
PHYSICAL HAND ANIMATION

WITH MACHINE LEARNING

MAKİNE ÖĞRENMESİ İLE

FİZİKSEL EL ANİMASYONU

Tarık CANTÜRK

Assist. Prof. Dr. ZÜMRA KAVAFOĞLU

Supervisor

Submitted to Institute of Informatics of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Graphics

2020

ABSTRACT

PHYSICAL HAND ANIMATION WITH MACHINE LEARNING

Tarık Cantürk

Master of Science, Department of Computer Graphics

Supervisor: Asst. Prof. Dr. Zümra Kavafoğlu

August 2020, 77 pages

Hands are the essential limbs of humans which they use for interacting with their environ-

ments. Catching, holding, moving, touching, and many other interactions are done by hand.

The hand has a highly complex anatomical structure. It is a quite complicated task to model

the hand movements, considering the bones of the fingers, joints, muscles, and tendons that

connect them to each other and move them.

Several motion capture systems are used to transfer hand motions to the digital environment.

However, it’s harder to capture a catching motion with these systems, compared to capturing

hand interactions with steady objects. Besides, only kinematic animations can be generated

with motion capture systems, and these kinematic animations may not be usable for different

catching scenarios. Therefore, employing physics-based animation techniques for generating

hand motions is needed.

To generate hand motions with physics-based animation techniques, the physical model of

the hand must be created. We present a physical hand model with muscles and soft tissues on

a skeletal structure. The presented model is intended to create realistic physical interactions

and also to be efficient enough.

Recently, great accomplishments have been achieved in computer animation field with the

employment of machine learning techniques. We present a framework that generates catch-

ing motions for the proposed physical hand model, by using deep reinforcement learning

techniques.

i

To catch a thrown object, multiple body parts are required to work in coordination. While our

main focus is to generate proper physics-based hand motions, we also work on synthesizing

arm motions that are essential for taking the hand to the correct interception point with the

right orientation.

It’s been addressed in the literature [1, 2] that catching motion can be divided into smaller

phases. In this way, we handle the catching motion in two phases and developed a controller

brain for each phase by using deep reinforcement learning. One of these brains is designed

to move the arm for getting prepared for the catching motion. And then the other one is

designed to control the hand for accomplishing the actual catching movement. In addition to

these, a third brain is generated with deep reinforcement learning, that manages the working

time of these two brains.

The results of the proposed framework is evaluated and compared with other configurations

by several experiments. Moreover, user test studies have been conducted for evaluating the

naturalness of the resulting motions.

Keywords: Physics-based animation, hand animation, machine learning, reinforcement learn-

ing, curriculum learning, physics-based hand model.

ii

ÖZET

MAKİNE ÖĞRENMESİ İLE FİZİKSEL EL ANİMASYONU

Tarık Cantürk

Yüksek Lisans, Bilgisayar Grafiği Bölümü

Tez Danışmanı: Dr. Öğr. Üyesi Zümra Kavafoğlu

Ağustos 2020, 77 sayfa

Eller, insanların çevreleriyle etkileşim için kullandıkları en önemli uzuvlarıdır. Bir nesneyi

yakalamak, tutmak, taşımak, ona dokunmak ve daha birçok etkileşim el ile yapılmaktadır.

El, anatomik olarak çok karmaşık bir yapıdadır. Her bir parmaktaki kemikler, eklemler, on-

ları birbirine bağlayan ve hareketi sağlayan kas ve tendonlar hesaba katıldığında, bir işlevin

gerçekleştirilmesini modellemek için yapılması gereken işlemlerin karmaşıklığı ortaya çık-

maktadır.

El hareketlerini bilgisayar ortamına aktarabilmek için çeşitli hareket yakalama sistemleri

kullanılmaktadır. Ancak fırlatılan bir nesnenin yakalanması hareketinin bu sistemler ile

üretilmesi işlemi durağan nesnelerle yapılan hareket yakalama işlemlerine göre çok daha

zordur. Ek olarak, başarılı bir hareket yakalama verisi ile ancak kinematik animasyon oluştu-

rulabilir ve bu kinematik animasyonlar farklı yakalama senaryoları için kullanılmaya uygun

olmayabilir. Bu nedenle, el hareketlerinin fizik tabanlı animasyon ile sentezlenmesi ihtiyacı

doğmaktadır.

El hareketinin fizik temelli animasyonunu üretebilmek için elin fiziksel modelinin oluştu-

rulması gerekir. Bu tez çalışmasında, bir iskelet yapısı üzerinde kas ve yumuşak dokular

bulunan fiziksel bir el modeli sunulmaktadır. Sunulan modelin hem gerçekçi fiziksel etk-

ileşimler oluşturması hem de işlem hızı bakımından verimli olması amaçlanmıştır.

Günümüzde, makine öğrenmesi yöntemlerinden faydalanılarak, bilgisayar animasyonu alanında

çok başarılı çalışmalar yapılmaktadır. Biz de bu tez çalışmasında, sunduğumuz el modelinin

iii

bir nesneyi yakalaması için gerekli hareketleri, derin pekiştirmeli öğrenme yöntemleriyle

üreten bir sistem ortaya koymaktayız.

Fırlatılan bir nesnenin yakalanması hareketi, bir çok vücut parçasının koordineli olarak çalış-

masıyla elde edilir. Bizim bu çalışmada esas odağımız uygun fizik tabanlı el hareketlerinin

üretilmesi olmakla birlikte, eli nesneyle kesişeceği doğru konuma ve oryantasyona getirmek

için gerekli olan kol hareketlerinin sentezlenmesi de çalışmaya dahil edilmiştir.

Yakalama hareketinin küçük aşamalara bölünerek ele alınabileceği literatürde gösterilmiştir

[1, 2]. Biz de bu çalışmada yakalama hareketini iki aşamada ele alıp, her bir aşama için

derin pekiştirmeli öğrenme ile farklı bir kontrolcü beyin geliştirdik. Bu beyinlerden ilki,

kolu yakalama hareketine hazırlanacak biçimde hareket ettirmek için tasarlanmıştır. İkinci

beyin ise, eli kontrol ederek esas yakalama işlemini gerçekleştirmek için tasarlanmıştır. Buna

ek olarak, bu iki kontrolcünün çalışma zamanlarını yönetecek üçüncü bir beyin de yine derin

pekiştirmeli öğrenme ile üretilmiştir.

Çalışmamızda ortaya koyduğumuz sistemin sonuçları çeşitli deneyler aracılığıyla değer-

lendirilmiş ve farklı konfigürasyonlarla karşılaştırılmıştır. Buna ek olarak üretilen yakalama

hareketinin gerçekçiliğini değerlendirmek için kullanıcı testleri gerçekleştirilmiştir.

Anahtar kelimeler: Fizik-temelli animasyon, el animasyonu, makine öğrenmesi, pekiştirmeli

öğrenme, aşamalı öğrenme, fiziksel el modeli.

iv

ACKNOWLEDGEMENT

Foremost, I would like to express my sincere gratitude to my advisor Assist. Prof. Dr.

Zümra Kavafoğlu for her continuous support during my master study and research, for her

patience, motivation, enthusiasm, and immense knowledge. Her guidance helped me all the

time through the research and writing of this thesis. I could not have imagined having a

better advisor and mentor for my master study.

Besides my advisor, I would also like to thank the rest of my lecturers in my M.Sc. education:

Assist. Prof. Dr. Serdar Arıtan, Prof. Dr. Haşmet Gürçay, Assist. Prof. Dr. Ufuk Çelikcan.

Also I would like to thank Assoc. Prof. Dr. Uğur Güdükbay for their valuable comments on

the thesis.

I have been working at Turkish Aerospace Company for 8 years, my sincere thanks also go to

them. They supported my graduate education and gave me the chances to use my experience

to develop better products. I thank my colleagues and manager in Turkish Aerospace: Güray

Yıldız for his support all time, Erkan Çağır, Serkan Gencer, İbrahim Ardıç and Dr. Emre

Akyılmaz for their ultimate support and for all the fun we have had in the last six years.

Words fall short to thank my parents Fatma and Mehmet Cantürk for their efforts on my

education. I feel fortunate to be the child of such supporter people. I also thank my dear

brother Deniz Cantürk, my mother-in-law and father-in-law and all other members of my

family for their great support. And thanks a lot to all my friends for cheering me up in this

long period.

The last thanks are to the most precious, to my lovely wife Yeliz, with whom our hearts

beat together. Thanks to my sweetheart for always supporting me, showing me different

perspectives and making my life happier and more peaceful. And our little "angel" ...

v

TABLE OF CONTENTS

Page

ABSTRACT . i

ÖZET . iii

ACKNOWLEDGEMENT . v

TABLE OF CONTENTS . vi

LIST OF TABLES . viii

LIST OF FIGURES . ix

1 INTRODUCTION . 1

1.1 Motivation and Scope of the Work . 1

1.2 Thesis Outline . 3

2 BACKGROUND . 4

2.1 Reinforcement Learning . 4

2.1.1 Basic Information About Reinforcement Learning 4

2.1.2 Proximal Policy Optimization . 5

2.1.3 Curriculum Learning . 7

2.1.4 Hierarchical RL systems . 8

2.1.5 Unity ML Agents . 10

2.2 Physics-based Animation . 14

2.2.1 General Physics-based Animation . 14

2.2.2 PD Controller . 16

3 RELATED WORK . 18

4 HAND AND ARM MODEL . 22

4.1 Hand Model . 22

4.2 Arm Model . 28

5 LEARNING TO CATCH WITH HIERARCHICAL REINFORCEMENT LEARN-

ING . 29

5.1 System Overview . 29

5.2 Reactive Learner with Proximal Policy Optimization 31

5.3 Proactive Learner with Curriculum Learning 34

5.4 Timing Learner with Hierarchical Deep Reinforcement Learning 40

vi

6 IMPLEMENTATION AND RESULTS . 44

6.1 Implementation Details . 44

6.2 Training Parameters . 49

6.3 Proactive Brain Comparison: Train versus Heuristic with Skeleton Hand Model 52

6.4 Proactive Brain Comparison: Trained versus Heuristic with Soft-body Hand

Model . 53

6.5 Hand Model Comparison: Skeleton versus Soft Body 55

6.6 Meta Brain Comparison: Trained versus Heuristic 57

6.7 Reactive Brain Reward Comparison . 60

6.8 User Test Results . 63

7 CONCLUSION . 67

7.1 Limitations . 68

7.2 Future Work . 69

REFERENCES . 70

CURRICULUM VITAE . 77

vii

LIST OF TABLES

4.1 Hand model properties. Finger joints do not have rotational degrees of freedom

about the y axis [3]. 24

4.2 Arm model properties [4]. 28

5.1 The absolute value of processed action values are added to some DOFs, where the

movement is restricted to only positive direction. 38

6.1 Training parameters . 50

6.2 User test results for different meta brains. 64

6.3 User test results for the proactive phase. 66

viii

LIST OF FIGURES

2.1 RL training cycle [5]. 4

2.2 Example of a curriculum for mathematic [6]. 7

2.3 Demonstrate a curriculum training scenario where gradually a longer wall blocks

the path to the target [6]. 8

2.4 Cumulative reward of RL training session [6]. 8

2.5 Simplified block diagram of ML-Agents. [7] 12

2.6 Simplified block diagram of ML-Agents [7]. 13

2.7 PD Controller Scheme . 16

2.8 Kp/Kd sample chart [8]. 17

4.1 Hand anatomy: (a) skeleton, (b) skeleton with muscles and tendons, (c) skeleton

with muscles, tendons, and fat [9]. 22

4.2 Hand skeleton model with joint degrees of freedom. 23

4.3 Hand skeleton from front (a) and side (b) . 25

4.4 Hand with soft-bodies (a) and visual mesh (b) 26

4.5 Muscle structure of (a) a lumbricale muscle and (b) intrinsic muscles of the thumb. 27

4.6 Deformation model for object-muscle interaction. 28

4.7 Arm model. Numbers indicate the joints in Table 4.2. 29

5.1 The system overview diagram. 31

5.2 Hand skeleton and thrown objects. 35

5.3 Curriculum learning timeline of the used object shape. 36

5.4 Sensor positions on the hand. There are 28 inside sensors (green) and 7 outside

sensors (red). 37

5.5 The relation of timing learner with reactive and proactive brains. 41

6.1 Proactive learner environment is shown from different angles. 45

6.2 Some key steps from the Reactive Learner environment. 47

6.3 Some instants from the Timing Learner environment. 48

6.4 Tensorboard chart of the Reactive Learner training process. 51

6.5 Tensorboard chart of the Proactive Learner training process. 51

6.6 Tensorboard chart of the Timing Learner training process. 51

6.7 The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a ball with skeleton hand model. 52

ix

6.8 The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a rectangular prism with skeleton hand model. 53

6.9 The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a ball with the soft-body hand model. 54

6.10 The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a capsule with the soft-body hand model. 54

6.11 The comparison of the trained proactive brain for catching a ball with the soft-

body hand model (up) and the skeleton hand model (down). 56

6.12 The comparison of the trained proactive brain for catching a capsule with the

soft-body hand model (up) and the skeleton hand model (down). 56

6.13 The comparison of the training charts of the proactive brain with the soft-body

hand model (blue) and the skeleton hand model (cyan). 56

6.14 The comparison of the trained meta brain and the heuristic meta brain for catch-

ing a sphere with the soft-body hand model. 58

6.15 The comparison of the trained meta brain and the heuristic meta brain for catch-

ing a capsule with the soft-body hand model. 59

6.16 The effect of the higher weight on the palm forward reward. 61

6.17 The effect of calculating the displacement penalty according to hand-object dis-

tance. 62

6.18 User test results for different meta brains. 64

6.19 User test results for proactive phase . 66

x

1 INTRODUCTION

1.1 Motivation and Scope of the Work

From the very beginning of their lives, humans learn to use their hands gradually in order

to interact with their environment. Hands provide tremendous interaction capabilities for

achieving a wide variety of tasks, including fine motor skills like grasping and manipulating

or gross motor skills like throwing and catching an object. Imitating the motion of this major

apparatus of humans has long been a popular interest for computer animation researchers.

