DETERMINATION OF CAPACITY REDUCTION DUE TO
OPENINGS IN MASONRY WALLS

YIGMA YAPILARDA ACIKLIKLARDAN DOLAYI
KAPASITEDE AZALMANIN BELIRLENMESI

MUHAMMED ALANKUS

ASSOC. PROF. DR. ALPER ALDEMIR

Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for be Award of the Degree of Master of Science

in Civil Engineering

2021



ABSTRACT

DETERMINATION OF CAPACITY REDUCTION DUE TO
OPENINGS IN MASONRY WALLS

Muhammed ALANKUS

Master of Science, Department of Civil Engineering
Supervisor: Assoc. Prof. Alper ALDEMIR
August 2021, 235 pages

Masonry structures have been used throughout human history, and they have an important
place in the history of construction. The masonry structures are safe, sustainable,
environment friendly, and they can be produced with minimum energy. These structures
were built with various construction methods and materials in different communities or
regions. Therefore, the materials used in masonry structures are very different, and
masonry structures have many different mechanical properties due to various materials.
In this case, the classification of masonry structures in modeling and analyzing is
challenging. Developing technological devices and innovative ideas in the field of
construction led to a more detailed investigation of the masonry walls. As a result, several

models for assessing the performance of masonry buildings are developed.

In this study, masonry walls with the finite element method were analyzed to understand
on the in-plane behavior of unreinforced masonry walls with different openings. The size
and position of openings in unreinforced masonry walls can have an impact on failure
mechanisms and capacities of walls. Therefore, the aim of this study is to determine the
impact of openings in the capacities of masonry walls. First of all, the geometry of
numerical models was created utilizing data from existing masonry structures. In

ANSYS, the mechanical properties of the materials in unreinforced masonry walls are
i



defined, and the element used for modeling is determined. Then, the modeling techniques
for masonry walls are selected. The macro modeling method is used in all of the numerical
models. After determining the loading and boundary conditions, analyzes are performed.
All numerical models are evaluated based on the boundary conditions of the walls in
seismic design category 1 in TEC 2018. The length of openings and piers is evaluated
based on the relationship between the location and percentage of openings and the wall
capacity. The lengths or percentages were proposed to increase the safety of masonry

structures under the effect of seismic loads.

Keywords: Unreinforced Masonry Walls, In-Plane Behavior, Finite Element Methods

with Modelling, Masonry Walls with Openings, Failure Patterns



OZET

YIGMA YAPILARDA ACIKLIKLARDAN DOLAYI
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Muhammed ALANKUS

Yiiksek Lisans, Insaat Miihendisligi Boliimii
Tez Damismani: Dog. Dr. Alper ALDEMIR
Agustos 2021, 235 sayfa

Insanlik tarihi boyunca kullanilan ve kullanilmaya devam edilen yigma yapilar, yap:
tarthinde onemli bir yer tutmaktadirlar. Giivenli, siirdiiriilebilir, cevre dostu olmalar1 ve
minimum enerjiyle iiretilebilmeleri yigma yapilarin 6nemini giin gectikge arttirmaktadir.
Yigma yapilar tarth boyunca farkli topluluklarda ya da bolgelerde farkli insa
yontemleriyle yapilmiglardir. Bundan dolayi, yigma yapilar1 olusturan malzemeler
cesitlidir ve farkli mekanik 6zelliklere sahiplerdir. Gelisen teknolojik aygitlar ve insaat
alanindaki yenilik¢i fikirler yigma yapilarin daha detayli incelenebilmesine olanak
saglamistir. Bunun sonucunda yigma yapilarin performansini degerlendiren birgok model

gelistirilmistir.

Bu calisma da mevcut yi§ma yapilarin, tasiyict sistemi olan duvarlar1 daha iyi analiz
edebilmek ve yeni yapilarin daha giivenli ve depreme kars1 yiiksek performansli sisteme
sahip olmalar1 i¢in yapilarda mevcut olan ¢esitli agikliklarin tasiyict sistem iizerindeki
etkisi sonlu elemanlar yoOntemiyle modellemesi yapilarak diizlem i¢i yiiklemede
davraniglar1 incelenmistir. Donatisiz yigma duvarlarda, agikliklarin biiyiikliiglinlin ve
konumunun duvarlarin kapasitelerinde ve hasar modlarinda énemli etkisisi vardir. Bu
yizden, bu calismanin hedefi yigma duvarlarin kapasitelerinde agiklik etkisini

belirlemektir. Ik olarak, mevcut yigma yapilardan veriler elde edilmis ve niimerik
iii



modellerin geometrileri olusturulmustur. Ansys’te, donatiSiz yigma duvarlarda kullanilan
malzemelerin mekanik 6zellikleri tanimlanmis ve modelleme de kullanilan eleman tipi
belirlenmistir. Modelleme teknigi secilmistir. Tiim modellemeler makro modelleme
teknigi ile modellenmistir. Yiikleme ve smir sartlart belirlendikten sonra, modellerin
analizi yapilmistir. Tiirkiye Bina Deprem Yonetmeligi 2018°e gore tasarim deprem sinifi
1’ de yer alan duvarlarda belirtilen sinir sartlar1 esas alinarak duvarlar degerlendirilmistir.
Duvar kapasitesiyle, agikliklarin konumu ve ylizdesi arasindaki iliski esas alinarak
acikliklarin ve siitunlarin uzunluklar1 degerlendirilmistir. Sismik yiiklerin etkisi altinda
yigma yapilarin giivenligini artirmak icin siitun ve agikliklarda uzunluk ve miktar

Onerilmistir.

Anahtar Kelimeler: Donatisiz Yigma Duvarlar, Diizlem i¢i Davranig, Sonlu Eleman

Metoduyla Modelleme, A¢ikliklt Yigma Duvarlar, Hasar Mekanizmalari
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1. INTRODUCTION

Masonry structure is one of the most commonly used and still existing in construction
systems around the world and, it has a lot of advantages. There are significant structures
in masonry as monuments, mosques, palaces, bridges. Many of them were built using
traditional construction methods in the design and construction process, however some

of them aren’t still demolished at the present time.

Masonry structures have been built from past to present, and they are still built in many
regions. Masonry structures usually consist of materials such as stone, briquette, brick,
and mortar. The function of mortar layers is to provide interconnecting these masonry
units together. The materials used in masonry structures are generally around the region
where they were built. In this case, masonry structures with many different mechanical

properties arise due to various masonry materials.

Although masonry structures are easy to construct, it is challenging to predict their
structural performance and mechanical properties. Generally, they are non-engineered
buildings, and they have some risks, because traditional methods is not taken into
consideration behavior of materials and building systems. Analysis and design of
masonry structures are very important to understand the behavior of masonry structures
under effects of seismic loads; therefore, it is necessary to improve the traditional

concepts of masonry buildings.

Nowadays, there are many studies for masonry structures to determine their behavior. In
this way, masonry structures with developing technology and studies have new
construction methods. Regulations and innovations for existing structures and to be built

in the future are examined, and they are necessary to make safer structures.

1.1 Purpose of Thesis
The main goals of this thesis is to investigate the effect of openings on walls of masonry

structures. These openings are created for various purposes such as windows and doors.

Masonry wall, which is a continuous ambient, but openings in wall reduce the capacity



of the system; therefore locations, sizes, and percentages of openings in the wall are very

vital.

In this study, masonry walls with the finite element method were analyzed to understand
the in-plane behavior of unreinforced masonry (URM) walls with different openings. The
materials that constitute the masonry wall and their mechanical properties were explored.
The types of masonry structures were examined. Different design standards were used to
assess the location and size of openings in the URM wall. The features of element type
and the ANSYS program used in modeling are explained. The relationship between the
size and location of the openings in the wall and the in-plane capacity of the wall was
investigated.The variation of failure mechanisms due to the aspect ratios of the piers was

investigated.

1.2 Literature Review

Masonry structures have been the preferred type of building in the past and today due to
their many advantages. Its ease of construction, low cost and low engineering service in

terms of design are the main reasons why it is still widely used [1].

Masonry structures, the oldest of the existing structural systems, have been the focus of
numerous studies. Walls, which is load-bearing system of masonry buildings, especially
are examined. Many researchers have investigated the behavior of masonry walls under
the effect of seismic loads. The behavior of URM walls under seismic loading are
examined by Priestley. This is comparison assessing performance of URM walls under
seismic loadings based on elastic stress calculations and energy considerations [2].

The modeling of URM walls under shear and compression was examined by Chaimoon.
Chaimoon suggested a procedure to determine the intersection between the compression
cap and the Coulomb failure line because there is very important case that considering

fracture in mortar joints and brick units to enhance its relevance with experimental results

[3].

Abrams investigated the strength and deformation capability of URM walls in a number
of investigations. [4]. The damages and crack patterns of specimens with different aspect



ratios are observed and redistribution of stresses are actualized after first crack on wall
and also, force-deflections relations is proven to energy dissipation of URM wall in

ductile manner.

The effect of spandrel types is evaluated on the basis of force-drift curves and observed
damages. There were three types of spandrels used: one with a wooden lintel, one with
just masonry arch, and one with both masonry arch and RC bond beam. Seismic response

of URM wall is reasonably affected by spandrels between the piers [5].

They are performed on concrete and masonry walls with fiber reinforced polymers
(FRPs), there is a significant increase in the ductility and load-carrying capacity of the
wall components [6]. Albert examined effects in increasing capacity of unreinforced
masonry walls using fiber-reinforced polymers as externally. The type and amount of
fiber reinforcement, the layout of the fiber reinforcement and axial loads on masonry
walls reinforced FRPs are investigated that these affect overall stiffness and ductility of
walls [7]. On the other hand, there are some drawbacks of using FRPs as high cost and
poor fire resistance. Researchers have proposed strengthened by natural fibers to
minimize drawbacks. A study was develop to enchance capacity of URM walls which
strengthened by natural hemp fibers and research results indicate that the flexural capacity
of the walls improves as the hemp reinforcement ratio rises [8]. An investigation carried
out to study the effectiveness of using polymer textile reinforced mortar(TRM) for
enhancing the structural performance of URM walls. The deformation capability of TRM
strengthened URM walls increased significantly [9]. The usage of the engineered
cementitious composite (ECC) shotcrete and steel reinforcing bars for URM are
investigated and it was observed that the strength of the wall increased [10]. Matsumura
investigated shear strength and behaviors of reinforced masonry walls subjected to in-
plane loadings [11]. Matsumura observed that many parameters affect the ultimate shear
strength in reinforced masonry walls such as grouting, shear-span ratio, shear

reinforcement ratio. Formulas were developed to predict ultimate shear load.

A finite element method is improved to model strengthened URM walls. Experimental

and numerical results were compared for load bearing capacity and demonstrate a good



match. Moreover, the ductility and lateral capacity of panel increases with using fiber
[12].

Openings of masonry walls are necessary for architectural aesthetics and needs but
irregularity of openings that changing size and amount of openings per story can cause
non-uniform distribution of gravity loads and local collapse. Parisi examined effects of
irregular cases to capacity in URM walls [13]. In URM walls, a non-uniform distribution
of gravity loads can cause demand of strength and displacement in local areas of walls
and this situation leads to local failure. Different sizes and openings in masonry walls
affect strength and stiffness of masonry walls. Relationship between the sizes and
locations of openings on the in-plane behavior of URM walls are examined by Liu et al.
The failure mechanism of URM walls is affected by the effect of openings, and the in-
plane capacity of walls decreases as the opening size increases [14]. The location of
openings in URM walls under extreme out-of-plane loads can result in different failure
modes and Ghobarah investigated in this case. The lateral load capacity and failure types
of the unstrengthened URM walls and strengthened using carbon fiber-reinforced
polymer laminate strips URM masonry walls were examined and the ductility and lateral
load capacity of strengthened URM walls with openings were found to be greater than
those of unstrengthened URM walls with openings [15]. The behavior of confined
masonry shear walls with openings are also investigated by Yanez. The diagonal failure
mechanism and deformation capacity in URM walls with openings are changed
depending on the masonry unit type and size of the openings [16]. Allen, et al.
investigated force-displacement relationships of the URM wall with opening that wall
geometry and pre-compression levels changed failure modes and crack patterns of

spandrels and piers [17].



2. MASONRY STRUCTURES

2.1. History of Masonry Structures

Masonry structures have been one of the most popular structure types throughout
construction history. In the earliest samples of masonry structures, it was created by using
sun-baked clay bricks and overlapping stones. Masonry walls date back to the use of
sunbaked clay brick, marble, stone. There are many important monumental structures like

the Egyptian Pyramids, the Roman Colosseum, the Taj Mahal, and the Great Wall of

China that were built with production techniques of masonry structures [18].

Figure 2.1. Masonry Structures: (a) Great Wall of China; (b) Roman Colosseum; (c)

Egyptian Pyramids; (d) Taj Mahal

For many reasons, masonry constructions have been favoured throughout history. For
instance, they have resistant to earthquakes, fires and masonry materials and are durable
to other environmental effects [19]. When developing common mortars and masonry
units over time, a variety of materials were used to construct masonry structures.The



usage of masonry structures has been gradually decreasing in recent years. The main
reason is that reinforced concrete structures and steel structures have better mechanical
characteristics, and allowing structures to perform better against external factors.
However, its numerous advantages, such as being cheap, long lasting, environmentally
friendly and its ease of construction, masonry structures are generally utilized in rural
regions. Although, masonry structures are used today for office buildings, schools,

residential, and fireplaces in urban regions.

URM walls are made up of brick units and mortars. Masonry units can be made of a
variety of materials, including brick, stone, concrete blocks, etc. The usage of these units
is typically determined by the region in which they are found. Mortars are adhesives that
hold masonry units together, resulting in a composite wall. It is critical to have a better
understanding of the behavior of masonry walls when subjected to seismic forces
because, masonry structures have been shown to have low seismic capability. The in-
plane lateral capacity of the wall is affected by the openings and mechanical
characteristics of the materials therefore, it is critical for the design and analysis of the

URM walls in seismic zones.

2.2. Materials used in Masonry Structures

Masonry buildings are made of a wide range of materials. Brick, stone, concrete blocks,
and mortars are samples of these materials. Although some masonry materials, such as
adobe, can be utilized in specific areas, the resistance of the wall against seismic effects
Is insufficient therefore, they are not suitable for use in masonry walls.

The materials of masonry walls are durable, brittle and non-combustible and they possess
a resistance against weather, pests, decomposition so, these materials have a long lifespan
[20]. Types of materials used in masonry structures can be identified by TEC2018. The
materials to be utilized in the masonry walls are shown in the Table 2.1 [21].



Table 2.1. Types of Masonry Materials in Standards

Types of Materials Standards
Brick Masonry Units TSEN 771-1
Concrete Block Masonry TSEN 771-3
Autoclaved Aerated Concrete Units TSEN 771-4
Artificial Stone Masonry Units TSEN 771-5
Natural Stone Masonry Units TSEN 771-6

To prevent compromising wall strength, the hollow ratio in masonry materials must be
controlled within specific limitations; these ratios are listed in Table 2.2 [21]. Infill wall
materials such as adobe, stone, and concrete briquettes should not be utilized as load-

bearing wall materials.

Table 2.2. Hollow Ratio for Masonry Materials

Type of Material for Group | Group Il
Masonry
Brick a < %35 %35 <a. < %50
Concrete a < %35 %35 <a < %350

2.2.1. Brick Masonry

Bricks used in masonry constructions appear in a range of types, sizes depending on the
location or production facility. Ingredients of brick materials are silica, alumina, lime,
iron oxide and magnesia [22]. Sun-dried bricks, burnt clay bricks, fly ash bricks, concrete
bricks, engineering bricks, sand lime bricks, and fire bricks are only a few examples.
Some of them are given in Figure 2.2. Bricks have several advantages, like being long-
lasting, resistant to high temperatures, and less expensive when compared to other

materials.



