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ABSTRACT

Jihad, M., Bayesian Networks for Omics Data Analysis in Hepatocellular
Carcinoma Single-Cell Sequencing, Hacettepe University, Graduate School
of Health Sciences, Department of Bioinformatics, Master Thesis,
ANKARA, 2021. Single cell multi omics techniques have shown an
advancement in unrevealing complex diseases like cancer heterogeneity by
providing multi-faceted insight into their individual cellular regulations. In this
study, a machine learning approach, Bayesian network (BN), has been applied to
integrate genomic, epigenomic, and transcriptomic data in hepatocellular
carcinoma at single cell resolution. Hepatocellular carcinoma (HCC) is the most
common type of liver cancer with a high metastatic rate and reckoned for poor
prognosis. Heterogeneity of tumor cells is concerned with cancer progression,
metastasis, therapeutic resistance, and mortality. For this purpose, a dataset from
a published study of 25 single cell sequencing of hepatocellular carcinoma were
used. First, DNA methylome and transcriptome data were analyzed on their own.
Copy number variations were estimated from DNA methylome data by using the
Hidden Markov Model method. To reveal the causal relationship between the
omics, three BN models were constructed. The models were fitted to their
parameters by using maximum likelihood estimation. For model evaluation,
score-based criteria, Akaike information criterion and Bayesian information
criterion, were used. 207 genes with significant models have been detected. The
heterogeneity of the omics and their regulation mechanisms with each other have
been shown, by pointing to genes that follow different BN models that take place
in major pathways in HCC.
Key words: Single cell, hepatocellular carcinoma, liver cancer, RNA
sequencing, transcriptome, genome, copy number variation, DNA
methylome, epigenome, multi-omics integration, Bayesian

networks, machine learning.
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OZET

Jihad, M., Hepatoselliiller Karsinomun Tekil Hiicre Diziliminde Omiklerin
Veri Analizi i¢in Bayes Aglari, Hacettepe Universitesi Saghk Bilimleri
Enstitiisii Biyoinformatik Program, Yiiksek Lisans Tezi, Ankara, 2021. Tek
hiicreli ¢coklu omik teknikleri, kendi bireysel hiicresel diizenlemelerine ¢ok yonlii
bir bakis agis1 saglayarak kanser heterojenligi gibi kompleks hastaliklarin ortaya
cikarmada bir ilerleme gostermistir. Bu c¢alismada, tek hiicre temelli
hepatoseliiler karsinomda genomik, epigenomik ve transkriptomik verileri
entegre etmek icin bir makine 6grenimi yaklasimi olan Bayesian aglar1 (BN)
uygulanmigtir. Bu amagla, yaymlanmis bir ¢alismadan hepatoseliiler karsinomun
25 tekil hiicre dizileme veri seti kullanilmistir. Hepatoselliiler karsinom (HSK),
yiiksek metastatik oranla en yaygin karaciger kanseri tiirtidiir ve kotii prognoza
sahip oldugu distliniilmektedir. Timor hiicrelerinin heterojenligi, kanserin
ilerlemesi, metastaz, terapotik direng ve mortalite ile ilgilidir. Once, DNA
metilom ve transkriptom verileri tek baslarina analiz edilmistir. Kopya sayisi
varyasyonu, Gizli Markov Modeli yontemi kullanilarak DNA metilom
verilerinden tahmin edilmistir. Omikler arasindaki nedensel iligkiyi incelemek
icin i BN modeli olusturulmustur. Modeller, en ¢ok olabilirlik kestirimi (MLE)
kullanilarak parametrelerine uydurulmustur. Model degerlendirme icin puana
dayali kriterler, Akaike bilgi kriteri (AIC) ve Bayes bilgi kriteri (BIC)
kullanilmistir. Anlamli modele sahip 207 gen tespit edilmistir. Farkli BN model
izleyen genlerin HCC’de ayni yolakta yer aldigina isaret ederek, omiklerin ve

birbirleriyle regiilasyon mekanizmalarinin heterojenligi gosterilmistir.

Anahtar Kelimeler: Tekil hiicre, hepatoselliiler karsinom (HSK), karaciger
kanseri, RNA sekanslama, Transkriptom, Genom, Kopya
Sayis1 Varyasyonu (KSV), DNA Metilomu, Epigenom,
Coklu omik entegrasyonu, Bayes aglari, makine

Ogrenmesi.
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1. INTRODUCTION

Single-cell sequencing is an optimized next generation sequencing (NGS) method
that can observe omics at the level of individual cells, unlike previous methods which
analyze the omics in the level of collection of cells at tissue-level (1). Single-cell
sequencing approaches help revealing the features and presence of the outlier cells in
tumor tissue by defining intra-tumor heterogeneity and new cell types and states (2).
Furthermore, single cell sequencing methods provide a deep understanding about the
impact of cellular variability on tissue function (1). In turn, allow us to understand how
these cellular dynamic changes influence the entire organism that can lead to complex
diseases such as cancer, diabetes, accelerated ageing, and metabolic diseases (3-7).
Cellular systems are complex networks that involve interaction of many molecules which
take part in physical and chemical processes in order to carry out their biological function.
High-throughput technologies such as single cell sequencing enable understanding these
systems by allowing us to collect information about their molecular components (8). Many
of these technologies collect a large set of specific molecular data “-omics” such as
genome (9), transcriptome (10), epigenome (11), and proteome (12). Consequently, to
draw a more comprehensive understanding of the biological processes, and diseases
etiology, these different omics data have to be analyzed separately and then integrated (8).
Multi omics integration methods are considered to be promising method to dissect the
dysfunctionality in the biological system that occurs in complex diseases such as cancer,
ageing, obesity, and nephrotic diseases (13-15). These integration methods mostly depend
on machine learning techniques (16), and network inference in relating different omics
are formulated by regression-based analysis (17) including supervised (18), unsupervised
(19), mostly regression (20), factor analysis (21) and clustering (22). The omics are
associated by a series of regression models that are fitted to take one of the feature as a
response variable and the other feature as a predictor variable. This association then can
be interpreted as a direct relationship in which, one of the feature can affect or explain the

other feature (17).



Here, we propose a Bayesian network (BN) based machine learning method for
multi-omics integration in single cell sequencing data. Bayesian Networks are
probabilistic graphical models that represents the joint probability distributions in a
factorized way (23, 24). BNs are composed of a graphical structure with a set of
parameters. BNs are defined as directed acyclic graphs (DAG) consist of nodes and
directed edges. Nodes represent the variables while edges represent the causal relationship
between those variables. BNs are constructed of a set of conditional independence
assumptions between the variables and its non-descendants given its parents (25). The
parameters represent the conditional probability distributions between variables that
connected directly by edges giving their causal relationship (25).

Cancer is a complex disease with increasing incidences worldwide due to the high
growth of the population and environmental exposures (26). According to the World
Health Organization (WHO), in 2018, cancer was the second leading cause-of-death
disease with about 9.6 million mortalities (27). Although the high advances in in-vitro
studies on cancer, still, the general progress of understanding cancer is slow because of
complex and heterogenous characteristics of cancer cells (28). Hepatocellular Carcinoma
(HCC), one of the most dangerous and deadly cancer types, is the fifth most common and
the third cause-of-death cancer type worldwide (29). Because of its heterogeneity and
multiple causing factors, the number of effective treatments is very low (30). Employing
a variety of multi-omics integrating strategies have the potential to identify novel
biomarkers that can lead to promising results in solving heterogeneity and provide a key-
insight into the pathophysiology of cancer (31).

In this study, a dataset from a published study of 25 hepatocellular carcinoma
single cell sequencing is used (32). Transcriptome, epigenome and genome data of these
cells were analyzed on their own. Then, these datasets were integrated using a BN
approach. Main aim of this study is to reveal the causal relationship between intratumor
genome, DNA methylome, and transcriptome of HCC. We also aimed to identify a BN
model specific to hepatocellular carcinoma tumor cells that can be prospectively used as

a biomarker. By considering this aspect, we constructed three BN model alternatives of



three-way association involving copy number variation, gene expression, and DNA

methylation levels in HCC single cells.



2. LITERATURE REVIEW

2.1  Multi Omics Integration

The advent of next generation sequencing (NGS) technologies led to a large amount
of omics data like genomes, epigenomes, transcriptomes, proteomes, microbiome and
metabolome data generation (13). Utilizing these omics data has expanded the fields in
biology and advanced the understanding of the molecular biological process (33). Earlier
methods have been optimized in order to examine an individual omic one at a time (34-
36). In spite of the high facility of these methods, they are still unable of providing the
whole picture about the characteristic’s insight of complex diseases such as cancer.
Recently, studies focused on linking different omics to be studied which in turn brought
new challenges to the development of statistical methods for integrating multi-omics.
Omics data integration have been included in a wide range of research area such as: system
microbiology (37), plant system biology (38), genotype-phenotype interaction (39), and
system pathology (40).

Cellular systems are complex and regulated in multiple levels, while each of these
levels is a complex network that interacts with each other. As a result, when combining
different omics to integrate them in order to reveal a biological signature becomes very
challenging (41). Thus, many theoretical methods and novel algorithms were developed
for multi-omics data integration. The major two methods were used are unsupervised and
supervised data integration (8). Unsupervised data integration is a group of methods that
deals with data without labeled response variables. Unsupervised methods are matrix
factorization methods, network-based methods, Bayesian methods (BN), and multiple
step analysis (41). In contrast to unsupervised methods, the supervised data integration
methods consider the label of the data (control or disease) and call on a machine training
approach in order to evaluate the introduced model. That is, the methods of supervised
data integration are built upon information of data that their labels are known (42).
Supervised methods are Network-based methods, Multiple kernel learning, and Multiple
step analysis (42). Table 2.1 shows the recent studies in multi-omics integration that have

used supervised and unsupervised data integration methods.



Bayesian networks (BN) are graphical probabilistic networks that represents the joint
probability distribution in a factorized way. Bayesian networks composed of a directed
acyclic graph (DAG) and a set of parameters (23, 24). DAGs consist of nodes and edges;
nodes represent variables and edges represent the relationship between the variables they
link. For example, when a directed edge from node A to B, A node is called the parent
variable and B node the child variable. In DAG, a set of conditional independence
assumptions are encoded between the variables, that is, “a variable is independent of its
non-descendants given its parent” (24). A study by So-Youn Shin (43), have introduced
Bayesian network method for multi-omics integration as a causal inference tool alternative
to Mendelian Randomization (MR) method. Gutierrez et.al. (44), have used the Bayesian
network method to integrate multi-omics data from different cell types. They revealed the
causal relationship between genetic variation, DNA methylation and gene expression by
proposing a different BN model. They also inferred the passive and active role of DNA
methylation on gene expression (44).

Gang Liu et al (45), have used a modified cluster of cluster analysis on CNV,
mRNA, DNA methylation, and miRNA data of 265 samples downloaded from TCGA. In
their method, they have divided the samples into sub-clusters according to each omic and
then divide the whole data into 2 groups according to the features in each sub-cluster.
Their results showed that samples are classified into 5 major sub-groups (S1-S5). Each
sub-group has its distinct molecular features. For example, S1 had TP53 gene mutation,
and an amplification in the 8th chromosome at 8q24. While S2 and S3 had a low
expression of TERT gene and telomere hypomethylation. Then, they associated these
subgroups with clinical information and survival rate. They found that these subgroups
are correlated with gender, alpha-fetoprotein level, alcohol intake, American Joint
Committee on Cancer staging level. They found that S4 and S5 have more females than
other groups, while in S1 and S5, most patients were involved in alcohol intake. They
showed that this method can help in solving HCC heterogeneity by classifying it into
subgroups.

Miao et al. (46), have integrated WGS and transcriptome sequencing of a set of

intrahepatic HCC lesions, matched noncancerous liver tissue and blood. In the study, they



performed phylogenetic tree to differentiate between tissues according to somatic
mutations, CNV and SV. After splitting the samples into groups, they performed
functional enrichment analysis. They profiled tumor biomarkers that distinguish between
two multifocal HCC types. They also showed that TTK protein as a prognostic marker for
HCC.

A study by Yildiz et al. (47), showed that HCC distinct cell types have different
responses to the same drug therapy. In this study, he analyzed 14 different HCC cell lines
(7 epithelial-like and 7 mesenchymal-like cell lines) treated with 225 different small
molecules downloaded from the Genomics of Drug Sensitivity in Cancer database. He
performed unsupervised hierarchical clustering analysis dividing them into 2 distinct
groups according to their responses to the drugs. The first group (group A) which contains
early- stage epithelial like HCC cells, have shown more sensitive response to the drug. On
the other hand, the second group (group B) which consisted of late-stage mesenchymal-
like and epithelial-to-mesenchymal transition HCC cells, had less sensitive response.
Moreover, the study showed that mTOR and P13K targeting drugs are more effective to
treat epithelial-like HCC cells compared to mesenchymal-like HCC. Concluding that,
more sensitive and personalized drugs are needed to be developed.

Yongmei Li et al (48), by analyzing three HCC cell lines with different metastatic
potential. They used whole exome sequencing to detect somatic mutations and CNV
detection, microarray for transcriptome, and a high-resolution Q Ex-active mass
spectrometer for protein quantification. They performed weighted correlation network
analysis (WGCNA) in order to cluster the highly associated genes or metabolites. They
found that 32 metabolites were decreased, and 21 metabolites increased along with the
ability of metastasis. Furthermore, they indicated that there is a relationship between
metabolome and metastasis. That is, three metabolic pathways were observed to be altered
in different levels such as glycolysis, that shown to have a role in premetastatic in HCC

tissue.