As the virtual environments take more part in our lives, the requirement of efficient and high

quality hand animations increased. Real time applications have an unpredictable nature, for

which it is hard to model the interactions with the environment beforehand. Physics-based

motion generation techniques offer a general solution for this problem.

Catching is a complicated motion, accomplished with the coordinated movement of differ-

ent body parts. Humans achieve a successful catching as follows: First they observe the

approaching object and estimate an interception point. If they are far from this interception

point, they move towards and adjust their hand there. As the ball gets closer to the antici-

pated point, they fine tune the position and orientation of the hand. When the ball contacts

the hand they grasp it as quick as possible to avoid its bouncing back and falling. Each sub-

movement in this process constitutes a different motion synthesis problem. Different from

other hand-object interaction tasks, object of interest is non-steady in catching, therefore it

is also of great importance to adjust the timing of these submovements.

We propose a framework for generating arm and hand motions for catching objects with

several geometries in real time. The main focus of our work is especially on finger motions

for a stable grasping of the object at the instant of hand-object contact. For handling the real

time interactions with the object, hand is controlled physically, while the arm is animated

kinematically for efficiency concerns. We examined the catching motion in two distinct

phases, as reactive and proactive, each of which is modeled as a different learning problem.

The reactive phase includes the preparatory motions of the kinematic arm while the proactive

phase includes the actual catching behavior with the physically modeled hand. For learning

the arm motions of the reactive phase, we use deep reinforcement learning with proximal

policy optimization and we use curriculum learning for learning to control the finger motions

1

for catching objects of different geometry. For coordinating the learned motions for these

phases, we devised a third learning system. Instead of devising only one learning system for

whole catching behavior, we preferred a partitioned system for several reasons. We obtain

an improvement in the performance by reducing the search space complexity. Moreover,

we have the freedom of designing each subproblem to meet its specific requirements with a

different learning algorithm.

For generating a realistic and stable grasping motion at the catching moment, we modeled a

two layer hand model that consists of a rigid body chain covered with a deformable model

for imitating the skeleton and the soft tissue of the human hand. The deformable model is

a combination of triangular meshes of point masses tied to the rigid bodies of the skeleton

model. We achieve the deformation by the mass-spring simulation of point masses with

Proportional Derivative Controller. We model the arm as a simple kinematic chain for the

sake of efficiency.

The key contributions of our work are as follows:

• A novel framework for generating a catching motion including finger motions for sta-

ble gripping. To the best of our knowledge, this is the only work in the computer

animation literature that includes generating finger motions for catching behavior.

• A detailed deformable model for the hand including palm for achieving a more stable

hand-object interaction. Although, there are more detailed deformable hand models

proposed in the literature, they are not designed for hand-object interaction problems.

• Handling the catching motion generation problem by devising three different learning

environments for different parts of the problem.

• A novel touch sensor based reward mechanism for learning natural finger motions.

• Using hierarchical reinforcement learning for handling the coordination of different

phases of catching motion.

2

1.2 Thesis Outline

The remainder of the thesis is organized as follows.

Chapter 2 first provides background on machine learning and reinforcement learning, to-

gether with the essential components of reinforcement learning. Then it provides background

on physics-based animation.

Chapter 3 presents related work in the computer animation literature about physics-based

hand object interactions.

Chapter 4 describes the hand and arm models used in our work.

Chapter 5 presents the main learning framework, which is divided into three core compo-

nents. Each component’s ML model is explained in detail, together with the relationships

between them.

Chapter 6 provides implementation details, specifically the parameters of the training envi-

ronments and their effects on the produced results. Besides, this chapter discusses the user

tests, their results, and compares different approaches for modeling and implementation.

Chapter 7 concludes the thesis with possible further research directions.

3

2 BACKGROUND

2.1 Reinforcement Learning

2.1.1 Basic Information About Reinforcement Learning

Machine learning (ML) is the designated model of a system to make predictions from input

by processing data with mathematical and statistical methods.

Nowadays, there is a lot of machine learning algorithms and methodologies. According to

the learning method, three groups can be mentioned; supervised, unsupervised, and rein-

forcement [10].

The basic working mechanism of Reinforcement Learning (RL) is as follows: An agent

performs an action according to its observations; it is called policy. After this action, a

reward value is given to the agent. According to the reward value, the agent is trained and

learns the outcome of its decision. The agent tries to improve its policy gradually to choose

the best options according to the rewards. In a stochastic task, each action must be attempted

many times to get a reliable estimate of its expected earnings. For example, a newborn baby

finds the truth through trial and error. When a little boy touches the stove, he understands

that it is a bad thing and knows that he will not go there again. RL agents act purposefully,

they all have clear goals. They can feel the characteristics of their environment and choose

the actions that will be effective in their environment.

Figure 2.1: RL training cycle [5].

4

The peculiarity of this system is that it conditions artificial intelligence to a result. This result

is always the highest cumulative reward. It is seen as a punishment for artificial intelligence,

as it does not get less, a different reward or no reward at all. Therefore, it can be said that

motivation always works in one direction. One of the most exciting aspects of RL is its solid

and efficient interactions with other engineering and science disciplines. RL has a decades-

long trend in artificial intelligence and machine learning for further integration with statistics

and other mathematical topics.

Process steps for RL

• Since the agent has insufficient knowledge about the environment in which it is located,

it makes observations to establish a link between cause and effect.

• After the observation is over, the agent is forced to choose between options. Since

the highest reward is intended, it takes action by making a decision that will be most

suitable for that reward.

• After the first step is over, the agent takes an action for that observation and looks at

new options. The important part is that the artificial intelligence has learned how to

make the right decision to reach its goal after the first step.

2.1.2 Proximal Policy Optimization

Policy gradient methods are crucial for deep neural networks for solving the problem. It is

used in many different areas, from video games to robotic control. Because of the need to

tune step size, it is not easy to get good results with policy gradient methods. If the step

size is too small, progress will be slow. If large step size is used, the output signal will be

too noisy. Besides, sample efficiency gets too low, and learning simple tasks takes too much

time.

Gradient descent can be applied in supervised learning successfully with a small tuning of

hyperparameters. However, significant effort is required to tune hyperparameters in RL [11].

The cost function is easily implemented in supervised learning and made a gradient descent

on it. Therefore, with a small tuning of hyperparameters, an excellent result can be achieved.

In reinforcement learning, the success path is complicated; it is hard to debug the algorithm.
5

Proximal Policy Optimization (PPO) [12] also calculates an update to minimize cost function

at every step. During this calculation, it tries to keep the deviation relatively small from the

previous step. PPO is establishing a balance among simplifing application, adjustment, and

sample complexity [11].

Natural policy gradient is commonly used to solve the convergence problem. However, the

natural policy gradient has a second-order derivative matrix, which is not scalable for the

large-scale problem. Its complexity is too high for everyday tasks. PPO formalizes restric-

tions as a punishment in the objective function, instead of applying complex restrictions.

The first-order optimizer can be used to optimize the target as a gradient descent method.

Therefore, the restrictions are avoided. While avoiding complex restrictions, the calculation

is much more comfortable and faster.

PPO uses a novel objective function that is not similar to other algorithms [11]:

LCLIP (θ) = Et[min(rt(θ)At, clip(rt(θ), 1 − ε, 1 + ε)At)],

• θ denotes the policy parameter,

• Et denotes the empirical expectation over timesteps,

• rt denotes the probability ratio,

• At is an estimator of the adventage function at time t,

• ε denotes a hyperparameter, say 0.2.

This objective implements updating stochastic gradient landing with a compatible trust re-

gion. It simplifies the algorithm by removing the Kullback–Leibler (KL) penalty and updat-

ing adaptively. According to the tests, this algorithm performs better results in continuous

control tasks, and it is much easier to implement [11].

6

2.1.3 Curriculum Learning

Curriculum learning is one of the learning algorithms that, learning task starts with an easy

one, and task difficulty increases along training time [13]. Humans learning style is very

similar to this algorithm. However, we can not transfer it to a neural network. Therefore,

we need to train all data for all difficulties from the beginning. For example, our educational

system and their rankings are classified. We firstly learn simple arithmetic operations; after

that, we learn algebra. After learning algebra, we learn calculus, and this learning style goes

on [6]. Our previous experience helps us to learn new tasks more efficiently according to

trying to learn it from scratch (see Figure 2.2). In machine learning algorithms, a similar

principle works. To learn a complex task, tasks are ordered from easy to difficult to reduce

training time and provide more successful results than unordered tasks.

Figure 2.2: Example of a curriculum for mathematic [6].

Curriculum learning technique and its benefits are explained as follows in [6]. When thinking

about how RL works, the primary learning signal is a scalar reward that is received from time

to time throughout the training. This reward can often be sparse and rarely achieved in more

complex or challenging tasks. For example, consider a task that an agent must push a block

in place to scale a wall and achieve a goal (see Figure 2.3). When training an agent to perform

this task, the starting point will be a random policy. This initial policy will likely involve the

agent working in circles. It will never or rarely scale the wall properly to receive the reward.

Starting with a more straightforward task, such as moving towards an unobstructed goal, the

agent can quickly learn to accomplish the task. From there, the training environment can

slowly add task difficulty by increasing the wall size, until the agent can complete the almost

impossible task of scaling the wall initially.

To see curriculum learning in action, observe the two learning curves below (Figure 2.4).

Each curve indicates the reward by time for a brain trained using PPO, with the same train-
7

Figure 2.3: Demonstrate a curriculum training scenario where gradually a longer wall blocks

the path to the target [6].

ing hyperparameters and data from 32 simultaneous agents. The difference is that the orange

brain is trained using the full-size wall version of the task. The blue brain is trained using the

task’s curriculum version. The agent has many difficulties without using curriculum learn-

ing. After three million steps, orange agents still could not solve the task. Blue agents can

accomplish much more complicated task with less time because of a well-prepared curricu-

lum.

Figure 2.4: Cumulative reward of RL training session [6].

2.1.4 Hierarchical RL systems

Reinforcement learning provides an excellent solution if the reward is shaped and designed

carefully. However, search-space is very large for a complicated task. Hierarchical Rein-

forcement Learning divides the complicated task to smaller pieces and manages tasks sep-

arately. A manager controls the subtasks and each subtask returns its current reward to its

8

manager. To solve complex RL problems, HRL follows a "divide and conquer" approach.

HRL provides suitable solutions for the followings:

Sample efficiency: The sample count will be very high when a complex task is desired to

performed. It takes lots of time to evaluate all possible cases and find the best outcome. The

main problem here is that search-space is huge when solving an integrated task. When an

integrated task divides into subtasks, total search-space will be the sum of subtasks’ search-

space. For example, let the search-space of tasks A and B be 10 and 15, respectively. If the

whole task is considered as integrated, the complexity of the entire task will be 10 × 15 =

150. If we divide the tasks into parts and evaluate each of them in itself, the search-space will

be 10 + 15 = 25. Thus, the search space used to solve the problem will be much lower than

the total search-space. Considering more than two smaller tasks and the high search-space of

these tasks, the search-space of the whole task would be too much. By dividing these tasks

into pieces, both the tasks will be solved in a much shorter time, and more successful results

will be achieved thanks to the limited search-space.

Generalization and transfer of learning: Every task performs a combination of small tasks.

It is similar to use the letters to write a word. Although the number of letters is limited, the

number of producing words is huge. Producing a behaviour or solving a integrated problem

with RL is also similar to producing words. Although each task is unique when considered

individually, it consists of sub-parts that make up itself. For example, many similar sub-

tasks are used, when wearing clothes or putting clothes in a bag. There are sub-tasks such as

walking, balancing, choosing the appropriate clothes and grasping the clothes. Once these

subtasks are learned, they do not need to be learned again. If the clothes to wear are known,

there will be only one additional task to be learned to put the dress in the bag. In this way,

when the integrated task is divided into subtasks, previously learned behaviour could be

transferred to a new complex task. The learned behavior will be applied to the new complex

task as it is.

HRL [14] is working exactly like this situation. Several sub-policies work together in a

hierarchical structure, instead of having just one policy that has to accomplish the goal of the

whole task.

9

Feudal Reinforcement Learning

Feudal Reinforcement Learning (FRL) [15] describes a control hierarchy where a level man-

ager can control their sub-managers, while super-managers control this level of managers.

