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The classic Shewhart control charts are generally used for monitoring the process mean and 

variability in the characteristics of a random quality variable of interest and are based on the 

normality assumptions. For skewed distributions, in order to demonstrate the changes in the 

population, non-symmetric control limits need to be used. Methods such as the Weighted 

Variance (WV) Weighted Standard Deviation (WSD) and Skewness Correction (SC) are 

used with skewed distributions.  

 

The classic 𝑋̅ and R control charts and all their derivatives are generally used to detect large 

shifts in the process mean hence making them not too reliable in situations where in small 

shifts are of interest. To solve such problems, the Exponentially Weighted Moving Average 

(EWMA) control charts is used in this work. 

 

The main aim of this thesis is to apply the Skewness Correction method to the EWMA chart 

and propose a control limit called Skewness Correction EWMA (SC-EWMA) for skewed 

distributions. The performances of the newly proposed method are compared and contrasted 
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with those of the Weighted Variance EWMA (WV-EWMA) which was developed by Khoo 

and Atta (2008), Weighted Standard Deviation EWMA (WSD-EWMA) which was 

developed by Atta and Ramli (2011) and the classic EWMA control limits based on the 

degree of  skewness and varying smoothing parameters. The comparison is made with respect 

to their type-Ι errors by using the Monte Carlo simulation technique with data generated from 

the lognormal, Gamma and Weibull distributions. 

 

 

Keywords: Skewed Distributions, EWMA Control Charts, WV method, WSD method, SC 

Method. 

  



iii 

ÖZET 

 

 

ÇARPIK DAĞILIMLARI İÇİN EWMA KONTROL KARTLARI 

 

 

MOUSTAPHA AMINOU TUKUR 

 

 

Yüksek Lisans, İstatistik Bölümü 

Tez Danışmanı : Doç. Dr. Derya KARAGÖZ 

Eylül 2020, 84 sayfa 

 

 

Klasik Shewhart kontrol kartları genellikle ilgilenilen rastgele kalite değişkeninin 

özelliklerindeki değişkenliği izlemek için kullanılır ve normallik varsayımlarına dayanır. 

Çarpık dağılımlarda kitledeki değişiklikleri göstermek için simetrik olmayan kontrol 

limitlerinin kullanılması gerekmektedir. Ağırlıklı Varyans (WV) Ağırlıklı Standart Sapma 

(WSD) ve Düzeltilmiş Çarpıklık (SC) gibi yöntemler çarpık dağılımlarda kullanılır. 

 

Klasik  𝑋̅ ve R kontrol kartları ve bunların tüm türevleri genellikle süreçteki büyük 

değişimleri tespit etmek için kullanılır, bu nedenle küçük değişimler söz konusu olduğu 

durumlarda bu kartlar çok güvenilir değildir. Bu tür sorunları çözmek için, bu çalışmada 

Üstel Ağırlıklı Hareketli Ortalama (EWMA) kontrol kartları kullanılmıştır. 

 

Bu tezin temel amacı, çarpık dağılımlar için Düzeltilmiş Çarpıklık yöntemini EWMA control 

kartlarına uygulamak ve Düzeltilmiş Çarpıklık EWMA (SC-EWMA) kontrol limitlerini 

önermektir. Çarpıklık derecesine ve değişen ağırlıklandırma parametrelerine göre, önerilen 

yeni yöntemin performansı, Khoo ve Atta (2008) tarafından geliştirilen Ağırlıklı Varyans 

EWMA (WV-EWMA), Atta ve Ramli (2011) tarafından geliştirilen Ağırlıklı Standart Sapma 
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EWMA (WSD-EWMA) ve klasik EWMA yöntemleri ile karşılaştırılmıştır ve farkları ortaya 

.çikarilmiştir.  Karşılaştırma, lognormal, gamma ve Weibull dağılımlarından üretilen 

verilerle Monte Carlo simülasyon tekniği kullanılarak 1. Tip hatalarına göre yapılmıştır. 

 

 

Anahtar Kelimeler: EWMA Kontrol Kartlarrı, WV yöntemi, WSD yöntemi, SC yöntemi, 

Çarpık Dağılımları 
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1  GENERAL INTRODUCTION 

Nowadays, technology has increased drastically that consumers do not take any mistakes in 

the products they consume. Due to the competitive nature of the markets and the demanding 

nature of consumers, producers tend to use the best techniques available at their disposal to 

produce the best quality of goods. Quality is a very complex term to define due to its 

subjective nature but according to the Oxford dictionary quality can be defined as a degree 

of excellence or better still as a characteristic or distinctive attribute of a person, good or 

service. In our context, quality can be defined vaguely as one or more desirable 

characteristics that a product or service must have.  

 

Quality is one of the most important factors of decision making for consumers when it comes 

to choosing among competing products or services. This concept is noticed in all fields 

regardless of the sector, individual or institutions involved. Therefore, understanding the 

concept of quality is a key factor of survival in the competitive markets for producers.  

 

As earlier mentioned, the quality of a product can be described or evaluated in several 

different ways according to the parties involved. However, general dimensions of quality 

were given by Garven in the year 1987 and was summarized as performance which checks 

if the product does the intended job or not, reliability which checks the failure rate of the 

product, durability  which determines how long the product lasts, serviceability which checks 

how easily the product can be repaired, aesthetics which give an idea on what the product 

looks like, features which give an idea on what the product does, perceived quality which 

checks the reputation of the producer or its products and conformance to standards which 

checks if the product is made exactly as the designer intended (Montgomery, 2013). In 

service providing sectors such as banking and finance, healthcare and tourism, 

responsiveness, professionalism and attentiveness can be added to the above features in 

describing the quality of a good or service.  

 

Due to its subjective nature quality needs to be improved all the time. Quality can be noticed 

to be inversely proportional to variability. Due to this relationship, statistical methods must 
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be applied in improving the qualities of a product. This is also because variability can only 

be described using statistical methods.  

 

1.1 Statistical Methods for Quality Control and Improvement 

An industrial production process can be described as a process or method which involves the 

transformation of input materials using well selected and precise techniques to obtain an 

output good or service with all the desired features. Statistical process control (SPC), 

statistical experimental design and acceptance sampling are the most used techniques in 

controlling and improving the quality of a good or service. Statistical experimental design 

involves the variation of some input factors to determine the effects these changes can get on 

the desirable output. Acceptance sampling involves the testing of the quality of a good at 

some point in the production line. This is the oldest quality control method and helps to adjust 

the production process before the goods are produced and sent to the market. Statistical 

Process control is a process used in the industrial setting to conceive, control and analyse the 

steps involved in the production of a good or service. 

 

1.2 Statistical Process Control  

Statistical Process Control is a powerful collection of problems-solving tools which are very 

useful in obtaining process stability and improving capability through the reduction of 

variability (Montgomery, 2013). Statistical process control is a very convenient method in 

monitoring all kinds of production processes because it is based on experimentally proven 

statistical principles and methods. The main reasons of creating a process, monitoring it and 

then improving it when the need arises is to produce best quality goods hence maximizing 

profit and surviving competition in the free market. Statistical Process Control uses seven 

major tools namely; the histogram (stem-and-leaf plot), check sheet, pareto chart, cause-and-

effect diagram, defect concentration diagram, scatter diagram and most importantly control 

charts (Montgomery, 2013).  

 

A control chart is a statistical device which is used basically for studying and controlling 

repetitive processes. This concept was brought forward by Walter A. Shewhart of the Bell 

Telephone Laboratories in the 1920s. Shewhart suggests that control charts may serve firstly, 
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to define the goal or standard for a process that the management would like to attain; 

secondly, it may be used as an instrument for attaining that goal and thirdly, it may serve as 

a means of judging whether the goal set by the management has been attained or not (Duncan, 

1974). Therefore, we can rightly say that control charts are instruments used for specification, 

production and inspection in an industrial setting. 

 

In any production setting, no matter the amount of care taken or how well the process is 

designed, there will always exist some natural variability which may result from minor 

unavoidable causes. These natural variabilities are generally termed “stable system of change 

causes” (Montgomery, 2013). A process operating under such conditions is said to be in 

statistical control. However, there exist other kinds of variations which are not natural. Such 

variations are said to be “assignable causes of variation” in a process (Montgomery, 2013). 

As the name implies, assignable causes of variation may result from human error, machine 

errors or raw-materials error. A process running under assignable causes of variation is said 

to be an “out-of-control” process. Generally, processes are operated in the stable state but as 

time goes by, they tend to move towards the out of control state. Knowing full well that the 

main objective of statistical process control is to remove variability in a process, the 

production engineer involved is always interested in detecting shifts, attributing causes to 

them and again ensuring the process goes back into a statically in control state. 

 

1.2.1  Features of Control Charts 

As earlier stated, a control chart is a graph or diagram which enables a producer to set 

attainable goals, control these goals and make sure these goals are attained. It comprises 

basically of three parts namely the Upper Control Limit (UCL), the Central Line (CL) and 

the Lower Control Limit (LCL). The central line is the targeted goal of production while the 

lower and upper control limits are the maximum boundaries for a process considered to be 

in control. Points are distributed randomly around the central line but not above or below the 

upper and lower control limits respectively as shown in Figure 1.1 below. Whenever points 

fall out of the upper or lower control limits or when points start following a particular pattern 

in the stable state, the process now is considered to be out of control and measures should be 
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taken to assign causes to the change and also to make sure the process goes back into a normal 

stable state. 

 

 

Figure 1.1 Theoretical Basis of a control chart 

 

Let 𝜃 be a quality characteristic of interest, 𝜃 be its unbiased estimate, 𝐸(𝜃 ) be the expected 

mean and 𝜎(𝜃 )  be the standard deviation of the estimator 𝜃. The central line, upper and 

lower class limits of the quality in question can be derived as follows from the normal 

distribution and the Z transformation below (Mitra, 2008): 

 

𝑍 =
𝐸(𝜃 ̂) − 𝜃 

𝜎(𝜃 ̂)
 (1.1) 

 

The probability Z can be calculated within a given interval say 𝐾 as follows: 

 

−𝐾 ≤ 
𝐸(𝜃 ̂) − 𝜃 

𝜎(𝜃)
 ≤  𝐾 

𝐸(𝜃 ) − 𝐾 𝜎(𝜃) ≤ 𝜃 ≤  𝐸(𝜃 ) + 𝐾 𝜎(𝜃) 

 

(1.2) 

 

 

From Eq. (1.2): 
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𝐶𝐿 = 𝐸(𝜃 ) 

𝑈𝐶𝐿 = 𝐸(𝜃 ) + 𝐾 𝜎(𝜃) 

𝐿𝐶𝐿 = 𝐸(𝜃 ) − 𝐾 𝜎(𝜃) 

 

(1.3) 

 

  

 

K in the above Equations represents the number of standard deviations of the sample statistic 

that the control limits are placed from the central line (Mitra, 2008). 

 

1.3 Distributions Commonly Used in Quality Control 

There are many types of distributions both discrete and continuous used in quality control 

depending on the variable to be investigated. The most used discrete distributions are the 

hypergeometric, the binomial, the Poisson, the negative Binomial and the geometric 

distributions. However, in the scope of this work we are going to focus mainly on the 

continuous distributions used in quality control.  

1.3.1 The Normal Distribution 

The normal distribution also called Gauss distribution is the most used distribution in 

statistics. This distribution was brought forward by the German mathematician Carl Friedrich 

Gauss and later developed by the French mathematician Marquis de Laplace. Since then most 

statistical developments and attributes are made with respect to this powerful distribution.  

 

Assuming that X is a random variable which is normally distributed with population mean 𝜇 

and variance 𝜎2 (𝑋~𝑁(𝜇, 𝜎2) ), its probability density function is shown below. 

