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ABSTRACT 
Jihad, M., Bayesian Networks for Omics Data Analysis in Hepatocellular 

Carcinoma Single-Cell Sequencing, Hacettepe University, Graduate School 

of Health Sciences, Department of Bioinformatics, Master Thesis, 

ANKARA, 2021. Single cell multi omics techniques have shown an 

advancement in unrevealing complex diseases like cancer heterogeneity by 

providing multi-faceted insight into their individual cellular regulations. In this 

study, a machine learning approach, Bayesian network (BN), has been applied to 

integrate genomic, epigenomic, and transcriptomic data in hepatocellular 

carcinoma at single cell resolution. Hepatocellular carcinoma (HCC) is the most 

common type of liver cancer with a high metastatic rate and reckoned for poor 

prognosis. Heterogeneity of tumor cells is concerned with cancer progression, 

metastasis, therapeutic resistance, and mortality. For this purpose, a dataset from 

a published study of 25 single cell sequencing of hepatocellular carcinoma were 

used. First, DNA methylome and transcriptome data were analyzed on their own. 

Copy number variations were estimated from DNA methylome data by using the 

Hidden Markov Model method. To reveal the causal relationship between the 

omics, three BN models were constructed. The models were fitted to their 

parameters by using maximum likelihood estimation. For model evaluation, 

score-based criteria, Akaike information criterion and Bayesian information 

criterion, were used. 207 genes with significant models have been detected. The 

heterogeneity of the omics and their regulation mechanisms with each other have 

been shown, by pointing to genes that follow different BN models that take place 

in major pathways in HCC. 
Key words: Single cell, hepatocellular carcinoma, liver cancer, RNA 

sequencing, transcriptome, genome, copy number variation, DNA 

methylome, epigenome, multi-omics integration, Bayesian 

networks, machine learning. 
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ÖZET 

Jihad, M., Hepatosellüler Karsinomun Tekil Hücre Diziliminde Omiklerin 

Veri Analizi İçin Bayes Ağları, Hacettepe Üniversitesi Sağlık Bilimleri 

Enstitüsü Biyoinformatik Programı, Yüksek Lisans Tezi, Ankara, 2021. Tek 

hücreli çoklu omik teknikleri, kendi bireysel hücresel düzenlemelerine çok yönlü 

bir bakış açısı sağlayarak kanser heterojenliği gibi kompleks hastalıkların ortaya 

çıkarmada bir ilerleme göstermiştir. Bu çalışmada, tek hücre temelli 

hepatoselüler karsinomda genomik, epigenomik ve transkriptomik verileri 

entegre etmek için bir makine öğrenimi yaklaşımı olan Bayesian ağları (BN) 

uygulanmıştır. Bu amaçla, yayınlanmış bir çalışmadan hepatoselüler karsinomun 

25 tekil hücre dizileme veri seti kullanılmıştır. Hepatosellüler karsinom (HSK), 

yüksek metastatik oranla en yaygın karaciğer kanseri türüdür ve kötü prognoza 

sahip olduğu düşünülmektedir. Tümör hücrelerinin heterojenliği, kanserin 

ilerlemesi, metastaz, terapötik direnç ve mortalite ile ilgilidir. Önce, DNA 

metilom ve transkriptom verileri tek başlarına analiz edilmiştir. Kopya sayısı 

varyasyonu, Gizli Markov Modeli yöntemi kullanılarak DNA metilom 

verilerinden tahmin edilmiştir. Omikler arasındaki nedensel ilişkiyi incelemek 

için üç BN modeli oluşturulmuştur. Modeller, en çok olabilirlik kestirimi (MLE) 

kullanılarak parametrelerine uydurulmuştur. Model değerlendirme için puana 

dayalı kriterler, Akaike bilgi kriteri (AIC) ve Bayes bilgi kriteri (BIC) 

kullanılmıştır. Anlamlı modele sahip 207 gen tespit edilmiştir. Farklı BN model 

izleyen genlerin HCC’de aynı yolakta yer aldığına işaret ederek, omiklerin ve 

birbirleriyle regülasyon mekanizmalarının heterojenliği gösterilmiştir. 

Anahtar Kelimeler: Tekil hücre, hepatosellüler karsinom (HSK), karaciğer 

kanseri, RNA sekanslama, Transkriptom, Genom, Kopya 

Sayısı Varyasyonu (KSV), DNA Metilomu, Epigenom, 

Çoklu omik entegrasyonu, Bayes ağları, makine 

öğrenmesi. 
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1. INTRODUCTION 

Single-cell sequencing is an optimized next generation sequencing (NGS) method 

that can observe omics at the level of individual cells, unlike previous methods which 

analyze the omics in the level of collection of cells at tissue-level (1). Single-cell 

sequencing approaches help revealing the features and presence of the outlier cells in 

tumor tissue by defining intra-tumor heterogeneity and new cell types and states (2). 

Furthermore, single cell sequencing methods provide a deep understanding about the 

impact of cellular variability on tissue function (1). In turn, allow us to understand how 

these cellular dynamic changes influence the entire organism that can lead to complex 

diseases such as cancer, diabetes, accelerated ageing, and metabolic diseases (3-7). 

Cellular systems are complex networks that involve interaction of many molecules which 

take part in physical and chemical processes in order to carry out their biological function. 

High-throughput technologies such as single cell sequencing enable understanding these 

systems by allowing us to collect information about their molecular components (8). Many 

of these technologies collect a large set of specific molecular data “-omics” such as 

genome (9), transcriptome (10), epigenome (11), and proteome (12). Consequently, to 

draw a more comprehensive understanding of the biological processes, and diseases 

etiology, these different omics data have to be analyzed separately and then integrated (8). 

Multi omics integration methods are considered to be promising method to dissect the 

dysfunctionality in the biological system that occurs in complex diseases such as cancer, 

ageing, obesity, and nephrotic diseases (13-15). These integration methods mostly depend 

on machine learning techniques (16), and network inference in relating different omics 

are formulated by regression-based analysis (17) including supervised (18), unsupervised 

(19), mostly regression (20), factor analysis (21) and clustering (22). The omics are 

associated by a series of regression models that are fitted to take one of the feature as a 

response variable and the other feature as a predictor variable. This association then can 

be interpreted as a direct relationship in which, one of the feature can affect or explain the 

other feature (17). 
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Here, we propose a Bayesian network (BN) based machine learning method for 

multi-omics integration in single cell sequencing data. Bayesian Networks are 

probabilistic graphical models that represents the joint probability distributions in a 

factorized way (23, 24). BNs are composed of a graphical structure with a set of 

parameters. BNs are defined as directed acyclic graphs (DAG) consist of nodes and 

directed edges. Nodes represent the variables while edges represent the causal relationship 

between those variables. BNs are constructed of a set of conditional independence 

assumptions between the variables and its non-descendants given its parents (25). The 

parameters represent the conditional probability distributions between variables that 

connected directly by edges giving their causal relationship (25). 

Cancer is a complex disease with increasing incidences worldwide due to the high 

growth of the population and environmental exposures (26). According to the World 

Health Organization (WHO), in 2018, cancer was the second leading cause-of-death 

disease with about 9.6 million mortalities (27). Although the high advances in in-vitro 

studies on cancer, still, the general progress of understanding cancer is slow because of 

complex and heterogenous characteristics of cancer cells (28). Hepatocellular Carcinoma 

(HCC), one of the most dangerous and deadly cancer types, is the fifth most common and 

the third cause-of-death cancer type worldwide (29). Because of its heterogeneity and 

multiple causing factors, the number of effective treatments is very low (30). Employing 

a variety of multi-omics integrating strategies have the potential to identify novel 

biomarkers that can lead to promising results in solving heterogeneity and provide a key-

insight into the pathophysiology of cancer (31). 

In this study, a dataset from a published study of 25 hepatocellular carcinoma 

single cell sequencing is used (32). Transcriptome, epigenome and genome data of these 

cells were analyzed on their own. Then, these datasets were integrated using a BN 

approach. Main aim of this study is to reveal the causal relationship between intratumor 

genome, DNA methylome, and transcriptome of HCC. We also aimed to identify a BN 

model specific to hepatocellular carcinoma tumor cells that can be prospectively used as 

a biomarker. By considering this aspect, we constructed three BN model alternatives of 
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three-way association involving copy number variation, gene expression, and DNA 

methylation levels in HCC single cells. 
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2. LITERATURE REVIEW 

2.1 Multi Omics Integration 

The advent of next generation sequencing (NGS) technologies led to a large amount 

of omics data like genomes, epigenomes, transcriptomes, proteomes, microbiome and 

metabolome data generation (13). Utilizing these omics data has expanded the fields in 

biology and advanced the understanding of the molecular biological process (33).  Earlier 

methods have been optimized in order to examine an individual omic one at a time (34-

36). In spite of the high facility of these methods, they are still unable of providing the 

whole picture about the characteristic’s insight of complex diseases such as cancer. 

Recently, studies focused on linking different omics to be studied which in turn brought 

new challenges to the development of statistical methods for integrating multi-omics. 

Omics data integration have been included in a wide range of research area such as: system 

microbiology (37), plant system biology (38), genotype-phenotype interaction (39), and 

system pathology (40).  

Cellular systems are complex and regulated in multiple levels, while each of these 

levels is a complex network that interacts with each other. As a result, when combining 

different omics to integrate them in order to reveal a biological signature becomes very 

challenging (41). Thus, many theoretical methods and novel algorithms were developed 

for multi-omics data integration. The major two methods were used are unsupervised and 

supervised data integration (8). Unsupervised data integration is a group of methods that 

deals with data without labeled response variables. Unsupervised methods are matrix 

factorization methods, network-based methods, Bayesian methods (BN), and multiple 

step analysis (41). In contrast to unsupervised methods, the supervised data integration 

methods consider the label of the data (control or disease) and call on a machine training 

approach in order to evaluate the introduced model. That is, the methods of supervised 

data integration are built upon information of data that their labels are known (42). 

Supervised methods are Network-based methods, Multiple kernel learning, and Multiple 

step analysis (42). Table 2.1 shows the recent studies in multi-omics integration that have 

used supervised and unsupervised data integration methods.  
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Bayesian networks (BN) are graphical probabilistic networks that represents the joint 

probability distribution in a factorized way. Bayesian networks composed of a directed 

acyclic graph (DAG) and a set of parameters (23, 24). DAGs consist of nodes and edges; 

nodes represent variables and edges represent the relationship between the variables they 

link.  For example, when a directed edge from node A to B, A node is called the parent 

variable and B node the child variable. In DAG, a set of conditional independence 

assumptions are encoded between the variables, that is, “a variable is independent of its 

non-descendants given its parent” (24). A study by So-Youn Shin (43), have introduced 

Bayesian network method for multi-omics integration as a causal inference tool alternative 

to Mendelian Randomization (MR) method. Gutierrez et.al. (44), have used the Bayesian 

network method to integrate multi-omics data from different cell types.  They revealed the 

causal relationship between genetic variation, DNA methylation and gene expression by 

proposing a different BN model. They also inferred the passive and active role of DNA 

methylation on gene expression (44).  

Gang Liu et al (45), have used a modified cluster of cluster analysis on CNV, 

mRNA, DNA methylation, and miRNA data of 265 samples downloaded from TCGA. In 

their method, they have divided the samples into sub-clusters according to each omic and 

then divide the whole data into 2 groups according to the features in each sub-cluster. 

Their results showed that samples are classified into 5 major sub-groups (S1-S5). Each 

sub-group has its distinct molecular features. For example, S1 had TP53 gene mutation, 

and an amplification in the 8th chromosome at 8q24. While S2 and S3 had a low 

expression of TERT gene and telomere hypomethylation. Then, they associated these 

subgroups with clinical information and survival rate. They found that these subgroups 

are correlated with gender, alpha-fetoprotein level, alcohol intake, American Joint 

Committee on Cancer staging level. They found that S4 and S5 have more females than 

other groups, while in S1 and S5, most patients were involved in alcohol intake. They 

showed that this method can help in solving HCC heterogeneity by classifying it into 

subgroups. 

Miao et al. (46), have integrated WGS and transcriptome sequencing of a set of 

intrahepatic HCC lesions, matched noncancerous liver tissue and blood. In the study, they 
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performed phylogenetic tree to differentiate between tissues according to somatic 

mutations, CNV and SV. After splitting the samples into groups, they performed 

functional enrichment analysis. They profiled tumor biomarkers that distinguish between 

two multifocal HCC types. They also showed that TTK protein as a prognostic marker for 

HCC.  

A study by Yıldız et al. (47), showed that HCC distinct cell types have different 

responses to the same drug therapy. In this study, he analyzed 14 different HCC cell lines 

(7 epithelial-like and 7 mesenchymal-like cell lines) treated with 225 different small 

molecules downloaded from the Genomics of Drug Sensitivity in Cancer database. He 

performed unsupervised hierarchical clustering analysis dividing them into 2 distinct 

groups according to their responses to the drugs.  The first group (group A) which contains 

early- stage epithelial like HCC cells, have shown more sensitive response to the drug. On 

the other hand, the second group (group B) which consisted of late-stage mesenchymal-

like and epithelial-to-mesenchymal transition HCC cells, had less sensitive response. 

Moreover, the study showed that mTOR and P13K targeting drugs are more effective to 

treat epithelial-like HCC cells compared to mesenchymal-like HCC. Concluding that, 

more sensitive and personalized drugs are needed to be developed. 

Yongmei Li et al (48), by analyzing three HCC cell lines with different metastatic 

potential. They used whole exome sequencing to detect somatic mutations and CNV 

detection, microarray for transcriptome, and a high-resolution Q Ex-active mass 

spectrometer for protein quantification. They performed weighted correlation network 

analysis (WGCNA) in order to cluster the highly associated genes or metabolites. They 

found that 32 metabolites were decreased, and 21 metabolites increased along with the 

ability of metastasis. Furthermore, they indicated that there is a relationship between 

metabolome and metastasis. That is, three metabolic pathways were observed to be altered 

in different levels such as glycolysis, that shown to have a role in premetastatic in HCC 

tissue.  
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Table 2.1. HCC studies in literature that have used multi-omics integration methods. 