Each manager sets goals for his sub-managers, and sub-managers take actions to achieve this

goal and get rewards.

FRL is based on two main principles: Reward Hiding and Information Hiding. Reward

Hiding means that managers should reward sub-managers for making progress whether the

super manager is performing commands. Thus, each manager learns to satisfy the higher

level on his own. Information Hiding is referred to the fact that managers only need to know

the state of the system in detail in their task selection. In this way, higher levels operate at a

more extensive level of detail with a simplified state.

2.1.5 Unity ML Agents

Unity3D Machine Learning tool (ML-Agents Toolkit [16]) is an open-source machine learn-

ing tool project. It allows to design and develop smart agents for games, simulations and

other applications. An agent can be trained by Reinforcement Learning, neuroevolution,

imitation learning, and other machine learning techniques with its easy to use Python Ap-

plication Programming Interface (API). It also provides applications of the latest algorithms

(based on TensorFlow) which enables game developers, researchers, and hobbyists to train

smart agents for 3D, 2D game and applications. These trained agents can be used for vari-

ous purposes, such as controlling an NPC behavior, testing game structure, and deciding a

preliminary version of the game’s different structures. For both game developers and Ar-

tificial Intelligence (AI) researchers, Unity ML-Agents provides easy to use ML training

environments, physical operations, visualizing, and others.

Unity ML-Agents consists of the following Key Components [7]:

Key Components

Learning Environment contains the Unity scene and all the game characters. The Unity scene

provides the environment that agents can observe, act, and learn. According to the goals of

the learning, Unity scene serves a custom learning environment. A specific reinforcement

10

learning problem can be trying to solve a limited scope. Therefore, the same scene can be

used for training and testing agents. Alternatively, training agents can be used to work in a

complex game or simulation. In this case, it may be more efficient and practical to create

a specialized training environment. The ML-Agents Toolkit includes an ML-Agents Unity

SDK. It includes agents and behaviors, and it can transform any unity scene into a learning

environment.

Python Low Level API - is a low-level Python interface for interacting and manipulating a

learning environment. Phyton API, unlike learning environment, runs outside of the Unity

and communicates with Unity via External Communicator. This API is included in the spe-

cial mlagents_envs Python package. It is used by the Python training process to communi-

cate and check with the Academy during training. However, it can also be used for other

purposes. For example, API can use Unity as the simulation engine for other machine learn-

ing algorithms.

External Communicator links Unity Learning Environment with the Python Low-Level API.

It is running as a part of the Learning Environment.

Python Trainers contain all the machine learning operations that enable training of the agents.

Algorithms are implemented in Python, and mlagents is a part of the Python package. The

package introduces a single command-line utility mlagents-learn that supports all the train-

ing methods and options supported by Unity ML-Agents Toolkit. Python Trainers only have

interfaces with the Python Low-Level API.

The Learning Environment includes two Unity Objects used by Unity scene to organize [7]:

Agents are added to a Unity GameObject (any component in a game scene). It manages

to create their observations, performing actions they receive, and assigning a reward

(positive/negative) when appropriate. All Agents are connected to the Behavior.

Behavior is defined as a particular attribute of the agent, such as the number of actions it

can take. A Behavior Name field uniquely identifies each Behavior. Behavior can be

considered as a function that receives observations and rewards from the Agent and

returns actions. Behaviors can be of three types: Learning, Heuristic, or Inference.

Learning Behavior denotes the behaviour at the learning phase. Heuristic Behavior is
11

Figure 2.5: Simplified block diagram of ML-Agents. [7]

defined by a set of hard-coded rules applied in the code. Inference Behavior includes

a trained neural network file. In reality, Learning Behavior becomes an Inference

Behavior after trained.

All learning environments will always have an agent for each character in the scene. All

agents are linked to behavior. Agents with similar observations and actions can have the

same behavior. Thus, a learning environment can have two agents that do a similar task in

the same manner. Of course, that does not mean that they will have the same observation

and action values in all cases.

Hyperparameters are used by ML Agent Toolkit according to the trainer algorithm type [17].

These parameters determine the coefficients of the functions of the training algorithms.

12

Figure 2.6: Simplified block diagram of ML-Agents [7].

13

2.2 Physics-based Animation

2.2.1 General Physics-based Animation

Animations are used to create more realistic and exciting content in applications, simulations

and games. These animations are generally created previously and used by playing in the

appropriate place within the application. This kind of pre-recorded animations are pleasing

to the eye but will be insensitive to the environment since they are created for specific situ-

ations. They cannot create an animation according to the current state of the environment.

With the laws of physics, realistic and pleasing animations can be produced automatically.

The most significant advantage of physics-based animation is that it can produce realistic

and integrated animations according to changing environmental conditions. However, doing

physical calculations puts a massive strain on the processor. In order for an animation to look

pleasing, it needs to be updated at least 30 times per second. The increase of physical objects

in the scene makes it difficult to perform physical operations 30 times per second. For this

reason, kinematic animations were used more in the early days. With increasing processor

power and algorithm optimizations, limited physical animations are used today.

Rigid Body Simulation

The term rigidbody stands for the objects that do not deform under external disturbances.

Rigidbody physics is one of the first techniques used for physics-based animation. In cases

where two or more objects collide with each other, or when an external force is applied, the

physical information of these objects is calculated. For a rigid body, only the position and

rotation information is changed. Since the objects interact with each other, the calculation

needs to be done iteratively more than once for more consistent results. More calculation

steps produce more accurate results. Generally object with basic geometric shapes are pre-

ferred when performing rigid body simulation, because of performance concerns.

14

Soft Body Simulation

When force is applied on an elastic object, the object deforms accordingly. Soft body simu-

lation intends to generate animations of such deformations. A soft-body object is generally

obtained by establishing a spring-mesh structure. Many small rigid bodies interact with each

other by being connected with this spring structure, which protects the initial shape of the

object. When an external force is applied to the object, its shape changes as the springs push

and pull the mass points. Besides calculating the collision of the mass points, the spring

motion should also be calculated and as a denser spring-mesh structure is used, the soft body

animation looks more realistic, which increases the computational burden on the processors.

Nowadays, with the widespread use of physics libraries such as Havoc, Bullet, PhysX [18],

physics operations can be calculated more optimized. Thus, it becomes possible to perform

soft-body physics operations at 30Hz. Therefore, if we look at early applications, it is seen

that rigid bodies are used more intensively.

Physics-based Character Animation

In most of the games, character animation consists of previously created animations. Keyfram-

ing and motion capturing are the main techniques for generating these animations. It is easier

to make changes and optimizations on pre-recorded systems. For this reason, pre-recorded

animations look better to the user. The main problem with pre-recorded animations is that an-

imations are created for certain situations, so they cannot react to environmental forces. With

physics-based character animation techniques, animations that can adapt to environmental

changes are achieved [19]. The physics-based animation of the character with a combina-

tion of rigid and soft bodies and constraints between them can produce more natural results.

In means of processing power, character animation consumes the most performance. For

this reason, it is rare to see physical character animation in production games. Physics-based

character animation is used in Max Payne 3 [20] and GTA V [21] for creating a more realistic

environment and gameplay area. Besides, Ubisoft introduced motion-matching technology

in 2016 [22]. The basic animations of the characters are recorded with mocap technology,

and in real-time new animations compatible with the current game situation are synthesized

by using them [23]. Although it produces results close to physical animation, completely

realistic animation can not be generated because physics operations are not calculated.

15

2.2.2 PD Controller

PID Controller (denotes Proportional, Integral, Derivative, respectively) is a commonly used

control loop mechanism in industrial control systems [24]. PID Controller is described as

followin in [24]. Applications generally need a PID controller to regulate their value contin-

uously. The purpose of this mechanism is to regulate continuous output via input. According

to differences between input and output, proportional, integral, and derivative (PID, respec-

tively) correction is applied to input value to reach output value.

In 1934, the PID Controller unit was placed on the market, and it is a widely used controller

in process controller until today. PID controller is used for automated control of the process

in the manufacturing industry. Also, besides mechanics, it is popular in the electronic con-

troller. Nowadays, its commonly used for an application that requires precise, smooth, and

optimized control mechanisms.

The closed-loop circuit systems are widely used in control systems. For example, consider

a heating tank in which some liquid is heated to the desired temperature by burning fuel

gas [24]. In closed-loop circuit systems, the current value needs to reach the desired value.

The generated value is applied to the system (plant). The response of the system is sent

back to the controller with the help of sensors. The controller updates itself according to the

feedback, and the cycle continues in this way.

PID Controller is frequently used in physical animations and simulation applications. In

computer animation, the integral component is not used to simplify the controller. Only the

proportional and derivative components are used. For this reason, it is called PD Controller

in computer animations.

Figure 2.7: PD Controller Scheme

16

The proportional control is the easiest feedback control system. In proportional control,

the signal of the controller is multiplied by the error signal. The optimal Kp value varies

according to the system.

The derivative control calculates the time variation of the error in the system. Future changes

are predicted from past changes. The effect of derivative control varies with the change of

error by time. If the error increase rate is high, the effect of derivative control on the system

is higher. If there is no change in error, it does not affect the system. The derivative control

affects the output of the controller based on the change of error. Therefore, derivative control

cannot be used alone. Besides, although derivative control is effective, noise is a problem for

this controller [8].

Kp and Kd values can be varied according to the systems, and the best result can be obtained

through trial. As shown in Figure 2.8, at different Kp and Kd values, the signal reaches the

desired value in different ways.

Figure 2.8: Kp/Kd sample chart [8].

17

3 RELATED WORK

In parallel to its tremendous role in real life, modeling the structure and motion of hands

has been a popular topic of both animation and robotics research for decades. Kinematic

techniques like key framing [25], or making use of anatomical or real hand pictures for

generating 3D hand animations [26, 27] constitute the early approaches of hand animation

research. During the last decades, hand animation research spread to a wide variety of fields

like VR manipulation [28], modeling interaction with objects [29, 30, 31, 32] and, gesture

generation [33, 34, 35], and recognition [36, 37, 38]. A comprehensive review on hand and

finger modeling and animation can be found in the recent survey by Wheatland et al. [39]

In this study, we aim to synthesize physics-based catching motions, which can be catego-

rized under hand-object interaction topic. We provide a detailed review of the literature on

physics-based hand object interactions and their differences or similarities with our work in

the sequel.

The early work on physics-based hand-object interaction synthesis are hybrid ones employ-

ing data driven techniques [29, 40]. Pollard and Zordan [29] present a physics-based con-

troller for synthesizing hand motions like grasping and two-hand interactions by using mo-

tion capture data. They categorize the joint torques as active and passive and solve for the

parameters of the controller from a set of motion examples. Their proposed method is ap-

plicable to new grasping scenarios with different object geometries. The used hand model is

composed of rigid bodies but more detailed than common simplified models with additional

degrees of freedom in the palm. Kry and Pai [40] also propose a dynamic retargeting sys-

tem for grasping motion. They first capture the interaction of the hand with an object with

a twofold process, they both capture the motion of fingers with an optical motion capture

system and the contact forces with a force torque sensor attached below the surface. Then

they resynthesize a new interaction of the hand with an object of different geometrical and

physical properties. A recent data-driven approach is proposed by Zhao et al [41], for syn-

thesizing grasping motion in real time with a hand model composed of rigid bodies. The

key part of their framework is the online data-driven algorithm which synthesizes a grasping

motion by using a large database of reference grasping motions. Once the proper motion is

generated, the hand is controlled physically-in order to track this generated motion online.

18

Unlike these work, we aim to learn realistic catching motions from scratch, without relying

on motion capture data, since using a small number of examples limit the variety of synthe-

sized motions and on the other hand handling a large database of motion capture complicates

the motion generation process. Another early work by Liu [42] presents an online physics-

based manipulation controller which does not make use of motion capture data but need to

be guided by simple descriptions of the desired motion. One of the interesting parts of her

work is to solve the dynamics of the hand, the object and the contact forces in one proce-

dure. The proposed framework, which controls both the arm and the hand, can be applied

to a wide range of manipulation tasks. They also implement a more detailed model for the

palm composed of rigid bodies.

Modeling the fingertips of the hand with soft body for increasing the stability of grasping has

also been addressed in the literature [43, 44]. In the prominent work by Jain et al [43] the ef-

fect of employing soft body dynamics in the control of physics-based motions is investigated.

According to their evaluations, modeling the deformation at the site of contact increase the

robustness and naturalness of controllers for motions like locomotion, arm folding and pinch

grasping a thin object. Inspired by their work, we modeled the deformable bodies as triangu-

lar meshes with point masses at the vertices and employed a spring based force calculation

for simulating deformation. On the other side, they do not present a deformable hand model

as detailed as we do, they only model the finger tips with soft body. More recently, Talvas

et al. [44] proposed a novel contact constraint approach for simulating dexterous grasping

of a variety of objects with soft fingers, including objects with sharp edges. They achieve

an improvement on efficiency by aggregating multiple contact constraints into a minimal

set of constraints. While they employ soft body modeling for fingertips, they do not model

the rest of the hand including palm with soft body, which is essential for a stable grasping.

Moreover they simulate the finger motions by tracking the motion generated by data glove

or hand-scripted animations, while we aim to learn the proper finger motions from scratch.

