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Abstract
Inflammation, structural, and functional abnormalities within the airways are key fea‐
tures of asthma. Although these processes are well documented, their expression 
varies across the heterogeneous spectrum of asthma. Type 2 inflammatory responses 
are characterized by increased levels of eosinophils, FeNO, and type 2 cytokines in 
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1  | INTRODUC TION

The hallmarks of asthma include chronic airway inflammation, clin‐
ical symptoms and physiological signs including variable airway 
obstruction and airway hyperresponsiveness (AHR), and structural 
changes within the lower airways.1,2 These features differ across the 
spectrum of asthma, contributing to the variable response to stan‐
dard anti‐inflammatory therapy with inhaled corticosteroids (ICS).3 
Especially severe asthma has been recognized as a highly hetero‐
geneous disorder consisting of multiple overlapping phenotypes, 
with differences in age of onset, clinical presentation, comorbidities, 
airway inflammation, responsiveness to ICS, and natural course of 
disease.4-6 According to literature, overall approximately 5%‐10% of 
patients either need high doses of ICS and/or oral corticosteroids to 
control their asthma or have corticosteroid insensitivity, and hence, 
they are classified as severe asthma patients.7

In the past decade, distinct molecular mechanisms have been 
identified and linked to clinical asthma phenotypes (Box 1).8-10 
The identification of inflammatory subsets and asthma endotypes 
holds promise to improve asthma management and guidance into 

selecting the most adequate targeted treatment for each individual 
patient.11-13

Novel approaches to unravel biological asthma networks are 
emerging, such as the Unbiased BIOmarkers in PREDiction of re‐
spiratory disease outcomes (U‐BIOPRED) consortium and Severe 
Asthma Respiratory Program (SARP). With the advent of novel ex‐
pensive biologicals to treat (severe) asthma (eg, targeting IgE, IL‐5, 
IL‐4/IL‐13, and others), there is a strong need of clinical and biolog‐
ical markers that can guide the choice of treatment, predict treat‐
ment response, and monitor the treatment response. Implementing 
targeted treatment into daily practice is however challenging and 
requires biomarker validation and evaluation of the socioeconomic 
impact.

We reviewed the literature between 1990 and 2018 on non‐ or 
semi‐invasive sampling methods and biomarkers for the diagnosis, 
monitoring, and treatment of asthma, with a focus on type 2 inflam‐
mation, while non‐type 2 inflammation and structural abnormalities 
are also discussed. In the second part of this paper, we discuss exist‐
ing and novel targeted therapies for (severe) asthma in context with 
clinically applicable biomarkers and address unmet needs.

blood and/or airways. Presently, type 2 asthma is the best‐defined endotype, typi‐
cally found in patients with allergic asthma, but surprisingly also in nonallergic pa‐
tients with (severe) asthma. The etiology of asthma with non‐type 2 inflammation is 
less clear. During the past decade, targeted therapies, including biologicals and small 
molecules, have been increasingly integrated into treatment strategies of severe 
asthma. These treatments block specific inflammatory pathways or single mediators. 
Single or composite biomarkers help to identify patients who will benefit from these 
treatments. So far, only a few inflammatory biomarkers have been validated for clini‐
cal application. The European Academy of Allergy & Clinical Immunology Task Force 
on Biomarkers in Asthma was initiated to review different biomarker sampling meth‐
ods and to investigate clinical applicability of new and existing inflammatory biomark‐
ers (point‐of‐care) to support diagnosis, targeted treatment, and monitoring of severe 
asthma. Subsequently, we discuss existing and novel targeted therapies for asthma as 
well as applicable biomarkers.

K E Y W O R D S

endotype, eosinophil, FeNO, IgE, phenotype

Box 1 Definitions
Phenotype: The observable characteristics in an individual resulting from the expression of genes; the clinical presentation of an individual 
with a particular genotype (National Institute of Health (NIH) definition).200

Endotype: Endotype—a contraction of endophenotype—is a subtype of disease defined functionally and pathologically by a molecular 
mechanism or by treatment response.201

Biomarker: A biomarker is defined as a characteristic that is objectively measured and evaluated as an indicator of normal biological pro‐
cesses, pathogenic processes, or pharmacologic responses to a therapeutic intervention (NIH definition).202
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2  | WHAT IS A CLINIC ALLY APPLIC ABLE 
BIOMARKER?

In order to qualify as a biomarker applicable to evaluate treatment 
response and monitor disease progression of chronic airway dis‐
eases, validation at different levels is required (Figure  1). The so‐
called “SAVED” model was proposed to describe the characteristics 
of COPD biomarkers with a high potential to reach clinical trans‐
lation.14 This model may also be applicable to validate asthma bio‐
markers. According to this model, a biomarker should be “Superior” 
(outperform current practice), “Actionable” (change patient man‐
agement), “Valuable” (improve patient outcomes), “Economical” 
(cost‐saving or cost‐effective), and “Clinically Deployable” (analysis 
technology available in clinical laboratory).15

3  | BIOMARKER SAMPLING METHODS

Inflammatory biomarkers of asthma can be sampled in different 
body compartments, including the upper and lower respiratory 

tract, saliva, urine, and peripheral blood.11,16-18 The first question 
is whether all these compartments are providing comparable infor‐
mation on the underlying mechanisms of (severe) asthma. This may 
not be the case as shown for instance by comparative studies from 
U‐BIOPRED on gene expression profiles in sputum, endobronchial 
biopsies, bronchial brushes, and nasal brushes.16,17 Therefore, any 
biomarker should primarily be considered as a representative of a 
particular sampling site.