 

𝑓(𝑥) =
1

𝜎√2𝜋
 𝑒−

1
2
(
𝑥−𝜇
𝜎
)
2
 ;  −∞ ≤ 𝑥 ≤ +∞ (1.4) 

 

The graphical appearance of any normal distribution curve is a symmetric, unimodal bell-

shaped curve. Knowing that the mean of a population is the measure of the central tendency 

or location, changing the values of the mean moves the central location of the curve either to 

the left or to the right depending on the value of the change. On the other hand, variance or 

standard deviation which is the square root of the variance is a measure of dispersion from 
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the mean. Hence changing its value changes the height and steepness of the curve. 68.28% 

of the population lies between the limits defined by the mean plus or minus one standard 

deviation (𝜇 ± 1𝜎), 95.46% lies in the interval (𝜇 ± 2𝜎) and 99.73% lies in the interval 

(𝜇 ± 3𝜎) respectively as shown in Figure 2 below (Montgomery, 2013). 

 

 

Figure 1.2 Areas Under the Normal Distribution Curve 

  

The area under the normal distribution curve cannot be computed analytically under the 

closed form due to the complex nature of the density function. To find the cumulative 

distribution function of any value under the normal distribution, a transformation to the 

standard normal distribution is used. Tables of values of the standard normal distributions 

are very common in the appendix potions of all statistics books. The famous transformation 

used is 𝑍 =
𝑋−𝜇

𝜎
 which has as 𝜇 = 0 and 𝜎 = 1 (𝑍~𝑁(0,1)). The probability density function 

of the standard normal distribution is given below. 

 

𝑓(𝑧) =
1

√2𝜋
𝑒−

𝑧2

2
   ;  −∞ ≤ 𝑧 ≤ +∞ (1.5) 

  

1.3.2 The lognormal Distribution 

Lognormal distribution is a distribution derived from normally distributed variables. It gets 

its name because of the natural logarithmic transformation undergone by a normally 

distributed variable. It is widely used in the modelling and analysis of a product which fades 
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gradually over a time period. It can also be used to model compound stocks in the stock 

exchange markets. Its logarithmic nature makes its range only to differ on the positive axes. 

 Let w be a normally distributed random variable with mean 𝜇 and variance 𝜎2 then the 

lognormal distribution function can be obtained as follows (Montgomery, 2013): 

 

𝑥 = 𝑒𝑥𝑝 (𝑤) 

𝑙𝑛 (𝑥)  = 𝑤 
(1.6) 

 

From Eq (1.6), the probability density function of the random variable X which is log 

normally distributed is given as follows. 

 

𝑓(𝑥) =
1

𝑥𝜎√2𝜋 
𝑒𝑥𝑝  [ −

(𝑙𝑛 (𝑥)  − 𝜇)2 

2𝜎2 
 ] ; 0 < 𝑥 < ∞ (1.7) 

 

The mean, variance and skewness of the random variable X are given below: 

𝐸(𝑋) = 𝑒𝜇+  
𝜎2

2
 
 

 

(1.8) 

Var(X) = 𝑒2𝜇+𝜎
2 (𝑒𝜎

2
− 1) (1.9) 

𝑘3(𝑋) = √𝑒𝜎
2
− 1 (2 + 𝑒𝜎

2
) (1.10) 

  

1.3.3 The Exponential Distribution 

This distribution is mostly used in the fields of reliability analysis to describe the time to the 

failure of a component or system (Mitra, 2008).  An exponential distribution represents a 

constant failure rate hence it is used to model failures that happen randomly and 

independently (Mitra, 2008).  Another important feature of the exponential distribution is its 

being memoryless. If a random variable X is exponentially distributed with parameter 𝜆 

(𝑋~𝑒𝑥𝑝 (𝜆)), its probability density function is given as follows. 

 

𝑓(𝑥) = 𝜆𝑒−𝜆𝑥 ;    𝑥 ≥ 0; 𝜆 > 0 (1.11) 
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The mean, variance and skewness of the random variable X which is exponentially 

distributed is given below. 

 

𝐸(𝑋) =
1

𝜆
 (1.12) 

𝑉𝑎𝑟(𝑋) =
1

𝜆2
 (1.13) 

𝑘3(𝑋) = 2 (1.14) 

 

In some sources, 𝜆 =
1

𝜃
 is more prevalently used to describe the exponential distribution. The 

parameter 𝜆 is the failure rate of the component or system while the mean 𝜇 =
1

𝜆
 of the 

distribution is the mean time to failure (Montgomery, 2013). 

 

1.3.4 The Gamma Distribution 

This is another important distribution which is used in reliability analysis. It has a shape and 

scale parameters. Changing the values of these parameters give different shapes of the 

gamma distribution. In some special cases, precisely changing the shape parameter reduces 

the gamma distribution to an exponential distribution. If a random variable X is gamma 

distributed (𝑋~𝑔𝑎𝑚𝑚𝑎(𝛼, 𝛽)), then its probability distribution function is given below: 

 

𝑓(𝑥) =
1

𝛤(𝛼)𝛽𝛼 
𝑥𝛼−1 𝑒

−
𝑥
𝛽
 
 ; 𝑥 ≥ 0;  𝛼, 𝛽 > 0 (1.15) 

 

The mean, variance and skewness of the gamma distributed random variable X is given thus. 

 

𝐸(𝑋) = 𝛼𝛽 

𝑉𝑎𝑟(𝑋) = 𝛼𝛽2 

𝑘3(𝑋) =
2

√𝛼
 

(1.16) 

Note also that 𝛽 =
1

𝜆
  is  commonly used in some sources.  
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1.3.5 The Weibull Distribution 

This distribution was first brought forward by the Swedish mathematician Waloddi Weibull 

who described it detailly in 1951. It is also a distribution used in reliability analysis basically 

to describe the time to failure of mechanical and electrical components (Mitra, 2008). Just 

like the gamma distribution, this distribution is also very flexible and hence by altering the 

values of its shape and scale parameters, it tends to take different shapes. It can also reduce 

to either the exponential distribution or the normal distribution by specifically choosing the 

scale and shape parameters. It is a three-parameter distribution which can also be reduced to 

two depending on the work to be done. If a random variable X is Weibull distributed 

(𝑋~𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛾, 𝛼, 𝛽)), then its probability density function is given below.   

 

𝑓(𝑥) =
𝛽

𝛼
 (
𝑥 − 𝛾

𝛼
 )
𝛽−1

𝑒𝑥𝑝 [  − (
𝑥 − 𝛾

𝛼
 )
𝛽

 ] ; 𝑥 ≥ 𝛾 

 

(1.17) 

The mean and the variance of the random variable X is given below. 

 

𝐸(𝑋) = 𝛾 + 𝛼𝛤 (
1

𝛽
+ 1) (1.18) 

𝑉𝑎𝑟(𝑋) = 𝛼2  { 𝛤 (
2

𝛽
+ 1) − [𝛤 (

1

𝛽
+ 1)]

2

} (1.19) 

 

As seen in Eq. (1.17) above, Weibull distribution uses a location parameter 𝛾 (−∞ < 𝛾 <

∞), a scale parameter 𝛼 (𝛼 > 0) and a shape parameter 𝛽(𝛽 > 0) respectively (Mitra, 2008). 

Taking the location parameter as 𝛾 = 0 and the scale parameter as 𝛼 =
1

𝜆
  reduces the Weibull 

density function to the more prevalently used two parameter Weibull density function as 

follows. 

 

𝑓(𝑥) = 𝛽𝜆𝛽𝑥𝛽−1 exp(−𝑥𝜆)𝛽  (1.20) 

 

The mean, variance and skewness in this case not forgetting 𝛼 =
1

𝜆
 is given below. 
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𝐸(𝑋) = 𝛼𝛤 (
1

𝛽
+ 1) (1.21) 

𝑉𝑎𝑟(𝑋) = 𝛼2  { 𝛤 (
2

𝛽
+ 1) − [𝛤 (

1

𝛽
+ 1)]

2

} (1.22) 

𝑘3(𝑋) =
Γ (1 +

3
𝛽
) (
1
𝜆
)
3

− 3𝜇𝜎2 − 𝜇3

𝜎3
 

(1.23) 

 

The classic Shewhart control charts are generally used for monitoring the process mean and 

variability in the characteristics of a random quality variable of interest and are based on the 

normality assumptions. However, real life problems in most cases are not normally 

distributed. Using the  𝑋̅ and R charts in such cases produce misleading results because, the 

increase in the skewness of the distributions will obviously lead to a relative increase in the 

type-Ι error produced due to the changes within the population (Karagöz & Hamurkaroğlu, 

Control Charts For Skewed Distribution: Weibull, Gamma, Lognormal, 2012). For skewed 

distributions, in order to demonstrate the changes in the population, non-symmetric control 

limits need to be used (Bai & Choi, 1995). Methods such as the Weighted Variance (WV) 

proposed by Choobineh and Ballard (1987), Weighted Standard Deviation (WSD) proposed 

by Chang and Bai (2001) and Skewness Correction (SC) proposed by Chan and Cui (2003) 

can be used. Using these methods help the experimenter to avoid misinterpretation of results 

and hence produce a better output.  

 

Burr (1967) studied the effect of non-normality on constants for  𝑋̅ and R charts and came up 

with a wide range of different Tables of values for the constants under different distributions. 

Nelson 1979) studied the control charts for Weibull Processes when specific standards are 

given. Choobineh and Ballard (1987) came up with a new heuristic method called WV for 

setting the limits of a control chart, compared it with the Shewhart’s control limits when the 

underlying population is symmetric and when it is skewed. Cheng and Xie (2000) developed 

a new approach in controlling lognormal data using its normal counterpart when a specific 

interval for the lognormal mean is given. Khoo, Atta, and Chen (2003) proposed a WV 

method to compute and effectively monitor the limits of the  𝑋̅ and S charts for skewed 

distributions with moderate and large sample sizes. Chan and Cui (2003) proposed a method 
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of SC for skewed distributions, compared it with the Shewhart’s approach and WV through 

their type-1 errors. Their findings showed that the type-Ι error of the SC, WV and Shewhart’s 

methods are compatible for approximately symmetric distributions (Chan & Cui, 2003). 

Karagöz and Hamurkaroğlu (2012) studied the control charts methods used for skewed 

distributions under Lognormal, Gamma and Weibull distributions. They found out that the 

SC method produced better results than the other methods as the skewness is increased 

(Karagöz & Hamurkaroğlu, Control Charts For Skewed Distribution: Weibull, Gamma, 

Lognormal, 2012). Karagöz (2018) proposed new robust  𝑋̅ control Charts methods for 

studying skewed and contaminated processes under non-normality using trimmed mean and 

interquartile range. 

 

The classic 𝑋̅ and R control charts and all their derivatives are generally used to detect large 

shifts in the process mean hence making them not too reliable in situations where in small 

shifts are of interest. To solve such problems, the Exponentially Weighted Moving Average 

(EWMA) control charts which was proposed by Roberts (1957) can be used.  

 

Researchers have developed an interest in the EWMA after its discovery and a lot of work 

was done in its regards. Robinson and Ho (1978); Crowder (1989) and Lucas and Saccucci 

(1990) all studied the properties of the EWMA numerically and proposed vital relations 

between the parameters of the EWMA which are discussed in greater details in the 

subsequent chapters. 

 

The main aim of this thesis is to apply the Skewness Correction method to the EWMA chart 

and propose a control limit called Skewness Correction EWMA (SC-EWMA) for skewed 

distributions. The performances of the newly proposed method are compared and contrasted 

with those of the Weighted Variance EWMA (WV-EWMA) which was developed by Khoo 

and Atta (2008), Weighted Standard Deviation EWMA (WSD-EWMA) which was 

developed by Atta and Ramli (2011) and the classic EWMA control limits based on the 

degree of  skewness and varying smoothing parameters. The comparison is made with respect 

to their type-Ι errors by using the Monte Carlo simulation technique with data generated from 

the lognormal, Gamma and Weibull distributions. 
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This work starts with a chapter dedicated only to general information about quality control, 

statistical process control and the distributions commonly used in quality control. Chapter 

two concentrates mostly on control charts for variables, the different types of charts which 

exist and how they are applied in daily life. The Exponential Weighted Moving Average 

(EWMA) chart which is the epicentre of this study is also introduced in this chapter. Chapter 

three focuses on the methods used when the quality variable to be investigated is skewed. 