Our touch sensor model for improving the efficiency of training can be considered as a kind

of aggregating contact points, which constitutes a similarity with their approach.

Including offline learning systems in hand motion generating approaches ease handling with

the high dimensional and complicated nature of human motion. Andrews et al [45] propose

a physics-based finger controller for one handed task based manipulation. They split the

motions of the fingers for manipulation into three phases and learn a control policy for each
19

phase offline with value iteration. They guide the learning process by narrowing the search

space with natural poses. The hand model they use does not include soft bodies but they

propose a more detailed palm model with a couple of rigid links. Our work is similar to

theirs in point of devising an offline learning strategy for finger motion control. Cimen et

al. [46] propose a controller for synthesizing a physics-based full body motion for catching,

by dividing it into simple motor skills like standing, walking and reaching. Similar to our

work, they employ an offline reinforcement learning system for generating a policy for the

timing of these skills. Their proposed system can handle both single and double handed

catching. Unlike ours, they do not include a detailed hand modeling and finger motion in

their framework. Hao et al. [32] propose a physics-based controller for synthesizing motions

of grasping and manipulating virtual objects with user guided multi-fingered hands in real

time. The approach offers a general solution which is applicable to a wide variety of objects

including high-genus objects with holes. Their algorithm includes a GPU accelerated offline

learning phase for precomputing feasible grasp configurations for the given object. In real

time, when the user-guided virtual hand is close enough to the object, the learned grasp space

is searched for a nearest configuration and a physically plausible grasping motion, which is

compliant with these configurations, is generated.

Incorporating a visual system imitating the function of human eyes for accomplishing high-

level tasks like catching a thrown object is also an interesting research topic [1, 2]. Although

it’s not a physics-based approach, the work by Yeo et al [1] is a prominent one, in which

movements of eye, head, hand and upper body during catching are all synthesized. They

capture the motion of the body parts with motion capture and the motion of the eye with a

head mounted tracker. They make inferences from these data about the synchronized move-

ment of the body parts and eye, and build a model based on these inferences. They employ a

simple visuomotor system and drive the movements of the bodyparts with the gaze informa-

tion produced by this system. This work inspired us about handling the catching behaviour

in two phases as reactive and proactive. Eom et al [2] propose a novel model predictive

control framework for realistic eye, head and physics-based full body movements for vari-

ous tasks including catching a thrown ball. Their key contribution is to enable interacting

with the objects in a partially observable environment, where they model the observation of

the environment with an integrated visuomotor system like the eyes of a human. Catching

a ball is one of the motions that they demonstrate their proposed method. They divide the

20

ball catching motion into reactive and proactive phases as we do, and adapt their framework

parameters differently for these tasks. They calculate an estimated arrival position for the

ball and produce an automatic lateral moving and arm lifting motion towards the arrival po-

sition. Unlike ours, their work does not include a hand animation. The main objective of our

work constitutes the main difference from their work. We assume that the trajectory of the

object is fully observable and focus on learning a detailed hand and arm motion for a stable

catching.

21

4 HAND AND ARM MODEL

4.1 Hand Model

Human hand has a highly complicated structure which enables achieving a wide variety of

motor skills with agility (see Figure 4.1). Modeling this structure with complex connection

of bones, tendons and muscles is excessively hard and not efficient at all for animation ap-

plications. For these reasons, most of the work in the literature employ a simpler model of

the hand for animation purposes [47, 48]. However, very simplistic hand models are not

sufficient for generating realistic and stable motions in some cases; especially when interac-

tion with objects is due. We propose a two-layer hand model, which enables a compromise

between catching stability and performance.

(a) (b) (c)

Figure 4.1: Hand anatomy: (a) skeleton, (b) skeleton with muscles and tendons, (c) skeleton

with muscles, tendons, and fat [9].

The first layer of our hand model is a simplified physics-based skeleton model which com-

prises rigid bodies connected with joints. The structure of the skeleton model is displayed in

Figure 4.2. The skeleton model consists of 28 Degrees of Freedom: one DOF for Distal In-

terphalangeal (DIP) and Proximal Interphalangeal (PIP) joints, two DOFs (flexion/extension,

abduction/adduction) for Carpometacarpal (CMC) joint of the little finger and Metacar-

pophalangeal (MCP) joint except thumb , one DOF for Interphalangeal (IP) and Metacar-

pophalangeal (MCP) joints of thumb and three DOFs for Trapeziometacarpal (TMC) joint.
22

Usually, CMC joints are not included in simplified hand skeleton models [49, 41], but we

observed that the movement of the little finger about CMC joint creates a better grasp by

increasing the curvature of the hand. The CMC joints of other fingers have zero DOF in

our model. The wrist of our hand model has three translational and two rotational DOFs.

We model the hand such that its up axis is always aligned with the up axis of the arm and

therefore we obtain the axial rotation of the hand by axial rotation of the arm. So wrist has

only two rotational DOFs which are about x- and z- axes. In order to narrow the search space

during the learning process, the maximum and minimum rotations of the joints are limited

as displayed in Table 3.1. Moreover, the DOFs of DIP joints are modeled dependent on the

DOFs of PIP joint by using the formula below, as proposed by Rijkpkema and Girard [50].

ΘDIP =
2

3
ΘPIP (4.1)

Figure 4.2: Hand skeleton model with joint degrees of freedom.

The movement of the finger rigidbodies is provided by applying torques to the joints. Given

the desired orientation for a joint, the torque that will drive the attached finger to this orienta-

23

Table 4.1: Hand model properties. Finger joints do not have rotational degrees of freedom

about the y axis [3].

Bone Name Weight (gr) Length (cm) X Limit Z Limit

Thumb1 35 4.92 0,60 0,60

Thumb2 24 3.41 0,45 0,0

Thumb3 16 2.21 0,70 0,0

Index1 72 7.11 0,0 0,0

Index2 28 4.39 0,90 -15,15

Index3 16 2.47 0,130 0,0

Index4 11 1.73 0,87 0,0

Middle1 62 6.90 0,0 0,0

Middle2 32 4.76 0,90 -15,15

Middle3 18 2.91 0,130 0,0

Middle4 12 1.85 0,87 0,0

Ring1 57 5.75 0,0 0,0

Ring2 28 4.45 0,90 -15,15

Ring3 18 2.94 0,130 0,0

Ring4 12 1.93 0,87 0,0

Little1 57 5.55 0,5 0,0

Little2 23 3.46 0,90 -15,15

Little3 12 2.02 0,130 0,0

Little4 11 1.76 0,87 0,0

24

(a) Hand Skeleton Front (b) Hand Skeleton Side

Figure 4.3: Hand skeleton from front (a) and side (b)

tion is calculated by PD Controller (see Section 2.2.2). In this way, a smooth physical move-

ment is obtained. The base values for coefficients of PD Controller are set as kp = 331.293

and kd = 7.098 per each gram of the rigidbody. The coefficients for the finger rigidbodies

are calculated by multiplying these base values with the weight of the bones.

The second layer of our hand model is a deformable model that intends to represent the

soft tissue inside the hand. Human body is covered with fat, muscles, tendons and liga-

ments under the skin, which form a soft tissue deforming with the movement of bones or

under the pressure of external perturbations. Representing the parts of the human body

with deformable models, like hands [51, 52, 53], face [54, 55], or upper body [56], has been

widely explored by researchers through decades, leading to a variety of approaches. De-

ciding which approach to use depends on the aim of the deformation modeling; it could be

for aesthetic purposes, as in most of the facial animation problems, or for achieving a more

stable and realistic interaction with the physical environment. Efficiency concerns are also

important; do we need a real time render or do we prefer accuracy over efficiency? In our

work, we aim a stable grip when the object is caught and we prefer the algorithm to run in

real time. To this end, we first modeled a soft body layer both for palm and fingers, which is

a simplification of real hand anatomy (see Figure 4.4a). Anatomically, the human hand has

no muscles on the fingers. Instead the movements of the fingers are provided by tendons.

25

As a simplification, we modeled both the soft body covering inside the fingers and the palm

with the same muscle-like structure.

(a) Hand with soft-bodies (b) Hand simplified mesh

Figure 4.4: Hand with soft-bodies (a) and visual mesh (b)

Fingers have more prominent roles especially for the fine motor skills, like pinch-grasp,

picking small items or writing; but for grasping during catching, the deformation of the palm

is of great importance. We designed the muscles of the palm, inspired by the geometric

muscles proposed by Albrecht et al. [52], but devised a simpler structure for performance

concerns. We can categorize the muscles of the palm as intrinsic muscles of the thumb and the

remaining four muscles called lumbricales. During catching, the fingers are bent towards the

palm with the contact of the object. With this bending, lumbricales are curved and the thumb

muscles press the object against them. We modeled the lumbricales and thumb muscles in

different structures, which enables this cooperation for grasping the object (see Figure 4.4a).

We designed each muscle of the hand as a 3D triangular mesh in a certain geometrical shape,

with elliptical cross sections through a designated range. A number of corner vertices of the

muscle are determined as the attachment points, which attach the muscle to the bones of the

hand. An attachment point is set as the child of the attached bone in the object hierarchy.

Therefore, as the parent bone moves, the attachment points move with it, and the muscle

deforms accordingly. Figure 4.5 displays the geometrical structure and the attachment points

of palm muscles.
26

(a)
(b)

Figure 4.5: Muscle structure of (a) a lumbricale muscle and (b) intrinsic muscles of the

thumb.

The contact of a soft body with an object causes a small and localized deformation [43]. We

employed a simple and local deformation model for the physical interaction of the muscle

mesh with an object as in [43] (see Figure 4.6). To this end, we defined a set of point

masses and assigned the vertices of the muscle mesh as their rest positions. When an object

collides with a point mass, a restoring spring force is calculated by the PD Controller with the

intention of bringing the point mass to its rest position. The coefficients of the PD Controller

define the stiffness and oscillation amount of the muscle under a collision. We manually set

these parameters to kp=100 and kd=1.2, and we set the weight of the each point mass as one

gram. The restoring forces calculated for the point masses of interaction push the interacted

object towards each other and results in a more stable grasping of the object during catching.

27

Figure 4.6: Deformation model for object-muscle interaction. Gray dots indicate the point

masses which are positioned at the vertices of the muscle mesh by default, called rest po-

sition. When an object hits the muscle, point masses of contact displace with the effect of

collision and a force is applied to restore them to their rest positions (green dots).

4.2 Arm Model

We used a simple arm model, consisting of upper arm, lower arm and hand, as shown in

Figure 4.7. The lengths of the body parts and joint rotation limits are displayed in Table

4.2. Since it does not have an interaction with the environment, its movement is not physics-

based. It rotates with the given rotation amount relative to its parent joint.

Table 4.2: Arm model properties [4].

Joint Body part Length X angle limit Y angle limit Z angle limit

1 Shoulder Upper Arm 35 (-70, 150) (-30, 90) (-90, 90)

2 Elbow Lower Arm 25 (0, 0) (-135, 0) (-90, 45)

3 Wrist Hand 20 (-15, 15) (-5, 5) (0, 0)

28

Figure 4.7: Arm model. Numbers indicate the joints in Table 4.2.

5 LEARNING TO CATCH WITH HIERARCHICAL

REINFORCEMENT LEARNING

To produce a detailed caching animation, arm and hand should be animate according to each

other. A catching process divided two parts; as the reactive and proactive phase. For suc-

cessful catching operation, these phases should be run in coordination. Detailed information

about the reactive phase, proactive phase and coordination manager of these phases is given

below.

5.1 System Overview

We present the overview of our system, which is composed of an offline learning part and a

real time motion generation part.

The offline learning system learns to control the arm and hand models so that a thrown object

can be caught in a physically plausible manner. Catching motion is divided into two phases

by Yeo et al. [1]. The first one is the reactive phase, in which humans get prepared for

catching. This phase can include moving and orienting to a proper configuration, lifting the
29

arm and keeping the hand at an estimated position until the thrown object gets close. The

second one is the proactive phase, which consists of all the movements that contribute to

carrying out the actual catching behavior. Accordingly, we partitioned our learning problem

into two and devised a three-piece hierarchical learning system: the reactive learner for

learning the reactive phase, the proactive learner for learning the proactive phase, and on

top of these a third system, the timing learner, for learning the time management of reactive

and proactive phases.

The reactive learner is designed to learn a natural motion of the arm for taking the hand to

an appropriate position for catching. The system is trained with deep reinforcement learning

(PPO).

The proactive learner is designed to learn the physical movements of the fingers for catching

objects of several primitive shapes. The system is trained with curriculum learning.

The timing learner is designed to learn the timing of reactive and proactive phases of catching

behavior, by using the trained brains by reactive and proactive learners. It is trained with deep

reinforcement learning (PPO).

In real time, the state of the environment is given to the brain trained by timing learner

(metabrain) and it gives the desired orientations for arm and hand joints as output, which are

used to produce the whole catching motion.

Figure 5.1 displays an overview of the system. All of the learners in the offline learning

system are based on reinforcement learning algorithms, which need the observations of the

environment, action descriptions and reward signals as input. These input should be carefully

designed to accomplish each desired goal. Detailed descriptions of the proposed learners are

given in the following sections.