In addition, each sampling method has its own advantages and 
limitations (Table  1). The most tissue‐specific and thus presum‐
ably most disease‐specific method to assess airway inflammation 
at different sites of the bronchial tree is bronchoscopy combining 
bronchial biopsies, brushes, and bronchoalveolar lavage (BAL) fluid. 
However, the invasiveness and potential complications of these pro‐
cedures preclude bronchoscopy in daily clinical routines.18 Sputum 
induction is less invasive allowing repeated and reproducible sam‐
plings of (more) central airway inflammation. Nevertheless, it is time‐
consuming and requires specialized (medical) infrastructure with 
well‐equipped laboratory facilities and personnel.19,20 Alternatively, 
sampling biomarkers outside the respiratory tract imply potential 
drawbacks. Peripheral blood can be easily obtained and blood eosin‐
ophils have been shown to correlate with sputum eosinophil counts 
in some—but not in all—studies.21-24 The correlation between blood 
eosinophils and lung tissue eosinophilia is even less clear.25 In addi‐
tion, blood eosinophils are subject to significant daily fluctuations,26 
while an unambiguous clinically relevant cutoff value has so far not 
been established.

During the last decades, several novel, noninvasive methods 
have been developed, while existing methods have been refined 
both for online (real‐time) assessment of biomarkers (including frac‐
tional exhaled nitric oxide [FeNO]) and for offline (delayed analysis) 
biomarker samplings (such as volatile organic compounds [VOCs]) in 
exhaled breath and exhaled breath condensate (EBC).27-29 Despite 
the simple technology and commercially available analyzers, the 
interpretation of FeNO is often hampered by several perturbing 
factors, including age, smoking status, atopy and anti‐inflamma‐
tory treatment (especially corticosteroids).30 VOCs are providing 
a more comprehensive molecular signal and can be analyzed using 
two different approaches, that is, analytical chemistry techniques, 
such as gas chromatography with mass spectrometry (GC‐MS) to 
identify individual VOCs or cross‐reactive sensor arrays combined 
with pattern recognition algorithms (electronic noses: eNoses) 
that can capture complex mixtures of VOCs and are suitable for 
probabilistic diagnosis or phenotyping. The crucial issues for both 
VOCs techniques consist of rigorous standardization of sampling, 
preprocessing, and analysis, including independent external data 
validation.31 Particles in exhaled air (PExA) is a novel, noninvasive 
sampling method of the lining fluid from small airways.32,33 The 
potential to identify clinically applicable biomarkers with the PExA 
method is still evolving. Additionally, biomarkers in exhaled air can 
also be obtained from EBC, consisting of condensed vapor, as well as 
nonvolatile molecules. However, this approach is limited due to the 
lack of standardized methodology for collection as well as variable 

F I G U R E  1  Clinical applicability of biomarkers in asthma 
management. Adapted from Ref.19 Several studies are screening 
for markers of biological activity in order to identify markers that 
discriminate between health and disease, identify disease subtypes, 
and predict disease progression. However, in order to classify as a 
clinically applicable biomarker, different validation criteria should 
be met. The SAVED approach outlines such a validation process in 
which the following criteria are proposed: “Superior” (outperform 
current practice), “Actionable” (change patient management), 
“Valuable” (improve patient outcomes), “Economical” (cost‐saving 
or cost‐effective), and “Clinically Deployable” (analysis technology 
available in clinical laboratory) 14
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biomarker levels with concentrations often under detection limits.29 
Furthermore, new sampling methods and biomarkers obtained from 
saliva (for genetics and cytokines), nasal swabs (for transcriptomics, 
epigenetics, and microbiomics), and nasal or bronchial sponges (for 
transcriptomics and microbiomics) are currently being explored and 
validated.34,35 And finally, imaging techniques, including quantitative 
computed tomography (qCT), magnetic resonance imaging (MRI), 
and positron emission tomography (PET), are increasingly applied to 
evaluate “imaging biomarkers” but will not be further discussed in 
this overview.36

4  | BIOMARKERS OF T2 INFL AMMATION

The type 2 (T2) inflammatory pattern is defined by increased T2 
cytokine 37,38 or epithelial 39,40 gene expression compared to a ref‐
erence population. T2 airway inflammation is characterized by in‐
creased release of IL‐4, IL‐5, and/or IL‐13 likely from both adaptive 
(mainly T‐helper2) and innate (mainly innate lymphoid cells type 2 
[ILC2]) immune cells resulting in eosinophilic airway infiltration 
(Figure 2). Approximately 50% of asthma patients are identified with 
T2 airway inflammation equaling the proportion of patients with 
eosinophilic asthma.3 T2 asthma is presently the best‐characterized 
endotype within the eosinophilic phenotype, usually associated with 
allergy, although nonallergic pathways of airway eosinophilia have 
been proposed (Figure 2).41 Recently, a subgroup of patients with 
high FeNO levels (>25  ppb) and low blood eosinophils (<2%) was 
described. These patients showed a significantly higher number of 
sensitizations against aeroallergens compared to patients with low 
FeNO levels.42 Epithelial‐derived cytokines, including thymic stro‐
mal lymphopoietin (TSLP), IL‐25, IL‐33, with subsequent activation of 
ILC2, may support the underlying pathophysiological event.43

Multiple inflammatory components have been evaluated for 
their potential as a biomarker of T2 (allergic) asthma.44 Sputum 
eosinophils are probably the best‐characterized and most useful 
biomarker so far. While in general, eosinophilia suggests cortico‐
steroid responsiveness,39,45 it may also reflect poor adherence to 

ICS.46 Compared to guideline‐based management, sputum eosin‐
ophil‐guided management showed a reduction in exacerbations, 
especially in patients with more severe asthma.47 ERS/ATS and 
recent GINA guidelines now suggest treatment guided by sputum 
analysis for severe asthma in experienced centers.7,48 Concomitant 
systemic eosinophilia and airway eosinophilia have been associated 
with worse asthma control.49 However, blood and sputum eosino‐
phils cannot always be used interchangeably, especially in patients 
on oral corticosteroids.24,50,51 In children, the presence of blood eo‐
sinophilia, especially in combination with allergic sensitization, was 
found to be a significant predictor of ICS response with respect to 
both asthma symptoms and exacerbations.52 Recently, a novel point‐
of‐care method for rapid quantification of eosinophil peroxidase in 
sputum has been described which can identify patients with airway 
eosinophilia.53