Here, the theoretical basis of the methods used throughout this work is outlined. Chapter four 

is where all the necessary Monte Carlo simulations are made, and the results obtained are 

tabulated and analysed. Chapter 5 which is the last chapter is where a general review of the 

work is done, and necessary suggestions made based on the obtained results and the 

theoretical expectations of the work. In this chapter, a general conclusion of the work is 

arrived.  
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2 CONTROL CHARTS 

As earlier mentioned in the previous chapter, control charts are basically graphs used to 

investigate, maintain or improve a production process. It consists of a centreline, the lower 

and upper control limits. In this chapter we are going to speak on the various types of charts 

which exist, how to construct these charts and above all the statistical theories behind these 

charts.  

 

2.1 Control Limits 

The limits on the control charts are probability limits which are determined so that if chance 

causes alone were at work, the probability of a point falling above the upper control limit or 

below the lower control limit would be considerably small say one out of a thousand 

(Duncan, 1974). Consequently, when a point falls outside the desirable limits, there is going 

to be a search for an assignable cause. These said probabilities determine the risk of making 

such a search when there are no assignable causes of variation involved. Since these 

probabilities are very small, it therefore implies that if a point falls outside them then there 

are assignable causes involved in the variation. In other words, they are used as an assurance 

for the search. It is also important to note that the values of these probabilities are arbitrary 

and may differ with respect to the final objectives of the management.  

 

If the system of chance causes produce a variation in the random variable investigated which 

follows a normal distribution, then generally the 3𝜎 limits are used which is equivalent to a 

probability of one out of a thousand (0.001) (Duncan, 1974). Under a normal curve, the 

probability that a deviation from the mean exceeds the 3𝜎 limit in both directions is 0.0027 

(Duncan, 1974). 

 

2.2 Variables Control Charts 

A variable in the context of quality control can be termed as any quality characteristic which 

can be expressed or measured on a numerical scale. Examples of variables can be length, 

width, height, volume, time to achieve a given result, diameter, thickness, breaking strength 

or even the viscosity of a liquid. Variable control charts are generally preferred to those of 

attributes because generally attributes do not show the exact extend to which a quality 
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characteristic is nonconforming. For changes to be detected in any process, it is vital to 

control the mean and variability of the quality variable investigated. In the production of even 

the simplest product, there are many quality variables which exist. Due to time factor and the 

limited resources involved in production, a comprehensive scale of preference of the 

variables is constructed from which only the most important variables’ control charts are 

constructed. The importance or preference criteria used in selection depends on either 

available quality obligations or demands from the management.  

 

2.2.1 Control charts for The Mean and Range 

As earlier stated Shewhart control charts are the mother charts of all the existing variables’ 

control charts. These charts are mainly used for monitoring the process average and its 

variability. The most prevalently used Shewhart charts are the control charts for mean ( 𝑋̅ 

control chart), the control chart for the standard deviation (S control chart) and the control 

chart for the range (R control chart). In this section, only the control chart used for monitoring 

the process mean (𝑋̅ control chart) and that for monitoring the process variability using the 

range (R control chart) are discussed.  

 

Supposing that a quality characteristic under investigation say X is normally distributed with 

mean 𝜇 and standard deviation 𝜎 where both 𝜇 and 𝜎 are known and if a sample of size n say 

𝑋1, 𝑋2, … , 𝑋𝑛 are taken, then the mean of this sample is given as follows. 

 

𝑋̅ =
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 (2.1) 

 

It is clearly known from probability theory that the mean of the samples 𝑋̅ is normally 

distributed with mean 𝜇 and standard deviation 𝜎𝑥̅ =
𝜎

√𝑛
 (Nasirova and others, 2009). 

Therefore, the probability that any sample mean will fall between the confidence level 1 − 𝛼 

is given below. 

 

𝜇 ± 𝑍𝛼
2
𝜎𝑥̅ = 𝜇 ± 𝑍𝛼

2

𝜎

√𝑛
 (2.2) 
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Conclusively, from Eq (2.2) the centerline, upper and lower control limits for the  𝑋̅ control 

chart when 𝜇 and 𝜎 are known are given as follows. 

 

𝑈𝐶𝐿 = 𝜇 + 𝑍𝛼
2

𝜎

√𝑛
  

𝐶𝐿 = 𝜇 (2.3) 

𝐿𝐶𝐿 = 𝜇 − 𝑍𝛼
2

𝜎

√𝑛
  

 

In practice and by convention, the 𝑍𝛼
2
 in Eq (2.3) is replaced by 3 to maintain the three-sigma 

rule (Montgomery, 2013). 

 

Control charts for the mean and range when the values of the mean 𝜇 and standard deviation 

𝜎 are unknown are obtained using the steps below (Mitra, 2008). 

● Step 1: Measurements of the quality characteristic to be investigated are recorded 

using a selected sampling technique and size. 

● Step 2: The sample mean   𝑋̅ and range 𝑅 are calculated for each sample using the 

formulae below. 

 

𝑋̅ =
∑ 𝑋𝑖
𝑛
𝑖=1

𝑛
 (2.4) 

𝑅 = 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛 (2.5) 

 

Here, n is the sample size, 𝑋𝑖 is the ith observation, 𝑋𝑚𝑎𝑥 is the largest observation and 

𝑋𝑚𝑖𝑛  is the smallest observation. 

● Step 3: The centreline and the trial control limit which are the initial control limits to 

be used for later measurements for each chart are obtained. 

For the   𝑋̅-chart, the centreline 𝑋 ̅̅ is given as follows; 

 

𝑋 ̅̅ =
∑ 𝑋̅𝑖
𝑚
𝑖=1

𝑚
 (2.6) 
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Here, m represents the number of samples used.  

Similarly, the centreline 𝑅̅ for the R-chart is obtained as follows; 

 

𝑅̅ =
∑ 𝑅𝑖
𝑚
𝑖=1

𝑚
 (2.7) 

 

Knowing the relationship which exists between the range of a sample from a normal 

distribution and the standard deviation of that distribution, the relative range of the 

variable in question say W with mean 𝑑2 and whose parameters of distribution are 

functions of the sample size n  is given below (Montgomery, 2013). 

 

𝑊 =
𝑅

𝜎
 (2.8) 

 

From above, an estimate for the standard deviation 𝜎 can be obtained as follows 

given 𝑅̅ to be the average range of the m samples (Montgomery, 2013). 

 

𝜎̂ =
𝑅̅

𝑑2
 (2.9) 

   

Using  𝑋̅̅ as an estimate of 𝜇 and 
𝑅̅

𝑑2
 as an estimate for 𝜎, the upper and lower control 

limits and the centreline for the  𝑋̅-chart are given below:  

 

𝑈𝐶𝐿 = 𝑋̅̅ +
3

𝑑2√𝑛
 𝑅̅  

𝐶𝐿 = 𝑋̅̅ (2.10) 

𝐿𝐶𝐿 = 𝑋̅̅ − 
3

𝑑2√𝑛
 𝑅̅  

 

For simplicity, 𝐴2 is used in place of  
3

𝑑2√𝑛
  because 𝐴2 is a standard constant whose 

values are found in the appendix sections of most statistics books. Similarly, 𝑑2 is 
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also a standard constant and its values are also found in the appendix section of 

statistics books. 

From Eq (2.8) and assuming the standard deviation of W to be a constant say 𝑑3 then  

 

𝑅 = 𝑊𝜎 (2.11) 

𝜎̂𝑅 = 𝑑3
𝑅̅

𝑑2
 (2.12) 

 

Consequently, the upper and lower control limits and the centreline of the R-chart are 

given below (Montgomery, 2013). 

 

𝑈𝐶𝐿 = 𝑅̅ + 3𝑑3
𝑅̅

𝑑2
  

𝐶𝐿 = 𝑅̅̅ (2.13) 

𝐿𝐶𝐿 = 𝑅̅ − 3𝑑3
𝑅̅

𝑑2
  

 

Generally, the constants 𝐷3 = 1 − 3
𝑑3

𝑑2
 and 𝐷4 = 1 + 3

𝑑3

𝑑2
 are used and their values 

and those of 𝑑3 are found in the appendix sections of most statistics books. 

 

The above charts are all generally called classic Shewhart’s charts. They are the most widely 

used charts in quality control, but they do have their limitations like any other scientifically 

derived method. They are generally insensitive to small shifts in the process mean (Mitra, 

2008). Cumulative Sum Charts, Moving-Averages and the EWMA control charts can be used 

as alternatives to effectively solve the insensitive nature of the Shewhart Charts in the 

detection of shifts of small magnitudes in the process mean (Borror, Montgomery, & Runger, 

1999). 

 

2.2.2 Moving-Average Control Charts 

 In situations whereby the product characteristics are measured automatically or when the 

time to produce a unit is too long, the best chart to be used is the moving average control 
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chart (Mitra, 2008). Moving average values are correlated by nature. Supposing that samples 

of size n are collected from a given process and the first t sample means given 

by  𝑋̅1, 𝑋̅2, 𝑋̅3, . . . , 𝑋̅𝑡 , then the moving average of width m, at time step t is given as follows 

(Mitra, 2008). 

 

𝑀𝑡 =
𝑋̅𝑡 + 𝑋̅𝑡−1 + 𝑋̅𝑡−2 + 𝑋̅𝑡−3 +⋯+ 𝑋̅𝑡−𝑤+1

𝑚
 (2.14) 

 

At any time t, in order to update the moving average by adding the newest mean, the oldest 

mean is dropped. The variance of each sample mean is  

 

𝑉𝑎𝑟(𝑋̅𝑡) =
𝜎2

𝑛
 (2.15) 

 

Here, 𝜎2 is the population variance of the individual values.  

The variance of the moving average 𝑀𝑡 can be derived thus 

 

𝑉𝑎𝑟(𝑀𝑡) =
1

𝑚2
 ∑ 𝑉𝑎𝑟(𝑋̅𝑖)

𝑡

𝑖=𝑡−𝑚+1

  

=
1

𝑚2
 ∑

𝜎2

𝑛

𝑡

𝑖=𝑡−𝑚+1

 (2.16) 

=
𝜎2

𝑛𝑚
  

 

The centreline, upper and lower control limits for the moving-average chart are given below. 

𝑈𝐶𝐿𝑡 = 𝑋̅̅ + 3
𝜎

√𝑛𝑚
  

𝐶𝐿𝑡 = 𝑋̅̅ (2.17) 

𝑈𝐶𝐿𝑡 = 𝑋̅̅ − 3
𝜎

√𝑛𝑚
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It is clearly noticed from Eq. (2.17) that the control limits are inversely proportional to the 

width w, i.e. as the width w increases, the values of the control limits decrease accordingly. 

To detect shifts of extremely small magnitudes, larger values of w should be chosen. In this 

case, the moving average 𝑀𝑡 can be reformulated as follows. 

 

𝑀𝑡 =
∑ 𝑋̅𝑖
𝑡
𝑖=1

𝑡
 (2.18) 

 

Hence, the control limits for such a start-up period are given below. 

 

𝑈𝐶𝐿𝑡 = 𝑋̅̅ + 3
𝜎

√𝑛𝑡
  

𝐶𝐿𝑡 = 𝑋̅̅ (2.19) 

𝑈𝐶𝐿𝑡 = 𝑋̅̅ − 3
𝜎

√𝑛𝑡
  

  

2.2.3 Exponentially Weighted Moving-Average control charts 

The EWMA is a control chart used in detecting very small shifts in the process mean just like 

the moving-average control charts but are more sensitive (Roberts, 2000). It is also used as a 

control tool. It is generally used with individual observations (Crowder, 1989).  

 

The EWMA chart is constructed based on varying weights from previous observations. 

EWMA control charts are also called geometric moving average charts. The exponentially 

weighted moving average when the starting parameters are unknown is defined as follows 

(Mitra, 2008). 

 

𝐺𝑡 = 𝜆𝑋̅𝑡 + (1 − 𝜆)𝐺𝑡−1 (2.20) 

  

Here, 𝜆 which lies in the interval 0 < 𝜆 ≤ 1 is a weighting or smoothing constant. The 

starting value which is also the process target is given such that 𝐺0 = 𝑋̅̅.  

