0 (26)
The contact beundaries for the flat punch are o = b, As there are sharp
edges af the contact boundaries, the index of the SIE is + 1 (y=1).
Therefore, Eqs. (159) and (20) become

.
¥ W¥Rinl| —— + K (s, ) + 5 K205, ““I =0, k=12N
=T ok = %

(ZFa)
N
¥ wgin= <
= R (27h)

Eqs. (27a) and (27b), contain N unknowns, which are gir,).
5. The in-plane stresses

The in-plane stresses at the surface of the monoclinic coating are

~ wplxi+ Hix), —a=<x<b
Safr. 0) = {H{IL rE—m xz bl (28)
whers
1 y "
”‘”=;J_':"[”I‘u-x+ K;[:-.{]Hjxn’r-ih]d.{ a0ey
Kifx, )= (M) — qlems (2 — x0df
v (298]
Ealr, 1) = 1 M5} — qy)sinE(t —
[ (29¢c)
&
MyiE) = T ¥ Ay G, + Cymy — Gyl
= 25d)
L]
M) =—Itf E Ayt + Camy — Sy
=1 (29e)
&= {h_ﬂ; M5 &= }:l‘ M5 296}

6. Stress intensity factors

A stress intensity factor (S1F) characterizes the stress state at sharp
adges and provides a failure criterion for fracture mechanics. The
methad for determining the S1Fs for parabelic and flat punch profiles is
described in the following subsections.
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Fig. 4. Flow chart of the iterative scheme.

Table 2 &.]1. Parabolic punch profile
Sensitivity of the developed finite element code (GL/Ep material (Matzrial C) is
utilized, rigid eylindrical punch profile is used, where E, = 417 GPa)

=0 = lim EE o -
RiR = 106, 5 = 04, 0 = 45 0%, (F/RVEg = 00034, EylEg = 0L55 kix=0) = lim = =bgix=10 30
#af # of Nedes  Amalytical FEM sl sl o
Elements =], =1,
—wk  WE —am WR —ah R k(r=—1)=bglr=-1) (3
a3 150 —oENS 0S06]1 —LIM3 13867 304 5474
137 2755 —oENE 08061 —LORI0 1400 3174 3R 6.2 Flat punch profite
3630 7455 —oEMS 0E96l —0@e 11520 2151 2BSE
saa BOET —oEmS 0E961 —08100 06654 1102 T7E
114 IMET]l  —oEmS 0E06] — 084S 09030 305 289 T pixy b
2RI 4SISS - GENS 08061 —0MiG) G9000 137 043 H“'__‘h]‘,"'_‘['d —i=[b+x:~"_?‘g&__ﬂ (3za)
316456 SO0 —oEmE 08061 —OsM 08084 133 035
. pixl b
kir=hl=lim —= — = g =
=t =in ey - pEx=b (328)
or
b
klp=—1)= {w=—1]
=t [33a)
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Table 3
Normalized contact boundaries — a/h and b/h for the nigid cylindrical and parabolic punch perofiles, where E,, = 427 GPa.

Rih = 1000, n = 04, (P/h)/Eg » W04, Ey/Ege » 1585, GU/Ep material (Material C)