Study Sample size Omics Integrating 
method 

Reference 

Single-cell triple omics 
sequencing reveals 
genetic, epigenetic, and 
transcriptomic 
heterogeneity in 
hepatocellular 
carcinomas 
 

25 single HCC cells CNV, DNA 
methylation, 
transcriptome 

Unsupervised 
hierarchical 
clustering 

Hou et, 2016 
(32) 

A Multi-Omics 
Approach to Liver 
Diseases: Integration of 
Single Nuclei 
Transcriptomics with 
Proteomics and HiCap 
Bulk Data in Human 
Liver 
 

4282 single nuclei 
HCC 

single-nuclei 
RNA-seq, 
proteomic 
 

k-mer 
clustering 

Cavalli et al., 
2020 (49)  

Microenvironment 
characterization and 
multi-omics signatures 
related to prognosis 
and immunotherapy 
response of 
hepatocellular 
carcinoma 
 

1000 HCC sample Immune (tumor 
microenvironme
nt) 

unsupervised 
clustering 
 

Liu et al., 
2020 (50) 

Integrated analysis of 
somatic mutations and 
focal copy-number 
changes identifies key 
genes and pathways in 
hepatocellular 
carcinoma 
 

125 HCC sample WES (somatic 
mutation), 
CNV,  

Cox 
proportional 
hazards 
regression 
models 
 

Guishard et 
al., 2012 (51) 

Diverse modes of 
clonal evolution in 
HBV-related 
hepatocellular 
carcinoma revealed by 
single-cell genome 
sequencing 

96 tumor cells 
15 normal 
cells 

Single cell 
genome wide 
sequencing, 
CNV, 
transcriptome 

Multi-
dimensional 
scaling 
analysis 
 

Duan et al., 
2018 (52) 

Multi-omics 
Integration Reveals the 
Landscape of 
Prometastasis 
Metabolism in 
Hepatocellular 
Carcinoma 

3 HCC cell lines CNV, 
transcriptome, 
somatic 
mutation, 
metabolome 

weighted 
correlation 
network 
analysis 
(WGCNA) 

Li et al., 2018 
(48) 
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Table 2.1 (continues) 
Integrated multi-omics 
data analysis 
identifying novel drug 
sensitivity-associated 
molecular targets of 
hepatocellular 
carcinoma cells 
 

14 different HCC 
cell lines 

Molecular 
treatment 
values, 
transcriptome 

unsupervised 
hierarchical 
clustering 

Yildiz, 2018 
(47) 

Identification of 
prognostic biomarkers 
in hepatitis B virus-
related hepatocellular 
carcinoma and 
stratification by 
integrative multi-omics 
analysis 
 

174 HCC datasets 
(different cell lines) 

Somatic 
mutation, CNV, 
transcriptome,  

phylogenetic 
tree 
 

Miao et al., 
2014 (46) 

Integrated Multiple “-
omics” Data Reveal 
Subtypes of 
Hepatocellular 
Carcinoma 

265 HCC samples 
(TCGA data) 

CNV, 
transcriptome, 
miRNA, DNA 
methylation 

Cluster of 
Clusters 
(COC) 

Liu et al., 
2016 (45) 
 

 

 

2.2 Hepatocellular Carcinoma 

Cancer is one of the most puzzling and dreaded diseases in the 21st century as it 

continues increasing every day without the discovery of an effective cure (53). According 

to Mackay J. et al. (54), one out of four people is at risk of cancer during lifetime.  Among 

different types of cancer, liver cancer (LC) is the sixth most common cancer type and 

comes at the second place as the most common death causing cancer type worldwide (55). 

Liver cancer can be divided into two groups: primary LC and secondary LC (56). Primary 

LC which includes Hepatocellular carcinoma, Sarcoma and Cholangiocarcinoma, starts 

in the liver (56). On the other hand, secondary LC starts in another organ such as breast, 

colon, and pancreas in most cases and then metastasizes to the liver. Hepatocellular 

carcinoma (HCC) is the most common type of primary liver cancer and fifth most common 

cancer type worldwide (45, 57). It is ranked as the second death-causing cancer type just 

after lung cancer all over the world (58). According to American Cancer Society (59), in 
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the USA about more than 40000 people have been diagnosed with hepatocellular 

carcinoma and about 30000 people died because of it in 2019. 

Globally, HCC incidence rates differ from region to region, it highly occurs in 

eastern and south-eastern Asia (e.g., China, Vietnam, South Korea), Central and western 

Africa (e.g., Egypt, Senegal) (60).  Most of HCC incidences are from countries with low 

to middle income countries (61, 62). Figure (2.1) shows the distribution of HCC cases 

worldwide and how the numbers are high in eastern Asia and central Africa where the 

medical systems are behindhand (54). According to “Cancer Statistics in Turkey” annual 

report of the health ministry of Turkey (63), HCC is not among the top five cancer types 

in Turkey which means that Turkey has a low frequency of HCC incidence . Still, a study 

done by Alacacioğlu et al., determined that Turkey has a high number of HBV and HCV 

infection rates, the major causes of HCC (64). 
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Figure 2.1. Incidence and mortality rates of HCC worldwide. Adapted from (60). 

 

HCC occurs more in men than women (59). In a study included 963 HCC patients 

from 13 cities in Turkey, found that about 80% of patients were males (65). Moreover, 

HCC incidence shows a discrepancy with age (66). In the USA, the age group [55-64] has 

the highest risk of HCC (Figure 2.2), in China it is the [55-59] age group, while in North 

America and Europe [63-75] is the mean age to be diagnosed with HCC (62). HCC has 

several risk factors; cirrhosis, chronic infection with hepatitis B virus (HBV) and hepatitis 

C virus (HCV) are the most common ones, which occupy about three quarters of all cases 

(67). Besides, alcohol consumption, smoking, arsenic, non-alcoholic fatty liver diseases 

(NAFLD), obesity and aflatoxin contact dietary habits can also cause HCC (68). 
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Figure 2.2. The distribution of HCC incidence according to age groups in USA (2009-

2013). Adapted from (69). 

2.2.1 Clinical Signs and Symptoms 

In most cases, HCC is diagnosed after the tumor shows symptoms and clinical signs 

(29). These symptoms are usually manifested several months after tumor development 

(29). HCC symptoms and clinical features are similar to those in other hepatic diseases. 

Makes it hard for physicians to distinguish HCC from an advanced liver disease (70). 

Some of these symptoms are nausea, weight loss, bleeding, infections, and hepatomegaly 

(69). As previously mentioned, most of the time it is hard to perform an early diagnosis 

for HCC (70). Thus, the survival rate is short with an approximate period of [6-20] months. 

In the USA, more than half of HCC incidence had a survival rate less than 2 years (71). 

 

2.2.2 The Molecular Landscape 

HCC is an angiogenic tumor characterized molecularly by the dysregulation of the 

cell cycle and apoptosis evasion, which both play a vital role in tumor metastasis (68). 

Furthermore, the tumor cells of HCC go into multiple molecular disruptions such as 

chromosomal aberrations, genetic alterations, epigenetic changes and molecular pathway 

shifting (72, 73). 



 

 

12 

In a comprehensive study, as a part of the cancer genome atlas network (TCGA), 

performed a large-scale analysis on HCC samples from multiple platforms (74). They 

analyzed the CNVs and somatic mutations of 363 cases. Besides, almost for half of the 

samples they analyzed the DNA methylation, mRNA, miRNA, and protein expressions. 

In general, they observed an amplification in 1q and 8q and a deletion in 8p and 17p. 

Moreover, they identified a few mutated genes that are associated with HCC tissues and 

obtained a global hypomethylation in HCC tissues. By using unsupervised hierarchical 

analysis, they clustered the samples into three groups according to their genomic-

epigenomic characteristics (75). 

 

2.3 Epigenetics 

By 2003, the completion of the human genome project provided us with a complete 

list of genes that opened the door to resolve the complexity of the human body (76). 

Nevertheless, the situation was more complex, that is, there is a second system in the cell 

with equal importance to determine which, when, and where a gene or multiple genes to 

be expressed during development (76). This system “Epigenetics” affects the DNA in a 

form of heritable marks during the division of the cell without altering the DNA sequence 

(77). In 1942, the term of epigenetics was introduced by Conrad Waddington (78, 79). 

Waddington defined it as "the branch of biology which studies the causal interactions 

between genes and their products which bring the phenotype into being" (80). Waddington 

is best known for his "epigenetic landscape model" (79, 81). During his study on 

embryonic development, he represented his model as a concept to illustrate the different 

pathway that the cell can take toward differentiation. Figure 2.3 shows “The Epigenetic 

Landscape Model” where the ball represents the cell, at the top of a slope. The slope has 

many valleys and hills which represent the genes and other regulations. As the ball rolls 

down the slope, these hills and valleys will direct it into different (differentiation) paths 

(80). Since then, with the development of genetic field, term of "epigenetics" has been 

modified and narrowed down gradually to become more specific (82).  
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Figure 2.3. The Epigenetic Landscape Model by Waddington. Adapted from (83). 

 

Epigenetics has been defined as “the study of changes in gene function that are 

mitotically and/or meiotically heritable and that do not entail a change in DNA sequence” 

(82). The epigenetics modifications are DNA methylation, post-translational gene 

silencing (non-coding RNA), and histone modifications (Figure 2.4). These modifications 

can be affected by many factors such as age, environmental factors and lifestyle (84).  
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Figure 2.4 Epigenetic modifications. Adapted from (85). 

 

2.3.1 DNA Methylation 

DNA methylation is the major epigenetics mark in mammalians. It is involved in gene 

expression regulation and cell differentiation (82, 86). It is a chemical process when a 

methyl group is added to cytosine nucleotide (C) residing next to guanine nucleotide (G), 

what is called CpG site, by one of DNA methyltransferase enzyme family (DNMT). 

DNMTs transfer a methyl group from S adenyl methionine (SAM) to the fifth carbon 

molecule of the cytosine base from 5mC. Although DNA methylation occurs at CpG sites, 

most CpG rich regions “CpG islands” are unmethylated (87). CpG islands are DNA 

stretches about 1 kb long containing a higher density of CpG than other regions but often 

they are not methylated. About 70% of gene promoters lies in CpG islands. The majority 

of these promoters belong to housekeeping genes (88). For its importance in regulating 

gene expression, CpG islands are thought to be conserved during evolution (86). In a 

study, Illingworth applied DNA chromatography and Chip-seq techniques on human 
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(whole human semen, whole male blood, whole female blood), and mice (whole male 

blood, whole female blood) samples to identify the CpG islands in the genome of both 

species. He showed that the CpG islands that are linked to gene promoters are highly 

conserved between human and mice (89). CpG islands are related to other epigenetic 

modifications, that is, DNA stretches that contain histone proteins and are associated with 

nucleosomes are more dismissive of gene expression (7). CpG islands are characterized 

by having less nucleosomes than other genomic regions so it can be related to enhancing 

gene expression (90).  Through gametogenesis and embryonic development, CpG islands 

go through multiple methylations. These methylations are associated with stable gene 

expression silencing (91). With the importance of DNA methylation in regulating gene 

expression during differentiation and development, this silencing has been linked to gene 

imprinting (92). Imprinting is the process during gametogenesis when only one of the 

specific inherited alleles (parental or maternal) is exclusively expressed in the offspring 

(78).  

Despite the fact that CpG islands are associated with gene expression regulation, it is 

also expected to have tissue-specific patterns (93). Not only CpG islands but rather CpG 

island shores which have a tissue specific methylation pattern. CpG shores are regions 

with low CpG density flanking to CpG islands up to 2 kb in length (94). CpG shores first 

identified by Fienberg and his team (95). They performed genome wide bisulfite 

pyrosequencing on normal tissues from brain, liver, spleen and colon cancer tissue to 

obtain the differences among them. They find that the differentially methylated regions 

between the colon cancer and normal tissues are not located in CpG islands but at 

surrounding regions (CpG shores) addressing that these shores have a role in alternative 

transcript regulation (95). Furthermore, CpG island methylation has been linked with X 

chromosome inactivation. Gartler et al. (96), showed that the gene reactivation by 5-

azaCdR treatment on the inactive X chromosome is related to the demethylation of CpG 

island promoter regions. Attaining the relationship between the gene silencing process on 

inactive X chromosome and DNA methylation. Another study by Mohandas et al., showed 

that an inhibitor of DNA methylation called 5-azaCdR can reactivate the inactive X 

chromosome (97). In addition, a study on X chromosome, Wolf and his team showed that 
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CpG dinucleotides clusters (CpG islands) on the inactive X chromosome are being 

specifically methylated (98). 

Cancer was the first disease to be linked to epigenetics changes (99). As mentioned 

above, in normal human cells methylation happens at CpG sites that are not in CpG islands 

(100). But, in cancer cells the CpG islands near the promoter region become highly 

methylated resulting in turning off some of essential genes such as tumor-suppressor genes 

(101). A study by Gutierrez et al. (44), have shown that not only in the promoter region 

but also the methylation that occurs in the gene body region has an impact on gene 

expression levels. In Cancer, DNA hypomethylation in oncogenes and hypermethylation 

in tumor suppressor genes have a role to promote tumorigenesis (102). In HCC, Santella 

et al., applied genome wide methylation array on 62 HCC tumor tissues (103). Out of 

2324 differentially methylated CpGs between tumor and normal tissues, about 70% were 

hypomethylated and 30% hypermethylated CpG sites. Likewise, another study applied by 

the same method on 66 pairs of HCC tumors and adjacent non-tumor tissues. They found 

that most of the differentially methylated CpG site are located in CpG islands while about 

17% of them are located at CpG shores. 