Figure 2.2. Masonry Bricks Types

The brick masonry units have several drawbacks, since bricks have a poor resistance to
tension and torsion. Moreover it has a poor tensile strength relative to its compressive

strength, and it takes a long time to build structures..

2.2.2. Stone Masonry

These materials are extremely durable, weather resistant, and have an appealing
appearance. It exists in a range of forms and is one of the most often used materials units.
Low tensile and flexural strength are drawbacks of stone masonry. The mechanical

properties of the stones vary depending on their type are listed in the Table 2.3.



Table 2.3. Mechanical Properties on Types of Stone

Compression Modulus of
Types of Stone Density (g/cm?) strength (MPa) | Elasticity(MPa)x10*
Granite 2.6-2.8 160-240 5
Basalt Stone 2.9-3.0 200-400 9-12
Marble 2.7-2.8 100-180 4-7
Quartz 2.6-2.8 180-300 5-7

2.2.3. Concrete Block Masonry

Concrete blocks masonry, also known as concrete masonry unit (CMU), has a number of
advantages, including fire resistance, weather resistance, and pest resistance. They may
also be utilized as an excellent sound and moisture insulation system. CMU can be solid
or hollow blocks. There are differences regarding porosity and amount of aggregate
between solid and hollow blocks. Solid concrete blocks have a density of 1500-2000
kg/m?, whereas hollow concrete blocks have a density of 1000 to 1500 kg/m?, and solid

concrete blocks have a higher compressive strength than hollow concrete blocks.

2.2.4. Mortars

Mortars are used to bind masonry units together in wall or to fill irregular or regular gaps.
The lime or cement, sand, and water are some of the components of binding materials..
Mortars can be used for decoration. Although Portland cement has been the most well-
known binder since the twentieth century, the lime is still utilized in the construction of

new buildings and the restoration of existing structures. When masonry constructions are

erected, all horizontal and vertical joints in URM walls must be filled with binding mortar
[21].




2.2.5. Wooden
Wooden is a material that is used to improve the tensile and flexural strength of masonry
walls. The usage of wooden increase wall strength to reduce slenderness of wall. It has

the drawback of absorbing water over time.

2.3. Types of Masonry Walls
There are four distinct types of masonry walls for TEC2018. URM walls, reinforced
masonry walls, confined masonry walls and reinforced autoclaved aerated concrete panel

systems walls are all variations of masonry walls [21].

2.3.1. Unreinforced Masonry Walls

URM walls consist of masonry units and mortars without any reinforcing bars. The
ductility level of walls is low, the materials utilized on walls are brittle. The mechanical
characteristics and behavior of materials are critical in determining the seismic
performance of unreinforced masonry walls. The length of load bearing walls, the size
and amount of openings, the aspect ratio, the type of materials, and the wall geometry can

all impact the failure mode and seismic capacity of the spandrel and piers.

2.3.2. Reinforced Masonry Walls

These walls include reinforcements, in addition to masonry units and mortars. The
primary reason for using reinforcing bars in masonry walls is to increase ductility,
because masonry units are brittle and cannot demonstrate ductile behavior under ground
motions. Reinforcements must be placed in the proper region of walls or between
masonry units to behave as composite materials. This will provide the much higher

strength and ductility. A reinforced masonry wall is shown in Figure 2.4.
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Figure 2.4. Reinforced Masonry Wall

2.3.3. Confined Masonry Structures

Wall systems of confined masonry structures consist of masonry unit, mortars, reinforced
and girder in vertical and horizontal directions. Despite their low ductility, confined
masonry walls have a higher strength than URM walls. The quality of the wood or
concrete used in girders is critical for effective load distribution. There is an example in
Figure 2.5 [23].

Figure 2.5. Confined Masonry Structures

2.3.4. Reinforced AAC Panel Systems Structures

These ductile walls consist of autoclaved aerated concrete (AAC) units and reinforcing
bars. Autoclaved aerated concrete; it is a lightweight building material formed by a
mixture of siliceous sand, lime, cement, aluminum powder and water. Despite its low
density, AAC unit has excellent heat and sound insulation, fire resistance, and carrying

capacity.
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2.3.5. Other Types of Walls

Masonry wall behavior under horizontal and vertical loads is influenced by the geometry
of the walls, the strength of the materials. Furthermore, the behavior of masonry structures
is influenced by the solid or cavity wall of one or more leaves. [24]. These cavity walls
are usually exterior walls that are comprised of two separate walls interconnected by

metal ties or mortars. A cavity wall is seen in Figure 2.6 [25].

. .‘\‘ . b ’
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Figure 2.6. Cavity Wall
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3. MODELLING TYPES AND DESIGN STANDARDS OF
MASONRY WALL

3.1. Modelling Types in Masonry Walls

Finite element modeling is required for masonry walls because it eliminates some of the
drawbacks of experimentation. Experimental approaches can be highly expensive, time-
consuming, and have size and measurement limits, as well as being hazardous to existing
structures. It's much more advantageous to combine experimental and numerical
approaches. The finite element method (FEM) can be used to simulate masonry systems
under the combined impacts of vertical and horizontal loads. FEM is an effective
approach for accurately representing complicated geometry. Walls can be represented in
FEM using a variety of techniques. The different modelling types are listed in Table 3.1
[21].

Table 3.1. Modelling Techniques for Masonry Structures

Heterogeneous Modelling Homogeneous Modelling

Simplified micro modelling Macro modelling

Detailed micro modelling

These modeling approaches are also shown in Figure 3.1 [26].
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Figure 3.1. Modeling techniques for masonry structures: (a) simplified micro-modeling;

(b) macro-modeling; (c) detailed micro-modeling.
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3.1.1. Heterogeneous Modelling
Heterogeneous modelling is a discrete modelling of masonry wall that all components of
materials are modeled separately. Heterogeneous modeling is divided into two categories
for TEC2018. The detailed micro modeling and simplified micro modeling are the two
types of heterogeneous modeling.

3.1.1.1. Simplified micro modelling

Masonry units and contact surfaces are modeled, but mortar layers, which are a separate
component of walls, are not included in this method of modeling. This simplification is
required for structural analysis approaches to obtain faster results. These types of
modeling are suitable for thin-layer mortar. The thickness of mortar affects the size of

masonry units.

3.1.1.2. Detailed micro modelling
All wall components are modeled such as masonry units, mortars, and contact surfaces.

The analysis step of this form of modeling is relatively slow, but the data obtained is more

accurate and detailed.

3.1.2. Homogeneous Modelling
Walls are modeled as a composite structure with all of its components. The composite

structure is determined by a periodically repeated part of the wall. The type of modeling

is determined by the research to be carried.

3.2. Material Models in Masonry Walls

The defined material models are one of the most important factors affecting the behavior
of masonry walls under seismic loadings. Since elastic and inelastic materials behave
differently, the material models used in FEM must be appropriate in order to obtain

accurate results.

3.2.1. Linear Material Models
Masonry units and mortars are usually non-ductile materials that can crack and crush
when suddenly loaded. There are three types of material models in linear material models.

These are anisotropic materials, orthotropic materials and isotropic materials. These

14



materials in masonry walls are convenient for elastic region. Since the anisotropic
materials used in masonry walls have variable mechanical characteristics in all directions,
structural analysis is complex. Isotropic material model, which assumes that wall
materials are solid and have the same properties in all directions. This approach simplify

structural analysis of walls.

3.2.2. Non-linear Material Models
Non-linear material models can be used to represent materials in masonry buildings. This
material modeling allows for a better understanding of material behavior under loads

since materials in the inelastic zone can crack, crush, and collapse.

3.3. Design Standards for Masonry Walls

3.3.1. Minimum Thickness of Load-Bearing Walls
The walls must fulfill certain requirements in order to be designed a load-bearing system.

TEC2018 determines the minimum wall thicknesses to be applied in masonry walls under

shear stress, which are described in Table 3.2.

Table 3.2. Geometric Conditions for Masonry Wall Types in TEC 2018

Types of Masonry (‘tef Jmin (Mm) (Net / tef )max
Unreinforced masonry with naturel stone 350 9
Unreinforced masonry with other units 240 12
Confined masonry 240 15
Reinforced masonry 240 15
Reinforced AAC Panel Systems 200 15

In Eurocode 6, minimum effective wall thickness should be only 100 mm. According to
Eurocode 8, the recommended geometric conditions for load-bearing walls are given in
the Table 3.3 [27]. In parameters, ter and her are minimum effective wall thicknesses and

height.
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Table 3.3. Geometric Conditions for Masonry Wall Types in Eurocode 8.

Masonry Types (tef Jmin (Mm) (Nef / tef Ymax
Unreinforced, with natural stone units 350 9
Unreinforced, with any other type of units 240 12
Unreinforced, with any other type of units, in cases of 170 15
low seismicity
Confined masonry 240 15
Reinforced masonry 240 15

The thickness of load-bearing walls in multi-storey masonry structures should be larger
than 203 mm in each level, according to IBC2006 and MSJC2005. In one-storey masonry
constructions, the thickness of load-bearing walls shall not be less than 152 mm. The
minimum thickness of rough, coursed rubble stone walls shall not be less than 152 mm.
The minimum thickness of masonry shear walls shall not be less than 203mm thick [28,
29].

3.3.2. Openings and Maximum Unsupported Length of Load Bearing Walls

Openings in masonry walls are required for architectural aesthetics and needs, however
they reduce wall strength and vary the failure mechanism. These unsupported wall lengths
can be different in reinforced masonry walls and reinforced AAC systems because of
using reinforcing bars. According to TEC2018, the unsupported length in URM walls
shall not exceed 5.5 m for seismic design category (SDC) 1, 1a, 2 and 2a, and 7.5 m for
SDC 3, 3a, 4 and 4a, as shown in Figure 3.2. The distances between vertical girders in
masonry structures should not exceed 4 m. These values can be increased by 20% for
reinforced masonry buildings and AAC panel systems structures. For door and window
openings, there are some particular limitations. The limits between the distances are

represented in Figure 3.3.
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Figure 3.2. Unsupported Wall Length for Masonry Structures

In TEC2018, the boundary conditions for length of pier between openings are shown in
the Figure 3.3. In Eurocode 8, the maximum unsupported length of a load-bearing wall
should not be more than 7 m and proper (I/h)min. The values of (I/h)min are given in the
Table 3.4. The ratio of the length of the wall, |, to the greater clear height, h, of the

openings adjacent to the wall.

>1.5m >1.0m  (SDC1, 13, 2 and 2a)
, 2L.om , 20.8m | (SDC 3, 33, 4 and 4a) ,
I- | I —— !
;_r i Window i i Door i J_‘E_

£n (Unsupported wall length)
Cort+ £,,<0.408n

Figure 3.3. Boundary Conditions for Openings in Masonry Walls

Table 3.4. Recommended Geometric Conditions for Masonry Walls in Eurocode 8

Masonry Type (/h)min
Unreinforced, with natural stone units 0.5
Unreinforced, with any other type of units 0.4
Unreinforced, with any other type of units, in cases of low seismicity 0.35
Confined masonry 0.3
Reinforced masonry No Restriction
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In addition, the door or window openings is supported by a lintel or stone block. In TEC
2018, the height of lintel must be least 150 mm and the length of the parts of the lintel on

the wall must be at least 200 mm.

3.4. Failure Patterns for Masonry Walls

Three types of failure mechanisms can be observed in piers when URM walls are
subjected to in-plane loads. These are sliding mechanism, rocking mechanism, diagonal
tension mechanism. The mechanism is determined by the wall geometry, material
characteristics, boundary conditions, and loads acting on the wall [30]. In addition,
irregular walls or different size of openings cause a non-uniform distribution of gravity
loads in wall and in this way, concentration of strength and displacement take place in

local areas of walls. This leads to a local failure [5].

Although structural stability is preserved for cracks on walls subjected to in-plane loads,
these cracks cause irreversible structural damage when external forces act in the plane.
When URM walls are subject to in-plane loadings, shear stress cause damage or cracks
around the openings. These cracks usually appears as diagonal cracks or vertical cracks.
Wall stability under out-of-plane loads is critical, and wall thickness and slenderness have
an impact on the in-plane capacity of URM walls.

3.4.1. Sliding Mechanism

A sliding mechanism occurs when the upper part of the wall slides over the lower part of
the wall. This mechanism is mostly caused by low axial load and inadequate mortar
quality. This mechanism cause crack paths in the bed joints under seismic loads [31].

Mohr-Coulomb formulation can be used to predict shear strength associated with sliding.
Rss = L* t * fv
where

fv=Vbo + u*oy
Rss is capacity because of sliding shear failure, t is the wall thickness, L is the wall length,

Vbo is the shear bond strength at zero compression (in MPa), p is the coefficient of

friction, oy is the vertical stress (in MPa).
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3.4.2. Rocking Mechanism

The rocking mechanism is based on aspect ratios, which result in overturning of the wall
and crushing of the corners. The rocking mechanism is more ductile, although it can cause
significant wall displacements. The displacement capacity can be up to 10% of the whole
wall height [31].

3.4.3. Diagonal Tension Mechanism

This type of mechanism occurs, when a solid wall or a wall with opening has diagonal
cracks that propagate along the wall. In the URM walls, decrasing aspect ratio cause this
type of failure mechanism.
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Figure 3.4. Failure Modes for Walls: (a) Sliding; (b) Diagonal-tension; (c) Rocking
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4. FINITE ELEMENT MODELING OF MASONRY WALL
ELEMENTS

This section firstly introduces ANSY'S, which is used to provide the analysis in URM
walls. The solid65 element and input parameters are then presented. The input paramaters
and element types of the models were selected in accordance with the analysis. In models,
the Solid65 element has the properties of cracking and crashing. Besides, the qualification
of this model is determined by comparing its estimations with the experimental results of
URM wall tests.

4.1. ANSYS Software

The FEM is a numerical method that has many advantages in solving the problems. This
method chooses the suitable elements and materials to solve different types of problems.
A finite element meshing is created. Sets of equation come out and these sets of equations
are solved by computers. ANSY'S, which is a computer program, uses the finite element
method to solve difficulties that arise in numerical methods. In ANSYS, it is critical to
define the unit system, material properties, elements properties, geometry of models,
finite element mesh, boundary conditions, loads and proper methods of analysis. The

accuracy of the observed results improves as the number of analyses increases.

4.2. SOLID65 Element Description

The Solid65 element has many properties. The Solid65 element is used to perform
nonlinear or linear analysis in URM wall models. The Solid65 element is designed for
modeling with or without rebars. Solid65 element can be used to model brittle materials
such as geological materials (sand, rock). This element has eight nodes and all of them
have three degrees of freedom. The Solid65 element is given in Figure 4.1 [28].

Since it can exhibit properties of cracking, crushing, and plastic deformations, the Solid65

element in URM walls is a suitable finite element for depicting crack pattern and collapse

mechanisms.
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Figure 4.1. Solid65 Element (3D)

There are some rules and restrictions given in ANSYS Element Reference and ANSY'S
Theoretical Reference are listed below.

e All Solid65 elements should have eight nodes.

e There are three degrees of freedom at each nodes.

e Zero volume element is not allowed.

e The sum of the volume ratios for all rebar must be less than 1.0.

e Brittle materials can be modeled with Solid65 elements.

e Elements can perform cracking in tension and crushing in compression.

e It has isotropic material acceptance in elastic analysis.

Concrete material model in Solid65 element is used to identify behavior of brittle
materials as stone, bricks. This material is defined as an isotropic material. In ANSY'S,
failure modes are described using a combination of the William-Warnke failure theory

and multilinear isotropic hardening.