30

Figure 5.1: The system overview diagram. The system consists of an offline hierarchical

learning system and a real time motion generator. The offline learning system is composed

of three learners: reactive, proactive and timing learners. The timing learner uses the brains

trained by reactive and proactive learners to train the metabrain. The metabrain is used as

the main block of the real time motion generator system.

5.2 Reactive Learner with Proximal Policy Optimization

As mentioned in Section 5.1 reactive phase constitutes a preliminary preparation stage for

catching the thrown object. Since we focus on generating only the arm and hand motions,

this phase consists of placing the hand to an estimated interception position in our prob-

lem definition. Generating the arm motion for positioning the hand to a desired position is

actually an inverse kinematics problem, which has more than one solution. Our aim is to

learn an arm motion as natural as possible among all possible motions. To accomplish this,

we employed Proximal Policy Optimization reinforcement learning algorithm [12] with the

observation, action and reward design as follows.

31

Observation values:

• the position of arm parts,

• the local rotation of arm parts,

• the position of the object,

• the position of the hand palm,

• the distance of the object to the palm center,

• the velocity of the object,

• The accessible route: The part of the object trajectory that can be reached by hand is

expressed as a five point curve,

• The position of the nearest two points to object from accessible route, and

• the forward vector of the hand.

Action values: A total of seven scalar variables are taken from the RL algorithm as action

values. Each of these scalars correspond to an angular change in an arm joint’s degree of

freedom. Action values given by the RL algorithm are first clamped to [-1, 1] and then

multiplied by three, so that at each step angular change is constrained to [-3, 3].

Reward design

The total reward for reactive learner is calculated as the sum of the total step reward (rrestep)

and total termination reward (rreterminal).

We designed the reward signals for calculating the total step reward in guidance of the fol-

lowing features of typical human behaviour, in order to achieve a natural arm motion.

1. Human tend to move their arms as little as possible.

2. The movement amount of the arm decreases as the object to catch gets closer.

3. They try to place their hand on the thrown object’s course of movement.

4. They want to orient their hand such that the thrown object hits directly to the palm.

32

The total step reward consists of the following components, each of which is designed com-

pliant with the features above:

• the displacement penalty,

• the route proximity reward, and

• the palm forward reward.

Displacement Penalty (rdisp): For the first and second feature we devised the displacement

penalty, which gives a penalty for rotation of the arm joints according to the distance between

the hand and the object.

We first calculate dispPenaltyRaw, which is a weighted sum of angular changes around each

joint degree of freedom.

dispPenaltyRaw = ws × d(shoulder) + we × d(elbow) + ww × d(wrist),

Here, function d calculates the sum of the angular change around the given joint’s degrees

of freedom. The coefficient for each joint should be compliant with the joint’s effect on the

displacement of the hand. Here we set ws = 2, we = 0.7 and ww = 0.3, because the effect

of shoulder movement is the largest and the wrist’s effect is smallest on hand displacement.

We calculate the displacement penalty rdisp as below. Here dist denotes the distance between

the object and the hand and maxDist denotes the maximum value of dist. With this equation,

the penalty for displacing the hand gets larger as the object gets closer, which is compliant

with the second feature of typical human catching behavior.

rdisp = (1 − dist
maxDist

) × dispPenaltyRaw. (5.1)

Route Proximity Reward (rroute): For the third feature we devised the route proximity reward

with the following distRoute. Here distRoute denotes the closest distance between the palm

and the route of the thrown object. With this formula, the closer the palm is to the route, the

more reward is given. If the distance is greater than 30 cm, then no reward is given.

rroute = (e((1−
dist

distRoute)×3) − 1)/(e3 − 1)
33

Palm Forward Reward (rforward): For the fourth feature, we devised the palm forward reward

with the following formula, which rewards the alignment of the velocity of the thrown object

(objectVel) with the forward vector of the hand (handForward). Here the angle() method

calculates the least unsigned angle between two vectors.

rforward = (e((1− (180−angle(objectVel,handForward))/180)×3) − 1)/(e3 − 1)

The total step reward value for the reactive learner is calculated as the weighted sum of these

three rewards:

rrestep = w1 × rdisp + w2 × rroute + w3 × rforward. (5.2)

Here, we setw1 = −0.1, w2 = 0.35 andw3 = 0.65, which we tuned according to the training

results.

The termination reward is calculated as

rreterminal = rpalmhit + rpos.

Palm Hit Reward (rpalmhit): The purpose of the movement of the arm is to collide the thrown

object with the palm. In this case, the training is completed with success and awarded +1

point.

Object Position Penalty (rpos): The position of the object must be inside certain limits around

the hand and arm in order to catch the thrown object. The training is terminated when the

object gets to a position that the arm cannot reach or when the object passes behind the

shoulder. Since the training is terminated unsuccessfully in these cases, -1 point is given.

5.3 Proactive Learner with Curriculum Learning

In the proactive phase of catching motion, humans aim to close their fingers in the correct

time and configuration in order to grasp the thrown object in the most stable way. The orien-

tation of finger joints at the final grasping pose and the speed of closing the fingers through

this orientation are determined according to the shape, size and velocity of the thrown object.

In this part of our work, we aim to learn the best possible physics-based catching motion for

34

the hand model with muscles described in Section 4.1. The thrown objects can have a vari-

ety of shapes with primitive geometries like sphere, cube, capsule and rectangular prism (see

Figure 5.2).

Figure 5.2: Hand skeleton and thrown objects.

Some objects are harder to catch than others, mostly due to their shapes. Objects with uni-

form geometry are easier to grip, while the smoothness of the object is also a factor. Con-

sidering this, we designed a gradual training, in which the hand learns to catch objects with

simpler geometry former than the others and becomes more talented as the object geometries

get more complex. We achieved this by employing curriculum learning algorithm explained

in Section 2.1.3. As shown in Figure 5.3, training starts only with the objects of simplest

geometry, spheres, and other objects are included in the training later, at certain time steps,

according to the complexity of their geometry. In this way, by expanding the search space

step by step, faster and better results are achieved.

Curriculum learning is based on reinforcement learning. The observation, action and reward

design for the underlying RL algorithm are as follows. For the observation and reward

design, we propose a hand model with sensors on it at specified positions, as shown in Figure

5.4. The sensors are sphere colliders, and for each of the sensors a touch status information

is hold. The touch status of a sensor is set as active during the time it collides with the object

and set as passive vice versa. Therefore, it is possible to estimate the grasp amount of the

object by interpreting the touch status of the sensors, which we use for reward design. The

grasp estimation process is described in detail in the sequel.
35

Figure 5.3: Curriculum learning timeline of the used object shape.

Observation values:

• the rotation of the hand,

• the local position of each finger part,

• the local rotation of each finger part,

• the velocity of each finger part,

• the angular velocity of each finger part,

• the touch status of each sensor inside the hand (Total 28 sensors),

• the touch status of each sensor outside the hand (Total 7 sensors),

• the ifference vector between the object position and the hand position,

• the velocity of the object,

• the rotation of the object,

• the angular velocity of the object.

• the distance between the object and the hand.

• Shape type of the object (an integer between 0 and 3).

36

Figure 5.4: Sensor positions on the hand. There are 28 inside sensors (green) and 7 outside

sensors (red).

Action values:

Each action value corresponds to an angular change at the desired orientation of a finger

joint. As seen in Figure 4.2, our hand model has 23 degrees of freedom for finger joints.

Taking into account the angular relation between DIP and PIP joints (see equation 4.1), we

take 16 scalar variables for the RL algorithm as action values. These action values are first

clamped to [-1,1] and then multiplied by a strength value of 60. Here, we prefer a larger

strength value, since the finger movement should be faster compared to arm and the action

update frequency is smaller than the reactive learner (see Section 5.1). For some degrees of

freedom these processed action values are directly added to the desired angle value while

for others, whose movement is restricted to only positive direction, absolute values of them

are used. After adding these values to desired rotation angle, the resulting angle value is

clamped to a specified interval as displayed in Table 5.1.

Reward design

As mentioned above, we devised a touch sensor based reward calculation to measure the

grasping amount and duration of the hand. There are 28 sensors inside and 7 sensors outside

of the hand. Since the object is always thrown from the front of the hand, we didn’t place

sensors outside the fingers except thumb. Exterior of the thumb can touch the object if it’s

37

Table 5.1: The absolute value of processed action values are added to some DOFs, where the

movement is restricted to only positive direction. The total rotation after adding action value

is clamped to a specified interval.

Add Absolute DOF Clamp Interval

Thumb1 [Z] [-20,40]

Thumb1 [Y] [0,Thumb1[Z] + 20]

Thumb2 [X] [0,45]

Thumb3 [X] [0,70]

Index2 [X] [0,130]

Index2 [Z] [-15,15]

Index3 [X] [0,130]

Middle2 [X] [0,130]

Middle2 [Z] [-15,15]

Middle3 [X] [0,130]

Ring2 [X] [0,130]

Ring2 [Z] [-15,15]

Ring3 [X] [0,130]

Little1 [Z] [0,5]

Little2 [X] [0,130]

Little2 [Z] [-15,15]

Little3 [X] [0,130]

rotated in the wrong time with a wrong amount. Therefore we needed to place sensors there.

The locations of the sensors are displayed in Figure 5.4.

The total reward for proactive learner is calculated as the sum of the total step reward

(rprostep) and total termination reward (rproterminal).

The total step reward is composed of the following components :

Inside sensor reward (rinside): The number of active sensors inside the hand are strongly

correlated with the status of the catching. If no sensors are touched by the object, this means

that the object is not grasped by the hand. As the number of active sensors increases, we

understand that the object is grasped more firmly and it’s more unlikely to drop it. Therefore
38

inside sensor reward is one of the most dominant reward components. There are total of 28

inside sensors, but since the objects are rigid, we observed that even in a full stable grasping

all of these sensors do not get active. But according to the shape and angle of incidence

of the object, which sensors get active may vary. Therefore, we need all of the 28 inside

sensors for interpreting the catch status of different objects, but the maximum number of

active sensors vary between 10 and 15. Because of that, we first calculate the normactive

value by dividing the total number of active sensors by 14 and then clamping the resulting

value between 0 and 1 to get a normalized ranking for the grasping amount. The inside

sensor reward rinside is then calculated as follows:

rinside = (e3×normactive−1)/(e3 − 1)

Inside thumb sensor reward/penalty (rthumb): Covering the object with thumb is essential both

for a more stable catching and a more natural motion. Therefore, we include an additional

term, rthumb, for rewarding the sufficient contact with the interior of the thumb and penalizing

vice versa, calculated as follows:

rthumb = (numactive − 2)/2.

Here numactive denotes the number of active sensors inside the thumb. As clearly seen by the

formula, rthumb takes a negative value if numactive is less than 2 and a positive value vice versa.

Outside sensor penalty (routside): This reward item stands for penalizing the wrong movement

of the thumb, such that the object contacts with its exterior. There are 7 sensors outside the

thumb, shown as red in Figure 5.4. The total number of active ones is divided by 7 to

calculate a normalized reward value, routside.

The total step reward rprostep for the proactive learner is calculated as follows, as the weighted

sum of these three rewards:

rprostep = w1 × rinside + w2 × rthumb + w3 × routside.

Here we set w1 = 0.7, w2 = 0.3 and w3 = −1 which we tuned according to the training

results.

39

The total termination reward rroterminal is calculated as:

rproterminal = rdistance + rsteady,

where rsteady and rdistance are described as follows:

Object distance penalty (rdistance): When the distance between the object and the hand is more

than a specified value, a penalty of −1 is given and the training episode is terminated. This

penalty stands for penalizing the case that the hand cannot catch or drops the object. Here

we specify the distance value as 24 cm, since the object is thrown from 24 cm at most. Since

the object is thrown towards the hand, it means that the hand could not catch the object or

dropped it if it moves away from the hand this far.

Steadiness reward/penalty (rtextitsteady): For achieving a steady catching behavior, we require

the hand to grasp the object just not for an instant but for a while. Therefore we reward the

case that the hand still touches the object at the end of the training episode and penalize vice

versa. For this, in the last step of the episode, if at least one of the inside sensors is active,

then a reward of +1 is given. In the opposite case, a penalty of -1 is added to the total reward.

5.4 Timing Learner with Hierarchical Deep Reinforcement Learning

Catching is accomplished with the collective motion of different body parts, each of which

is responsible of a distinct task. The timing of these distinct tasks is of great importance,

since the object to catch is not stationary, on the contrary it’s in motion most probably with

a high velocity. When we consider generating a catching motion as a learning problem, it’s

also quite plausible and natural to split the motion into different phases. As we mentioned

above, we split the problem into two, as learning reactive and proactive phases separately,

and we designed learning the timing of these different tasks as a hierarchical reinforcement

learning problem (see Section 2.1.4). The relation between timing learner and the trained

brains by reactive and proactive learners are displayed in Figure 5.5. The working principle

of timing learner is briefly described as follows. The object is thrown from a random distance

between 200-300 cm towards the character. The timing learner sends a run command to the

reactive brain at a time specified by an action signal coming from the reinforcement learning

algorithm. When the object approaches the hand closer than 24 cm, the timing learner sends

40

a run command to the proactive brain at a time specified by another action signal coming

from the reinforcement learning algorithm. The reactive and proactive brains follow their

learned strategy and send reward signals described below to the timing learner at each step.