@ Cylindrical pench Pasidelic pench
Asalytical FEM e (%0 Analyticad FEM Il %)
—alh b —alh e —alh A bk bk bk
[ — 045 0.8382 - 0400 0.8520 as1 164 0.9568 0.9600 0.33
450 - 08205 0.89%1 — 05300 0.9000 127 s 10375 10120 265
200 - 00258 1.0407 - 09110 10140 191 25 12216 1.2680 183
Rk w 3000, 8w 3007, (PrR)/Eg = 00004, Ex/ Eg = 0585, GU/Ep maserial (Material O
x Cylindrical pench Pasubelic pench
Asalytical FEM Ie| (%0 Analyticsd FEM x| (%)
—afh bk —a/h bk —alh s (%3 bk bk
00 —0R251 0.8231 — 0827 0.8267 043 0. 0.9633 0.9620 013
04 -0 0.8665 —-00714 0.8600 138 075 0.9061 0.9912 049
0s - M 0.9121 — 02164 0.9210 205 0w 10317 1.0114 1.96
Rilow 1000, 5 = 04, 8w 30 07, Ey/Eg » 0.585, GU/Ep maserial (Magerial C)
(P/RVE,, Cylindrical pench Parudelic pench
Asalytical FEM |e | 8 Analyticd FEM i) (%)
—a/h Wk —alh /e —alh A bk wh wh
00012 — 05616 0.6220 — 05560 0.6160 s 0.96 07127 0.7100 037
00024 — 02 0.8565 —09714 0.8500 138 07s 0.90961 0.9912 0.9
0.0048 — LOK25 1.2005 - LoSm 1.2200 281 18 1.3853 1.3640 153
R/ = 1000, 5 w (L4, & 30 07, (P/A)/Eg = 00024, GL/Ep material (Maserial C)
E/E, Cylindrical pench Passdelic pench
Asalytical FEM |al (% Amalyticad FEM =l %)
—alh b —alh bk —alh WA bk (%Y h
029 — 08214 0.0430 — 08000 0.9600 187 1.80 10576 1.0584 007
0535 — 02 0.8665 — 09640 0.8760 138 075 0.9961 0.9912 0.4
1170 — 00657 0.8227 — 07560 0.8250 100 054 0.9617 0.9670 055
- - 02472 0.7713 = 0400 0.7720 0% 0w 0.9223 0.9260 0.40
/B = 1000, nw 04, 8= 300, (P/ENEg w0000, Ey/Eg = 0588
Mazerial Cylindrical panch Pasadolic panch
AsalySeal FEM lul (6 Amalyticd FEM Il (%)
—afh bk —a/h B —alh A bk W bk
A — 0093 10410 — 09724 L04% 208 0.82 12238 1.2210 0.22
B — 08613 0.9223 — 03483 0.9307 185 0o 10719 1.0584 125
c -0 0.8565 —-09714 0.8500 138 07 0.9961 0.9912 0.49
D — 05785 0.6351 — 05600 0.6480 235 2@ 0.7182 0.7014 233
E — 02671 0.3440 — 02603 0.3616 254 a8 0.3748 0.3680 176
0.000 0.004 + - - - - -
L B=0.0°.45.07, 90,07
-0.001
95(x0)
Eu
-0.002
6007, 45.0°, 2.0
-0.003
«1.5 0 05 LK1} 0.5 Lo 1.5 S0 20 «1.0 00 1o 20 30

x'h x/h

Fig. 5. Effect of lamina orientation angle 8 on surface stress for R/ = 1000, 5 = 04, (P/h)/Eg = 00024, EyEy, = 0585, GLVEp material (Material C), and
Eg = 427 GPa. Solid — Analytcal, Dotted — FEM.

b R
k(o =+1) = Zg(u = +1) de = —x ¥ WP (n)g(n)
2 (33b) = Z.: : -

where g(—1.0, L0 be calculated as follows (Krenk, 1975):
& Dad g (2.0 e calned s &® D AN+ 2+a+p Mmt+a+DIm+ 5+ 1)

h,, = 274841,

i xi‘:d o 2m+a+ g+ m! Mm+a+pf+1)
g A (343) e

Ne=l o
g+ = Z d PEO(+1) 7. Finite element method

- (34b)

= A computational method is used to compare the analytical results

where and the results obained with FEM in order to study the sliding frictional
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Fig. &. Effect of coefficient of friction 4 on the normalized surfsce siress for B/A = 1000, § = 30, 0, (F/R)E, = OIM, EJE_ = 0.585, GL/Ep material (Material C),

and Ey = 427 GPa Sobid — Amalytical, Dotted — FEML
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Fig. 7. Effect of dimensionless press foarce (P/h)/Eg oo the normalized surface stress for Bh =

and Ex = 427 GPa. Sobid — Analytical, Dotted — FEM.
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Fig. B. Effiect of dimensionless elastc moduls of the sotropic subsirate Ex'Ey on the nomalized surface stress for Rh = 1000, 5 =04, 0= 30007,
(P/h) B = 0.06024, Gl/Ep material (Material C), and Ex = 427 GPa. Solid — Analytical, Dotted — FEM.