DNA methylation can be detected using different methods. Array based methods such 

as 450k and EPIC are widely used. Both methods provide a genome-wide screening and 

reports a methylation level quantification at single CpG-site level (104). On the other 

hand, Bisulfite genomic sequencing analysis such as whole genome bisulfite sequencing 

(WGBS) and reduced representations bisulfite sequencing (RRBS) (105). In these 

sequencing methods, DNA is treated with bisulfite before sequencing in order to 

determine methylation patterns. Bisulfite treatment leads to bisulfite-conversion of 

unmethylated C base into U while keeping the methylated C as it is. After this treatment, 

the DNA is sequenced by one of the NGS machine. In RRBS method, the DNA first is 

fragmented by using MspI restriction enzymes that have a restriction site lying in CpG 

islands providing a more specific coverage at high CpG regions (106). 
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2.4 Gene Expression 

A process when the information from a gene on DNA sequence is used to synthesis a 

functional product. Most of the time these products are proteins, however some genes 

code for non-protein products such as tRNA, rRNA, miRNA and lncRNA (107, 108). 

Gene expression studies usually investigate the increasing or decreasing in the expression 

levels of a gene (or multiple genes) by measuring the abundance of its transcripts. These 

investigations often observe the gene responses to a drug treatment (109). mRNA is the 

intermediate molecule in the gene expression process that carries the needed genetic 

information for protein synthesis (110). Whenever a gene is expressed (or active), it 

produces many mRNA transcripts by transcription. So, by assessing mRNA, genetic 

information of a gene expression can be assessed (107). As a result, gene expression 

analysis methods seized mRNA as a center of interest.  

 

2.4.1 Transcriptome 

Transcriptomics is the study of the complete set of RNA -gene expression- that are 

produced by a specific cell or tissue (110). Many techniques that have been used for gene 

expression analysis, such as Northern blot, differential display, serial analysis of gene 

expression (SAGE) (109). However, these methods have their limitations especially when 

analyzing the expression of a large number of genes. For example, Northern plot have a 

limited number of samples to be analyzed at the same time, SAGE have a complex and 

laborious preparation steps with low sensitive results (111). DNA microarrays overcome 

these limitations and become the most abundant used technique in gene expression 

analysis (112). This technique is based on the hybridization of two DNA strands when the 

complementary sequences form hydrogen bonds between their nucleotide’s base pairs 

(112). mRNA molecules that will be analyzed are first chopped into smaller stretches by 

restriction enzymes and then converted into cDNA by reverse transcriptase. Thereafter, 

fluorescent markers are attached to these cDNA strands. On the other hand, a large number 

of DNA sequences of known genes are attached on a chip. By treating these chips with 

fluorescent-attached cDNA, the complementary sequences of cDNA and the DNA on the 

chip will bind together and the fluorescent molecule will shine as a spot on the screen. 
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The strength of the signal from the spot shows the amount of the binding cDNA molecules 

giving the expression amount of that gene. Using different fluorescent colors differentiates 

between the studied cases. The major advantages of DNA microarray are: can be used 

with a large number of gene sets, can be used with a small amount, high sensitive, 

comparing multiple cases and conditions at the same time (113). However, microarray 

also has its limitations. For example, DNA microarray cannot be used to observe novel 

gene expression but only with genes that are known previously (114).  

RNA sequencing method which is one of NGS techniques have revolutionized gene 

expression analysis (110). Being able not only to detect novel genes but also its ability to 

observe the alternative splicing, post-translational modifications, exons identifications, 

mutations (SNPs) and the gene expression differential in different groups and cases in a 

shorter time (115). RNA-seq protocol starts with cut the RNA molecules into fragments. 

Then, in a step called cDNA library preparation, cDNAs are generated from RNA 

fragments by reverse transcriptase, and finally sent for sequencing by a sequencer machine 

(115, 116). 

 

2.5 Copy Number Variation 

Copy Number Variation (CNV) refers to any duplication (gain) or deletion (loss) in a 

genomic stretch greater than 1 kilobase in size (117). Changing the copy number of a gene 

results in overexpression or deletion of that gene. CNVs are one of the major genomic 

alterations in cancer cells (118). The role of copy number variation in human diseases has 

gained a big interest which led to an advent in CNV recognition methods. This realization 

first started when CNV was subjected to the approximately 12% of the genome variation 

in the human population (119). In vitro methods are the most widely used methods in 

CNV detection studies. Array comparative genomic hybridization arrays (aCGH) have 

been tools of choice beside SNP microarray (120). Array CGH depends on the principle 

of hybridization of two samples differentially labelled to a set of targets and the signal 

ratio determine the CNV. SNP microarrays perform in the same principle but differ in that 

their probes are designed to be specific to SNPs (121). 
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With the development in NGS technologies, researchers have turned to statistical-based 

methods operating on NGS data such as whole genome, whole exome and targeted 

sequenced data for CNV calling. Min Zhao et al. (122), have categorized CNV detection 

tools into 5 approaches: paired-end (PEM), split read (SR), read depth (RD), de novo 

assembly (AS), and combinatorial approaches (CA). 

PEM method is the first method to be used in NGS-based CNV calling (123). PEM 

model is only available for paired-end reads and not for single-end reads (123). In paired-

end sequencing, insert size of DNA fragments have a specific distribution. PEM methods 

detect CNV from the inconsistently mapped reads that have significantly different 

distance from the predefined average insert size. It is able to detect not only CNV but also 

inversions, mobile element insertions and tandem repeats duplicates (122). Still, its 

dependency on fragments insert size makes it unable to detect CNVs larger than that insert 

size (124).  PEM method depends on two approaches: clustering and model-based 

approaches. In the model-based approach a probability test is applied to discover the 

discordant distance between the distance distribution in the genome and the read-pairs. 

On the other hand, in cluster approach the predefined distance between reads is used to 

identify the inconsistent reads (124). Breakdancer which is one of most used CNV calling 

tools are based on PEM uses both model-based and clustering approaches enable it to 

detect small CNVs between (10-100 bps) (125). 

SR methods are applied to paired end reads that detect CNVs when one of the read 

pairs is uniquely aligned properly to the reference genome while the other is unmapped or 

partially mapped (122). The discordant mapping gives a proper breaking point for CNV 

detection. The incompletely mapped reads are then split into fragments. The first and the 

last fragments are then aligned independently to the reference genome. In this remapping 

step the start and end position of the CNVs are precisely detected (126). 

RD based methods became the major method for CNV calling because of the high 

read coverage that NGS data provide (127). The RD approach depends mainly on the 

concept of the read depth of a genomic region correlated with the copy number of that 

region. For example, a genomic region with a gain CNV has higher depth and the deletion 

has less depth than expected (128). Compared to SR and PEM methods, RD based 
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methods have the ability to detect the exact CNV and also it can detect large CNVs in 

complex regions. RD method is the major method to call CNV from whole genome 

sequencing (WGS) and whole exome sequencing (WES) data (129). In WGS, full variants 

in the whole genome can be determined, while in WES only protein-coding sequences 

(exons) are targeted for sequencing which enables it to result in a higher regional read 

coverage (130). 

Depending on the study design, RD based tools generally detect CNV in three different 

ways: single sample, case-control samples, and cohort of samples (122). In a single sample 

case, CNV is estimated after applying a statistical model such as HMM and Gaussian 

process on the read depth distribution to detect regions with abnormal read depths. In the 

case-control samples studies, the control samples serve as "reference" and CNV is 

detected when read depth of a region in case sample is matched to that in the control. In 

the case of multiple samples, the CNV detection is calculated by taking the overall read 

depth mean from all samples which result in estimation of the inconsistent CNV in each 

sample (124). GATK CNV-caller provides two modes for CNV estimation: cohort and 

control-case mode. Control-FREEC is able to call CNVs from WGS and WES data with 

or without control samples (131). 

 The process of CNV detection using RD based methods is done through 4 steps: 

mapping, normalization, copy number estimation and segmentation (132). During the 

mapping step, after mapping short reads to the reference genome, the read depth is 

calculated in a defined window according to the mapped reads in that window. In the 

normalization step, the bias in read depth that is caused by GC content or repeat regions 

is corrected and normalized in order to estimate CNV. In the segmentation step, the 

regions with the same copy number are merged into segments and segments with 

discordant copy numbers are detected. HMM is one of the statistical models that are used 

to detect the CNV state in segmentation step (132). HMM is a probabilistic model which 

is used to determine the state of an unknown sequence based on the sequence of 

observation. The transition from a state to another is described by a matrix of probabilities 

(132). 
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From a mathematical view, after the normalization step the NGS data is similar to 

aCGH data. So, some algorithms that are used for CNV detection from aCGH data can be 

used to detect CNV from NGS data (122). For example, the statistical model Circular 

Binary Segmentation (CBS) was first method used to detect CNV from aCGH data by 

converting the noises into equal copy number segments (133). This method was then used 

to detect CNV from NGS data by SegSeq tool (133).  

From short reads, AS based methods reconstruct DNA fragments (contigs) by 

assembling overlapping reads (134). Then, the assembled contigs are compared to the 

reference genome and the regions with inconsistent copy numbers are detected. The 

process of assembling the short reads without needing a reference is called de-novo 

assembly (134). The Cortex assembler is one of AS based method tool, that uses Bruijn 

graphs to collect overlapped reads from multiple samples into one graph. De Bruijn graphs 

present the overlapping information within a set of samples. These graphs consist of 

nodes, represent words of k length (k-mers), and edges join these k-mers. The variation 

between genomes leads to new nodes and edges to occur (135). The edges and nodes are 

colored differently to differentiate different samples. CNV is estimated when all nodes 

from different samples are collected to find a bifurcation diagram. The branches that 

separate different colors show the structure variation such as deletion or insertion (135). 

High number of CNV caller tools that are based on the previous mentioned 

methods and the progress they made (122). Still, these methods failed to detect the whole 

types of variations in genomic copy number with both high sensitivity and specificity 

(124). For example, PEM based methods are able to detect many types of structural 

variation especially the small deletions (>1kb), but they fail to detect the precise number 

of the copies. While RD based methods have a high ability to detect CNV especially the 

large ones (>10kb), it fails to detect small CNVs (>1kb) and also perform poorly on 

complex regions such as translocations and inversions.  In contrast, AS based methods 

have an advantage when a reference genome is not required. as an input and allow the 

detection of novel mutations, but it fails to detect CNV in repeat and duplicated regions 

(135). A combination of PEM and RD methods could succeed in detecting CNVs with 

high range in length in various genomic regions.  CNVer is a tool that combines PEM and 
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RD based methods, detect discordant genomic fragments and breakpoints from 

inconsistent mapped read pairs. By this way, CNV in complex regions such as repeated 

and duplicated regions with different length is estimated with a high sensitivity (136). 

NovelSeq is another combinatorial tool that combines PEM and SR based methods to 

estimate novel insertions (137). 

 

2.6 Research Objective 

HCC is one of the leading death-causing diseases in the world, its incidences have 

shown an increase in the last decades globally (54, 138). Compared to other tumor types, 

HCC’s detection is harder and most of the incidence can only be diagnosed in advanced 

stages. Furthermore, because of its heterogeneity and wide etiology, there are no effective 

treatments for HCC (139). Single cell sequencing technologies have been an advent in 

cancer studies. It helps researchers in extending their understanding about the 

heterogeneity of the tumor population by observing its individual cells actions (140).  

This thesis consists of four parts: RNA-sequencing, DNA methylation, CNV 

detection, and use of BNs for integrating. Here, we integrated these omics (genome 

(CNV), transcriptome, and epigenome) of 25 HCC single cells by applying a machine 

learning approach, which is BN (Figure 2.5). Dissecting these different omics by finding 

the causal relationship among them at single cell resolution will extend the understanding 

the heterogeneity of the HCC population, and it might guide us in HCC prognosis and 

give more information about the disease etiology.  
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Figure 2.5. Overview of the study 
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3. MATERIAL AND METHODS 

To explore the causal relationship among the transcriptome, genome (CNV), and 

epigenome in HCC single cells, a publicly available single cell sequencing data by 

NCBI Gene Expression Omnibus (GEO) under accession code (GSE65364) was used. 

The dataset contains 25 HCC single cell sequencing data generated by scTrio-seq 

technique (32). The pathological report showed that the tumor tissue has necrosis, 

extensive degeneration, and HBV related cirrhosis. ScTrio-seq is a new multi-omics 

single cell sequencing method developed by Yu Hou et al., (32) aims to analyze the 

three omics: genome (CNV), DNA methylome and transcriptome of the same cell 

simultaneously. After dissociating the tissue mechanically into pieces and digesting 

the cell suspension, the single cell is picked individually by pipetting-by-mouth. Mild 

lysis is done on the cytoplasm of each cell to release the mRNA only and keeps the 

nucleus intact. After centrifugation, the precipitate that contains nucleus is sent for 

DNA methylome sequencing using RRBS method, and the separated mRNA is sent 

to scRNA-seq after cDNA library construction. By this way, the transcriptome, DNA 

methylome, and later bioinformatically genome (CNV) data are yielded from the same 

single cell at the same time. The paired-end sequencing was done using Illumina 

HiSeq 2000 and Illumina HiSeq 2500 sequencers. 

 

 
Figure 3.1. The workflow of scTrio-seq method. Adapted from (32) 
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3.1 Downloading the Data 

The data were downloaded from the GEO database using NCBI SRA toolkit (141). 

SRA toolkit is a collection of tools by NCBI used for downloading and using data from 

the GEO database. The data were downloaded from GEO database by the command from 

SRA toolkit: 

>Prefetch SRRXXX 

This command will download the samples as SRA formatted files. SRA formatted file is 

a binary archive file store the raw sequencing reads to the SRA database and it can be 

converted to fastq by the command: 

>Fastq-dump --outdir ~/raw_fastq/ --split-files /home/ncbi/puplic/sra/SRRXXXX.sra 

The command will convert SRA files into fastq and split it into two reads as it is paired-

end sample.  