Table 2.1. HCC studies in literature that have used multi-omics integration methods.

Study Sample size Omics Integrating Reference
method

Single-cell triple omics | 25 single HCC cells | CNV, DNA Unsupervised | Hou et, 2016

sequencing reveals methylation, hierarchical (32)

genetic, epigenetic, and transcriptome clustering

transcriptomic

heterogeneity in

hepatocellular

carcinomas

A Multi-Omics 4282 single nuclei single-nuclei k-mer Cavalli et al.,

Approach to Liver HCC RNA-seq, clustering 2020 (49)

Diseases: Integration of proteomic

Single Nuclei

Transcriptomics with

Proteomics and HiCap

Bulk Data in Human

Liver

Microenvironment 1000 HCC sample Immune (tumor | unsupervised Liuetal.,

characterization and microenvironme | clustering 2020 (50)

multi-omics signatures nt)

related to prognosis

and immunotherapy

response of

hepatocellular

carcinoma

Integrated analysis of 125 HCC sample WES (somatic Cox Guishard et

somatic mutations and mutation), proportional al., 2012 (51)

focal copy-number CNV, hazards

changes identifies key regression

genes and pathways in models

hepatocellular

carcinoma

Diverse modes of 96 tumor cells Single cell Multi- Duan et al.,

clonal evolution in 15 normal genome wide dimensional 2018 (52)

HBV-related cells sequencing, scaling

hepatocellular CNV, analysis

carcinoma revealed by transcriptome

single-cell genome

sequencing

Multi-omics 3 HCC cell lines CNV, weighted Lietal., 2018

Integration Reveals the transcriptome, correlation (48)

Landscape of somatic network

Prometastasis mutation, analysis

Metabolism in metabolome (WGCNA)

Hepatocellular

Carcinoma




Table 2.1 (continues)

Integrated multi-omics | 14 different HCC Molecular unsupervised Yildiz, 2018
data analysis cell lines treatment hierarchical 47)
identifying novel drug values, clustering
sensitivity-associated transcriptome

molecular targets of

hepatocellular

carcinoma cells

Identification of 174 HCC datasets Somatic phylogenetic Miao et al.,
prognostic biomarkers | (different cell lines) | mutation, CNV, | tree 2014 (46)
in hepatitis B virus- transcriptome,

related hepatocellular

carcinoma and

stratification by

integrative multi-omics

analysis

Integrated Multiple “- | 265 HCC samples CNV, Cluster of Liuetal.,
omics” Data Reveal (TCGA data) transcriptome, Clusters 2016 (45)
Subtypes of miRNA, DNA (COC)

Hepatocellular methylation

Carcinoma

2.2 Hepatocellular Carcinoma

Cancer is one of the most puzzling and dreaded diseases in the 21st century as it
continues increasing every day without the discovery of an effective cure (53). According
to Mackay J. et al. (54), one out of four people is at risk of cancer during lifetime. Among
different types of cancer, liver cancer (LC) is the sixth most common cancer type and
comes at the second place as the most common death causing cancer type worldwide (55).
Liver cancer can be divided into two groups: primary LC and secondary LC (56). Primary
LC which includes Hepatocellular carcinoma, Sarcoma and Cholangiocarcinoma, starts
in the liver (56). On the other hand, secondary LC starts in another organ such as breast,
colon, and pancreas in most cases and then metastasizes to the liver. Hepatocellular
carcinoma (HCC) is the most common type of primary liver cancer and fifth most common
cancer type worldwide (45, 57). It is ranked as the second death-causing cancer type just

after lung cancer all over the world (58). According to American Cancer Society (59), in



the USA about more than 40000 people have been diagnosed with hepatocellular
carcinoma and about 30000 people died because of it in 2019.

Globally, HCC incidence rates differ from region to region, it highly occurs in
eastern and south-eastern Asia (e.g., China, Vietnam, South Korea), Central and western
Africa (e.g., Egypt, Senegal) (60). Most of HCC incidences are from countries with low
to middle income countries (61, 62). Figure (2.1) shows the distribution of HCC cases
worldwide and how the numbers are high in eastern Asia and central Africa where the
medical systems are behindhand (54). According to “Cancer Statistics in Turkey” annual
report of the health ministry of Turkey (63), HCC is not among the top five cancer types
in Turkey which means that Turkey has a low frequency of HCC incidence . Still, a study
done by Alacacioglu et al., determined that Turkey has a high number of HBV and HCV

infection rates, the major causes of HCC (64).
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Figure 2.1. Incidence and mortality rates of HCC worldwide. Adapted from (60).

HCC occurs more in men than women (59). In a study included 963 HCC patients
from 13 cities in Turkey, found that about 80% of patients were males (65). Moreover,
HCC incidence shows a discrepancy with age (66). In the USA, the age group [55-64] has
the highest risk of HCC (Figure 2.2), in China it is the [55-59] age group, while in North
America and Europe [63-75] is the mean age to be diagnosed with HCC (62). HCC has
several risk factors; cirrhosis, chronic infection with hepatitis B virus (HBV) and hepatitis
C virus (HCV) are the most common ones, which occupy about three quarters of all cases
(67). Besides, alcohol consumption, smoking, arsenic, non-alcoholic fatty liver diseases

(NAFLD), obesity and aflatoxin contact dietary habits can also cause HCC (68).
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Figure 2.2. The distribution of HCC incidence according to age groups in USA (2009-
2013). Adapted from (69).

2.2.1 Clinical Signs and Symptoms

In most cases, HCC is diagnosed after the tumor shows symptoms and clinical signs
(29). These symptoms are usually manifested several months after tumor development
(29). HCC symptoms and clinical features are similar to those in other hepatic diseases.
Makes it hard for physicians to distinguish HCC from an advanced liver disease (70).
Some of these symptoms are nausea, weight loss, bleeding, infections, and hepatomegaly
(69). As previously mentioned, most of the time it is hard to perform an early diagnosis
for HCC (70). Thus, the survival rate is short with an approximate period of [6-20] months.
In the USA, more than half of HCC incidence had a survival rate less than 2 years (71).

2.2.2 The Molecular Landscape

HCC is an angiogenic tumor characterized molecularly by the dysregulation of the
cell cycle and apoptosis evasion, which both play a vital role in tumor metastasis (68).
Furthermore, the tumor cells of HCC go into multiple molecular disruptions such as

chromosomal aberrations, genetic alterations, epigenetic changes and molecular pathway

shifting (72, 73).
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In a comprehensive study, as a part of the cancer genome atlas network (TCGA),
performed a large-scale analysis on HCC samples from multiple platforms (74). They
analyzed the CNVs and somatic mutations of 363 cases. Besides, almost for half of the
samples they analyzed the DNA methylation, mRNA, miRNA, and protein expressions.
In general, they observed an amplification in 1q and 8q and a deletion in 8p and 17p.
Moreover, they identified a few mutated genes that are associated with HCC tissues and
obtained a global hypomethylation in HCC tissues. By using unsupervised hierarchical
analysis, they clustered the samples into three groups according to their genomic-

epigenomic characteristics (75).

2.3 Epigenetics

By 2003, the completion of the human genome project provided us with a complete
list of genes that opened the door to resolve the complexity of the human body (76).
Nevertheless, the situation was more complex, that is, there is a second system in the cell
with equal importance to determine which, when, and where a gene or multiple genes to
be expressed during development (76). This system “Epigenetics” affects the DNA in a
form of heritable marks during the division of the cell without altering the DNA sequence
(77). In 1942, the term of epigenetics was introduced by Conrad Waddington (78, 79).
Waddington defined it as "the branch of biology which studies the causal interactions
between genes and their products which bring the phenotype into being" (80). Waddington
is best known for his "epigenetic landscape model" (79, 81). During his study on
embryonic development, he represented his model as a concept to illustrate the different
pathway that the cell can take toward differentiation. Figure 2.3 shows “The Epigenetic
Landscape Model” where the ball represents the cell, at the top of a slope. The slope has
many valleys and hills which represent the genes and other regulations. As the ball rolls
down the slope, these hills and valleys will direct it into different (differentiation) paths
(80). Since then, with the development of genetic field, term of "epigenetics" has been

modified and narrowed down gradually to become more specific (82).
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Figure 2.3. The Epigenetic Landscape Model by Waddington. Adapted from (83).

Epigenetics has been defined as “the study of changes in gene function that are
mitotically and/or meiotically heritable and that do not entail a change in DNA sequence”
(82). The epigenetics modifications are DNA methylation, post-translational gene
silencing (non-coding RNA), and histone modifications (Figure 2.4). These modifications

can be affected by many factors such as age, environmental factors and lifestyle (84).
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Figure 2.4 Epigenetic modifications. Adapted from (85).

2.3.1 DNA Methylation

DNA methylation is the major epigenetics mark in mammalians. It is involved in gene
expression regulation and cell differentiation (82, 86). It is a chemical process when a
methyl group is added to cytosine nucleotide (C) residing next to guanine nucleotide (G),
what is called CpG site, by one of DNA methyltransferase enzyme family (DNMT).
DNMTs transfer a methyl group from S adenyl methionine (SAM) to the fifth carbon
molecule of the cytosine base from SmC. Although DNA methylation occurs at CpG sites,
most CpG rich regions “CpG islands” are unmethylated (87). CpG islands are DNA
stretches about 1 kb long containing a higher density of CpG than other regions but often
they are not methylated. About 70% of gene promoters lies in CpG islands. The majority
of these promoters belong to housekeeping genes (88). For its importance in regulating
gene expression, CpG islands are thought to be conserved during evolution (86). In a

study, Illingworth applied DNA chromatography and Chip-seq techniques on human



15

(whole human semen, whole male blood, whole female blood), and mice (whole male
blood, whole female blood) samples to identify the CpG islands in the genome of both
species. He showed that the CpG islands that are linked to gene promoters are highly
conserved between human and mice (89). CpG islands are related to other epigenetic
modifications, that is, DNA stretches that contain histone proteins and are associated with
nucleosomes are more dismissive of gene expression (7). CpG islands are characterized
by having less nucleosomes than other genomic regions so it can be related to enhancing
gene expression (90). Through gametogenesis and embryonic development, CpG islands
go through multiple methylations. These methylations are associated with stable gene
expression silencing (91). With the importance of DNA methylation in regulating gene
expression during differentiation and development, this silencing has been linked to gene
imprinting (92). Imprinting is the process during gametogenesis when only one of the
specific inherited alleles (parental or maternal) is exclusively expressed in the offspring
(78).

Despite the fact that CpG islands are associated with gene expression regulation, it is
also expected to have tissue-specific patterns (93). Not only CpG islands but rather CpG
island shores which have a tissue specific methylation pattern. CpG shores are regions
with low CpG density flanking to CpG islands up to 2 kb in length (94). CpG shores first
identified by Fienberg and his team (95). They performed genome wide bisulfite
pyrosequencing on normal tissues from brain, liver, spleen and colon cancer tissue to
obtain the differences among them. They find that the differentially methylated regions
between the colon cancer and normal tissues are not located in CpG islands but at
surrounding regions (CpG shores) addressing that these shores have a role in alternative
transcript regulation (95). Furthermore, CpG island methylation has been linked with X
chromosome inactivation. Gartler et al. (96), showed that the gene reactivation by 5-
azaCdR treatment on the inactive X chromosome is related to the demethylation of CpG
island promoter regions. Attaining the relationship between the gene silencing process on
inactive X chromosome and DNA methylation. Another study by Mohandas et al., showed
that an inhibitor of DNA methylation called 5-azaCdR can reactivate the inactive X

chromosome (97). In addition, a study on X chromosome, Wolf and his team showed that
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CpG dinucleotides clusters (CpG islands) on the inactive X chromosome are being
specifically methylated (98).

Cancer was the first disease to be linked to epigenetics changes (99). As mentioned
above, in normal human cells methylation happens at CpG sites that are not in CpG islands
(100). But, in cancer cells the CpG islands near the promoter region become highly
methylated resulting in turning off some of essential genes such as tumor-suppressor genes
(101). A study by Gutierrez et al. (44), have shown that not only in the promoter region
but also the methylation that occurs in the gene body region has an impact on gene
expression levels. In Cancer, DNA hypomethylation in oncogenes and hypermethylation
in tumor suppressor genes have a role to promote tumorigenesis (102). In HCC, Santella
et al., applied genome wide methylation array on 62 HCC tumor tissues (103). Out of
2324 differentially methylated CpGs between tumor and normal tissues, about 70% were
hypomethylated and 30% hypermethylated CpG sites. Likewise, another study applied by
the same method on 66 pairs of HCC tumors and adjacent non-tumor tissues. They found
that most of the differentially methylated CpG site are located in CpG islands while about
17% of them are located at CpG shores.

DNA methylation can be detected using different methods. Array based methods such
as 450k and EPIC are widely used. Both methods provide a genome-wide screening and
reports a methylation level quantification at single CpG-site level (104). On the other
hand, Bisulfite genomic sequencing analysis such as whole genome bisulfite sequencing
(WGBS) and reduced representations bisulfite sequencing (RRBS) (105). In these
sequencing methods, DNA is treated with bisulfite before sequencing in order to
determine methylation patterns. Bisulfite treatment leads to bisulfite-conversion of
unmethylated C base into U while keeping the methylated C as it is. After this treatment,
the DNA 1is sequenced by one of the NGS machine. In RRBS method, the DNA first is
fragmented by using Mspl restriction enzymes that have a restriction site lying in CpG

islands providing a more specific coverage at high CpG regions (106).
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2.4 Gene Expression

A process when the information from a gene on DNA sequence is used to synthesis a
functional product. Most of the time these products are proteins, however some genes
code for non-protein products such as tRNA, rRNA, miRNA and IncRNA (107, 108).
Gene expression studies usually investigate the increasing or decreasing in the expression
levels of a gene (or multiple genes) by measuring the abundance of its transcripts. These
investigations often observe the gene responses to a drug treatment (109). mRNA is the
intermediate molecule in the gene expression process that carries the needed genetic
information for protein synthesis (110). Whenever a gene is expressed (or active), it
produces many mRNA transcripts by transcription. So, by assessing mRNA, genetic
information of a gene expression can be assessed (107). As a result, gene expression

analysis methods seized mRNA as a center of interest.

