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ABSTRACT 

 

INVESTIGATION OF STRESS DISTRIBUTIONS BETWEEN A FRICTIONAL 

RIGID CYLINDER AND LAMINATED GLASS FIBER COMPOSITES 

 

 

Korhan Babacan YILMAZ 

 

Doctor of Philosophy, Department of Mechanical Engineering 

Supervisor: Prof. Dr. Bora Yildirim 

Co – Supervisor: Assoc. Prof. Dr. Baris Sabuncuoglu 

April 2021, 116 pages 

Surface and sub – surface stresses, and edges of contact patch between a rigid 

cylinder and laminated glass fiber composites are evaluated in this thesis. A novel 

and modern system of analysis based on Cholesky decomposition, Gauss 

elimination, Hermite orthogonal polynomials, Fourier transforms and singular 

integral equation (SIE) is developed to obtain analytical results. Numerical results 

are obtained in order to verify the precision of the analytical method using an 

effective and self mesh adaptive computational model built on augmented contact 

formulation (ACF) and finite element method. The effectiveness of the new 

analytical formulation was shown by a perfect match between these results. The 

formulations have been introduced for various interaction properties, material 

parameters, friction related terms, and lamina order in order to monitor the effects 

on surface and sub – surface stresses, and edges of contact patch. The findings 

and discussions addressed can be of value to the structural design of laminated 

glass fiber composites under extreme contact conditions.  

Keywords: Laminated glass fiber composites, Augmented contact formulation 

(ACF), Singular integral equation (SIE), Frictional sliding contact, Cholesky 

decomposition, Tribology 
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ÖZET 

 

SÜRTÜNMELİ RİJİT SİLİNDİR İLE LAMİNE CAM ELYAF KOMPOZİTLER 

ARASINDAKİ STRES DAĞILIMLARININ İNCELENMESİ 

 

 

Korhan Babacan YILMAZ 

 

Doktora, Makina Mühendisliği Bölümü 

Tez Danışmanı: Prof. Dr. Bora Yıldırım 

Eş – Danışman: Doç. Dr. Barış Sabuncuoğlu 

Nisan 2021, 116 sayfa 

Bu tez çalışmasında, rijit bir silindir ile lamine glass fiber kompozitler arasındaki 

yüzey ve yüzey – altı gerilmeleri ve temas patikasının kenarları 

değerlendirilmiştir. Analitik sonuçlar elde etmek için Cholesky ayrışımı, Gauss 

eliminasyonu, Hermite ortogonal polinomları, Fourier dönüşümleri, ve tekil 

integral denklemine (TID) dayanan yeni ve modern bir analiz sistemi 

geliştirilmiştir. Analitik yöntemin hassasiyetini doğrulamak için, artırılmış temas 

formülasyonu (ATF) ve sonlu elemanlar yöntemi üzerine inşa edilmiş efektif ve 

kendi kendine ağ uyarlamalı bir hesaplama modeli kullanarak sayısal sonuçlar 

elde edilmiştir. Yeni analitik formülasyonun etkinliği, bu sonuçlar arasında 

mükemmel bir eşleşme ile gösterilmiştir. Formülasyonlar, yüzey ve yüzey – altı 

gerilmeleri ve temas patikasının kenarları üzerindeki etkileri izlemek için çeşitli 

etkileşim özellikleri, malzeme parametreleri, sürtünmeyle ilgili terimler ve lamina 

sırası için tanıtılmıştır. Ele alınan bulgular ve tartışmalar, aşırı temas koşulları 

altında lamine kompozitlerin yapısal tasarımı için değerli olacaktır. 

Anahtar Kelimeler: Lamine cam elyaf kompozitler, Artırılmış temas 

formülasyonu (ATF), Tekil integral denklem (TID), Sürtünmeli kayan temas, 

Cholesky ayrışımı, Triboloji 
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1. INTRODUCTION 

1.1. Background 

Tribology and understanding the tribological behavior of products are very 

important in “Material Science” and “Engineering Mechanics” thematic fields, and 

“Surface, Coating, and Film” subfield. The tribology is the investigation science 

of interacting surfaces that are in motion with each other. The locution “Tribology” 

was first appeared in a technical report, where its scope was defined as research 

and evaluation of friction, lubrication, and wear mechanisms in products and real 

life engineering applications [1]. In general, tribological community provides 

benchmarks to industry using various types of conventional and unconventional 

materials to improve characteristics of interacting surfaces that are in continuous 

motion. These benchmarks are closely related to “Contact mechanics” thematic 

field and “Surface, Coating, and Film” subfield. In virtue of technological 

advances, research on tribology are greatly increased because almost all of the 

products used in enginering applications required to be design more effectively 

and accurately to prevent the unnecessary material loss happening from high 

wear, high surface friction and inadequate lubrication characteristics.  

A native contact mechanics problem consists of minimum two perpetual in motion 

elastic or one elastic and one rigid surface (means very stiff compared to other 

surface). As mentioned before, general purpose of these type of problems is to 

provide highly qualified and efficient benchmarks to be used in mechanical, 

thermal and/or dynamic design stages of engineering applications involving both 

conventional and unconventional materials. Among the literature, first study that 

investigated the mechanical behavior of these type of surfaces was carried out 

by considering a contact problem between two smooth curved elastic surfaces in 

which the contact was assumed to be frictionless [2]. After this study, many 

comprehensive studies were built and presented to the open literature. Reader 

can refer to spacious survey presented by [3] for further information on contact 

mechanics problems. 
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1.1.1. Contact conditions 

In engineering applications for the transfer of loads, moments or displacements 

between products in assemblies, several types of contact conditions may be used 

with regard to the field of usage. The most common ones used in industrial 

applications are explained briefly below. 

The sliding contact is a very specific type of contact condition and is very 

important in appropriately determining wear, fatigue, and friction components in 

engineering applications as it allows tangential displacement to contact patch 

without a relative motion along the normal direction. In general, sliding contacts 

can be used to model the sliding movement of the surfaces in assemblies under 

Coulomb’s law of static friction. A 2 – D graphical representation of a simple 

sliding contact problem is presented in Fig. 1, where a rigid cylindrical punch 

transmits both normal and tangential loads to the finite thick elastic layer.  

 

Fig. 1. 2 – D graphical representation of a simple sliding contact problem 

The receding contact is an extension of sliding contact condition and its 

application is considerably more difficult as contact patch between the elastic 

layers’ shrinks or expands when the load is applied or decreased, respectively. 

Therefore, proper investigation of wear and fatigue components not only at the 

surface but also at the interface is crucial in determining the contact performance. 

In Fig. 2, a 2 – D graphical representation of a simple receding contact problem 

is presented by considering a rigid cylindrical punch and two finite thick elastic 

layers. 

In partial slip contact condition, the contact stress generates a tangential 

displacement at the interface because of the dissimilarity at the lower and upper 

contact interfaces; slip or partial slip may generally take place and this result in 
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two distinct contact boundaries on same surface. Monitoring these slip regions is 

essential in successfully determining the wear components. Yet, these regions 

can be prevented by applying a little bit more friction at the contact patches. The 

slip zones are presented in Fig. 3 between a , b  and a ,b . 

Rolling contact is one of the most important contact types used in engineering 

applications. In this type of contact, the rolling motion of one body over another 

body can cause fatigue and surface wear due to the repetitive stresses at the 

contact region happening from stick and slip zones [4] (see Fig. 4). These type of 

contact could be seen in anti – friction bearings, train wheel assemblies and 

crankshaft housings for engines. 

 

Fig. 2. 2 – D graphical representation of a simple receding contact problem 

 

 

Fig. 3. 2 – D graphical representation of a simple partial slip contact problem 
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In general, the deformation and temperature fields play the most important role 

in thermos – mechanical contact problems. Since the constitutive relations are 

dependent on temperature, these fields are coupled. In this type of contact, 

frictional forces or deformation mechanisms usually generate heat. Application of 

thermo – mechanical contact problems has a wide range including shrink fit 

problems, temperature loading and frictional heating, metal forming processes, 

and cooling of electronic and mechanical devices [5]. A very simple model for a 

thermo – mechanical contact problem is depicted in Fig. 5 with a constant heat 

transfer coefficient between the surfaces. 

 

Fig. 4. 2 – D graphical representation of a simple rolling contact problem 

 

 

Fig. 5. 2 – D graphical representation of a simple thermo – mechanical contact 
problem 
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1.1.2. Material types and material models 

There are different types of materials used in contact mechanics applications 

regarding their physical and mechanical properties. These materials can either 

be manufactured or be found in nature in homogeneous/unhomogeneous and/or 

isotropic/anisotropic (conventional/unconventional) forms. A material with a 

uniform composition throughout its body can be considered as homogeneous, 

where certain types of plastics, ceramics, glass, and metals are the common 

examples for homogeneous materials. Conversely, unhomogeneous materials 

have a non – uniform physical properties along their bodies. In engineering 

applications, they can be manufactured using step – by – step or continuous 

gradation methods [6 – 8]. Turbine blade coatings, bullet – proof vests, armored 

planes, bonded laminates, dental implants, and thermal – barrier coatings, wear 

resistant surfaces, and concrete can be common examples for these type of 

materials [9 – 14].  

In material isotropy, mechanical and thermal properties show similarity in all three 

principal directions. Due to this resemblance, applied tensile loading only causes 

elongation in that principal direction and two other principal directions produce 

zero shear strain. If one of the principal directions is normal to the plane of 

isotropy (for instance, x  global direction is normal to yz  plane), then the 

material can be called as transversely isotropic. Transversely isotropic materials 

are a type of anisotropic materials, where the unidirectional composites are the 

most common example. Furthermore, if a material has three distinct but mutually 

perpendicular planes of symmetry, then it exhibits an orthotropic behavior. Due 

to this discrepany between the planes, the thermal and mechanical properties 

differ in all three principal directions, where wood and continuous fibers with 

single lamina orientation can be the examples for orthotropic materials. 

Moreover, if a material has single plane of symmetry, then it can be named as 

monoclinic material. Rotated fibers and multilayered composites are most 

common examples for monoclinic materials.  
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1.2. Literature review on contact mechanics regarding analytical methods 

The solution of contact mechanics problems regarding isotropic materials were 

well established in literature. Assuming a classical uncoupled tangential contact 

problem between two elastic and linear spheres under constant normal loading, 

positions of stick and slip regions on contact patch were illustrated. It was shown 

that stick region appears at inner domain while slip region emerges at the edges 

of the contact patch [15]. Some comprehensive contact problems about two 

dimensional stress systems, infinite elastic solids, basic equations of 2 – D theory 

of elasticity and solution of stress functions were presented in [16 – 17]. An 

indentation problem for an elastic half – plane and an axisymmetric punch was 

studied under frictional contact conditions. It was found that, progressive increase 

of normal force affected maximum indentation and dimensionless normal 

displacement on contact patch [18].  

Solution of contact problems involving material anisotropy and transversely 

isotropy is quite difficult than the ones with isotropic materials. In these solutions, 

extra – added linked and unlinked stiffness constants bring complexity to solution 

of mathematical equations. Using tangential and normal loading conditions, 

stress fields generated by sliding contact on transversely isotropic spheres were 

investigated [19]. It was concluded that Hankel transforms were quite capable in 

evalution of integrals for surface stresses. Closed – form solutions for surface 

tractions and stresses were presented using sliding friction for transverse 

isotropy; shown that Green’s functions could be used to solve contact problems 

and field equations [20]. Later, a three dimensional sliding contact problem 

between a layered half – plane and a spherical indenter was considered and 

stress fields related to failure and cracks were presented [21].  It was shown that, 

material type and membrane thickness greatly affected the structural behavior of 

coated surface and stiffness. Different types of interfacial contacts were 

investigated by loading a transversely isotropic layer with a rigid spherical 

indenter. Presented results from approximate solutions brought a good 

agreement with the previous results from literature [22]. Important benchmarks 

and infinitesimal deformation simulations were conducted by loading an 

anisotropic elastic layer with various types of rigid indenter profiles [23]. Stress 

and deformation behavior of cellular materials were studied using two – scale 
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rough contact modeling. It was found that, anisotropic topology of material was 

fairly prominent on tribological behavior [24]. Effect of material anisotropy on the 

pressure distribution and contact patch was investigated using semi – analytical 

methods and elementary solutions [25]. It was shown that, symmetry axes on 

contact patch and stiffness along normal loading direction influenced pressure 

distribution on contact patch. Then, Knoop, Berkovich and Vickers indenters were 

used to load an anisotropic elastic surface to investigate the surface stresses and 

surface elasticity. It was shown that, displacement fields were closely related to 

anisotropic behavior of material and indenter profile [26]. Exact analytical 

solutions for the contact behavior of scintillattor materials used in high – energy 

physics and medical applications were presented in terms of complex and real 

eigenvalues [27]. It was concluded that, optimizing punch profile and increasing 

elastic coefficient ratio reduced strength of stress singularities. Afterwards, 

contact mechanics and friction behavior of transversely isotropic solids were 

investigated using Persson’s theory. Findings showed that, anisotropy should be 

considered in analytical equations [28]. A new analytical model on adhesive 

contact of anisotropic materials were validated using Kendall – Roberts – 

Johnson theory and van der Waals force method. It was found that, surface 

mechanical property and elastic modulus in tangential direction affected 

maximum adhesion force on contact patch [29]. A novel iterative algorithm based 

on Lenard – Jones potential was developed to solve displacement and sub – 

surface stress fields for elastic solids [30]. Then, previous study was extended by 

considering multi – layered elastic solids [31]. Subsequently, an experimantal and 

numerical study were conducted to assess the contact and friction behavior of 

transversely isotropic viscoelastics, where different types of specimens were 

utilized [32]. Combined effects of anisotropy and interface behavior on the 

indentation moduli were investigated using dual variable and position methods. 