 

3.2 RNA Sequencing data 

3.2.1 Data Preprocessing 

The tools that are used in data preprocessing and quality control are Linux based 

tools. The analysis was performed at TUBITAK ULKABIM, high performance and grid 

computing center (TRUBA Resources). 

Fastqc, a popular tool used for check quality control for sequencing reads from 

Illumina (142), was used to check the quality of raw reads fastq files. Fastq file is a text-

based file that contains the short-read sequences and its corresponding quality scores. The 

sequence letters and quality scores are both coded with ASCII characters. Every read 

sequence consists of multiple lines: the “identifier” line starts with “@” symbol contains 

information about the sequence run, the sequence, the separator line with “+” sign, and 

the line of Phred score for each base (Figure 3.2). 

 

 
Figure 3.2. An example of fastq file format 

 



 

 

26 

Fastqc can be run for single or multiple samples by the command: 

> Fastqc sample1.fastq sample2.fastq  

Fastqc gives a HTML report that contains multiple sections:  

● Basic statistics section contains the major information about the sample: the file 

name, file type, sequencer machine, total sequences, sequence length and GC 

percentage. 

● Per base sequence quality, a graph shows the Phred (quality) score of each base of 

the read sequence. Phred score is a widely accepted score to measure the 

probability of a base whether to be called incorrectly (143). Phred score can be 

represented by the equation (3.1):  

 

! = −10	'()!"	*+	((-./+0/1	2''/'/	 ≠ 4+5/	2''/'/)  (3.1.) 

 

So, for example, Q=20 shows 1% error rate meaning that the base is 99% have 

been called correctly.  

● Per sequence quality score section shows a graph of the mean quality values per 

reads, allowing you to see if there are universally low-quality values over the 

sequence.  

● Per base sequence content section shows the distribution of the four bases (A, C, 

G and T) over the read bases which should be equally distributed across the plot.  

● Per base GC content section and per sequence GC content section shows the 

distribution of the GC bases over the read bases.  

● Per base N content section shows if there are uncalled bases (N) in the read 

sequence. 

● Sequence duplication level sections provide an informative plot showing the 

number of sequences that are duplicated in the read sequences. 

● Overrepresented sequences and adaptor contamination sections shows the 

sequences that are highly presented in the reads and the count of them. Also, it 

gives the possible source of the overrepresented sequences which mostly shows 

the adaptor contamination in the reads. 
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The reports showed that there are low quality reads near the 5' end of the sequence. 

The raw sequencing reads were trimmed to remove the low-quality reads (<Q30) using 

Trimmomatic (version 0.39) (144). Trimmomatic is a trimming tool including options 

to trim and filter raw sequencing reads. It is able to identify the adapter sequences and 

read quality filter. For sequencing data, Q30 is commonly acceptable phred score to 

keep (145). 

> java -jar trimmomatic-0.39.jar PE sample_1.fq sample_2.fq trimmed_sample_1.fq 
trimmed_sample_2.fq HEADCROP:3 

 

Table 3.1. Basic statistics of RNA-seq reads before and after trimming 

Sample SRR No. 
Before Trimming After Trimming 
Total 
Sequence 

Sequence 
length 

%GC Total 
Sequence 

Sequence 
length 

%GC 

1 SRR1777087 3956277 101 45 3956277 98 45 
2 SRR1777089 4005566 101 47 4005566 98 47 
3 SRR1777091 3751180 101 46 3751180 98 46 
4 SRR1777093 3612890 101 45 3612890 98 47 
5 SRR1777095 4074177 101 46 4074177 98 46 
6 SRR1777097 7133651 101 44 7133651 98 44 
7 SRR1777099 5750626 101 41 5750626 98 41 
8 SRR1777101 3445214 101 45 3445214 98 45 
9 SRR1777103 3567104 101 44 3567104 98 44 
10 SRR1777105 3706688 101 46 3706688 98 46 
11 SRR1777107 3864532 101 42 3864532 98 42 
12 SRR1777109 6636352 101 46 6636352 98 46 
13 SRR1777112 6015670 101 40 6015670 98 40 
14 SRR1777114 6365473 101 44 6365473 98 44 
15 SRR1777116 7018374 101 44 7018374 98 44 
16 SRR1777118 11163622 101 47 11163622 98 47 
17 SRR1777120 9983774 101 38 9983774 98 38 
18 SRR1777122 6186861 101 46 6186861 98 46 
19 SRR1777124 6986571 101 45 6986571 98 45 
20 SRR1777126 6607400 101 42 6607400 98 42 
21 SRR1777128 5470092 101 40 5470092 98 40 
22 SRR1777130 7102096 101 43 7102096 98 43 
23 SRR1777132 9066635 101 46 9066635 98 46 
24 SRR1777134 1908044 101 43 1908044 98 43 
25 SRR1777136 3088062 101 39 3088062 98 39 

 

3.2.2 Gene Expression Quantification 

For gene expression quantification we used Tophat-Cufflinks pipeline, which is a 

combination of software tools used for aligning and comprehensively analyzing the gene 
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expression from RNA sequencing data (146). Moreover, it performs a comprehensive 

expression analysis, and it is a widely used tool (147).  The Tophat-Cufflinks pipeline is 

preferred because it provides more accurate expression values, detect a greater number of 

genes compared to other tools such as HTseq (148), RSEM (149), and STAR (150). 

Tophat is a tool designed with an efficient read mapping alignment algorithm to align 

RNA-seq reads to reference genome without relying on a known splice site. Tophat 

performs the alignment process in two phases: in phase I it uses Bowtie aligner to map all 

the reads to the reference genome; in phase II, it assembles the mapped reads from Bowtie 

by using an assembly module, inferring reads into exons and transcripts (146). The 

pipeline recommended the use of GTF annotation file in order to annotate the results from 

the pipeline with their gene names (146). GTF (Gene Transfer Format) file is a tab-

delimited file that contains information about genome coordinates for the use of genes 

annotation. There are eight columns in the GTF file: seq-name (chromosome number), 

source, feature, start site, end site, score, strand, frame and attribute. 
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Figure 3.3. Workflow of Tophat-Cufflinks pipeline. Adopted from (146) 

 

The trimmed reads were aligned to the human genome reference (hg 19) UCSC release 

fasta file (https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/) using Tophat 

(version 2.1.1) (151). Fasta file is a text-based file used to specify the reference sequence 

of the genome. Each chromosome is represented in two rows, the first one is the identifier 
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which starts with “>” followed by chromosome name and the second is the sequence 

(Figure 3.4). 

 

 
Figure 3.4. An example of fasta file format 

 
After the alignment is finished, a bam file is generated. Bam which stands for 

binary alignment map is the binary format of a SAM file. Sam file is a generic alignment 

format file that stores read alignments against reference genome sequence (152). Next, by 

following the pipeline (Figure 3.3), the bam files were then analyzed in Cuffquant. 

Cuffquant tool calculates transcript expression profile for each sample separately and 

exports it as a smaller binary file format (CXB). The last step is to use the Cuffnorm tool 

to normalize the gene expression levels of the multiple samples in order to make all gene 

expression values in the same scale. The reported gene expression levels from Cuffnorm 

are FPKMs. FPKM (fragment per kilobase of transcript per million reads mapped) is a 

normalized estimation values of gene expression from paired-end (RPKM in single-end) 

RNA sequencing data (153). FPKM is calculated by the formula (3.2): 

 

7*89 =	 #$%&'	)*&+,-.%/
0&11-2	3-&2/	(,5''5$.)∗89$.	'-.+%:	(;<)	 (3.2.) 
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3.3 RRBS data 

3.3.1 Data Pre-processing 

Firstly, we checked the quality of raw RRBS sequence data (fastq) by using Fastqc 

following the protocol in section 3.2.1. In this data we detected an adaptor contamination 

in all samples. Besides other tools such as Trimmomatic (144), Cutadapt (154), and FastX 

(155), we preferred to use Trim-Galore tool because it has an option that is designed 

especially for trimming RRBS reads (156). 

> trimgalore -illumina -rrbs sample.fastq 

 
Table 3.2. Basic statistics of RRBS reads before and after trimming 

Sample SRR No. 
Before Trimming After Trimming 
Total 
Sequence 

Sequence 
length 

%GC Total 
Sequence 

Sequence 
length 

%GC 

1 SRR1777086 5872242 101 36 5682216 101 33 
2 SRR1777088 7234041 101 36 6821806 101 33 
3 SRR1777090 8233353 101 36 7462253 101 33 
4 SRR1777092 3914470 101 38 3195983 101 34 
5 SRR1777094 8384707 101 36 8115618 101 33 
6 SRR1777096 6205049 101 35 5939977 101 33 
7 SRR1777098 6345297 101 35 5951204 101 33 
8 SRR1777100 6497647 101 36 6193519 101 33 
9 SRR1777102 5692258 101 35 5472350 101 33 
10 SRR1777104 5829994 101 35 5664762 101 33 
11 SRR1777106 8537614 101 36 7887331 101 33 
12 SRR1777108 9067477 101 37 8109880 101 33 
13 SRR1777110 6600208 101 37 5983976 101 33 
14 SRR1777113 11168512 101 37 10215873 101 33 
15 SRR1777115 8893147 101 37 8258172 101 33 
16 SRR1777117 10583467 101 38 9905917 101 33 
17 SRR1777119 7209732 101 36 6193280 101 33 
18 SRR1777121 8122832 101 36 7432772 101 33 
19 SRR1777123 7619708 101 36 6714080 101 33 
20 SRR1777125 7467918 101 37 6855087 101 33 
21 SRR1777127 9687349 101 37 7519129 101 33 
22 SRR1777129 7928567 101 38 7388531 101 33 
23 SRR1777131 9569206 101 37 8689899 101 33 
24 SRR1777133 10643620 101 36 9126636 101 33 
25 SRR1777135 8352859 101 38 7711035 101 33 
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3.3.2 Methylation Base Calling 

Bismark (156), BS-Seekers2 (157), GSNAP (158), and BSMAP (159) are the most 

commonly used tools to align and call methylated CpG sites from RRBS data. We 

preferred to use the Bismark tool for its high accuracy and high performance in CpG 

calling (160). Bismark software is a program that is used for aligning bisulfite treated 

sequencing reads and methylation base calling. Before aligning, the human reference 

genome (hg 19) was prepared for the alignment by using the tool “Bismark genome 

preparation”. This tool indexes the reference genome and generates two [C to T] and [G 

to A] converted genome files. This step is necessary because of the nature of the RRBS 

method where the unmethylated C bases are converted into Uracil, so converting reference 

genome makes it compatible to align those reads (156).  

Preparing reference genome command: 

> Bismark_genome preparation –path_to_aligner ~/bowtie2 –verbose ~/hg19/  
 
 

Then, the alignment was done by aligning the trimmed reads (fastq) to the prepared 

(converted) reference genome, where bam files were generated at the end. During 

alignment, Bismark aims to find a unique aligned read by running many alignment 

processes at the same time. First, Bismark transforms bisulfite reads into C to T and G to 

A. Then, these converted reads are aligned to the pre-converted reference genome. This 

mapping enables Bismark to identify the strand origin of bisulfite read and to define the 

methylation accurately in an unbiased way (80). 

Aligning command:  
 
> Bismark –genome ~/hg19/ sample.fq 
 

Thereafter, Bismark is used for calling the methylation level for each CpG site. 

For this, we used “methylation extractor”. This function is used for calling every single 

analyzed C base annotated with its location in the genome and its context e.g., CpG, CHH, 

or CHG.  

 

> bismark -o sample.bam ~/hg19/ -1 sample_1.fq  -2 sample_2.fq 
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This command produces a “coverage” format file that will be used in the 

downstream analysis to calculate the methylation level. Coverage file is a text tab-

delimited file contains all the CpG sites that are called from RRBS reads, the file 

composed of the columns: chromosome, position, strand, count methylated and count 

unmethylated. The methylation levels were calculated by ß equation (3.3). The regional 

methylation level for promoter, gene body, and intergenic regions were determined by 

calculating the mean of methylation level of all CpG sites in that region. 

 

ß = 0-%:='&%-2	>
0-%:='&%-2	>?@.,-%:='&%-2	>	 (3.3.) 

 

In order to reduce the bias and avoid false positives of CpG calls, only CpG bases with 

depth >=3 sites in promoter or gene body regions were used for downstream analysis (32). 

Read depth of each base was called using the “depth” function from Samtools.  Samtools 

is a software package used for parsing and manipulating SAM and BAM files such as 

sorting, merging and PCR duplicates removing (152). 

> samtools sort sample.bam > sorted.sample.bam 

> samtools depth sorted.sample.bam > sample.depth 

To annotate CpG sites to the corresponding genes, refseq gene list from UCSC and 

bedtools were used. Bedtools is a flexible tool that have a wide diverse usage for genome 

feature analysis such as merging, counting , intersect and complement genomic intervals 

from bed, sam, and fasta files (161). 

 
3.4 CNV Estimation from RRBS Data 

To estimate CNV from RRBS reads, we used HMMcopy at 500kb resolution 

(162). HMMcopy is a tool using a read-depth (RD) approach for CNV deduction from 

WGS data. HMMcopy makes a bias-free CNV estimation by correcting mappability bias 

and GC content in sequencing reads. It implements a hidden markov model (HMM) for a 

copy number profile segmentation into non overlapping windows that are predicted to 

have the same copy number state and relate it to the biological CNV events.  HMMcopy 
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takes an input of three WIG format files that are generated by a linux based 

HMMcopy_util tool, namely GC content, readcount and mappability values for fixed 

width non overlapping windows across the reference genome (162). WIG (wiggle) file 

format is a text-based file that displays continuous data such as probability scores, GC 

content, and transcriptome data. On the other hand, BIGWIG file is an extended WIG file 

format which facilitates working with big data such as reference genome. The three wigs 

file were generated by: mapCounter, gcCounter and read counter commands using 

HMM_util. Briefly, mapCounter tool was used for calculating the average mappability for 

fixed width non overlapping windows across whole sequences of reference genome in a 

bigwig file. We have downloaded the bigwig file 

“wgEncodeCrgMapabilityAlign100mer.bigWig” for hg19 from UCSC genome browser 

(https://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/). 