contact behavior of a moncclinic coating bended o an isotropic sub-
strate. Parametric FEM simulations were prepared and solved using
ANSYS Parametric Design Language (APDL) 2019, To obviate the un-
necessary computing effort, an FE model was prepared in 2:D space
using plane strain conditions. The FE madel of the considersd problem
is shown in Fig. 2, wherein three different frictional sliding rigid punch
profiles are presented. P, ), & and § represent the applied normal
loading, tangential loading, height of the monoclinic coating, amd
onefficient of friction respectively. To further illustrate the deformation
mechanizms in the problem and fo aid the resders” understanding, the
deformed geometry in the FE model arvund the contact region is given
in Fig. 3.

To simulate the frictiomal sliding contact condition, TARGE169
target segment elements were otilized to model the different types of
rigid punch profiles, as they are quite capable of defining forces and

maments. The contact surface of the monedinic coating was modeled
using CONTALT2 contact line elements and the system was meshed
using Genode higher order PLANEIEZ triangular finite elements.
Begardless of the punch profile, 223682 PLANE1IS3 triangular finite
elements were wtilized in the model while assuming an adaptive mesh
size that progressively grows in size out of the contact region.
Begarding the punch profile, 1030, 234, and 1210 contact line elements
were used for the rigid cylindrical, parabalic, and flat punch profiles,
respectively. Calculating the rotated stiffness parameters and imposing
them on the developsd FE code is very difficult for menochinic material
as this type of material behaves lke a rotated lamina over a specified
principal axi (—z axis). Therefore, the complexity in the caloulation
for the rotated stiffness matrix is primarily due to the caloulation of the
rotation cosines and stiffness constants in Eq_ (2). To define the rotated
stiffress matrix, the rotated stiffness parameters were calculated at the
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Fig. 9. Effert of coating matenial type on the normalized surface stress for 2/% = 1000, 5 = 04, § = 30. 0, (F/H)/E_, = QD024 EJE, = 0.585, and E_ = 42.7 GFa.
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Fig. 10. Effect of lamina orientation angle & on the normalized surface stress for Rfh = 1000, 7 = 04, (PIR) Ey = 0002, E3/Eg = 0585, Gl/Ep material (Material C),

and Ey = 437 GPa Solid — Analytical, Dotted — FEBL.
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Fig. 11. Effert of cosfficient of friction 4 on the marmalized surface stress for Rih = 1000, 0 = 300, (P/h)/Ey = 000, Ey/E; = 0585, GL/Ep material (Material ),

and Ey = 437 GPa Solid — Analytical, Dotted — FEBL.

centradds of ench finite element using the material properties presented
in Table 1. To improve the numerical efficiency of the developed FE
code, only line elements that were in contact were associated with the
target segment elements,

8. Pseudo code

In this section, the pseudo code in the considered problem & pre-
sented, where an iterative scheme is illostrated in Fig. 4 to further ex-
pain the mechanics of the developed FE code. To aid the readers’ un-
| iticnal on Fig. 4 are presented below.

# The user can define an arbitrary monoclinic coating height & R and
P abko dhange as i changes according to R/'% and (Prh) /.
« Defining an appropriate height for the isotropic substrate in FEM is

crucial. Regarding lower heights, an isofropic substrate may behave
like a finite thick substrate rather than a halfplane, which may
change the results.

= Choosing a very small element size may reduce the emor between
the analytical amd the FEM result=, but it can greatly increase the
computational time and reduce the efficiency of the FE code.

9. Cal ion of stress i ity F (SIFs} with FEM

As SIFs characterize the stress state at sharp edges of the punch,
appropriately determining them i very impartant for successfully de-
termining a filore criterion in contact mechanics problems. Data ob-
tained from Eg. (30) was used to calculate the 5IFs for a parabolic
punch profile with FEM. SIFs are obtained by fiting a line to the data
using linear regression and letting x values tend to ero. The S1Fs for the
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and Ey = 427 GPa Sobid — Amalytical, Dotted — FEML