Sputum mRNA analysis is a more sophisticated technique to 
classify patients into T2 and non‐T2 endotypes.37,38 Inhaled allergen 
resulted in upregulation of T2 pathway in sputum mRNA.20 A recent 
unsupervised sputum analysis of an mRNA panel of 12 cytokines 
challenged the a priori classification of T2 versus non‐T2 asthma.10 
A set of 205 unselected asthma patients could be classified into 
five clusters with equal proportions of IL‐4‐ and IL‐13‐high patients, 
whereas IL‐5‐high expression was restricted to patients with an 
IL‐25‐ and IL‐17A/F‐high pattern. These data confirm earlier reports 
on a subgroup of patients with concomitant activation of Th2 and 
Th17 inflammatory pathways.37,54 Recently, this was reinforced by a 
complete transcriptomics analysis, showing heterogeneity amongst 
patients with asthma beyond T2 classification.9 Profiling serum of 
T2 cytokine patterns by Meso‐Scale multiplex technology may also 
help to identify eligible patients for biologicals targeting different T2 
pathways.55,56

FeNO is a reproducible, easily measurable biomarker and a good 
predictor of ICS response.57,58 However, FeNO may be affected by 
several confounders, including demographics, smoking, atopy, and 
diet.29,59,60 According to the ATS recommendations, FeNO > 50 ppb 
(adults) and > 35 ppb (children) is indicative of eosinophilic inflamma‐
tion, while eosinophilic inflammation is unlikely for FeNO < 25 ppb 

F I G U R E  2  Asthma endotypes and 
targeted treatment approaches
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(adults) and  <  20  ppb (children).57 Strategies incorporating FeNO 
into standard clinical practice allowed reduction in ICS doses in 
adults (but not in children).61 In a study in pregnancy, FeNO‐guided 
treatment resulted in a significant reduction in asthma exacerbations 
and mean ICS dose.62 Presently, the ERS/ATS severe asthma guide‐
lines do not recommend the use of FeNO to guide therapy in adults 
or children with severe asthma.7

Exhaled VOCs provide a composite biomarker signal, based 
on pattern recognition. Exhaled VOCs profiles are correlated with 
blood eosinophil and neutrophil counts 63 and with eosinophils in 
BAL.64 Even without information on an individual's molecular path‐
ways, such probabilistic approach can be very powerful in pheno‐
typic classification. Based on the same principle of exhaled VOCs, 
eNose can predict loss of asthma control 65 and may be more sen‐
sitive than FeNO or sputum eosinophilia in predicting clinical effi‐
cacy of systemic corticosteroids.66 However, most studies are small 
and focused on adults, while scarce data are available in children.28 
Therefore, application of eNose in daily practice requires further 
validation.

Periostin production by epithelial cells was shown to be induced 
by IL‐13.39 As such, periostin was proposed as a surrogate marker 
of T2 inflammation. In the BOBCAT study, serum periostin showed 
superior prediction of sputum and bronchial tissue eosinophilia 
than FeNO, blood eosinophils, and serum IgE in 59 patients with 
uncontrolled severe asthma.67 However, this was not confirmed 
in follow‐up studies.21,23,68 Asthma patients with increased serum 
periostin showed improvements in lung function after treatment 
with lebrikizumab, an anti–IL‐13 monoclonal antibody (mAb), in con‐
trast to patients with low periostin levels.69 However, lebrikizumab 
efficacy could not be confirmed in two subsequent phase 3 studies, 
even not in periostin‐high patients.70 It should be noted that several 
periostin splice variants exist, complicating its detection by various 
home‐made or commercially available assays with possibly different 
thresholds for these isoforms. Furthermore, it is unknown whether 
local sampling is required to obtain a more consistent periostin sig‐
nal in asthma. Finally, it is unclear whether periostin can be used 
as potential biomarker in children, since baseline periostin levels are 
higher in children, probably due to growth.71

Dipeptidyl peptidase‐4 (DPP‐4) has been proposed as a candi‐
date predictive biomarker for the response to anti–IL‐13 treatment. 
Patients with DPP‐4 levels above median showed better responses 
to tralokinumab in lung function and health status.72 Further studies 
are needed to confirm the potential role of DPP‐4 as a surrogate T2 
biomarker.

Urinary leukotriene E4 (LTE4), the end‐metabolite of cysteinyl 
leukotrienes (CysLTs), is a marker of CysLT activity and has been 
studied in asthma intervention studies with antileukotrienes73 and in 
aspirin or NSAID‐exacerbated respiratory disease (NERD).74 Urinary 
LTE4 could be a potential biomarker in studies involving eicosanoid 
pathways.75

Apart from single biomarkers, composite markers have been 
applied in some studies. In a systematic review, FeNO, blood eo‐
sinophils, and serum IgE showed moderate diagnostic accuracy for 

identification of sputum eosinophilia.24 Combining all three mark‐
ers may be more useful than one. A recent study showed that this 
approach could accurately identify the presence of  ≥  3% sputum 
eosinophils in 60% of patients.76 Using a prediction model in two 
independent cohorts, FeNO, blood eosinophils, and the activation 
status of blood eosinophils and neutrophils combined with clinical 
characteristics could accurately predict sputum eosinophilia (90.5% 
sensitivity and 91.5% specificity in training cohort; 77% sensitivity 
and 71% specificity in the validation cohort, respectively).77 Some 
clinical trials applying targeted therapies evaluated treatment re‐
sponse in patients based on composite biomarker profiles.78-80 The 
role of composite biomarker profiles in asthma phenotyping and 
management needs to be established.