 

> mapCounter -w 500000 wgEncodeCrgMapabilityAlign100mer.bigWig > map.wig 

 

gcCounter tool was used for calculating the GC content for fixed width non overlapping 

windows across whole sequences of reference genome in a fasta file (hg 19).  

 

> gcCounter -w 500000 genome.fa > gcCounter.wig 

 

readCounter tool was used for calculating the read counts for fixed width non overlapping 

windows across whole sequences in aligned reads bam file.  

 

> readCounter -w 500000 sample.sorted.bam > sample.wig 

 
 
The GC content and mappability values were corrected before performing HMM 

prediction on the reads. The correction procedure includes:  

● Filter out bins with 0 read and 0 GC content, filter out outlier bin, smoothing 

windows by loess with a small span on GC curve.   

● Corrected GC (cor.gc) is calculated by correcting GC content in each bin.  
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Corrected mappability (cor.map) is calculated by correcting the mappability of 

each bin. “Copy” is the log2 of cor.map that will be used in CNV prediction in 

HMM.  

 

> mydata = wigsToRangedData(readfile = "sample.wig",gcfile = 

"gcCounter.wig",mapfile = "map.wig") 

> corrected_data=correctReadcount(mydata) 

HMMcopy also plots a GC bias graph and corrected CNV graphs over the genome 

(Appendix 1).  

The prediction procedure includes HMM segmentation function takes in “copy” values 

and predicts the regions of equal copy number into segments, then assigns a biological 

copy number state of each region using HMM. HMMsegment consists of two parts; the 

first part performs iteratively Expectation-Maximization algorithm to find the optimal 

parameters, the second part is to perform Viterbi algorithm that conducts the actual 

segmentation of the data and output segmented state (162). 

HMMcopy reports predictions as a table containing the chromosomal segment location 

annotated with corrected mean number, and state number between (1-6): 

1: homozygous deletion 

2: heterozygous deletion 

3: neutral 

4: increased copy number 

5: heterozygous duplication 

6: homozygous duplication 

Moreover, HMMcopy provides a graph that visualizes the CNV states and their mean 

distributions over the whole genome of all chromosomes (Figure 3.5). 
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Figure 3.5. An example graph of CNV estimation by HMMcopy throughout all 
chromosomes. 

 

3.5 Correlation Calculations 

To infer the association between the different omics, we used Pearson correlation 

coefficient (r), which is a commonly used correlation measure with continuous variables 

(163).We calculated the Pearson correlation coefficient (r) between; promoter methylation 

and gene expression, gene body methylation and gene expression, gene expression and 

CNV. The promoter region was defined as 1 kb downstream and 1kb upstream of TSS, 

while gene body region was defined to be from 1kb downstream of TSS to TES (Figure 

3.6). The CNV values that are used for correlation calculations are the corrected mean of 

segments provided by HMMcopy. While, for gene expression data, log2(fpkm+1) values 

were used for correlation calculations. 

 

 
Figure 3.6. The Promoter and the gene body regions of each gene 

 
3.6 Bayesian Networks  

Bayesian Networks (BN) are probabilistic graphical models that represent the joint 

probability distribution in a factorized way (25). A BN composed of a graphical structure 

with a set of parameters. BNs are defined as directed acyclic graphs (DAG) consisting of 

nodes and directed edges. It is constructed as a set of conditional independence 

assumptions between the variables and its non-descendants given its parents. The 
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parameters represent the conditional probability distributions between variables that 

connected directly by edges giving their causal relationship (20). The pointing side of the 

edges shows the direction of the causing. For example, if an arc goes from A node heading 

to B node, meaning that A is the causing of B. In other words, B is conditionally dependent 

on A (figure 3.7). The conditional probability of A given B is represented by P(A | B). 

Formally, the sets of variables A and B are said to be conditionally independent given the 

set C if P(A | B,C) = P(A | C). 

 

 
Figure 3.7. Simple Bayesian network structure (DAG). 

 
There are several ways to build a BN model: The structure is defined manually by 

expert information or the parameters are estimated by using maximum likelihood or 

Bayesian method (164). The performance of BN models can be tested and compared using 

scoring methods such as relative likelihood, Akaike information criterion (AIC) and 

Bayesian Information Criterion (BIC) (165). AIC score is used to examine the 

compatibility of their structures, and then a relative likelihood approach was used to 

compare the goodness of fit of one network to another. N1 and N2 are two networks, if 

AIC (N1) ≤ AIC (N2) then the relative likelihood of N2 respect to N1 is: 

exp (AB>	(C!)DAB>	(CE)E )  (3.4.) 
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Akaike information criterion (AIC) is an estimator score used for estimating the quality 

of the model on the number of parameters (k) and the maximum likelihood estimation 

for the model(L) (Equation 3.5).  

;<= = 2? − 2'@	(A)  (3.5.) 
 
Bayesian information criterion (BIC) is a criterion for model selection that is very related 

to AIC score but differs in depending on the number of observations as an extra criterion. 

It is calculated by the formula (3.6).  

B<= = ?'@	(@) 	− 2'@	(A)  (3.6.) 
 

To dissect the causal relationship association among the three omics, we built three 

BN structures to model the causal relationship between CNV, gene expression and DNA 

methylation. The first model “CEM”, assumes that there is a causal relation from CNV to 

gene expression, and from gene expression to DNA methylation in a serial connection 

(Figure 3.8-A). The second model “CME” assumes that there is a causal relation from 

CNV to DNA methylation, and from DNA methylation to gene expression in a serial 

connection (Figure 3.8-B). The third model “Indep” assumes that there is a causal relation 

from CNV to both DNA methylation and gene expression independently in a diverging 

connection (Figure 3.8-C).  
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Figure 3.8. The three constructed BN:  A) CEM, B) CME, C) Indep 

 

Because BN performs better with discrete values, the data of gene expression and 

DNA methylation levels were discretized (166). FPKM values were discretized into three 

categories (low, moderate, and high) expressions. The cutoffs were set based on the same 

categories used in EBI atlas database (199); (0.2-10): low, (10-1000): moderate, (>1000): 

high expression. DNA methylation levels were also discretized into three categories 

(hypo, neutral, and hyper) methylated. The cutoffs were set to be (0-0.2): hypomethylated, 

(0.2-0.8): neutral, (>0.8): hypermethylation. For DNA copy number, we used CNV states 

that are provided by HMMcopy. The states ranged between 1-6: (1): homozygous 

deletion, (2): heterozygous deletion, (3): neutral, (4): gain, (5): amplification, (6): high 

level amplification.  

The parameters of the three models were fitted using maximum likelihood 

estimation (MLE). BNlearn R package was used for BN model construction, fitting and 

scoring (164). As well, BIC score was also calculated, and only models that have followed 

the same model by both AIC and BIC were kept. Moreover, model comparisons were 

done by using BIC score only. The model with the lowest score was taken to be the best 

fitted model. The comparison for a model to another were considered by taking the 
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difference between the two models with the lowest and the second lowest BIC (equation 

3.7) and the strength of the evidence were adjusted according to ΔBIC (167) as : 

0-2: indicates weak evidence, 

2-6: positive evidence,  

6-10: strong evidence,  

>10: very strong evidence.  

ΔBIC = BIC/-F$.2	'$G-/% − BIC'$G-/%  (3.7.) 

 

The models were applied on protein-coding genes. Only genes that have been detected in 

all cells were chosen for model testing. In order to have as much as possible of genes, we 

eliminated sample 17 because of the low number of genes detected (8226 genes) from 

RRBS data, which in turn lowers the number of mutual genes to be tested. Figure (3.9) 

shows the number of detected genes from RRBS data in all cells, comparing the number 

of detected genes in sample 17 to the other 24 samples. As a result, 2661 genes were used 

to test BN models.  
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Figure 3.9. Number of the detected genes from RRBS data of each sample. 

 
 
 
 
3.7 Gene Set Enrichment Analysis 

3.7.1 CBioportal Database 

In order to find whether the detected genes have been reported in HCC before, we 

searched the genes in cbioportal database (168). Cbioportal is a platform that contains a 

comprehensive large-scale of cancer genomics data including data from TCGA, ICGC, 

and published sequence studies from academic and commercial institutions (167). The 

Cancer Genomic Atlas (TCGA) is the largest and richest cancer data of 200 different types 

of cancer collected from about 12,000 patients around the world (169). TCGA data are 

composed of many omics data including DNA sequencing, RNA sequencing, CNV, DNA 

methylation, and proteomic data. The whole TCGA data are implemented in cbioportal 

database (168, 170). 
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4. RESULTS 

4.1 Gene Expression Levels 

As mentioned in section 3.2, we have used Tophat-Cufflinks pipeline to analyze RNA 

sequencing data. We annotated the sequences to hg19 reference genome with protein 

coding Refseq genes. Table (4.1) shows the mapped reads, mapped ratio, and the number 

of detected genes of RNA-seq data for 25 samples. At the end of the pipeline, 18584 genes 

were yielded. In order to select the expressed genes that have been detected in all cells, 

we eliminate both the genes with (NA) value and the genes that have zero value in all 

cells, which resulted in 15326 genes. 

 

Table 4.1. Sequence Information of RNA Sequencing Data Samples. 

 

Sample Total number of 
analyzed reads 

Mapped read 
pairs 

Mapping 
efficiency 

Mapped genes 
(fpkm>0) 

1 3956277 1973751 68.0% 5618 
2 4005566 2216595 72.2% 8606 
3 3751180 1948646 69.4% 6934 
4 3612890 1958354 71.6% 9348 
5 4074177 2080378 68.3% 7892 
6 7133651 3418379 65.5% 4617 
7 5750626 2507828 60.0% 3088 
8 3445214 1663878 66.5% 5314 
9 3567104 1683551 65.1% 6097 
10 3706688 1783222 67.0% 6930 
11 3864532 1634657 59.9% 4818 
12 6636352 3813552 72.8% 7414 
13 6015670 2408480 57.0% 4875 
14 6365473 3330118 68.2% 3645 
15 7018374 3737093 69.8% 6368 
16 11163622 7020724 77.1% 7859 
17 9983774 4585241 59.7% 5016 
18 6186861 3423019 71.8% 7398 
19 6986571 4000465 72.3% 6540 
20 6607400 3049466 63.4% 5581 
21 5470092 2207147 58.0% 2630 
22 7102096 3384499 65.9% 7349 
23 9066635 4786858 70.2% 7784 
24 1908044 905168 64.9% 4007 
25 3088062 1213749 55.8% 4033 
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As a part of the pipeline, the sequencing reads were aligned to hg19 reference 

genome (UCSC assembly) with Tophat. Next, Cuffquant tool was used to estimate the 

gene expression of each sample. Then, Cuffnorm tool was used to normalize the values 

from Cuffquant so that all gene expression values become on the same scale. Cuffnorm 

tool reported FPKM values of each gene for all samples. For the downstream analysis, we 

have used log2(FPKM+1) values for gene expression levels. Figure (4.1) shows the gene 

expression (log2(fpkm+1)) distributions for each sample. 

 

 

Figure 4.1. Gene expression distribution in all samples. 

 

4.2 DNA Methylation Levels 

For DNA methylation analysis Bismark software was used for the alignment and 

CpG sites calling (previously described in section 3.3) of RRBS data. Table (4.2) 

shows the sequencing information including the total number of analyzed CpG sites 
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and the total number of detected genes in each sample. On average, about 13100 genes 

were detected on all cells. Sample 16 had the highest detected genes with 15818 genes, 

while Sample 17 had the least detected genes with 8226 genes. 

 

 

Table 4.2. Sequence Information of DNA Methylation Data. 

Sample Total 
number of 
analyzed 

reads 

Mapping 
efficiency 

Total 
number of 

C's analysed 

Total C's in 
CpG context 
(methylated 

and 
unmethylated) 

Total C's in CpG 
context 

(methylated and 
unmethylated) 

(depth >=3) 

Total 
number 

of 
detected 

genes 

1 5682216 6.0% 16111942 3608134 690810 13851 
2 6821806 15.5% 51571705 10532456 1159830 15156 
3 7462253 7.4% 26660719 5510918 884191 14515 
4 3195983 13.3% 18732458 4211753 1012511 14755 
5 8115618 7.6% 30127778 6353989 734467 14006 
6 5939977 4.6% 13266640 2492453 465859 12388 
7 5951204 4.7% 13471964 2700915 393998 11362 
8 6193519 3.5% 10531074 2181766 348531 11509 
9 5472350 5.9% 15719599 3328962 749362 14136 
10 5664762 6.3% 17649347 3648788 737629 13921 
11 7887331 4.5% 17188932 3534484 328956 10998 
12 8109880 7.3% 27725731 6020939 637289 13485 
13 6050471 10.0% 28002614 5560722 720851 13829 
14 10215873 3.5% 16413258 3541333 345575 11282 
15 8258172 4.9% 18112819 3463948 435799 12225 
16 9905917 13.5% 61163128 13431814 1677730 15818 
17 6193280 4.2% 12755078 2510035 185173 8226 
18 7432772 7.5% 26231957 5290348 732962 14072 
19 6714080 7.7% 24631107 4873392 616350 13493 
20 6855087 8.2% 25252120 5218707 780469 14233 
21 7519129 5.2% 17807460 3151685 500155 12926 
22 7388531 7.9% 26280431 5726413 753525 13991 
23 8689899 6.7% 27273514 5966027 613082 13337 
24 9126636 4.0% 18124466 3465984 422334 11956 
25 9126636 4.0% 18124466 3465984 676406 13652 

 

The results of CpG sites showed that CpG island (CGI) were highly covered, that is, about 

50% of the called CpG sites in each sample were related to CGI regions (Figure 4.2). 