LMY
00025
a_ w0}
E'\.\
-5
(E, ¥E_ =0.292, 0383, 1170, «
00075
LRI} 0.3 L

wh

LU

1.5

10050 1
| (E,¥E_ =0.292,0,585, 1,170, =

{0025

o [LE
wh

05 L 1.5

Fig. 12. Effect of dimensiooless elastic modulbus of the isctropic substrate Ey'E., oo the pormalized surface stress for R/ = 1000, =04, @ = 300007,
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flat punch profile were calculated using Eq. (32). Again, SIFs are cal-
culated by fitting the data obfained from Eg. (32) to a linear model
using linear regression and setting x equal o = b

10. Results

In this section, the normalized surface contact stress distributions
zi(x, 00/Ery, normalized surface in-pl stress distributions o (x,
0)/E,, . normalized contwet boundaries — a/k and b/h, amd SIFs of the
analytical formulation are compared with those of FEM for three dif.
ferent rigid punch profiles. The effect of the coating type and lamina
arientation on the normalized subsurface in-plane stress confours
around the contact region ooy, ¥l/po are shown using FEM and are
presented in this section. In order to present the results, the following
limits are used for the dimensionless geometric amd  material

1.5

LA LU
| MAT=A B, C.ILE
0005
ﬁ_mL‘m 000
E\.‘\. |
10614 1
|
LIAENE] | a
1.0 =05 a0 05 LI 1.5
wh

| surface stress for Bh = 1000, § = 04, = 30 O, (PR Eg = 002, EpfE, = 0585, and E. = 42.7 GPa.

00° = 0= 900, 00=g=0.8 00012 =< (P
Epr = 00048, 0.292 < Ey/Ery = =0, 0.5 = a/f = 1.0 and B/h = 100. for
the rigid cylindrical and parabolic punch profiles. Before presenting a
comparison of the results for the analytical formulation and FEM, a
prior mesh sensitivity analysi of the developed FE code was conducted,
arxl the fndings are presented in Table 2

IL1. Effect of geometric ond moteriol poremeters on stress

Tahle 1 shows a comparison of the normalizer] contact boundaries
— a/h and b/h for the rigid cylindrical and parabalic profiles using the
amalytical formulation and FEM. Note that, the generated resulis from
the amalytical formulation and FEM are consistent, and the maximum
true percentage error | (%) between the two methods is 4. 84. It is
difficult to obtxin —a'h and b'h without finite slement mesh
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Fig. 15. Effect of lamina orientation angle 8 on the surface stress for o/k = 02, 5= 04, (PFEVE,, = 00024, E,/E_ = 0585, GIEp material {Material ), and

Eg = 427 GPa. Solid — Analytical, Dotted — FEM.
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Fig. 1&. Effect of cosfficlent of friction j on the surface stress for a/k = 08, § = 30. 0, (P h)/Eg = 00024, Ey/Eg = 0585, GI/Ep material (Material C), and

Eg = 437 GPa. Solid — Analytical, Dotted — FEM.
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Fig. 17. Effect of dimensionless press force (P/h)/E; on the normalized surface stress for a/h = 08, 7= 04, 0 = 3007, Fy/Ex, = 0585, GI/Ep material [Material C),

and Ey = 427 GPa Solid — Amalytical, Dotted — FEML

refinement at the contact zone for the metal-matrix material B/AL
(Material E) b it has the higk iffness along the — z direction,
amd the punch does not significantly penetrate the surface.

1011, Cylindrical punch profile

The effect of the lamina orientation angle @ on the normalized
surface stress distribution is shown in Fig. 5, where the polymer-matrix
G1/Ep material (Material C) is used ax the monoclinic coating. One can
see from the “Lomino Orimmetion” box in Fig. I that increasing O
changes the stifiness of the moneclinic coating. As an example, the
stiffness along the — x direction & 427 GPa when 8 = 0. 0" and the
stiffmess is 11.7 GPa when & = 90 (°. As @ increases, the absolabe peaks
for the the normalized surface stresses decreass and tensile spikes for
the normalized surface in-plane stress at the near boundary bR of the
contact alsp decrease because of the reduced total stiffness of the