2.4.1 Transcriptome

Transcriptomics is the study of the complete set of RNA -gene expression- that are
produced by a specific cell or tissue (110). Many techniques that have been used for gene
expression analysis, such as Northern blot, differential display, serial analysis of gene
expression (SAGE) (109). However, these methods have their limitations especially when
analyzing the expression of a large number of genes. For example, Northern plot have a
limited number of samples to be analyzed at the same time, SAGE have a complex and
laborious preparation steps with low sensitive results (111). DNA microarrays overcome
these limitations and become the most abundant used technique in gene expression
analysis (112). This technique is based on the hybridization of two DNA strands when the
complementary sequences form hydrogen bonds between their nucleotide’s base pairs
(112). mRNA molecules that will be analyzed are first chopped into smaller stretches by
restriction enzymes and then converted into cDNA by reverse transcriptase. Thereafter,
fluorescent markers are attached to these cDNA strands. On the other hand, a large number
of DNA sequences of known genes are attached on a chip. By treating these chips with
fluorescent-attached cDNA, the complementary sequences of cDNA and the DNA on the

chip will bind together and the fluorescent molecule will shine as a spot on the screen.
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The strength of the signal from the spot shows the amount of the binding cDNA molecules
giving the expression amount of that gene. Using different fluorescent colors differentiates
between the studied cases. The major advantages of DNA microarray are: can be used
with a large number of gene sets, can be used with a small amount, high sensitive,
comparing multiple cases and conditions at the same time (113). However, microarray
also has its limitations. For example, DNA microarray cannot be used to observe novel
gene expression but only with genes that are known previously (114).

RNA sequencing method which is one of NGS techniques have revolutionized gene
expression analysis (110). Being able not only to detect novel genes but also its ability to
observe the alternative splicing, post-translational modifications, exons identifications,
mutations (SNPs) and the gene expression differential in different groups and cases in a
shorter time (115). RNA-seq protocol starts with cut the RNA molecules into fragments.
Then, in a step called cDNA library preparation, cDNAs are generated from RNA
fragments by reverse transcriptase, and finally sent for sequencing by a sequencer machine

(115, 116).

2.5 Copy Number Variation

Copy Number Variation (CNV) refers to any duplication (gain) or deletion (loss) in a
genomic stretch greater than 1 kilobase in size (117). Changing the copy number of a gene
results in overexpression or deletion of that gene. CNVs are one of the major genomic
alterations in cancer cells (118). The role of copy number variation in human diseases has
gained a big interest which led to an advent in CNV recognition methods. This realization
first started when CNV was subjected to the approximately 12% of the genome variation
in the human population (119). In vitro methods are the most widely used methods in
CNV detection studies. Array comparative genomic hybridization arrays (aCGH) have
been tools of choice beside SNP microarray (120). Array CGH depends on the principle
of hybridization of two samples differentially labelled to a set of targets and the signal
ratio determine the CNV. SNP microarrays perform in the same principle but differ in that

their probes are designed to be specific to SNPs (121).
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With the development in NGS technologies, researchers have turned to statistical-based
methods operating on NGS data such as whole genome, whole exome and targeted
sequenced data for CNV calling. Min Zhao et al. (122), have categorized CNV detection
tools into 5 approaches: paired-end (PEM), split read (SR), read depth (RD), de novo
assembly (AS), and combinatorial approaches (CA).

PEM method is the first method to be used in NGS-based CNV calling (123). PEM
model is only available for paired-end reads and not for single-end reads (123). In paired-
end sequencing, insert size of DNA fragments have a specific distribution. PEM methods
detect CNV from the inconsistently mapped reads that have significantly different
distance from the predefined average insert size. It is able to detect not only CNV but also
inversions, mobile element insertions and tandem repeats duplicates (122). Still, its
dependency on fragments insert size makes it unable to detect CN'Vs larger than that insert
size (124). PEM method depends on two approaches: clustering and model-based
approaches. In the model-based approach a probability test is applied to discover the
discordant distance between the distance distribution in the genome and the read-pairs.
On the other hand, in cluster approach the predefined distance between reads is used to
identify the inconsistent reads (124). Breakdancer which is one of most used CNV calling
tools are based on PEM uses both model-based and clustering approaches enable it to
detect small CNVs between (10-100 bps) (125).

SR methods are applied to paired end reads that detect CN'Vs when one of the read
pairs is uniquely aligned properly to the reference genome while the other is unmapped or
partially mapped (122). The discordant mapping gives a proper breaking point for CNV
detection. The incompletely mapped reads are then split into fragments. The first and the
last fragments are then aligned independently to the reference genome. In this remapping
step the start and end position of the CNVs are precisely detected (126).

RD based methods became the major method for CNV calling because of the high
read coverage that NGS data provide (127). The RD approach depends mainly on the
concept of the read depth of a genomic region correlated with the copy number of that
region. For example, a genomic region with a gain CNV has higher depth and the deletion

has less depth than expected (128). Compared to SR and PEM methods, RD based
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methods have the ability to detect the exact CNV and also it can detect large CNVs in
complex regions. RD method is the major method to call CNV from whole genome
sequencing (WGS) and whole exome sequencing (WES) data (129). In WGS, full variants
in the whole genome can be determined, while in WES only protein-coding sequences
(exons) are targeted for sequencing which enables it to result in a higher regional read
coverage (130).

Depending on the study design, RD based tools generally detect CNV in three different
ways: single sample, case-control samples, and cohort of samples (122). In a single sample
case, CNV is estimated after applying a statistical model such as HMM and Gaussian
process on the read depth distribution to detect regions with abnormal read depths. In the
case-control samples studies, the control samples serve as "reference" and CNV is
detected when read depth of a region in case sample is matched to that in the control. In
the case of multiple samples, the CNV detection is calculated by taking the overall read
depth mean from all samples which result in estimation of the inconsistent CNV in each
sample (124). GATK CNV-caller provides two modes for CNV estimation: cohort and
control-case mode. Control-FREEC is able to call CNVs from WGS and WES data with
or without control samples (131).

The process of CNV detection using RD based methods is done through 4 steps:
mapping, normalization, copy number estimation and segmentation (132). During the
mapping step, after mapping short reads to the reference genome, the read depth is
calculated in a defined window according to the mapped reads in that window. In the
normalization step, the bias in read depth that is caused by GC content or repeat regions
is corrected and normalized in order to estimate CNV. In the segmentation step, the
regions with the same copy number are merged into segments and segments with
discordant copy numbers are detected. HMM is one of the statistical models that are used
to detect the CNV state in segmentation step (132). HMM is a probabilistic model which
is used to determine the state of an unknown sequence based on the sequence of
observation. The transition from a state to another is described by a matrix of probabilities

(132).
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From a mathematical view, after the normalization step the NGS data is similar to
aCGH data. So, some algorithms that are used for CNV detection from aCGH data can be
used to detect CNV from NGS data (122). For example, the statistical model Circular
Binary Segmentation (CBS) was first method used to detect CNV from aCGH data by
converting the noises into equal copy number segments (133). This method was then used
to detect CNV from NGS data by SegSeq tool (133).

From short reads, AS based methods reconstruct DNA fragments (contigs) by
assembling overlapping reads (134). Then, the assembled contigs are compared to the
reference genome and the regions with inconsistent copy numbers are detected. The
process of assembling the short reads without needing a reference is called de-novo
assembly (134). The Cortex assembler is one of AS based method tool, that uses Bruijn
graphs to collect overlapped reads from multiple samples into one graph. De Bruijn graphs
present the overlapping information within a set of samples. These graphs consist of
nodes, represent words of k length (k-mers), and edges join these k-mers. The variation
between genomes leads to new nodes and edges to occur (135). The edges and nodes are
colored differently to differentiate different samples. CNV is estimated when all nodes
from different samples are collected to find a bifurcation diagram. The branches that
separate different colors show the structure variation such as deletion or insertion (135).

High number of CNV caller tools that are based on the previous mentioned
methods and the progress they made (122). Still, these methods failed to detect the whole
types of variations in genomic copy number with both high sensitivity and specificity
(124). For example, PEM based methods are able to detect many types of structural
variation especially the small deletions (>1kb), but they fail to detect the precise number
of the copies. While RD based methods have a high ability to detect CNV especially the
large ones (>10kb), it fails to detect small CNVs (>1kb) and also perform poorly on
complex regions such as translocations and inversions. In contrast, AS based methods
have an advantage when a reference genome is not required. as an input and allow the
detection of novel mutations, but it fails to detect CNV in repeat and duplicated regions
(135). A combination of PEM and RD methods could succeed in detecting CNVs with

high range in length in various genomic regions. CNVer is a tool that combines PEM and
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RD based methods, detect discordant genomic fragments and breakpoints from
inconsistent mapped read pairs. By this way, CNV in complex regions such as repeated
and duplicated regions with different length is estimated with a high sensitivity (136).
NovelSeq is another combinatorial tool that combines PEM and SR based methods to

estimate novel insertions (137).

2.6 Research Objective

HCC is one of the leading death-causing diseases in the world, its incidences have
shown an increase in the last decades globally (54, 138). Compared to other tumor types,
HCC’s detection is harder and most of the incidence can only be diagnosed in advanced
stages. Furthermore, because of its heterogeneity and wide etiology, there are no effective
treatments for HCC (139). Single cell sequencing technologies have been an advent in
cancer studies. It helps researchers in extending their understanding about the
heterogeneity of the tumor population by observing its individual cells actions (140).

This thesis consists of four parts: RNA-sequencing, DNA methylation, CNV
detection, and use of BNs for integrating. Here, we integrated these omics (genome
(CNV), transcriptome, and epigenome) of 25 HCC single cells by applying a machine
learning approach, which is BN (Figure 2.5). Dissecting these different omics by finding
the causal relationship among them at single cell resolution will extend the understanding
the heterogeneity of the HCC population, and it might guide us in HCC prognosis and

give more information about the disease etiology.
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3. MATERIAL AND METHODS

To explore the causal relationship among the transcriptome, genome (CNV), and
epigenome in HCC single cells, a publicly available single cell sequencing data by
NCBI Gene Expression Omnibus (GEO) under accession code (GSE65364) was used.
The dataset contains 25 HCC single cell sequencing data generated by scTrio-seq
technique (32). The pathological report showed that the tumor tissue has necrosis,
extensive degeneration, and HBV related cirrhosis. ScTrio-seq is a new multi-omics
single cell sequencing method developed by Yu Hou et al., (32) aims to analyze the
three omics: genome (CNV), DNA methylome and transcriptome of the same cell
simultaneously. After dissociating the tissue mechanically into pieces and digesting
the cell suspension, the single cell is picked individually by pipetting-by-mouth. Mild
lysis is done on the cytoplasm of each cell to release the mRNA only and keeps the
nucleus intact. After centrifugation, the precipitate that contains nucleus is sent for
DNA methylome sequencing using RRBS method, and the separated mRNA is sent
to scRNA-seq after cDNA library construction. By this way, the transcriptome, DNA
methylome, and later bioinformatically genome (CNV) data are yielded from the same
single cell at the same time. The paired-end sequencing was done using Illumina

HiSeq 2000 and Illumina HiSeq 2500 sequencers.
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Figure 3.1. The workflow of scTrio-seq method. Adapted from (32)
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3.1 Downloading the Data

The data were downloaded from the GEO database using NCBI SRA toolkit (141).
SRA toolkit is a collection of tools by NCBI used for downloading and using data from
the GEO database. The data were downloaded from GEO database by the command from
SRA toolkit:
>Prefetch SRRXXX
This command will download the samples as SRA formatted files. SRA formatted file is
a binary archive file store the raw sequencing reads to the SRA database and it can be
converted to fastq by the command:
>Fastq-dump --outdir ~/raw_fastq/ --split-files /home/ncbi/puplic/sra/SRRXXXX.sra
The command will convert SRA files into fastq and split it into two reads as it is paired-

end sample.

3.2 RNA Sequencing data
3.2.1 Data Preprocessing

The tools that are used in data preprocessing and quality control are Linux based
tools. The analysis was performed at TUBITAK ULKABIM, high performance and grid
computing center (TRUBA Resources).

Fastqc, a popular tool used for check quality control for sequencing reads from
[llumina (142), was used to check the quality of raw reads fastq files. Fastq file is a text-
based file that contains the short-read sequences and its corresponding quality scores. The
sequence letters and quality scores are both coded with ASCII characters. Every read
sequence consists of multiple lines: the “identifier” line starts with “@” symbol contains
information about the sequence run, the sequence, the separator line with “+” sign, and
the line of Phred score for each base (Figure 3.2).

@VL-P2-14:9:000H003HG:1:11102:17290:1073 1:N:0:TCCTGAGC+GCGATCTA
TTTGGTAACAGCATGAATTATTCTAGCCACTAAAACTCTATGAACATCTTGTGAAGGTTTCAGATAGAGCCTGAAGTACACAGAGAACAATTCTTAAAAAA

+
AAAAAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEAEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE<AEEEEEEE

Figure 3.2. An example of fastq file format
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Fastqc can be run for single or multiple samples by the command:

> Fastqc samplel.fastq sample2.fastq

Fastqc gives a HTML report that contains multiple sections:

Basic statistics section contains the major information about the sample: the file
name, file type, sequencer machine, total sequences, sequence length and GC
percentage.