4.3. Input Parameters of Elements and Materials for Modelling Masonry Walls

In this study, while modeling URM walls, the Solid65 element was used. The stress
relaxation after cracking is neglected. The open shear transfer coefficient and closed shear
transfer coefficient are taken as 0 and 1, respectively. The compressive and tensile
strengths of concrete are used to define the material. Multilinear isotropic hardening is

used to determine the plasticity, and the model is shown in Figure 4.2.
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Figure 4.2. Multilinear Isotropic Plasticity Model used in Analytical Models

4.4. Verification of Modelings by Experimental Datas

The experimental datas and the nonlinear analytical model created with ANSYS for in-
plane behavior of URM walls are compared. Three types of walls and failure mechanisms
are found in this study, all of which are dependent on aspect ratios. As a result, the

proposed models should be compared and verified using the experimental datas.

4.4.1. Verification of Diagonal Failure Pattern for URM Walls

The experiments on URM walls at ETH Zurich were considered the most suitable test for
verifying the diagonal tension mechanism of analytic models. This tested wall consists of
hollow clay bricks. A reinforced concrete slab and foundation are also placed on the wall.
The dimensions of tested wall are shown in Figure 4.3 [33]. The mechanical properties
of the tested wall are given in Table 4.1. The loading was carried out in two parts. The
wall is monotically pushed from the side after a uniform load is supplied vertically.
Diagonal shear cracks appear on the wall at the ultimate stage.
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Figure 4.3. The Dimensions of Wall tested in ETH Zurich (All dimensions are in mm
and p=0.61 N/mm?)

Table 4.1. The Mechanical Properties of Tested Wall
E(Mpa) v G (MPa) fm (MPa) fmt (MPa)
2460 0.18 1130 7.61 0.28

In the finite element model, the bottom of the wall is supposed to be fixed to the base.
Solid 65 elements are used with only Willam-Warnke plasticity for slabs. The loading
was carried out in two parts. The wall is monotically pushed from the side until failure
after a uniform load is supplied vertically. Both analytic and experimental analyses show

that crack types and propagation are similar that is given in Figure 4.4,

The capacity curve obtained from the analysis and the experiment is given in Figure 4.5.
It is shown that the analytical model effectively simulates behavior of wall. In the analytic
model and experiment, the maximum lateral load was 265 kN and 272.8 kN, respectively.
Moreover, the model determines the displacement capacity as 14.2 mm, whereas the
experiment determines it as 14 mm. The in-plane behavior of the analytical model is
similar to the behavior of the experiment. These results indicates that this model can be

used for the assessment of tested walls.
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Figure 4.4. a) The Crack Pattern from the FE Analysis, b) The Damage Observed at the
End of the Test in ETH Zurich.
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Figure 4.5. The Comparison of Capacity Curves of the Wall Specimen from the FE

Analysis and the Experiment

4.4.2. Verification of Base Sliding and Rocking Failure Patterns for URM
In this part, the experiments on URM walls carried out by Franklin were considered the

most suitable test for verifying the base sliding and rocking mechanisms of analytic
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models [34]. These masonry wall units consists of clay masonry units. The geometry in
wall test is given in Figure 4.6 [34].
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Figure 4.6. Specimen Dimension

The bottom of piers was constrained for any rotation or translation, but the top of walls
are free for rotation or translation in all directions. There are R/C loading beam used to
provide accurately loading situations. In analytic models, Solid 65 element is used and
the modulus of elasticity and poisson ratios of the materials are 4275 MPa and 0.2,
respectively. Capacity curves of analytic and experimental studies are similar to each
other. These curves is given in Figure 4.7 and 4.8. It is shown that the analytical model

effectively simulates behavior of wall.
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Figure 4.7. The Comparison of Capacity Curves of Squat Specimens from the
Experiment with the Ones Obtained Through FE Analysis.
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Figure 4.8. The Comparison of Capacity Curves of Slender Specimens from the

Experiment with the Ones Obtained Through FE Analysis.

In the Figure 4.7 and 4.8, the capacity curves of squat and slender specimens were
obtained, respectively. The in-plane behavior of the analytical model is similar to the
behavior of the experiment for base sliding mechanism and rocking mechanism. These

results indicates that this model can be used for the assessment of tested walls.
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5. MODELS FOR DETERMINING IN-PLANE BEHAVIORS OF
UNREINFORCED MASONRY WALLS WITH OPENINGS

5.1. Introduction

Analytical modelling in URM walls require to determine capacity of URM walls with
openings under seismic loads. In this part, a procedure has been executed to determine
the reduction of capacity and failure modes in URM walls with openings. The main
purpose of this procedure is to determine the failure patterns and capacities of URM walls
affected by the location, percentage and size of the openings. The different wall models

were analyzed and the limit states for openings were tried to be determined.

There are some proposed assumptions in this method that only URM wall with opening
is used for modelling. 21 different types of wall with openings were used. One of the
walls is solid wall and the others have openings for various purposes. The total number
of models is 334 and the characteristic compressive strength of the walls is taken as 3
MPa and 8 MPa. The lintels have elastic material model and masonry units have inelastic
material models. In all models, there are a restriction for out-of-plane failure of URM

walls.

5.2. Characteristics of Material used in Masonry Walls

The components of an URM wall are masonry units and mortars. The mechanical
characteristics and structural behavior of an URM wall are defined by the materials used.
Therefore, it is necessary to understand the mechanical characteristics of the materials.
Many research have been conducted in order to determine compressive strength of the
wall in terms of mortar and masonry units. In TEC2018, the characteristic compressive
strength (fm) of a masonry wall can be determined in two ways. The first is the tests in TS
EN 1052-1 to be carried out on the wall samples. Secondly, the compressive strength of
masonry walls can be obtained using Table 5.1. Hence, it should be determined the

compressive strength of the mortar and masonry units.
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Table 5.1. The Compressive Strength of Masonry Wall, fm (MPa)

Masonry | Mortar | Compressive Compressive Strength of

Units Classes | Strength of Masonry Units (MPa)
Mortar (MPa) 5 10 | 15 | 20 25 30

M10-M20 3.4-|55-|73-| 89- | 104- | 11.9-
42 |1 68 | 90 | 110 | 129 | 146

Grup | M2.5-M.9 2.2- | 3.6-1|4.8-| 5.09- 6.9- 7.8-
General 33 (53|71 87 10.1 115
M1-M2 1.7-]28-|3.7-| 4.5- 5.2- 5.9-

Mortar

21 | 34 | 45| 55 6.4 7.3
M10-M20 2.8-|45-|6.0-| 7.3- | 8.5- 9.7-

34 |55 |74 ] 90 | 105 | 120

Grup II M25-M9 | 18- [30-|39-| 48 | 56- | 64
27 | 44 |58 | 71 | 83 | 94
M1-M9 14-[23-[30-| 37- | 43 | 49

1.7 | 28 | 3.7 | 45 5.3 6.0

In addition, there are limits for masonry materials in TEC2018. The compressive strength
of masonry units should be greater than fmmin=5.0 MPa in case of perpendicular to the
horizontal joints of masonry units and greater than fmnmin = 2.0 MPa in the parallel
direction. These values can be determined according to TS EN 772-1. The cube
compressive strength of the mortar to be used for unreinforced and confined masonry
should be greater than fm min =5.0 MPa. In addition, it should be greater than fmmin =10.0
MPa for reinforced masonry structures. These values can be determined according to TS
EN 1015-11.

The compressive strength of masonry walls was investigated with regard to the
compressive strength of the materials used [35]. In equation of 5.1.a and 5.1.b is
appropriate for bricks with 1:3 lime mortar and bricks with 1:2:8 mortar, respectively.

fm = 0.27fb (5.1.a)

fm = 0.22fb (5.2.b)
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In this study, two groups were formed based on the compressive strength of the masonry
walls. In terms of mean values, these classes are 3 MPa and 8 MPa. These values are
taken from the Table 5.1. Since brick and M2 or M2.5 mortar are used, the compressive

strength of the wall are taken as 3 and 8 MPa, respectively.
Tension manner in masonry walls are generally insignificant, because tensile strength of
masonry units and mortars are low. Strength of masonry walls under shear forces can be
designed in equation of 5.2.

fuk = fuko + 0.464 < 0.10 fp (5.2)

Characteristic initial shear strength (fuko) is determined with testings or in Table 5.2.

Table 5.2. The Initial Shear Strength of Masonry Wall, (fuko)

. General Thin Layer
Masonry Units Mortar Mortar

M10-M20 0.3

Brick M2.5-M.9 0.2 0.3
M1-M2 0.1

Concrete M10-M20 0.2 0.3

Aerated Concrete M2.5-M9 0.15 0.3

Stones M1-M9 0.1 cannot be used

The tensile strength of masonry walls (fmt) may be calculated using the 1.5f\, formula.
In this study, the tensile strengths of the URM walls are taken as 0.15 MPa and 0.30 MPa

,since brick and M2 or M2.5 mortar classes are used.

The rate of stress and strain of a material in elastic region is a constant value. This ratio

gives the modulus of elasticity and this behavior is referred to as hook law.
c==¢.E (5.3)
In the equation of 5.3, o and ¢ are stress and strain, respectively. E is the Modulus of

Elasticity. There are many empirical formulas to calculate Modulus of Elasticity of
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masonry structures. The Modulus of Elasticity of masonry walls can be found using its
compressive strength. It is known as a general formula in equation of 5.4.

Ew=a fm (54)

In this equation, Ew is the Modulus of Elasticity of masonry wall, fm IS characteristics
compressive strength of walls and o is a constant that varies depending on the
earthquake codes. There are different values for a coefficient in various regulations. The
Modulus of Elasticity and shear modulus for load-bearing walls in TEC2018 are 750 fm
and 750/m*0.4, respectively. In Eurocode 6 and FEMA 356, the Modulus of Elasticity
are 1000/m and 5507m, respectively [36, 37].

In this study, the Modulus of Elasticity is taken as 550 fm MPa for all models.

5.3. Classification and Analysis of Masonry Walls

In this study, parameters including compressive strength, aspect ratio, opening effect were
taken into account while assessing the masonry walls' capability. All modelling were
done with ANSYS software. Material properties of the finite element models are
determined as stated above. The method of modeling all of the components of a wall as a

composite structure is known as macro modeling.

5.3.1 Classifications of Masonry Walls
In this study, the compressive strength of masonry walls was the primary criterion for

classifying them. Walls with a compressive strength of 3 MPa are classified as low-

strength, while those with a compressive strength of 8 MPa are classified as high-strength.

The second classification of walls was carried out, according to aspect ratio. The aspect
ratio is the ratio of the wall height to wall length in horizontal direction. In models, many
various aspect ratio values were found, and aspect ratio has a direct impact on the failure

mechanisms and in-plane lateral capacity of wall.

The last classification of walls was carried out to identify for opening effect, including

opening size ,opening position and numbers of openings in walls. 167 walls with different
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geometries were evaluated using all of these parameters. The Solid65 elements are used
in all models, the modulus of elasticity and poisson’s ratio are 550fm and 0.2,
respectively. The fm value was taken as 3 MPa and 8 MPa for all models. In material
modeling, these bilinear curves are used as multilinear isotropic plasticity models and the
stress-strain characteristics of subclasses in terms of compressive strength are shown in

Figure 5.1. Nonlinear static analysis are used to obtain capacity curves of walls.

0.6 : 16

N n

0.0015 0.003 € (MPa) 0.004 0.008 £ (MPa)
(a) (b)

Figure 5.1. Stress-Strain Characteristics for Subclasses According to Compressive
Strength Values of (a) 3 MPa, (b) 8 MPa

5.3.2 Loading and Restriction Situations in Wall Models
There are some assumptions for loading and restriction cases in all models as stated
below:
e The bottom of walls is assumed to be fixed.
e The top of wall is assumed to be a free end.
e Firstly, the vertical loads as pressure loads are applied to the top of wall, then
horizontal loads are applied to wall until failure.
Figure 5.2 presents the pressure loads and restriction situations in wall models with

openings.

31



Figure 5.2. Loading and Restriction Situations for a Masonry Wall with Openings

5.4 Analysis of Masonry Walls with Openings
The URM walls with openings in this study are masonry buildings that can be found in
the province of Diizce. The geometry of walls are taken from the ‘Kamu Binalar
Envanteri i¢in Yontem Gelistirme Calismalari’ study. Therefore, the mechanical and
geometric properties of walls were chosen to be suited for this region in all models. The
walls are then divided into groups based on the types of openings. There are 21 different
types of URM walls. The classifications of walls depend on types of opening as stated
below:

e Single door opening

e Solid wall

e Single window opening

e Two-windows openings

e Three-windows openings

e Four-windows openings

e Five-windows openings

e Six-windows openings

e Seven-windows openings

e Eight-windows openings

¢ Nine-windows openings

e Door and windows openings

e Single door and two windows openings
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e Single door and three windows openings
e Single door and four windows openings
e Single door and five windows openings
¢ Single door and six windows openings

e Single door and eight windows openings
e Two door and four windows openings

e Two door and six windows openings

e Two door and seven windows openings

The URM walls are divided into piers and spandrels by various types of openings. The
representation of these structural components in all models is shown in Figure 5.3. All
models and analysis were done with ANSYS. The element and material properties were
assigned to the model after the geometry of the walls were created. Also, concrete lintels
are used to support spandrels. The behavior of lintels is defined as linear elastic and the
dimensions of the lintel were determined according to TEC2018. The modulus of
elasticity and poisson ratio of lintels are taken as 30 000 MPa and 0.2 for all model,
respectively. Masonry piers and spanderls are modelled according to the aforementioned
structural parameters. The compressive strength of URM walls is taken as 3 MPa and 8
MPa. The analytical process started, after the support and loading conditions were
determined. The crack patterns, collapse mechanisms and capacity of URM walls are

evaluated as a consequence of the analyses.

Figure 5.3. Representation of Piers in Masonry Models
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5.4.1 Failure Modes of URM Walls

In this study, URM walls are divided into categories depending on different types of
openings. Masonry walls can be grouped into 21 different types. Since compressive
strength of the masonry walls are assumed to be 3 MPa and 8 MPa for each wall and two
analyses for each wall have carried out. These walls, whose dimensions are given in
Appendix A, are modelled and analyzed using Ansys. The crack patterns and collapse
mechanisms of URM walls are investigated after the analytical progress. Furthermore,
the impact of parameters including openings, aspect ratio, and compressive strength of

walls on the in-plane performance of masonry wall was evaluated.

5.4.1.1 Failure Modes of Wall 1

In the wall 1, there are 15 different wall models. The impact of a single door opening was
studied in these models of wall 1. Table A.1 shows the lengths of the walls. As seen in
Figure 5.3, each pier is designated from left to right. The crack patterns obtained from the

analysis of wall models corresponding to 15 different wall models are described in this

section.
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Figure 5.5. The Crack Pattern of Wall 1 Model 2 According to Compressive Strength
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Figure 5.10. The Crack Pattern of Wall 1 Model 7 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.12. The Crack Pattern of Wall 1 Model 9 According to Compressive Strength
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Figure 5.14. The Crack Pattern of Wall 1 Model 11 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.3. Failure Patterns of Wall 1

fm=3 Mpa fm=8 Mpa
Number | Aspect Failure Pattern Failure Pattern
of ratio Base Rocking | Diagonal | Base | Rocking | Diagonal
Model Sliding Tension | Sliding Tension
Model 1 | 0.50 X X
1.50 X X
Model 2 | 0.61 X X
10.00 X X
Model 3 | 1.33 X X
2.00 X X
Model 4 | 1.79 X X
0.37 X X
Model 5 | 1.22 X X
0.55 X X
Model 6 | 0.49 X X
0.98 X X
Model 7 | 0.72 X X
10.00 X X
Model 8 | 2.08 X X
3.03 X X
Model 9 | 1.23 X X
1.23 X X
Model 0.85 X X
10 0.85 X X
Model 1.23 X X
11 0.63 X X
Model 0.60 X X
12 0.60 X X
Model 4.12 X X
13 0.93 X X
Model 2.50 X X
14 2.50 X X
Model 1.11 X X
15 2.46 X X
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In the TEC 2018, there are four important design cases in load-bearing walls for seismic
design category 1.

. The lengths of each door or window opening should not exceed 3 meters.