mumoclinic coating. Note that, as the total stiffness decreases, the net
surface ion i and the resulting stress is distributed more
evenly on the contact surface. Ome can may further conclude thae the
muanoclinic coating behaves like a soft coating as @ increases and it
behaves like a hard coating as @ decreases. Purthermore, the effect of
the coefficient of friction g is shown in Fig. 6, where Bfh = W0, One
should note that § barely affects the normalized surface contact stress
distribution a= P is an independent parameter. However, = oF de-
pend on . Therefors, y greatly affects the normalized surfacs in-plane
stress distribution. As g increases, tensile spikes in the normalized
surface in-plane stresses greatly increase and the contact shifts to the
near boundary b/h. The effects of the dimensionless press force (PS5
Epy and dimensonbess elastic modulus of the isotropic substrate Ex/E,.,
an the normalized surface stresses are shown i Figs. 7 and 8, respec-
tively. Once again, the polymer-matrix Gl/Ep material {Material C) is
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g the

used for the monoclinic coating. It is clear that & Py
lnadmga\ncslhenpdcyhndnﬂlpmdlbpmemwdﬂepamblhe
thus & 1 paksfotllrnnmulmd

the stiffness along that direction is the lowest among all of the
materials” (see Table 1). Moreover, the highest absolute peaks were
ohu'vd for the metal-matrix B/Al material (Material E). However, no

1 ‘ 1

surface stresses. l.n:msns (P/h)/E,x causes the
stress distribution to skant to the near boundary of the contact b/h due
to the sliding motion of the punch. Furthermore, increasing Ex/E., in-
creases the stiffness of the i b which & the total
rigidity of the system. Th g Ex/Eex p higher
absolute normalized surface stress peaks as the net surface penetration
decreases. To investigate the effect of material type, five different
polymer-matrix and metal-matrix materials were used for the mono-
:Imn.cmungandl‘:g 9sbowsﬂ:ecﬂeﬂofmalmnltypem!henot

d surface As the i are pri-
marily dependent on the stiffness along the —z direction, polymer-
matrix Gr/Ep P975/934 ial (Material A) exhibits the lowest peaks

P
>

the 1i rface in-plane and stiff-
ness was found along the —x direction or along the other principle
directions.

10.1.2. Parcholic punch profile

The normalized surface stress distributions for the rigid parabolic
punch profile are shown in Figs. 10-14. One of the most interesting
results that observed is that the tensile spikes in normalized surface in-
plane stress distributions have a higher magnitude than those shown in
Figx. 59furllzcy|mdncalpunch.blztodxnmhmyallbeupo{
the punch, the stress hes infinity at
x/k = 0.0; thus it is quite difficult ln determine lbe behavior of the
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and p, = E238 GPa () 8 = 0. 07, (b) & = 45. 07, and (c) & = 90. 07

stress curves for different parameter sets inside this region. However,
ane can conclude that the findings shown in Fige 10-14 are quite si-
milar to those shown in the aforementioned paragraph. Furthermore, to
prevent the growth of surface cracks during fuctuating or repeated
loading, the tensile spikes and stress peaks produced by the parabolic
punch profile chould be menitored.

10015 Flat punch profile
Figs. 15 =19 chow the normalized surface stress distributions, where
the rigid flat punch profile was used. Note that, the shape of the punch
defines the contact ares, and it appears that stresses become singular at
the normalized boundaries of the contact — a'h and b/k as the punch
pmﬂ:lus:lﬂrped.gs.fh:dfedsufﬂulammamhunmglzﬂ
ficient of friction 4 on the lized surface contact stresses
nrzqnmmu]l. yet ome can conclude that some differences can be
ohm'vuﬂatl‘nshu'm.nunﬂhuepmm:tn e, wbﬂl&lm i and
1 =108 Purthermore, the normalized surface in-pl
greatly affected by the variation in the afy ioned
especially outside the contact area, where variations are fairly sig-
nificant [oee F1g. 15] In addition, the dimensionless press force (Pl
E and di elastic lubes of the i pic suk E/E .
considerably affect the stresses. As (P/RVE, and E/E | increase, the
absolute peaks in the normalized surface stresses greatly increase (see
Figs. 16 and 17). Note that, as Ex/E., approaches o= the isofropic
substrate behaves like a rigid foundation (g=e Fig. 18). In contrast to
Figs. 9 and 14, as the contact area is known for its flat punch in Fig. 19,
aaly the magnitudes of the siress distributions vary for different types of
polymer-matrix and metal-matrix materials. It is quite |:l:uu:|n3 that,
the metal-matrix B/Al izl (Material E} has the b
along the — zi:mumhnﬂz]umabmu]nbepulnubm:ntdalong
the same direction in the normalized surface in-plane stresses. Lastly,
the effect of dimengionless punch length a/h is shown in Fig. 20, where
three distinct values for a/h were used. [t appears that increasing a/h
slightly reduces the normalized surface stress peaks due to more uni-
form distribution of stress on the contact surface.