Per base sequence quality, a graph shows the Phred (quality) score of each base of
the read sequence. Phred score is a widely accepted score to measure the
probability of a base whether to be called incorrectly (143). Phred score can be
represented by the equation (3.1):

Q = —10 log,o Pr (observed allele # true allele) (3.1.)

So, for example, Q=20 shows 1% error rate meaning that the base is 99% have
been called correctly.

Per sequence quality score section shows a graph of the mean quality values per
reads, allowing you to see if there are universally low-quality values over the
sequence.

Per base sequence content section shows the distribution of the four bases (A, C,
G and T) over the read bases which should be equally distributed across the plot.
Per base GC content section and per sequence GC content section shows the
distribution of the GC bases over the read bases.

Per base N content section shows if there are uncalled bases (N) in the read
sequence.

Sequence duplication level sections provide an informative plot showing the
number of sequences that are duplicated in the read sequences.

Overrepresented sequences and adaptor contamination sections shows the
sequences that are highly presented in the reads and the count of them. Also, it
gives the possible source of the overrepresented sequences which mostly shows

the adaptor contamination in the reads.
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The reports showed that there are low quality reads near the 5' end of the sequence.
The raw sequencing reads were trimmed to remove the low-quality reads (<Q30) using
Trimmomatic (version 0.39) (144). Trimmomatic is a trimming tool including options
to trim and filter raw sequencing reads. It is able to identify the adapter sequences and
read quality filter. For sequencing data, Q30 is commonly acceptable phred score to
keep (145).

> java -jar trimmomatic-0.39.jar PE sample 1.fq sample 2.fq trimmed sample 1.fq
trimmed_sample 2.fq HEADCROP:3

Table 3.1. Basic statistics of RNA-seq reads before and after trimming

Before Trimming After Trimming
Sample | SRR No. Total Sequence %GC | Total Sequence | %GC
Sequence length Sequence length
1 SRR1777087 3956277 101 45 3956277 98 45
2 SRR1777089 4005566 101 47 4005566 98 47
3 SRR1777091 3751180 101 46 3751180 98 46
4 SRR1777093 3612890 101 45 3612890 98 47
5 SRR1777095 4074177 101 46 4074177 98 46
6 SRR1777097 7133651 101 44 7133651 98 44
7 SRR1777099 5750626 101 41 5750626 98 41
8 SRR1777101 3445214 101 45 3445214 98 45
9 SRR1777103 3567104 101 44 3567104 98 44
10 SRR1777105 3706688 101 46 3706688 98 46
11 SRR1777107 3864532 101 42 3864532 98 42
12 SRR1777109 6636352 101 46 6636352 98 46
13 SRR1777112 6015670 101 40 6015670 98 40
14 SRR1777114 6365473 101 44 6365473 98 44
15 SRR1777116 7018374 101 44 7018374 98 44
16 SRR1777118 11163622 101 47 11163622 98 47
17 SRR1777120 9983774 101 38 9983774 98 38
18 SRR1777122 6186861 101 46 6186861 98 46
19 SRR1777124 6986571 101 45 6986571 98 45
20 SRR1777126 6607400 101 42 6607400 98 42
21 SRR1777128 5470092 101 40 5470092 98 40
22 SRR1777130 7102096 101 43 7102096 98 43
23 SRR1777132 9066635 101 46 9066635 98 46
24 SRR1777134 1908044 101 43 1908044 98 43
25 SRR1777136 3088062 101 39 3088062 98 39

3.2.2 Gene Expression Quantification
For gene expression quantification we used Tophat-Cufflinks pipeline, which is a

combination of software tools used for aligning and comprehensively analyzing the gene
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expression from RNA sequencing data (146). Moreover, it performs a comprehensive
expression analysis, and it is a widely used tool (147). The Tophat-Cufflinks pipeline is
preferred because it provides more accurate expression values, detect a greater number of
genes compared to other tools such as HTseq (148), RSEM (149), and STAR (150).
Tophat is a tool designed with an efficient read mapping alignment algorithm to align
RNA-seq reads to reference genome without relying on a known splice site. Tophat
performs the alignment process in two phases: in phase I it uses Bowtie aligner to map all
the reads to the reference genome; in phase II, it assembles the mapped reads from Bowtie
by using an assembly module, inferring reads into exons and transcripts (146). The
pipeline recommended the use of GTF annotation file in order to annotate the results from
the pipeline with their gene names (146). GTF (Gene Transfer Format) file is a tab-
delimited file that contains information about genome coordinates for the use of genes
annotation. There are eight columns in the GTF file: seq-name (chromosome number),

source, feature, start site, end site, score, strand, frame and attribute.
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Figure 3.3. Workflow of Tophat-Cufflinks pipeline. Adopted from (146)

The trimmed reads were aligned to the human genome reference (hg 19) UCSC release

fasta file (https://hgdownload.soe.ucsc.edu/goldenPath/hg19/bigZips/) using Tophat

(version 2.1.1) (151). Fasta file is a text-based file used to specify the reference sequence

of the genome. Each chromosome is represented in two rows, the first one is the identifier
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which starts with “>” followed by chromosome name and the second is the sequence

(Figure 3.4).

chrl?7

accttctgtgtcatttgttaaaattcattaccaaacgcaaaggcacacag
cttttcctctatagtttcttctagaaattgtatagttttgcatttttagt
gtaaggatgattttgagtgattatttgtgtaagttgtaaagttttcatct

acatgtgagggtgagggtgagggtgagggttaggggttaggggttagggg

ttagggctagggctagggctagggctagggctagggctagggtttagggt
tagggttagggttagggttagggttagggttaggttagggtgagggtgag
ggtgagggtgagggtgagggtgagggtgagggtttagggttggggttggg
gttggggttggggttggggttggggttagggttagggttagggttagggt
tagggttagggtgtgggtgtgggtgtgggtgtgggtgtggtgtgtgggtg
tgggtgtgGT

Figure 3.4. An example of fasta file format

After the alignment is finished, a bam file is generated. Bam which stands for
binary alignment map is the binary format of a SAM file. Sam file is a generic alignment
format file that stores read alignments against reference genome sequence (152). Next, by
following the pipeline (Figure 3.3), the bam files were then analyzed in Cuffquant.
Cuffquant tool calculates transcript expression profile for each sample separately and
exports it as a smaller binary file format (CXB). The last step is to use the Cuffnorm tool
to normalize the gene expression levels of the multiple samples in order to make all gene
expression values in the same scale. The reported gene expression levels from Cuffnorm
are FPKMs. FPKM (fragment per kilobase of transcript per million reads mapped) is a
normalized estimation values of gene expression from paired-end (RPKM in single-end)

RNA sequencing data (153). FPKM is calculated by the formula (3.2):

FPKM = Total fragments (3.2‘)

Mapped Reads (million)*Exon length (kb)
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3.3 RRBS data

3.3.1 Data Pre-processing

Firstly, we checked the quality of raw RRBS sequence data (fastq) by using Fastqc
following the protocol in section 3.2.1. In this data we detected an adaptor contamination
in all samples. Besides other tools such as Trimmomatic (144), Cutadapt (154), and FastX
(155), we preferred to use Trim-Galore tool because it has an option that is designed
especially for trimming RRBS reads (156).

> trimgalore -illumina -rrbs sample.fastq

Table 3.2. Basic statistics of RRBS reads before and after trimming

Before Trimming After Trimming
Sample SRR No. Total Sequence %GC | Total Sequence | %GC
Sequence length Sequence | length
1 SRR1777086 | 5872242 101 36 5682216 101 33
2 SRR1777088 | 7234041 101 36 6821806 101 33
3 SRR1777090 | 8233353 101 36 7462253 101 33
4 SRR1777092 | 3914470 101 38 3195983 101 34
5 SRR1777094 | 8384707 101 36 8115618 101 33
6 SRR1777096 | 6205049 101 35 5939977 101 33
7 SRR1777098 | 6345297 101 35 5951204 101 33
8 SRR1777100 | 6497647 101 36 6193519 101 33
9 SRR1777102 | 5692258 101 35 5472350 101 33
10 SRR1777104 | 5829994 101 35 5664762 101 33
11 SRR1777106 | 8537614 101 36 7887331 101 33
12 SRR1777108 | 9067477 101 37 8109880 101 33
13 SRR1777110 | 6600208 101 37 5983976 101 33
14 SRR1777113 | 11168512 | 101 37 10215873 | 101 33
15 SRR1777115 | 8893147 101 37 8258172 101 33
16 SRR1777117 | 10583467 | 101 38 9905917 101 33
17 SRR1777119 | 7209732 101 36 6193280 101 33
18 SRR1777121 | 8122832 101 36 7432772 101 33
19 SRR1777123 | 7619708 101 36 6714080 101 33
20 SRR1777125 | 7467918 101 37 6855087 101 33
21 SRR1777127 | 9687349 101 37 7519129 101 33
22 SRR1777129 | 7928567 101 38 7388531 101 33
23 SRR1777131 | 9569206 101 37 8689899 101 33
24 SRR1777133 | 10643620 | 101 36 9126636 101 33
25 SRR1777135 | 8352859 101 38 7711035 101 33
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3.3.2 Methylation Base Calling

Bismark (156), BS-Seekers2 (157), GSNAP (158), and BSMAP (159) are the most
commonly used tools to align and call methylated CpG sites from RRBS data. We
preferred to use the Bismark tool for its high accuracy and high performance in CpG
calling (160). Bismark software is a program that is used for aligning bisulfite treated
sequencing reads and methylation base calling. Before aligning, the human reference
genome (hg 19) was prepared for the alignment by using the tool “Bismark genome
preparation”. This tool indexes the reference genome and generates two [C to T] and [G
to A] converted genome files. This step is necessary because of the nature of the RRBS
method where the unmethylated C bases are converted into Uracil, so converting reference
genome makes it compatible to align those reads (156).
Preparing reference genome command:

> Bismark genome preparation —path_to aligner ~/bowtie2 —verbose ~/hg19/

Then, the alignment was done by aligning the trimmed reads (fastq) to the prepared
(converted) reference genome, where bam files were generated at the end. During
alignment, Bismark aims to find a unique aligned read by running many alignment
processes at the same time. First, Bismark transforms bisulfite reads into C to T and G to
A. Then, these converted reads are aligned to the pre-converted reference genome. This
mapping enables Bismark to identify the strand origin of bisulfite read and to define the
methylation accurately in an unbiased way (80).

Aligning command:
> Bismark —genome ~/hg19/ sample.fq

Thereafter, Bismark is used for calling the methylation level for each CpG site.
For this, we used “methylation extractor”. This function is used for calling every single

analyzed C base annotated with its location in the genome and its context e.g., CpG, CHH,

or CHG.

> bismark -o sample.bam ~/hg19/ -1 sample 1.fq -2 sample 2.fq
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This command produces a ‘“coverage” format file that will be used in the
downstream analysis to calculate the methylation level. Coverage file is a text tab-
delimited file contains all the CpG sites that are called from RRBS reads, the file
composed of the columns: chromosome, position, strand, count methylated and count
unmethylated. The methylation levels were calculated by B equation (3.3). The regional
methylation level for promoter, gene body, and intergenic regions were determined by

calculating the mean of methylation level of all CpG sites in that region.

R = Methylated C (3.3‘)

- Methylated C+Unmethylated C

In order to reduce the bias and avoid false positives of CpG calls, only CpG bases with
depth >=3 sites in promoter or gene body regions were used for downstream analysis (32).
Read depth of each base was called using the “depth” function from Samtools. Samtools
is a software package used for parsing and manipulating SAM and BAM files such as
sorting, merging and PCR duplicates removing (152).

> samtools sort sample.bam > sorted.sample.bam

> samtools depth sorted.sample.bam > sample.depth

To annotate CpG sites to the corresponding genes, refseq gene list from UCSC and
bedtools were used. Bedtools is a flexible tool that have a wide diverse usage for genome
feature analysis such as merging, counting , intersect and complement genomic intervals

from bed, sam, and fasta files (161).

3.4 CNYV Estimation from RRBS Data

To estimate CNV from RRBS reads, we used HMMcopy at 500kb resolution
(162). HMMcopy is a tool using a read-depth (RD) approach for CNV deduction from
WGS data. HMMcopy makes a bias-free CNV estimation by correcting mappability bias
and GC content in sequencing reads. It implements a hidden markov model (HMM) for a
copy number profile segmentation into non overlapping windows that are predicted to

have the same copy number state and relate it to the biological CNV events. HMMcopy
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takes an input of three WIG format files that are generated by a linux based
HMMcopy util tool, namely GC content, readcount and mappability values for fixed
width non overlapping windows across the reference genome (162). WIG (wiggle) file
format is a text-based file that displays continuous data such as probability scores, GC
content, and transcriptome data. On the other hand, BIGWIG file is an extended WIG file
format which facilitates working with big data such as reference genome. The three wigs
file were generated by: mapCounter, gcCounter and read counter commands using
HMM _util. Briefly, mapCounter tool was used for calculating the average mappability for
fixed width non overlapping windows across whole sequences of reference genome in a
bigwig file. We have downloaded the bigwig file
“wgEncodeCrgMapabilityAlign100mer.bigWig” for hg19 from UCSC genome browser
(https://hgdownload.cse.ucsc.edu/goldenPath/hg19/database/).