From Eq (2.20), EWMA 𝐺𝑡 which is a weighted average of all the previous sample means 

can be illustrated as follows (Montgomery, 2013). 
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𝐺𝑡 = 𝜆𝑋̅𝑡 + (1 − 𝜆)[𝜆𝑋̅𝑡−1 + (1 − 𝜆)𝐺𝑡−2]  

= 𝜆𝑋̅𝑡 + 𝜆(1 − 𝜆)𝑋̅𝑡−1 + 𝜆(1 − 𝜆)
2𝑋̅𝑡−2 +⋯+ (1 − 𝜆)𝑡𝐺0  

𝐺𝑡 = 𝜆∑(1 − 𝜆)𝑗𝑋̅𝑡−𝑗

𝑡−1

𝑗=0

+ (1 − 𝜆)𝑡𝐺0 (2.21) 

  

The weight 𝜆(1 − 𝜆)𝑗 in Eq (2.21) above decreases geometrically with the age of the sample 

mean as it becomes less recent (Montgomery, 2013). The weights sum up to unity according 

to the relation below obtained from the properties of the geometric distribution. 

 

𝜆∑(1 − 𝜆)𝑗
𝑡−1

𝑗=0

= 𝜆 [
1 − (1 − 𝜆)𝑡

1 − (1 − 𝜆)
] = 1 − (1 − 𝜆)𝑡 (2.22) 

 

Assuming the sample means  𝑋̅1, 𝑋̅2, … , 𝑋̅𝑡−1 to be independent of each other and the 

population standard deviation to be 𝜎, the variance of 𝐺𝑡 can be given by (Montgomery, 

2013); 

 

𝑉𝑎𝑟(𝐺𝑡) = (
𝜎2

𝑛
) (

𝜆

2 − 𝜆
) [1 − (1 − 𝜆)2𝑡] (2.23) 

 

The centreline, upper and lower control limits for the EWMA control chart when the 

parameters are known are given below (Montgomery, 2013). 

 

𝑈𝐶𝐿𝐸𝑊𝑀𝐴𝑡 = 𝜇 + 𝐾
𝜎

√𝑛
√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑡]  

𝐶𝐿𝐸𝑊𝑀𝐴𝑡 = 𝜇 (2.24) 

𝐿𝐶𝐿𝐸𝑊𝑀𝐴𝑡 = 𝜇 − 𝐾
𝜎

√𝑛
√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑡]  
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Here, K is a number chosen by the experimenter which is directly related to the smoothing 

constant. The centreline, upper and lower control limits for the EWMA control chart when 

the parameters are unknown are given below (Mitra, 2008). 

 

𝑈𝐶𝐿𝐸𝑊𝑀𝐴𝑡 = 𝑋̅̅ + 𝐾
𝜎̂

√𝑛
√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑡]  

𝐶𝐿𝐸𝑊𝑀𝐴𝑡 = 𝑋̅̅ (2.25) 

𝐿𝐶𝐿𝐸𝑊𝑀𝐴𝑡 = 𝑋̅̅ − 𝐾
𝜎̂

√𝑛
√

𝜆

(2 − 𝜆)
[1 − (1 − 𝜆)2𝑡]  

 

For large values of t the standard deviation of 𝐺𝑡 is given asymptotically by  

 

𝜎𝐺 = √
𝜎2

𝑛
(
𝜆

2 − 𝜆
) (2.26) 

 

Therefore, the centreline, upper and lower control limits of the EWMA control chart in this 

case when the parameters are known are given below (Mitra, 2008). 

 

𝑈𝐶𝐿𝐸𝑊𝑀𝐴 = 𝜇 + 𝐾
𝜎

√𝑛
√

𝜆

(2 − 𝜆)
  

𝐶𝐿𝐸𝑊𝑀𝐴 = 𝜇 (2.27) 

𝐿𝐶𝐿𝐸𝑊𝑀𝐴 = 𝜇 − 𝐾
𝜎

√𝑛
√

𝜆

(2 − 𝜆)
  

 

Similarly, the centreline, upper and lower control limits of the EWMA control chart in this 

scenario when the parameters are unknown are given below (Mitra, 2008). 
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𝑈𝐶𝐿𝐸𝑊𝑀𝐴 = 𝑋̅̅ + 𝐾
𝜎̂

√𝑛
√

𝜆

(2 − 𝜆)
  

𝐶𝐿𝐸𝑊𝑀𝐴 = 𝑋̅̅ (2.28) 

𝐿𝐶𝐿𝐸𝑊𝑀𝐴 = 𝑋̅̅ − 𝐾
𝜎̂

√𝑛
√

𝜆

(2 − 𝜆)
  

 

Generally in a wide range of applications where in individual measurements are involved, a 

well -designed EWMA as a control chart is highly recommended particularly during the 

process monitoring phase (Montgomery, 2013). 

 

2.2.3.1 Design and Choice of Parameters for the EWMA  

Crowder (1989) studied the properties of the EWMA numerically and came up with a concise 

method comprising of 4 steps to determine the best ordered pair of (𝜆, 𝐾) satisfying 

conditions for setting up of the EWMA control chart. The main objective of this method is 

to find the best set of (𝜆, 𝐾) which for a given in-control average run length (ARL) minimizes 

the out-of-control ARL for a specific shift in the process mean. ARL can easily be defined 

for type-1 error as the total number of observations before an out-of-control signal is noticed 

when a process is in-control. To find the ordered pair to be used for the design of an EWMA 

control chart the following steps are followed (Crowder, 1989). 

• For the case in which the process shift is assumed to be zero, the smallest ARL is 

chosen based on the requirements of the management. In other words, the false alarm 

rate (type-Ι error) is determined.  

• The magnitude of shift in the process which must be detected quickly is decided. The 

value of the smoothing parameter 𝜆 which produces an optimal (minimum) ARL for 

that size shift is chosen. This choice is facilitated by the graph in Figure 2.1 below 

which was reproduced from (Crowder, 1989). 
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      Figure 2.1 Optimal λ for the EWMA 

• The control limit constant K which satisfies the in-control ARL in step 1 is found 

using the values of 𝜆 in the previous step. The value of K can easily be obtained from 

the graph in Figure 2.2 below which was reproduced from (Crowder, 1989). 

 

      Figure 2.2 Combinations of λ and K 
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• Lastly, a sensitivity analysis by comparing the out-of-control ARLs (Type-ΙI error) 

for the optimal combination of (𝜆, 𝐾) to other combinations of (𝜆, 𝐾) which produces 

the same in-control ARL (type-Ι error) is performed. The best combination of (𝜆, 𝐾) 

which produces the desired results based on the type-ΙI errors is chosen.  
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3 CONTROL CHARTS FOR SKEWED DISTRIBUTIONS 

As earlier mentioned, the classic Shewhart control charts which are used for monitoring the 

process mean and variability in the characteristics of a random quality variable of interest is 

based on the normality assumption. The normality assumption simply means that the 

distribution of the data extracted from the characteristics of the quality variable show either 

a relative normal distribution with a value of the mean and standard deviation or can easily 

be made normal using the central limit theorem. This chapter focuses basically on situations 

wherein the distribution of the random quality variable under investigation is skewed.  

 

In situations wherein the distribution of the random variable in question is not normal or can’t 

directly be made normal using the central limit theorem, using the classic Shewhart charts 

for the mean and range produces misleading results because, the increase in the skewness of 

the distribution leads to a relative increase in the type-Ι error produced due to the changes 

within the population (Karagöz & Hamurkaroğlu, Control Charts For Skewed Distribution: 

Weibull, Gamma, Lognormal, 2012). This problem can simply be solved by either increasing 

the sample size used or by transforming the data. However, doing so takes a lot of cost and 

time hence, making experimenters not to prefer it. Therefore, for skewed distributions, in 

order to demonstrate the changes in the population, non-symmetric control limits need to be 

used (Bai & Choi, 1995). Methods such as the Weighted Variance (WV), Weighted Standard 

Deviation (WSD) and Skewness Correction (SC) are generally more reliable Using these 

methods help the experimenter to avoid misinterpretation of results and hence produce a 

better output.  

 

3.1 Weighted Variance method 

This method works basically by dividing the area under a probability density function of a 

random variable under investigation into two portions with respect to the mean of the 

distribution. Each portion has the same mean but different standard deviations and are 

separate symmetric distributions (curves). These new portions can be identical if the mother 

curve is symmetric. In cases where the mother distribution is skewed, one curve is longer 

than the other depending on the side of the skewness. The control limits for the mean and the 

range are then obtained using these new distributions. In other words, one of the two 
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distributions is used for the upper control limit while the other one is used for the lower 

control limit (Choobineh & Ballard, 1987).  

 

3.1.1  𝑿̅ and R Control Limits for the Weighted Variance Method 

Just like the Shewhart’s approach, the WV method uses the standard deviation to establish 

the control limits for the mean and range charts. The only difference between the two 

methods lies at the level of the two multiplication factors added to the WV method (Karagöz 

& Hamurkaroğlu, Control Charts For Skewed Distribution: Weibull, Gamma, Lognormal, 

2012). Therefore, the control limits obtained from the WV method are also considered to be 

the Shewhart type charts. 

The two multiplication factors used in the establishment of the control limits for the mean 

( 𝑋̅) and range (R) charts are as follows (Bai & Choi, 1995). 

𝑈𝐶𝐿 ∶ √2𝑃𝑋 (3.1) 

𝐿𝐶𝐿:√2(1 − 𝑃𝑋)  

 

Assuming the random quality characteristic under investigation to be X, the term 𝑃𝑋 in Eq. 

(3.1) is a probability value and is given below. 

 

𝑃𝑋 = 𝑃(𝑋 ≤ 𝜇𝑋) (3.2) 

 

It is vital to note that 𝜇𝑋 used in Eq. (3.2) is the mean of the quality process. 

 

 If the parameters of the quality process under investigation are known, the control limits of 

the  𝑋̅ chart obtained using the WV method are as follows. 

 

𝑈𝐶𝐿𝑊𝑉 = 𝜇𝑋 + 3
𝜎𝑋

√𝑛
√2𝑃𝑋  

𝐶𝐿𝑊𝑉 = 𝜇𝑋 (3.3) 

𝐿𝐶𝐿𝑊𝑉 = 𝜇𝑋 − 3
𝜎𝑋

√𝑛
√2(1 − 𝑃𝑋)  
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From Eq. (3.3), 𝜎𝑋 is the process standard deviation and n is the sample size used in the 

subgroups. 

 

The control limits obtained with respect to the WV method for the R chart when the process 

parameters are known are given below. 

 

𝑈𝐶𝐿𝑊𝑉𝑅 = 𝜇𝑅 + 3𝜎𝑅√2𝑃𝑋  

𝐶𝐿𝑊𝑉𝑅 = 𝜇𝑅 (3.4) 

𝐿𝐶𝐿𝑊𝑉𝑅 = [𝜇𝑅 − 3𝜎𝑅√2(1 − 𝑃𝑋) ]
+

  

 

From Eq. (3.4), 𝜇𝑅 is the mean of the range of the distribution, 𝜎𝑅 is the standard deviation 

of the range and [𝑎]+ = [𝜇𝑅 − 3𝜎𝑅√2(1 − 𝑃𝑋) ]
+

 can be expressed as [𝑎]+ = 𝑀𝑎𝑥[0, 𝑎] 

(Choobineh & Ballard, 1987). For relatively small or medium sizes of n, the WV method 

gives better results than the classic Shewhart method (Bai & Choi, 1995). 

 

In practice, the process parameters are unknown and are generally predicted. For the WV 

method, the probability value 𝑃𝑋 is predicted as follows (Bai & Choi, 1995). 

 

𝑃̂𝑋 =
∑∑𝛿(𝑋̅̅ − 𝑋𝑛𝑚)

𝑛𝑚
 (3.5) 

 

From Eq. (3.5), 𝛿(𝑥) can be expantiated as follows. 

 

𝛿(𝑥) = {
1, 𝑥 ≥ 0
0, 𝑥 < 0

 (3.6) 

 

The  𝑋̅ control limits obtained with respect to the WV method when the process parameters 

are unknown are given below. 