102 Effects of lomina orientation and coating bype on the sreses

Fig. 21 shows the subsurface in-plane stress contours, o,(x, ¥,
which are normalized wsing g for the polymer-matrix Gl/Ep material
Material C. The stress in Fig. 21(a), is higher than the stresses observed
Fig. 21{b} due to the stiffness along the —x direction for &= 0. 0, It
appears that, for £ = 0L (¥, the normalized subsurface in-plane stress
distribution gathers on the surface of the monedinic coating due 1o the
shallow penetration of the rigid cylindrical punch. This may initiate
growth of surface cracks under repetitive loading conditions and may
increase surface wear. However, as @ increases, the total stiffness of the
system decreases doe to the reduction in the stiffness along the — x
direction and the normalized subsurface in-plane stresses distribute
mare evenly at the subsurface of the system. One can conchude that,
using & = 00 reduces the resulting stresses in the substrate but it also
reduces the performance of the coating due o the siress peaks growing
at the surface.

To investigate the effect of coating type for different lamina oe-
ientations, normalized subsurfece in-plane stress contours around the
CONLACT MEgion OedX, ¥/ are obtained wsing FEM in Figs. Z2-24. In
Fig 22, f = 0 (¢ and the rigid cylindrical punch profile is utilized. It i
eary o see from Fig. 22{a}-{c]) that, using palymes-matrix materials for
the moncclinic coating helps distribute the stress evenly at the sub-
surface of the system as the stiffness along the — x direction is lower
than the stiffress of the metal-matric materiak. Conversely, osing
metalmatrix materials cases stress to gather near one point at the
surface of the moncclinic coating (see Fig. 22{d) and (e]). In addition,
the highest nor ized subsurface n-pl stresses are observed in
Fig. 2{d) for the metal-matrix Gr/AL material (Material D), and lowest
stresses are observed in Fig. 22(c) for the polymer-matrix material G1/
Ep (Material C). Furthermore, as the maximum compresive siresses
gather around one point at the surface of the monoclinic coating for the
metal-matrix materials, the maximum tensile stresses forms at the -
terface between the layers. One can conclude that, a monoclinic coating
made from palymer-matrix dalks bek like a cushiom, while that
made from metal-matrix materials behaves like a hard surface.
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in-plane siress for g = 04, 8 = 0. 07, (PIhNE,, = 00024, EJ/E,, = 0585, and p_ = E238 GFa (a)

Gr/Ep material PT5,/934 (Material A), (b) Gr/Ep material T300,934 (Material B), (¢) GL'Ep material (Matenial C), (d) Gr/Al material (Material D), and (e) B/AL

material (Material E).

Identical geometric and material parameters were used o generate
the contours shown in Fige 27 and 24, except @ was fixed af 45,00 and
0., respectively. Changing the lamina orientation angle from 0.0 to
45,0 greatly increases the torsional stiffness of the monoclinic coating
andl the global resistance of the system to shearing boods. However,
increasing O decreases the total stiffness of the system. Thus, lower
absolute valses for the normalized subsurface in-plane stresses o {x,
¥l were oheerved (see Fig. 27) as the normalized subsurface in-
plane stress is distributed more evenly at the subsurface. Moreover, as @
increases From 45,07 w0 B0U07, the otal stiffness of the system reduces
decrenses again and o, ¥/ distributes at the subsarfsce of the
sysbem much more evenly {see Fig. 24). Furthermore, maximuam tensile
stresses are observed at the subsurface of the Bobropic substrate as &