> mapCounter -w 500000 wgEncodeCrgMapabilityAlign100mer.bigWig > map.wig

gcCounter tool was used for calculating the GC content for fixed width non overlapping

windows across whole sequences of reference genome in a fasta file (hg 19).

> gcCounter -w 500000 genome.fa > gcCounter.wig

readCounter tool was used for calculating the read counts for fixed width non overlapping

windows across whole sequences in aligned reads bam file.

> readCounter -w 500000 sample.sorted.bam > sample.wig

The GC content and mappability values were corrected before performing HMM
prediction on the reads. The correction procedure includes:
e Filter out bins with 0 read and 0 GC content, filter out outlier bin, smoothing
windows by loess with a small span on GC curve.

e Corrected GC (cor.gc) is calculated by correcting GC content in each bin.
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Corrected mappability (cor.map) is calculated by correcting the mappability of
each bin. “Copy” is the log2 of cor.map that will be used in CNV prediction in
HMM.

> mydata = wigsToRangedData(readfile = "sample.wig",gcfile =
"gcCounter.wig" ,mapfile = "map.wig")
> corrected data=correctReadcount(mydata)
HMMcopy also plots a GC bias graph and corrected CNV graphs over the genome
(Appendix 1).
The prediction procedure includes HMM segmentation function takes in “copy” values
and predicts the regions of equal copy number into segments, then assigns a biological
copy number state of each region using HMM. HMMsegment consists of two parts; the
first part performs iteratively Expectation-Maximization algorithm to find the optimal
parameters, the second part is to perform Viterbi algorithm that conducts the actual
segmentation of the data and output segmented state (162).
HMMcopy reports predictions as a table containing the chromosomal segment location
annotated with corrected mean number, and state number between (1-6):

1: homozygous deletion

2: heterozygous deletion

3: neutral

4: increased copy number

5: heterozygous duplication

6: homozygous duplication
Moreover, HMMcopy provides a graph that visualizes the CNV states and their mean

distributions over the whole genome of all chromosomes (Figure 3.5).
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Figure 3.5. An example graph of CNV estimation by HMMcopy throughout all
chromosomes.

3.5 Correlation Calculations

To infer the association between the different omics, we used Pearson correlation
coefficient (r), which is a commonly used correlation measure with continuous variables
(163).We calculated the Pearson correlation coefficient (r) between; promoter methylation
and gene expression, gene body methylation and gene expression, gene expression and
CNV. The promoter region was defined as 1 kb downstream and 1kb upstream of TSS,
while gene body region was defined to be from 1kb downstream of TSS to TES (Figure
3.6). The CNV values that are used for correlation calculations are the corrected mean of
segments provided by HMMcopy. While, for gene expression data, log2(fpkm+1) values

were used for correlation calculations.

Promoter region Gene body region

1000bp TSS 1000bp TES

Figure 3.6. The Promoter and the gene body regions of each gene

3.6 Bayesian Networks

Bayesian Networks (BN) are probabilistic graphical models that represent the joint
probability distribution in a factorized way (25). A BN composed of a graphical structure
with a set of parameters. BNs are defined as directed acyclic graphs (DAG) consisting of
nodes and directed edges. It is constructed as a set of conditional independence

assumptions between the variables and its non-descendants given its parents. The
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parameters represent the conditional probability distributions between variables that
connected directly by edges giving their causal relationship (20). The pointing side of the
edges shows the direction of the causing. For example, if an arc goes from A node heading
to B node, meaning that A is the causing of B. In other words, B is conditionally dependent
on A (figure 3.7). The conditional probability of A given B is represented by P(A | B).
Formally, the sets of variables A and B are said to be conditionally independent given the

set C if P(A | B,C) = P(A | C).

Figure 3.7. Simple Bayesian network structure (DAG).

There are several ways to build a BN model: The structure is defined manually by
expert information or the parameters are estimated by using maximum likelihood or
Bayesian method (164). The performance of BN models can be tested and compared using
scoring methods such as relative likelihood, Akaike information criterion (AIC) and
Bayesian Information Criterion (BIC) (165). AIC score is used to examine the
compatibility of their structures, and then a relative likelihood approach was used to
compare the goodness of fit of one network to another. N1 and N2 are two networks, if

AIC (N1) < AIC (N2) then the relative likelihood of N2 respect to N1 is:

AIC (N1)—AIC (N2)

exp ( . ) (3.4)
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Akaike information criterion (AIC) is an estimator score used for estimating the quality
of the model on the number of parameters (k) and the maximum likelihood estimation

for the model(L) (Equation 3.5).

AIC = 2k — 2In (L) (3.5)

Bayesian information criterion (BIC) is a criterion for model selection that is very related
to AIC score but differs in depending on the number of observations as an extra criterion.

It is calculated by the formula (3.6).
BIC = kin (n) — 2In (L) (3.6.)

To dissect the causal relationship association among the three omics, we built three
BN structures to model the causal relationship between CNV, gene expression and DNA
methylation. The first model “CEM”, assumes that there is a causal relation from CNV to
gene expression, and from gene expression to DNA methylation in a serial connection
(Figure 3.8-A). The second model “CME” assumes that there is a causal relation from
CNV to DNA methylation, and from DNA methylation to gene expression in a serial
connection (Figure 3.8-B). The third model “Indep” assumes that there is a causal relation
from CNV to both DNA methylation and gene expression independently in a diverging

connection (Figure 3.8-C).
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A) CEM model: CNV - Expression - Methylation
B) CME model: CNV - Methylation - Expression

C) INDEP model: CNV independently impacts Expression and Methylation

- O
Figure 3.8. The three constructed BN: A) CEM, B) CME, C) Indep

Because BN performs better with discrete values, the data of gene expression and
DNA methylation levels were discretized (166). FPKM values were discretized into three
categories (low, moderate, and high) expressions. The cutoffs were set based on the same
categories used in EBI atlas database (199); (0.2-10): low, (10-1000): moderate, (>1000):
high expression. DNA methylation levels were also discretized into three categories
(hypo, neutral, and hyper) methylated. The cutoffs were set to be (0-0.2): hypomethylated,
(0.2-0.8): neutral, (>0.8): hypermethylation. For DNA copy number, we used CNV states
that are provided by HMMcopy. The states ranged between 1-6: (1): homozygous
deletion, (2): heterozygous deletion, (3): neutral, (4): gain, (5): amplification, (6): high
level amplification.

The parameters of the three models were fitted using maximum likelihood
estimation (MLE). BNlearn R package was used for BN model construction, fitting and
scoring (164). As well, BIC score was also calculated, and only models that have followed
the same model by both AIC and BIC were kept. Moreover, model comparisons were
done by using BIC score only. The model with the lowest score was taken to be the best

fitted model. The comparison for a model to another were considered by taking the
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difference between the two models with the lowest and the second lowest BIC (equation
3.7) and the strength of the evidence were adjusted according to ABIC (167) as :

0-2: indicates weak evidence,

2-6: positive evidence,

6-10: strong evidence,

>10: very strong evidence.

ABIC = BICsecond lowest BIClowest (3-7-)

The models were applied on protein-coding genes. Only genes that have been detected in
all cells were chosen for model testing. In order to have as much as possible of genes, we
eliminated sample 17 because of the low number of genes detected (8226 genes) from
RRBS data, which in turn lowers the number of mutual genes to be tested. Figure (3.9)
shows the number of detected genes from RRBS data in all cells, comparing the number
of detected genes in sample 17 to the other 24 samples. As a result, 2661 genes were used

to test BN models.
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Number of Detected Genes from DNA Methylation Data
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Figure 3.9. Number of the detected genes from RRBS data of each sample.

3.7 Gene Set Enrichment Analysis
3.7.1 CBioportal Database

In order to find whether the detected genes have been reported in HCC before, we
searched the genes in cbioportal database (168). Cbioportal is a platform that contains a
comprehensive large-scale of cancer genomics data including data from TCGA, ICGC,
and published sequence studies from academic and commercial institutions (167). The
Cancer Genomic Atlas (TCGA) is the largest and richest cancer data of 200 different types
of cancer collected from about 12,000 patients around the world (169). TCGA data are
composed of many omics data including DNA sequencing, RNA sequencing, CNV, DNA
methylation, and proteomic data. The whole TCGA data are implemented in cbioportal

database (168, 170).
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4. RESULTS

4.1 Gene Expression Levels

As mentioned in section 3.2, we have used Tophat-Cufflinks pipeline to analyze RNA
sequencing data. We annotated the sequences to hgl9 reference genome with protein
coding Refseq genes. Table (4.1) shows the mapped reads, mapped ratio, and the number
of detected genes of RN A-seq data for 25 samples. At the end of the pipeline, 18584 genes
were yielded. In order to select the expressed genes that have been detected in all cells,
we eliminate both the genes with (NA) value and the genes that have zero value in all

cells, which resulted in 15326 genes.

Table 4.1. Sequence Information of RNA Sequencing Data Samples.

Sample Total number of Mapped read Mapping Mapped genes
analyzed reads pairs efficiency (fpkm>0)
1 3956277 1973751 68.0% 5618
2 4005566 2216595 72.2% 8606
3 3751180 1948646 69.4% 6934
4 3612890 1958354 71.6% 9348
5 4074177 2080378 68.3% 7892
6 7133651 3418379 65.5% 4617
7 5750626 2507828 60.0% 3088
8 3445214 1663878 66.5% 5314
9 3567104 1683551 65.1% 6097
10 3706688 1783222 67.0% 6930
11 3864532 1634657 59.9% 4818
12 6636352 3813552 72.8% 7414
13 6015670 2408480 57.0% 4875
14 6365473 3330118 68.2% 3645
15 7018374 3737093 69.8% 6368
16 11163622 7020724 77.1% 7859
17 9983774 4585241 59.7% 5016
18 6186861 3423019 71.8% 7398
19 6986571 4000465 72.3% 6540
20 6607400 3049466 63.4% 5581
21 5470092 2207147 58.0% 2630
22 7102096 3384499 65.9% 7349
23 9066635 4786858 70.2% 7784
24 1908044 905168 64.9% 4007
25 3088062 1213749 55.8% 4033
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As a part of the pipeline, the sequencing reads were aligned to hgl9 reference
genome (UCSC assembly) with Tophat. Next, Cuffquant tool was used to estimate the
gene expression of each sample. Then, Cuffnorm tool was used to normalize the values
from Cuffquant so that all gene expression values become on the same scale. Cuffnorm
tool reported FPKM values of each gene for all samples. For the downstream analysis, we
have used log2(FPKM+1) values for gene expression levels. Figure (4.1) shows the gene

expression (log2(fpkm-+1)) distributions for each sample.

Gene Expression Distribution in Samples
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Figure 4.1. Gene expression distribution in all samples.

4.2 DNA Methylation Levels
For DNA methylation analysis Bismark software was used for the alignment and
CpG sites calling (previously described in section 3.3) of RRBS data. Table (4.2)

shows the sequencing information including the total number of analyzed CpG sites
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and the total number of detected genes in each sample. On average, about 13100 genes
were detected on all cells. Sample 16 had the highest detected genes with 15818 genes,
while Sample 17 had the least detected genes with 8226 genes.

Table 4.2. Sequence Information of DNA Methylation Data.

Sample Total Mapping Total Total C's in Total C's in CpG Total

number of | efficiency | number of CpG context context number

analyzed C's analysed | (methylated (methylated and of

reads and unmethylated) detected
unmethylated) (depth >=3) genes
1 5682216 6.0% 16111942 3608134 690810 13851
2 6821806 15.5% 51571705 10532456 1159830 15156
3 7462253 7.4% 26660719 5510918 884191 14515
4 3195983 13.3% 18732458 4211753 1012511 14755
5 8115618 7.6% 30127778 6353989 734467 14006
6 5939977 4.6% 13266640 2492453 465859 12388
7 5951204 4.7% 13471964 2700915 393998 11362
8 6193519 3.5% 10531074 2181766 348531 11509
9 5472350 5.9% 15719599 3328962 749362 14136
10 5664762 6.3% 17649347 3648788 737629 13921
11 7887331 4.5% 17188932 3534484 328956 10998
12 8109880 7.3% 27725731 6020939 637289 13485
13 6050471 10.0% 28002614 5560722 720851 13829
14 10215873 3.5% 16413258 3541333 345575 11282
15 8258172 4.9% 18112819 3463948 435799 12225
16 9905917 13.5% 61163128 13431814 1677730 15818
17 6193280 4.2% 12755078 2510035 185173 8226
18 7432772 7.5% 26231957 5290348 732962 14072
19 6714080 7.7% 24631107 4873392 616350 13493
20 6855087 8.2% 25252120 5218707 780469 14233
21 7519129 52% 17807460 3151685 500155 12926
22 7388531 7.9% 26280431 5726413 753525 13991
23 8689899 6.7% 27273514 5966027 613082 13337
24 9126636 4.0% 18124466 3465984 422334 11956
25 9126636 4.0% 18124466 3465984 676406 13652

The results of CpG sites showed that CpG island (CGI) were highly covered, that is, about
50% of the called CpG sites in each sample were related to CGI regions (Figure 4.2).

Comparably, promoter regions were highly covered than other genomic regions, that is,
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about 45%-50% of the called CpG sites in each sample were related to promoter regions
(Figure 4.3).

Coverage of CpG Sites in CpG Regions
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Figure 4.2. Coverage of CpG sites in CpG Regions of Each Sample.
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Figure 4.3. Coverage of CpG sites in Genomic Regions of Each Sample.
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The results showed a hypomethylation in all 25 samples, especially in promoter regions
and a higher methylation level in gene body regions. Figure (4.4) shows the methylation

level of all samples in different genomic regions.
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Figure 4.4. Methylation Level of Different Genomic Regions of Each Sample.