 

𝑈𝐶𝐿𝑊𝑉𝑋 ̅̅ ̅ = 𝑋̅̅ + 3
𝑅̅

𝑑2
′√𝑛

√2𝑃̂𝑋  
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𝐶𝐿𝑊𝑉𝑋̅ = 𝑋̅̅ (3.7) 

𝐿𝐶𝐿𝑊𝑉𝑋̅ = 𝑋̅̅ − 3
𝑅̅

𝑑2
′√𝑛

√2(1 − 𝑃̂𝑋)  

 

Taking 𝑊𝑈 =
3√2𝑃̂𝑋

𝑑2
′√𝑛

 and 𝑊𝐿 =
3√2(1−𝑃̂𝑋)

𝑑2
′√𝑛

, Eq. (3.7) can be readjusted to the more prevalently 

used form as follows. 

 

𝑈𝐶𝐿𝑊𝑉𝑋̅ = 𝑋̅̅ +𝑊𝑈𝑅̅  

𝐶𝐿𝑊𝑉𝑋̅ = 𝑋̅̅ (3.8) 

𝐿𝐶𝐿𝑊𝑉𝑋̅  
= 𝑋̅̅ −𝑊𝐿𝑅̅  

The values of the constants 𝑊𝑈 and 𝑊𝐿 were calculated for various values of n by (Bai & 

Choi, 1995) and can be found in the appendix sections of most quality control books and 

articles. 

 

The R control limits obtained with respect to the WV method when the process parameters 

are unknown are given below. 

 

𝑈𝐶𝐿𝑊𝑉𝑅 = 𝑅̅ [1 + 3
𝑑3
′

𝑑2
′
√2𝑃̂𝑋 ]  

𝐶𝐿𝑊𝑉𝑅 = 𝑅̅ (3.9) 

𝐿𝐶𝐿𝑊𝑉𝑅 = 𝑅̅ [1 − 3
𝑑3
′

𝑑2
′
√2(1 − 𝑃̂𝑋) ]  

 

Taking 𝑉𝑈 = [1 + 3
𝑑3
′

𝑑2
′ √2𝑃̂𝑋 ] and 𝑉𝐿 = [1 − 3

𝑑3
′

𝑑2
′ √2(1 − 𝑃̂𝑋) ], Eq. (3.9) can be readjusted 

to the more commonly used form as follows. 

 

𝑈𝐶𝐿𝑊𝑉𝑅 = 𝑉𝑈𝑅̅  

𝐶𝐿𝑊𝑉𝑅 = 𝑅̅ (3.10) 

𝐿𝐶𝐿𝑊𝑉𝑅 = 𝑉𝐿𝑅̅  
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3.2 Weighted Standard Deviation method 

It is also a very easy method to understand and it has almost the same basic principle as that 

of the WV method. This method depends on the level and direction of skewness of the 

distribution of a random variable. This method works basically by dividing the area under a 

probability density function of a random variable under investigation into two portions with 

respect to the mean of the distribution. Each portion has the same mean but different standard 

deviations and are separate symmetric distributions (curves). Here, the sum of the newly 

obtained standard deviations is equal to the original standard deviation of the distribution 

(𝜎 = 𝜎𝑈 + 𝜎𝐿).  

Considering the quality random variable under investigation to be X, the main logic of this 

method is described graphically in Figure 3.1 below which was reproduced from (Chang & 

Bai, 2001). 

 

 

Figure 3.1 WSD method 

 

From Figure 3.1, if the symmetry of the right hand side of the function 𝑓(𝑥) in (a) is taken 

with respect to the mean and in order to abide by all the properties of probability density 

functions, the symmetric probability density function 𝑔𝑈(𝑦) is obtained as shown by graph 
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(b). Similarly, if the symmetry of the left hand side of the function 𝑓(𝑥) is taken about the 

mean and in order to abide by all the properties of probability density functions, the 

symmetric probability density function 𝑔𝐿(𝑦) is obtained as shown by graph (c). It is 

important to emphasize on the fact that the newly obtained symmetric density functions have 

the same mean but different standard deviations viz 𝜎𝑈 and 𝜎𝐿. The probability density 

functions 𝑔𝑈(𝑦) and 𝑔𝐿(𝑦) are shown below (Chang & Bai, 2001). 

𝑔𝑈(𝑦) =

{
 

 
1

2(1 − 𝑃)
𝑓(2𝜇 − 𝑦), 𝑦 ≤ 𝜇

1

2(1 − 𝑃)
𝑓(𝑦),                   𝑦 > 𝜇

 (3.11) 

𝑔𝐿(𝑦) = {

1

2𝑃
𝑓(𝑦),                               𝑦 ≤ 𝜇

1

2𝑃
𝑓(2𝜇 − 𝑦), 𝑦 > 𝜇

 (3.12) 

 

From graph (a) in Figure 3.1 above, the relationships below are true.  

 

𝑃(𝑋 ≤ 𝜇) = 𝑃 ⇒ 𝐹(𝜇) = 𝑃  

𝑃(𝑋 > 𝜇) = 1 − 𝑃 ⇒ 1 − 𝐹(𝜇) = 1 − 𝑃  

 

Using the linear transformation 𝑦 = 2𝜇 − 𝑋 gives the following result. 

 

𝑓(𝑦) = 𝑓(𝑔−1(𝑦)) |
𝑑𝑦

𝑑𝑥
| ⇒ 𝑓(𝑦) = 𝑓(2𝜇 − 𝑦)  

 

The weighting or loading factors A and B which satisfy the probability density function are 

obtained as follows (Karagöz & Hamurkaroğlu, Control Charts For Skewed Distribution: 

Weibull, Gamma, Lognormal, 2012). 

 

𝐴∫ 𝑓(2𝜇 − 𝑦)𝑑𝑦 + 𝐴∫ 𝑓(𝑦)𝑑𝑦 = 1
∞

𝜇

𝜇

−∞

 

𝐴 ∗ (1 − 𝑃) + 𝐴 ∗ (1 − 𝑃) = 1 
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∴ 𝐴 =
1

2(1 − 𝑃)
 

𝐵∫ 𝑓(𝑦)𝑑𝑦 + 𝐵∫ 𝑓(2𝜇 − 𝑦)
∞

𝜇

𝜇

−∞

𝑑𝑦 = 1 

𝐵 ∗ 𝑃 + 𝐵 ∗ 𝑃 = 1 

∴ 𝐵 =
1

2𝑃
 

 

The upper standard deviation 𝜎𝑈 and lower standard deviation 𝜎𝐿 are obtained from Eq. 

(3.11) and (3.12) respectively as follows (Chang & Bai, 2001). 

 

𝜎𝑈
2 = ∫

1

2(1 − 𝑃)
(𝑦 − 𝜇)2𝑓(2𝜇 − 𝑦)𝑑𝑦 +

𝜇

−∞

 ∫
1

2(1 − 𝑃)
(𝑦 − 𝜇)2𝑓(𝑦)𝑑𝑦

∞

𝜇

 

= ∫
1

1 − 𝑃
(𝑦 − 𝜇)2𝑓(𝑦)𝑑𝑦

∞

𝜇

 

∴ 𝜎𝑈 = √
1

1 − 𝑃
∫ (𝑦 − 𝜇)2𝑓(𝑦)𝑑𝑦
∞

𝜇

    

𝜎𝐿
2 =  ∫

1

2𝑃
(𝑦 − 𝜇)2𝑓(𝑦)𝑑𝑦 +

𝜇

−∞

 ∫
1

2𝑃
(𝑦 − 𝜇)2𝑓(2𝜇 − 𝑦)𝑑𝑦

∞

𝜇

 

= ∫
1

𝑃
(𝑦 − 𝜇)2𝑓(𝑦)𝑑𝑦                                                                                      

𝜇

−∞

 

∴ 𝜎𝐿 = √
1

𝑃
∫ (𝑦 − 𝜇)2𝑓(𝑦)𝑑𝑦 
𝜇

−∞

 

 

Using ∫ (𝑦 − 𝜇)2𝑓(𝑦)𝑑𝑦 ≅ 𝑃𝜎2
∞

𝜇
 obtained from the semi-variance approach which was 

developed by Choobineh and Branting (1986), the final approximation for the upper and 

lower variances (𝜎𝑈 and 𝜎𝐿) are given as follows. 

 

𝜎𝑈 ≅ √
𝑃

1 − 𝑃
 𝜎 (3.13) 
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𝜎𝐿 ≅ √
1 − 𝑃

𝑃
 𝜎 (3.14) 

 

Assuming the standard deviation 𝜎 is divided into the upper standard deviation 𝜎𝑈
𝑊 and the 

lower standard deviation 𝜎𝐿
𝑊 respectively, then the expression 𝜎 = 𝜎𝑈

𝑊 + 𝜎𝐿
𝑊 can easily be 

written. If the ratio of 𝜎𝑈
𝑊 to 𝜎 is assumed to be equal to that of 𝜎𝑈 to 𝜎𝑈 + 𝜎𝐿 , then the 

relation 
𝜎𝑈
𝑊

𝜎
=

𝜎𝑈

𝜎𝑈+𝜎𝐿
 can be written. Similarly, using the same ideology, the relation 

𝜎𝐿
𝑊

𝜎
=

𝜎𝐿

𝜎𝑈+𝜎𝐿
 can be given. From these two relations, if 

𝜎𝑈

𝜎𝑈+𝜎𝐿
≅ 𝑃 and 

𝜎𝐿

𝜎𝑈+𝜎𝐿
≅ 1 − 𝑃 then, the 

equations below are true (Chang & Bai, 2001).  

 

𝜎𝑈
𝑊 ≡ 𝑃𝜎 (3.15) 

𝜎𝐿
𝑊 ≡ (1 − 𝑃)𝜎 (3.16) 

 

Figure 3.2 Probability Density Functions for the WSDs 

 

The upper part of the original probability density function’s density function is given as 

follows and is represented graphically in (a) in Figure 3.2 above. 
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𝑓𝑈(𝑥) =
1

2𝜎𝑈
𝑊 𝜙(

𝑥 − 𝜇

2𝜎𝑈
𝑊 ) (3.17) 

Similarly, the lower part of the original probability density function’s density function is 

given as follows and is represented graphically in (b) in Figure 3.2 above. 

 

𝑓𝐿(𝑥) =
1

2𝜎𝐿
𝑊 𝜙(

𝑥 − 𝜇

2𝜎𝐿
𝑊 ) (3.18) 

 

If the distribution of the random variable under investigation is symmetric then 𝑃 =
1

2
 and 

𝜎𝑈
𝑊 = 𝜎𝐿

𝑊 =
1

2
 . If the distribution is skewed to the right, then  𝑃 >

1

2
 and 𝜎𝑈

𝑊 > 𝜎𝐿
𝑊. If the 

distribution is skewed to the left then 𝑃 <
1

2
 and 𝜎𝑈

𝑊 < 𝜎𝐿
𝑊 (Chang & Bai, 2001). 

 

3.2.1 𝑿̅ chart Under the Weighted Standard Deviation Method 

When the parameters of the random variable under investigation are known, the control limits 

for the mean chart under the WSD method are given as follows (Chang & Bai, 2001). 

 

𝑈𝐶𝐿𝑊𝑆𝐷𝑋̅ = 𝜇 + 𝑍𝛼
2

2𝜎𝑈
𝑊

√𝑛
  

𝑈𝐶𝐿𝑊𝑆𝐷𝑋̅ = 𝜇 + 𝑍𝛼2

𝜎

√𝑛
2𝑃 (3.19) 

𝐿𝐶𝐿𝑊𝑆𝐷𝑋̅ = 𝜇 − 𝑍𝛼
2

2𝜎𝐿
𝑊

√𝑛
  

𝐿𝐶𝐿𝑊𝑆𝐷𝑋̅ = 𝜇 − 𝑍𝛼
2

𝜎

√𝑛
2(1 − 𝑃)  

 

When the parameters of the random variable under investigation are unknown, the control 

limits for the mean chart under the WSD method are given as follows (Chang & Bai, 2001). 

 

𝑈𝐶𝐿𝑊𝑆𝐷𝑋̅ = 𝑋̅̅ + 3
𝑅̅

𝑑2
∗∗√𝑛

2𝑃̂ (3.20) 
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𝐿𝐶𝐿𝑊𝑆𝐷𝑋̅ = 𝑋̅̅ − 3
𝑅̅

𝑑2
∗∗√𝑛

2(1 − 𝑃̂)  

The estimates of the parameters and the constants used in Eq. (3.20) were studied and 

explicitly explained by (Karagöz & Hamurkaroğlu, Control Charts For Skewed Distribution: 

Weibull, Gamma, Lognormal, 2012). 