5  | BIOMARKERS OF NON-T2 
INFL AMMATION

The non‐T2 endotype consists of patients in whom T2 inflammation 
is absent or within normal range (eg, T2‐low). This endotype cov‐
ers both patients with a neutrophilic and a paucigranulocytic airway 
inflammatory pattern.81 A clear definition of neutrophilic airway 
inflammation is still lacking since various sputum neutrophil cutoff 
levels (40%‐76%) have been reported.3,49,82,83 Sputum neutrophilia 
was found to be associated with (relative) insensitivity to ICS,3 in 
smoking 84 and in obese asthma patients.85,86 Adults with refrac‐
tory asthma were shown to have higher levels of BAL neutrophils 
compared to nonrefractory patients with asthma.87 Apart from re‐
flecting a distinct phenotype, airway neutrophilia often associates 
with (subclinical) airway infection88 or oral corticosteroid use.87 In 
childhood asthma, neutrophilic airway inflammation seems to play 
a minor role.89 In a study in children with severe asthma, therapy 
resistance was characterized by increased numbers of eosinophils 
in BAL, endobronchial biopsies, and sputum samples while neutro‐
phil numbers were not increased.90 Conversely, in a recent study in 
children with severe treatment‐resistant asthma, the presence of 
intra‐epithelial neutrophils and increased IL‐17RA expression were 
associated with better lung function.91 Recent data however do 
support the relationship between airway neutrophilia and asthma 
severity in children. The analysis of the Taiwanese Consortium of 
Childhood Asthma Study showed that neutrophil‐predominant 
asthma is the most severe asthma phenotype in children with a poor 
corticosteroid response.92 In the inner‐city study, Th17‐related cy‐
tokines were associated with difficult‐to‐control asthma.55

Several cytokines associate with sputum neutrophilia (Figure 2). 
Interleukin‐17A, mainly produced by T cells or type 3 ILCs, promotes 
the production of IL‐8, chemoattractant for neutrophils, by struc‐
tural cells.43,93,94 Both sputum IL‐17A and IL‐8 gene expression are 
positively correlated with sputum neutrophil counts.45 Gene expres‐
sion of CXCR2, the receptor for IL‐8, was found to be increased in 
neutrophilic compared to eosinophilic asthma.95 More recently, the 
inflammasome pathway with increased expression of NLRP3 and 
IL‐1β was found to be associated with neutrophilic asthma.96,97
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Similar to increased sputum neutrophils, membrane‐bound 
TNF on circulating monocytes was increased in refractory com‐
pared to milder asthma,98 whereas no association was found be‐
tween free TNF and sputum neutrophils in patients with severe 
asthma.99

Few studies have investigated the potential of serum biomark‐
ers to identify neutrophilic asthma. Serum IL‐17 was found to be 
increased in severe asthma compared to milder forms, and values 
above 20 pg/mL are an independent risk factor for severe asthma.100 
Increased serum soluble TNF and IL‐8 levels accompanied by raised 
circulating neutrophils have been detected in severe asthma pa‐
tients compared to healthy controls.101 A recent analysis showed 
five biomolecules in serum correlating with BAL neutrophilia.87 In 
asthma patients, serum calprotectin (S100A8/A9), a danger molecule 
released by the airway epithelium, can predict with high sensitiv‐
ity and specificity in the presence of increased sputum neutrophils 
(>61%).102 While blood neutrophils are poor indicators of airway 
neutrophilia, so far, no serum surrogate biomarkers have been val‐
idated for neutrophilic asthma. Interestingly, exhaled hydrogen per‐
oxide (H2O2) may be a marker of neutrophilic oxidative burst.

103

The mechanisms underlying paucigranulocytic asthma are the 
least defined. Patients with paucigranulocytic phenotype represent 
approximately 40%‐50% of asthma patients and show sputum eo‐
sinophil and neutrophil counts within normal ranges.82 While the 
majority of these patients are well controlled with a normal lung 
function, a subgroup (approximately 15%) remains uncontrolled 
despite normal sputum granulocyte counts.104 In these patients, a 
“low‐grade” inflammation76 or structural changes including epithelial 
cells, airway smooth muscle, nerves and/or vessels may be the un‐
derlying pathophysiological substrate.

6  | BIOMARKERS OF STRUC TUR AL 
AIRWAY ABNORMALITIES

Airway remodeling is another key feature of asthma, comprising 
structural changes (Figure 2) including increased deposition of extra‐
cellular matrix proteins in the reticular basement membrane (RBM), 
increased airway smooth muscle (ASM) mass and/or cell num‐
ber, goblet cell and glandular hyperplasia and angiogenesis.105,106 
Although bronchial epithelial cell detachment was also claimed 
to occur in situ, some argued whether this reflects an artifact of 
bronchoscopy.107

Although these features are manifest in adults with chronic 
asthma, similar changes are already present in childhood 
asthma,90,108,109 suggesting that these structural changes may un‐
derlie or parallel chronic airway inflammation. Nevertheless, pa‐
rameters of airway remodeling and pathophysiology are not always 
concordant and may vary depending on which aspect is assessed. 
While the ASM mass and collagen deposition110 have been shown 
to reflect asthma severity,111 other associations between markers 
of airway remodeling and airway obstruction or AHR have been 
inconsistent.112,113

So far, the number of reliable biomarkers reflecting aspects of 
airway remodeling is scarce. The thickening of the RBM correlates 
well with eosinophil numbers in bronchial mucosa,114 and eosino‐
phil‐depleting treatments113,115 showed inhibitory effects on com‐
ponents driving this subepithelial fibrosis. In parallel, reduction in 
symptoms and asthma exacerbations and improvement in lung func‐
tion were achieved in adults114 and in children116 with protection 
against methacholine‐induced maximal airway narrowing.117,118 In 
a biopsy study in severe allergic asthma, apart from anti‐eosinophil 
effects, omalizumab (anti‐IgE; 119) reduced RBM thickening in some 
patients. In a subsequent analysis, this reduction correlated with 
galectin‐3,120 which appears to regulate airway remodeling.121 Chitin 
and chitinase/chitinase‐like proteins have also been found to affect 
airway remodeling.122 In a study in children with severe asthma, 
serum chitinase‐like protein YKL‐40 correlated with bronchial wall 
thickening on high‐resolution computed tomography (HRCT).123 
Sputum fibroblast growth factor 2 (FGF‐2) correlated inversely with 
the FEV1/FVC ratio and the severity of asthma which is known to 
relate to remodeling. This may link to transforming growth factor β 
(TGF‐β), a tissue remodeling factor, which is induced by FGF‐2.