In addition, the proactive learner sends a termination signal to the timing learner, when the

termination criterion for an episode is provided. The details of observations, actions and

reward design are described below.

Figure 5.5: The relation of timing learner with reactive and proactive brains. Timing learner

sends the “start running” command to them once. The brains send the specified reward values

at each decision time step.

Observation values:

• the shape type of the object,

• the distance between the object and the palm,

• the difference vector between the object position and the hand position,
41

• the velocity of the object,

• the success status of the reactive brain,

• the success status of the proactive brain,

• the hand touch status (is object-hand distance less than 15 cm), and

• the hand inside touch status (is object-hand distance less than 5 cm).

Actions:

• send “start running” signal to reactive brain.

• send “start running” signal to proactive brain.

Reward Design

The total reward for timing learner is calculated as the sum of the total step reward (rstep) and

the total termination reward (rterminal).

The total step reward is calculated as:

rstep = 0.5 × rreactive + 0.5 × rproactive,

where rreactive and rproactive are described as follows:

Total step reward of reactive brain rreactive: After the reactive brain runs with the run com-

mand coming from the timing learner, at each step the total step reward of reactive brain

(rrestep) is taken.

Total step reward of proactive brain rproactive: After the proactive brain runs with the run

command coming from the timing learner, at each step the total step reward of proactive

brain (rprostep) is taken.

The termination reward is calculated as:

rterminal = rrepos + rprotime + rprosteady,

42

where rrepos, rprotime, and rprosteady are described as follows:

Object position penalty rrepos: This reward is the same as the one in reactive learner reward

design (rpos in Section 5.2) and taken from the reactive brain. The training is terminated if

the object passes behind the shoulder or falls below the height at which the arm can reach,

and a penalty of -1 is given.

False proactive timing penalty rprotime: The proactive brain should run when the object-hand

distance is between 16 and 24 cms. If it runs out of this interval, the episode is terminated

and a penalty of -1 is given. Moreover, if the proactive brain has not run yet when the object

hits the palm, then again the episode is terminated and a penalty of -1 is given.

Proactive steadiness reward/penalty rprosteady: This reward is the same as in proactive reward

design (rsteady in Section 5.3) and taken from the proactive brain. It is calculated in the last

step of the episode and valued +1 if at least one of the inside sensors of the hand is active

and -1 vice versa.

43

6 IMPLEMENTATION AND RESULTS

This chapter covers the implementation details of the proposed system and the details about

the resulting simulations. Moreover, we provide a comparison of the results with different

configurations of the framework and user tests conducted for evaluating the results are also

presented in this section.

6.1 Implementation Details

Offline machine learning algorithms and resulting online simulations were all performed

on a 2.70 GHz 4-core machine with 16GB of memory. Unity 3D game engine version

2019.1.171f was used for rendering and animation [57]. Nvidia Physx SDK 4 [58] is used as

the black box physics simulator, which is the built-in 3D physics engine of Unity. Unity ML

Agents v0.12 is used as the machine learning environment [59]. Since our implementation

includes physics simulations and Nvidia PhysX runs on CPU, parallel processing with GPU

could not be used for accelerating offline learning.

In the experiments, the hand and arm models described in Section 4 have been used. As men-

tioned in Section 5.3, four basic types of objects were used in the simulations. The shapes

with regular mesh geometry have been intentionally preferred because of their efficiency in

collision handling. The objects sizes are constant, which have been adjusted so that they can

be covered by the hand easily (see Figure 5.2).

Proactive Learner

Hand motion is generated with physical simulation with integration time step of 0.001.

Therefore, the training environment for proactive learner runs at 1 kHz. Moreover at each

physics time step, joint torques for 23 DOF hand model and deformation forces for point

masses of the soft bodies are calculated. These physics calculations all cause a CPU overpro-

cessing during proactive learning. To achieve a CPU optimization, the training environment

has been adjusted with some initial simplifications. The object is positioned initially just

across the hand, in a random distance between 16 and 24 cm, facing the palm. The hand is

first oriented to the optimal orientation for catching, such that the up vector of the object is

aligned with the vector normal to the plane formed by the thumb and index finger. After that,

its orientation is randomized by rotating it about z-axis with a random amount between [-20,
44

20] degrees and about x-axis with a random amount between [-40,40] degrees. The initial

configuration of the hand is displayed in Figure 6.1. With these simplifications, the search

space of the learning algorithm is narrowed, which enables exploring the main search area

as the motion space of the fingers. In this way, the training time is reduced.

Although high frequency is needed for physics-based calculations, a lower frequency can be

used for the decision making process of learning algorithm. We set the frequency as 25hz.

(a) (b)

(c)

Figure 6.1: Proactive learner environment is shown from different angles.

45

Reactive Learner

Unlike hand, arm is both modeled and controlled kinematically. We did not opt for using

physics-based methods for arm control because of several reasons. First of all, the main

focus of this work is to generate realistic hand motions for grasping the object in a stable

way during catching. The arm motion is considered as an auxiliary motion to take the hand

to the desired position and orientation. Besides, we do not intend to model the object-arm

collisions. For these reasons, we modeled the arm motion as simple as possible for achieving

a faster training. The reactive learner works at 60 hz.

As in the proactive learner, we made some simplifications and assumptions about the training

environment. We do not want to include scenarios where the objects are thrown at the speed

and directions that the hand cannot catch. Therefore the target positions and speed of the

thrown objects are restricted.The object is thrown to the character at a distance of 2 to 3

meters from the head (the gray box in Figure 6.2). The initial velocity of the object is set as

2 m/seconds. The object can be thrown to the character from all directions, except towards

the bottom left of the character, since it is quite difficult to capture an object with right hand

in this area. The area around the character where the objects can be thrown is displayed in

Figure 6.3. In reactive learner, we use a simple hand model, which is used only to detect if

the object collides with the hand (see Figure 6.2).

Timing Learner

As explained in Section 5.4, timing learner takes the previously trained brains by reactive and

proactive learners. Therefore, the training environment restrictions for these learners, also

apply for the timing learner. Figure 6.3 displays the training environment with mentioned

restrictions.

Reactive and proactive brains have different decision and simulation frequencies. Reactive

brain aims to animate the kinematic arm model, and it both updates and makes decisions,

produces actions at the frequency of 60 Hz. On the other side, the proactive brain controls

the physics-based hand model and makes decisions at 25 Hz frequency and for the sake of

stability physics simulations run at 1 kHz. For carrying out the training as fast as possible,

we designed a variable frequency training environment for the timing learner as follows:

Before the proactive brain starts to run, the decision and simulation frequencies are set to 60
46

Hz. As the proactive brain starts running, the decision and simulation frequencies are set to

1 kHz. In this way, we optimize the timing learner by adjusting the simulation and decision

frequencies according to the model and simulation type.

(a) The object is thrown and the hand moves to the

target.

(b) The hand is positioned on the accesible route

shown with red.

(c) The object hits the center of the palm. (d) The collision from another angle.

Figure 6.2: Some key steps from the Reactive Learner environment. Note that the hand is

modeled as a simple articulation composed of two rigid bodies in this environment.

47

(a)

(b)

(c)

(d)

Figure 6.3: Some instants from the Timing Learner environment. The gray box in (a) and

(b) denotes the region for the initial position of the object. The green region in (c) and (d) is

the area where the objects can be thrown. Note that the hand model is the detailed one in the

Proactive Learner.

48

6.2 Training Parameters

All of the offline learning systems in our work are trained with Proximal Policy Optimization

(see Section 2.1.2). Proximal policy optimization is a deep reinforcement learning algorithm

developed for the training of policies with continuous actions, as in our problem.

Table 6.1 displays the hyperparameters and other training information for the machine learn-

ing environments in our framework. The explanation of PPO hyperparameters in Unity ML-

Agents Environment can be seen in [17]. The MaxStep parameters vary depending on the

agent’s condition and have been determined by trial and error. The beta parameter is used

to increase the randomness in training; we used a larger value than the default value. The

lambda value has been used as small as possible because the actions also affect subsequent

states. hidden_unit is set as the closest value to the number of observations. Rewards are

given to the trainer by normalizing them and it gives continuous action values as output.

Other parameters are set to their default values.

Along with hyperparameters, other information used for training is also displayed in Ta-

ble 6.1. The training durations are adjusted by trying to achieve a compromise between a

successful training and performance.

Tensorboard charts of training can be seen in Figure 6.4, 6.5, and 6.6 for the reactive, proac-

tive and timing learners, respectively. In these charts, it can be seen that the total reward

increases over time in all of the trainings. The episode length differs depending on the type

of training. In the reactive learner chart, it reaches the object in less time as it learns the

environment. However, the timing learner can do its job better as it learns the environment.

Because of that, their episode length trend is not the same. Lesson means the stage of curricu-

lum learning. Only proactive and timing learner use this value. Lesson value and learning

environment complexity increased over time for proactive and timing learner.

Entropy is the randomness of the policy which is generally expected to decrease over time.

As seen from the charts, Entropy values for the reactive and proactive learners decrease

over time. However, it starts to decrease and then increase for the timing learner. This

increase point corresponds to the time when the process with reactive brain is complete and

the proactive brain starts to run. Since the values like episode length and decision frequency

49

Table 6.1: Training parameters

Parameters Proactive Learner Reactive Learner Timing Learner

Training duration 60h 24h 72h

Observation count 284 53 12

Action count 17 7 2

Action type Continues / Float Continues / Float Continues / Float

Trainer PPO PPO PPO

Max step 5 × 106 27 × 106 12 × 106

Normalize true true true

batch_size 4,096 2,048 4,096

buffer_size 49,600 8,192 49,600

beta 0.01 0.001 0.01

epsilon 0.2 0.2 0.2

gamma 0.9 0.9 0.9

hidden_unit 256 64 32

lambd 0.95 0.95 0.95

learning_rate 5 × 10−4 5 × 10−4 5 × 10−4

num_epoch 3 3 3

num_layers 2 2 2

changes in the middle of the training, the timing learner increases its randomness to adapt to

this wider search space.

50

Figure 6.4: Tensorboard chart of the Reactive Learner training process.

Figure 6.5: Tensorboard chart of the Proactive Learner training process.

Figure 6.6: Tensorboard chart of the Timing Learner training process.

51

In the following subsections, we provide the results of our proposed framework by compar-

ing them with other brains and models.

6.3 Proactive Brain Comparison: Train versus Heuristic with Skeleton

Hand Model

In this experiment, the results of trained proactive brain are compared with the results of a

hard coded heuristic brain. The heuristic brain gives a random value between [-1,1] as an

action value and the target angles for each degree of freedom are calculated as described in

Section 5.3. In these experiments, a skeleton hand model is used, to eliminate the positive

effect of deformable model from the results. Two example comparisons for catching sphere

and rectangular prism are displayed in Figure 6.7 and 6.8, respectively. The objects are

thrown from the same initial position in both of the scenes. As far as we observe, there

are two deficiencies of the heuristic brain compared to our trained brain. First of all, the

finger movements are not fast enough to capture the object at the right time (cf. Figure 6.7).

Besides, if the fingers move faster than they should, then the object cannot be caught with

closed fingers. Moreover, the thumb movement, which is crucial for grasping, cannot be

generated well with the heuristic brain (cf. Figure 6.8). As we observe from the results,

our proposed proactive brain performs better than the heuristic brain for at generating finger

movements for a successful catching.

Figure 6.7: The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a ball with skeleton hand model.

52

Figure 6.8: The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a rectangular prism with skeleton hand model.

6.4 Proactive Brain Comparison: Trained versus Heuristic with Soft-

body Hand Model

In this experiment, we again compare the results of the trained proactive brain with the

heuristic brain described in the previous experiment, bu this time we use our proposed hand

model with soft bodies. The purpose of this experiment is to examine if the positive effect

of the soft body model resolves the deficiencies of the heuristic brain with the skeleton hand

model. Figures 6.9 and 6.10 display two example comparisons for catching a sphere and

a capsule. As expected, the capturing ability of the hand with heuristic brain increases as

compared to the hand skeleton model. As seen in the figures, once contacted with the hand,

the object is retained for a longer duration, but it slips after a time because of the wrong

timing of the finger movements and the wrong movement of the thumb. Therefore, a more

detailed model of the hand could not be sufficient for the heuristic brain to catch the objects.

The results show that, the trained proactive brain is successful at catching the thrown objects.

53

Figure 6.9: The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a ball with the soft-body hand model.

Figure 6.10: The comparison of trained proactive brain (up) and heuristic proactive brain

(down) for catching a capsule with the soft-body hand model.