 

3.3 Skewness Correction (SC) Method 

This method works generally for skewed distributions. The control limits obtained by this 

method are based on the level of skewness of the distribution estimated from the subgroups. 

Also, no prior parameters assumption is made on the nature and shape of the distribution of 

the random variable under investigation. If the process distribution is symmetric, the control 

limits obtained by the SC method turn to the classic Shewhart control charts. 

 

3.3.1 Fundamental Principle of the Skewness Correction method 

Let the random variable under investigation say X be standardised with mean 𝜇 = 0, standard 

deviation 𝜎 = 1 and skewness 𝑘3. If 𝑘3 is known, the centreline, upper and lower control 

limits of the aforementioned process for an individual observation based on the SC method 

are given as follows (Chan & Cui, 2003). 

 

𝑈𝐶𝐿𝑆𝐶 = 3 +

4
3𝑘3(𝑋̅)

1 + 0.2𝑘3(𝑋̅)2
  

𝐶𝐿𝑆𝐶 = 0 (3.21) 

𝑈𝐶𝐿𝑆𝐶 = −3 +

4
3𝑘3(𝑋̅)

1 + 0.2𝑘3(𝑋̅)2
  

 

These control limits are based on the skewness of the process estimated from the subgroups. 

These control limits differ from the classic Shewhart control charts by just 

4

3
𝑘3(𝑋̅)

1+0.2𝑘3(𝑋̅)2
. The 

SC method is based on the Cornish-Fisher expansion, which is discussed detailly by 

Çalışkan, (2006). 
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3.3.2 The Mean and Range Control Charts Under the Skewness Correction method 

The control charts for the mean  (𝑋̅-Chart) and the range (R -chart) obtained by the SC 

method when the process distribution and parameters are known are given below (Chan & 

Cui, 2003). 

 

𝑈𝐶𝐿𝑆𝐶𝑋̅ = 𝜇𝑋 + (3 + 𝑐4
∗)
𝜎𝑋

√𝑛
  

𝐶𝐿𝑆𝐶𝑋̅ = 𝜇𝑋 (3.22) 

𝐿𝐶𝐿𝑆𝐶𝑋̅ = 𝜇𝑋 + (−3 + 𝑐4
∗)
𝜎𝑋

√𝑛
  

 

𝑈𝐶𝐿𝑆𝐶𝑅 = 𝜇𝑅 + (3 + 𝑑4
∗)𝜎𝑅  

𝐶𝐿𝑅 = 𝜇𝑅 (3.23) 

𝐿𝐶𝐿𝑆𝐶𝑅 = 𝜇𝑅 + (−3 + 𝑑4
∗)𝜎𝑅  

 

The Lower control limit, 𝐿𝐶𝐿𝑅 is set to be zero if its original value is negative. The constants 

𝑐4
∗ and 𝑑4

∗  are the SC constants. When the distribution of the random variable under 

investigation is symmetric, the constant 𝑐4
∗ = 0, the skewness coefficent 𝑘3 = 0 and hence 

the  𝑋̅ chart tends to the classic Shewhart chart (Chan & Cui, 2003). 

 

Similarly, the control charts for the mean  (𝑋̅-Chart) obtained by the SC method when the 

process distribution and parameters are unknown are given below (Chan & Cui, 2003). 

 

𝑈𝐶𝐿𝑆𝐶𝑋̅ = 𝑋̅̅ +

(

 
 
3 +

4
𝑘3(𝑋̅)

(3√𝑛)

1 + 0.2
𝑘3(𝑋̅)2

𝑛
)

 
 𝑅̅

𝑑2
∗√𝑛

 ≡ 𝑋̅̅ + 𝐴𝑈
∗ 𝑅̅  

𝐶𝐿𝑋̅ = 𝑋̅̅ (3.24) 

𝐿𝐶𝐿𝑆𝐶𝑋̅ = 𝑋̅̅ +

(

 
 
−3 +

4
𝑘3(𝑋̅)

(3√𝑛)

1 + 0.2
𝑘3(𝑋̅)2

𝑛
)

 
 𝑅̅

𝑑2
∗√𝑛

 ≡ 𝑋̅̅ − 𝐴𝐿
∗ 𝑅̅  



36 

 

The values of the constants used in Eq. (3.24) were studied and given by Chan and Cui 

(2003). 

The control charts for the range (R-chart) obtained by the SC method when the process 

distribution and parameters are unknown are given as follows. 

 

𝑈𝐶𝐿𝑆𝐶𝑅 = [1 + (3 + 𝑑4
∗)
𝑑3
∗

𝑑2
∗] 𝑅̅ ≡ 𝐷4

∗𝑅̅  

𝐶𝐿𝑅 = 𝑅̅ (3.25) 

𝑈𝐶𝐿𝑆𝐶𝑅 = [1 + (−3 + 𝑑4
∗)
𝑑3
∗

𝑑2
∗]

+

𝑅̅ ≡ 𝐷3
∗𝑅̅  

 

From Eq. (3.25), given 𝑎 = [1 + (−3 + 𝑑4
∗)

𝑑3
∗

𝑑2
∗] , then 𝑎+ = 𝑎 for 𝑎 ≥ 0 and 𝑎+ = 0 for 𝑎 <

0. The constants used in this equation were studied and given by Chan and Cui (2003). 

 

In most situations, the skewness 𝑘3 needs to be estimated as follows (Chang & Bai, 2001). 

 

𝑘3
∗ =

1

𝑛𝑟 − 3
∑∑(

𝑋𝑖𝑗 − 𝑋̅̅

𝑆𝑛𝑟
)

3𝑛

𝑗=1

𝑟

𝑖=1

 (3.26) 

 

Here,  𝑋̅̅ =
1

𝑛𝑟
∑ ∑ 𝑋𝑖𝑗

𝑛
𝑗=1

𝑟
𝑖=1  and 𝑆𝑛𝑟 = √ 1

𝑛𝑟−1
∑ ∑ (𝑋𝑖𝑗 − 𝑋̅̅)

2
𝑛
𝑗=1

𝑟
𝑖=1 .  It is worth important to 

note that 𝑆𝑛𝑟 in Eq. (3.26) above can be replaced by  
𝑅̅

𝑑2
∗ . It is also clear that the sample 

skewness, 𝑘3
∗  is the third moment estimator. If |𝑘3

∗| is very small or large, the correction 

amount 
4
𝑘3(𝑋̅)

(3√𝑛)

1+0.2
𝑘3(𝑋̅)

2

𝑛

 would be relatively small. In other words, it can simply be said that the 

correction amount is more stable than the estimator of skewness 𝑘3 itself (Chan & Cui, 2003).  

 

3.3.3 Constants Estimation Under the Skewness Correction Method 

Like those of the classic Shewhart control charts, the control chart constants under the 

skewness correction method are 𝑑2
∗ , 𝑑3

∗ , 𝐶4
∗ 𝑎𝑛𝑑 𝑑4

∗ . The first two constants are obtained in 



37 

 

the same way as those of the WV method. The remaining two constants 𝐶4
∗ and 𝑑4

∗  are given 

as follows (Chan & Cui, 2003). 

 

𝐶4
∗ =

4
3𝑘3(𝑋̅)

1 + 0.2𝑘3(𝑋̅)2
 (3.27) 

 

The term 𝑘3(𝑋̅) in Eq. (3.27) is the skewness of the mean 𝑋̅ of the subgroup in question. 

𝑑4
∗ =

4
3𝑘3(𝑅)

1 + 0.2𝑘3(𝑅)2
 (3.28) 

The term 𝑘3(𝑅) in Eq. (3.28) is the skewness of the relative range.  

 

Provided the process distribution and subgroup’s size n are known, the values of the constants 

𝑑2
∗ , 𝑑3

∗  and 𝑑4
∗  can be obtained directly through numerical integration. However, in practice 

these values are unknown.  

 

3.4 The EWMA for Skewed Distributions 

As earlier mentioned, the classic EWMA control chart which is used in detecting small shifts 

in the process mean assumes that the distribution of the process is symmetrical. Whenever 

the distribution of the process is skewed, using the classic EWMA control chart might not 

produce desired and reliable results. Hence methods such as the WV, WSD and SC used for 

skewed distributions can be used also with the EWMA to give better results. These methods 

are expatiated below. 

 

3.4.1 The WV-EWMA control Chart 

The WV-EWMA method was developed by (Khoo & Atta, 2008). Given the exponentially 

weighted moving average control chart defined in Eq. (2.27), the control limits for the WV-

EWMA control chart when the parameters are known is given below (Khoo & Atta, 2008). 

 

𝑈𝐶𝐿𝑊𝑉𝐸𝑊𝑀𝐴
= 𝜇 + 𝐾

𝜎

√𝑛
√(

𝜆

2 − 𝜆
)√2𝑃𝑋  
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𝐶𝐿𝑊𝑉𝐸𝑊𝑀𝐴
= 𝜇 (3.29) 

𝐿𝐶𝐿𝑊𝑉𝐸𝑊𝑀𝐴
= 𝜇 − 𝐾

𝜎

√𝑛
√(

𝜆

2 − 𝜆
)√2(1 − 𝑃𝑋)  

 

The values of the constants K and 𝜆 are obtained depending on the desired conditions of the 

average run length as described in the previous chapter. The control limits in Eq.(3.29) tends 

to the standard EWMA control limits if the value of the probability 𝑃𝑋 is 𝑃𝑋 = 0.5 (Khoo, 

Atta, & Chen, 2009).  

 

When the parameters are unknown, the control limits for the WV-EWMA control chart are 

computed using the following formulations (Khoo & Atta, 2008). 

 

𝑈𝐶𝐿𝑊𝑉𝐸𝑊𝑀𝐴
= 𝑋̅̅ + 𝐾

𝑅̅

𝑑2
′√𝑛

√(
𝜆

2 − 𝜆
)√2𝑃̂𝑋  

𝐶𝐿𝑊𝑉𝐸𝑊𝑀𝐴
= 𝑋̅̅ (3.30) 

𝐿𝐶𝐿𝑊𝑉𝐸𝑊𝑀𝐴
= 𝑋̅̅ − 𝐾

𝑅̅

𝑑2
′√𝑛

√(
𝜆

2 − 𝜆
)√2(1 − 𝑃̂𝑋)  

  

3.4.2 The WSD-EWMA Control Chart  

This method was proposed by (Atta & Ramli, 2011). Given the exponentially weighted 

moving average defined in Eq. (2.27), the control limits for the WSD-EWMA control chart 

when the parameters are known is given below (Atta & Ramli, 2011). 

 

𝑈𝐶𝐿𝑊𝑆𝐷𝐸𝑊𝑀𝐴
= 𝜇 + 𝐾

𝜎

√𝑛
√(

𝜆

2 − 𝜆
) (2𝑃𝑋)  

𝐶𝐿𝑊𝑆𝐷𝐸𝑊𝑀𝐴
= 𝜇 (3.31) 

𝐿𝐶𝐿𝑊𝑆𝐷𝐸𝑊𝑀𝐴
= 𝜇 − 𝐾

𝜎

√𝑛
√(

𝜆

2 − 𝜆
) [2(1 − 𝑃𝑋)]  
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When the parameters are unknown, the control limits for the WSD-EWMA control chart are 

computed using the following formulations (Atta & Ramli, 2011). 