103, Comparison of SIFs

A comparison of the amalytical and FEM SIF results is shown in
Tables 4 and 5 for different values of lamina orientation angle & It is
clear from these tables that there is no correlation between @ and the
powers of stress singularities o and §. However, one can ses that the
resulting §IFs for the parabolic and fat punch profiles decreases as &

increases, and this tendency arises as the stiffness of the system along
the — x direction decreases. Fimally, Tables 4 and 5, one can observe
that i ing 0 d crack @ on the surface of the
manodinic coating because the SIFs decrease.

11. Conclusions

11

A sliding frictional hanics | for a
omating banded to an isstropic subsirate was studied under plane sirain
comudith The ical for jon based on the SIE approach is
presented for three different cases of the index of the problem, where
x=—1,0 and 1 corresponds to cylindrical, parabolic, and flat punch
profiles, respectively. Highly important benchmark results were ob.
tained from this comprehensive, novel p ic stuy, which may be
uzeful o the tribology cr in WEAT red: ootesd]
surfaces. This study may be further expanded io investigate the contact
behavior of different types of polymer-matrix and metal-matrix mate.
rials or fiber-reinforced composites to be used in coated surfaces.
. M lined below.

= As 0 increases, the monoclinic coating behaves like a soft coating,
‘while it behaves like a hard coating as § decreases. Regardbess of the
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Gr/Ep material P75,/934 (Material A), (b) Gr/Ep material T300,934 (Material B), () GL'Ep material {Material C), {d) Gr/Al material (Material D), and (e) B/AL

material (Material EL

punch profile, the absolate peaks for o, (x, 0)/E,, and tensile spikes
for o, (x, O)/E,, decrease for higher values of @ as stress evenly
distributes on the surface of the monodinic coating.
fllueﬂnngllrshghl.lylﬁu:hlhzm,.(,r D E, distributions az P is an
lent - G v,y has an i effect on the
n,_.-;{,:, I:I-}.r"!u distribution for rigid cylindrical, parabelic, and fat
punch profiles because of the dependency of @ = gP on 5 The
magnitude of the resulting tensile spikes greatly increases as j in-
creases. [t is essential to monitor these wensile spikes w prevent the
growth of surface cracks in benchmark stages.

» HRegardless of the punch profile, geometric, and material parameters,
increasing (PVR)/E., increases the net surface pressure, leading to
desper surface penetration and higher absolute peaks for o, (x, 0)/
E,, and o (x, OVE,,

* Increasing Ez/Ey, increases the stiffness of the isotropic substrate,
which increases the wotal rigidity of the system. Therefore, the net
surface penetration decreases and one observes higher absmolute
peaks in stress distributions. However, it is quite difficult to distin.
guish the behavior of stress curves for the parabolic punch as the
stress distribution approaches infinity at x/h = 0.

# Proper material utilization & crucial in designing coated

should ise the polymer-matrix Gr/Ep material (Material A) for a
‘monaclinic coating if low absolute peaks are desired, or metal-ma-
trix B/Al (Material E) i shallow surface penetration & desired.
Furthermore, similar explanations could not be formulbated for a
E) has the highest stifiness along the — ¢ direction, but the lowest
(Material E) in the o, (x, 0)/E,, distribution.

* It appears that the resulting owdx, ¥) gathers on the surface of the
‘manaclinic coating for & = 0. 0°, which may increase surface wear ar
lead B imitiation of cracks. As @ increases, the monoclinic coating
the system.

# Using polymer-matrix monoclinic coatings belps distibute stress
contours equally at the subsurface of the system as the coating
stiffness in — x direction & considerably lower than that for metal-
‘matrix coatings. Conversely, using metal-matrix monoclinic coatings
canses ghress bo concentrate around one point at the surface. One can
conchade that, polymer-matrix materials may prevent coating from
mmﬂmmmmmhvz

ling as seen from the distribution of the stress at the subsurface.