Transcriptomics analyses of ASM from asthma patients revealed 
marked differences compared to healthy controls.124 In this study, 
several genes (RPTOR, VANGL1, FAM129A, and LEPREL1) differen‐
tially expressed in ASM from asthma patients correlated with AHR, 
linking airway remodeling to pathophysiology.124 Changes in expres‐
sion of these genes induced by oral corticosteroids were associated 
with improvements in airway physiology.125 These data warrant fur‐
ther investigation.

The precise mechanisms driving ASM hypertrophy and hyper‐
plasia in asthma are less clear. Both the extracellular matrix and 
the presence of mitogenic compounds may underlie the enhanced 
ASM mass. Although corticosteroids can attenuate levels of mito‐
genic compounds, they also directly affect the contractile elements 
of ASM126 and the expression of various ASM proteins and airway 
dynamics.127 In fact, corticosteroids can affect various cellular 
programs of ASM and some genetic variants correlated with AHR. 
Consisting of different components, it is likely that airway remodel‐
ing can be evaluated by combining multiple biomarkers generated by 
unbiased cluster analyses (eg, U‐BIOPRED).9

Biomarkers of airway remodeling could identify individuals at risk 
of developing asthma at an early stage.128 Although controversial, 
chronic airway inflammation has been considered the major driver 
of airway remodeling.113,114 Indeed, anti‐inflammatory therapy with 
corticosteroids has been shown to reduce goblet cell numbers in 
asthma129 and airway wall thickening.130 Hence, some inflammatory 
markers may be indicative of airway remodeling. In this context, the 
T2‐cytokine IL‐13 has been identified as a major driver of airway 
remodeling in asthma and several proteins induced by IL‐13 can be 
quantified in blood and serve as potential biomarkers. One of these, 
periostin, has been extensively applied in the context of T2 inflam‐
mation and interventions targeting IL‐13, while recent studies also 
underpin its association with bronchial wall thickening in asthma and 
chronic rhinosinusitis.131,132
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Biopsies are the gold standard to assess remodeling but de‐
pend on invasive technologies and require multiple samples to deal 
with tissue variation. Still depending on bronchoscopy but covering 
large areas of the airways in one assessment requiring less exten‐
sive processing are imaging techniques that allow for detection of 
matrix structures such as fibered confocal fluorescence microscopy 
(FCFM).133 FCFM visualizes specifically elastic fibers within the air‐
way wall correlating with histological analysis. The link between 
elastic fiber patterns and lung function is suggestive of structure‐
function relationship, but requires validation. Besides FCFM, also 
other light‐ and laser‐based high‐resolution imaging techniques like 
optical coherence tomography (OCT) and confocal laser endomi‐
croscopy (CLE) have recently been explored for assessment of air‐
way remodeling.134

7  | BIOMARKERS FOR A STHMA 
MANAGEMENT

Novel treatment options have been developed for patients who 
fail to achieve asthma control despite maximal standard treatment 
(GINA step 5).135 The majority of these treatments target T2 inflam‐
mation (Figures 2 and 3). In the following sections, we discuss the 
latest treatment options for severe uncontrolled asthma and appli‐
cable or potentially available biomarkers that may guide these treat‐
ments. For allergen immunotherapy (AIT), we refer to the recently 
published EAACI position paper.136

7.1 | T2 targeted therapies

7.1.1 | IgE targeted therapies

Omalizumab is the first T2 targeting biological that was approved 
for severe allergic asthma.137 This recombinant humanized mAb 
possesses several activities: binding free serum IgE, decreasing 
cell‐bound IgE, and the expression of high‐affinity receptors (FcRI) 
on inflammatory cells (mast cells, basophils, eosinophils, and den‐
dritic cells).138 Clinical studies showed that omalizumab as add‐on 
therapy to ICS successfully reduces asthma exacerbations, hospi‐
talizations, and doses of ICS while improving quality of life in adults 
and children  >  12  years of age with moderate‐to‐severe allergic 
asthma.139-141 Whether omalizumab can effectively reduce systemic 
corticosteroids needs further investigation.139

Consistent correlations between treatment response and base‐
line total serum IgE or antigen specific IgE levels are lacking.142,143 
Serum IgE is used to dose omalizumab, but the cutoff is rather ar‐
bitrary.144 The use of CD‐sens (basophil activation threshold) has 
proven to be useful in monitoring response to omalizumab in al‐
lergic asthma.145 On the other hand, routine measurements of free 
IgE in serum can identify patients not responding to omalizumab 
treatment.143

Data from the EXTRA study involving 850 patients with uncon‐
trolled severe allergic asthma showed that blood eosinophils, FeNO 
and serum periostin may potentially predict omalizumab treatment 
outcomes.146 In this retrospective analysis, patients were divided 

F I G U R E  3  Practical flowchart to targeted treatment options for severe asthma according to asthma endotype and applicable biomarkers. 
*Suggested biomarkers to evaluate treatment response of targeted therapy are complementary to the evaluation of the clinical response 
evaluation (eg, asthma exacerbation rate, asthma control, and/or asthma quality of life). **For evaluation of therapy‐resistant airway 
obstruction and/or severe airway hyperresponsiveness. Dashed arrow: based on proof‐of‐concept studies for which additional pragmatic or 
head‐to‐head clinical trials are required
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into biomarker‐high and biomarker‐low subgroups based on median 
biomarker values. Patients treated with omalizumab in the FeNO‐
high group (≥19.5  ppb) showed more reduction in exacerbations 
compared to the FeNO‐low group (<19.5 ppb): 53% versus 16%, re‐
spectively. Patients with high baseline blood eosinophils (≥260 cells/
μL) showed 32% reduction in exacerbations versus 9% in patients 
with low eosinophils (<260 cells/μL), while patients with periostin 
high (≥50 ng/mL) had 30% reduction in exacerbations versus 3% in 
the periostin‐low group.