Comparably, promoter regions were highly covered than other genomic regions, that is, 
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about 45%-50% of the called CpG sites in each sample were related to promoter regions 

(Figure 4.3).  

 

 
Figure 4.2. Coverage of CpG sites in CpG Regions of Each Sample. 

 

 

Figure 4.3. Coverage of CpG sites in Genomic Regions of Each Sample. 
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The results showed a hypomethylation in all 25 samples, especially in promoter regions 

and a higher methylation level in gene body regions. Figure (4.4) shows the methylation 

level of all samples in different genomic regions.  

 

 

Figure 4.4. Methylation Level of Different Genomic Regions of Each Sample. 

 

4.3 Copy Number Variation 

As mentioned in section 3.4, HMMcopy a R package was used to estimate CNVs 

from RRBS data.  From CNV results, all 25 samples showed an amplification in 

chromosome 7 and q arm of chromosome 1. I also observed a deletion in chromosome 8 

and chromosome 4.  Moreover, the samples (3,4,6,9,12,13,15,16,18,19,20,21,22,23,25) 

showed a loss in chromosome 13, while samples (2,6,13,14,15,20,21,22,23) showed an 

amplification in chromosome 6, Figure (4.5), shows the CNV pattern of genomes of some 
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samples (all samples are in Appendix 2), the red color represents the amplification, blue 

represents the neutral, and the green represents the deletion in copy number. 

 

Figure 4.5. CNV pattern of some samples. 
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4.4 Correlation Between Omics 

For the correlation between DNA methylation and gene expression, we observed 

a negative relationship in the promoter region with Pearson correlation coefficient (r) of        

-0.1387± 0.08 (mean ± SD). We also observed a positive correlation with Pearson 

correlation coefficient (r) of 0.3136± 0.07 (mean ± SD) gene body region. Figure (4.6) 

shows the Pearson correlation coefficient (r) between DNA methylation and gene 

expression in the two regions (promoter and gene body) of each sample. In this correlation, 

only genes that have been detected from both RRBS and RNA-seq data were used. For 

each sample, we found that all genes that have been detected from RRBS were detected 

from RNA-seq data. So, the number of genes that have been used in this calculation are 

the same in table 4.2. 

 

 
Figure 4.6. Pearson correlation coefficient between DNA methylation and gene 
expression in promoter and gene body regions. 

 

For the correlation between DNA copy number and gene expression, we found a highly 

positive correlation with Pearson correlation coefficient (r) of 0.821± 0.07 (mean ± SD). 
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The DNA copy number that is used in this correlation, is the median of the copy number 

in each segment that is provided by HMMcopy. The Figure (4.7) shows the Pearson 

correlation coefficient (r) between gene expression levels and DNA copy number in each 

sample. This correlation was calculated on 15326 genes.  

 
Figure 4.7. Pearson correlation coefficient between CNV and Gene Expression 

 

4.5 Causality Analysis Using BN 

To explore the causal relationship between omics, we used Bayesian Network to 

analyze the relationship between DNA methylation and gene expression by considering 

that CNV is the trigger of the causal relationship since its state is not modifiable (44). 

FPKM values were discretized into three categories (low, moderate, and high) expression. 

The cutoffs were set based on the same categories used in EBI Atlas Database: (0.5-10 

FPKM): low, (11-1000 FPKM): moderate, (>1000): high expression. DNA methylation 

levels were also discretized into three categories (hypo, neutral, and hyper) methylated. 

The cutoffs were set to be (0-0.2): hypomethylated, (0.21-0.8): neutral, (>0.8): 

hypermethylation. For DNA copy number, we used CNV states that are provided by 

HMMcopy. The states ranged between 1 to 6: (1): homozygous deletion, (2): heterozygous 

deletion, (3): neutral, (4): gain, (5): amplification, (6): high level amplification.   
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Three BN models were constructed using maximum likelihood estimation. Also, for 

model scoring, both AIC and BIC scores were overlapped to decide which of the three BN 

models (described in 3.6 section) is the most likely to represent the data for each set of 

variables. The three models are INDEP, CME, and CEM (figure 3.9). In “INDEP” model, 

CNV affects independently DNA methylation and gene expression. In “CME” model, 

CNV affects DNA methylation, which in turn affects gene expression. In “CEM” model, 

CNV affects gene expression, which then affects DNA methylation.  

The models were applied to protein-coding genes that have been detected to have a 

variation in gene expression, methylation and copy number throughout all samples. As 

previously described in section 3.6, sample 17 were eliminated in this analysis because 

the number of detected genes from DNA methylation data were very low which in turn 

could affect the number of mutual genes to be analyzed. 

The relative likelihood was used to compare the goodness of fit of one BN to another 

(section 3.6). We only kept the models when the best model is at least ten times more 

likely to be than the second-best model for both AIC and BIC. The results showed that 21 

genes were best fitted to one of the three models according to relative likelihood. Table 

(4.3) shows the AIC, BIC and the relative likelihood of the 21 genes. Out of 21 genes, 

CME model was best fitted to 16 genes, CEM to 4 genes and 1 gene was best fitted to 

INDEP model. 



 

 

51 

Table 4.3. Genes with verified BN models and AIC and BIC score of the three models and relative likelihood values. 
GENE Best  

fitted 

Model 

AIC BIC 

INDEP CME CEM Relative  

Likelihood 

INDEP CME CEM Relative  

Likelihood 

ULK1 CEM -38,545833 -39,344477 -45,416305 20,8199952 -42,66902102 -44,056693 -49,539494 15,50869 

HLA.B CME -53,750063 -61,104094 -52,870194 39,5282517 -57,87325105 -65,816309 -56,993382 53,06561 

SLC26A11 CME -33,199123 -37,928193 -33,266463 10,2868364 -37,32231098 -42,640409 -37,389652 13,8098 

PPP2R5A CME -57,358823 -62,132136 -55,660909 10,8770671 -63,838185 -68,611432 -60,962151 10,87707 

COPZ1 CME -45,843344 -51,342025 -46,312274 12,3650728 -49,96653258 -56,054241 -50,435462 16,59978 

ANKS1B CEM -27,478388 -27,789182 -35,332987 43,4626654 -30,42352303 -30,734317 -38,278122 43,46267 

TIM44 CME -45,711793 -55,407433 -46,172043 101,260331 -49,83498126 -60,119648 -50,295232 135,9393 

A1BG CME -48,646964 -57,110518 -49,579232 43,1914803 -52,77015269 -61,822734 -53,70242 57,9834 

ALDH2 CME -42,748862 -48,761806 -42,236788 20,2159522 -46,87205085 -53,474022 -46,359976 27,13937 

GON4L CME -51,229639 -55,902784 -50,209636 10,3457206 -57,70893461 -62,382081 -55,510878 10,34572 

FBLN1 INDEP -46,487603 -37,538125 -36,982996 87,7717069 -49,43273775 -40,483259 -39,92813 87,77171 

C3 CME -43,248846 -50,508169 -43,232024 37,7000397 -46,19398098 -53,453303 -46,177158 37,70004 

MAP3K6 CME -32,941672 -37,924072 -32,487296 12,075757 -37,0648607 -42,636287 -36,610485 16,21138 

ZNF695 CEM -35,189638 -34,458313 -43,021397 50,1931979 -39,90185346 -38,581501 -47,144586 37,38861 

DSTN CME -39,918266 -46,743217 -39,345106 30,3402594 -44,04145406 -51,455432 -43,468295 40,73098 

TF CME -37,08112 -48,345884 -37,060452 279,326647 -41,20430819 -53,058099 -41,183641 374,9885 

ANP32B CME -31,597169 -38,09578 -31,962265 21,4721645 -34,5423031 -41,040915 -34,9074 21,47216 

PRCC CME -54,56772 -60,138928 -53,755422 16,2096074 -61,04701625 -66,618224 -59,056664 16,20961 

GNS CME -43,765062 -48,624238 -43,765062 11,3542046 -47,88824994 -53,336453 -47,88825 15,24271 

MGAT4C CEM -22,358108 -22,358108 -35,559292 735,530238 -25,30324284 -25,303243 -38,504426 735,5302 

UBR4 CME -45,888437 -53,753649 -45,888437 51,0398303 -50,01162523 -58,465865 -50,011625 68,5196 
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On the other hand, we focused on BIC scores only, the model with the lowest score was 

taken to be the best fitted model. The comparison for a model to another were considered 

by taking the difference between the two models with the lowest and the second lowest 

BIC (equation 3.6) and the strength of the evidence were adjusted according to ΔBIC as:  

0-2: indicates weak evidence, 

2-6: positive evidence,  

6-10: strong evidence,  

>10: very strong evidence.  

 

ΔBIC = BIC!"#$%&	($)"!* − BIC($)"!*  (3.6.) 

 

The results showed that out of 1830 genes have a valid BIC score after eliminating genes 

with ΔBIC>6 (low evidence), 207 genes were left. CEM model was best fitted to 169 

genes, CME to 34 genes, and INDEP model to 4 genes. Appendix 3 contains the BIC 

scores and the names of all genes. Table (4.4) shows the number of genes were best fitted 

to each model according to BIC scores only. 

 

Table 4.4. Number of genes best fitted to each model and the evidence strength 
according to BIC scores only 

Evidence strength (ΔBIC) CEM CME INDEP TOTAL 

Strong (6-10) 91 26 1 118 

Very strong (>10) 78 8 3 89 

TOTAL 169 34 4 207 

 

4.6 Gene Set Enrichment Analysis 
4.1.1. CBioportal Database 
We split the genes into 2 groups: Group 1 contains the genes that have best fitted 

to BN models according to AIC and BIC scores with relative likelihood >=10 (21 genes), 

and Group 2 has the genes with a valid model according to BIC score only (207 genes). 

For Group 1 genes, cbioportal showed that the genes have been reported in 83% of 396 
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cases in HCC studies. Figure 4.8 shows HCC related studies from cbioportal that have 

reported the detected genes. At the left side of each row shows the genes and the 

percentage of how much this gene is reported in studies while the bars at the right side 

represents each study with different omic type. The grey bar means the gene is not 

mentioned in that study and the colored bar means that the gene is reported in that study. 

Cbioportal also reports alteration frequency. For Group 1, it showed that the genes are 

reported in about 48% of the studies with high gene expression, 30% with multiple 

alterations, and 2% with CNV amplification. 
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Figure 4.8. The gene list of Group 1 and the related HCC studies reported by cbioportal 
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For genes in group 2, we tested each model separately in the database. Genes of 

CME model (169 genes) have been reported in 99% of the cases of HCC. Figure 4.9 shows 

some of the genes and the study that they have been reported them are shown (all genes 

are in Appendix 4). Also, alteration frequency summary table of cbioportal have shown 

that the genes have been reported in 75% of studies with multiple alterations, %1 with 

mutations, 1% with copy number amplification, 2% with low mRNA, and 20% with high 

mRNA.  
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Figure 4.9. The gene list of Group 2 (CME) and the related HCC studies reported by cbioportal 
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Moreover, cbioportal have shown that some genes have matched to pathways in 

HCC. Table 4.5 shows the affected pathways and the genes that have been matched to 

each pathway. 

Table 4.5. Genes of Group 2 (CME) that matched to pathways in HCC (reported by 
cbioportal). 

Pathway Genes Matched 

BLCA-2014-RTK-RAS-PI(3)K-pathway STK11,FGFR3 

HIPPO STK11,FGFR3 

RTK-RAS FGFR3,RAC1 

LUSC-2012-RTK-RAS-PI(3)K-pathway STK11,FGFR3 

HNSC-2015-RTK-RAS-PI(3)K-pathway FGFR3 

SKCM-2015-RTK-RAS-PI(3)K-pathway RAC1 

STAD-2014-RTK-RAS-PI(3)K-pathway JAK2 

PI3K STK11 

LUAD-2014-RTK-RAS-PI(3)K-pathway STK11 

 

Genes reported for following the CEM model (34 genes) have been shown in about 90% 

of the cases of HCC. Figure 4.10 shows the genes and the studies that they have been 

reported. Also, alteration frequency summary statistics tables of cbioportal have shown 

that the genes have been reported in 40% of the studies with multiple alterations, 40% 

with high mRNA 5% with low mRNA, 3% with copy number amplification, 1% with 

mutations, and 1% with copy number deletion.  
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Figure 4.10. The gene list of Group 2 (CEM) and the related HCC studies reported by cbioportal
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Moreover, cbioportal have shown that some genes have matched to pathways in HCC. 

Table 4.6 shows the affected pathways and the genes that have been matched to each 

pathway. 

 

Table 4.6. Genes of Group 2 (CEM) that matched to the affected pathways in HCC 

(reported by cbioportal) 

Pathway Genes Matched 

COADREAD-2012-TGF-B-signaling-pathway TGFBR1 
TGF-Beta TGFBR1 
RTK-RAS ERRFI1 

 

For 4 genes following the INDEP model, have been reported in 20% of the cases 

of HCC. Figure 4.11 shows the genes and the studies that they have been reported. Also, 

alteration frequency summary of cbioportal have shown that the genes have been reported 

in 6% of studies with mutations, 1% with multiple alterations, %1 with copy number 

deletion, 1% with copy number amplification and 11% with high mRNA. 
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Figure 4.11. The gene list of Group 2 (INDEP) and the related HCC studies reported by cbioportal 
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5. DISCUSSION AND CONCLUSION 

In this study, by integrating the genome, epigenome, and transcriptome of HCC single 

cell data, we attempt to infer causality in HCC. By fitting BN to gain more insight into 

HCC susceptibility and progression.  