. The distances between window and door openings should be greater than 1 meter.
. The distances between openings and corners of wall should not be less than 1.5
meters.

. The total opening lengths should not be greater than 40 percent of the total wall

lengths.

In Table A.1, all length of doors is less than 3 m for all models and total opening
percentage of walls is appropriate for TEC 2018. In models 2, 7, 8, 13, 14 and 15, the
length of one of the piers is less than 1.5 m. The capacity of the wall in model 12 is much
higher than the others due to length of wall. When models 1 and 6 were examined, it was
observed that the in-plane capacity of URM walls increase, as the opening percentage of
walls decrease. The different locations of openings can cause significantly lower capacity
on walls or local failures. The pier length in model 7 is inadequate, and there are flexural
cracks due to increased aspect ratio. But, model 7 has a compression diagonal strut due
to the position of the opening at the corner of the wall. Although the model 9 has a similar
opening percentage, its capacity is less. Because, the position of the opening in the model
9 prevent the strut action. The location and percentage of openings influence the wall
failure mechanisms. Table 5.3 shows that, the diagonal tension mechanism dominates in
low aspect ratio of wall. On the other hand, the rocking mechanism is predominant in

high aspect ratio of wall.

5.4.1.2 Failure Modes of Wall 2
In the wall 2, there are 10 different wall models. Table A.2 shows the lengths of the walls.

The crack patterns obtained from the analysis of wall models corresponding to 10
different wall models are described in this section.
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Figure 5.21. The Crack Pattern of Wall 2 Model 3 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.22. The Crack Pattern of Wall 2 Model 4 According to Compressive Strength
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Figure 5.23. The Crack Pattern of Wall 2 Model 5 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.24. The Crack Pattern of Wall 2 Model 6 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.25. The Crack Pattern of Wall 2 Model 7 According to Compressive Strength
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Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.27. The Crack Pattern of Wall 2 Model 9 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.28. The Crack Pattern of Wall 2 Model 10 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.4. Failure Patterns of Wall 2

fm=3 Mpa fm=8 Mpa

Number | Aspect Failure Pattern Failure Pattern

of ratio Base | Rocking | Diagonal | Base | Rocking | Diagonal
Model Sliding Tension | Sliding Tension
Model 1 0.30 X X
Model 2 | 0.66 X X
Model 3 | 0.88 X X
Model 4 0.77 X X
Model 5 | 0.47 X X
Model 6 | 0.76 X X
Model 7 0.58 X X
Model 8 0.37 X X
Model 9 | 0.59 X X
Model 0.47 X X

10

In these models, the failure type of all piers is predominantly diagonal tension mechanism,
but there are other types of failure modes. As the length of the solid walls increase, the
strength of walls improve, although their ductility decrease. Several tension struts may be
included in longer walls, such as model 1. Table 5.4 shows that, the diagonal tension

mechanism dominates in walls with low aspect ratio.

5.4.1.3 Failure Modes of Wall 3

In the wall 3, there are 10 different wall models. The impact of a single window opening
was studied in these models of wall 3. Table A.3 shows the lengths of the walls. As seen
in Figure 5.3, each pier is designated from left to right. The crack patterns obtained from
the analysis of wall models corresponding to 10 different wall models are described in

this section.
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Figure 5.32. The Crack Pattern of Wall 3 Model 4 According to Compressive Strength
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Figure 5.34. The Crack Pattern of Wall 3 Model 6 According to Compressive Strength
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Figure 5.36. The Crack Pattern of Wall 3 Model 8 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.37. The Crack Pattern of Wall 3 Model 9 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.5. Failure Patterns of Wall 3

fm=3 Mpa fm=8 Mpa
Number | Aspect Failure Pattern Failure Pattern
of ratio Base Rocking | Diagonal | Base | Rocking | Diagonal

Model Sliding Tension | Sliding Tension
Model 1 | 1.00 X X

0.50 X X
Model 2 | 3.45 X X

1.22 X
Model 3 | 4.13 X X

3.48 X X
Model 4 | 0.86 X X

0.86 X X
Model 5 | 4.13 X X

0.96 X X
Model 6 | 5.00 X X

1.47 X X
Model 7 | 1.68 X X

1.75
Model 8 | 1.02 X X

1.31 X X
Model 9 | 2.23 X X

1.36
Model 1.67 X X

10 5.35 X X

In Table A.3, all length of openings is less than 3 m for all models and total opening

percentage of walls is appropriate for TEC 2018. In models 2, 3, 5, 6, 9 and 10, the length

of corner piers is less than 1.5 m. In Model 1, the total length of the wall is 10 m and the

percentage of opening is 3%. Therefore, the capacity of model 1 is higher than the others.

When considering the capacity of models 2 and 5, the capacity of model 5 is greater due

to its lower opening percentage. Table 5.5 shows that, the rocking mechanism is

predominant in piers, when the aspect ratio of the piers is larger than 1.47. On the other

hand, shear is predominant, when the aspect ratio of the piers is less than 1.47.
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5.4.1.4 Failure Modes of Wall 4

In the wall 4 type, there are 10 different wall models. The impact of two window opening

was studied in these models of wall 4. Table A.4 shows the lengths of the walls. As seen

in Figure 5.3, each pier is designated from left to right. The crack patterns obtained from

the analysis of wall models corresponding to 10 different wall models are described in

this section.
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Figure 5.41. The Crack Pattern of Wall 4 Model 3 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.42. The Crack Pattern of Wall 4 Model 4 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.43. The Crack Pattern of Wall 4 Model 5 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.44. The Crack Pattern of Wall 4 Model 6 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.45. The Crack Pattern of Wall 4 Model 7 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.46. The Crack Pattern of Wall 4 Model 8 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.47. The Crack Pattern of Wall 4 Model 9 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.48. The Crack Pattern of Wall 4 Model 10 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.6. Failure Patterns of Wall 4

Number
of
Model

Aspect

ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

4.76

X

2.44

X

4.76

X

Model 2

2.09

X

1.16

2.10

Model 3

1.05

4.29

1.05

X

Model 4

1.03

X

16.00

1.03

Model 5

1.92

1.82

6.95

Model 6

2.06

3.14

2.06

Model 7

4.40

X[ X[ X| X| X| X| X

X| X| X| X

2.20

X

X

1.57

X

X

Model 8

2.55

1.91

X

X

2.55

Model 9

1.67

1.41

7.06

X

Model
10

3.50

X

1.98

3.50
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In Table A.4, all length of windows are less than 3 m for all models and total opening
percentage of walls for model 5 is not appropriate for TEC 2018. In model 3 and 4 for
wall 4, the length of corner piers is more than 1.5 m. In models 3, 4 and 6, the length of
the piers between the windows are more than 1 m. Models 1 and 10 display ductile
behavior because of high aspect ratio of their walls. In Model 2, although the length of
windows is 1.48 m, the wall capacity increased due to the effect of the location of the
openings and sufficient length of piers. In model 3, capacity of wall is enhanced by 4%
opening percentage. When models 6 and 7 are examined, it is observed that the wall
capacity is higher as the opening position is located in the left corner of wall. This models
show that, the aspect ratios of the piers influence their failure patterns. Table 5.6 shows
that rocking mechanism emerges in corner piers ,as the aspect ratio of piers at corners
increases,. However, diagonal tension failure is characterized by diagonal cracks between

the windows and this type of failure occurs due to decreased aspect ratio of piers.

5.4.1.5 Failure Modes of Wall 5

In the wall 5 type, there are 10 different wall models. The impact of three windows
openings was studied in these models of wall 5. Table A.5 shows the lengths of the walls.
As seen in Figure 5.3, each pier is designated from left to right. The crack patterns
obtained from the analysis of wall models corresponding to 10 different wall models are

described in this section.
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Figure 5.49. The Crack Pattern of Wall 5 Model 1 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.51. The Crack Pattern of Wall 5 Model 3 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.52. The Crack Pattern of Wall 5 Model 4 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.53. The Crack Pattern of Wall 5 Model 5 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.54. The Crack Pattern of Wall 5 Model 6 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.55. The Crack Pattern of Wall 5 Model 7 According to Compressive Strength
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Figure 5.56. The Crack Pattern of Wall 5 Model 8 According to Compress
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Table 5.7. Failure Patterns of Wall 5

Number
of
Model

Aspect

ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

1.20

X

3.00

X

3.00

X
X

X

1.20

Model 2

1.49

0.80

0.80

XX

XX

1.49

Model 3

3.65

2.59

5.76

5.08

XX

XX

Model 4

1.04

2.08

2.08

3.13

X|X|X

XXX

Model 5

1.36

1.67

1.15

4.28

Model 6

8.57

XX

2.00

3.20

8.57

Model 7

1.25

XX

12.50

12.50

1.66

X|X|X

X|X|X

Model 8

5.20

5.00

5.00

0.99

X|X|X

X|X|X

Model 9

1.51

3.20

3.20

XX

XX

1.51

Model
10

0.76

XX

5.00

5.00

4.00

XXX

XXX

97




In Table A.5, all the length of openings is less than 3 m for all models and total opening
percentage of walls in models 3, 6, and 7 are not appropriate for TEC 2018. In model 3,
4,5, 6, 8 and 10 for wall 5, the length of corner piers is less than 1.5 m. In models 2, 4
and 5, the length of piers between the windows is more than 1 m. The length of the piers
between the openings in models 1 and 7 is insufficient, which can lead to local collapse.
When model 2 is compared other models, the aspect ratio of the its piers decrease and the
strength of the wall increase, although its ductility decrease. In model 3, the capacity is
reduced due to the 17% opening percantage and the higher aspect ratio of the pier. In
model 4 and 5, the length and percentage of piers between are more than 1,44 m and 13%,
respectively. Thus, the wall capacity has improved from the higher pier percentage. In
model 8, as the percentage of one of the corner piers is %45, in-plane capacity of wall
increase, although the length of piers between the windows decrease. Table 5.7 shows
that, the diagonal tension mechanism dominates in low aspect ratio of wall. On the other
hand, the rocking mechanism is predominant in high aspect ratio of wall.

5.4.1.6 Failure Modes of Wall 6

In the wall 6 type, there are 11 different wall models. The impact of four windows
openings was studied in these models of wall 6. Table A.6 shows the lengths of the walls.
As seen in Figure 5.3, each pier is designated from left to right. The crack patterns
obtained from the analysis of wall models corresponding to 11 different wall models are

described in this section.
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Figure 5.59. The Crack Pattern of Wall 6 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa

ANSYS

CRUSHING

CRACES AND

R19.2

STEF=2
=78

aue
TIME

€ 2021
as

MEY

1.078

=12

11

7|
7]
1 7
= GEEEE
CNCLRNSHEEE
EEEEEGEEE
EXEEREEE
“EE
EROGEEE
ENHEE
AOES|
]
1
1L\LLTTL“E
M|HI =]+
ENEEEE
ESESES
15 1 I P e P
EENNEEEE
Fl=l=]
GEE
I=i=] MEd M
—FI=F] HEE
GGG
DENGNEEE
EEENDEE
ENNGEE
ENAGOE
ELAGEE
LIGEE
7]
; B
7 ==
I T IFFEFF=
EENNEEEEIEIE
===
=]
)
—F 7]
ENEEED
=1 el
SLEE
LIGE
K
7 -
K ==
g LLLLIF
EEEEEE
=== EaEs
e[ # ]
EESED
A 7=
OCEAECEHD
=[]
EHANGE GE
o
=
=
=77
=
=
3
)
1
T
T 1§l

(@)

99



S — ANSYS

STEF=2 ng_z

SUE =45

TIME=1_04% MEY B8 2021
13:03:18

e [ %] &b A
HA0 B ]
IR 111 1]y
%] A0 HOB
] n 101 L]y I
'.\'l.'l.l.ﬁ w L]t 0% HA0 0|
1
mC i
2| % 1] [x]] [a]4]
] afufulw 1]
] nnen N
] 0 oon AL
'] oo aon 0 ]
O[T W[T]E ]
B 0N O
R TIY N | CE]N]
4| QR OOED
T
HONOonnonn B OOOODOGO0 BEEOERNONDENE Haoonononoo
LTI ]T]TIT T ) T L] T NEC T[T b1 =1 T[T]T LAl
AEREONAE 1 %]} NEE ) [ B ANEE
5T Pel=) [ =] 0 1
A HE A% B d
L1 OB S]]
HEE 08
- o ™
- i

(b)
Figure 5.60. The Crack Pattern of Wall 6 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.61. The Crack Pattern of Wall 6 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.62. The Crack Pattern of Wall 6 Model 4 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.63. The Crack Pattern of Wall 6 Model 5 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.64. The Crack Pattern of Wall 6 Model 6 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.65. The Crack Pattern of Wall 6 Model 7 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.66. The Crack Pattern of Wall 6 Model 8 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.67. The Crack Pattern of Wall 6 Model 9 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.68. The Crack Pattern of Wall 6 Model 10 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.69. The Crack Pattern of Wall 6 Model 11 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.8. Failure Patterns of Wall 6

Number of
Model

Aspect ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base

Rocki

Diagonal

Base

Rocki

Diagonal

Model 1

2.00

X

X

3.00

3.00

3.00

2.00

Model 2

3.77

2.99

4.29

2.99

XXX

XXX

3.77

Model 3

1.64

3.28

3.28

3.28

1.64

Model 4

1.14

2.28

2.28

2.28

XXX

XIXIX| XXX [X

1.14

Model 5

1.01

2.90

2.90

2.90

XXX

XXX

4.64

Model 6

2.57

XX

XX

3.00

3.00

3.00

XXX

2.57

Model 7

5.75

3.59

3.59

3.59

XXX

XXX

5.75

Model 8

4.18

XX

XX

2.75

2.75

2.75

XXX

XXX

4.18

Model 9

2.00

XX

XX

1.38

1.10

XX

1.38

5.50

Model 10

3.50

1.75

1.75

1.75

3.50

Model 11

2.00

1.33

XXX

XXX

0.93

1.33

2.00
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In Table A.6, all length of openings is less than 3 m for all models and total opening
percentage of walls in models 2, 3, 6, 7 and 8 are not appropriate for TEC 2018. In models
1, 3, 4 and 11, the length of corner piers is more than 1.5 m. In models 2, 3 and 7, the
length of piers between the windows are less than 1 meter. When considering models 1
and 6, the lengths of the walls are similar, but the percentages of openings are different.
The strength of model 6 reduces as the opening percentage or aspect ratio of the corner
piers increase. The model 4 and 9 show that the strength of models rise as aspect ratio of
piers decrease. When the length and percentage of piers between windows are 1,32 and
10%, strength of wall increase significantly. In addition, the localized failure of corner
piers does not occur when piers are larger than 1.5 m. Model 7 shows that wall has more

ductility, as the aspect ratio of the wall increases, although its strength decreases.