Findings showed that, deformation mechanisms and changes in indentation 

moduli in thin – interlayer models were quite remarkable [33]. Exact and 

numerical solutions for a three – dimensional contact problem between two 

transversely isotropic bodies were presented within the framework of nonlinear 

boundary integration method [34].  
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Solution of contact mechanics problems with material orthotropy, monoclinic 

materials and laminated composites are also very difficult because of extra –

added linked and unlinked stiffness constants, and lamina orientation angles. 

Analogy between the frictionless contact response of metal and polymer based 

composites was investigated using Fourier and Hilbert transforms [35]. It was 

shown that, stiffness constants in longitudinal and transverse directions 

influenced the deformation response of composite layers and concluded that, 

surface behavior of layered composite half – planes was mainly related to the 

amount of local bending around contact patch. Later, a high resemblance 

between contact and fracture mechanics was perceived. Based on this, a contact 

mechanics problem between two different types of indenter profiles and an 

orthotropic half – plane was considered. It was concluded that, indenter problems 

could be solved using methodologies belonging to fracture mechanics [36]. Three 

– dimensional contact analyses of spherical indenters were carried out using 

graded carbon fiber diffused epoxies. Experimental and numerical results 

showed that, orientation – graded specimens were more durable than cross – ply 

ones in loading direction [37]. Some contact examples and benchmarks 

regarding low transverse properties of composite half planes were presented 

analytically using Hilbert and Fourier transforms. Compared results showed that, 

transverse cracks weakened layers’ performance under fatigue loads [38]. 

Afterwards, microhardness tests for polymer composites were carried out in 

terms of contact mechanics. Findings showed that, centrifugation condition was 

one of the most important stages in successfully adjusting particle distribution 

[39]. A general solution procedure for calculating surface stresses and contact 

patch on orthotropic materials was presented by diversifying geometrical 

parameters of problem [40]. By eliminating logarithmic singularities using direct 

asymptotic solutions, a contact problem between an orthotropic strip and a rigid 

punch was considered and some numerical examples were provided for different 

values of strip thicknesses [41]. Contact stiffness due to surface roughness of 

composite braking material samples was investigated using surface contact 

fracture theory and G – W model. It was found that, contact stiffness was 

generally greater than bulk stiffness, where the contact compliance happened at 

light loading scenarios [42]. A new mathematical model based on numerical 

integration method was generated to solve contact problems involving orthotropic 
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materials. It was shown that, interfacial contact patch and detailed stress fields 

could be easily obtained [43]. Rheological properties of polymer – matrix 

composites and their correlations with surface friction, roughness and material 

type were investigated in terms of contact mechanics. Brief analytical and 

experimental investigations showed that, thin composite films and monolayers 

could be used as lubricant material in modern engineering applications such as 

in memory storage devices and microelectromechanical systems [44]. 

Subsequently, closed – form solutions for an orthotropic medium loaded by 

different types of rigid indenters were presented using Krenk’s notation and 

singular integral equations. Presented numerical results showed that, effective 

Poisson’s ratio and stiffness ratio parameters had negligible effects on stresses 

and powers of stress singularities [45]. A new theoretical model to solve frictional 

sliding contact mechanics problems of monoclinic materials was proposed using 

Fourier transforms and Cauchy based integral equations. Results were given to 

show the influences of geometrical and material parameters, where underlying 

physics of the problem was discussed [46]. Frictional contact behavior of a rigid 

punch on a monoclinic half – plane with varying shear modulus in an arbitrary 

direction was investigated [47]. It was found that, proper evaluation of orientation 

angle, gradation parameter, and surface friction was very important in designing 

strong wear resistant surfaces. Mode I and II surface crack problems for 

orthotropic materials were investigated using analytical methods. It was 

concluded that, changes in material orthotropy and surface friction were greatly 

influenced mixed – mode stress intensity factors [48]. After that, a sliding contact 

problem for a coating / substrate system was considered by choosing an 

orthotropic coating material [49]. It was concluded that, soft coatings brought 

better surface performances in terms of surface wear and stress intensities. Using 

Gauss – Jacobi integration method and Fourier transforms, a highly parametric 

study on the contact behavior of an orthotropic layer was presented [50]. Findings 

showed that, soft surfaces could bear stresses more dispersedly than hard 

surfaces, which could increase surface performance in terms of wear and 

lubrication. Later, a dual approach solution for an orthotropic coating / isotropic 

substrate system was presented in terms of analytical and numerical solution 

methods, where the effects of material orthotropy, surface friction, and 

geometrical parameters were investigated [51]. It was monitored that, surface 
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cracks tended to be happen more on hard – coated surfaces than the soft – 

coated ones. Other comprehensive studies on material orthotropy, monoclinic 

and composite materials could be found in [52 – 54]. 

 

1.3. Aim and scope 

Explained in previous sections, the easiest way to transfer loads, moments, and 

displacements between parts used in engineering applications is to apply contact. 

In the proper nature of micro crack and wear resistant materials and surfaces, 

understanding the tribological behavior of these parts is a key. Several detailed 

research related to isotropic materials, material anisotropy, transversely isotropy, 

and orthotropy have been performed. An in depth analysis showed that, few 

studies on literature relating to monoclinic materials and laminated composites 

were performed because additional added related and unrelated constatns of 

stiffness and variance in lamina orientation introduced difficulty to mathematical 

equations’ solutions. In these studies, owing to the aforementioned 

complications, only the frictionless and / or frictional contact behavior of a single 

layer composite or a composite coated surface was investigated. To fill this gap, 

a contact mechanics problem between a frictional rigid cylinder and laminated 

glass fiber composites with different orientations is considered in this study. The 

purpose of this research, following the explanations, is to present a novel solution 

framework based on analytical and finite element methods that can be used to 

predict the frictional sliding contact behavior of laminated glass fiber composites. 

With regard to the target, it is possible to detail the scope of this study as 

 Developing a novel analytical method based on Cholesky decomposition, 

Gauss elimination, Hermite orthogonal polynomials, Fourier transforms 

and singular integral equation (SIE) 

 Developing a highly effective computational model based on augmented 

contact formulation (ACF) and finite element method  

 Presenting the usage of quailifed parametric work to test the accuracy and 

efficacy of the analytical and finite element methods 

 Employing benchmarks to be used in industry 
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1.4. Problem definition 

It would be best to begin by describing the geometry of a single composite lamina 

before proceeding with the problem definition of laminated glass fiber composites 

as analytical method presented in Section (2) started with the formulations 

belonging to a single composite lamina. Presented in Fig. 6., a single composite 

lamina composed of embedded glass fiber, has a thickness  
th  and width W , is 

considered prior to built up analytical method. It is pressed by a rigid cylinder has 

a radius of R  using both concentrated normal P  and horizontal forces Q P

under plane strain and frictional contact conditions regarding Coulomb’s static 

law of friction. The bottom surface is assumed to be fully bonded to a rigid 

substrate to prevent rotations and translations.  

 

Fig. 6. Geometry of a single composite lamina 

 

Furthermore, laminated glass fiber composite considered in this study composed 

of m  number of laminae and consists glass fibers embedded in an epoxy matrix 

with 0  and 90  degree rotations. To limit layer transition and to easily seek the 

effect of lamina order on results,  120  and  1290  configurations and  3 30 / 90
s
, 

 3 390 / 0
s

,  3 3 2
0 / 90 , and  3 3 2

90 / 0  configurations are chosen. The problem 

geometry is presented in Fig. 7, where each laminated glass fiber composite 

assumed to has a total thickness th  and total width W  of 4.5mm and 90mm, 

respectively. Identical to a single composite lamina, a rigid cylinder, with a radius 

of R  is used to load the laminated glass fiber composite. It is subjected to a 

concentrated normal force P  and a horizontal force Q P  under plane strain 

conditions. For the surface friction, Coulomb’s static law of friction is used, where 

the coefficient of friction denoted using  . The bottom surface of the laminated 
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glass fiber composite is assumed to be fully bonded to a rigid substrate, where 

all rotations and translations are fixed on x , y , and z  global and 1 , 2 , 

and 3  local directions. Note that, for the configurations considered 12m  , 

where each lamina has a thicness h  of 0.375mm . 

  

 

Fig. 7. Geometry of a laminated glass fiber composite 

 

Furthermore, in Table 1, individual glass fiber and epoxy matrix material 

parameters are presented. 

 

Table 1. Material parameters for individual glass fiber and epoxy matrix 

Parameter Name Value Parameter Name Value 

( )fE GPa  72.1 ( )mE GPa  2.56 

(%)fV  

40 

(%)mV  

60 

50 50 

60 40 

( )f GPa  29.1 ( )m GPa  0.9 

f  0.22 m  0.35 
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2. ANALYTICAL METHOD  

2.1. Calculations for the material parameters for a single composite lamina 

Calculations for the material parameters start with the evaluation of properties of 

a single composite lamina. Using the individual glass fiber and epoxy matrix 

material parameters [55], formulation is implemented to obtain lamina properties 

as given in following:  

xx f f m mE E V E V           (1a) 

1 1
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yy
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f

f

E
E

E
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E
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            (1i) 

zx yx            (1h) 
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         (1j) 

zy yz            (1k) 

where 
fE , 

fV , mE , and mV  are the elastic moduli and volume fractions; 
f , 

f , 

m , and m  represent shear moduli and Poisson's ratios of glass fiber and epoxy 
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matrix, respectively. It is known that, some common engineering materials and 

two – ply reinforced composites exhibit material orthotropy, where the material 

has orthogonal planes of symmetry and material property is independent along 

symmetry planes. The constitutive relation for material orthotropy can be written 

as 
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     (2) 

where 
ijC  ( 1, 2,...., 6i  , 1, 2,...., 6j  ) represents the global stiffness constants 

along x , y , and z  global directions and they can be obtained in terms of 

lamina properties given in Eq. (1) as follows: 

11 12 13

1
, ,

yz zy yx zx yz zx yx zy

yy zz yy zz yy zz
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         
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  
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22 23 33

11
, ,
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zz xx zz xx xx yy

C C C
E E E E E E

       
  

  
    (3b)  

44 55 66, ,yz xz xyC C C            (3c) 

where  

1 2xy yx yz zy zx xz xy yz zx

xx yy zzE E E

           
        (4) 

Note that, the global stiffness matrix ijC    ( 1, 2,...., 6i  , 1, 2,...., 6j  ) given in 

Eq. (2) is symmetric by nature. Therefore, 12 21C C , 13 31C C , and 23 32C C . 
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2.2. Calculation of transformed rotated stiffness constants for a single 

composite lamina 

Before providing calculation of transformed rotated stiffness constants ijC , it is 

needed to relate global stresses (
xx , 

yy , 
zz , 

yz , 
xz , and 

xy ) and global 

strains (
xx , 

yy , 
zz , 

yz , 
xz , and 

xy ) with local stresses (
11 , 

22 , 
33 , 

23 , 

13 , and 
12 ) and local strains (

11 , 
22 , 

33 , 
23 , 

13 , and 
12 ), respectively. To 

perform that, the following rotation matrix is introduced: 

'cos( , )ij i jQ             (5a) 

1 4 7

2 5 8

3 6 9

ij

rt rt rt

Q rt rt rt

rt rt rt

 
 


 
  

         (5b) 

where 
irt  ( 1, 2,...,9i  ) represents counterclockwise rotation cosines and sines 

between global and local directions, respectively. Using Eq. (5) and some 

trigonometrical manipulations, the global stresses (
xx , 

yy , 
zz , 

yz , 
xz , and 

xy ) can be related with local stresses (
11 , 

22 , 
33 , 

23 , 
13 , and 

12 ) as 

   123 1 xyzT               (6a)  
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   (6b) 

Identically, global strains ( xx , 
yy , zz , 

yz , xz , and 
xy ) can be related with 

local strains ( 11 , 22 , 33 , 23 , 13 , and 12 ) as   

   123 2 xyzT               (7a) 
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Using following notations, transformed rotated stiffness constants ijC  (

1, 2,...., 6i  , 1, 2,...., 6j  ) which forms transformed rotated stiffness matrix  ijC 
   

( 1, 2,...., 6i  , 1, 2,...., 6j  ) can be obtained as  

   1 2xyz ij xyzT C T                    (8a) 

   
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   
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1 2ij ijC T C T


               (8c) 

Transformed rotated stiffness matrix ijC 
   ( 1, 2,...., 6i  , 1, 2,...., 6j  ) given in 

Eq. (8c) represents material behavior of a single composite lamina having an 

arbitrary orientation through z  direction which leads a material symmery on 

xy  plane. Thus, constitutive relation for material orthotropy presented in Eq. (2) 

transforms to following for a single composite lamina: 
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2.3. Derivation of displacement equations and stress – displacement 

relations for a single composite lamina 

Using infinitesimal strain theory, strain – displacement relations can be expressed 

in component form as 

, ,xx yy zz
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Utilizing Eq. (10) and symmetry conditions for transformed rotated stiffness 

constants (
16 61C C , 

26 62C C , 
36 63C C , and 

45 54C C ), Eq. (9) can be further 

expressed as 

11 12 13 16xx

u v w u v
C C C C

x y z y x


     
     

     
     (11a) 

12 22 23 26yy

u v w u v
C C C C

x y z y x


     
     

     
     (11b) 

13 23 33 36zz

u v w u v
C C C C

x y z y x


     
     

     
     (11c) 

44 45yz

v w w u
C C

z y x z


     
      

     
      (11d) 

45 55xz

v w w u
C C

z y x z


     
      

     
       (11e) 