 

𝑈𝐶𝐿𝑊𝑆𝐷𝐸𝑊𝑀𝐴
= 𝑋̅̅ + 𝐾

𝑅̅

𝑑2
′√𝑛

√(
𝜆

2 − 𝜆
) (2𝑃̂𝑋)  

𝐶𝐿𝑊𝑆𝐷𝐸𝑊𝑀𝐴
= 𝑋̅̅ (3.32) 

𝐿𝐶𝐿𝑊𝑆𝐷𝐸𝑊𝑀𝐴
= 𝑋̅̅ − 𝐾

𝑅̅

𝑑2
′√𝑛

√(
𝜆

2 − 𝜆
) [2(1 − 𝑃̂𝑋)]  

 

Here, the constant 𝑑2
′ = 𝑃𝑋𝑑2(2𝑛(1 − 𝑃𝑋)) + (1 − 𝑃𝑋)𝑑2(2𝑃𝑋) where 𝑑2(𝑛) is 𝑑2 for the 

normal distribution when the sample size is equal to n (Khoo, Atta, & Chen, 2009). The value 

of this constant is computed by Chang and Bai (2001). 

 

3.4.3 The Proposed SC-EWMA Control Chart  

Given the exponentially weighted moving average defined in Eq. (2.27), the control limits 

for the SC-EWMA control chart when the parameters are known is proposed as follows. 

 

𝑈𝐶𝐿𝑆𝐶𝐸𝑊𝑀𝐴
= 𝜇 + (𝐾 +

4
3𝑘3

(𝑋̅)

1 + 0.2𝑘3
2(𝑋̅)

)√(
𝜆

2 − 𝜆
) 
𝜎

√𝑛
  

𝐶𝐿𝑆𝐶𝐸𝑊𝑀𝐴
= 𝜇 (3.33) 

𝐿𝐶𝐿𝑆𝐶𝐸𝑊𝑀𝐴
= 𝜇 + (−𝐾 +

4
3𝑘3

(𝑋̅)

1 + 0.2𝑘3
2(𝑋̅)

)√(
𝜆

2 − 𝜆
) 
𝜎

√𝑛
  

 

When the parameters are unknown, the control limits for the SC-EWMA control chart are 

computed using the following formulations. 

 

𝑈𝐶𝐿𝑆𝐶𝐸𝑊𝑀𝐴
= 𝑋̅̅ + (𝐾 +

4𝑘3/3√𝑛

1 + 0.2𝑘3
2/𝑛

 ) √(
𝜆

2 − 𝜆
)

𝑅̅

𝑑2
′√𝑛
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𝐶𝐿𝑆𝐶𝐸𝑊𝑀𝐴
= 𝑋̅̅ (3.34) 

𝐿𝐶𝐿𝑆𝐶𝐸𝑊𝑀𝐴
= 𝑋̅̅ + (−𝐾 +

4𝑘3/3√𝑛

1 + 0.2𝑘3
2/𝑛

) √(
𝜆

2 − 𝜆
)

𝑅̅

𝑑2
′√𝑛

  

 

As earlier mentioned, the term 𝐶4
∗ =

4

3
𝑘3(𝑋̅)

1+0.2𝑘3
2(𝑋̅)

 is computed for various values of n and given 

by ( Karagöz,2018). 
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4 SIMULATION STUDY AND DISCUSSIONS  

In this chapter, the experimental design used for this work and the Monte Carlo simulation 

technique are discussed. The newly developed SC-EWMA method is compared with existing 

heuristic methods of WV-EWMA, WSD-EWMA and the classic EWMA using a Monte 

Carlo simulation under the lognormal, Gamma and Weibull distributions. The comparison is 

made based on their type-Ι errors which is the probability of detecting an out-of-control 

situation even though the process is in control. Type-Ι error is also called the false alarm 

detection rate. The Monte Carlo simulation program is written in MATLAB 2016b 64-bit 

version 9.1.0. The experimental design, the simulation study and the results obtained from 

the simulation studies are discussed subsequently. 

 

4.1 Experimental Design 

Throughout the scope of this work, the quality variable under investigation is assumed to 

either be gamma distributed with shape parameter (𝛼) and scale parameter (𝛽), Weibull 

distributed with scale parameter (𝜆) and shape parameter (𝛽) or lognormal distributed with 

location parameter (𝜇) and scale parameter (𝜎). For the gamma distribution, the skewness is 

only affected by the shape parameter (𝛼) hence, throughout this work the scale parameter (𝛽) 

is given a constant value of 1. For the Weibull distribution, the skewness is affected only by 

the shape parameter (𝛽) hence, the scale parameter (𝜆) is given a constant value of 1. Lastly, 

for the lognormal distribution, the skewness is affected only by the scale parameter (𝜎) hence, 

the location parameter (𝜇) is given a constant value of 0. The skewness values, the varying 

parameters and their corresponding probabilities are given in Table 4.1 below. The 

probabilities are taken to two decimal places and are also obtained from the Monte Carlo 

simulation. 
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Table 4.1 Varying Parameters and their probabilities for Gamma, Weibull and Lognormal 

Distributions 

𝑘3 
Gamma Weibull Lognormal 

𝛼 𝑃𝑋 𝛽 𝑃𝑋 𝜎 𝑃𝑋 

0.50 16.00 0.53 2.15 0.54 0.16 0.53 

1.00 4.00 0.57 1.57 0.57 0.32 0.56 

1.50 1.80 0.60 1.20 0.61 0.44 0.59 

2.00 1.00 0.63 1.00 0.63 0.54 0.61 

2.50 0.64 0.66 0.86 0.66 0.66 0.63 

3.00 0.44 0.69 0.77 0.68 0.72 0.64 

  

The EWMA statistic is set up following the steps provided in chapter 2. The in-control ARL 

used for this study is 370 which is equivalent to a type-Ι error (𝛼) of 0.0027 for the classic 

Shewhart method when the process is in-control. In the coding however, type-Ι error of 𝛼 is 

used because of the following relation.  

 

𝐴𝑅𝐿 =
1

𝛼
 (4.1) 

 

The optimal ordered pairs of (𝜆, 𝐾) used for this study are given below. These values are 

obtained from the graphs in Figures 2.1 and 2.2. Some of these optimal pairs are found in the 

interval 0.05 < 𝜆 < 0.25 which was studied by Borror, Montgomery and Runger (1999) and 

found to be the best smoothing parameter interval corresponding to the in-control type-Ι error 

of 0.0027 or ARL of 370 for the classic Shewhart charts. 

  

Table 4.2 Values of the smoothing and control chart constants 

𝜆 0.10 0.20 0.30 0.40 0.70 

K 2.6952 2.8537 2.9286 2.9614 3.0000 

 

The subgroup sizes used for this work are 𝑛 = {3,5,7,10} which are chosen to represent 

small, medium and large group sizes respectively.  The WV constant (𝑑2
𝑊𝑉) and WSD 

constant (𝑑2
𝑊𝑆𝐷) reproduced from (Chang and Bai, 2001), the 𝑑2 and 𝐶4

∗ constants used for 

the various subgroup sizes when the distribution is normal are given in the Tables below. Not 
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that the  𝑃̂𝑋 used for the WV and WSD methods are computed simultaneously within the 

simulation program.  

 

Table 4.3 Values of the smoothing and control chart constants 

Gamma 𝑘3 𝑑2 𝐶4
∗ 𝑑2

𝑊𝑉 𝑑2
𝑊𝑆𝐷 

3 

0.50 1.6791 0.3414 1.681 1.670 

1.00 1.6406 0.6515 1.634 1.623 

1.50 1.5804 0.9012 1.578 1.577 

2.00 1.5001 1.1033 1.505 1.524 

2.50 1.4102 1.2429 1.421 1.454 

3.00 1.3157 1.3386 1.327 1.373 

5 

 

0.50 2.3089 0.2669 2.311 2.313 

1.00 2.2595 0.5163 2.251 2.282 

1.50 2.1827 0.7362 2.180 2.249 

2.00 2.0827 0.9281 2.090 2.184 

2.50 1.9758 1.0811 1.987 2.110 

3.00 1.8621 1.2011 1.874 2.023 

  

7 

0.50 2.6858 0.2253 2.688 2.694 

1.00 2.6328 0.4413 2.625 2.667 

1.50 2.5531 0.6368 2.550 2.629 

2.00 2.4502 0.8146 2.456 2.570 

2.50 2.3417 0.9647 2.354 2.511 

3.00 2.2306 1.0931 2.243 2.426 

  

10 

0.50 3.0587 0.1881 3.061 3.070 

1.00 3.0050 0.3726 2.997 3.044 

1.50 2.9258 0.5423 2.923 3.011 

2.00 2.8287 0.7032 2.836 2.926 

2.50 2.7323 0.8450 2.742 2.901 

3.00 2.6348 0.9715 2.646 2.824 
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Table 4.4 Constants Values for Weibull Distributions 

Weibull 𝑘3 𝑑2 𝐶4
∗ 𝑑2

𝑊𝑉 𝑑2
𝑊𝑆𝐷 

3 

0.50 1.6880 0.3702 1.685 1.660 

1.00 1.6447 0.6537 1.644 1.623 

1.50 1.5726 0.9223 1.560 1.559 

2.00 1.4995 1.1017 1.505 1.521 

2.50 1.4221 1.2355 1.410 1.454 

3.00 1.3552 1.3162 1.338 1.402 

5 

 

0.50 2.3088 0.2879 2.306 2.307 

1.00 2.2559 0.5173 2.255 2.282 

1.50 2.1702 0.7529 2.154 2.228 

2.00 2.0831 0.9283 2.090 2.184 

2.50 1.9903 1.0764 1.977 2.110 

3.00 1.9102 1.1819 1.889 2.055 

  

7 

0.50 2.6721 0.2415 2.668 2.689 

1.00 2.6172 0.4418 2.617 2.667 

1.50 2.5340 0.6522 2.519 2.613 

2.00 2.4499 0.8185 2.457 2.579 

2.50 2.3601 0.9660 2.346 2.511 

3.00 2.2808 1.0758 2.260 2.456 

  

10 

0.50 3.0213 0.2044 3.018 3.066 

1.00 2.9709 0.3708 2.971 3.044 

1.50 2.8990 0.5531 2.887 2.996 

2.00 2.8301 0.7046 2.834 2.962 

2.50 2.7530 0.8464 2.741 2.901 

3.00 2.6842 0.9586 2.666 2.851 
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Table 4.5 Constants Values for lognormal Distribution 

Lognormal 𝑘3 𝑑2 𝐶4
∗ 𝑑2

𝑊𝑉 𝑑2
𝑊𝑆𝐷 

3 

0.50 1.6776 0.3337 1.679 1.670 

1.00 1.6352 0.6547 1.642 1.637 

1.50 1.5860 0.8784 1.577 1.593 

2.00 1.5335 1.0381 1.522 1.559 

2.50 1.4587 1.1940 1.455 1.521 

3.00 1.4174 1.2529 1.419 1.454 

5 

 

0.50 2.3092 0.2602 2.309 2.313 

1.00 2.2575 0.5223 2.265 2.291 

1.50 2.1974 0.7207 2.188 2.261 

2.00 2.1346 0.8787 2.120 2.228 

2.50 2.0423 1.0527 2.038 2.184 

3.00 1.9911 1.1274 1.994 2.161 

  

7 

0.50 2.6877 0.2229 2.688 2.694 

1.00 2.6381 0.4480 2.646 2.677 

1.50 2.5790 0.6268 2.569 2.643 

2.00 2.5159 0.7773 2.501 2.613 

2.50 2.4231 0.9512 2.418 2.579 

3.00 2.3696 1.0323 2.373 2.561 

  

10 

0.50 3.0640 0.1826 3.064 3.070 

1.00 3.0225 0.3787 3.028 3.053 

1.50 2.9701 0.5368 2.958 3.023 

2.00 2.9145 0.6748 2.901 2.978 

2.50 2.8300 0.8432 2.825 2.926 

3.00 2.7806 0.9246 2.783 2.908 

      

4.2 Simulation Algorithm  

As earlier mentioned, the Monte Carlo simulation technique is used throughout the scope of 

this work. The algorithmic steps used for the simulation are as follows. 

• N independent identically distributed (i.i.d) pseudo random numbers are generated 

from gamma (𝑔𝑎𝑚𝑚𝑎(𝛼, 1)), Weibul(𝑤𝑒𝑖𝑏𝑢𝑙𝑙(1, 𝜆)) and 

lognormal(𝑙𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(0, 𝜎)) distributions for each of the subgroup sample sizes 𝑛 =

{3,5,7,10}. 

• The above process is repeated 100 times and their mean, grand mean, range and the 

mean of the range computed. 