4.3 Copy Number Variation

As mentioned in section 3.4, HMMcopy a R package was used to estimate CNVs
from RRBS data. From CNV results, all 25 samples showed an amplification in
chromosome 7 and q arm of chromosome 1. I also observed a deletion in chromosome 8
and chromosome 4. Moreover, the samples (3,4,6,9,12,13,15,16,18,19,20,21,22,23,25)
showed a loss in chromosome 13, while samples (2,6,13,14,15,20,21,22,23) showed an

amplification in chromosome 6, Figure (4.5), shows the CNV pattern of genomes of some
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samples (all samples are in Appendix 2), the red color represents the amplification, blue

represents the neutral, and the green represents the deletion in copy number.
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4.4 Correlation Between Omics

For the correlation between DNA methylation and gene expression, we observed
a negative relationship in the promoter region with Pearson correlation coefficient (r) of
-0.1387+ 0.08 (mean + SD). We also observed a positive correlation with Pearson
correlation coefficient (r) of 0.3136+ 0.07 (mean + SD) gene body region. Figure (4.6)
shows the Pearson correlation coefficient (r) between DNA methylation and gene
expression in the two regions (promoter and gene body) of each sample. In this correlation,
only genes that have been detected from both RRBS and RNA-seq data were used. For
each sample, we found that all genes that have been detected from RRBS were detected
from RNA-seq data. So, the number of genes that have been used in this calculation are

the same in table 4.2.
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Figure 4.6. Pearson correlation coefficient between DNA methylation and gene
expression in promoter and gene body regions.

For the correlation between DNA copy number and gene expression, we found a highly

positive correlation with Pearson correlation coefficient (r) of 0.821+ 0.07 (mean + SD).
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The DNA copy number that is used in this correlation, is the median of the copy number
in each segment that is provided by HMMcopy. The Figure (4.7) shows the Pearson
correlation coefficient (r) between gene expression levels and DNA copy number in each

sample. This correlation was calculated on 15326 genes.
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Figure 4.7. Pearson correlation coefficient between CNV and Gene Expression

4.5 Causality Analysis Using BN

To explore the causal relationship between omics, we used Bayesian Network to
analyze the relationship between DNA methylation and gene expression by considering
that CNV is the trigger of the causal relationship since its state is not modifiable (44).
FPKM values were discretized into three categories (low, moderate, and high) expression.
The cutoffs were set based on the same categories used in EBI Atlas Database: (0.5-10
FPKM): low, (11-1000 FPKM): moderate, (>1000): high expression. DNA methylation
levels were also discretized into three categories (hypo, neutral, and hyper) methylated.
The cutoffs were set to be (0-0.2): hypomethylated, (0.21-0.8): neutral, (>0.8):
hypermethylation. For DNA copy number, we used CNV states that are provided by
HMMcopy. The states ranged between 1 to 6: (1): homozygous deletion, (2): heterozygous
deletion, (3): neutral, (4): gain, (5): amplification, (6): high level amplification.
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Three BN models were constructed using maximum likelithood estimation. Also, for
model scoring, both AIC and BIC scores were overlapped to decide which of the three BN
models (described in 3.6 section) is the most likely to represent the data for each set of
variables. The three models are INDEP, CME, and CEM (figure 3.9). In “INDEP” model,
CNV affects independently DNA methylation and gene expression. In “CME” model,
CNV affects DNA methylation, which in turn affects gene expression. In “CEM” model,
CNYV affects gene expression, which then affects DNA methylation.

The models were applied to protein-coding genes that have been detected to have a
variation in gene expression, methylation and copy number throughout all samples. As
previously described in section 3.6, sample 17 were eliminated in this analysis because
the number of detected genes from DNA methylation data were very low which in turn
could affect the number of mutual genes to be analyzed.

The relative likelihood was used to compare the goodness of fit of one BN to another
(section 3.6). We only kept the models when the best model is at least ten times more
likely to be than the second-best model for both AIC and BIC. The results showed that 21
genes were best fitted to one of the three models according to relative likelihood. Table
(4.3) shows the AIC, BIC and the relative likelihood of the 21 genes. Out of 21 genes,
CME model was best fitted to 16 genes, CEM to 4 genes and 1 gene was best fitted to
INDEP model.



Table 4.3. Genes with verified BN models and AIC and BIC score of the three models and relative likelihood values.
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GENE Best AIC BIC
fitted INDEP CME CEM Relative INDEP CME CEM Relative
Model Likelihood Likelihood
ULK1 CEM -38,545833 -39,344477 -45,416305 20,8199952 -42,66902102 -44,056693 -49,539494 15,50869
HLAB CME -53,750063 -61,104094 -52,870194 39,5282517 -57,87325105 -65,816309 -56,993382 53,06561
SLC26A11 CME -33,199123 -37,928193 -33,266463 10,2868364 -37,32231098 -42,640409 -37,389652 13,8098
PPP2R5A CME -57,358823 -62,132136 -55,660909 10,8770671 -63,838185 -68,611432 -60,962151 10,87707
COPZ1 CME -45,843344 -51,342025 -46,312274 12,3650728 -49,96653258 -56,054241 -50,435462 16,59978
ANKSIB CEM -27,478388 -27,789182 -35,332987 43,4626654 -30,42352303 -30,734317 -38,278122 43,46267
TIM44 CME -45,711793 -55,407433 -46,172043 101,260331 -49,83498126 -60,119648 -50,295232 135,9393
AIBG CME -48,646964 -57,110518 -49,579232 43,1914803 -52,77015269 -61,822734 -53,70242 57,9834
ALDH2 CME -42,748862 -48,761806 -42,236788 20,2159522 -46,87205085 -53,474022 -46,359976 27,13937
GON4L CME -51,229639 -55,902784 -50,209636 10,3457206 -57,70893461 -62,382081 -55,510878 10,34572
FBLNI1 INDEP -46,487603 -37,538125 -36,982996 87,7717069 -49,43273775 -40,483259 -39,92813 87,77171
C3 CME -43,248846 -50,508169 -43,232024 37,7000397 -46,19398098 -53,453303 -46,177158 37,70004
MAP3K6 CME -32,941672 -37,924072 -32,487296 12,075757 -37,0648607 -42,636287 -36,610485 16,21138
ZNF695 CEM -35,189638 -34,458313 -43,021397 50,1931979 -39,90185346 -38,581501 -47,144586 37,38861
DSTN CME -39,918266 -46,743217 -39,345106 30,3402594 -44,04145406 -51,455432 -43,468295 40,73098
TF CME -37,08112 -48,345884 -37,060452 279,326647 -41,20430819 -53,058099 -41,183641 374,9885
ANP32B CME -31,597169 -38,09578 -31,962265 21,4721645 -34,5423031 -41,040915 -34,9074 21,47216
PRCC CME -54,56772 -60,138928 -53,755422 16,2096074 -61,04701625 -66,618224 -59,056664 16,20961
GNS CME -43,765062 -48,624238 -43,765062 11,3542046 -47,88824994 -53,336453 -47,88825 1524271
MGATA4C CEM -22,358108 -22,358108 -35,559292 735,530238 -25,30324284 -25,303243 -38,504426 735,5302
UBR4 CME -45,888437 -53,753649 -45,888437 51,0398303 -50,01162523 -58,465865 -50,011625 68,5196
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On the other hand, we focused on BIC scores only, the model with the lowest score was
taken to be the best fitted model. The comparison for a model to another were considered
by taking the difference between the two models with the lowest and the second lowest
BIC (equation 3.6) and the strength of the evidence were adjusted according to ABIC as:
0-2: indicates weak evidence,

2-6: positive evidence,

6-10: strong evidence,

>10: very strong evidence.

ABIC = BICsecond lowest BIClowest (3-6-)

The results showed that out of 1830 genes have a valid BIC score after eliminating genes
with ABIC>6 (low evidence), 207 genes were left. CEM model was best fitted to 169
genes, CME to 34 genes, and INDEP model to 4 genes. Appendix 3 contains the BIC
scores and the names of all genes. Table (4.4) shows the number of genes were best fitted

to each model according to BIC scores only.

Table 4.4. Number of genes best fitted to each model and the evidence strength
according to BIC scores only

Evidence strength (ABIC) CEM CME INDEP TOTAL
Strong (6-10) 91 26 1 118
Very strong (>10) 78 8 3 89
TOTAL 169 34 4 207

4.6 Gene Set Enrichment Analysis

4.1.1. CBioportal Database

We split the genes into 2 groups: Group 1 contains the genes that have best fitted
to BN models according to AIC and BIC scores with relative likelihood >=10 (21 genes),
and Group 2 has the genes with a valid model according to BIC score only (207 genes).
For Group 1 genes, cbioportal showed that the genes have been reported in 83% of 396
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cases in HCC studies. Figure 4.8 shows HCC related studies from cbioportal that have
reported the detected genes. At the left side of each row shows the genes and the
percentage of how much this gene is reported in studies while the bars at the right side
represents each study with different omic type. The grey bar means the gene is not
mentioned in that study and the colored bar means that the gene is reported in that study.
Cbioportal also reports alteration frequency. For Group 1, it showed that the genes are
reported in about 48% of the studies with high gene expression, 30% with multiple

alterations, and 2% with CNV amplification.
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For genes in group 2, we tested each model separately in the database. Genes of
CME model (169 genes) have been reported in 99% of the cases of HCC. Figure 4.9 shows
some of the genes and the study that they have been reported them are shown (all genes
are in Appendix 4). Also, alteration frequency summary table of cbioportal have shown
that the genes have been reported in 75% of studies with multiple alterations, %1 with
mutations, 1% with copy number amplification, 2% with low mRNA, and 20% with high
mRNA.
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Moreover, cbioportal have shown that some genes have matched to pathways in
HCC. Table 4.5 shows the affected pathways and the genes that have been matched to
each pathway.

Table 4.5. Genes of Group 2 (CME) that matched to pathways in HCC (reported by
cbioportal).

Pathway Genes Matched
BLCA-2014-RTK-RAS-PI(3)K-pathway STK11,FGFR3
HIPPO STK11,FGFR3
RTK-RAS FGFR3,RACI1
LUSC-2012-RTK-RAS-PI(3)K-pathway STK11,FGFR3
HNSC-2015-RTK-RAS-PI(3)K-pathway FGFR3
SKCM-2015-RTK-RAS-PI(3)K-pathway RACI1
STAD-2014-RTK-RAS-PI(3)K-pathway JAK2

PI3K STK11
LUAD-2014-RTK-RAS-PI(3)K-pathway STK11

Genes reported for following the CEM model (34 genes) have been shown in about 90%
of the cases of HCC. Figure 4.10 shows the genes and the studies that they have been
reported. Also, alteration frequency summary statistics tables of cbioportal have shown
that the genes have been reported in 40% of the studies with multiple alterations, 40%
with high mRNA 5% with low mRNA, 3% with copy number amplification, 1% with

mutations, and 1% with copy number deletion.
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Moreover, cbioportal have shown that some genes have matched to pathways in HCC.
Table 4.6 shows the affected pathways and the genes that have been matched to each
pathway.

Table 4.6. Genes of Group 2 (CEM) that matched to the affected pathways in HCC

(reported by cbioportal)
Pathway Genes Matched
COADREAD-2012-TGF-B-signaling-pathway TGFBR1
TGF-Beta TGFBR1
RTK-RAS ERRFII

For 4 genes following the INDEP model, have been reported in 20% of the cases
of HCC. Figure 4.11 shows the genes and the studies that they have been reported. Also,
alteration frequency summary of cbioportal have shown that the genes have been reported
in 6% of studies with mutations, 1% with multiple alterations, %1 with copy number

deletion, 1% with copy number amplification and 11% with high mRNA.
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5. DISCUSSION AND CONCLUSION

In this study, by integrating the genome, epigenome, and transcriptome of HCC single
cell data, we attempt to infer causality in HCC. By fitting BN to gain more insight into
HCC susceptibility and progression.

Firstly, we analyzed the RNA-seq and RRBS data on their own. We calculated
methylation levels and FPKM values. From RRBS data, the results showed that CpG
islands and promoters have a higher coverage than other genomic regions. This explains
the nature of the data of RRBS method which uses Mspl enzyme that have a restriction
site mostly found in CpG islands near promoters, assisting RRBS method to cover highly
CpG regions (171). Besides, we observed a low methylation level over the genome of
each sample especially in the promoter region. This observation consists with studies that
detected a global hypomethylation in HCC (172, 173).

Thereafter, CNV were estimated from RRBS data by using HMM method. All 25
samples showed an amplification in chromosome 7 and q arm of chromosome 1. These
amplifications were previously detected in HCC study (174). We also observed a deletion
in chromosome 8 and chromosome 4. These two deletions have been reported in literature
in HCC (175, 176). As well, some cells showed a loss in chromosome 13, while some
others showed an amplification in chromosome 6. This consists with some HCC studies
in literature (177, 178).

Then, we investigated the correlation between omics, by calculating Pearson
correlation coefficient (r). Between gene expression and DNA methylation we observed a
negative correlation in the promoter regions and a positive correlation in gene body
regions. These correlations indicate that the DNA methylation in the promoter region
might regulate the expression of the corresponding gene, and the methylation in the gene
body region is also involved in this regulation (44). In addition, we observed a high
correlation between gene expression and CNV, which means that CNV might have an
impact on the gene expression levels by changing the gene dosages (179).

Next, we integrated the genome, epigenome, and transcriptome data in order to

analyze the causality between omics. By using BN, we explored three different model
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alternatives. INDEP models where CNV affects gene expression and DNA methylation
independently from each other; CEM model where CNV affects gene expression then
DNA methylation, CME model where CNV affects DNA methylation then gene
expression.