16 26 36 66xy

u v w u v
C C C C

x y z y x


     
     

     
     (11f) 

Then, using Eq. (11) along with equilibrium equations in terms of displacement 

components [56] following relations can be generated: 
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2 2 2 2 2 2 2 2
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2 2 2 2 2 2

45 55 662 2 2
0x
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 (12a) 

2 2 2 2 2 2 2 2

12 16 22 23 26 362 2 2

2 2 2 2 2 2

44 45 662 2 2
0y

u u v w v u v w
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          
            

             

 (12b) 

2 2 2 2 2 2 2

13 23 33 36 442 2

2 2 2 2 2 2

45 55 2
0z

u v w u v v w
C C C C C

x z z y z z y z x y z y
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C C F

x z x y y x y z x x z
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        
          

             

  (12c) 

For two dimensional environment under plane strain conditions, ( , )u u x z , 

( , )v v x z , ( , )w w x z , / 0u y   , / 0v y   , and / 0w y   . Neglecting body 

forces along x , y , and z  global directions, Eq. (12) reduces to following set 

of two dimensional equilibrium equations relations in terms of displacement 

components: 

 

2 2 2 2 2 2

11 13 16 45 552 2 2 2
0

u w v v w u
C C C C C

x x z x z z x z

      
      

        
   (13a) 

2 2 2 2 2 2

16 36 44 45 662 2 2 2
0

u w v w u v
C C C C C

x x z z z x z x

      
      

        
   (13b) 

2 2 2 2 2 2

13 33 36 45 552 2
0

u w v v w u
C C C C C

x z z z x x z x x z

      
      

          
   (13c) 

Identically, Eq. (11) reduces to following set of stress – displacement relations: 

11 13 16xx

u w v
C C C

x z x


  
  

  
       (14a) 

12 23 26yy

u w v
C C C

x z x


  
  

  
       (14b) 

13 33 36zz

u w v
C C C

x z x


  
  

  
       (14c) 
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44 45yz

v w u
C C

z x z


   
   

   
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45 55xz

v w u
C C

z x z


   
   
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        (14e) 

16 36 66xy

u w v
C C C

x z x


  
  

  
       (14f) 

 

2.4. Derivation of stress components and kj, mj, and nj expressions for a 

single composite lamina 

Before deriving the stress components for a single composite lamina, it is needed 

to introduce following Fourier transform of displacements forehand: 

1
( , ) ( , )

2

I xu x z u z e d 








          (15a) 

1
( , ) ( , )

2

I xv x z v z e d 








          (15b) 

1
( , ) ( , )

2

I xw x z w z e d 








         (15c) 

where ( , )u z , ( , )v z , and ( , )w z  are transformed displacement components of 

displacements ( , )u x z , ( , )v x z , and, ( , )w x z , respectively and can be obtained 

using 

6

1

( , ) jn z

j

j

u z A e





          (16a) 

6

1

( , ) jn z

j j

j

v z A m e





          (16b) 

6

1

( , ) jn z

j j

j

w z IA k e





         (16c) 
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Note that,   shown in Eq. (15) and Eq. (16) denotes an equation variable such 

as x  and y , and I  is imaginary unit ( 1I   ). Substituting Eq. (15) into Eq. 

(13), following set of ordinary different equations can be obtained: 

2 2
2 2

11 13 16 45 55 552 2
0

dw d v d u dw
C u C I C v C C C I

dz dz dz dz
             (17a) 

2 2
2 2

16 36 44 45 45 662 2
0

dw d v d u dw
C u C I C C C I C v

dz dz dz dz
            (17b) 

2
2

13 33 36 45 55 552
0

du d w dv dv du
C I C C I C I C w C I

dz dz dz dz dz
             (17c) 

To obtain stress components for a single composite lamina, it is needed to derive 

the partial derivatives of Fourier transforms given in Eq. (15) forehand: 
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Then, stress components for a single composite lamina can be obtained by 

substituting Eq. (18) into Eq. (14): 
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To obtain expressions for 
jk , 

jm , and 
jn  ( 1, 2,...., 6j  ) firstly presented in Eq. 

(16), it is needed to calculate the second order partial derivatives of Fourier 

transforms given in Eq. (15) along with Eq. (13) as 
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IA k e e d A k n e e d

x z x z

    
 

 

  

     
     

         
    (20i) 

After some mathematical manipulations, Eq. (13) trasforms into following: 

6
2 2 2

11 13 16 45 55

1

( ) 0jn z I x

j j j j j j j j j

j

A e e C C k n C m C m n C k n n d
  







          (21a) 

6
2 2 2

16 36 44 45 66

1

( ) 0jn z I x

j j j j j j j j j

j

A e e C C k n C m n C k n n C m d
  







          (21b) 

6
2 2

13 33 36 45 55

1

( ) 0jn z I x

j j j j j j j j j j

j

A e e C n C k n C m n C m n C k n d
  







          (21c) 

As sub – equations in Eq. (21) are equal to zero, multiplying terms outside square 

brackets can be omitted. Thence, Eq. (21) yields to following equations: 

2 2

11 13 16 45 55( ) 0j j j j j j j jC C k n C m C m n C k n n            (22a) 

2 2

16 36 44 45 66( ) 0j j j j j j j jC C k n C m n C k n n C m           (22b) 

2

13 33 36 45 55( ) 0j j j j j j j j jC n C k n C m n C m n C k n          (22c) 

Solving Eq. (22), a characteristic equation in terms of 
jn  ( 1, 2,...., 6j  ) can be 

obtained as 

6 4 2

4 3 2 1 0j j jL n L n L n L            (23) 
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where 

2

1 55 16 11 66( )L C C C C          (24a) 

2

2 16 33 16 13 36 45 36 55 13 13 55 66

2

11 36 45 44 55 33 66

( 2 ( ( ) ) ( 2 )

(( ) ))

L C C C C C C C C C C C C

C C C C C C C

      

   
   (24b) 

2 2

3 13 44 13 45 36 45 36 55 13 44 55

33 11 44 16 45 55 66

( 2 ( ) 2

( 2 ))

L C C C C C C C C C C C

C C C C C C C

    

  
    (24c) 

2

4 33 45 44 55( )L C C C C           (24d) 

After obtaining 
jn  ( 1, 2,...., 6j  ) by solving Eq. (24), 

jm  and 
jk  ( 1, 2,...., 6j  ) 

can be found using 

2 2 2

16 55 33 13 36 45 36 55 33 45

2 2 2 2

36 45 55 33 55 44

( ) ( ( ) )

( ) ( )( )

j j j

j

j j j

C C C n n C C C C C C C n
m

C C n C C n C C n

     


   
   (25) 

13 55 36 45

2

55 33

( ( ) )j j

j

j

C C C C m n
k

C C n

  


 
       (26) 

 

2.5. Boundary conditions and singular integral equation (SIE) for a single 

composite lamina 

Presented in Fig. 6, boundary conditions at the top and bottom surfaces of a 

single composite lamina can be written as 

( )
( ,0)

0 ,
zz

p x a x b
x

x a x b


   
 

  
       (27a) 

( ,0) 0yz x            (27b) 

( )
( ,0)

0 ,
xz

p x a x b
x

x a x b




   
 

  
      (27c) 

( , ) 0tu x h            (27d) 

( , ) 0tv x h            (27e) 
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( , ) 0tw x h            (27f) 

where ( )p x  represents the surface contact stress. To calculate 
jA  ( 1, 2,...., 6j 

) constants appearing firstly in Eq. (16), it is needed to obtain inverse Fourier 

transforms of displacement and stress components presented in Eq. (15) and Eq. 

(19) regarding boundary conditions of the problem as 

 
6

13 33 36

1

( ,0) jn z

zz j j j j

j

x I A e C C k n C m


 


         (28a) 

  
6

44 45

1

( ,0) jn z

yz j j j j j

j

x A e C m n C k n


 


        (28b) 

  
6

45 55

1

( ,0) jn z

xz j j j j j

j

x A e C m n C k n


 


        (28c) 

6

1

( , ) jn z

j

j

u z A e





          (28d) 

6

1

( , ) jn z

j j

j

v z A m e





          (28e) 

6

1

( , ) jn z

j j

j

w z IA k e





         (28f) 

By combining Eq. (27) and Eq. (28), and applying boundary conditions, a set of 

equtions can be created to obtain 
jA  ( 1, 2,...., 6j  ) constants as 

 
6

13 33 36

1

( )j j j j

j

I A C C k n C m p x


           (29a) 

  
6

44 45

1

0j j j j j

j

A C m n C k n


          (29b) 

  
6

45 55

1

( )j j j j j

j

A C m n C k n p x 


          (29c) 

6

1

0j tn h

j

j

A e




          (29d) 
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6

1

0j tn h

j j

j

m A e




          (29e) 

6

1

0j tn h

j j

j

Ik A e




          (29f) 

where, 
jA  ( 1, 2,...., 6j  ) constants can be obtained by solving Eq. (29) with any 

system of equation solvers. As the profile of cylinder is rigid, deformed shape of 

the surface for a single composite lamina should be identical to the shape of the 

cylinder. Therefore,  

( ,0) ( )w x f x            (30a) 

( ,0)
'( )

w x
f x

x





         (30b) 

where   and ( )f x  represent penetration depth and profile function, respectively. 

For a rigid cylinder, the profile function can be written as, 

2

( )
2

x
f x

R
           (31a) 

'( )
x

f x
R

           (31b) 

where R  denotes the radius. Using Eq. (15c) and (31b), Eq. (30b) can be 

expanded as 

6

1

( ,0) 1
( ) '( )

2

I x

j j

j

w x
I I A k e d f x

x

 








 
   

  
      (32) 

where 
jA  ( 1, 2,...., 6j  ) constants consists p

jA  and 
q

jA  sub – constants, which 

are formed by surface contact stress ( )p x  and surface in – plane stress ( )q x . 

The expressions for surface contact stress ( )p x  and surface in – plane stress 

( )q x  can be written as 

( ) ( )
b

I t

a

p x p t e dt



           (33a) 
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( ) ( )
b

I t

a

q x p t e dt


           (33b) 

Furthermore, Eq. (32) can be written in an open form regarding 
p

jA  and 
q

jA  sub 

–  constants as 

6

1

( ,0) 1
( ) ( ( ) ( )) '( )

2

p q I x

j j j

j

w x
I I A p x A q x k e d f x

x

 








 
    

  
    (34) 

Inserting Eq. (33) into Eq. (34) results to following equation: 

6

1

6

1

( ,0) 1
( ) ( )

2

1
( ) ( ) '( ) ( )

2

b

p I t I x

j j

j a

b

q I t I x

j j

j a
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I I A k p t e dt e d

x

I I A k p t e dt e d f x a x b

 

 

 


  






 





 

 
   

  

 
      

 

 

 

 (35) 

where a  and b  denotes the edges of the contact patch. Then, arranging Eq. 

(35) following equation can be obtained: 

( )

10

( )

10

( ,0) 1
( )

2

1
( ) '( ) ( )

2

b

I t x

a

b

I t x

a

w x
p t M e d dt

x

p t N e d dt f x a x b








 






 





 

 
  

  

 
     

 

 

 

  (36) 

where  

6 6

10

1 1

( ) p p

j j j j

j j

M I I A k A k 
 

           (37a) 

6 6

10

1 1

( ) q q

j j j j

j j

N I I A k A k 
 

           (37b) 

Introducing following relations 

   ( )

10 10

0

2 Im sin ( )I t xM e d M t x d   
 





         (38a) 

   ( )

10 10

0

2 Re cos ( )I t xN e d M t x d   
 





        (38b) 

Inserting Eq. (38) into Eq. (36) yields to: 
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 

 

1

0

1

0

1
( ) sin ( )

1
( ) cos ( ) '( ) ( )

b

a

b

a
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p t N t x d dt f x a x b
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
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
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 

 

 
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  (39) 

where  

 
6

1 10 10

1
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M M IM I A k


            (40a) 

 
6

1 10 10

1

Re q

j j

j

N M N A k


           (40b) 

To obviate the singularity in Eq. (39), two new constants are introduced: 

1 1lim M





           (41a) 

1 2lim N





           (41b) 

Then, Eq. (39) becomes 

     

     

1 1 1

0 0

1 2 2
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b b
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 
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 

 

 

 
     

 

 
        

 

   

 

 (42) 

Applying Fourier integral transformation [57] to Eq. (42), following singular 

integral equation (SIE) for a single composite lamina can be obtained: 

2
1 2

1 1

1 1 1
( ) ( ) ( , ) ( , ) '( ) ( )

b

a

p x p t K x t K x t dt f x a x b
t x


 

  


 
        

  (43) 

where 

   1 1 1
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( , ) sin ( )K x t M t x d  


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   2 1 2
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( , ) cos ( )K x t N t x d  
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         (44b) 

Note that, following equilibrium equation should also be satisfied: 
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( ,0) ( )
b

zz

a

x dx p t dt P


 

           (45) 

Introducing following normalizations to modify the boundaries of singular integral 

equation (SIE) in Eq. (43) 

2 2

b a b a
t r

 
           (46a) 

2 2

b a b a
x s

 
           (46b) 

Then, singular integral equation (SIE) in Eq. (43) and equilibrium equation in Eq. 