Only few studies have investigated the clinical and laboratory 
predictors of omalizumab efficacy in childhood asthma. The PROSE 
study showed that children with more severe asthma respond better 
to omalizumab than those with milder asthma forms.147 In a smaller 
study, children with severe asthma who responded to a single dose 
of 80 mg triamcinolone resulting in a substantial fall in FeNO re‐
sponded significantly better to omalizumab treatment.148

7.1.2 | IL‐5 targeted therapies

Interleukin‐5 (IL‐5) is another promising T2 target. Currently, there 
are several therapies interfering with the IL‐5 pathway available 
for uncontrolled severe eosinophilic asthma. Current registered 
treatments comprise mepolizumab and reslizumab, mAb specifi‐
cally targeting IL‐5 and preventing its binding to IL‐5 receptors 
(IL‐5R).149,150 Another anti–IL‐5 mAb, benralizumab, directed 
against the IL‐5 receptor α (IL‐5Rα), induces a rapid depletion of 
eosinophils.151 In several asthma trials, benralizumab showed 
clinical effectiveness and has been recently registered in several 
countries.152

The first clinical studies of anti–IL‐5 in “unphenotyped” mild 
allergic and moderate asthma were rather disappointing. In these 
studies, blocking IL‐5 had no effect on clinical outcomes, includ‐
ing allergen‐induced late asthmatic response, asthma symptoms, 
lung function and quality of life scores.153,154 After initial doubts 
about the importance of eosinophils in asthma, more appropriate 
target populations and endpoints were selected for subsequent 
clinical trials. In refractory eosinophilic asthma (sputum eosino‐
phils  >  3% or blood eosinophilia 150‐400 cells/μL),149,150,155-158 
anti–IL‐5 treatment significantly decreased exacerbation rates, 
improved quality of life, and produced a glucocorticoid‐sparing ef‐
fect. In some studies, even a modest increase in baseline FEV1 was 
noted.156 Similar effects on exacerbations, asthma control, lung 
function and glucocorticoid‐sparing effects have been observed 
with benralizumab even in the absence of increased baseline eo‐
sinophil levels.157-159 However, the long‐term effects of eosinophil 
depletion remain unclear.

A recent systematic review assessed 13 studies (in total 6000 
patients) showing that anti–IL‐5 therapy approximately halves the 
number of exacerbations in uncontrolled eosinophilic asthma.152 
Patients are more likely to respond to anti–IL‐5 treatment if they 
have > 3% of eosinophils in sputum, or ≥ 500 cells/μL blood eosin‐
ophils,21,22,156 although lower eosinophil cutoffs have been used. 
Nevertheless, more research is needed to identify biomarkers 

(combinations; cutoffs) that can more accurately predict treatment 
outcomes.

7.1.3 | IL‐4/IL‐13 targeted therapies (dual blockade)

Both IL‐4 and IL‐13 bind to the α chain of type 2 IL‐4 receptors 
(IL‐4Rα). Therefore, blocking IL‐4Rα affects both IL‐4 and IL‐13 
downstream signaling. Various asthma treatments, such as pitrak‐
inra (mutant form human IL‐4) and dupilumab (fully human mAb to 
IL‐4Rα) have been investigated for this purpose.159,160

Pitrakinra inhibits IL‐4Rα by competing with IL‐4. A retrospective 
analysis of a randomized controlled trial (RCT) in moderate‐to‐severe 
asthma showed that pitrakinra dose‐dependently decreased exacer‐
bations (from 22%‐25% to 11%) in subsets of patients with specific 
polymorphisms in IL‐4Rα genotypes.163 Pharmacogenetic profiling 
of these patients might therefore guide pitrakinra treatment.

In the first phase 2 study, dupilumab showed significant re‐
ductions in exacerbation rates compared to placebo (6% vs 44%, 
respectively), and improvement in FEV1 and ACQ‐5 scores after 
withdrawal of LABA followed by ICS dose tapering and discontinu‐
ation in moderate‐to‐severe asthma with sputum or blood eosino‐
philia (≥3% and ≥ 300 cells/μL, respectively).161 In the second phase 
2 study in patients with uncontrolled asthma on medium‐high ICS 
doses plus LABA, although improving FEV1 in those with blood eo‐
sinophils ≥ 300 cells/μL, dupilumab reduced severe exacerbations 
irrespective of blood eosinophil counts at all dose regimen except 
at a dose of 300 mg every 4 weeks questioning blood eosinophil 
count as a possible biomarker for responders.162 Plasma eotaxin‐3 
is significantly suppressed by dupilumab treatment. As eotaxin‐3 is 
needed for eosinophil chemotaxis, suppression of eotaxin‐3 results 
in a paradoxical increase of blood eosinophils in the early treat‐
ment phase.163 Based on its mode of action, FeNO, serum periostin 
and/or DPP‐4 may serve as potential biomarkers to identify re‐
sponders to dupilumab69,72; this requires further investigation. In 
two recent phase III studies, in moderate‐to‐severe uncontrolled 
asthma and corticosteroid‐dependent severe asthma, treatment 
with dupilumab reduced severe exacerbations and improved lung 
function and asthma control 160,164 while reducing systemic cor‐
ticosteroid use.164 Presently, dupilumab is in registration phase in 
several countries.