Selecting the genes according to both AIC and BIC scores with relative likelihood
>=10, yielded 21 genes to follow a specific BN model (CME: 16 genes, CEM: 4 genes,
INDEP: 1 gene). Cbioportal showed that all the genes have been previously reported in
HCC studies (figure 4.2). All genes were reported in at least one study with high gene
expression. In addition, when search these genes in genome wide studies, we found that
HLA gene have been related to HCC in 4 different GWAS studies (180-183). Variations
in HLA gene that have strongly related to HBV infection and development of liver
cirrhosis and HBV-related HCC (183).

On the other hand, when we focused on BIC score only, we got 207 genes followed
a BN model (CEM: 34 genes, CME: 179 genes, INDEP: 4 genes). Similarly, all the
detected genes were reported in HCC studies. Moreover, Cbioportal have matched some
genes to pathways that have been reported to be affected in HCC. Genes that follow CME
model: STK11 (ABIC=47.35), FGFR3 (ABIC=12.04), JAK2 (ABIC=13.48), and RACI1
(ABIC=6.11) have been matched to PI3K signaling pathway that play a role in the survival
and the rapid growth of HCC tumor (184-186). Also, TGFBR1 gene which follows CEM
model (ABIC=38.25) have been matched to TGF-Beta signaling pathway. TGF-Beta
signaling pathway has a major contribution in HCC pathogenesis and tumor development,
is considered as a master regulator for cell proliferation and differentiation (187, 188).
Furthermore, we found that the genes FGFR3 (ABIC=12.04) and RAC1 (ABIC=6.11) that
follow CME model and ERRF1 gene (ABIC=4328.38) which follow CEM model have
been matched to the same pathway, RTK-RAS signaling pathway (Figure 5.1). Many
studies have shown that RTK-RAS signaling pathway plays a major role in HCC

proliferation, survival and apoptosis (189-191).
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Figure 5.1. Genes in RTK-RAS signaling pathway, highlighting FGFR3 (CME), ERRF1
(CEM), and RAC1 (CME) genes.

In this thesis, we showed different genes which follow different BN models take
place in different (or same) pathways that play major roles in HCC tumorigenesis. By this
way, the heterogeneity of the omics and their regulations with each other have been
shown. This method might help explore the genes that are related to HCC by defining
their models according to the relationship between the different omics. Many multi-omics
integration methods such as supervised, unsupervised, multi-dimensional scaling, cluster
of clusters have been used in HCC studies. These studies (mentioned in literature review)
focused on finding the relationship between omics by correlating or clustering them. Here,
we suggest the BN to be used to explore the causal relationship between three omics in
sequencing data at a single cell level. We found 207 genes with significant model, many
of these genes have been reported previously to be related to HCC in either GWAS or
sequencing data. Lastly, we introduce this method as a method that can provide a deeper
insight and understanding about HCC cells. It can be developed to implement more omic

data (e.g., proteomic) and to be used with other cancer types or complex diseases.
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5.1 Limitations and Possible Improvements

e In this study, the used data were generated by using one of the first single cell
sequencing methods, which means that a quality issue was presented. For example,
the mapping efficiency of RRBS data was very low. Which in turn, might affect
our calculations of DNA methylation level and CNV estimations.

e The genomic region was set to be from TSS to TES. However, it could also cover
the regions that are away from TSS in order to involve the enhancer and regulator
regions.

e We only analyzed protein-coding genes; non-coding genes could also be involved.

e For BN construction, DNA methylation and gene expression values were
discretized according to some classifications; for gene expression the classification
in EBI expression Atlas were used. This might lead to losing some information or
affecting the final results.

e Other omics data such as proteomics can be included which might give us more
comprehensive results.

e This method could be applied on a larger dataset, that might help in increasing the
validation of the data.

e Moreover, it can be used on different data of different types of cancer or complex

diseases.
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7. APPENDIX

Appendix 1: Before and after correction step of GC-content and mappability by
HMMcopy.
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Appendix 3: BIC scores for the three models with gene names, ABIC, and best
fitted model for each gene.