“ﬂtfwr,ﬁwnmd:ylnﬂnm]uﬂpard:ddcpud]pmﬁlqmz
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Fig. 24. Effect of coating | type on the lized subsurface in-plane stress i = 0.4, 0 = 90. 0", (P/h)/Eg = 00024, Ey/E;, = 0585, y = 8238 GPa (a) Gr/Ep

material P75/934 (Material A}, (b) Gr/Ep material T300,934 (Material B), (¢} GI/Ep material (Material C), (d) Gr/Al material (Material D), and (¢) B/Al maserial
(Material E).

intriguing. As 0 increases from 0.0° to 90.0" the stiffnesses along the
Table 4 —x and —y directions start to switch. For instance, assuming that
SIFs for the parabolic punch, SIF — k(—1) = b'g(—1), where £, = 427 GPa. the lini ing is engi d using a poly atrix Gr/Ep
material (Material A), E, =2430 GPa and E, =72 GPa for

s s ndciiae, €=0.0", Ex=72 GPa and E,=2430 GPa far 8=90.0"
= 04, GI/Ep sunerial (Matesial C) Theref i ing & red the averall stiffness of the system
and more evenly distrik and reds stress at the
@ Rikw 300 bsurface. Additionally : tensile A along
* .. . ) the subsurface of the isotropic substrate for higher values of lamina
oo 04663 43.980 44110 0 orientation angle 8.
300 04711 42556 43.850 a4 ® No relationship was found between & and the powers of stress sin-
- piges o= bl 1= gularities a and f. Nevertheless, ane can cunclude that the SIF values
%00 04465 w1% 7.950 490 decrease for the parabolic and flat punch profiles as @ increases.

18
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Table 5
51Fs for the flat punch, SIF — k{—1) = a°gi—1), and 5IF —= k{+1) = o“g(+1), where Eg = 42.7 GFa.

(FIRVE, = Qo4 ELE, = (L585, 7 = (14, GI/Ep maberial (Material €)

a alk = b = LR
L A IRk = 1] SR+ 1) SIFk=1) SFk+1) ] (%) ) 5]
Anlytical FEM

oo - 0.5337 0,453 43538 41818 s4E10 3700 292 4.7
300 - 05358 ~0.4711 42,508 41040 a2510 £2810 284 118
&50 - 05360 ~0.4730 41395 30541 42140 41,350 oM .27
GO - 05353 - 04747 40430 3E4TD 41730 FAGD 3 257
DL - 0.5534 04485 30870 330680 &0.880 410 238 4.02

Appendix A. Appendix
Expression of n, k; and my, (j = 1, 2...13) appearing in Eq. (5]
[EEFY — 2T, + 2L — 3oLy

y 6T L (36a)
(RPN — [JT) — 4T 0L, 4 P-4+ 1JIHLY — Ao Ly)
\ 127371 (36b)
(2T =1 + 143) — 4T3 + 2= — I3 NLE — 3aLa)
\ 127371y (36c)
QTR — IRL, 4 PN — ALy
= T3
\ 67 "Ly {36d)
TP —BJB) — AL, + P+ LT — L)
T 120, (A6e)
Q2T N -1 + [/5) — ATV, + PO(—1 — I HES —3L,L,)
| 1273 L (366
e (22 + B Zwld— 0l B) — L) + o] (Zndads + 208 — 220 + ] Bl—End + B
! I + DB E = B12s) (36g}
o+ myle Fa + Zu) + i Ee
k= Z {365}
where
Ly =0+ cd:]c'::f'cl:: — G laa) (37a)
Ly = Gy + Tl O — 20000 + Cip) + CogCad + Gl Chy + 205,00t {37h)
Culifs + Caf — Cule — Cudul (37c)
{37d)
L= + fuﬁeac« — 2000 + Cas) + fil‘:u + 200000 (37e)
— Col(fnly — 20% e + Culu)) (376}
(375}
L = —Cuifu + Eulifs — Culs) a7h)
Ti= =27 + 9lplals — 2TLLT + o/ 4017 — 3ala) + (20 — Slalals + 2TLUGP (37}
To= —2L] 4 9LaLaly — ML LS + 34T JLJ-LI0T + AL L) + ALL7 — 18L L Ly, + FILTL) 1374
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