54

6.5 Hand Model Comparison: Skeleton versus Soft Body

In this experiment, we evaluate the effect of the used hand model on the success and nat-

uralness of catching behaviors, by comparing our proposed hand model covered by soft

bodies with a simple skeleton hand model consisting of only rigidbodies. A proactive brain

is trained with curriculum learning for each of the hand model and used for generating the

finger motions for both of the scenarios. Figures 6.11 and 6.12 display two example com-

parisons for catching a sphere and a capsule. In Figure 6.11, both hands are successful at

capturing the sphere. But hand model with soft bodies are seen to achieve a more natural and

stable catching behavior. In Figure 6.12, we see that the skeleton hand model is unsuccessful

at catching the capsule, which is harder to catch than sphere because of its more complex

geometry. Because of the deformable collision model we employed in the hand with soft

bodies, a smoother collision occurs between the hand and the object, which gives time to the

fingers for closing at the right time and capture the object before it bounces away from the

hand. On the contrary, the object bounces off from the skeleton hand very fast because of

the impact caused by the collision of the rigidbodies. The comparison of cumulative reward

and episode length charts for both of the trainings are displayed in Figure 6.13. The figure

depicts that as the training includes object with different geometries, the cumulative reward

and episode length of the training with skeleton hand model decrease dramatically and can-

not reach or exceed its maximum values again. This is due to the fact that, the skeleton hand

shows a passable success for the objects with simpler geometry. However, when the object

geometries get more complex, the hand skeleton mostly becomes unsuccessful at a stable

catching behavior. This is compatible with the results of this comparison.

55

Figure 6.11: The comparison of the trained proactive brain for catching a ball with the soft-

body hand model (up) and the skeleton hand model (down).

Figure 6.12: The comparison of the trained proactive brain for catching a capsule with the

soft-body hand model (up) and the skeleton hand model (down).

Figure 6.13: The comparison of the training charts of the proactive brain with the soft-body

hand model (blue) and the skeleton hand model (cyan).

56

6.6 Meta Brain Comparison: Trained versus Heuristic

In this experiment, we compare the results of the trained meta brain with the results of a

hard coded heuristic brain for arranging the start times of the reactive and proactive brains.

In these experiments, we use the trained reactive and proactive brains and our proposed soft

body hand model in both of the scenarios. In the heuristic approach, the reactive brain is run

once the scene starts. When the object is 24 cm close to the hand, the proactive brain is run.

In Figures 6.14 and 6.15, two example comparisons for catching a sphere and capsule are

displayed. While the heuristic brain accomplishes catching most of the time, the trained meta

brain cannot catch the object in some cases. Two of these cases are displayed in Figures 6.14

and 6.15, where two brains are compared for catching a sphere and a capsule, respectively.

In these examples, it is seen that the proactive brain starts running earlier than it should;

the object hits the closed fingers and falls down. In most of the cases, we observed that the

start time of the reactive brain does not effect the success and the naturalness of the catching

behavior.

57

(a) Heuristic meta brain (b) Trained meta brain

Figure 6.14: The comparison of the trained meta brain and the heuristic meta brain for

catching a sphere with the soft-body hand model.

58

(a) Heuristic meta brain (b) Trained meta brain

Figure 6.15: The comparison of the trained meta brain and the heuristic meta brain for

catching a capsule with the soft-body hand model.

59

6.7 Reactive Brain Reward Comparison

In the following experiments, we trained the reactive brain by changing the weights of the

step reward components explained in Section 5.2.

The total step reward value for the reactive learner is calculated with Equation 5.2, as a

weighted sum of three components: displacement penalty, route proximity reward and palm

forward reward, with the weights of -0.1, 0.35 and 0.65, respectively.

The first experiment is about the weights of the route proximity reward and palm forward

reward. The route proximity reward is added to the total reward for guiding the arm to place

the hand on the thrown objects accessible route. The palm forward reward helps to orient the

hand such that the thrown object hits directly to the palm. When the weights of these two

rewards are set to 0.5, the hand is placed on the route of the object as intended but the object

hits the hand with nearly right angle. But for a successful catching, the velocity of the object

should be aligned with the palm forward vector. When the weight of palm forward reward

is increased to 0.65, the velocity vector gets aligned as intended. Figure 6.16 displays the

results of these two weight combinations.

The second experiment is about the relation between the object-hand distance and the dis-

placement penalty. The penalty for displacing the hand gets larger, as the object gets closer

(cf. Equation 5.1). If we calculate the displacement penalty independent of the hand-object

distance, then the arm continues to move even when the object is too close and as a result of

this sudden movement the object and hand collides at a right angle, as seen in Figure 6.17.

This causes difficulty for catching the object.

60

(a) Palm forward reward weight is 0.5 (b) Palm forward reward weight is 0.65

Figure 6.16: The effect of the higher weight on the palm forward reward.

61

(a) The displacement penalty is same for all

training steps

(b) The displacement penalty changes according

to the hand-object distance

Figure 6.17: The effect of calculating the displacement penalty according to hand-object

distance.

62

6.8 User Test Results

We conducted a user study to evaluate the naturalness of the generated catching motions. The

user study consists of two sections for both the general catching animation and the detailed

hand animation. A total of 25 people participated in the study. The 20 of the participants are

men, and the 5 participants are women. Their ages are between 20 and 50. Generally, these

people have experience in computer graphics. The videos are shown randomly to the users.

The main objective of this study is producing natural-looking ball catching animations. Be-

cause of that, animations of failed catching behaviours are not included in this user test.

Overall Animation Test

The first section of the user study compares the results of the meta brain trained by the tim-

ing learner with a hard coded heuristic brain, as explained in Section 6.6. With the heuristic

brain, the timing of the reactive and proactive brains are procedurally determined. The reac-

tive brain is run at the beginning of the scene and the proactive brain is run when the distance

between the object and the hand is 24 cm. In both of the scenes, the initial states of the object

and the environment are the same and the proactive and reactive brains trained with machine

learning are used.

As shown in Figure 6.18 and Table 6.2, the results are generally close to each other. On the

average, the timing learner is more successful, but the difference between them is minimal.

There are several reasons why the difference is very small. First, the tremors occur when the

arm animates kinematically and this effects the naturalness of the whole animation. Because

of that, the scores can be similar. Second, all hand interactions are animated physically,

which look very natural. Moreover, users gave average scores even to the uncaught objects,

because we wanted them to rank the naturalness of the motion, not the catching abilities of

the character.

In case 6, 9 and 10, the heuristic approach seems to score higher. In these scanarios, the

object comes directly across the character, in which the heuristic brain produces actions

similar to the trained brain.

63

Figure 6.18: User test results for different meta brains.

Table 6.2: User test results for different meta brains.

Scene No Train Heuristic

1 7.44 6.16

2 7.12 6.24

3 6.60 6.12

4 6.72 5.44

5 6.84 6.20

6 6.20 6.84

7 6.20 6.32

8 7.52 7.48

9 7.68 8.12

10 7.00 8.00

Average 6.93 6.69

64

Detailed Hand Animation Test

In the second section of the user study, we requested the users to focus on and evaluate

the hand animations. For this purpose, the videos begin with the starting of the proactive

phase and show the hand in detail. The results of three different hand brain/model cases

were included in the videos: the trained proactive brain with our proposed hand model with

deformable bodies (Group 1), a hard-coded heuristic proactive brain with again our proposed

hand model (Group 2) and the trained proactive brain with a hand model with only skeleton

(Group 3). Three videos are captured for each scenario with the same initial object position,

speed and animation state, but with a different hand brain/model case. In all of the scenarios,

trained brains are used as the reactive and timing brains.

Table 6.3 and Figure 6.19 show that the trained proactive brain with our proposed hand model

with deformable bodies gets more score than the others. In contrast to the first section of the

user test, differences in scores are more noticeable. The trained brain with the skeleton hand

model gets lower scores because the objects slip from the hand after catching. The heuristic

agent with soft bodies gets relatively low score due to the failure to catch some objects and

trembling of the joints in the positive and negative axes. The trained agent with soft bodies

gets the highest scores for stable grasping.

Only for Scene 1, the heuristic brain with the soft body hand model (Group 2) gets a higher

score than the trained brain with the soft body hand model (Group 1). In the scene with

heuristic brain the fingers are trembling and in the scene with trained brain little and middle

fingers overlap, since we ignore the collision of the fingers for physical stability concerns.

With this result, we understand that users find overlapping fingers less natural than trembling.

65

Figure 6.19: User test results for proactive phase

Table 6.3: User test results for the proactive phase.

Scene No Train Heuristic Skeleton

1 6.20 6.44 5.60

2 6.84 6.12 5.24

3 7.80 6.20 5.20

4 6.08 6.04 5.52

5 7.48 5.64 4.48

6 6.76 6.76 4.64

7 7.60 6.28 5.96

8 6.76 6.68 5.04

9 7.52 5.64 5.08

10 6.56 4.40 4.68

Average 6.96 6.02 5.14

66

7 CONCLUSION

In this thesis, we present a framework to synthesize animations, where a thrown object is

naturally captured with a physics-based hand model. We have contributed to the computer

animation field by presenting a physics-based deformable hand model and a novel framework

for creating catching motions composed of three parts, all trained with deep reinforcement

learning, which are called reactive, proactive and timing learners.

A physical hand model was developed to catch the thrown objects more stably, with the two-

layer hand model, where a soft body model is placed on the bone structure, thrown objects

have been grasped easier, as shown in the result.

The hand must move to a suitable position in order for the thrown objects to be caught. For

this purpose, the reactive phase brings the hand to the appropriate position with the rotation

of the arm joints so that the hand can catch the object. The proper joint rotation angles of the

arm are learned with deep Reinforcement Learning.

In the proactive phase, fingers are moved with physics-based animation to grasp the thrown

object. To produce grasping animation, a behaviour model has been created with deep Rein-

forcement Learning. Since, the shape of the thrown objects are different. Training has been

carried out using curriculum learning, which learns to catch simple objects first and increases

the complexity of the training gradually.

The reactive and proactive phase should work in coordination with each other to get the hand

in proper position and capture the thrown object. Timing learner is developed for deciding

the start time of capture phases with the help of RL. This meta component controls the phases

for the entire capture process and generates the entire capture animation.

The proposed study has some limitations. These limitations and intended future studies are

given below.

67

7.1 Limitations

There are some limitations about the objects to be thrown. First of all, the object should

be thrown across the character and to the right side. For an efficient reinforcement learning

training, only the objects that can be captured should be thrown. For this reason, the throw

directions were carefully selected during the training phase.

Secondly, the object is only rotated in the forward direction for better grasping, and does not

have angular velocity. In this way, palm collides with the widest area of the object and an

optimal grip animation is achieved.

Since the hand model has a physical structure, the working environment should be able to

perform 1khz physics operations. Today’s computers have 30-60 Hz integration steps for

physics operations. At the beginning of the study, it was aimed to work at low frequencies.

However, it was increased to 1 KHz due to the problems in physics calculations. Anima-

tions do not run in real-time due to the insufficient processing power in standard computers.

Todays PCs that can run 1000 physics steps per second are not common.

Another limitation in the study is about the finger bones and joints. Under normal conditions,

bones should collide with each other. However, if the collision function is activated for bones

connected to the same joint, they start to push each other. For this reason, collision control

is not activated for the connected fingers. Collision check is performed only for the last part

of the fingers. Therefore, it is rarely observed that one finger overlaps to the other.

Some other limitations occur due to the kinematic structure of arm motion. According to

general catching motion, when the object collides with the hand, it needs to go back a little

because of collision impact. However, the hand’s position does not change because the wrist

to which hand is attached is animated kinematically. This situation negatively affects the

naturalness of the general movement. Moreover the motions of the arm is not too smooth.

Although the main focus of the study is the hand’s physical animation, these limitations

because of arm motion effect the results negatively.

68

7.2 Future Work

We model the joints on the fingers are modeled with certain rotational limits. However, hu-

man fingers also have some important relations between each other that restrict their move-

ments. For example, the ring finger must turn 45 degrees for the little one to turn 90 degrees.

Implementing these constraints would increase the natural appearance of the movement. Be-

sides, reinforcement learning training would be shorter as the search space decreases.

The muscle structure of the proposed hand model, which is developed to provide soft contacts

is complex and heavy. There are nearly 1400 mass points in our hand model and these mass

points interact with the thrown object. Because of that, the physics operations can not run

in realtime. Developing a more optimized deformable model for hand is an important future

direction.

The thrown object is selected as cube, sphere, capsule and prism. These objects have regular

mesh geometry. Because of that, to catch a regular object is easier than an irregular object.

For the next step, irregular objects are also added to the system to extend its capability.

As mentioned in the limitations section, the motion of the arm is performed kinematically.

This kinematic motion is preferred because it speeds up machine learning training. If the

arm is physically modeled, the overall animation of the capture would look more natural.

The reactive and proactive phases are running as a separate operation. They are trained

in their environment. Arm and hand can be run simultaneously in the proactive phase for

increase naturalness of the catching animation. In the proactive phase, the arm can rotate to

hand to produce more stable and natural-looking animation.

In our study, only the right arm and hand are taken into account. With the same framework,

the left arm and hand can also be trained. If two limbs are coordinated for capture, the area

where the hand can catch the object would be much larger. With a meta brain that coordinates

the two limbs, the capture animation of the objects can be synthesized more naturally.

In the developed system, the position of the shoulder is fixed, and the arm moves accordingly.

For this reason, it becomes difficult for the hand to reach the proper position Intelligent some

cases. If the ability of rotation is given to the pelvis, it would be much easier for the hand

to reach the proper position. Thus, capturing the thrown objects would be more natural and

realistic, and fewer restrictions would be applied.
69

REFERENCES

[1] Yeo, S.H., Lesmana, M., Neog, D.R., Pai, D.K., Eyecatch: Simulating visuomotor

coordination for object interception, ACM Trans Graph, 31(4), 2012. URL https:

//doi.org/10.1145/2185520.2185538.