5.4.1.7 Failure Modes of Wall 7

In the wall 7 type, there are 10 different wall models. The impact of five windows
openings was studied in these models of wall 7. Table A.7 shows the lengths of the walls.
As seen in Figure 5.3, each pier is designated from left to right. The crack patterns
obtained from the analysis of wall models corresponding to 10 different wall models are

described in this section.
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Figure 5.70. The Crack Pattern of Wall 7 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.71. The Crack Pattern of Wall 7 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.72. The Crack Pattern of Wall 7 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.73. The Crack Pattern of Wall 7 Model 4 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.74. The Crack Pattern of Wall 7 Model 5 According to Compressive Strength
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Figure 5.75. The Crack Pattern of Wall 7 Model 6 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.76. The Crack Pattern of Wall 7 Model 7 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa

(b)

CRACES AND CRUSHING
STEF=2

aue =€0

TIME=1_0E

ANSYS
R19.2

MEY 7 2021
22:-37:-42

(@)

118




S — ANSYS

STEF=2 R:Lg_z
SUE =44
TIME=1_044 MEYT 10 2021

03:04:30

g ERann I ! !
S HiH i FEEEE R Y H

(b)
Figure 5.77. The Crack Pattern of Wall 7 Model 8 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.78. The Crack Pattern of Wall 7 Model 9 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.79. The Crack Pattern of Wall 7 Model 10 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Table 5.9. Failure Patterns of Wall 7

fm=3 Mpa fm=8 Mpa
Failure Pattern Failure Pattern
Number Aspect i _ i i
Base Rocking Diagonal Base Rocking Diagonal
of Model ratio
Sliding Tension Sliding Tension
Model 1 6.00 X X
3.00 X X
3.00 X X
3.00 X X
3.00 X X
6.00 X X
Model 2 1.76 X X
1.76 X
1.76 X
1.76 X
1.76
1.76
Model 3 3.58 X
3.58 X
3.58 X
2.38 X
3.58 X
3.58
Model 4 2.39 X
2.39 X
2.39 X
2.39 X
2.39 X
2.39 X X
Model 5 4.10 X X
2.73 X X
2.73 X X
2.73 X X
2.73 X X
410
Model 6 3.50 X X
2.33 X X
2.33 X X
2.33 X X
2.33 X X
3.50
Model 7 2.72
2.34
2.34
2.34
2.34
2.72
Model 8 1.91 X X
4.29 X X
4,29 X X
1.05 X X
4.29
1.91 X X
Model 9 1.91 X X
4.29 X
4.29 X
1.05 X X
4,29 X
1.91
Model 10 3.22 X
3.22 X X
3.22 X X
3.22 X X
3.22 X X
3.22

122




In Table A.7, all length of openings are less than 3 m for all models and total opening
percentages of walls for models 1, 3, 4, 5, 7 and 10 are not appropriate for TEC 2018. In
models 2, 8 and 9, the length of corner piers is more than 1.5 m. In models 3, 8, 9 and 10,
the length of piers between the windows are less than 1 meter. This insufficient length of
piers cause local failure on wall. The main reason for local collapses is that the size of
opening is much or near the corners. In other words, excessive aspect ratios of piers can
cause local failures. The strength of model 2 is much higher due to increased length of
piers, but piers of model 2 do not behave ductile. Table 5.9 shows that the diagonal tension
cracks usually appear in the piers between the openings. In addition, there are flexural

cracks in the corner piers depending on the aspect ratio.

5.4.1.8 Failure Modes of Wall 8

In the wall 8 type, there are 4 different wall models. The impact of six windows openings
was studied in these models of wall 8. Table A.8 shows the lengths of the walls. As seen
in Figure 5.3, each pier is designated from left to right. The crack patterns obtained from
the analysis of wall models corresponding to 4 different wall models are described in this

section.
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Figure 5.80. The Crack Pattern of Wall 8 Model 1 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.81. The Crack Pattern of Wall 8 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.82. The Crack Pattern of Wall 8 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.83. The Crack Pattern of Wall 8 Model 4 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.10. Failure Patterns of Wall 8

Number
of Model

Aspect

ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

0.97

X

X

4.29

X

X

4.29

X

X

1.70

4.29

X

4.29

0.97

Model 2

1.50

3.00

3.00

3.00

3.00

3.00

1.50

Model 3

6.60

2.64

2.64

2.64

2.64

2.64

X X| X| X| X

X X| X| X| X

6.60

Model 4

2.58

3.23

X

X

3.23

1.03

3.23

3.23

2.58

In Table A.8, all length of the openings is less than 3 m for all models of wall 8 and total
opening percentage of walls for model 3 is not appropriate for TEC2018. In model 3 and
4 for wall 8, the length of corner piers is less than 1.5 m. In models 1 and 4, the piers

between windows is less than 1 meter. In model 3, the in-plane capacity of wall increase,
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as the length or percentage of piers between the windows increase or aspect ratio of piers
between the windows decrease. In model 4, base sliding mechanism emerged due to
increased length of pier between windows. There are also diagonal tension cracks in the
piers between the openings. Diagonal cracks and local cracks appeared in the spandrels.
In addition, flexural mechanism is eventuated depending on aspect ratio in model 3. When
the length of corner pier is 0.45 m, this slender pier has bending mechanism and local
failure. Table 5.10 shows that, the diagonal tension mechanism dominates in low aspect
ratio of wall. On the other hand, the rocking mechanism is predominant in high aspect

ratio of wall.

5.4.1.9 Failure Modes of Wall 9

In the wall 9 type, there are 3 different wall models. The impact of seven windows
openings was studied in these models of wall 9. Table A.9 shows the lengths of the walls.
As seen in Figure 5.3, each pier is designated from left to right. The crack patterns
obtained from the analysis of wall models corresponding to 3 different wall models are

described in this section.
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Figure 5.84. The Crack Pattern of Wall 9 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.85. The Crack Pattern of Wall 9 Model 2 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.86. The Crack Pattern of Wall 9 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Table 5.11. Failure Patterns of Wall 9

fm=3 Mpa fm=8 Mpa
Number of | Aspect Failure Pattern Failure Pattern
Model ratio Base Rocking Diagonal Base | Rocking | Diagonal
Sliding Tension Sliding Tension
3.00 X X
3.00 X X
3.00 X
Model 1 3.00 X
3.00 X
3.00 X
3.00 X
3.00
4.80 X X
3.60 X X
3.60 X X
Model 2 0.90 X X
3.60 X X
3.60 X X
3.60 X X
4.80 X X
5.50 X X
2.75 X X
2.75 X X
Model 3 275 X S
2.75 X X
2.75 X X
2.75 X X
5.50 X X

In Table A.9, all length of openings is less than 3 m for all models and total opening
percentage of all models is appropriate for TEC 2018. In model 2 and 3, the length of
corner piers is less than 1.5 m. In model 2, the length of piers between windows is less
than 1 meter. This insufficient length of piers cause local failure on wall. The main reason
for local collapses is that the size of opening is much or near the corners. In other words,

excessive aspect ratios of piers can cause local failures. Table 5.11 shows that, the
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diagonal tension mechanism dominates in low aspect ratio of wall. On the other hand, the
rocking mechanism is predominant in high aspect ratio of wall.

5.4.1.10 Failure Modes of Wall 10

In the wall 10 type, there are 3 different wall models. The impact of eight windows
openings was studied in these models of wall 10. Table A.10 shows the lengths of the
walls. As seen in Figure 5.3, each pier is designated from left to right. The crack patterns
obtained from the analysis of wall models corresponding to 3 different wall models are

described in this section.
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Figure 5.87. The Crack Pattern of Wall 10 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.88. The Crack Pattern of Wall 10 Model 2 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.89. The Crack Pattern of Wall 10 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Table 5.12. Failure Patterns of Wall 10

Number of
Model

Aspect
ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

3.00

3.00

3.00

3.00

3.00

3.00

3.00

3.00

X| X X[ X| X| X| X

X| X| X[ X| X| X| X

3.00

Model 2

3.04

4.29

4.29

4.29

243

4.29

4.29

4.29

X

X| X X[ X| X| X| X

3.04

X

Model 3

3.23

2.58

2.58

2.58

2.58

2.58

2.58

2.58

X| X| X[ X| X| X| X

3.23

In the Table A.10, all length of openings is less than 3 m for all models of wall 10 and
total opening percentage of walls is appropriate for TEC 2018. In all models, the length
of all piers is less than 1.5 m. Local failures are seen in all models due to the size of
openings. These models show that
mechanism, although the aspect ratios are high. The capacity of the pier changed depend

on aspect ratio.
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5.4.1.11 Failure Modes of Wall 11

In the wall 11 type, there are 4 different wall models. The impact of nine windows
openings was studied in these models of wall 11. Table A.11 shows the lengths of the
walls. As seen in Figure 5.3, each pier is designated from left to right. The crack patterns
obtained from the analysis of wall models corresponding to 4 different wall models are

described in this section.
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Figure 5.90. The Crack Pattern of Wall 11 Model 1 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.91. The Crack Pattern of Wall 11 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.92. The Crack Pattern of Wall 11 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.93. The Crack Pattern of Wall 11 Model 4 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Table 5.13. Failure Patterns of Wall 11

Number
of Model

Aspect
ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

X X

Model 1

DX PX DX XX X X X

X X

Model 2

coooNOOoCLUIcOOOO
elelelolelele] Molololololel el o] e] ]

O (0701 [0 00 [0 O OO0 00 00 100 00 00 100 (00 00 00 (00

o o
=
')

XX XXX PX X X

XX
X X

6.52
5.00
5.00
5.00
3.26
5.00
5.00
5.00
5.00
6.52
2.90
8.55
8.55
8.55
2.14
8.55 X X
8.55
8.55
8.55
2.90 X X

Model 3

DX XX P PX XX X
DX XX PP PX X PX

X X
XX

Model 4

In model 2, 3 and 4 , length of corner piers is less than 1 m, this insufficient length of
piers cause local failure on wall. The main reason for local collapses is that the size of
opening is much or near the corners. In other words, excessive aspect ratios of piers can
cause local failures. Model 1 shows that it has more capacity due to reduced opening
percentage and proper locations of openings. Table 5.13 shows that, the diagonal tension
mechanism dominates in low aspect ratio of wall. On the other hand, the rocking

mechanism is predominant in high aspect ratio of wall.
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5.4.1.12 Failure Modes of Wall 12
In the wall 12 type, there are 10 different wall models. The impact of single door and

window openings was studied in these models of wall 12. Table A.12 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 10 different wall

models are described in this section.
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Figure 5.96. The Crack Pattern of Wall 12 Model 1 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.97. The Crack Pattern of Wall 12 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.98. The Crack Pattern of Wall 12 Model 3 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.99. The Crack Pattern of Wall 12 Model 4 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.100. The Crack Pattern of Wall 12 Model 5 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.101. The Crack Pattern of Wall 12 Model 6 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.103. The Crack Pattern of Wall 12 Model 8 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa

ANSYS

CRUSHING

CRACES AND

R19.2

4 2021

STEF=2
=51

aue
TIME

MEY

1.051

-00:55

20

HE

(@)

153



S — ANSYS

STEF=2 R19.2

3UB =61
TIME=1_0€1 MEY 10 2021
0€:01:08
= .
=
T
E
2
B
E=S302 el ptsete e eehf it

(b)
Figure 5.104. The Crack Pattern of Wall 12 Model 9 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.105. The Crack Pattern of Wall 12 Model 10 According to Compressive

Strength Values of (a) 3 MPa, (b) 8 MPa
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Table 5.14. Failure Patterns of Wall 12

Number of
Model

Aspect
ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

1.50

X

X

1.00

X

X

1.50

X

X

Model 2

2.69

2.48

0.98

Model 3

1.34

3.33

0.67

Model 4

2.37

2.73

0.96

Model 5

2.37

2.73

0.96

Model 6

3.70

2.08

1.39

Model 7

1.61

2.50

0.98

Model 8

2.45

2.45

0.86

X

Model 9

1.09

X

3.80

0.64

Model 10

1.00

1.14

2.29

X| X| X| X
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In the Table A.12, all length of openings is less than 3 m for all models of wall 12 and
total opening percentage of walls for all models is appropriate for TEC 2018. In model 1,
3, 7 and 9 for wall 12, the length of piers is more than 1.5 m. When model 6 is examined,
the stiffness of wall is increased due to decreased aspect ratio. In model 1, the failure
mechanism of piers is base sliding, but spandrels also have flexural and diagonal
mechanisms. When models 3 and 9 are examined, the capacity of the corner pier increase
as the aspect ratio of pier reduce. The shear is predominat in these corner piers. Table
5.14 shows that, the diagonal tension mechanism dominates in low aspect ratio of wall.

On the other hand, the rocking mechanism is predominant in high aspect ratio of wall.

5.4.1.13 Failure Modes of Wall 13

In the wall 13 type, there are 10 different wall models. The impact of single door and two
windows openings was studied in these models of wall 13. Table A.13 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 10 different wall

models are described in this section.

CRACES AND CRUSHING j&i'q E;“r!;
STEF=2 RJJQ_E
SUE =15

TIME=1.015 MAEY 21 2021

23:-:52:25

T
T
1T
T
|
ALY
11
T
|
n

(@)

157



S — ANSYS

STEF=2 R19.2

SUE =44
TIME=1_044 MEYT 10 2021
0E:17:51

it
i
.
.
e
E

f
e[|
Lo

(b)
Figure 5.106. The Crack Pattern of Wall 13 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.107. The Crack Pattern of Wall 13 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.108. The Crack Pattern of Wall 13 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.109. The Crack Pattern of Wall 13 Model 4 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.110. The Crack Pattern of Wall 13 Model 5 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.111. The Crack Pattern of Wall 13 Model 6 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.113. The Crack Pattern of Wall 13 Model 8 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.114. The Crack Pattern of Wall 13 Model 9 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.115. The Crack Pattern of Wall 13 Model 10 According to Compressive
Strength Values of (a) 3 MPa, (b) 8 MPa
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Table 5.15. Failure Patterns of Wall 13

Number of
Model

Aspect
ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

1.50

X

3.00

1.50

3.00

Model 2

3.20

2.67

2.13

2.13

Model 3

3.45

3.45

3.45

8.57

Model 4

2.96

5.00

3.21

0.60

Model 5

1.78

3.12

3.12

1.90

Model 6

2.35

2.01

1.41

0.80

Model 7

2.80

3.13

2.08

2.50

Model 8

3.24

5.01

3.24

0.99

Model 9

0.82

4.50

0.92

X[ X[ X X]| X[ X

7.50

Model 10

0.88

3.50

1.75

3.50
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In the Table A.13, all length of openings is less than 3 m for all models of wall 13 and
total opening percentage of walls for model 3 and 7 is not appropriate for TEC 2018. In
only model 5 for wall 13, the length of corner piers is more than 1.5 m. In models 1, 2
and 6, the length of piers between the openings are more than 1 meter. In model 3, corner
pier percentage is 6% and length of corner pier is 0,35 m, this insufficient length of piers
cause local failure. The main reason for local collapses is that the size of opening is much
or near the corners. Excessive aspect ratios of piers can cause local failures. Model 6
shows that as the aspect ratio of the piers decreases, the diagonal cracks occur and the
strength of the wall increases. Table 5.15 shows that, the diagonal tension mechanism
dominates in low aspect ratio of wall. On the other hand, the rocking mechanism is

predominant in high aspect ratio of wall.