(45) transform to following equations: 

1

2
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1 1 1
( ) ( ) ( , ) ( , ) '( )
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x dx p r dr
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



 
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where 
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
    
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0

( , ) cos ( )
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b a b a
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
    

    
  

      (48b) 

 

2.6. Solution of singular integral equation (SIE) and calculation of contact 

stress at the surface for a single composite lamina 

The principal solution of singular integral equation (SIE) given in Eq. (47a) can 

be defined as follows: 

( ) ( )(1 ) (1 )p r g r r r            (49) 

where  
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2 1
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2 1
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I I

 


  

 
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       (50a) 

2 1
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I
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I I

 


  

 
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 
       (50b) 

0N  and 
0M  appearing in Eq. (50) are arbitrary integers and can be obtained by 

utilizing 1 Re[ , ] 1    . Using Gauss – Jacobi quadrate [58], singular integral 

equation (SIE) presented in Eq. (47a) can be converted to following numerical 

form: 

1 2

1 1

1 1
( ) ( , ) ( , ) '( ) ( 1, 2,..., )

N
N

i i k i k i k

i i k

W g r K s r K s r f s k N
r s

 


 
     

 
  (51) 

where 
ks  and 

ir  are the roots of related Jacobi polynomials. 

( , ) 0 ( 1,2,..., )N iP r i N            (52a) 

( , ) 0 ( 1,2,..., )N kP s i N 
  

           (52b) 

Note that,   is the index of singular integral equation (SIE) and it may vary 

according to indenter profile (for this study ( ) 1       as a rigid cylinder is 

used). Similar with Eq. (47a), Eq. (47b) can be converted to following numerical 

form: 
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2
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( )

N
N

i i

i

P
W g r

b a




         (53) 

where N

iW  is weighting constant and can be defined as 
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
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         
  

     
 (54) 

To determine the exact values of the edges of the contact patch a  and b , it is 

needed to acquire ( )ig r  forehand. To obtain it, Eq. (51) needs to be discretized 

for more than one value of N by monitoring approximate error between 

calculations. After that, unknown values for the edges of the contact patch a  

and b  can be obtained using Eq. (53) by employing root finding or bracketing 

methods. Then, surface contact stress over contact patch for a single composite 
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lamina can be found using Eq. (49). Here, a simple discretization example is 

presented using Eq. (51) by taking 2N  : 
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  (55c) 

where Eq. (55) can be simplified as  

    A X B           (56a) 
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 (56b) 
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2.7. Calculation of in – plane stress at the surface for a single composite 

lamina 

In – plane stress at the surface for a single composite lamina can be defined as 

3 ( ) ( )
( ,0)

( ) ,
xx

p x H x a x b
x

H x x a x b




   
 

  
      (57) 

where 

4
3 4

1
( ) ( ) ( , ) ( , )

b

a

H x p t K x t K x t dt
t x

 





 
    

      (58) 

Sub – equations form Eq. (58) can be written as 

   3 2 3

0

( , ) cos ( )K x t M t x d  


         (59a) 

   4 2 4

0

( , ) sin ( )K x t N t x d  


         (59b) 

To modify boundaries of singular integral equation (SIE) in Eq. (58), 

normalizations presented in Eq. (46) can be used. Then, Eq. (58) transforms to 

following equation: 

1

4
3 4

1

1
( ) ( ) ( , ) ( , )

2
( )

2

b a
H x p r K s r K s r dr

b a
r s

 





 
  

   
 
 

    (60) 

where 

 3 2 3

0

( , ) cos ( )
2 2

b a b a
K s r M r s d  


    

    
  

     (61a) 

 4 2 4

0

( , ) sin ( )
2 2

b a b a
K s r N r s d  


    

    
  

      (61b) 

Similarly, sub – equations that from Eq. (59) can be presented as 

 
6

2 11 36 16

1

p

j j j j

j

M I A C C k n C m


          (62a) 
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 
6

2 11 36 16

1

q

j j j j

j

N I I A C C k n C m


 
    

 
       (62b) 

2 3limM





           (62c) 

2 4lim N





           (62d) 

Employing Gauss – Jacobi quadrate, singular integral equation (SIE) in Eq. (60) 

can be transformed into numerical form to obtain surface in – plane stress over 

contact patch for a single composite lamina.  

2.8. Calculation of in – plane stress at sub – surface for a single composite 

lamina 

To calculate in – plane stress at sub – surface, it is needed to obtain 
3( , )K x t and 

4( , )K x t  (see Eq. (59)) in symbolic form of equation variable    for each desired 

vertical location (between 0  and 
th ). To handle that, 

2M  and 
2N  sub – constants 

need to be acquired beforehand. Then, 
3  and 

4  sub – constants can be 

obtained to form 
2 3M   and 

2 4N   in integral equations. After that, 
3( , )K x t  

and 4( , )K x t  can be calculated for these vertical locations to be used in singular 

integral equation (SIE) (see Eq. (60)).     

 

2.9. Transition of equations from a single composite lamina to laminated 

glass fiber composite 

Proofs and explanations presented in previous sub – sections for a single 

composite lamina can be expanded for laminated glass fiber composite having 

identical or dissimilar orientations on m  number of laminae through z  direction.  

 

2.9.1. Material parameters 

Similar to sub – section (2.1), calculation for the material parameters for a single 

composite lamina and laminated glass fiber composite is identical as either of 

them use individual glass fiber and epoxy matrix material parameters. 
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2.9.2. Transformed rotated stiffness constants 

Considering sub – section (2.2), it is needed to relate global stresses (
,m xx , 

,m yy

, 
,m zz , 

,m yz , 
,m xz , and 

,m xy ) and global strains (
,m xx , 

,m yy , 
,m zz , 

,m yz , 
,m xz , 

and 
,m xy ) with local stresses (

,11m , 
,22m , 

,33m , 
,23m , 

,13m , and 
,12m ) and local 

strains (
,11m , 

,22m , 
,33m , 

,23m , 
,13m , and 

,12m ) for m  number of laminae. To do 

that, rotation matrix presented in Eq. (5) needs to be expanded forehand: 

'

, , ,cos( , )m ij m i m jQ            (63a) 

,1 ,4 ,7

, ,2 ,5 ,8

,3 ,6 ,9

m m m

m ij m m m

m m m

rt rt rt

Q rt rt rt

rt rt rt

 
 

  
 
 

        (63b) 

where 
,m irt  ( 1, 2,...,9i  ) represents counterclockwise rotation cosines and sines 

between global and local directions, respectively. Then, following relations can 

be presented to relate global stresses (
,m xx , 

,m yy , 
,m zz , 

,m yz , 
,m xz , and 

,m xy ) 

and global strains (
,m xx , 

,m yy , 
,m zz , 

,m yz , 
,m xz , and 

,m xy ) with local stresses (

,11m , 
,22m , 

,33m , 
,23m , 

,13m , and 
,12m ) and local strains (

,11m , 
,22m , 

,33m , 

,23m , 
,13m , and 

,12m ) : 

,123 ,1 ,m m m xyzT                   (64a)  

2 2

2 2
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2 2
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0 0 0 2

0 0 1 0 0 0
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0 0 0

m m m m
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m
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m m m m m m

cos sin sin cos

sin cos sin cos

T
cos sin

sin cos

cos sin cos sin cos sin

   

   

 

 

     

 
 

 
 

  
 

 
 
  

  (64b) 

,123 ,2 ,m m m xyzT                   (64c) 
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2 2

2 2
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2 2
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 
 
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 

  
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 
 
  

 (64d) 

After that, transformed rotated stiffness constants ,m ijC  ( 1, 2,...., 6i  ,

1, 2,...., 6j  ) which forms transformed rotated stiffness matrix  ,m ijC 
   (

1, 2,...., 6i  , 1, 2,...., 6j  ) can be obtained as  

,1 , ,2 ,m m xyz ij m m xyzT C T                         (65a) 

1

, ,1 ,2 ,m xyz m ij m m xyzT C T 


                         (65b) 

1

, ,1 ,2m ij m ij mC T C T


                     (65c) 

 

2.9.3. Displacement equations and stress – displacement relations 

Proofs and explanations for Eqs. (10) – (12) are given in sub – section (2.2). 

Therefore, they are not included in here. Considering Eq. (13), two dimensional 

equilibrium equations relations in terms of displacement components for m  

number of laminae can be given as 

2 2 2 2 2 2

,11 ,13 ,16 ,45 ,552 2 2 2
0m m m m m m

m m m m m

u w v v w u
C C C C C

x x z x z z x z

      
      

        
  (65a) 

2 2 2 2 2 2

,16 ,36 ,44 ,45 ,662 2 2 2
0m m m m m m

m m m m m

u w v w u v
C C C C C

x x z z z x z x

      
      

        
 (65b) 

2 2 2 2 2 2

,13 ,33 ,36 ,45 ,552 2
0m m m m m m

m m m m m

u w v v w u
C C C C C

x z z z x x z x x z

      
      

          
  (65c) 

Similarly stress – displacement relations presented in Eq.(14) can be broaden as, 

, ,11 ,13 ,16
m m m

m xx m m m

u w v
C C C

x z x


  
  

  
      (66a) 
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, ,12 ,23 ,26
m m m

m yy m m m

u w v
C C C

x z x


  
  
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      (66b) 

, ,13 ,33 ,36
m m m

m zz m m m

u w v
C C C

x z x


  
  
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      (66c) 

, ,44 ,45
m m m

m yz m m

v w u
C C

z x z


   
   
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      (66d) 

, ,45 ,55
m m m

m xz m m

v w u
C C

z x z


   
   
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      (66e) 

, ,16 ,36 ,66
m m m

m xy m m m

u w v
C C C

x z x


  
  
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      (66f) 

2.9.4. Stress components and kj, mj, and nj expressions 

Regarding Eq. (15) and Eq. (16), the Fourier transforms of displacements for m  

number of laminae can be widen as  

1
( , ) ( , )

2

I x

m mu x z u z e d 








         (67a) 

1
( , ) ( , )

2

I x

m mv x z v z e d 








         (67b) 
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I x

m mw x z w z e d 








         (67c) 

where the transformed displacement components become 

,

6

,

1

( , ) m jn z
m m j

j

u z A e





         (68a) 

,

6

, ,

1

( , ) m jn z
m m j m j

j

v z A m e





         (68b) 

,

6

, ,

1

( , ) m jn z

m m j m j

j

w z IA k e





         (68c) 

Identically, stress components presented in Eq. (19) transform to following: 

 ,

6

, , ,11 ,13 , , ,16 ,

1

1

2

m jn z I x

m xx m j m m m j m j m m j

j

I A e e C C k n C m d
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







      (69a) 
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 ,

6

, , ,12 ,23 , , ,26 ,

1

1

2

m jn z I x

m yy m j m m m j m j m m j

j

I A e e C C k n C m d
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







      (69b) 

 ,

6

, , ,13 ,33 , , ,36 ,

1

1

2

m jn z I x

m zz m j m m m j m j m m j

j

I A e e C C k n C m d
   









      (69c) 

  ,

6

, , ,44 , , ,45 , ,

1

1

2

m jn z I x
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
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



     (69d) 

  ,

6

, , ,45 , , ,55 , ,

1

1

2

m jn z I x

m xz m j m m j m j m m j m j

j

A e e C m n C k n d
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







     (69e) 

 ,

6

, , ,16 ,36 , , ,66 ,

1

1

2

m jn z I x

m xy m j m m m j m j m m j

j

I A e e C C k n C m d
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







      (69f) 

Note that, Eq. (17) and Eq. (18) are not needed to widen stress components for  

m  number of laminae, therefore they are not included here once again. In the 

same way, Eqs. (20) – (22) are also omitted. Furthermore, Eq. (23) and Eq. (24) 

become 

6 4 2

,4 , ,3 , ,2 , ,1 0m m j m m j m m j mL n L n L n L          (70) 

where  

2

,1 ,55 ,16 ,11 ,66( )m m m m mL C C C C         (71a) 

2

,2 ,16 ,33 ,16 ,13 ,36 ,45 ,36 ,55

,13 ,13 ,55 ,66

2

11 36 45 44 55 33 66

( 2 ( ( ) )

( 2 )

(( ) ))

m m m m m m m m m

m m m m

L C C C C C C C C

C C C C

C C C C C C C

     



   

   (71b) 

2 2

,3 ,13 ,44 ,13 ,45 ,36 ,45 ,36 ,55 ,13 ,44 ,55

,33 ,11 ,44 ,16 ,45 ,55 ,66

( 2 ( ) 2

( 2 ))

m m m m m m m m m m m m

m m m m m m m

L C C C C C C C C C C C

C C C C C C C

    

  
 (71c) 

2

,4 ,33 ,45 ,44 ,55( )m m m m mL C C C C          (71d) 

Solving Eq. (70) yields 
,m jn  ( 1, 2,...., 6j  ) values for each laminae. Then, Eq. 