7.1.4 | IL‐13 targeted therapies

Human(ized) mAb targeting IL‐13 (lebrikizumab and tralokinumab) 
has been evaluated in phase II and III studies in asthma. In these 
studies, several biomarkers have been evaluated for their utility to 
identify potential responders to IL‐13–targeting therapy.

Periostin, together with CLCA1 and serpinB2, is co‐upregulated 
in airway epithelial cells from T2‐driven asthma patients upon IL‐13 
stimulation.39,165 As periostin is secreted at the basolateral side of 
the epithelium, it may diffuse into the bloodstream and can there‐
fore be quantified in serum.67
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In phase 2 studies with lebrikizumab, “periostin‐high” (and FeNO‐
high) patients with uncontrolled asthma showed greater improve‐
ment in FEV1.69 This was replicated in uncontrolled severe asthma 
patients receiving ICS and a second controller, and the periostin‐
high patients also had a greater reduction in severe exacerbations.70 
However, two subsequent phase 3 trials (LAVOLTA I and LAVOLTA 
II) failed to demonstrate consistent protection against exacerbations 
in uncontrolled asthma with high periostin (>50 ng/mL) or blood eo‐
sinophilia (≥300 cells/μL).166

In a phase 2 study with tralokinumab, periostin‐high patients 
showed nonsignificant improvements in exacerbation rate and 
FEV1.72 In this study, DPP‐4‐high patients showed improvements in 
asthma exacerbation rate, FEV1, ACQ‐6, and AQLQ.

72

Apart from its ability to identify responders to treatment tar‐
geting IL‐13, increased periostin levels have the potential to predict 
future asthma exacerbations and also reflected greater FEV1 decline 
in asthma patients on prolonged ICS treatment.167

7.1.5 | TSLP targeted therapies

Thymic stromal lymphopoietin (TSLP) is an important cytokine cen‐
trally involved in first‐line immune defense and a recent asthma tar‐
get. TSLP mediates allergic responses in the skin, gut, and upper and 
lower airways and is thus considered an upstream “master switch” of 
T2 inflammation.168 While constitutive expression is mainly found in 
epithelial cells, other cells including mast cells, fibroblasts, and ASM 
can also produce TSLP. This cytokine upregulates OX40L on DCs 
driving Th2 cell differentiation.169

Thymic stromal lymphopoietin expression in bronchial biopsies 
correlates both with disease severity and with expression of T2 cy‐
tokines.170 Treatment with anti‐TSLP (AMG157/tezepelumab) in a 
cohort of mild atopic asthma patients significantly reduced FeNO 
and blood eosinophils pre‐ and postallergen challenge, while the 
allergen‐induced eosinophil response in sputum was completely 
blocked. These anti‐inflammatory effects were associated with 
reductions in both the early and the late airway responses to in‐
haled allergen.171 These data have been replicated in another 
phase II study in 584 uncontrolled asthma patients on medium‐ or 
high‐dose ICS plus LABA, where tezepelumab produced dramatic 
decreases in exacerbation rates across all dose regimen, irrespec‐
tive of blood eosinophil numbers.172 Future research should help 
to identify biomarkers to guide anti‐TSLP treatment in subsequent 
clinical studies.

7.1.6 | CRTH2 antagonists

Chemoattractant receptor‐homologous molecule expressed on Th2 
cells (CRTH2) antagonists are small molecules interacting with the 
prostaglandin D2 receptor (DP2 or CRTH2) on inflammatory cells 
including Th2 lymphocytes, ILC2s, and eosinophils.173,174 In proof‐
of‐concept studies, CRTH2 antagonists blocked allergic responses 
downstream of the Th2 pathway decreasing T(h)2 cytokines, eosino‐
phils, and IgE synthesis.175,176 However, many CRTH2 antagonists 

failed in later development phases, possibly due to unselected study 
populations. In line with emerging evidence of an upregulated PGD2 
pathway in severe uncontrolled T2 (eosinophilic) asthma,177 more re‐
cently, several CRTH2 antagonists have been tested in eosinophilic 
conditions, including allergic and/or refractory eosinophilic asthma, 
showing improvements in several clinical outcomes.78,178-182 Using 
multiple biomarkers in a post hoc analysis of a study in moderate 
asthma, CRTH2 antagonist OC000459 (Timapiprant) appeared most 
effective in younger (age  ≤  40  years) patients with uncontrolled, 
atopic asthma with blood eosinophilia (≥250 cells/μL).78 Currently, 
several CRTH2 antagonists are moving into phase 3 studies which 
should help to consolidate phenotypes and adequate biomarkers re‐
sponding to these targeted drugs.

7.2 | Non-T2 targeted therapies

7.2.1 | TNF targeted therapies

Tumor necrosis factor (TNF) has been associated with AHR both 
through its direct effect on ASM cells and indirectly via increased 
sputum neutrophils.183 Increased TNF was demonstrated in BAL 
and bronchial biopsies of patients with severe asthma compared to 
mild asthma and healthy controls.184 A placebo‐controlled trial with 
etanercept for 10 weeks in refractory asthma showed beneficial ef‐
fects on lung function, airway hyperreactivity (AHR), and AQLQ.98 
Post hoc analysis of a phase II study with golimumab in severe 
persistent asthma showed a longer time to first exacerbation com‐
pared to placebo in a subgroup of patients with reversible airway 
obstruction.185 However, overall insufficient efficacy and the oc‐
currence of serious infections led to discontinuation of the anti‐TNF 
program.98,185

7.2.2 | IL‐17RA targeted therapies

IL‐17RA is a subunit of the receptor for IL‐17A, IL‐17F, and IL‐25 (also 
named IL‐17E). In addition to its indirect effect on neutrophil recruit‐
ment to the airways, IL‐17A can increase the contractility and migra‐
tion of ASM cells, thereby inducing AHR. As such, it is an attractive 
target for neutrophilic asthma. However, anti–IL‐17 treatment with 
brodalumab showed overall no significant efficacy on clinical param‐
eters including asthma control or lung function.186