5.4.1.14 Failure Modes of Wall 14

In the wall 14 type, there are 11 different wall models. The impact of single door and
three windows openings was studied in these models of wall 14. Table A.14 shows the
lengths of the walls. As seen in Figure 5.3, each pier is designated from left to right. The
crack patterns obtained from the analysis of wall models corresponding to 11 different

wall models are described in this section.
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Figure 5.116. The Crack Pattern of Wall 14 Model 1 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.117. The Crack Pattern of Wall 14 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.118. The Crack Pattern of Wall 14 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.119. The Crack Pattern of Wall 14 Model 4 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.120. The Crack Pattern of Wall 14 Model 5 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.121. The Crack Pattern of Wall 14 Model 6 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.122. The Crack Pattern of Wall 14 Model 7 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.123. The Crack Pattern of Wall 14 Model 8 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa

ANSYS

CRUSHING

CRACES AND

R19.2

STEF=2

aue
TIME

210

€ 2021
43

MEY

1.21

SE

o5

FRERRER

EEER

(a)
177




ANSYS

CRUSHING

CRACES AND

R19.2

MEYT 10 2021

STEF=2
=€2

Sue
TIME

1_0E2

t52:05

o7

B

G
Fi
4

i

Hfﬁ
g
INOEAER

I

OPED
1A

e

B \~~F|

R
Ba0M

e

T
11
A=

EEAR
R

anoE

COODODn
R TIT

aaa

oag

TH=ER

(b)
Figure 5.124. The Crack Pattern of Wall 14 Model 9 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.125. The Crack Pattern of Wall 14 Model 10 According to Compressive
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Figure 5.126. The Crack Pattern of Wall 14 Model 11 According to Compressive
Strength Values of (a) 3 MPa, (b) 8 MPa
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Table 5.16. Failure Patterns of Wall 14

Number of
Model

Aspect ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base

Rocki Diagonal

Base

Rocki Diagonal

Model 1

3.00

X

X

3.00

X

3.00

X

3.00

3.00

Model 2

2.00

1.50

1.50

7.20

7.20

Model 3

6.00

1.50

1.50

XX

XX

1.50

7.50

Model 4

1.20

3.00

3.00

XX

XX

3.60

1.80

Model 5

2.28

1.83

2.36

2.36

0.68

Model 6

5.48

3.04

3.04

1.37

1.37

Model 7

6.00

1.50

1.50

1.50

XXX [X|X|X[X] [X

XIXX| XXX [X

6.00

Model 8

1.95

XX

XX

1.06

1.06

1.26

2.45

Model 9

2.57

1.99

1.99

3.97

2.57

XX XX

Model 10

3.00

3.00

3.00

3.00

3.00

Model 11

3.14

XX

XX

3.14

3.14

2.64

XXX

3.14
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In the Table A.14, all length of openings is less than 3 m for all models of wall 14 and
total opening percentage of load bearing walls for model 1, 10 and 11 is not appropriate
for TEC 2018. In models 2, 4 and 11, the length of piers between the windows and doors
are less than 1 meter. Models 5 and 8 shows that the larger piers increase the strength of
the wall, although it reduces its stiffness. When models 4 and 6 are investigated, the
increasing corner pier length affects the failure mechanism and increases the capacity of
wall. In these figures, the change in the aspect ratios of the piers or location of openings
change the failure modes and capacity of wall. The diagonal tension cracks appear in piers

when the pier percentage or length of pier increase.

5.4.1.15 Failure Modes of Wall 15

In the wall 15 type, there are 10 different wall models. The impact of single door and four
windows openings was studied in these models of wall 15. Table A.15 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 10 different wall

models are described in this section.
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Figure 5.127. The Crack Pattern of Wall 15 Model 1 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.129. The Crack Pattern of Wall 15 Model 3 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.130. The Crack Pattern of Wall 15 Model 4 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.131. The Crack Pattern of Wall 15 Model 5 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.132. The Crack Pattern of Wall 15 Model 6 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.133. The Crack Pattern of Wall 15 Model 7 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.134. The Crack Pattern of Wall 15 Model 8 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.135. The Crack Pattern of Wall 15 Model 9 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.136. The Crack Pattern of Wall 15 Model 10 According to Compressive
Strength Values of (a) 3 MPa, (b) 8 MPa
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Table 5.17. Failure Patterns of Wall 15

fm=3 Mpa fm=8 Mpa
Number of | Aspect Failure Pattern Failure Pattern
Model ratio Base Rocking | Diagonal Base Rocking Diagonal
Sliding Tension Sliding Tension

3.00 X X

3.00 X X
Model 1 3.00 X X

3.00 X X

3.00

3.00

3.00 X X

3.00
Model 2 3.00

3.00 X X

3.00 X X

3.00

6.67 X X

5.00 X X
Model 3 3.02 % X

3.92 X X

5.00 X X

6.67 X X

2.05 X X

3.00
Model 4 1.75

1.75

3.00

2.05

4.50 X X

4.50
Model 5 4.50

4.50

4.50

1.80

2.31 X X

2.31 X X
Model 6 1.15 % X

1.15 X X

231 X

2.31

3.50 X X

2.10 X X
Model 7 1.40 X X

1.40

2.10

3.50

2.40 X X

2.40 X X
Model 8 2.00

2.00

2.31

2.40

7.89 X X

331 X X
Model 9 0.71 % X

0.71 X X

3.75 X X

7.14 X X

2.29 X X

2.29 X X
Model 10 229 X

2.29 X

2.29 X

2.29 X
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In the Table A.15, all length of openings is less than 3 m for all models of wall 15 and
total opening percentage of walls for model 6, 8 and 9 is appropriate for TEC 2018. In all
models for wall 15, the length of all piers is less than 1.5 m. In models 3, 5 and 9, the
piers between openings are less than 1 meter. This insufficient length of piers cause local
failure. The main reason for local collapses is that the size of opening is much or near the
corners. Excessive aspect ratios of piers can cause local failures. When walls 6 and 9 are
examined, the length and percentage piers between door and window are increased and
this case increase the stiffness and strength of wall. When models 1 and 2 are compared,
only the location of the door has been changed, but there is no significant change in
capacity. When comparing models 4 and 7, ductility of them is similar, but model 7 has

more strength.

5.4.1.16 Failure Modes of Wall 16

In the wall 16 type, there are 5 different wall models. The impact of single door and five
windows openings was studied in these models of wall 16. Table A.16 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 5 different wall

models are described in this section.
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Figure 5.137. The Crack Pattern of Wall 16 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.138. The Crack Pattern of Wall 16 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.139. The Crack Pattern of Wall 16 Model 3 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.140. The Crack Pattern of Wall 16 Model 4 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.141. The Crack Pattern of Wall 16 Model 5 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.18. Failure Patterns of Wall 16

Number
of Model

Aspect

ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagona
I

Base
Sliding

Rocking | Diagonal

Tension

Model 1

3.00

X

X

3.00

3.00

3.00

3.00

X| X| X| X

3.00

3.00

Model 2

3.00

3.00

3.00

3.00

3.00

X

3.00

3.00

Model 3

7.50

1.88

3.00

X

3.00

X

X

1.88

X

1.88

7.50

Model 4

2.59

2.26

2.26

2.26

2.26

2.26

2.59

X[ X| X| X| X| X| X

X| X| X| X| X| X| X

Model 5

2.28

2.36

2.36

2.36

1.18

1.18

2.28

200




In models 1 and 2, the wall lengths are similar. Only the location of the door is changed.
The capacity curves of the walls are similar. Although the lengths of model 3 and 4 are
the same, the capacity of model 4 is much higher due to reduced percentage of openings.
Model 5 shows that low opening ratio and larger pier increase the strenth of wall. The
change in the aspect ratios of the piers or location of openings change the failure modes
and capacity of wall. In these figures, diagonal tension cracks appear in piers when the

pier percentage or length of pier increase.

5.4.1.17 Failure Modes of Wall 17

In the wall 17 type, there are 3 different wall models. The impact of single door and six
windows openings was studied in these models of wall 17. Table A.17 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 3 different wall

models are described in this section.
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Figure 5.142. The Crack Pattern of Wall 17 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.143. The Crack Pattern of Wall 17 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.144. The Crack Pattern of Wall 17 Model 3 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Table 5.19. Failure Patterns of Wall 17

Number of
Model

Aspect
ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

3.03

3.03

3.03

3.03

3.03

3.03

X X| X| X| X

X X| X| X| X

3.03

3.03

Model 2

4.40

4.40

4.40

4.40

4.40

4.40

4.40

1.43

Model 3

0.71

2.50

2.50

2.50

2.50

2.50

1.43

X X| X| X| X| X

0.71

X X| X| X| X| X| X| X

In the Table A.17, all length of openings are less than 3 m for all models of wall 17 and
total opening percentage of wall in all models is appropriate for TEC 2018. In model 1
and 2 for wall 17, length of all the piers is less than 1.5 m. In model 2, the piers between
windows and doors is less than 1 m and local failure is seen in this situation. Model 3

shows that the capacity of the wall improves as the percentage of the pier increases. The

strength and stiffness of piers are improved by a reduced aspect ratio.
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5.4.1.18 Failure Modes of Wall 18
In the wall 18 type, there are 3 different wall models. The impact of single door and eight

windows openings was studied in these models of wall 18. Table A.18 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 3 different wall

models are described in this section.
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Figure 5.145. The Crack Pattern of Wall 18 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.146. The Crack Pattern of Wall 18 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.147. The Crack Pattern of Wall 18 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Table 5.20. Failure Patterns of Wall 18

Number of
Model

Aspect
ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

3.00

X

X

3.00

3.00

3.00

3.00

3.00

3.00

3.00

X X| X| X| X| X| X

X| X| X| X| X| X| X

3.00

3.00

Model 2

3.00

3.00

3.00

3.00

3.00

3.00

3.00

3.00

3.00

3.00

Model 3

0.64

0.77

0.77

0.77

0.64

0.52

0.77

0.77

0.77

0.64

X X X X| X X| X| X| X| X| X| X| X| X| X| X| X| X| X

X[ X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X| X
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In the Table A.18, all length of openings are less than 3 m for all models of wall 18 and
total opening percentage of load bearing walls is appropriate for TEC 2018. In model 1
and 2 for wall 18, length of all the piers less than 1.5 m. In models 1 and 2, only the
location of the door is changed. As the opening percentage of the model 3 is the lowest,
its wall capacity increases significantly. Model 3 shows that the strength and stiffness of
the wall increase when the percentage of the piers between the door and the window is
9% and its length is 1.94 m.

5.4.1.19 Failure Modes of Wall 19

In the wall 19 type, there are 3 different wall models. The impact of two door and four
windows openings was studied in these models of wall 19. Table A.19 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 3 different wall

models are described in this section.
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Figure 5.148. The Crack Pattern of Wall 19 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.149. The Crack Pattern of Wall 19 Model 2 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.150. The Crack Pattern of Wall 19 Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Table 5.21. Failure Patterns of Wall 19

Number of | Aspect fm=3 Mpa fm=8 Mpa
Model ratio Failure Pattern Failure Pattern
Base Rocking Diagonal Base Rocking Diagonal
Sliding Tension Sliding Tension
3.03 X X
3.03 X X
3.03 X X
Model 1 3.03 X X
3.03 X X
3.03
3.03 X X
3.03 X X
3.03 X
3.03 X X
Model 2 3.03 X
3.03
3.03 X
3.03 X
3.88 X X
1.94 X
194 X
Model 3 1.94 X X
194 X
194 X
1.00 X

In models 1, 2 and 3, the wall lengths are almost the similar but wall capacity is the
greatest in model 3 due to decreasing opening percentage. The less opening percentage
increase the capacity of wall. In two door walls, the number of piers between windows
increases, as the location of doors are closer to the corner, then this situation increases the
capacity and the number of diagonal compression struts. There are local failures due to
the length or percentage of the openings. The location of the openings is close to the
corners, the failure patterns are changed. The aspect ratio of corner pier decrease in model
3 and the base sliding mechanism was observed, whereas the aspect ratio of corner pier
increase in model 2, then the rocking mechanism was encountered and capacity of corner

pier reduce in this situation.
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5.4.1.20 Failure Modes of Wall 20

In the wall 20 type, there are 2 different wall models. The impact of two doors and six
windows openings was studied in these models of wall 20. Table A.20 shows the lengths
of the walls. As seen in Figure 5.3, each pier is designated from left to right. The crack
patterns obtained from the analysis of wall models corresponding to 2 different wall

models are described in this section.
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Figure 5.151. The Crack Pattern of Wall 20 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.152. The Crack Pattern of Wall 20 Model 2 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Table 5.22. Failure Patterns of Wall 20

Number
of Model

Aspect
ratio

fm=3 Mpa

fm=8 Mpa

Failure Pattern

Failure Pattern

Base
Sliding

Rocking

Diagonal

Tension

Base
Sliding

Rocking

Diagonal

Tension

Model 1

X

X

1.6

1.6

1.6

1.6

1.6

1.6

X X| X| X| X

X X| X| X| X

Model 2

3.03

3.03

3.03

3.03

3.03

3.03

3.03

X X| X| X| X| X

X X| X| X| X| X

3.03

Table 5.3 shows that, the piers between the openings have diagonal tension mechanism.

There are also flexural cracks in the corner piers. In model 2 of wall 20, when the aspect

ratio of the piers between the openings decrease, the strength of wall increase. As opening

percentage increase , the in-plane capacity of wall reduce.

5.4.1.21 Failure Modes of Wall 21
In the wall 21 type, there is one wall model. The impact of two doors and seven windows

openings was studied in this model of wall 21. Table A.21 shows the lengths of the wall.

As seen in Figure 5.3, each pier is designated from left to right. The crack patterns

obtained from the analysis of wall model corresponding to one wall model are described

in this section.
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Figure 5.153. The Crack Pattern of Wall 21 Model 1 According to Compressive Strength

Values of (a) 3 MPa, (b) 8 MPa

(b)
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Table 5.23. Failure Patterns of Wall 21

fm=3 Mpa fm=8 Mpa
Number of | Aspect Failure Pattern Failure Pattern
Model ratio Base Rocking Diagonal Base Rocking Diagonal
Sliding Tension Sliding Tension
3.00 X X
3.00 X X
3.00 X X
3.00 X X
Model 1 3.00 X X
3.00 X X
3.00 X X
3.00 X X
3.00 X X

In the Table A.21, all length of openings are less than 3 m for model 1 of wall 21. Total
opening amount of load bearing walls is not appropriate for TEC 2018. In model 1, the
length of corner pier is less than 1.5 meters. The length of pier between the door and
window and the length of piers between windows is 1 meter. The Table 5.23 shows that
there are diagonal tension struts in the piers between the openings and flexural cracks in

the corner piers.

5.4.2 Capacity Curves for Different Masonry Walls with Opening

This section comprises the capacity curves for each models corresponding to 21 different
wall types. Since the models have two different compressive strengths, two types of
capacity curves are plotted for models. These all models are evaluated in comparison to

each other.
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5.4.2.1 Capacity Curves of Walls
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Figure 5.154. Capacity Curves of Wall 1 According to Compressive Strength Values of

(@) 3 MPa, (b) 8 MPa
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Figure 5.155. Capacity Curves of Wall Model 2 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.156. Capacity Curves of Wall Model 3 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.156. Capacity Curves of Wall Model 4 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.157. Capacity Curves of Wall Model 5 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.158. Capacity Curves of Wall Model 6 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.161. Capacity Curves of Wall Model 9 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.162. Capacity Curves of Wall Model 10 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.166. Capacity Curves of Wall Model 15 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.167. Capacity Curves of Wall Model 16 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Figure 5.170. Capacity Curves of Wall Model 19 According to Compressive Strength
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Figure 5.171. Capacity Curves of Wall Model 20 According to Compressive Strength
Values of (a) 3 MPa, (b) 8 MPa
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Three key aspects were identified while evaluating the capacity variation on URM walls.
These are size of opening, location of opening and compressive strength of walls. Since
compressive strength of the masonry models are assumed to be 3 MPa and 8 MPa for
each wall and two analyses for each wall have occurred. The pushover graphs show that
the capacity of the wall increases as its overall area rises, but its ductility decreases. In all
models, strength of piers increase, as the compressive strength of URM walls increase,

although stiffness of piers is reduced.

The size and position of openings affect strength and stiffness of URM walls. The
pushover curves for URM walls show that the crack pattern and failure mechanism of
URM walls changes, as opening percentage increases. When opening percentage
increases, rocking mechanism is predominant and the aspect ratio increase. On the other
hand, shear is predominant and aspect ratio decrease, when opening percentage decrease.

The capacity of wall is inversely proportional to the aspect ratio.

The opening position for pushover curves should be considered when evaluating the
relationship between the percentage of openings and the wall capacity since it impacts
the failure mechanism. Insufficient length of piers or large openings create local failure
on the piers or spandrels. The in-plane capacity of URM walls decreases, as localized

failure occurs.
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6. SUMMARY AND CONCLUSIONS

6.1. Summary

In the first part of this study, the aims of the study and previous investigations are
mentioned, then history of masonry structures, the properties of materials in masonry
walls and the types of masonry walls were examined. The modeling techniques used in
masonry walls for TEC2018 are mentioned. The macro model used in our study is
explained. The design standards for masonry walls are mentioned and different

specifications are compared. The failure modes in masonry walls are explained.

Then, the properties of Ansys and Solid65 elements used in URM wall are explained. The
experimental studies and analytical models were compared. The comparison shows that

lateral capacity curves are close to each other for all failure mechanisms.