(25) and Eq. (26) can be expanded to obtain 
,m jm  ( 1, 2,...., 6j  ), and 

,m jk  (

1, 2,...., 6j  ) as  
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2 2 2

,16 ,55 ,33 , , ,13 ,36 ,45 ,36 ,55 ,33 ,45 ,

, 2 2 2 2

,36 ,45 , ,55 ,33 , ,55 ,44 ,

( ) ( ( ) )

( ) ( )( )

m m m m j m j m m m m m m m m j

m j

m m m j m m m j m m m j

C C C n n C C C C C C C n
m

C C n C C n C C n

     

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          (72) 

,13 ,55 ,36 ,45 , ,

, 2

,55 ,33 ,

( ( ) )m m m m m j m j

m j

m m m j

C C C C m n
k

C C n

  


 
     (73) 

 

2.9.5. Boundary conditions and singular integral equation (SIE) 

Considering geometry of laminated glass fiber composite given in Fig. 7, Eq. (27) 

in sub – section (2.5) can be expanded for m  number of laminae. In order to avoid 

confusion, the boundary conditions are separated and given separately for each 

lamina. Thus, boundary conditions of the top surface of the first lamina are given 

as follows: 

1,

( )
( ,0)

0 ,
zz

p x a x b
x

x a x b


   
 

  
       (74a) 

1, ( ,0) 0yz x            (74b) 

1,

( )
( ,0)

0 ,
xz

p x a x b
x

x a x b




   
 

  
      (74c) 

At lamina interfaces, boundary conditions are almost identical to each other, 

therefore a single explanation for them can be written with ease: 

1( , ) ( , ) 0c cu x ch u x ch            (75a) 

1( , ) ( , ) 0c cv x ch v x ch            (75b) 

1( , ) ( , ) 0c cw x ch w x ch            (75c) 

, 1,( , ) ( , ) 0c zz c zzx ch x ch             (75d) 

, 1,( , ) ( , ) 0c yz c yzx ch x ch             (75e) 

, 1,( , ) ( , ) 0c xz c xzx ch x ch             (75f) 
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where ( 1, 2,... , 1)c m   and /th h m . Then, boundary conditions at the bottom 

surface of 
thm  lamina can be presented as 

( , ) 0mu x mh           (76a) 

( , ) 0mv x mh            (76b) 

( , ) 0mw x mh           (76c) 

To obtain symbolic expressions for
,m jA  ( 1, 2,...., 6j  ) constants, firstly appeared 

in Eq. (68), it is needed to obtain inverse Fourier transforms of stress and 

displacement expressions for each lamina (see Eq. (28), Eq. (67), and Eq. (69)) 

in advance. Then, combining them with Eqs. (74) – (76), following set of 

equations can be created: 
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where ( 1, 2,... , 1)c m   and /th h m  again. For the configurations considered in 

this study 12m  . Thus, 6m  number of equations needs to be created. To further 

explain this, an example is given in the following, where Eq. (77) is expanded for 

a four – lamina order: 
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Deriving symoblic expressions dependent on equation variable   for 
,m jA  (

1, 2,...., 6j  ) constants with conventional system of equation solvers are 

impossible (for instance, for 4m  , the number of equations are 24 and for 12m 

, the number of equations are 72). For this reason, numerical values starting from 

zero to a predefined upper limit based on mathematical calculations are 

appointed to equation variable  . Then, 
,m jA  ( 1, 2,...., 6j  ) constants are 

obtained numerically for each   using Cholesky decomposition and Gauss 

elimination [59 – 60]. Note that, there is no change in the preperation of singular 

integral equation (SIE) proofs (see Eqs. (30) – (48)) for a single composite lamina 

and laminated glass fiber composite except for explanations between 
jA  (

1, 2,...., 6j  ) and 
,m jA  ( 1, 2,...., 6j  ) constants. To obtain 

1( , )K x t and 
2( , )K x t  

(see Eq. (43) and Eq. (44)) in singular integral equation (SIE), it is needed to 

obtain 1M  and 1N  sub – constants for each  . To perform that, 
,m jA  (

1, 2,...., 6j  ) constants needs to divided into ,

p

m jA  and ,

q

m jA  sub – constants as 

explained in sub – section (2.5). After that, related  
1  and 

2  sub – constants 

can be calculated numerically for each  . However, to utilize 
1( , )K x t and 

2( , )K x t  

in singular integral equation (SIE), sub – constants that form  1 1 11/ M   and 

 1 1 21/ M   in related integrals need to be converted into symbolic form. To 

do that, Hermite orthogonal polynomials and interpolating splines order of at least 

8th
 can be used and  1 1 11/ M   and  1 1 21/ M   can be converted to 

symbolic form of equation variable   [61]. Subsequently, 
1( , )K x t and 

2( , )K x t  

can be implemented properly into singular integral equation (SIE). Curve fit plots 

for  1 1 11/ M   and  1 1 21/ M   for  3 390 / 0
s

 configuration are shown in 

Appendix 1. 

 



 

43 
 

2.9.6 Solution of singular integral equation (SIE) and calculation of contact 

stress at the surface 

Considering sub – section (2.6), Eqs. (49) – (56) are valid for calculation of 

contact stress at the surface for laminated glass fiber composite. Therefore, no 

further explanation is presented here.  

 

2.9.7 Calculation of in – plane stress at the surface 

Considering sub – section (2.7), proofs presented in Eqs. (57) – (62) can be used 

to calculate in – plane stress at the surface for laminated glass fiber composite. 

However, to calculate it properly, it is needed to obtain 
3( , )K x t and 

4( , )K x t  

beforehand (see Eq. (59)). To perform that, 2M  and 
2N  sub – constants for each 

  need to be obtained using previously dismantled ,

p

m jA  and ,

q

m jA  sub – 

constants,. Then, 3  and 4  sub – constants can be acquired numerically to be 

used in 
2 3M   and 

2 4N  . In order to calculate integrals in Eq. (59), 
2 3M   

and 
2 4N   need to be converted to symbolic form of equation variable   by 

employing Hermite orthogonal polynomials and interpolating splines order of at 

least 8th
. After that, 3( , )K x t and 4( , )K x t  can be added into singular integral 

equation (SIE) to acquire in – plane stress at the surface.   

 

2.9.8 Calculation of in – plane stress at the sub – surface 

Identical to calculation of in – plane stress at the sub – surface for a single 

composite lamina, it is needed to obtain 3( , )K x t and 4( , )K x t  (see Eq. (59)) in 

symbolic form of equation variable    for each desired vertical location (between 

0  and th ). However, sub – constants 2M , 2N , 3 , and 4   that form 3( , )K x t and 

4( , )K x t  are in numerical form at each vertical location. For this reason, 2 3M   

and 2 4N   need to be converted to symbolic form of equation variable   by 

employing Hermite orthogonal polynomials and interpolating splines order of at 
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least 8th
. Then, 

3( , )K x t  and 
4( , )K x t  can be calculated for these vertical locations 

to be used in singular integral equation (SIE) (see Eq. (60)). 
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3. FINITE ELEMENT METHOD 

3.1. Literature review on contact mechanics and computational advances 

regarding finite element method, layered structures, and laminated 

composites 

Finite element method is a unique numerical technique in solving boundary value 

problems (BVPs) and partial differential equations (PDEs) approximately by sub 

– dividing problem domain into simpler parts named as finite elements. Structural 

analyses, numerical solution of heat, mass transfer, and contact mechanics 

problems, thermo – chemical, thermo – chemo – mechanical and bio – 

mechanical problems are the most obvious examples for the finite element 

method. The historical background of finite element method goes back to mid 

1940s, where the scientific pillars were firstly constructed because of the need 

for solving complex structural problems in mechanical and aeronautical 

engineering. The first two studies were conducted to solve the stress fields in 

continous plane elastic solids with element discretization methods [62 – 63]. In 

that studies, two different and unique approaches were presented and concluded 

to the identical comment in which they named these discretized units as finite 

elements.  

Solution of sliding contact conditions using finite element method and reducing 

solution times by improving computing efficiency had received great attention in 

literature regarding layered structures and laminated composites. Effect of lamina 

orientation, macro matrix cracks, and delamination of layers were studied with 

finite element method by employing a contact mechanics problem between a 

laminated orthotropic beam and a rigid indenter. Findings were presented in 

terms of stress distributions and notch depths. It was found that, they were greatly 

affected by lamina orientation and shape of the indenter [64]. A new numerical 

method based on finite elements were presented to prevent micro crack 

formations around local yield positions for hard coated surfaces bonded to 

layered structures [65]. Then, a novel numerical algorithm was advanced to 

reveal surface stresses and contact kinematics of surfaces. It was concluded that, 

mortar finite elements have been found to be very effective in simulations 

compared to conventional finite elements [66]. After that, a contact algorithm 
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based on numerical methods was developed to investigate relations between 

surface roughness and lamina orientations. Analogy with experimental methods 

showed that developed contact algorithm could successfully predict dense 

contact regions and wear areas resulting from surface roughness and lamina 

orientations [67]. Contact capacities and efficiency of graded finite elements were 

investigated and parametric benchmark studies were presented to be served as 

a basis for onward studies [68]. To investigate the effect of surface friction on 

three dissimilar contact types, new and novel finite element simulations were 

carried out by pressing surfaces with Berkovich nanoindenters. It was revealed 

that, surface friction had great effect on post – processed results [69]. To assess 

the strength of contact surface and endurance limit of interlayers, an interesting 

multi – axial loading test was presented by employing ceramic laminates and rigid 

indenters. It was found that, interlayers could fail before the contact surface under 

intense loads [70]. Then, precision and effectiveness of element based and 

segment based mortar finite element integration types were compared, some 

numerical models were presented regarding computational contact mechanics 

[71]. Normal contact stress and wear depths were presented for a finite thick layer 

loaded by a rigid sphere. It was found that, dual mortar method based on 

Lagrangean shape functions were quite capable in modeling fretting wear effects 

[72]. Subsequently, accuracy of isogeometric dual mortar contact formulation was 

compared with classical finite element method. It is concluded that, isogeometric 

dual mortar contact formulation yielded smoother contact pressure distribution 

over contact patch [73]. Frictional contact effects and surface shape changes due 

to wear were investigated using Lagrangean finite elements. The results showed 

that, iterations between Lagrangean shape functions yielded faster convergence 

and robustness [74]. Two – scale asymptotic homogenization method was used 

to obtain elastic properties of a laminated shell composite with defective interface 

contacts. Results were compared with finite element and spherical assemblage 

model and concluded that, two – scale asymptotic homogenization method could 

be used in contact problems [75]. Three different contact conditions were utilized 

to investigate performance of Lagrange multipliers, where several numerical 

examples were provided using mortar finite elements [76].  
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3.2. Advantages of finite element method 

Finite element method is the most extensive numerical method to solve and 

analyze complex industrial problems. It is quite capable and accurate in modeling 

because mixed boundaries, material non – linearities 

, and geometrical defects can be easily taken into account. Displacements, 

stresses, strains, strain – rates, damage, temperature, and forces can be easily 

implemented [77]. With the visualization of the problem, interior and exterior of 

complex geometries and erratic shapes can be optimized and configured. 

Problem related specifications can be readily adapted to increase accuracy and 

to decrease physical need in design and/or benchmark stages as trascribing 

these specifications physically can be excessively time consuming. Thus, safe 

simulation of potentially dangeous problems can be achieved.  Furthermore, 

simultaneous calculation of physical parameters and/or desired results can be 

acquired to rapidly increase analyze performance.    

 

3.3. Modeling of laminated glass fiber composite 

Finite element modeling of laminated glass fiber composite is implemented in this 

sub-section, where the numerical models are prepared using ANSYS Mechanical 

APDL R2020. Detailed examples and comments for finite element types, 

augmented contact formulation (ACF), model preparation, adaptive mesh 

refinement and solution descriptions are given below. 

3.3.1. Finite element types 

Laminated glass fiber composite considered in this study is modeled using 8 – 

noded quadrilateral PLANE183 solid finite elements, where the element 

geometries and stress output are illustrated in Fig. 8. Using this element type; 

quadratic displacement behavior, irregular and regular mesh types, plane strain, 

plane stress, and generalized plane strain conditions can be implemented. This 

element offers successful prediction of creep, large deflection and stress, 

plasticity, elasticity, hyperelasticity, and stress stiffening behavior. It can be used 

as an axisymmetric or planar symmetric finite element, where symmetry 

conditions need to be defined in advance. It can also be utilized to model 
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enhanced stress formulations in cyclic symmetry analyses to apply cyclic 

loadings and to increase solution efficiency. Some important necessities and 

restrictions for this element regarding contact mechanics are presented below: 

 To obtain a numerical solution, the area of the finite element must be 

greater than zero. 

 To utilize symmetry conditions, vertical axis must be the axis of symmetry. 

 Stress stiffening and pre – stress effects are always included in nonlinear 

analyses. 

 To use mixed contact formulation, sparse solver must be activated. 

 Rezoning and nonlinear contact adaptivity are not supported. 

 Linear perturbation and material force evaluation are not supported. 

 

 

Fig. 8. Element geometries and stress output of PLANE183 finite element 

 

To represent rigid cylinder TARGE169 target segment elements are utilized, 

where the element geometries and 2 – D segment element types are given in Fig. 

9 and Fig. 10, respectively. Translational and rotational displacement, forces, 

moments, magnetic potential, temperature, voltage, concentration, and pore 

pressure can be imposed on target segment elements. It can be used for both 

pair – based and general contact types. In pair – based contact type, 2 – D target 

segment elements are associated with 2 – D contact line elements using an 

identical real constant set involving interaction properties, material parameters, 

and friction related terms. The target surface can be either flexible or rigid. For 

flexible – flexible contacts, one of the flexible surfaces must be identified using 

TARGE169 target segment elements. For flexible – rigid contacts, rigid surface 

must be represented by TARGE169 target segment elements. Modeling of target 
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surface in flexible – rigid contacts is quite simpleforward as elements will not 

overlay and intertwine with solid finite elements, complex rigid target surfaces can 

be modeled. In general contact type, contact surfaces are generated 

automatically by an embedded sub – routine, which scans interacting geometric 

shapes and physical parts in the model. Unline pair – based contact type, 2 – D 

target segment elements and 2 – D contact line elements are not associated with 

these interaction properties, material parameters, and friction related terms. 

Therefore, there is no real constant set sharing. Furthermore, some important 

necessities and restrictions for this element regarding contact mechanics are 

presented below: 

 TARGE169 target segment elements must be defined in global 

workspace. 

 For parabolic segment elements, third target point must lie at the middle 

of the parabola. 

 Linear pertubation is not supported. 

 Monitoring contact birth and death is not supported. 

 

 

Fig. 9. Element geometries of TARGE169 target segment elements 

 

 

Fig. 10. Segment element types of TARGE169 target segment elements 
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To represent sliding contact behavior between 8 – noded quadrilateral 

PLANE183 solid finite elements and TARGE169 target segment elements, 

CONTA172 contact line elements are utilized (see Fig. 11 for element geometry). 