Firstly, we analyzed the RNA-seq and RRBS data on their own. We calculated 

methylation levels and FPKM values. From RRBS data, the results showed that CpG 

islands and promoters have a higher coverage than other genomic regions. This explains 

the nature of the data of RRBS method which uses MspI enzyme that have a restriction 

site mostly found in CpG islands near promoters, assisting RRBS method to cover highly 

CpG regions (171). Besides, we observed a low methylation level over the genome of 

each sample especially in the promoter region. This observation consists with studies that 

detected a global hypomethylation in HCC (172, 173). 

Thereafter, CNV were estimated from RRBS data by using HMM method. All 25 

samples showed an amplification in chromosome 7 and q arm of chromosome 1. These 

amplifications were previously detected in HCC study (174). We also observed a deletion 

in chromosome 8 and chromosome 4. These two deletions have been reported in literature 

in HCC (175, 176). As well, some cells showed a loss in chromosome 13, while some 

others showed an amplification in chromosome 6. This consists with some HCC studies 

in literature (177, 178). 

Then, we investigated the correlation between omics, by calculating Pearson 

correlation coefficient (r). Between gene expression and DNA methylation we observed a 

negative correlation in the promoter regions and a positive correlation in gene body 

regions. These correlations indicate that the DNA methylation in the promoter region 

might regulate the expression of the corresponding gene, and the methylation in the gene 

body region is also involved in this regulation (44). In addition, we observed a high 

correlation between gene expression and CNV, which means that CNV might have an 

impact on the gene expression levels by changing the gene dosages (179). 

Next, we integrated the genome, epigenome, and transcriptome data in order to 

analyze the causality between omics. By using BN, we explored three different model 
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alternatives. INDEP models where CNV affects gene expression and DNA methylation 

independently from each other; CEM model where CNV affects gene expression then 

DNA methylation; CME model where CNV affects DNA methylation then gene 

expression.  

Selecting the genes according to both AIC and BIC scores with relative likelihood 

>=10, yielded 21 genes to follow a specific BN model (CME: 16 genes, CEM: 4 genes, 

INDEP: 1 gene). Cbioportal showed that all the genes have been previously reported in 

HCC studies (figure 4.2). All genes were reported in at least one study with high gene 

expression. In addition, when search these genes in genome wide studies, we found that 

HLA gene have been related to HCC in 4 different GWAS studies (180-183). Variations 

in HLA gene that have strongly related to HBV infection and development of liver 

cirrhosis and HBV-related HCC (183). 

On the other hand, when we focused on BIC score only, we got 207 genes followed 

a BN model (CEM: 34 genes, CME: 179 genes, INDEP: 4 genes). Similarly, all the 

detected genes were reported in HCC studies. Moreover, Cbioportal have matched some 

genes to pathways that have been reported to be affected in HCC.  Genes that follow CME 

model: STK11 (ΔBIC=47.35), FGFR3 (ΔBIC=12.04), JAK2 (ΔBIC=13.48), and RAC1 

(ΔBIC=6.11) have been matched to PI3K signaling pathway that play a role in the survival 

and the rapid growth of HCC tumor (184-186). Also, TGFBR1 gene which follows CEM 

model (ΔBIC=38.25) have been matched to TGF-Beta signaling pathway. TGF-Beta 

signaling pathway has a major contribution in HCC pathogenesis and tumor development, 

is considered as a master regulator for cell proliferation and differentiation (187, 188). 

Furthermore, we found that the genes FGFR3 (ΔBIC=12.04) and RAC1 (ΔBIC=6.11) that 

follow CME model and ERRF1 gene (ΔBIC=4328.38) which follow CEM model have 

been matched to the same pathway, RTK-RAS signaling pathway (Figure 5.1). Many 

studies have shown that RTK-RAS signaling pathway plays a major role in HCC 

proliferation, survival and apoptosis (189-191).  
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Figure 5.1. Genes in RTK-RAS signaling pathway, highlighting FGFR3 (CME), ERRF1 
(CEM), and RAC1 (CME) genes. 

 
In this thesis, we showed different genes which follow different BN models take 

place in different (or same) pathways that play major roles in HCC tumorigenesis. By this 

way, the heterogeneity of the omics and their regulations with each other have been 

shown. This method might help explore the genes that are related to HCC by defining 

their models according to the relationship between the different omics. Many multi-omics 

integration methods such as supervised, unsupervised, multi-dimensional scaling, cluster 

of clusters have been used in HCC studies. These studies (mentioned in literature review) 

focused on finding the relationship between omics by correlating or clustering them. Here, 

we suggest the BN to be used to explore the causal relationship between three omics in 

sequencing data at a single cell level. We found 207 genes with significant model, many 

of these genes have been reported previously to be related to HCC in either GWAS or 

sequencing data. Lastly, we introduce this method as a method that can provide a deeper 

insight and understanding about HCC cells. It can be developed to implement more omic 

data (e.g., proteomic) and to be used with other cancer types or complex diseases.  
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5.1 Limitations and Possible Improvements 

 

• In this study, the used data were generated by using one of the first single cell 

sequencing methods, which means that a quality issue was presented. For example, 

the mapping efficiency of RRBS data was very low. Which in turn, might affect 

our calculations of DNA methylation level and CNV estimations. 

• The genomic region was set to be from TSS to TES. However, it could also cover 

the regions that are away from TSS in order to involve the enhancer and regulator 

regions.  

• We only analyzed protein-coding genes; non-coding genes could also be involved. 

• For BN construction, DNA methylation and gene expression values were 

discretized according to some classifications; for gene expression the classification 

in EBI expression Atlas were used. This might lead to losing some information or 

affecting the final results. 

• Other omics data such as proteomics can be included which might give us more 

comprehensive results. 

• This method could be applied on a larger dataset, that might help in increasing the 

validation of the data.  

• Moreover, it can be used on different data of different types of cancer or complex 

diseases. 
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7. APPENDIX 

Appendix 1: Before and after correction step of GC-content and mappability by 
HMMcopy. 
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Appendix 2: CNV Pattern of All Samples. 
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Appendix 3: BIC scores for the three models with gene names, ∆BIC, and best 

fitted model for each gene.  

 
GENE BEST 

MODEL 
Indep CME CEM Min.Model Diff 

HDAC4 CME -2,2289733 -18,479551 -5,7020637 -18,479551 12,7774877 

TGFBR1 CEM -59,09022 -56,842739 -66,378335 -66,378335 7,28811516 

LATS2 CME -39,868038 -48,925034 -38,85295 -48,925034 9,0569962 

P3H4 CME -35,582237 -42,904957 -34,374466 -42,904957 7,32272003 

NCKAP5L CME -50,69638 -57,526745 -49,964953 -57,526745 6,83036493 

UROC1 CME -47,470606 -62,226466 -50,898225 -62,226466 11,3282413 

CATSPERG CME -40,13805 -51,706312 -44,541814 -51,706312 7,16449748 

MAF1 CEM -70,127162 -68,444081 -76,968214 -76,968214 6,8410515 

EHD2 CME 7,93598202 -11,521332 8,96149495 -11,521332 19,4573145 

HELZ2 CME -6,8587646 -15,723993 -6,0152629 -15,723993 8,86522877 

NUFIP2 CEM -58,370376 -59,022175 -65,508333 -65,508333 6,48615817 

HLA-A CME -58,056125 -65,12896 -56,785351 -65,12896 7,07283471 

HLA-B CME -72,27374 -81,637386 -71,091871 -81,637386 9,36364647 

HLA-C CME -67,592986 -77,134011 -65,980301 -77,134011 9,54102536 

HLA-G CME -23,080286 -38,663098 -29,231813 -38,663098 9,43128521 

SLC4A7 CME -29,833926 -40,488045 -31,097326 -40,488045 9,39071884 

THEMIS2 CME -33,99145 -60,537583 -34,113619 -60,537583 26,4239642 

ITGB4 CME 29,0678127 -29,146277 28,974366 -29,146277 58,1206427 

SNRNP70 CME -6,0085445 -14,698472 -6,4150288 -14,698472 8,2834435 

KIF13A CME -46,502361 -53,038304 -46,093555 -53,038304 6,53594354 

TTLL11 CME -14,006259 -48,017534 -18,578979 -48,017534 29,4385544 

ARL4A CEM -62,684045 -59,091975 -69,277898 -69,277898 6,59385296 

ATXN10 CME -82,636159 -90,782049 -82,251582 -90,782049 8,14589083 

ANKEF1 CEM -25,726159 -40,127815 -47,722586 -47,722586 7,59477108 

LAPTM5 CME -56,000843 -63,220911 -57,111232 -63,220911 6,10967946 

KIF16B CME -47,193052 -60,656727 -45,318361 -60,656727 13,4636755 

COPG2 CME -11,842149 -18,544694 -10,371415 -18,544694 6,70254568 

CHCHD6 CME -68,502955 -75,340588 -68,801841 -75,340588 6,53874713 

SP5 CME -27,810869 -43,78184 -28,468223 -43,78184 15,3136174 

FZD1 CME 4,26501558 -21,936174 3,54813329 -21,936174 25,4843076 

AK4 CME -53,752006 -61,38631 -52,894717 -61,38631 7,63430357 

ANO8 CME -20,708698 -39,585338 -18,663597 -39,585338 18,8766392 

PSTPIP1 CME 41,600559 6,84325264 43,9090974 6,84325264 34,7573064 



 

 

86 

ZNF700 CME -46,804593 -61,114382 -44,843713 -61,114382 14,3097884 

TSHZ2 CME -47,007186 -58,972682 -45,425708 -58,972682 11,9654961 

ODF2 CEM -65,405178 -64,609607 -74,438585 -74,438585 9,03340712 

BTBD11 CME 8,32123274 -2,4978474 9,76701825 -2,4978474 10,8190802 

SUN2 CEM -55,498792 -54,991637 -62,41162 -62,41162 6,91282775 

COL28A1 INDEP -86,307244 -78,533805 -78,511991 -86,307244 7,77343959 

HIVEP2 CME 4,12833587 -10,745175 4,59399462 -10,745175 14,8735109 

PSMC5 CEM -45,457182 -46,417871 -54,094255 -54,094255 7,67638347 

SLC2A4RG CEM -48,013562 -46,612315 -54,07152 -54,07152 6,05795734 

PSMF1 CME -66,835961 -74,502376 -66,130247 -74,502376 7,66641551 

ZNF786 CME -23,30706 -48,041465 -23,968608 -48,041465 24,0728574 

FZR1 CME -35,555658 -56,106893 -34,657015 -56,106893 20,5512352 

CBX2 CME -34,503671 -42,509904 -33,850562 -42,509904 8,00623258 

RSRP1 CME -55,201769 -63,952997 -52,459862 -63,952997 8,75122796 

NFIX CME -11,655808 -19,964134 -10,442732 -19,964134 8,30832592 

CWC22 INDEP -27,506789 -16,534352 -15,914477 -27,506789 10,9724373 

COPZ1 CME -70,490997 -82,77623 -69,577861 -82,77623 12,2852322 

NPTX1 CME 68,0746423 51,7231343 67,9681455 51,7231343 16,2450112 

UGT1A4 CEM -66,26618 -63,118433 -74,379629 -74,379629 8,11344894 

ARHGEF10L CME -53,195984 -61,586743 -53,548454 -61,586743 8,03828945 

GLIS3 CME -10,506115 -23,987154 -11,415943 -23,987154 12,5712103 

CLPTM1 CME -66,026292 -74,549658 -66,222747 -74,549658 8,32691134 

ACAP3 CME -39,21396 -61,515604 -38,584288 -61,515604 22,3016447 

ATG10 CME -44,998985 -64,12722 -43,543441 -64,12722 19,1282351 

UHRF1 CME -23,074111 -41,539849 -21,529016 -41,539849 18,4657374 

PTPRG CME -35,660284 -47,194171 -34,427225 -47,194171 11,5338862 

PHKG1 CME -0,6955023 -23,490236 -1,1380948 -23,490236 22,3521415 

MRAS CEM -56,802938 -59,372961 -68,02502 -68,02502 8,65205865 

RABGAP1 CME -47,057699 -54,111555 -47,005697 -54,111555 7,05385588 

DLG5 CME -52,634652 -68,579269 -53,802621 -68,579269 14,7766476 

CAMK2N1 CEM -59,424113 -57,683585 -71,408041 -71,408041 11,9839285 

LRWD1 CME -62,244179 -69,951799 -60,71578 -69,951799 7,70761959 

FRMD4B CME -51,175267 -59,970823 -52,937674 -59,970823 7,03314878 

ZNF429 CME -71,251297 -80,851 -69,724751 -80,851 9,59970248 

UST CME -14,996172 -34,380256 -13,948147 -34,380256 19,3840844 

ENTR1 CME -67,936161 -74,041247 -66,871744 -74,041247 6,10508596 

GPX1 CME -55,405177 -66,344928 -53,634319 -66,344928 10,9397515 
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PIGT CME -71,033168 -80,197408 -70,246833 -80,197408 9,16423966 