In the last part, the loading and restriction of models and the mechanical properties of the
material used in the models are mentioned in order to determine the in-plane behavior of
URM walls with openings. Then, analytical models were analyzed. Lateral capacity
curves are plotted. The length of openings and piers is evaluated based on the relationship

between the location and percentage of openings and the wall capacity.

In this study, the impact of the openings on the in-plane capacity of URM was
investigated. For this reason, the walls are modeled and analyzed with the finite element
method. In TEC2018, the limits are given for length, sizes and capacities of openings
such as windows and doors. As a result of the modeling and analysis, the compressive
strength and length of the wall increase, its capacity increase. The capacity decrease,
when the percentage of openings increase. An excessive size of openings change failure

mechanism of walls and cause local failures.

6.2. Conclusions

In this study, the impact of the location and size of the openings on the in-plane capacity
of URM was investigated therefore, the different numerical models are built which based
on macro modeling technique. In TEC2018, specific restrictions on load-bearing walls
were identified due to the detrimental effects of openings. These restrictions include the
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length of the door or window, the length of the load-bearing wall, and the minimum
distance between the window and the door. The effect of the size and location of the
openings on the in-plane capacity of the URM walls is not adequately described in
TEC2018. Therefore, the opening effect, different aspect ratio and compressive strength
of piers on behavior of URM walls are researched using 21 different wall types. Since
compressive strength of the masonry walls are assumed to be 3 MPa and 8 MPa for each
wall, there are two analyses for each walls. A total of 334 modeling and analysis were

carried out.

In all models, strength of piers increase, as the compressive strength of URM walls
increase, although stiffness of piers reduce. As aspect ratio of piers change, piers have
different failure mechanisms. The high aspect ratio cause slender walls moreover, flexural
mechanism is predominant in these cases. The low aspect ratio cause diagonal tension

mechanism and higher capacity of piers.

Insufficient length of piers or large openings create local failure on the piers or spandrels
due to non-uniform distribution of loadings. When the doors percentage is greater than
13% and the doors length is greater than 2 m, local failure on spandrels occur. The
localized failure of piers or spandrels emerge when the length of piers between windows
are 1 meter. This failure result in reduced capacity of URM walls. When the pier
percentage is greater than 11% and the pier length is greater than 1.5 m, the in-plane
capacity of URM walls increase significantly.

The localized failure of piers become when the length of pier between window and door
is less than 1.5 meter. When this pier percentage is greater than 13% and the pier length
is greater than 2 m, the stiffness and strength of wall seriously increase. In multi-window
walls, local failure is observed when the length of the corner pier is less than 1 meter and
percentage of corner pier is less than 8%. The length of corner pier is greater than 1.5 m
and percentage of corner pier is greater than 15% on walls with openings, then capacity
of piers increase significantly. Because, aspect ratio replace the failure mechanism of pier

and less aspect ratio cause more capacity on walls.

The location of openings plays important role on the in-plane capacity of URM. On the

walls with opening such as windows and doors, the compression diagonal struts between
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the windows increase, when the doors are located in the corner of the wall compared to
when the doors are located in the middle of the wall. Then, the in-plane wall capacity is
increased. When the openings are located on the left of the wall or the length of the corner
pier on the right of the wall is greater than 3 meters and pier percentage is greater than
23%, in-plane capacity of the wall system reasonably increases. This is because, the
strength and stiffness of piers are reduced when the openings are located along the

diagonal struts.

6.3. Suggestions

The failure mechanisms and the seismic capacity of the wall are affected by the openings
formed for various purposes. Therefore, size and location of openings must have
restrictions. According to TEC 2018, the unsupported length, opening length and pier
length for URM walls are given but, the effect of openings should be considered for walls
with a length of more than 7.5 meters. The percentages of openings and piers should be
limited to improve in-plane performance of URM walls. Otherwise, large openings for
URM walls may cause local failure. When the doors percentage is greater than 13% and
the doors length is greater than 2 m, local failure on spandrels occur. To reduce seismic
damage, the door length should be less than 2 meters and the door percentage should be
less than 13%. When the pier percentage between windows is greater than 11% and the
pier length between windows is greater than 1.5 m, the in-plane capacity of URM walls
increase significantly. When pier percentage between door and window is greater than
13% and the pier length is greater than 1.5 m, the stiffness and strength of wall seriously
increase. The length of corner pier is greater than 1.5 m and percentage of corner pier is
greater than 15% on walls with openings. Therefore, the percentages and lengths of piers

and openings can be utilized together to decrease the impact of openings in URM walls.
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APPENDIX

APPENDIX A — Geometric Properties of Walls
Table A.1. Geometric Properties of All Models in Wall 1

Number | Pier Pier Pier 1 Pier 2 Length | Total Opening
of 1 2 Percentage | Percentage of Length | Percentage

Models Door

Model 1 | 6.00 | 2.00 60% 20% 2.00 10.00 13%
Model 2 | 494 | 0.30 80% 5% 0.92 6.15 10%
Model 3 | 2.26 | 1.50 52% 35% 0.56 4.33 9%
Model 4 | 1.67 | 8.03 15% 75% 1.08 10.78 7%
Model 5 | 2.47 | 5.45 28% 61% 1.00 8.93 7%
Model 6 | 6.12 | 3.06 62% 31% 0.73 9.92 5%
Model 7 | 4.14 | 0.30 76% 5% 1.03 5.47 13%
Model 8 | 1.43 | 1.00 48% 33% 0.57 3.00 13%
Model 9 | 2.42 | 2.42 41% 41% 1.10 5.93 12%
Model10 | 3.55 | 3.55 43% 43% 1.10 8.20 9%
Model 11 | 2.44 | 4.78 29% 57% 1.11 8.33 9%
Model 12 | 5.00 | 5.00 42% 42% 2.00 12.00 11%
Model 13 | 0.73 | 3.20 14% 60% 1.38 5.31 17%
Model 14 | 1.20 | 1.20 40% 40% 0.60 3.00 13%
Model 15 | 2.71 1.22 51% 23% 1.38 5.31 17%

Table A.2. Geometric Properties of All Models in Wall 2

Number of Models Pier 1 Total Length
Model 1 10.00 10.00
Model 2 4.55 4.55
Model 3 341 341
Model 4 3.90 3.90
Model 5 6.38 6.38
Model 6 3.95 3.95
Model 7 5.17 5.17
Model 8 8.11 8.11
Model 9 5.08 5.08
Model 10 6.38 6.38
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Table A.3. Geometric Properties of All Models in Wall 3

Number | Pier | Pier Pier 1 Pier 2 Length Total Opening
of 1 2 Percentage | Percentage of Length | Percentage
Models Window
Model 1 | 3.00 | 6.00 30% 60% 1.00 10.00 3
Model 2 | 0.87 | 2.46 20% 55% 1.12 4.45 8
Model 3 | 0.73 | 0.86 27% 33% 1.06 2.64 13
Model 4 | 3.49 | 3.49 45% 45% 0.75 7.73 3
Model 5 | 0.73 | 3.13 16% 69% 0.66 4.51 5
Model 6 | 0.60 | 2.04 17% 59% 0.84 3.48 8
Model 7 | 1.79 | 1.71 38% 36% 1.21 4.71 9
Model 8 | 2.94 | 2.29 48% 38% 0.84 6.07 5
Model 9 | 1.35 | 2.21 30% 50% 0.87 4.42 7
Model | 1.80 | 0.56 59% 18% 0.68 3.04
10 7
Table A.4. Geometric Properties of All Models in Wall 4
Number Pier 1 Pier 2 Pier 3 | Length of | Total Opening
of Models Windows | Length | Percentage
Model 1 0.63 1.23 0.63 0.65 3.79 11%
Model 2 1.44 2.59 1.43 1.48 8.41 12%
Model 3 2.86 0.70 2.86 0.48 7.37 4%
Model 4 291 0.50 2.91 0.38 7.08 4%
Model 5 1.56 1.65 0.43 1.46 6.56 15%
Model 6 1.46 0.96 1.46 1.09 6.05 12%
Model 7 0.68 1.36 191 1.02 6.00 11%
Model 8 1.18 1.57 1.18 0.74 5.40 9%
Model 9 1.80 2.13 0.42 1.06 6.47 11%
Model 10 0.86 1.52 0.86 0.87 4.96 12%
Number Pier 1 Pier 2 Pier 3
of Models Percentage Percentage Percentage
Model 1 17% 32% 17%
Model 2 17% 31% 17%
Model 3 39% 9% 39%
Model 4 43% 3% 43%
Model 5 24% 25% 7%
Model 6 24% 16% 24%
Model 7 11% 23% 32%
Model 8 22% 29% 22%
Model 9 28% 33% 7%
Model 10 17% 31% 17%
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Table A.5. Geometric Properties of All Models in Wall 5

Number | Pier1 | Pier2 | Pier3 | Pier4 | Length Total Opening
of of Length | Percentage
Models Windows
Model 1 | 2.40 0.6 0.6 1.81 1.00 8.41 12%
Model 2 | 2.01 3.75 3.75 2.01 0.85 14.07 6%
Model 3 | 0.82 1.16 0.52 0.59 1.07 6.31 17%
Model 4 | 2.88 1.44 1.44 0.96 1.44 11.05 13%
Model 5 | 2.21 1.80 2.61 0.70 1.50 11.81 13%
Model 6 | 0.35 1.50 0.94 0.35 1.20 6.74 18%
Model 7 | 2.40 0.6 0.6 1.81 1.50 9.91 15%
Model 8 | 0.58 0.60 0.60 3.03 0.63 6.70 9%
Model 9 | 1.99 0.94 0.94 1.99 0.38 6.97 5%
Model 3.95 0.60 0.60 0.75 0.94 8.71 11%
10
Number Pier 1 Pier 2 Pier 3 Pier 4
of Percentage Percentage Percentage Percentage
Models
Model 1 31% 3% 3% 24%
Model 2 14% 27% 27% 14%
Model 3 13% 18% 8% 9%
Model 4 26% 13% 13% 9%
Model 5 19% 15% 22% 6%
Model 6 5% 22% 14% 5%
Model 7 26% 3% 3% 20%
Model 8 9% 9% 9% 45%
Model 9 28% 13% 13% 28%
Model 45% 7% 7% 9%
10
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Table A.6. Geometric Properties of All Models in Wall 6

Number | Pier | Pier | Pier | Pier | Pier | Length of Total Opening
of 1 2 3 4 5 Windows Length Percentage
Models
Model 1 | 1.50 | 1.00 | 1.00 | 1.00 | 1.50 1.00 10.00 13%
Model 2 | 0.80 | 1.00 | 0.70 | 1.00 | 0.80 0.87 7.78 15%
Model 3 | 1.83 | 091 | 091 | 0.91 | 1.83 1.46 12.24 16%
Model 4 | 263 | 1.32 | 1.32 | 1.32 | 2.63 0.95 13.02 10%
Model 5 | 2.97 | 1.03 | 1.03 | 1.03 | 0.65 0.65 9.31 9%
Model 6 | 1.17 | 1.00 | 1.00 | 1.00 | 1.17 1.17 10.01 16%
Model 7 | 0.52 | 0.84 | 0.84 | 0.84 | 0.52 0.86 6.98 16%
Model 8 | 0.72 | 1.09 | 1.09 | 1.09 | 0.72 1.44 10.48 18%
Model 9 | 1.50 | 2.17 | 2.73 | 2.17 | 0.55 1.09 13.48 11%
Model10 | 0.86 | 1.71 | 1.71 | 1.71 | 0.86 0.86 10.29 11%
Modelll | 1.50 | 2.26 | 0.70 | 2.26 | 1.50 1.50 1.03 11%
Number Pier 1 Pier 2 Pier 3 Pier 4 Pier 5
of Percentage Percentage Percentage Percentage Percentage
Models
Model 1 15% 10% 10% 10% 15%
Model 2 10% 13% 9% 13% 10%
Model 3 15% 7% 7% 7% 15%
Model 4 20% 10% 10% 10% 20%
Model 5 32% 11% 11% 11% 7%
Model 6 12% 10% 10% 10% 12%
Model 7 7% 12% 12% 12% 7%
Model 8 7% 10% 10% 10% 7%
Model 9 11% 16% 20% 16% 4%
Model10 8% 17% 17% 17% 8%
Modelll 12% 18% 6% 18% 12%
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Table A.7. Geometric Properties of All Models in Wall 7

Number | Pier | Pier | Pier | Pier | Pier | Pier | Length of Total Opening
of 1 2 3 4 5 6 Window Length | Percentage
Models
Model 1 | 0.50 | 1.00 | 1.00 | 1.00 | 1.00 | 0.50 1.00 10.00 17%
Model 2 | .70 | 1.70 | 1.70 | 1.70 | 1.70 | 1.70 1.09 15.69 12%
Model 3| 0.84 | 0.84 | 0.84 | 1.26 | 0.84 | 0.84 1.34 12.17 18%
Model 4 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 | 1.26 1.09 12.99 14%
Model 5| 0.73 | 1.10 | 1.10 | 1.10 | 1.10 | 0.73 0.80 9.88 14%
Model 6 | 0.86 | 1.29 [ 1.29 | 1.29 | 1.29 | 0.86 0.86 11.15 13%
Model 7 | 1.10 | 1.28 | 1.28 | 1.28 | 1.28 | 1.10 1.28 13.73 16%
Model 8 | 1.57 | 0.70 | 0.70 | 2.86 | 0.70 | 1.57 0.71 11.67 10%
Model 9 | 1.57 | 0.70 | 0.70 | 2.86 | 0.70 | 1.57 0.71 11.67 10%
Model | 0.93 |0.93|0.93| 093 | 0.93 | 0.93 0.99 10.52 16%
10
Number Pier 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 6
of Percentage | Percentage | Percentage | Percentage | Percentage | Percentage
Models
Model 1 5% 10% 10% 10% 10% 5%
Model 2 11% 11% 11% 11% 11% 11%
Model 3 7% 7% 7% 10% 7% 7%
Model 4 10% 10% 10% 10% 10% 10%
Model 5 7% 11% 11% 11% 11% 7%
Model 6 8% 12% 12% 12% 12% 8%
Model 7 8% 9% 9% 9% 9% 8%
Model 8 13% 6% 6% 24% 6% 13%
Model 9 13% 6% 6% 24% 6% 13%
Model 9% 9% 9% 9% 9% 9%
10
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Table A.8. Geometric Properties of All Models in Wall 8

Number of Piers Model 1 Model 2 Model 3 Model 4

Pier 1 3.09 2.00 0.45 1.16

Pier 2 0.70 1.00 1.14 0.93

Pier 3 0.70 1.00 1.14 0.93

Pier 4 1.76 1.00 1.14 2.91

Pier 5 0.70 1.00 1.14 0.93

Pier 6 0.70 1.00 1.14 0.93

Pier 7 3.09 2.00 0.45 1.16
Length of Windows 0.66 1 1 0.87

Total Length 14.71 15.00 12.59 14.17
Opening Percentage 10% 16% 19% 14%
Pier 1 Percentage 21% 13% 3% 8%
Pier 2 Percentage 5% 7% 9% 7%
Pier 3 Percentage 5% 7% 9% 7%
Pier 4 Percentage 12% 7% 9% 21%
Pier 5 Percentage 5% 7% 9% 7%
Pier 6 Percentage 5% 7% 9% 7%
Pier 7 Percentage 21% 13% 4% 8%
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Table A.9. Geometric Properties of All Models in Wall 9