GENE BEST Indep CME CEM Min.Model | Diff
MODEL

HDAC4 CME -2,2289733 | -18,479551 | -5,7020637 | -18,479551 | 12,7774877
TGFBRI1 CEM -59,09022 | -56,842739 | -66,378335 | -66,378335 | 7,28811516
LATS2 CME -39,868038 | -48,925034 -38,85295 | -48,925034 | 9,0569962
P3H4 CME -35,582237 | -42,904957 | -34,374466 | -42,904957 | 7,32272003
NCKAPSL CME -50,69638 | -57,526745 | -49,964953 | -57,526745 | 6,83036493
UROCI CME -47,470606 | -62,226466 | -50,898225 | -62,226466 | 11,3282413
CATSPERG CME -40,13805 | -51,706312 | -44,541814 | -51,706312 | 7,16449748
MAF1 CEM -70,127162 | -68,444081 | -76,968214 | -76,968214 | 6,8410515
EHD2 CME 7,93598202 | -11,521332 | 8,96149495 | -11,521332 | 19,4573145
HELZ2 CME -6,8587646 | -15,723993 | -6,0152629 | -15,723993 | 8,86522877
NUFIP2 CEM -58,370376 | -59,022175 | -65,508333 | -65,508333 | 6,48615817
HLA-A CME -58,056125 -65,12896 | -56,785351 -65,12896 | 7,07283471
HLA-B CME -72,27374 | -81,637386 | -71,091871 | -81,637386 | 9,36364647
HLA-C CME -67,592986 | -77,134011 | -65,980301 | -77,134011 | 9,54102536
HLA-G CME -23,080286 | -38,663098 | -29,231813 | -38,663098 | 9,43128521
SLC4A7 CME -29,833926 | -40,488045 | -31,097326 | -40,488045 | 9,39071884
THEMIS2 CME -33,99145 | -60,537583 | -34,113619 | -60,537583 | 26,4239642
ITGB4 CME 29,0678127 | -29,146277 | 28,974366 | -29,146277 | 58,1206427
SNRNP70 CME -6,0085445 | -14,698472 | -6,4150288 | -14,698472 8,2834435
KIF13A CME -46,502361 | -53,038304 | -46,093555 | -53,038304 | 6,53594354
TTLLI11 CME -14,006259 | -48,017534 | -18,578979 | -48,017534 | 29,4385544
ARL4A CEM -62,684045 | -59,091975 | -69,277898 | -69,277898 | 6,59385296
ATXN10 CME -82,636159 | -90,782049 | -82,251582 | -90,782049 | 8,14589083
ANKEF1 CEM -25,726159 | -40,127815 | -47,722586 | -47,722586 | 7,59477108
LAPTMS5 CME -56,000843 | -63,220911 | -57,111232 | -63,220911 | 6,10967946
KIF16B CME -47,193052 | -60,656727 | -45,318361 | -60,656727 | 13,4636755
COPG2 CME -11,842149 | -18,544694 | -10,371415 | -18,544694 | 6,70254568
CHCHDG6 CME -68,502955 | -75,340588 | -68,801841 | -75,340588 | 6,53874713
SP5 CME -27,810869 -43,78184 | -28,468223 -43,78184 | 15,3136174
FZD1 CME 426501558 | -21,936174 | 3,54813329 | -21,936174 | 25,4843076
AK4 CME -53,752006 -61,38631 | -52,894717 -61,38631 | 7,63430357
ANOS CME -20,708698 | -39,585338 | -18,663597 | -39,585338 | 18,8766392
PSTPIP1 CME 41,600559 | 6,84325264 | 43,9090974 | 6,84325264 | 34,7573064
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ZNF700 CME -46,804593 | -61,114382 | -44,843713 | -61,114382 | 14,3097884
TSHZ2 CME -47,007186 | -58,972682 | -45,425708 | -58,972682 | 11,9654961
ODF2 CEM -65,405178 | -64,609607 | -74,438585 | -74,438585 | 9,03340712
BTBD11 CME 8,32123274 | -2,4978474 | 9,76701825 | -2,4978474 | 10,8190802
SUN2 CEM -55,498792 | -54,991637 -62,41162 -62,41162 | 6,91282775
COL28A1 INDEP -86,307244 | -78,533805 | -78,511991 | -86,307244 | 7,77343959
HIVEP2 CME 4,12833587 | -10,745175 | 4,59399462 | -10,745175 | 14,8735109
PSMCS5 CEM -45,457182 | -46,417871 | -54,094255 | -54,094255 | 7,67638347
SLC2A4RG CEM -48,013562 | -46,612315 -54,07152 -54,07152 | 6,05795734
PSMF1 CME -66,835961 | -74,502376 | -66,130247 | -74,502376 | 7,66641551
ZNF786 CME -23,30706 | -48,041465 | -23,968608 | -48,041465 | 24,0728574
FZR1 CME -35,555658 | -56,106893 | -34,657015 | -56,106893 | 20,5512352
CBX2 CME -34,503671 | -42,509904 | -33,850562 | -42,509904 | 8,00623258
RSRP1 CME -55,201769 | -63,952997 | -52,459862 | -63,952997 | 8,75122796
NFIX CME -11,655808 | -19,964134 | -10,442732 | -19,964134 | 8,30832592
CcwC22 INDEP -27,506789 | -16,534352 | -15,914477 | -27,506789 | 10,9724373
COPZ1 CME -70,490997 -82,77623 | -69,577861 -82,77623 | 12,2852322
NPTX1 CME 68,0746423 | 51,7231343 | 67,9681455 | 51,7231343 | 16,2450112
UGTI1A4 CEM -66,26618 | -63,118433 | -74,379629 | -74,379629 | 8,11344894
ARHGEFI0L | CME -53,195984 | -61,586743 | -53,548454 | -61,586743 | 8,03828945
GLIS3 CME -10,506115 | -23,987154 | -11,415943 | -23,987154 | 12,5712103
CLPTM1 CME -66,026292 | -74,549658 | -66,222747 | -74,549658 | 8,32691134
ACAP3 CME -39,21396 | -61,515604 | -38,584288 | -61,515604 | 22,3016447
ATGI0 CME -44,998985 -64,12722 | -43,543441 -64,12722 | 19,1282351
UHRF1 CME -23,074111 | -41,539849 | -21,529016 | -41,539849 | 18,4657374
PTPRG CME -35,660284 | -47,194171 | -34,427225 | -47,194171 | 11,5338862
PHKGI CME -0,6955023 | -23,490236 | -1,1380948 | -23,490236 | 22,3521415
MRAS CEM -56,802938 | -59,372961 -68,02502 -68,02502 | 8,65205865
RABGAPI1 CME -47,057699 | -54,111555 | -47,005697 | -54,111555 | 7,05385588
DLGS5 CME -52,634652 | -68,579269 | -53,802621 | -68,579269 | 14,7766476
CAMK2NI1 CEM -59,424113 | -57,683585 | -71,408041 | -71,408041 | 11,9839285
LRWDI1 CME -62,244179 | -69,951799 -60,71578 | -69,951799 | 7,70761959
FRMD4B CME -51,175267 | -59,970823 | -52,937674 | -59,970823 | 7,03314878
ZNF429 CME -71,251297 -80,851 | -69,724751 -80,851 | 9,59970248
UST CME -14,996172 | -34,380256 | -13,948147 | -34,380256 | 19,3840844
ENTRI1 CME -67,936161 | -74,041247 | -66,871744 | -74,041247 | 6,10508596
GPX1 CME -55,405177 | -66,344928 | -53,634319 | -66,344928 | 10,9397515
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PIGT CME -71,033168 | -80,197408 | -70,246833 | -80,197408 | 9,16423966
TMEM39B CME -62,253917 | -72,866092 | -60,319625 | -72,866092 | 10,6121749
GMDS CEM -37,66387 | -36,398546 | -45,272452 | -45,272452 | 7,60858254
L3MBTLI1 CME -33,970442 | -50,661269 | -32,050436 | -50,661269 | 16,6908273
COLI12A1 CME 80,3598151 71,757414 | 81,9586348 71,757414 | 8,60240116
IFFO2 CME -39,68893 -46,39258 | -39,141003 -46,39258 6,7036501
BTBD9 CME -24,36432 | -31,812188 | -24,175993 | -31,812188 | 7,44786854
MAMDC4 CEM -41,167171 | -40,143775 | -50,515528 | -50,515528 | 9,34835677
FRS2 CME -44,630675 -56,50779 | -43,985698 -56,50779 | 11,8771155
ANKSIB CME 2,92743233 | -37,252111 | -16,069274 | -37,252111 | 21,1828367
PDS5B CEM -58,200664 | -56,787385 | -64,431873 | -64,431873 | 6,23120895
AHCY CME -63,320166 | -70,007514 | -62,124803 | -70,007514 | 6,68734796
CENPP CME -52,846249 | -60,208354 | -51,460716 | -60,208354 | 7,36210421
PIM1 CEM -24,234289 | -22,657799 | -38,657848 | -38,657848 | 14,4235589
A1BG CME -69,72231 | -84,505093 | -68,997867 | -84,505093 | 14,7827831
SCARBI1 CME -65,198434 | -71,637998 | -64,165012 | -71,637998 | 6,43956401
DIS3L2 CME -30,12329 | -63,123493 | -28,643228 | -63,123493 | 33,0002032
GNAI1 CME -53,549131 | -61,646037 | -53,075963 | -61,646037 | 8,09690632
GNA14 CME -35,475903 | -43,212206 | -36,001483 | -43,212206 | 7,21072258
PDIAS CME -74,537469 | -81,646969 | -75,141641 | -81,646969 | 6,50532815
RFTN2 CME -56,840878 | -64,228634 | -55,385061 | -64,228634 | 7,38775653
NACCI1 CME -58,825715 | -66,232324 | -58,249417 | -66,232324 | 7,40660867
PLEKHNI CME -12,01164 | -35,686039 | -16,822539 | -35,686039 | 18,8634998
ARFGEF3 CME 3,82533198 | -20,671949 | 2,29568092 | -20,671949 | 22,9676297
ZEBI CME -23,083044 | -45,295135 | -21,281171 | -45,295135 | 22,2120913
PNKD CME -57,437771 | -63,508796 | -55,590406 | -63,508796 | 6,07102529
ALDH2 CME -65,059629 | -78,804653 | -64,189316 | -78,804653 | 13,7450234
WDR62 CME -37,925723 | -46,434215 | -36,642554 | -46,434215 | 8,50849138
HSPG2 CEM -5,5158039 | -7,7273104 | -25,577689 | -25,577689 | 17,8503788
ZDHHC8 CME -45,718486 | -59,026968 | -43,565569 | -59,026968 | 13,3084818
GTSEl1 CME -28,43571 | -60,784711 | -27,023415 | -60,784711 | 32,3490004
RLF CME -31,320055 | -58,613355 | -31,542228 | -58,613355 | 27,0711272
FAMI17A CME -52,754704 | -62,028897 | -51,727383 | -62,028897 9,2741926
FAMI117B CME -34,201284 | -47,074986 | -34,192211 | -47,074986 | 12,8737025
ARF4 CME -82,241377 | -88,286585 -80,80578 | -88,286585 | 6,04520802
XXYLT1 CEM -45,482335 | -45,592783 | -52,374628 | -52,374628 | 6,78184507
RGMB CEM -10,661526 | -23,830627 -30,70311 -30,70311 | 6,87248331
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ZNF107 CME -42,503284 | -49,614011 | -40,796006 | -49,614011 | 7,11072752
RAB6B CEM -31,991675 | -32,591917 | -45,145562 | -45,145562 | 12,5536449
RAB7A CME -52,742203 | -79,915618 | -51,455665 | -79,915618 27,173415
FBX046 CME -42,308166 | -52,553112 | -42,301059 | -52,553112 | 10,2449459
EPS15L1 CME -48,540818 | -63,440134 | -48,493977 | -63,440134 | 14,8993162
CHDIL CME -61,717998 -72,55296 | -59,070026 -72,55296 | 10,8349616
ARHGEF26 CME -57,552618 | -68,705615 | -59,913875 | -68,705615 | 8,79173977
ZNF43 CME -19,236161 | -31,696003 -23,12337 | -31,696003 | 8,57263304
EIF4E3 CME -33,108193 | -51,184209 | -33,799795 | -51,184209 | 17,3844137
VASP CME -66,89586 | -73,065628 | -65,572146 | -73,065628 | 6,16976798
ZNF608 CME -57,018104 | -69,479125 | -55,571152 | -69,479125 | 12,4610209
TANGO2 CEM -55,976774 -55,55838 | -64,523827 | -64,523827 | 8,54705271
ELOA CEM -68,459181 | -68,479901 | -77,284425 | -77,284425 | 8,80452404
FBLNI1 INDEP -77,628118 | -63,326392 | -62,736788 | -77,628118 | 14,3017262
CLTCL1 CME -6,9003265 | -30,119774 | -4,8268754 | -30,119774 | 23,2194478
c3 CME -41,174471 | -50,282256 | -41,930392 | -50,282256 | 8,35186382
FAM210B CME -60,486713 | -68,254596 | -60,097645 | -68,254596 | 7,76788363
ZNF91 CME -63,150081 | -78,583043 | -61,677107 | -78,583043 | 15,4329616
SIPA1L3 CME -4,7935985 -13,95454 | -3,7219214 -13,95454 | 9,16094176
C200rf194 CME -33,803365 | -69,445382 | -31,216279 | -69,445382 | 35,6420166
NTMTI1 CEM -59,766259 | -59,240064 | -66,277886 | -66,277886 | 6,51162718
STOX2 CME -33,302117 | -55,151312 | -40,914258 | -55,151312 | 14,2370534
CADPS2 CME -50,007022 | -56,534209 | -49,856638 | -56,534209 6,5271871
JAK2 CME -33,72356 | -47,204693 | -32,463885 | -47,204693 | 13,4811328
ZNF675 CME -60,561751 | -71,271151 | -58,335623 | -71,271151 | 10,7094006
KLHL22 CEM -66,500597 | -64,506666 | -73,448537 | -73,448537 6,9479401
AP1S3 CME -17,006715 | -38,919654 | -15,433197 | -38,919654 | 21,9129397
PHLDB2 CME -54,263327 | -75,223849 | -52,561066 | -75,223849 | 20,9605215
BRDI CME 4,50320836 | -3,0659156 | 5,23430589 | -3,0659156 | 7,56912394
GNAI2 CME -65,534079 | -72,719364 | -65,747314 | -72,719364 | 6,97205006
BMII CEM -59,768611 | -58,603519 | -66,727551 | -66,727551 6,9589396
DHX34 CME -46,251003 | -60,390347 | -45,902786 | -60,390347 | 14,1393432
YBX1 CEM -53,157482 | -53,255511 | -60,344493 | -60,344493 7,0889822
KMT5C CME -12,987651 | -29,146431 | -11,806874 | -29,146431 | 16,1587798
ITPR1 CME -12,523131 | -25,028828 | -14,520238 | -25,028828 10,50859
TET1 CME -8,380825 -57,94433 | -9,7698197 -57,94433 48,17451
MARK4 CME -58,369235 | -64,497784 | -57,428473 | -64,497784 6,1285489
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TOM1 CME -78,011028 | -86,634044 | -73,619212 | -86,634044 | 8,62301611
DSTN CME -61,097433 | -73,851504 | -58,952216 | -73,851504 | 12,7540704
GAK CME -46,649746 | -53,161432 | -45,472577 | -53,161432 | 6,51168576
ST6GALNAC | CME -52,43062 | -75,007581 | -51,320688 | -75,007581 | 22,5769602
4RABL6 CME -53,784171 | -65,367156 | -52,852869 | -65,367156 | 11,5829841
MTFRIL CEM -61,247151 | -60,980077 | -73,939109 | -73,939109 | 12,6919576
ADAMI19 CME -37,097275 | -44,368317 | -35,938057 | -44,368317 | 7,27104174
TMEM242 CEM -37,162515 | -36,923777 | -46,623105 | -46,623105 | 9,46058923
REXO1 CME 10,9929448 -41,46522 | 11,6227675 -41,46522 | 52,4581648
BCL7A CME -21,806597 | -30,791758 | -22,306923 | -30,791758 | 8,48483478
FGFR3 CME -40,410875 | -52,455586 | -36,515396 | -52,455586 | 12,0447113
TF CME -64,65454 | -75,487241 | -63,423622 | -75,487241 | 10,8327006
RAP1GAP CME 10,3989626 -52,40638 | 7,22874549 -52,40638 | 59,6351251
LUZP1 CME -14,396593 | -70,232264 | -14,073252 | -70,232264 | 55,8356708
RUBCN CME -38,044632 | -46,193446 | -34,705239 | -46,193446 | 8,14881401
BIK CME -50,30767 | -66,092135 | -49,169156 | -66,092135 | 15,7844655
ZSWIMS CME 47,5456159 | 33,7123011 | 43,7407852 | 33,7123011 | 10,0284841
CECR2 CME -22,563199 | -30,343147 | -20,103582 | -30,343147 | 7,77994801
LHFPL2 CME -16,589221 | -26,403711 -18,84433 | -26,403711 | 7,55938116
ANP32B CME -39,466503 | -46,675387 | -39,254521 | -46,675387 | 7,20888463
LIG1 CME -60,958603 -67,61533 | -59,481212 -67,61533 | 6,65672748
LDLR CME -61,605096 | -69,401363 | -61,151765 | -69,401363 | 7,79626689
TYMP CME -9,0532903 | -15,391125 | -6,5918043 | -15,391125 | 6,33783498
ZNF347 CME -28,016818 | -64,120411 | -26,623693 | -64,120411 | 36,1035934
FRMPD1 CME -20,567942 | -27,787365 | -21,190238 | -27,787365 | 6,59712687
FOXD2 CME -29,08813 | -44,054082 -29,43678 | -44,054082 | 14,6173015
PKDILI INDEP -64,743319 | -50,734456 | -49,122527 | -64,743319 | 14,0088628
RACI CME -67,40579 | -73,520123 | -65,146622 | -73,520123 | 6,11433276
FREM2 CEM -39,203644 | -37,188776 | -49,476526 | -49,476526 | 10,2728815
APBAI CME -47,005814 | -55,089307 -45,91292 | -55,089307 | 8,08349259
PNPLA7 CEM -19,250545 | -18,932948 | -28,375081 | -28,375081 | 9,12453577
HAUSS CEM -34,87385 | -42,620966 | -49,185277 | -49,185277 | 6,56431054
GNS CME -73,874646 | -80,630569 | -72,769256 | -80,630569 6,7559226
TRHDE CEM -42,894131 | -41,984873 | -54,110587 | -54,110587 | 11,2164561
PLA2G6 CME -51,552487 | -59,323276 | -50,539879 | -59,323276 | 7,77078934
ESR1 CME 1,4961795 | -13,431316 | 2,35437046 | -13,431316 | 14,9274958
STK11 CME 6,09601194 | -43,755401 | 3,59221162 | -43,755401 | 47,3476124
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PRKCZ CME -16,755149 | -34,271145 | -20,132416 | -34,271145 | 14,1387288
SND1 CME -46,065388 | -53,123913 | -44,844091 | -53,123913 | 7,05852517
SPATA13 CME -35,608789 | -65,388853 | -35,677769 | -65,388853 | 29,7110841
LRIGI CME -37,833024 | -61,033158 | -36,156772 | -61,033158 | 23,2001341
TLL2 CME 11,8601275 | -29,840538 | 13,6405709 | -29,840538 | 41,7006655
IRS1 CEM -30,015979 | -28,963193 | -37,104606 | -37,104606 7,0886266
MYDGF CME -58,3155 | -70,336916 | -58,235188 | -70,336916 | 12,0214155
MIB2 CME -30,047178 -39,82836 | -27,610242 -39,82836 | 9,78118212
PDEI12 CME -57,428404 | -71,827493 | -59,854041 | -71,827493 | 11,9734527
SCNNID CME -43,369011 | -54,268854 | -41,585817 | -54,268854 | 10,8998438
HEBP2 CME -34,181102 | -41,711505 | -32,448559 | -41,711505 | 7,53040248
FANCD2 CME -0,5609667 | -15,195588 | 0,27097665 | -15,195588 | 14,6346215
SIM2 CME 31,592153 | 14,6796178 | 29,9142257 | 14,6796178 | 15,2346079
ATXN2 CME -46,295638 | -59,556942 | -45,216419 | -59,556942 13,261304
ADARBI CME -26,375595 | -52,125751 | -26,481395 | -52,125751 25,644356
TRANK1 CME -10,399262 | -16,415184 | -9,6113325 | -16,415184 | 6,01592134
SSH2 CME 18,2865896 | -9,3089578 20,364836 | -9,3089578 | 27,5955474
RNF10 CME -78,825819 | -85,486912 -77,10017 | -85,486912 | 6,66109211
ERRFI1 CEM -61,723329 | -60,317221 | -78,469228 | -78,469228 | 16,7458998
GNAS CME -34,922358 | -44,969172 | -33,820296 | -44,969172 | 10,0468134
RAPGEF2 CME -27,028451 | -57,824884 | -25,756708 | -57,824884 | 30,7964332
SLC38A3 CME -85,161886 | -92,598675 | -82,551823 | -92,598675 | 7,43678913
TBL1XR1 CME -53,694264 | -61,800256 | -54,261038 | -61,800256 | 7,53921769
STK17B CME -41,028115 | -55,624315 -40,59359 | -55,624315 | 14,5962001
UBR4 CME -59,332041 | -72,315623 | -59,648909 | -72,315623 | 12,6667141
ARHGAP24 CME -24,572983 | -54,974007 -25,69302 | -54,974007 | 29,2809871
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APPENDIX 4: The gene list of Group 2 (CME) and the related HCC studies reported by cbioportal
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APPENDIX 7: Girisimsel Olmayan Klinik Arastirmalar Etik Kurulu

- T.C. . .
(7 HACETTEPE UNIVERSITESI

Girisimsel Olmayan Klinik Aragtirmalar Etik Kurulu

Sayr : 16969557-507

Konu : 17.03.2020

Dr. Ogr. Uyesi Idil YET
Saghk Bilimleri Enstitiisii

¢ Bivoinformatik Anabilim Dah
Ogretim Uyesi

Saymn Dr. Ogr. Uyesi YET,

Kurulumuza degerlendirilmek iizere sundugunuz GO 20/232 kayit numarah ve “Bayes
Aglarm Kullanarak Karaciger Kanserinin Tekil Hiicresinin Omikler Arasindaki Iliskisinin
Belirlenmesi” bashkl proje Kurulumuzun 17.03.2020 tarihli toplantusimda degerlendirilmiy
olup. agik erigimli veri tabani kullamlarak 235 karaciger kanser hiicresinde ti¢ farkli omik verisi
arasindaki iliskilerin bilgisayar temelli yontemlerle degerlendirilecegi anlagilmistie. Gontilli
insanlar tizerinde gergeklestirilecek nitelikte olmayan bu tip ¢aligmalar Ltk Kurullarm kapsami
disinda kalmaktadir.
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