7.2.3 | CXCR2 antagonists

CXCR2 is the high‐affinity receptor of IL‐8, which is a known che‐
moattractant for neutrophils.187 Two placebo‐controlled trials 
with CXCR2 antagonists have been conducted in patients with 
uncontrolled asthma.188,189 Despite dose‐dependent reductions 
in blood neutrophil counts, neither study could demonstrate 
clinical effectiveness. In line with studies with anti–IL‐17RA 
therapy, these findings challenge a crucial role of neutrophils 
as potential therapeutic targets in asthma and further research 
should clarify this.
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7.2.4 | Macrolides

Macrolides possess both antimicrobial and nonantimicrobial (“anti‐
inflammatory”) properties and showed clinical effectiveness in 
distinct asthma populations.190 Clarithromycin was the first mac‐
rolide that was evaluated in a placebo‐controlled trial in refrac‐
tory asthma.88 Compared to placebo, 8  weeks of treatment with 
clarithromycin produced significant reductions in sputum neutro‐
phils and IL‐8 levels. These effects were paralleled by significant 
improvements in AQLQ without affecting asthma control or lung 
function. Azithromycin was assessed in two double‐blind placebo‐
controlled trials. Although in the first study (AZISAST) azithromycin 
(26 weeks, 250 mg three times a week; n = 109) failed to reduce 
severe exacerbations and lower respiratory tract infections, there 
was a significant improvement in clinical endpoints in a subgroup 
with noneosinophilic asthma.191 In a recent study (AMAZES) in un‐
controlled persistent asthma, azithromycin (48 weeks, 500 mg three 
times a week; n = 420) on top of ICS plus LABA produced signifi‐
cant improvement in both moderate and severe exacerbations and 
AQLQ.192 Remarkably, these beneficial effects were seen in both eo‐
sinophilic and noneosinophilic patients with asthma.

7.3 | Targeted therapies for structural abnormalities

7.3.1 | Bronchial thermoplasty

Bronchial thermoplasty (BT) is a relatively novel method that ablates 
ASM by bronchoscopic intervention involving a localized radiofre‐
quency pulse.193 Further evidence suggests additional clinical effec‐
tiveness from concomitant ablation of sensory nerve fibers within 
the bronchial epithelium upon BT treatment.194 Two uncontrolled 
studies (RISA and AIR) showed improved symptoms, asthma control, 
quality of life and less mild exacerbations after BT versus standard 
care in symptomatic patients on high‐dose ICS and LABA.195,196 A 
sham‐controlled study (AIR2) showed reduced severe asthma ex‐
acerbations and reduced loss of work after BT.197 A recent 3‐year 
follow‐up after BT analysis of two cohorts of symptomatic severe 
asthma patients (AIR2: n  =  190; PAS2: n  =  190) showed reduced 
severe exacerbations, emergency department visits and hospitali‐
zations versus the year prior to BT.198 In these studies, BT did not 
affect lung function. From a practical perspective including bio‐
markers, refractory patients with a low PC20 and/or compromised 
lung function with frequent exacerbations without signs of airway 
inflammation are likely to be eligible for BT.199

8  | CONCLUDING REMARKS AND 
RECOMMENDATIONS

For efficient and cost‐effective adoption of targeted treatment op‐
tions in daily clinical practice, clinicians need point‐of‐care, well‐
defined, and reliable biomarkers to support them in identifying 
phenotypes and endotypes of asthma most likely to respond.13,199

So far, eosinophilic asthma including associated comorbidities 
(eg, nasal polyposis, NERD) as an inflammatory phenotype respon‐
sive to corticosteroids and anti–IL‐5 targeted therapy (anti–IL‐5, 
CRTH2 antagonists) has been well defined. Although no absolute/
consistent cutoff values have been established, subanalyses show an 
overall better response in patients with more inflammation, defined 
by higher blood eosinophil levels. Apart from these observations, so 
far there is no consensus on a unique lower limit value nor on how 
exactly blood eosinophil levels relate to other phenotypic features 
or “treatable traits” nor to concomitant medication within an indi‐
vidual patient.

Eosinophilic asthma comprises different endotypes. Currently, 
the best point‐of‐care biomarker to identify the T2 endotype is 
FeNO, while in more sophisticated settings, serum cytokines or spu‐
tum mRNA analysis as part of multidimensional endotyping may help 
to further characterize the individual profile, while serum periostin 
and DPP‐4 have not been fully validated.

In severe allergic asthma, serum total IgE is useful in identify‐
ing patients who could benefit from anti‐IgE therapy, but it can‐
not predict the degree of response after treatment. In patients 
with concomitant high eosinophil levels who remain uncontrolled, 
switching to an anti‐eosinophilic treatment might be a good op‐
tion. To guide anti–IL‐4/13 targeted (endotypic) therapy, FeNO 
seems presently the best biomarker as evaluated following the 
SAVED approach.

Despite recent progress in the identification of other potentially 
applicable biomarkers in conjunction with targeted treatments, 
there is still an unmet need to characterize underlying pathways 
and validate associated biomarkers for distinct asthma pheno/endo‐
types. So far, T2 asthma has been fairly well characterized including 
clinically applicable biomarkers, while non‐T2 asthma still represents 
an unmet need lacking adequate biomarkers and targeted treatment 
options.

Other unmet needs include more differentiating, noninvasive, 
simply measurable, validated and reliable (composite) biomarkers 
with well‐defined cutoff values and documentation on their sta‐
bility/behavior over time. In parallel, a consensus on treatment 
algorithms (which targeted therapy and administration route for 
which patient, for how long) is urgently needed, as well as longi‐
tudinal follow‐up of response to novel biologicals in real‐life set‐
tings, including elderly asthma patients (>60 years) and pediatric 
populations.
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