This element type is well applicapable to 2 – D structural and coupled – field 

contact analyses, where it can be utilized for both pair – based and general 

contact types. Coulomb and shear stress friction models can be implemented for 

both flexible – flexible and rigid – flexible contacts. It also allows dissociation of 

flexible surfaces, where interface delamination of layered structures and 

laminated composites can be examined. Moreover, some important necessities 

and restrictions for this element regarding contact mechanics are presented 

below: 

 CONTA172 contact line elements must be defined in global workspace. 

 To utilize symmetry conditions, vertical axis must be the axis of symmetry. 

 Utilization with axisymmetric harmonic elements is not supported.  

 It can also be utilized with TARGE170 target segment elements to define 

3 – D pair – based and general contacts. 

 User – defined contact is not supported. 

 Monitoring contact birth and death is not supported. 

Note that, additional information for finite element types and their utilization in 

ANSYS Mechanical APDL R2020 can be found in [78 – 80].  

 

 

Fig. 11. Element geometry of CONTA172 contact line element 

 

3.3.2. Augmented contact formulation (ACF) 

To model dis – continuities resulting from interaction properties, material 

parameters, and friction related terms, an augmented contact formulation (ACF) 

based on Lagrange multiplier and penalty methods is utilized in ANSYS 



 

51 
 

Mechanical APDL R2020. The aim is to increase contact accuracy by capturing 

strong and weak spots, as they create numerical ill – continuities at the surface 

of laminated glass fiber composite. In augmented contact formulation (ACF), 

governing non – linear contact equations consist of two different sets; a set 

without numerical ill – continuities and a set with numerical ill – continuities 

associated to dis – continuities. Solutions can be obtained by resolving non – 

linear equations with residual controlled iterative algorithms, such as Newton – 

Raphson and bisection methods. To model contact behavior between laminae, 

bonded contacts are utilized, as no separation or interlaminar debonding are 

wanted [81 – 83].   

 

3.3.3. Preperation of the model, adaptive mesh refinement, and solution 

details 

Prepared finite element model and deformed shape of laminated glass fiber 

composite are presented in Fig. 12, wherein plane strain conditions are applied. 

Parametric benchmarks are created by diversifying interaction properties, 

material parameters, friction related terms, and lamina order. Regardless of 

lamina order and post – processing path, 378383  total number of 8 – noded 

quadrilateral PLANE183 solid finite elements are utilized along with 2  

TARGE169 target segment elements, and 2326  CONTA172 contact line 

elements. To improve solution efficiency without decreasing accuracy, an 

adaptive mesh – refienement sub – routine is prepared. Element size is 

automatically adjusted by comparing approximate absolute error between 

surface contact and in – plane stress distributions peaks at 0.0x   and 0.0z  , 

edges of the contact patch, and sub – surface center – line in –plane stress 

distributions peaks at 0.0x   and 1.125z mm   in each iteration. In transition 

regions, 8 – noded quadrilateral PLANE183 solid finite elements are connected 

using 6 – noded ones. For the element behavior and element formulation, plane 

strain conditions and pure displacement element formulation are utilized, 

respectively. To hinder rotation and translation of rigid cylinder through z  and 

x  global directions, pilot node for TARGE169 target segment elements is 

restricted. Identically, the bottom surface of the laminated glass fiber composite 
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is fixed, where all rotations and translations are restricted x , y , and z  global  

directions. To further increase the understanding, solution details are shown in 

Fig. 13 in an iterative scheme.   

 

 

Fig. 12. Finite element model and deformed shape of laminated glass fiber 
composite 

 

 

 Fig. 13. Iterative scheme 

  

3.3.4. Accuracy of adaptive mesh refinement and solution times 

To increase accuracy for results on post – processing regions, a prior mesh 

sensitivity analysis is conducted. Using coarser finite elements away from regions 
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of interest provided an extensive decrease on solution time without comprimising 

solution accuracy. Numerical validation is performed for  3 390 / 0
s
 configuration, 

where approximate absolute error comparison between surface contact and in – 

plane stress distributions peaks at 0.0x   and 0.0z  , edges of the contact 

patch, and sub – surface center – line in –plane stress distributions peaks at 

0.0x   and 1.125z mm   are presented in Tables 2 – 4 for increasing number 

of finite elements in each iteration.  

 

Table 2. Accuracy of adaptive mesh refinement – 1 

100R mm , 100 /P N mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 

90W mm , 12m   

# of 

iteratio

n 

# of 

element

s 

1, (0,0)zz  

( )MPa  

1, (0,0)xx  

( )MPa  

1, (0,0)(%), zza    

( )MPa  

1, (0,0)(%), xxa   

( )MPa  

1 436 -17.64 -22.93 100.0 100.0 

2 2874 -24.32 -32.11 27.5 28.6 

3 25889 -34.55 -38.97 29.5 17.4 

4 53245 -46.61 -51.42 25.9 24.3 

5 99522 -57.29 -59.41 18.5 13.6 

6 256152 -64.82 -62.76 11.7 5.2 

7 378383 -65.71 -63.33 1.3 0.9 

 

After numerical models are prepared in ANSYS Mechanical APDL R2020, 

computational solutions are obtained using a simulation environment with a 16 

core, 32 thread CPU running at 4.5GHz base speed and 64GB of RAM. Each 

parametric solution takes less than 450 seconds to compute owing to adaptive 

mesh refinement.  
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Table 3. Accuracy of adaptive mesh refinement – 2 

100R mm , 100 /P N mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 

90W mm , 12m   

# of 

iteration 

# of 

elements 

a

( )mm  
b  ( )mm  

(%),a a 

( )mm  
(%),a b  ( )mm  

1 436 -1.348 1.622 100.0 100.0 

2 2874 -1.152 1.496 17.0 9.2 

3 25889 -0.994 1.358 15.8 8.7 

4 53245 -0.926 1.239 7.3 7.7 

5 99522 -0.893 1.143 3.6 5.7 

6 256152 -0.871 1.081 2.5 9.4 

7 378383 -0.865 1.068 0.6 1.2 

Table 4. Accuracy of adaptive mesh refienement – 3 

100R mm , 100 /P N mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 

90W mm , 12m   

# of 

iteratio

n 

# of 

element

s 

3,xx  

(0, 1.125)  

( )MPa  

4,xx  

(0, 1.125)  

( )MPa  

(%)a , 

3, (0, 1.125)xx   

( )MPa  

(%)a  

4, (0, 1.125)xx   

( )MPa  

1 436 -3.56 -0.77 100.0 100.0 

2 2874 -7.24 -0.92 50.8 16.3 

3 25889 -9.12 -1.04 20.6 11.5 

4 53245 -10.11 -1.15 9.7 9.5 

5 99522 -10.87 -1.21 6.9 4.9 

6 256152 -11.34 -1.24 4.1 2.4 

7 378383 -11.46 -1.26 1.0 1.5 
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4. RESULTS AND DISCUSSION 

In this section, the study findings are presented. By diversifying interaction 

properties, material parameters, friction related terms, and lamina order, the 

results of analytical and finite element methods are contrasted. The compared 

results are surface contact and in – plane stress distributions, edges of the 

contact patch, sub – surface center – line in –plane stress distributions, and sub 

– surface in – plane stress contours. It can be noted that, results from both 

methods are matched perfectly. Following limits, 50 / 200 /N mm P N mm  , 

0.0 0.8  , 100 200mm R mm  , and %40 %60fV   and six different 

configurations for lamina order  120 ,  1290 ,  3 30 / 90
s
,  3 390 / 0

s
,  3 3 2

0 / 90 , and 

 3 3 2
90 / 0  are utilized to post – process results. Firstly, the effects of interaction 

properties, material parameters, and friction related terms on surface contact and 

in – plane stress distributions and edges of contact patch are investigated in sub 

– section (4.1), where comparisons are described in Figs. 14 – 25 and Tables 5 

– 28, respectively. Comparisons are then shown in Figs. 26 – 27 for surface 

contact and in – plane stress and sub – surface center – line in – plane stress 

distributions for six different configurations for lamina order in sub – section (4.2). 

After that, in sub – section (4.3), comparisons for sub – surface in – plane stress 

contours for six different configurations for lamina order are given using analytical 

and finite element methods, where Figs. 28 – 29 have been added. 

 

4.1. Effects of interaction properties, material parameters, and friction 

related terms on surface contact and in – plane stress distributions 

Comparison of surface contact and in – plane stress distributions and edges of 

contact patch for unidirectional configurations  120  and  1290  are given in Figs. 

14 – 17 and Tables 5 – 12. Effect of concentrated normal force P  on surface 

contact and in – plane stress distributions and edges of contact patch is 

presented in Fig. 14, where the remainder interaction properties and friction 

related terms are taken as 100R mm , 0.4  , %40fV  , 4.5th mm , 

0.375h mm , 90W mm , 12m  . Increase in concentrated normal force P  
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causes the rigid cylinder to penetrate deeper into the surface of laminated glass 

fiber composite. Thus, resulting compressive and tensional peaks on surface 

contact and in – plane stress distributions are greatly increased and contact patch 

is widened (see Table 5 and Table 6 for the edges of contact patch). For higher 

values of P , successful monitoring of these peaks in surface contact and in – 

plane stress distributions is very important as high peaks may cause 

unpredictable and instant micro cracks at the surface of laminated glass fiber 

composite. In industrial applications where the product is used as a coating or a 

mechanical barrier, micro cracks may adversely affect surface performance. To 

prevent these local failures, surface optimization can be conducted with respect 

to concentrated normal force P .  

 

 

Fig. 14. Comparison of surface contact and in – plane stress distribution for 

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  , 

solid lines represent finite element method, dotted lines represent analytical 
method 

 

In Fig. 15, effect of Coulomb’s static coefficient of friction   on surface contact 

and in – plane stress distributions and edges of contact patch is illustrated. 

Unrelated interaction properties are taken as 100R mm , 100 /P N mm , 
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%40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  . Increase in   slanted 

surface contact stress distributions to leading edge of the contact patch (see 

Table 7 and Table 8 for the variation of a  and b  for varying values of Coulomb’s 

static coefficient of friction  ). Resulting compressive peaks are not affected 

because there is no relation between concentrated normal force P  and 

Coulomb’s static coefficient of friction  . On the other hand, increase in   

drastically affected resulting peaks on surface in – plane stress distributions (see 

the connection between   and Q P ). Monitoring these tensional peaks is 

crucial in designing strong wear resistant surfaces. The tensile peaks on the 

surface can be minimized by using surface lubricants, hard interlaminar layers, 

and applying a homogeneous distribution to individual glass fiber and epoxy 

matrix material parameters. Surface wear will therefore decrease. 

 

Table 5. Edges of contact patch for unidirectional configuration  120  for varying 

P    

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m   

Concentrated 

normal force P  

( /N mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

50 -0.584 0.694 -0.596 0.708 2.0 2.0 

100 -0.812 0.972 -0.824 0.976 1.4 0.4 

200 -1.142 1.342 -1.156 1.352 1.2 0.7 
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Table 6. Edges of contact patch for unidirectional configuration  1290  for varying 

P  

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m   

Concentrated 

normal force P  

( /N mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

50 -0.674 0.808 -0.660 0.812 2.1 0.4 

100 -0.918 1.112 -0.924 1.132 0.6 1.7 

200 -1.262 1.544 -1.276 1.556 1.0 0.7 

 

 

Fig. 15. Comparison of surface contact and in – plane stress distribution for 

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m  , solid lines represent finite element method, dotted lines represent 

analytical method 
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Table 7. Edges of contact patch for unidirectional configuration  120  for varying 

  

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Coulomb’s static 

coefficient of 

friction   

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

0.0 -0.878 0.878 -0.888 0.888 1.1 1.1 

0.4 -0.812 0.972 -0.824 0.976 1.4 0.4 

0.8 -0.736 1.048 -0.748 1.064 1.6 1.5 

 

Table 8. Edges of contact patch for unidirectional configuration  1290  for varying 

  

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Coulomb’s static 

coefficient of 

friction   

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

0.0 -1.020 1.020 -1.008 1.008 1.1 1.1 

0.4 -0.918 1.112 -0.924 1.132 0.6 1.7 

0.8 -0.832 1.250 -0.840 1.252 0.9 0.1 

 

Effect of rigid cylinder radius R  on on surface contact and in – plane stress 

distributions and edges of contact patch is shown in Fig. 16, where 0.4  , 

100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  . For high 

values of R , resulting surface contact and in – plane stress distributions peaks 



 

60 
 

are decreased and contact patch is increased (see Table 9 and Table 10). Thus, 

a more equal stress distribution is monitored. If an application requires the use of 

lower values of R  for rigid cylinder, proper surface lubrication may be needed to 

reduce the surface wear. Lower values of R  may cause surface contact and in – 

plane stress distributions to concentrate at one point.  

In Fig. 17, effect of glass fiber volume fraction 
fV  on surface contact and in – 

plane stress distributions and edges of contact patch is given, where 0.4  , 

100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 12m  . In 

engineering applications, the highest achievable fiber volume fraction 
fV  is 

around %70 due to manufacturing processes. Adding to much fiber volume may 

decrease the strength of laminated glass fiber composite as there will be no 

space for the epoxy matrix components to bond with fibers, choosing an optimal 

value for fiber volume fraction 
fV  is very important. Therefore, %40, %50 , and 

%60  fiber volume fraction 
fV  are chosen for parametric studies. For higher 

values of 
fV , laminated glass fiber composite became more stiff in loading 

directions. Therefore, higher compressive and tensional peaks are observed. 