Number of Piers Model 1 Model 2 Model 3

Pier 1 1 0.63 0.55

Pier 2 1 0.83 1.09

Pier 3 1 0.83 1.09

Pier 4 1 3.33 1.09

Pier 5 1 0.83 1.09

Pier 6 1 0.83 1.09

Pier 7 1 0.83 1.09

Pier 8 1 0.63 0.55
Length of Windows 1 0.83 0.82

Total Length 15.00 14.56 13.38
Opening Percentage 16% 13% 14%
Pier 1 Percentage 7% 4% 4%
Pier 2 Percentage 7% 6% 8%
Pier 3 Percentage 7% 6% 8%
Pier 4 Percentage 7% 23% 8%
Pier 5 Percentage 7% 6% 8%
Pier 6 Percentage 7% 6% 8%
Pier 7 Percentage 7% 6% 8%
Pier 8 Percentage 7% 4% 4%
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Table A.10. Geometric Properties of All Models in Wall 10

Number of Piers Model 1 Model 2 Model 3

Pier 1 1 0.99 0.93

Pier 2 1 0.70 1.16

Pier 3 1 0.70 1.16

Pier 4 1 0.70 1.16

Pier 5 1 1.23 1.16

Pier 6 1 0.70 1.16

Pier 7 1 0.70 1.16

Pier 8 1 0.70 1.16

Pier 9 1 0.99 0.93
Length of Windows 1 1.24 0.58

Total Length 17.00 17.32 14.64
Opening Percentage 16% 19% 11%
Pier 1 Percentage 6% 6% 6%
Pier 2 Percentage 6% 4% 8%
Pier 3 Percentage 6% 4% 8%
Pier 4 Percentage 6% 4% 8%
Pier 5 Percentage 6% 7% 8%
Pier 6 Percentage 6% 4% 8%
Pier 7 Percentage 6% 4% 8%
Pier 8 Percentage 6% 4% 8%
Pier 9 Percentage 6% 6% 6%
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Table A.11. Geometric Properties of All Models in Wall 11

Number of Model 1 Model 2 Model 3 Model 4
Piers
Pier 1 1 0.46 0.46 1.03
Pier 2 1 0.60 0.60 0.35
Pier 3 1 0.60 0.60 0.35
Pier 4 1 0.60 0.60 0.35
Pier 5 1 0.92 0.92 1.40
Pier 6 1 0.60 0.60 0.35
Pier 7 1 0.60 0.60 0.35
Pier 8 1 0.60 0.60 0.35
Pier 9 1 0.60 0.60 0.35
Pier 10 1 0.46 0.46 1.03
Length of 1 1.38 1.38 1.19
Windows
Total Length 19.00 18.46 18.46 16.64
Opening 16% 22% 22% 21%
Percentage
Pier 1 5% 2% 2% 6%
Percentage
Pier 2 5% 3% 3% 2%
Percentage
Pier 3 5% 3% 3% 2%
Percentage
Pier 4 5% 3% 3% 2%
Percentage
Pier 5 5% 5% 5% 8%
Percentage
Pier 6 5% 3% 3% 2%
Percentage
Pier 7 5% 3% 3% 2%
Percentage
Pier 8 5% 3% 3% 2%
Percentage
Pier 9 5% 3% 3% 2%
Percentage
Pier 10 5% 2% 2% 6%
Percentage
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Table A.12. Geometric Properties of All Models in Wall 12

Number | Pier Pier | Pier | Length | Lengthof | Total Opening
of Models 1 2 3 of Doors | Windows | Length | Percentage
Model 1 | 2.00 | 3.00 | 2.00 2.00 1.00 10.00 17%
Model 2 | 1.12 1.21 | 3.06 1.08 1.35 7.81 15%
Model 3 | 2.24 | 0.90 | 448 0.96 1.28 9.85 11%
Model 4 | 1.27 110 | 3.13 0.57 0.63 6.69 9%
Model 5 | 1.27 110 | 3.13 0.57 0.63 6.69 9%
Model 6 | 0.81 144 | 2.16 0.66 0.71 5.78 12%
Model 7 | 1.86 1.20 | 3.06 1.20 0.96 8.28 14%
Model 8 | 1.22 1.22 | 3.49 0.71 1.74 8.39 13%
Model 9 | 2.75 | 0.79 | 4.69 1.04 1.13 10.40 10%
Model 10 | 3.00 | 2.63 | 1.31 1.13 1.13 9.20 12%
Number Pier 1 Pier 2 Pier 3
of Models Percentage Percentage Percentage
Model 1 20% 30% 20%
Model 2 14% 15% 39%
Model 3 23% 9% 45%
Model 4 19% 16% 47%
Model 5 19% 16% 47%
Model 6 14% 25% 37%
Model 7 22% 14% 37%
Model 8 15% 15% 42%
Model 9 26% 8% 45%
Model 10 33% 29% 14%
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Table A.13. Geometric Properties of All Models in Wall 13
Number | Pier | Pier | Pier | Pier | Length | Length | Total Opening
of 1 2 3 4 of of Length | Percentage
Models Door | Window
Model 1 | 2.00 | 1.00 | 2.00 | 1.00 2.00 1.00 10.00 20%
Model 2 | 0.94 | 1.12 | 141 | 141 0.75 1.13 7.89 16%
Model 3 | 0.87 | 0.87 | 0.87 | 0.35 0.90 0.96 5.78 21%
Model 4 | 1.01 | 0.60 | 0.93 | 5.00 0.67 1.03 10.28 11%
Model 5 | 1.69 | 0.96 | 0.96 | 1.58 0.66 0.99 7.83 14%
Model 6 | 1.28 | 1.49 | 2.13 | 3.75 0.94 1.17 11.93 12%
Model 7 | 1.07 | 0.96 | 1.44 | 1.20 1.20 1.20 8.27 19%
Model 8 | 0.93 | 0.60 | 0.93 | 3.03 1.05 0.49 7.51 14%
Model 9 | 3.66 | 0.67 | 3.26 | 0.40 1.00 0.42 9.83 10%
Model10 | 3.41 | 0.86 | 1.71 | 0.86 0.86 0.86 9.42 12%
Number Pier 1 Pier 2 Pier 3 Pier 4
of Percentage Percentage Percentage Percentage
Models
Model 1 20% 10% 20% 10%
Model 2 12% 14% 18% 18%
Model 3 15% 15% 15% 6%
Model 4 10% 6% 9% 49%
Model 5 22% 12% 12% 20%
Model 6 11% 13% 18% 31%
Model 7 13% 12% 17% 15%
Model 8 12% 8% 12% 40%
Model 9 37% 7% 33% 4%
Model10 36% 9% 18% 9%
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Table A.14. Geometric Properties of All Models in Wall 14

Number | Pier | Pier | Pier | Pier | Pier | Length | Length Total Opening
of 1 2 3 4 5 of of Length | Percentage
Models Door | Window
Model 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 1.00 10.00 23%
Model 2 | 1.50 | 2.00 | 2.00 | 042 | 042 | 0.67 1.00 10.00 14%
Model 3 | 050 | 2.00 | 2.00 | 2.00 | 040 | 0.50 1.00 10.40 13%
Model 4 | 250 | 1.00 | 1.00 | 0.83 | 1.67 | 0.83 0.83 10.32 13%
Model 5 | 1.32 | 164 | 1.27 | 1.27 | 441 | 136 1.44 15.58 15%
Model6 | 055 | 099 | 099 | 219 | 219 | 0.77 0.99 10.64 14%
Model 7 | 0.50 | 2.00 | 2.00 | 2.00 | 0.50 | 0.50 1.00 10.50 13%
Model 8 | 1.54 | 2.83 | 283 | 238 | 1.22 | 159 1.41 16.63 15%
Model9 | 1.17 | 151 | 151 | 0.76 | 1.17 | 0.76 0.76 9.13 14%
Model | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.00 1.00 10.00 23%
10
Model | 0.96 | 096 | 0.96 | 1.14 | 0.96 | 0.67 1.00 8.62 17%
11
Number Pier 1 Pier 2 Pier 3 Pier 4 Pier 5
of Percentage Percentage Percentage Percentage Percentage
Models
Model 1 10% 10% 10% 10% 10%
Model 2 15% 20% 20% 4% 4%
Model 3 5% 19% 19% 19% 4%
Model 4 24% 10% 10% 8% 16%
Model 5 8% 11% 8% 8% 28%
Model 6 5% 9% 9% 21% 21%
Model 7 5% 19% 19% 19% 5%
Model 8 9% 17% 17% 14% 7%
Model 9 13% 17% 17% 8% 13%
Model 10% 10% 10% 10% 10%
10
Model 11% 11% 11% 13% 11%
11
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Table A.15. Geometric Properties of All Models in Wall 15

Number | Pier | Pier | Pier | Pier | Pier | Pier | Lenght | Length of Total Opening
of 1 2 3 4 5 6 of Window Length Percentage
Models Door
Model 1 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 2.00 1.00 12.00 22%
Model2 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 2.00 1.00 12.00 22%
Model 3 | 0.45 | 0.60 | 0.77 | 0.77 | 0.60 | 0.45 0.45 0.57 6.36 17%
Model 4 | 1.46 | 1.00 | 1.71 | 1.71 | 1.00 | 1.46 114 1.14 14.07 16%
Model 5 | 0.67 | 0.67 | 0.67 | 0.67 | 0.67 | 1.67 1.07 1.333 11.40 22%
Model 6 | 1.30 | 1.30 | 2.61 | 2.61 | 1.30 | 1.30 0.75 1.30 16.36 14%
Model 7 | 0.86 | 1.43 | 214 | 2.14 | 1.43 | 0.86 171 1.14 15.14 18%
Model 8 | 1.25 | 1.25 | 1.50 | 1.50 | 1.30 | 1.25 1.00 1.00 13.05 15%
Model9 | 0.38 | 0.91 | 423 | 423 | 0.80 | 0.42 1.76 1.24 17.66 16%
Model10 | 1.31 | 1.31 | 1.31 | 1.31 | 1.31 | 1.31 1.88 1.56 15.96 21%
Number Pier 1 Pier 2 Pier 3 Pier 4 Pier 5 Pier 6
of Percentage Percentage Percentage Percentage Percentage | Percentage
Models
Model 1 8% 8% 8% 8% 8% 8%
Model 2 8% 8% 8% 8% 8% 8%
Model 3 7% 9% 12% 12% 9% 7%
Model 4 10% % 12% 12% 7% 10%
Model 5 6% 6% 6% 6% 6% 15%
Model 6 8% 8% 16% 16% 8% 8%
Model 7 6% 9% 14% 14% 9% 6%
Model 8 10% 10% 11% 11% 10% 10%
Model 9 2% 5% 24% 24% 5% 2%
Model10 8% 8% 8% 8% 8% 8%
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Table A.16. Geometric Properties of All Models in Wall 16

Number of Model 1 Model 2 Model 3 Model 4 Model 5
Piers
Pier 1 1 1 0.40 1.16 1.32
Pier 2 1 1 1.60 1.33 1.27
Pier 3 1 1 1.00 1.33 1.27
Pier 4 1 1 1.00 1.33 1.27
Pier 5 1 1 1.60 1.33 2.54
Pier 6 1 1 1.60 1.33 2.54
Pier 7 1 1 0.40 1.16 1.32
Length of 1 1 0.80 0.43 1.27
Windows
Length of 2 2 0.80 1.03 0.84
Doors
Total Length 14 14 12.39 12.13 18.72
Opening 21% 21% 15% 12% 14%
Percentage
Pier 1 7% 7% 3% 10% 7%
Percentage
Pier 2 7% 7% 13% 11% 7%
Percentage
Pier 3 7% 7% 8% 11% 7%
Percentage
Pier 4 7% 7% 8% 11% 7%
Percentage
Pier 5 7% 7% 13% 11% 14%
Percentage
Pier 6 7% 7% 13% 11% 14%
Percentage
Pier 7 7% 7% 3% 10% 7%
Percentage
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Table A.17. Geometric Properties of All Models in Wall 17

Number of Piers Model 1 Model 2 Model 3
Pier 1 1 0.68 4.23
Pier 2 1 0.68 1.20
Pier 3 1 0.68 1.20
Pier 4 1 0.68 1.20
Pier 5 1 0.68 1.20
Pier 6 1 0.68 1.20
Pier 7 1 0.68 2.10
Pier 8 1 2.10 4.23
Length of Windows 1 0.85 0.6
Length of Doors 2 0.46 1
Total Length 16 12.43 21.15
Opening Percentage 21% 16% 9%
Pier 1 Percentage 6% 5% 20%
Pier 2 Percentage 6% 5% 6%
Pier 3 Percentage 6% 5% 6%
Pier 4 Percentage 6% 5% 6%
Pier 5 Percentage 6% 5% 6%
Pier 6 Percentage 6% 5% 6%
Pier 7 Percentage 6% 5% 10%
Pier 8 Percentage 6% 17% 20%
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Table A.18. Geometric Properties of All Models in Wall 18

Number of Piers Model 1 Model 2 Model 3

Pier 1 1 1 1.55

Pier 2 1 1 1.29

Pier 3 1 1 1.29

Pier 4 1 1 1.29

Pier 5 1 1 1.94

Pier 6 1 1 1.94

Pier 7 1 1 1.29

Pier 8 1 1 1.29

Pier 9 1 1 1.29

Pier 10 1 1 1.55
Length of Windows 1 1 0.65
Length of Doors 2 2 0.65

Total Length 20 20 20.57
Opening Percentage 20% 20% 11%
Pier 1 Percentage 5% 5% 8%
Pier 2 Percentage 5% 5% 6%
Pier 3 Percentage 5% 5% 6%
Pier 4 Percentage 5% 5% 6%
Pier 5 Percentage 5% 5% 9%
Pier 6 Percentage 5% 5% 9%
Pier 7 Percentage 5% 5% 6%
Pier 8 Percentage 5% 5% 6%
Pier 9 Percentage 5% 5% 6%
Pier 10 Percentage 5% 5% 8%

254




Table A.19. Geometric Properties of All Models in Wall 19

Number of Piers Model 1 Model 2 Model 3
Pier 1 1 1 0.77
Pier 2 1 1.55
Pier 3 1 1 1.55
Pier 4 1 1 1.55
Pier 5 1 1 1.55
Pier 6 1 1 1.55
Pier 7 1 1 3.00
Length of Windows 1 1 1
Length of Doors 2 2 1.5
Total Length 15 15 17.51
Opening Percentage 27% 27% 19%
Pier 1 Percentage 7% 7% 4%
Pier 2 Percentage 7% 7% 9%
Pier 3 Percentage 7% 7% 9%
Pier 4 Percentage 7% 7% 9%
Pier 5 Percentage 7% 7% 9%
Pier 6 Percentage 7% 7% 9%
Pier 7 Percentage 7% 7% 17%
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Table A.20. Geometric Properties of All Models in Wall 20

Number of Piers Model 1 Model 2

Pier 1 1.5 1

Pier 2 1.875 1

Pier 3 1.875 1

Pier 4 1.875 1

Pier 5 1.875 1

Pier 6 1.875 1

Pier 7 1.875 1

Pier 8 1.5 1

Length of Windows 0.94 1

Length of Doors 1.5 2
Total Length 22.89 18
Opening Percentage 17% 26%
Pier 1 Percentage 7% 6%
Pier 2 Percentage 8% 6%
Pier 3 Percentage 8% 6%
Pier 4 Percentage 8% 6%
Pier 5 Percentage 8% 6%
Pier 6 Percentage 8% 6%
Pier 7 Percentage 8% 6%
Pier 8 Percentage 7% 6%
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Table A.21. Geometric Properties of All Models in Wall 21

Number of Piers Model 1

Pier 1 1

Pier 2

Pier 3

Pier 4

Pier 5

Pier 6

Pier 7

Pier 8

Pier 9

Length of Windows

NP RrRrRrRR R R R

Length of Doors

Total Length 21
Opening Percentage 25%
Pier 1 Percentage 5%
Pier 2 Percentage 5%
Pier 3 Percentage 5%
Pier 4 Percentage 5%
Pier 5 Percentage 5%
Pier 6 Percentage 5%
Pier 7 Percentage 5%
Pier 8 Percentage 5%
Pier 9 Percentage 5%
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