[2] Eom, H., Han, D., Shin, J.S., Noh, J., Model predictive control with a visuomotor

system for physics-based character animation, ACM Transactions on Graphics, 39(1),

1–11, 2020. URL https://doi.org/10.1145/3360905.

[3] Hirt, B., Hand and Wrist Anatomy and Biomechanics: A Comprehensive Guide,

Thieme, Stuttgart, Germany New York, 2017.

[4] Schunke, M., Thieme Atlas of Atatomy, Thieme Medical Publishers, Inc, New York,

New York, 2014.

[5] ml-agents/background-machine-learning.md at master, unity-technologies/ml-agents,

github. URL https://github.com/Unity-Technologies/ml-agent

s/blob/master/docs/Background-Machine-Learning.md, (Accessed

on 07/16/2020).

[6] Introducing ml-agents toolkit v0.2: Curriculum learning, new environments, and more

- unity technologies blog. URL https://blogs.unity3d.com/2017/12/08

/introducing-ml-agents-v0-2-curriculum-learning-new-envi

ronments-and-more/, (Accessed on 07/16/2020).

[7] ml-agents/ml-agents-overview.md at master, unity-technologies/ml-agents, github.

URL https://github.com/Unity-Technologies/ml-agents/bl

ob/master/docs/ML-Agents-Overview.md, (Accessed on 07/16/2020).

[8] Pid controller - wikipedia. URL https://en.wikipedia.org/wiki/PID_c

ontroller, (Accessed on 07/17/2020).

[9] Complete anatomy | image courtesy of complete anatomy. URL https://3d4med

ical.com, (Accessed on 08/05/2020).

70

[10] Kaelbling, L.P., Littman, M.L., Moore, A.W., Reinforcement learning: A survey, Jour-

nal of Artificial Intelligence Research, 4, 237–285, 1996. URL https://doi.or

g/10.1613/jair.301.

[11] Proximal policy optimization. URL https://openai.com/blog/openai-b

aselines-ppo/, (Accessed on 08/18/2020).

[12] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O., Proximal policy opti-

mization algorithms, arXiv preprint arXiv:170706347, 2017.

[13] Bengio, Y., Louradour, J., Collobert, R., Weston, J., Curriculum learning, Proceedings

of the 26th Annual International Conference on Machine Learning - ICML '09, ACM

Press, 2009. URL https://doi.org/10.1145/1553374.1553380.

[14] Hengst, B., Hierarchical Reinforcement Learning, Springer US, Boston, MA, 495–502,

2010. URL https://doi.org/10.1007/978-0-387-30164-8.

[15] Dayan, P., Hinton, G.E., Feudal reinforcement learning, Advances in Neural Informa-

tion Processing Systems, 1993, volume 5, 271–278.

[16] Juliani, A., Berges, V., Vckay, E., Gao, Y., Henry, H., Mattar, M., Lange, D., Unity:

A general platform for intelligent agents, CoRR, abs/1809.02627, 2018. URL http:

//arxiv.org/abs/1809.02627.

[17] ml-agents/training-configuration-file.md at master, unity-technologies/ml-agents,

github. URL https://github.com/Unity-Technologies/ml-agents/

blob/master/docs/Training-Configuration-File.md, (Accessed on

07/19/2020).

[18] Müller, M., Heidelberger, B., Teschner, M., Gross, M., Meshless deformations based

on shape matching, Proceedings of ACM SIGGRAPH'05, ACM Press, 2005. URL ht

tps://doi.org/10.1145/1186822.1073216.

[19] Geijtenbeek, T., Pronost, N., Interactive character animation using simulated physics:

A state-of-the-art review, Computer Graphics Forum, 31(8), 2492–2515, 2012. URL

https://doi.org/10.1111/j.1467-8659.2012.03189.x.

71

[20] Max payne 3. URL https://www.rockstargames.com/maxpayne3/,

(Accessed on 07/27/2020).

[21] Grand theft auto v. URL https://www.rockstargames.com/V/, (Accessed

on 07/27/2020).

[22] Introducing learned motion matching - ubisoft montreal. URL https://montre

al.ubisoft.com/en/introducing-learned-motion-matching/,

(Accessed on 08/25/2020).

[23] Holden, D., Kanoun, O., Perepichka, M., Popa, T., Learned motion matching, ACM

Transactions on Graphics, 39(4), 2020. URL https://doi.org/10.1145/33

86569.3392440.

[24] Unbehauen, H., Control systems, robotics and automation, Eolss Publishers Co. Ltd,

Oxford, 2009.

[25] Neff, M., Kipp, M., Albrecht, I., Seidel, H.P., Gesture modeling and animation based

on a probabilistic recreation of speaker style, ACM Transactions on Graphics, 27(5),

1–24, 2008.

[26] Ip, H., Chan, S., Lam, M., Hand gesture animation from static postures us-

ing an anatomy-based model, Proceedings of the Computer Graphics International

(CGI'2000), 2000, 29–36.

[27] Shankar, V., Ghosh, D., Dynamic hand gesture synthesis and animation using image

morphing technique, Proceedings of the IET International Conference on Visual Infor-

mation Engineering, 2006, 543–548.

[28] Aleotti, J., Caselli, S., Grasp programming by demonstration in virtual reality with

automatic environment reconstruction, Virtual Reality, 16(2), 87–104, 2010. URL ht

tps://doi.org/10.1007/s10055-010-0172-8.

[29] Pollard, N.S., Zordan, V.B., Physically based grasping control from example, Proceed-

ings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation

- SCA '05, ACM Press, 2005. URL https://doi.org/10.1145/1073368.10

73413.

72

[30] Li, Y., Fu, J.L., Pollard, N.S., Data-driven grasp synthesis using shape matching

and task-based pruning, IEEE Transactions on Visualization and Computer Graphics,

13(4), 732–747, 2007. URL https://doi.org/10.1109/tvcg.2007.1033.

[31] Mordatch, I., Popovic, Z., Todorov, E., Contact-invariant optimization for hand manip-

ulation, in Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Com-

puter Animation, (SCA '12), 137–144, The Eurographics Association, 2012. URL

http://diglib.eg.org/handle/10.2312/SCA.SCA12.137-144.

[32] Tian, H., Wang, C., Manocha, D., Zhang, X., Realtime hand-object interaction using

learned grasp space for virtual environments, IEEE Transactions on Visualization and

Computer Graphics, 25(8), 2623–2635, 2019. URL https://doi.org/10.110

9/tvcg.2018.2849381.

[33] Chi, D., Costa, M., Zhao, L., Badler, N., The EMOTE model for effort and shape,

Proceedings of the 27th Annual Conference on Computer Graphics and Interactive

Techniques - SIGGRAPH '00, ACM Press, 2000. URL https://doi.org/10.1

145/344779.352172.

[34] Hartmann, B., Mancini, M., Pelachaud, C., Formational parameters and adaptive proto-

type instantiation for MPEG-4 compliant gesture synthesis, Proceedings of Computer

Animation 2002 (CA 02), IEEE Comput. Soc. URL https://doi.org/10.110

9/ca.2002.1017516.

[35] Fernández-Baena, A., Montaño, R., Antonijoan, M., Roversi, A., Miralles, D., Alías, F.,

Gesture synthesis adapted to speech emphasis, Speech Communication, 57, 331–350,

2014. URL https://doi.org/10.1016/j.specom.2013.06.005.

[36] Shen, X., Hua, G., Williams, L., Wu, Y., Dynamic hand gesture recognition: An

exemplar-based approach from motion divergence fields, Image and Vision Comput-

ing, 30(3), 227–235, 2012. URL https://doi.org/10.1016/j.imavis.2

011.11.003.

[37] Bao, J., Song, A., Guo, Y., Tang, H., Dynamic hand gesture recognition based on

SURF tracking, Proceedings of the International Conference on Electric Information

and Control Engineering, IEEE, 2011. URL https://doi.org/10.1109/icei

ce.2011.5777598.
73

[38] Kılıboz, N., Gudukbay, U., A hand gesture recognition technique for human–computer

interaction, Journal of Visual Communication and Image Representation, 28, 97–104,

2015. URL https://doi.org/10.1016/j.jvcir.2015.01.015.

[39] Wheatland, N., Wang, Y., Song, H., Neff, M., Zordan, V., Jörg, S., State of the art in

hand and finger modeling and animation, Computer Graphics Forum, 34(2), 735–760,

2015. URL https://doi.org/10.1111/cgf.12595.

[40] Kry, P.G., Pai, D.K., Interaction capture and synthesis, ACM SIGGRAPH '05 Sketches,

ACM Press, 2005. URL https://doi.org/10.1145/1187112.1187262.

[41] Zhao, W., Zhang, J., Min, J., Chai, J., Robust realtime physics-based motion control

for human grasping, ACM Trans Graph, 32(6), 2013. URL https://doi.org/10

.1145/2508363.2508412.

[42] Liu, C.K., Synthesis of interactive hand manipulation, in Proceedings of the 2008 ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '08, 163–171,

2008. URL http://diglib.eg.org/handle/10.2312/SCA.SCA08.1

63-171.

[43] Jain, S., Liu, C.K., Controlling physics-based characters using soft contacts, Proceed-

ings of the 2011 SIGGRAPH Asia Conference, Association for Computing Machinery,

New York, NY, USA, 2011, SA ’11. URL https://doi.org/10.1145/2024

156.2024197.

[44] Talvas, A., Marchal, M., Duriez, C., Otaduy, M.A., Aggregate constraints for vir-

tual manipulation with soft fingers, IEEE Transactions on Visualization and Computer

Graphics, 21(4), 452–461, 2015. URL https://doi.org/10.1109/tvcg.2

015.2391863.

[45] Andrews, S., Kry, P., Goal directed multi-finger manipulation: Control policies and

analysis, Computers & Graphics, 37(7), 830–839, 2013. URL https://doi.org/

10.1016/j.cag.2013.04.007.

[46] Çimen, G., Kavafoǧlu, Z., Kavafoǧlu, E., Çapın, T., Gürcay, H., Skill learning based

catching motion control, Computer Animation and Virtual Worlds, 26(3-4), 217–225,

2015. URL https://doi.org/10.1002/cav.1659.
74

[47] Jörg, S., Data-Driven Hand Animation Synthesis, 1–13, 2016.

[48] Irimia, A.S., Chan, J., Mistry, K., Wei, W., Ho, E., Emotion transfer for hand animation,

in Proceedings of the Motion, Interaction and Games, MIG '19, 2019, 1–2.

[49] Zhao, W., Chai, J., Xu, Y.Q., Combining marker-based mocap and rgb-d cam-

era for acquiring high-fidelity hand motion data, Proceedings of the ACM SIG-

GRAPH/Eurographics Symposium on Computer Animation, Eurographics Association,

Goslar, DEU, 2012, SCA ’12, 33–42.

[50] Rijpkema, H., Girard, M., Computer animation of knowledge-based human grasping,

ACM Computer Graphics (Proc SIGGRAPH ’91), 25(4), 339–348, 1991. URL http

s://doi.org/10.1145/127719.122754.

[51] Kurihara, T., Miyata, N., Modeling deformable human hands from medical images,

Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Ani-

mation, Eurographics Association, Goslar, DEU, 2004, SCA ’04, 355–363. URL

https://doi.org/10.1145/1028523.1028571.

[52] Albrecht, I., Haber, J., Seidel, H.P., Construction and animation of anatomically based

human hand models, Proceedings of the ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, Eurographics Association, Goslar, DEU, 2003, SCA ’03,

98–109.

[53] Sueda, S., Kaufman, A., Pai, D.K., Musculotendon simulation for hand animation,

ACM SIGGRAPH 2008 Papers, Association for Computing Machinery, New York, NY,

USA, 2008, SIGGRAPH ’08. URL https://doi.org/10.1145/1399504.

1360682.

[54] Sifakis, E., Neverov, I., Fedkiw, R., Automatic determination of facial muscle acti-

vations from sparse motion capture marker data, ACM Trans Graph, 24(3), 417–425,

2005. URL https://doi.org/10.1145/1073204.1073208.

[55] Barrielle, V., Stoiber, N., Cagniart, C., Blendforces: A dynamic framework for facial

animation, Proceedings of the 37th Annual Conference of the European Association for

Computer Graphics, Eurographics Association, Goslar, DEU, 2016, EG ’16, 341–352.

75

[56] Lee, S.H., Sifakis, E., Terzopoulos, D., Comprehensive biomechanical modeling and

simulation of the upper body, ACM Trans Graph, 28(4), 2009. URL https://doi.

org/10.1145/1559755.1559756.

[57] Unity real-time development platform | 3d, 2d vr & ar visualizations. URL https:

//unity.com/, (Accessed on 07/20/2020).

[58] Github - nvidiagameworks/physx: Nvidia physx sdk. URL https://github.com

/NVIDIAGameWorks/PhysX, (Accessed on 07/20/2020).

[59] Github - unity-technologies/ml-agents: Unity machine learning agents toolkit. URL

https://github.com/Unity-Technologies/ml-agents, (Accessed on

07/20/2020).

76