This stiff behavior has a potential to lead unpredictable and instant micro cracks 

at the surface of laminated glass fiber composite, which may instantly reduce 

surface performance. To observe the variation on edges of contact patch for 

unidirectional configurations  120  and  1290 , see Table 11 and Table 12, 

respectively.  

In Figs. 18 – 25 and Tables 13 – 28, comparison of surface contact and in – plane 

stress distributions and edges of contact patch for configurations  3 30 / 90
s

, 

 3 390 / 0
s

,  3 3 2
0 / 90 , and  3 3 2

90 / 0  are presented. Explanations related to 

surface contact and in – plane stress distributions and edges of contact patch for 

unidirectional configurations  120  and  1290  are also valid for configurations 

 3 30 / 90
s

,  3 390 / 0
s

,  3 3 2
0 / 90 , and  3 3 2

90 / 0 . One of the interesting 

observations that differed from unidirectional configurations  120  and  1290  is 

that the compressive and tensional peaks in surface contact and in – plane stress 

distributions decreased for configurations started with 0  degree rotation and 
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increased for configurations started with 90  degree, respectively. Lamina order 

affected total stiffness of laminated glass fiber composite in normal and horizontal 

loading directions. Furthermore, surface contact and in – plane stress 

distributions shifted to leading edge of contact patch more specifically. 

 

 

Fig. 16. Comparison of surface contact and in – plane stress distribution for 

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  , 

solid lines represent finite element method, dotted lines represent analytical 
method 
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Table 9. Edges of contact patch for unidirectional configuration  120  for varying 

R   

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Rigid cylinder 

radius R  ( mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

100 -0.812 0.972 -0.824 0.976 1.4 0.4 

150 -0.968 1.154 -0.988 1.168 2.0 1.1 

200 -1.121 1.339 -1.140 1.348 1.7 0.6 

Table 10. Edges of contact patch for unidirectional configuration  1290  for 

varying R  

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Rigid cylinder 

radius R  ( mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

100 -0.918 1.112 -0.924 1.132 0.6 1.7 

150 -1.100 1.339 -1.100 1.339 0.7 0.6 

200 -1.242 1.530 -1.242 1.530 1.4 0.1 
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Fig. 17. Comparison of surface contact and in – plane stress distribution for 

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m  , solid lines represent finite element method, dotted lines represent 

analytical method 

 

Table 11. Edges of contact patch for unidirectional configuration  1290  for 

varying 
fV  

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Fiber volume 

fraction 
fV  ( % ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

40 -0.812 0.972 -0.824 0.976 1.4 0.4 

50 -0.742 0.889 -0.752 0.896 1.3 0.7 

60 -0.675 0.812 -0.688 0.832 1.8 2.4 
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Table 12. Edges of contact patch for unidirectional configuration  1290  for 

varying 
fV  

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Fiber volume 

fraction 
fV  ( % ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

40 -0.918 1.112 -0.924 1.132 0.6 1.7 

50 -0.836 1.038 -0.840 1.048 0.4 0.9 

60 -0.764 0.948 -0.772 0.956 1.0 0.8 

 

4.2. Effects of lamina order on surface contact and in – plane stress and 

sub – surface center – line in – plane stress distributions 

Effects of lamina order on surface contact and in – plane stress and sub – surface 

center – line in – plane stress distributions and comparisons for six different 

configurations for lamina order are illustrated in this sub – section, in which Figs. 

26 – 27 present the relevant details. Following generalization can be made for 

surface contact and in – plane stress distributions for six different configurations 

for lamina order  120 ,  1290 ,  3 30 / 90
s

,  3 390 / 0
s

,  3 3 2
0 / 90 , and  3 3 2

90 / 0 : 

configuration started with 0  degree rotation resulted in higher compressive and 

tensional peaks as 90  degree rotation resulted in a softer behavior in normal 

loading direction than 0  degree. Seen from Fig. 26,  1290  configuration is softer 

than  120  in normal loading direction. Therefore, lower compressive and 

tensional peaks are monitored. Due to this soft behavior and smooth penetration 

on the surface, a wider contact patch is observed. On the other hand, no 

considerable variation is observed on surface contact stress distributions 

between  3 30 / 90
s
,  3 390 / 0

s
,  3 3 2

0 / 90 , and  3 3 2
90 / 0  configurations as they 

demonstrated near identical stiffness behavior in normal loading direction, where 
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the laminae except the one in contact contributed to overall stiffness. 

Furthermore, a remarkable variation in horizontal direction of loading is then 

observed for surface in – plane stress distributions. Since the surface stiffness of 

laminated glass fiber composites started with 90  degree rotation is much lower 

than 0  degree rotation, surface in – plane stresses are more uniformly spread 

across the contact patch and lower tensional peaks are found. Even so, changes 

on edges of contact patch are negligible for these configurations.  

Considering lamina order, the stiffness in normal and horizontal loading directions 

varies between configurations. For each laminated glass fiber composite, this can 

cause sub – surface center – line in – plane stress distributions to be different 

(see Fig. 27). In unidirectional configurations  120  and  1290 , total stiffness 

along normal and horizontal loading directions is constant and  120  configuration 

is properly stiffer than the opposite one in both loading directions. Thus, on the 

surface, higher compressive peaks are found for center – line in – plane stress 

distributions. Therefore, away from surface, stress values are decreased faster 

than those in the configuration of  1290 . Stiffer behavior lead to stresses that 

concentrate on the surface rather than extending to the sub – surface of the 

laminated glass fiber composite.  

For  3 30 / 90
s
and  3 390 / 0

s
 configurations, contact effect is diminished specially 

after the mid – plane where 2.250y mm  , as sub – surface center – line in – 

plane stress values are demonstrated a very close behavior for varying values of 

concentrated normal force P . However, at 1.125y mm  , a substantial 

difference is observed at the area of lamina angle shift. The sub – surface center 

– line in – plane stresses for the configuration of  3 390 / 0
s
 changed in first three 

laminae in a broader stress band relative to  3 30 / 90
s
. This showed that first three 

laminae of  90  degree rotation served as a cushion and the next six laminae of 

0  degree rotation transmitted a decreased load. For  3 30 / 90
s

 configuration, 

owing to high stiffness, almost the entire loading is focused on the contact patch. 

At the lamina angle shift area, high compressive and tensional peaks are 

observed where 1.125y mm  . Proper analysis of these peaks is very important 
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to prevent interface cracks and interlaminar debonding. Behavior of  3 3 2
0 / 90  

and  3 3 2
90 / 0  are similar to  3 30 / 90

s
 and  3 390 / 0

s
 configurations. Therefore, 

identical expressions can be made. In comparison, an improved compressive and 

tensile stress peak region is tracked at 2.250y mm   for the  3 30 / 90
s
 

configuration. Compared to  3 30 / 90
s
, the explanation for this discrepancy is that 

the three 90  degree rotation laminae are unable to absorb the stresses and thus 

the above peaks are found in the second lamina angle shift area. Furthermore, 

less compressive and tensile peaks are found for the  3 3 2
90 / 0  configuration as 

the first three 90  degree rotation laminae distributed stresses.     

 

 

Fig. 18. Comparison of surface contact and in – plane stress distribution for 

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  , 

solid lines represent finite element method, dotted lines represent analytical 
method 

 

 

 



 

67 
 

Table 13. Edges of contact patch for configuration  3 30 / 90
s
 for varying P  

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m   

Concentrated 

normal force P  

( /N mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

50 -0.582 0.704 -0.596 0.716 2.3 1.6 

100 -0.832 0.974 -0.840 0.984 0.9 1.0 

200 -1.168 1.372 -1.180 1.380 1.0 0.5 

 

Table 14. Edges of contact patch for configuration  3 390 / 0
s
 for varying P  

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m   

Concentrated 

normal force P  

( /N mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

50 -0.621 0.792 -0.632 0.800 1.7 1.0 

100 -0.865 1.068 -0.872 1.080 0.7 1.1 

200 -1.185 1.494 -1.200 1.500 1.2 0.4 
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Fig. 19. Comparison of surface contact and in – plane stress distribution for 

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m  , solid lines represent finite element method, dotted lines represent 

analytical method 

 

Table 15. Edges of contact patch for configuration  3 30 / 90
s
 for varying    

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Coulomb’s static 

coefficient of 

friction   

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

0.0 -0.892 0.892 -0.908 0.908 1.76 1.76 

0.4 -0.832 0.974 -0.840 0.984 0.9 1.0 

0.8 -0.760 1.080 -0.772 1.080 1.5 1.8 
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Table 16. Edges of contact patch for configuration  3 390 / 0
s
 for varying   

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Coulomb’s static 

coefficient of 

friction   

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

0.0 -0.966 0.966 -0.972 0.972 0.6 0.6 

0.4 -0.865 1.068 -0.872 1.080 0.7 1.1 

0.8 -0.768 1.198 -0.780 1.200 1.5 0.1 

 

 

Fig. 20. Comparison of surface contact and in – plane stress distribution for 

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  , 

solid lines represent finite element method, dotted lines represent analytical 
method 
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Table 17. Edges of contact patch for configuration  3 30 / 90
s
 for varying R   

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Rigid cylinder 

radius R  ( mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

100 -0.832 0.974 -0.840 0.984 0.9 1.0 

150 -1.010 1.198 -1.028 1.200 1.7 0.1 

200 -1.184 1.375 -1.192 1.380 0.6 0.3 

 

Table 18. Edges of contact patch for configuration  3 390 / 0
s
 for varying R  

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Rigid cylinder 

radius R  ( mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

100 -0.865 1.068 -0.872 1.080 0.8 1.1 

150 -1.050 1.311 -1.052 1.316 0.1 0.3 

200 -1.184 1.494 -1.200 1.496 1.3 0.1 
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Fig. 21. Comparison of surface contact and in – plane stress distribution for 

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m  , solid lines represent finite element method, dotted lines represent 

analytical method 

 

Table 19. Edges of contact patch for configuration  3 30 / 90
s
 for varying 

fV  

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Fiber volume 

fraction 
fV  ( % ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

40 -0.832 0.974 -0.840 0.984 0.9 1.0 

50 -0.762 0.905 -0.776 0.920 1.8 1.6 

60 -0.690 0.825 -0.708 0.836 2.5 1.2 
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Table 20. Edges of contact patch for configuration  3 390 / 0
s
 for varying 

fV  

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Fiber volume 

fraction 
fV  ( % ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

40 -0.865 1.068 -0.872 1.080 0.7 1.1 

50 -0.793 1.005 -0.810 1.014 2.1 0.8 

60 -0.732 0.912 -0.744 0.928 1.5 1.7 

 

 

Fig. 22. Comparison of surface contact and in – plane stress distribution for 

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  , 

solid lines represent finite element method, dotted lines represent analytical 
method 
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Table 21. Edges of contact patch for configuration  3 3 2
0 / 90  for varying P   

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m   

Concentrated 

normal force P  

( /N mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

50 -0.584 0.708 -0.596 0.712 2.0 0.5 

100 -0.824 0.972 -0.836 0.980 1.4 0.8 

200 -1.154 1.368 -1.168 1.372 1.1 0.2 

 

Table 22. Edges of contact patch for configuration  3 3 2
90 / 0  for varying P  

100R mm , 0.4  , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m   

Concentrated 

normal force P  

( /N mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

50 -0.592 0.794 -0.602 0.804 1.6 1.2 

100 -0.845 1.080 -0.872 1.080 3.0 1.8 

200 -1.182 1.496 -1.200 1.500 1.5 0.2 
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Fig. 23. Comparison of surface contact and in – plane stress distribution for 

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m  , solid lines represent finite element method, dotted lines represent 

analytical method 

 

Table 23. Edges of contact patch for configuration  3 3 2
0 / 90  for varying    

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Coulomb’s static 

coefficient of 

friction   

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

0.0 -0.892 0.892 -0.896 0.896 0.4 0.4 

0.4 -0.824 0.972 -0.836 0.980 1.4 0.8 

0.8 -0.765 1.062 -0.776 1.076 1.4 1.3 
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Table 24. Edges of contact patch for configuration  3 3 2
90 / 0  for varying     

100R mm , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Coulomb’s static 

coefficient of 

friction   

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

0.0 -0.968 0.968 -0.984 -0.984 1.6 1.6 

0.4 -0.845 1.080 -0.872 1.100 3.0 1.8 

0.8 -0.761 1.193 -0.772 1.228 1.3 2.8 

 

 

Fig. 24. Comparison of surface contact and in – plane stress distribution for 

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  , 

solid lines represent finite element method, dotted lines represent analytical 
method 
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Table 25. Edges of contact patch for configuration  3 3 2
0 / 90  for varying R  

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Rigid cylinder 

radius R  ( mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

100 -0.824 0.972 -0.836 0.980 1.4 0.8 

150 -0.999 1.188 -1.020 1.196 2.0 0.6 

200 -1.162 1.366 -1.168 1.372 0.5 0.4 

 

Table 26. Edges of contact patch for configuration  3 3 2
90 / 0  for varying R   

0.4  , 100 /P N mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Rigid cylinder 

radius R  ( mm ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

100 -0.845 1.080 -0.872 1.100 3.0 1.8 

150 -1.042 1.300 -1.064 1.320 2.0 1.5 

200 -1.191 1.484 -1.220 1.500 2.4 1.0 
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Fig. 25. Comparison of surface contact and in – plane stress distribution for 

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m  , solid lines represent finite element method, dotted lines represent 

analytical method 

 