TMEM39B CME -62,253917 -72,866092 -60,319625 -72,866092 10,6121749 

GMDS CEM -37,66387 -36,398546 -45,272452 -45,272452 7,60858254 

L3MBTL1 CME -33,970442 -50,661269 -32,050436 -50,661269 16,6908273 

COL12A1 CME 80,3598151 71,757414 81,9586348 71,757414 8,60240116 

IFFO2 CME -39,68893 -46,39258 -39,141003 -46,39258 6,7036501 

BTBD9 CME -24,36432 -31,812188 -24,175993 -31,812188 7,44786854 

MAMDC4 CEM -41,167171 -40,143775 -50,515528 -50,515528 9,34835677 

FRS2 CME -44,630675 -56,50779 -43,985698 -56,50779 11,8771155 

ANKS1B CME 2,92743233 -37,252111 -16,069274 -37,252111 21,1828367 

PDS5B CEM -58,200664 -56,787385 -64,431873 -64,431873 6,23120895 

AHCY CME -63,320166 -70,007514 -62,124803 -70,007514 6,68734796 

CENPP CME -52,846249 -60,208354 -51,460716 -60,208354 7,36210421 

PIM1 CEM -24,234289 -22,657799 -38,657848 -38,657848 14,4235589 

A1BG CME -69,72231 -84,505093 -68,997867 -84,505093 14,7827831 

SCARB1 CME -65,198434 -71,637998 -64,165012 -71,637998 6,43956401 

DIS3L2 CME -30,12329 -63,123493 -28,643228 -63,123493 33,0002032 

GNA11 CME -53,549131 -61,646037 -53,075963 -61,646037 8,09690632 

GNA14 CME -35,475903 -43,212206 -36,001483 -43,212206 7,21072258 

PDIA5 CME -74,537469 -81,646969 -75,141641 -81,646969 6,50532815 

RFTN2 CME -56,840878 -64,228634 -55,385061 -64,228634 7,38775653 

NACC1 CME -58,825715 -66,232324 -58,249417 -66,232324 7,40660867 

PLEKHN1 CME -12,01164 -35,686039 -16,822539 -35,686039 18,8634998 

ARFGEF3 CME 3,82533198 -20,671949 2,29568092 -20,671949 22,9676297 

ZEB1 CME -23,083044 -45,295135 -21,281171 -45,295135 22,2120913 

PNKD CME -57,437771 -63,508796 -55,590406 -63,508796 6,07102529 

ALDH2 CME -65,059629 -78,804653 -64,189316 -78,804653 13,7450234 

WDR62 CME -37,925723 -46,434215 -36,642554 -46,434215 8,50849138 

HSPG2 CEM -5,5158039 -7,7273104 -25,577689 -25,577689 17,8503788 

ZDHHC8 CME -45,718486 -59,026968 -43,565569 -59,026968 13,3084818 

GTSE1 CME -28,43571 -60,784711 -27,023415 -60,784711 32,3490004 

RLF CME -31,320055 -58,613355 -31,542228 -58,613355 27,0711272 

FAM117A CME -52,754704 -62,028897 -51,727383 -62,028897 9,2741926 

FAM117B CME -34,201284 -47,074986 -34,192211 -47,074986 12,8737025 

ARF4 CME -82,241377 -88,286585 -80,80578 -88,286585 6,04520802 

XXYLT1 CEM -45,482335 -45,592783 -52,374628 -52,374628 6,78184507 

RGMB CEM -10,661526 -23,830627 -30,70311 -30,70311 6,87248331 
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ZNF107 CME -42,503284 -49,614011 -40,796006 -49,614011 7,11072752 

RAB6B CEM -31,991675 -32,591917 -45,145562 -45,145562 12,5536449 

RAB7A CME -52,742203 -79,915618 -51,455665 -79,915618 27,173415 

FBXO46 CME -42,308166 -52,553112 -42,301059 -52,553112 10,2449459 

EPS15L1 CME -48,540818 -63,440134 -48,493977 -63,440134 14,8993162 

CHD1L CME -61,717998 -72,55296 -59,070026 -72,55296 10,8349616 

ARHGEF26 CME -57,552618 -68,705615 -59,913875 -68,705615 8,79173977 

ZNF43 CME -19,236161 -31,696003 -23,12337 -31,696003 8,57263304 

EIF4E3 CME -33,108193 -51,184209 -33,799795 -51,184209 17,3844137 

VASP CME -66,89586 -73,065628 -65,572146 -73,065628 6,16976798 

ZNF608 CME -57,018104 -69,479125 -55,571152 -69,479125 12,4610209 

TANGO2 CEM -55,976774 -55,55838 -64,523827 -64,523827 8,54705271 

ELOA CEM -68,459181 -68,479901 -77,284425 -77,284425 8,80452404 

FBLN1 INDEP -77,628118 -63,326392 -62,736788 -77,628118 14,3017262 

CLTCL1 CME -6,9003265 -30,119774 -4,8268754 -30,119774 23,2194478 

C3 CME -41,174471 -50,282256 -41,930392 -50,282256 8,35186382 

FAM210B CME -60,486713 -68,254596 -60,097645 -68,254596 7,76788363 

ZNF91 CME -63,150081 -78,583043 -61,677107 -78,583043 15,4329616 

SIPA1L3 CME -4,7935985 -13,95454 -3,7219214 -13,95454 9,16094176 

C20orf194 CME -33,803365 -69,445382 -31,216279 -69,445382 35,6420166 

NTMT1 CEM -59,766259 -59,240064 -66,277886 -66,277886 6,51162718 

STOX2 CME -33,302117 -55,151312 -40,914258 -55,151312 14,2370534 

CADPS2 CME -50,007022 -56,534209 -49,856638 -56,534209 6,5271871 

JAK2 CME -33,72356 -47,204693 -32,463885 -47,204693 13,4811328 

ZNF675 CME -60,561751 -71,271151 -58,335623 -71,271151 10,7094006 

KLHL22 CEM -66,500597 -64,506666 -73,448537 -73,448537 6,9479401 

AP1S3 CME -17,006715 -38,919654 -15,433197 -38,919654 21,9129397 

PHLDB2 CME -54,263327 -75,223849 -52,561066 -75,223849 20,9605215 

BRD1 CME 4,50320836 -3,0659156 5,23430589 -3,0659156 7,56912394 

GNAI2 CME -65,534079 -72,719364 -65,747314 -72,719364 6,97205006 

BMI1 CEM -59,768611 -58,603519 -66,727551 -66,727551 6,9589396 

DHX34 CME -46,251003 -60,390347 -45,902786 -60,390347 14,1393432 

YBX1 CEM -53,157482 -53,255511 -60,344493 -60,344493 7,0889822 

KMT5C CME -12,987651 -29,146431 -11,806874 -29,146431 16,1587798 

ITPR1 CME -12,523131 -25,028828 -14,520238 -25,028828 10,50859 

TET1 CME -8,380825 -57,94433 -9,7698197 -57,94433 48,17451 

MARK4 CME -58,369235 -64,497784 -57,428473 -64,497784 6,1285489 
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TOM1 CME -78,011028 -86,634044 -73,619212 -86,634044 8,62301611 

DSTN CME -61,097433 -73,851504 -58,952216 -73,851504 12,7540704 

GAK CME -46,649746 -53,161432 -45,472577 -53,161432 6,51168576 

ST6GALNAC
4 

CME -52,43062 -75,007581 -51,320688 -75,007581 22,5769602 

RABL6 CME -53,784171 -65,367156 -52,852869 -65,367156 11,5829841 

MTFR1L CEM -61,247151 -60,980077 -73,939109 -73,939109 12,6919576 

ADAM19 CME -37,097275 -44,368317 -35,938057 -44,368317 7,27104174 

TMEM242 CEM -37,162515 -36,923777 -46,623105 -46,623105 9,46058923 

REXO1 CME 10,9929448 -41,46522 11,6227675 -41,46522 52,4581648 

BCL7A CME -21,806597 -30,791758 -22,306923 -30,791758 8,48483478 

FGFR3 CME -40,410875 -52,455586 -36,515396 -52,455586 12,0447113 

TF CME -64,65454 -75,487241 -63,423622 -75,487241 10,8327006 

RAP1GAP CME 10,3989626 -52,40638 7,22874549 -52,40638 59,6351251 

LUZP1 CME -14,396593 -70,232264 -14,073252 -70,232264 55,8356708 

RUBCN CME -38,044632 -46,193446 -34,705239 -46,193446 8,14881401 

BIK CME -50,30767 -66,092135 -49,169156 -66,092135 15,7844655 

ZSWIM5 CME 47,5456159 33,7123011 43,7407852 33,7123011 10,0284841 

CECR2 CME -22,563199 -30,343147 -20,103582 -30,343147 7,77994801 

LHFPL2 CME -16,589221 -26,403711 -18,84433 -26,403711 7,55938116 

ANP32B CME -39,466503 -46,675387 -39,254521 -46,675387 7,20888463 

LIG1 CME -60,958603 -67,61533 -59,481212 -67,61533 6,65672748 

LDLR CME -61,605096 -69,401363 -61,151765 -69,401363 7,79626689 

TYMP CME -9,0532903 -15,391125 -6,5918043 -15,391125 6,33783498 

ZNF347 CME -28,016818 -64,120411 -26,623693 -64,120411 36,1035934 

FRMPD1 CME -20,567942 -27,787365 -21,190238 -27,787365 6,59712687 

FOXD2 CME -29,08813 -44,054082 -29,43678 -44,054082 14,6173015 

PKD1L1 INDEP -64,743319 -50,734456 -49,122527 -64,743319 14,0088628 

RAC1 CME -67,40579 -73,520123 -65,146622 -73,520123 6,11433276 

FREM2 CEM -39,203644 -37,188776 -49,476526 -49,476526 10,2728815 

APBA1 CME -47,005814 -55,089307 -45,91292 -55,089307 8,08349259 

PNPLA7 CEM -19,250545 -18,932948 -28,375081 -28,375081 9,12453577 

HAUS5 CEM -34,87385 -42,620966 -49,185277 -49,185277 6,56431054 

GNS CME -73,874646 -80,630569 -72,769256 -80,630569 6,7559226 

TRHDE CEM -42,894131 -41,984873 -54,110587 -54,110587 11,2164561 

PLA2G6 CME -51,552487 -59,323276 -50,539879 -59,323276 7,77078934 

ESR1 CME 1,4961795 -13,431316 2,35437046 -13,431316 14,9274958 

STK11 CME 6,09601194 -43,755401 3,59221162 -43,755401 47,3476124 
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PRKCZ CME -16,755149 -34,271145 -20,132416 -34,271145 14,1387288 

SND1 CME -46,065388 -53,123913 -44,844091 -53,123913 7,05852517 

SPATA13 CME -35,608789 -65,388853 -35,677769 -65,388853 29,7110841 

LRIG1 CME -37,833024 -61,033158 -36,156772 -61,033158 23,2001341 

TLL2 CME 11,8601275 -29,840538 13,6405709 -29,840538 41,7006655 

IRS1 CEM -30,015979 -28,963193 -37,104606 -37,104606 7,0886266 

MYDGF CME -58,3155 -70,336916 -58,235188 -70,336916 12,0214155 

MIB2 CME -30,047178 -39,82836 -27,610242 -39,82836 9,78118212 

PDE12 CME -57,428404 -71,827493 -59,854041 -71,827493 11,9734527 

SCNN1D CME -43,369011 -54,268854 -41,585817 -54,268854 10,8998438 

HEBP2 CME -34,181102 -41,711505 -32,448559 -41,711505 7,53040248 

FANCD2 CME -0,5609667 -15,195588 0,27097665 -15,195588 14,6346215 

SIM2 CME 31,592153 14,6796178 29,9142257 14,6796178 15,2346079 

ATXN2 CME -46,295638 -59,556942 -45,216419 -59,556942 13,261304 

ADARB1 CME -26,375595 -52,125751 -26,481395 -52,125751 25,644356 

TRANK1 CME -10,399262 -16,415184 -9,6113325 -16,415184 6,01592134 

SSH2 CME 18,2865896 -9,3089578 20,364836 -9,3089578 27,5955474 

RNF10 CME -78,825819 -85,486912 -77,10017 -85,486912 6,66109211 

ERRFI1 CEM -61,723329 -60,317221 -78,469228 -78,469228 16,7458998 

GNAS CME -34,922358 -44,969172 -33,820296 -44,969172 10,0468134 

RAPGEF2 CME -27,028451 -57,824884 -25,756708 -57,824884 30,7964332 

SLC38A3 CME -85,161886 -92,598675 -82,551823 -92,598675 7,43678913 

TBL1XR1 CME -53,694264 -61,800256 -54,261038 -61,800256 7,53921769 

STK17B CME -41,028115 -55,624315 -40,59359 -55,624315 14,5962001 

UBR4 CME -59,332041 -72,315623 -59,648909 -72,315623 12,6667141 

ARHGAP24 CME -24,572983 -54,974007 -25,69302 -54,974007 29,2809871 
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APPENDIX 4: The gene list of Group 2 (CME) and the related HCC studies reported by cbioportal 
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APPENDIX 5: Digital Receipt 
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APPENDIX 6: Thesis Originality Report 
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APPENDIX 7: Girişimsel Olmayan Klinik Araştırmaları Etik Kurulu 
 

T.C.

HACETTEPE ÜNİVERSİTESİ
Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu

Sayı 16969557-903

Konu :

Dr. öğr. idil YET
Sağlık Bilimleri Enstitüsü

Biyoinformatik Anabilim Dalı
Oğretim Üyesi

Sayın Dr. Öğr. Üyesi ET,

Kurulunıuza değerlendirilnıek üzere sunduğunuz GO 20/232 kayıt nunıaralı ve "Baye.s

Ağlarını Kıı//anarak Karaciğer Kanserinin Tekil Iliicre.sinin Ontikler Arasındaki İlişkisinin
Belirlenmesi” başlıklı proje Kurulunuızun 17.()3.2()2() tarihli toplantısında değerlendirilnıiş
olup. açık erişinıli veri tabanı kullanılarak 25 karaciğer kanser hücresinde üç farklı onıik x erisi

arasındaki ilişkilerin bilgisayar temelli yöntenılerle değerlendirileceği anlaşılınışlır. Gönüllü

insanlar üzerinde gerçekleştirilecek nitelikte olnıayan bu tip çalışınalar Etik Kurulların kapsanıı
dışında kalınaktadır.

Bu yazı ilgili protokolün etik açıdan incelendiğini belirtilnıek için Etik Kurul kararı
yerine geçmek üzere hazırlanınıştır.

Dr. Lale )ĞAN
Başkan

EK

Foplantı Katılını Tutanağı.

Hacettepe Üniversitesi Girişimsel Olmayan Klinik Araştırmalar Etik Kurulu Ayrıntılı Bilgi için:
06100 Sıhhiye-Ankara
Telefon: O (312) 305 1082 • Faks: O (312) 310 0580 • E-posta: goetik@haccttepe.edu.tr