Table 27. Edges of contact patch for configuration  3 3 2
0 / 90  for varying 

fV  

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Fiber volume 

fraction 
fV  ( % ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

40 -0.824 0.972 -0.836 0.980 1.4 0.8 

50 -0.762 0.889 -0.772 0.900 1.2 1.2 

60 -0.688 0.828 -0.696 0.836 1.1 0.9 
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Table 28. Edges of contact patch for configuration  3 3 2
90 / 0  for varying 

fV    

0.4  , 100 /P N mm , 100R mm , 4.5th mm , 0.375h mm , 90W mm , 

12m   

Fiber volume 

fraction 
fV  ( % ) 

Analytical 

method 
FEM 

(%),t a 

( )mm  

(%),t b

( )mm  a

( )mm  

b

( )mm  

a

( )mm  

b

( )mm  

40 -0.845 1.080 -0.872 1.100 3.0 1.8 

50 -0.788 1.010 -0.808 1.020 2.4 0.9 

60 -0.738 0.918 -0.744 0.928 0.8 1.0 

 

 

Fig. 26. Comparison of surface contact and in – plane stress distribution for 

0.4  , 100 /P N mm , 100R mm , %40fV  , 4.5th mm , 0.375h mm , 

90W mm , 12m  , solid lines represent finite element method, dotted lines 

represent analytical method 
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Fig. 27. Comparison of sub – surface center – line in – plane stress distributions 

for 0.4  , 100R mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 12m  , 

solid lines represent finite element method, dotted lines represent analytical 
method 

        

4.3. Comparison of sub – surface in – plane stress contours 

Comparison of sub – surface in – plane stress contours for six different 

configurations for lamina order are displayed using analytical and finite element 

methods. It can be seen that, the contours formed by both methods displayed 

very similar behavior. At the surface and sub-surface, the maximum compression 

and tensional peak areas matched each other. 
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In Fig. 28, unidirectional configurations  120  and  1290  are compared. For 

 1290 , as stiffness in normal loading direction is lower, sub – surface in – plane 

stresses distributed more uniformly than  120  configuration. By testing high 

stress areas around contact patch, this behavior can also be observed. Low 

stiffness behavior can result in interlaminar debonding and interface cracks as 

some of the contact load is still handled by the sub – surface. In comparison, the 

use of unidirectional configuration  120  can cause unwanted wear and micro 

cracks over the contact patch. To achieve optimal surface and sub – surface 

efficiency, the application – oriented configuration should therefore be selected.  

 

 

Fig. 28. Comparison of sub – surface in – plane stress contours for 0.4  , 

100 /P N mm , 100R mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

 

In Fig. 29, sub – surface in – plane stress contours for  3 30 / 90
s
,  3 390 / 0

s
, 

 3 3 2
0 / 90 , and  3 3 2

90 / 0  configurations are compared. These contours validate 

the results presented in sub – sections (4.1 – 4.2), respectively. Lamina in contact 

has higher stiffness in configurations beginning with 0  degree rotation; less 

stress is thus moved to the sub – surface. Furthermore, low initial lamina stresses 

are observed for configurations started with 90  degree rotation. Tensional peaks  
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Fig. 29. Comparison of sub – surface in – plane stress contours for 0.4  , 

100 /P N mm , 100R mm , %40fV  , 4.5th mm , 0.375h mm , 90W mm , 

12m   

 

are tracked near lamina angle shift areas at 1.125y mm   and 2.250y mm   for 

 3 30 / 90
s

 and  3 3 2
0 / 90  relative to  3 390 / 0

s
 and  3 3 2

90 / 0  configurations. 

Another fascinating finding presented is that a tiny compressive peak zone is 

monitored for  3 3 2
90 / 0  configuration near lamina angle shift area at 

3.375y mm  , which occured due to the direction of horizontal loading. Each of 

these configurations has its own advantages and disadvantages. Tribology 
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engineers need to take into account the most available configuration for the 

application to obtain maximum surface and sub – surface performance.              
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5. CONCLUSIONS 

In this study, a contact mechanics problem between a frictional rigid cylinder and 

laminated glass fiber composites with different orientations is considered. A 

competent and novel parametric analysis is introduced to the industry that may 

be very helpful in the design of wear and micro crack resistant laminated glass 

fiber composites and composite coatings for tribology engineers.  Analytical 

results are obtained by introducing a novel and modern system of analysis that 

relies on Cholesky decomposition, Gauss elimination, Hermite orthogonal 

polynomials, Fourier transforms and singular integral equation (SIE). The 

numerical results are achieved using a super efficient and self mesh adaptive 

computational model based on augmented contact formulation (ACF) and finite 

element method. This study can be further extended to study the dynamics of 

short – fiber composites, carbon – based constructs, and nonwoven fabrics for 

contact behavior and fracture.   The following results can be drawn on the basis 

of observations from analytical and finite element methods: 

 A numerical model based on augmented contact formulation (ACF) and 

finite element method for various interaction properties, material 

parameters, friction related terms, and lamina order is used to validate the 

precision of the novel analytical method. 

 The consistency and speed of the integral solutions in analytical method 

is significantly improved by the use of Cholesky decomposition, Gauss 

elimination, and Hermite orthogonal polynomials. Instead of classical 

symbolic expressions, the use of these techniques made multi – layered 

contact mechanics solutions practical and achievable. 

 The surface and sub – surface stress distributions and the edges of 

contact patch are substantially influenced by interaction properties, 

material parameters, friction related terms, and lamina order. In wear and 

micro crack resistant laminated composite architecture, application – 

oriented optimization of these parameters is very important.  

 Surface contact stresses are more uniformly spread over the contact patch 

and lower compressive stress peaks are found for unidirectional 
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configuration of  1290  relative to  120 . For other configurations began 

with 90  degree rotation, compression peaks in surface contact stress 

distributions decreased relative to the ones started with 0  degree rotation.  

 Configuration angle and lamina order significantly influenced surface in – 

plane stress distributions. Configurations began with 90  degree rotation 

resulted a more distributed stress distributions over the contact patch 

compared to the configurations started with 0  degree rotation. 

 Configuration angle and lamina order adversely affected sub – surface 

center – line in – plane stress distributions. Major variations are observed 

for stress bands in the vertical position.  

 Developed analytical and finite element methods for sub – surface in – 

plane stress contours performed successfully with each other. Created 

contours showed very similar behavior, where high stress zones are 

matched at surface and sub –surface.  
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APPENDIX 

APPENDIX 1 – Curve fit plots for  1 1 11/ M   and  1 1 21/ M   for 

 3 390 / 0
s
 configuration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

92 
 

APPENDIX 2 – Publications derived from thesis 

 

 

 

 



 

93 
 

 

 

 

 

 

 



 

94 
 

 

 

 

 

 



 

95 
 

 

 

 

 

 

 



 

96 
 

 

  



 

97 
 

 
 
 
 
 
 
 
 
 
 



 

98 
 

 
 
 
 
 
 
 
 
 
 



 

99 
 

 
 
 
 
 
 
 
 
 
 



 

100 
 

 
 
 
 
 
 
 
 
 
 



 

101 
 

 
 
 
 
 
 
 
 
 
 



 

102 
 

 
 
 
 
 
 
 
 
 
 



 

103 
 

 
 
 
 
 
 
 
 
 
 



 

104 
 

 
 
 
 
 
 
 
 
 
 



 

105 
 

 
 
 
 
 
 
 
 
 
 



 

106 
 

 
 
 
 
 
 
 
 
 
 



 

107 
 

 
 
 
 
 
 
 
 
 
 



 

108 
 

 
 
 
 
 
 
 
 
 
 



 

109 
 

 
 
 
 
 
 
 
 
 
 



 

110 
 

 
 
 
 
 
 
 
 
 
 



 

111 
 

 
 
 
 
 
 
 
 
 
 



 

112 
 

APPENDIX 3 – Thesis originality report 

 
 
 
 



 

113 
 

CURRICULUM VITAE 

Credentials 

Name Surname :Korhan Babacan Yilmaz 

Place of Birth :Ankara 

Date of Birth    :16/03/1992 

Marital Status :Single 

e – mail Address:             :korhanbabacanyilmaz@gmail.com

 korhanb.yilmaz@hacettepe.edu.tr 

Foreign Languages :English (Fluent), German (Intermediate) 

 Spanish (Intermediate) 

Education 

H. S. :2006 – 2010, Umitkoy Anatolian High School, Ankara 

B. Sc. :2010 – 2014, TOBB University of Economics and 

Technology, Department of Mechanical Engineering, 

Ankara   

M. Sc.          :2014 – 2016, Hacettepe University, Department of 

Mechanical Engineering, Ankara 

Ph. D. :2016 – 2021, Hacettepe University, Department of 

Mechanical Engineering, Ankara 

Work Experience 

2017 – 2021, Research and Teaching Assistant, Hacettepe University, 

Department of Mechanical Engineering, Ankara 

2021 – Mechanical Design Engineer, ASELSAN, Ankara    

Skills and Expertise 

 Structural analysis 

 Finite element method 

 Tribology 

 Structural design 



 

114 
 

 Contact mechanics 

 Composite materials 

Projects 

 Temas Mekaniği ve Optimizasyon Teknikleri Kullanılarak Yeni ve Enerji 

Etkin Silindirik Makaralı Rulman Tasarımı ve Optimizasyonu, 5180049, 

TUBITAK 1505 – Ortadogu Rulman Sanayi ve Tic. A. Ş.  

Articles 

 Yilmaz, K. B., Sabuncuoglu, B., Yildirim, B., Acta Mechanica, XX (2021) X 

– X. under-review 

 Yilmaz, K. B., Sabuncuoglu, B., Yildirim, B., Silberschmidt, V., Journal of 

Engineered Fibers and Fabrics, 15 (2020) 1 – 9. 

 Gortan, M. O., Turkbas, O. S., Yilmaz, K. B., Yildirim, B., Journal of the 

Faculty of Engineering and Architecture of Gazi University, 35 (2020) 323 

– 335. 

 Comez, I., Yilmaz, K. B., ZAMM – Journal of Applied Mathematics and 

Mechanics, 99 (2019) 201800084. 

 Yilmaz, K. B., Comez, I., Guler, M. A., Yildirim, B., Mechanics of Materials, 

137 (2019) 103132. 

 Yilmaz, K. B., Comez, I., Guler, M. A., Yildirim, B., ZAMM – Journal of 

Applied Mathematics and Mechanics, 99 (2019) 201800117. 

 Yilmaz, K. B., Comez, I., Guler, M. A., Yildirim, B., The Journal of Strain 

Analysis for Engineering Design, 54 (2019) 254 – 275. 

 Comez, I., Yilmaz, K. B., Guler, M. A., Yildirim, B., Archive of Applied 

Mechanics, 89 (2019) 1403 – 1419. 

 Yildirim, B., Yilmaz, K. B., Comez, I., Guler, M. A., Meccanica, 54 (2019) 

2183 – 2206. 

 Comez, I., Yilmaz, K. B., Guler, M. A., Yildirim, B., Journal of Structural 

Engineering, Applied Mechanics, 2 (2019) 75 – 87, 2019 

 Cakici, U. G., Solmaz, S., Yilmaz, K. B., Yildirim, B, Mühendis ve Makina, 

60 (2019) 132 – 146.  

 Yilmaz, K. B., Comez, I., Yildirim, B., Guler, M.A., El – Borgi, S., 

International Journal of Mechanical Sciences, 141 (2018) 127 – 142. 



 

115 
 

 Guler, M.A., Kucuksucu, A., Yilmaz, K. B., Yildirim, B., International 

Journal of Mechanical Sciences, 120 (2017) 12 – 29. 

 Yilmaz, K. B., Guler, M. A., Yildirim, B., Key Engineering Materials, 774 

(2018) 179 – 184. 

Oral and Poster Presentations 

 Yilmaz, K. B., Comez, I., Guler, M. A., Yildirim, B., International Civil 

Engineering and Architecture Conference, 17 – 20 April 2019, Golden 

Light Publishing, Trabzon, 2019, p. 1013. 

 Yilmaz, K. B., Comez, I., Guler, M. A., Yildirim, B., International Civil 

Engineering and Architecture Conference, 17 – 20 April 2019, Golden 

Light Publishing, Trabzon, 2019, p. 1022. 

 Yilmaz, K. B., Comez, I., Guler, M. A., Yildirim, B., 21. Ulusal Mekanik 

Kongresi, 02 – 06 September 2019, Ahiler Kalkınma Ajansı, Niğde, 2019, 

p. 687. 

 Dogruer, C. U., Yilmaz, K. B., Yildirim, B., 23rd International Conference 

on System Theory, Control and Computing, 09 – 11 October 2019, IEEE 

Publishing, Sinaia, 2019, p. 373. 

 Himmetoglu, S., Yilmaz, K. B., Yildirim, B., 22. International Scientific 

Conference, Transport Means, 03 – 05 October 2018, KTU Publishing, 

Trakai, 2018, p. 49. 

 Yilmaz, K. B., Guler, M. A., Yildirim, B., International Conference on 

Fracture and Damage Mechanics, 04 – 06 September 2018, Trans Tech 

Publications, Seville 2018, p.179. 

Conferences 

 October 2019: 23. International Conference on System Theory, Control 

and Computing, Sinaia 

 September 2019: 21. Ulusal Mekanik Kongresi, Niğde 

 April 2019: International Civil Engineering and Architecture Conference, 

Trabzon 

 September 2018: 17. International Conference on Fracture and Damage 

Mechanics, Seville 

 July 2018: UMTIK Conference, Eskişehir 



 

116 
 

 March 2014: Energy and Environment Conference, Ankara 

 February 2014: Solar Energy Panel, Ankara 

 May 2013: ISO 9001 Quality Management Conference, Ankara 

 March 2011: 5S – Lean Manufacturing Conference, Ankara 

 February 2011: 6 Sigma Conference, Ankara



 

 

 