• The  𝑃̂𝑋 value is then obtained from the randomly generated data in the previous step. 
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• The lower and upper control limits for the classic EWMA, SC-EWMA, WV-EWMA 

and WSD-EWMA are computed.  

• The EWMA test statistics 𝐺𝑡 is computed for all the 100 subgroups of size n generated 

above. 

• The EWMA test statistics 𝐺𝑡 are checked to be within the control limits computed 

above or not for each of the methods and their type-Ι errors are obtained and recorded. 

• The above steps are repeated 10.000 times which is the simulation size and the mean 

of the 10.000 type-Ι errors for each method is computed and recorded. 

 

It is vitally important to note that small changes are made to the program to suit the various 

smoothing parameters. 

 

4.3 Results and Discussions  

After successfully executing the programs, the results obtained are tabulated as follows in 

hierarchical order of the subgroup sizes n. 
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Table 4.6 Table of Results for n=3 and lambda=0.10 

 λ=0.10 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 
 Gamma  

3  

0.50 0.0033 0.0043 0.0030 0.0032 

1.00 0.0042 0.0089 0.0029 0.0037 

1.50 0.0061 0.0173 0.0033 0.0057 

2.00 0.0092 0.0273 0.0034 0.0089 

2.50 0.0137 0.0379 0.0039 0.0147 

3.00 0.2080 0.0472 0.0044 0.0240 
 Weibull  

3  

0.50 0.0031 0.0045 0.0029 0.0029 

1.00 0.0041 0.0090 0.0031 0.0037 

1.50 0.0065 0.0177 0.0031 0.0056 

2.00 0.0093 0.0273 0.0035 0.0090 

2.50 0.0137 0.0378 0.0036 0.0129 

3.00 0.0176 0.0448 0.0032 0.0172 
 Lognormal  

3  

0.50 0.0031 0.0042 0.0029 0.0030 

1.00 0.0042 0.0090 0.0031 0.0040 

1.50 0.0058 0.0158 0.0029 0.0049 

2.00 0.0083 0.0236 0.0031 0.0065 

2.50 0.0117 0.0332 0.0033 0.0095 

3.00 0.0142 0.0378 0.0036 0.0096 

 

From Table 4.6 above, it is clearly seen that the WV-EWMA produces the smallest type-Ι 

errors for all the distributions. When the skewness is less than or equal to 1.50, WSD-EWMA 

also performs very well and can be used as an alternative for the WV-EWMA for all the 

distributions. Another important remark which can be made from this Table is the fact that 

the classic EWMA produces very good results for all the distributions when the skewness is 

extremely small and almost symmetrical. The SC-EWMA is noticed not to produce good 

results for all the distributions as the skewness is increased.  
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Table 4.7 Table of Results for n=3 and lambda=0.20 

 λ=0.20 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

3 

Gamma  

 

0.50 0.0034 0.0038 0.0030 0.0030 

1.00 0.0047 0.0065 0.0029 0.0032 

1.50 0.0069 0.0113 0.0029 0.0040 

2.00 0.0107 0.0172 0.0033 0.0061 

2.50 0.0159 0.0228 0.0034 0.0096 

3.00 0.0231 0.0272 0.0038 0.0160 
 Weibull  

3  

0.50 0.0032 0.0040 0.0029 0.0027 

1.00 0.0045 0.0067 0.0029 0.0032 

1.50 0.0071 0.0117 0.0027 0.0039 

2.00 0.0109 0.0180 0.0032 0.0063 

2.50 0.0154 0.0236 0.0033 0.0084 

3.00 0.0204 0.0264 0.0034 0.0111 
 Lognormal  

3  

0.50 0.0034 0.0038 0.0031 0.0030 

1.00 0.0050 0.0069 0.0034 0.0036 

1.50 0.0070 0.0110 0.0032 0.0041 

2.00 0.0099 0.0156 0.0035 0.0051 

2.50 0.0142 0.0215 0.0040 0.0073 

3.00 0.0164 0.0232 0.0043 0.0066 

 

From Table 4.7 above, it is clearly seen that the WV-EWMA produces the smallest type-Ι 

error for all the distributions. When the skewness is less than or equal to 1.50, WSD-EWMA 

also performs very well and can be used as an alternative for the WV-EWMA for all the 

distributions. Another important remark which can be made from this Table is the fact that 

the classic EWMA produces very good results for all the distributions when the skewness is 

extremely small and almost symmetrical. The SC-EWMA is noticed not to produce good 

results for all the distributions as the skewness is increased.  

Table 4.8 Table of Results for n=3 and lambda=0.30 
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 λ=0.30 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

3 

Gamma  

 

0.50 0.0034 0.0035 0.0030 0.0029 

1.00 0.0048 0.0051 0.0028 0.0027 

1.50 0.0076 0.0080 0.0031 0.0031 

2.00 0.0121 0.0118 0.0036 0.0045 

2.50 0.0177 0.0139 0.0040 0.0061 

3.00 0.0248 0.0149 0.0044 0.0094 
 Weibull  

3  

0.50 0.0030 0.0031 0.0025 0.0022 

1.00 0.0047 0.0050 0.0028 0.0026 

1.50 0.0079 0.0080 0.0028 0.0030 

2.00 0.0121 0.0116 0.0035 0.0043 

2.50 0.0170 0.0141 0.0038 0.0052 

3.00 0.0220 0.0153 0.0041 0.0068 
 Lognormal  

3  

0.50 0.0034 0.0034 0.0030 0.0029 

1.00 0.0054 0.0055 0.0034 0.0034 

1.50 0.0076 0.0085 0.0034 0.0036 

2.00 0.0105 0.0111 0.0038 0.0043 

2.50 0.0154 0.0142 0.0048 0.0059 

3.00 0.0180 0.0151 0.0051 0.0052 

 

From Table 4.8, it is noticed that for the gamma distribution the WSD-EWMA method 

produces the smallest type-Ι errors when the skewness is smaller or equal to 1.50. However, 

as the skewness increases beyond 1.50, the WV-EWMA produces the best results. This 

clearly shows us that these two methods could be used as alternatives of one another under 

these conditions. For the Weibull distribution, the WV-EWMA produces the overall best 

results. However, for small values of the skewness up to 1.50, the WSD-EWMA produces 

very good results too. Once more, it can clearly be stated that the WV-EWMA and the WSD-

EWMA produce the best results and could be substituted for one another. Lastly, for the 

lognormal distribution, a similar scenario is observed where in the WV-EWMA produces the 

overall best results but when the skewness is smaller or equal to 1.50, the WSD-EWMA 

produces very similar results hence making it an alternative to the WV-EWMA. 
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Table 4.9 Table of Results for n=3 and lambda=0.40 

 λ=0.40 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

3 

Gamma  

 

0.50 0.0034 0.0032 0.0030 0.0027 

1.00 0.0053 0.0043 0.0030 0.0026 

1.50 0.0085 0.006 0.0035 0.0028 

2.00 0.0131 0.0077 0.0041 0.0034 

2.50 0.0195 0.0086 0.0048 0.0044 

3.00 0.0269 0.0075 0.0054 0.0055 
 Weibull  

3  

0.50 0.0029 0.0029 0.0025 0.0021 

1.00 0.0050 0.0040 0.0029 0.0023 

1.50 0.0087 0.0060 0.0032 0.0025 

2.00 0.0134 0.0078 0.0042 0.0035 

2.50 0.0190 0.0091 0.0048 0.0040 

3.00 0.0239 0.0087 0.0052 0.0046 
 Lognormal  

3  

0.50 0.0034 0.0032 0.0029 0.0028 

1.00 0.0056 0.0045 0.0034 0.0030 

1.50 0.0085 0.0065 0.0038 0.0034 

2.00 0.0121 0.0086 0.0046 0.0041 

2.50 0.0167 0.0105 0.0055 0.0053 

3.00 0.0194 0.0107 0.0061 0.0048 

 

From Table 4.9, it is noticed that the WSD-EWMA produces the smallest overall type-Ι errors 

for all the distributions. It is closely followed by the WV-EWMA which also produces good 

results but not as small as the former. Under this experimental condition, when the skewness 

is smaller or equal to 1.50, the SC-EWMA also produces considerable results hence could be 

used as an alternative to the WSD-EWMA method. 
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Table 4.10 Table of Results for n=3 and lambda=0.70 

 λ=0.70 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

3 

Gamma  

 

0.50 0.0038 0.0028 0.0031 0.0026 

1.00 0.0064 0.0030 0.0036 0.0025 

1.50 0.0107 0.0030 0.0048 0.0029 

2.00 0.0166 0.0026 0.0059 0.0034 

2.50 0.0234 0.0025 0.0069 0.0039 

3.00 0.0313 0.0029 0.0080 0.0044 
 Weibull  

3  

0.50 0.0033 0.0022 0.0025 0.0019 

1.00 0.0060 0.0022 0.0033 0.0021 

1.50 0.0112 0.0025 0.0045 0.0025 

2.00 0.0166 0.0027 0.0060 0.0034 

2.50 0.0228 0.0029 0.0068 0.0041 

3.00 0.0278 0.0031 0.0074 0.0047 
 Lognormal  

3  

0.50 0.0039 0.0030 0.0032 0.0028 

1.00 0.0069 0.0035 0.0042 0.0033 

1.50 0.0107 0.0044 0.0053 0.0038 

2.00 0.0144 0.0048 0.0061 0.0045 

2.50 0.0198 0.0050 0.0076 0.0058 

3.00 0.0225 0.0049 0.0084 0.0057 

 

From Table 4.10, for the gamma distribution, the overall smallest type-Ι errors are produced 

by the SC-EWMA which is closely followed by the WSD-EWMA. When the skewness is 

smaller or equal to 1.50, the WSD-EWMA produces very good results, in some cases even 

smaller than the former. For the Weibull distribution, the overall best results are produced by 

the SC-EWMA. Here, just like that of the gamma distribution, the WSD-EWMA closely 

follows the former. When the skewness is smaller or equal to 1.50, the WSD-EWMA also 

performs very well producing smaller type 1 errors as compared to the SC-EWMA. For the 

lognormal distribution, similar observations are made where in the overall best type-Ι errors 

are produced by the SC-EWMA method followed by the WSD-EWMA. It can therefore be 

stated that under this experimental condition the SC-EWMA and the WSD-EWMA are 

alternatives of each other.  
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Table 4.11 Table of Results for n=5 and lambda=0.10 

 λ=0.10 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

5 

Gamma  

 

0.50 0.0029 0.0035 0.0028 0.0031 

1.00 0.0041 0.0065 0.0031 0.0047 

1.50 0.0056 0.0108 0.0033 0.0074 

2.00 0.0083 0.0180 0.0039 0.0129 

2.50 0.0118 0.0258 0.0042 0.0205 

3.00 0.0171 0.0351 0.0048 0.0332 
 Weibull  

5  

0.50 0.0031 0.0038 0.0028 0.0032 

1.00 0.0037 0.0062 0.0029 0.0047 

1.50 0.0057 0.0113 0.0031 0.0079 

2.00 0.0079 0.0179 0.0038 0.0126 

2.50 0.0117 0.0261 0.0038 0.0184 

3.00 0.0149 0.0332 0.0037 0.0243 
 Lognormal  

5  

0.50 0.0032 0.0036 0.0029 0.0032 

1.00 0.0039 0.0062 0.0030 0.0044 

1.50 0.0052 0.0105 0.0030 0.0063 

2.00 0.0068 0.0151 0.0031 0.0085 

2.50 0.0099 0.0238 0.0034 0.0126 

3.00 0.0119 0.0286 0.0036 0.0157 

 

From Table 4.11, it is clearly seen that the WV-EWMA produces the best overall type-Ι 

errors for all the distributions. It is seconded by the classic EWMA when the skewness is less 

than or equal to 1.50. The WSD-EWMA also produces similar results to those of the classic 

EWMA though not as small as the former when the skewness is less than or equal to 1.50.  
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 Table 4.12 Table of Results for n=5 and lambda=0.20 

 λ=0.20 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

5 

Gamma  

 

0.50 0.0032 0.0034 0.0029 0.0032 

1.00 0.0042 0.0050 0.0028 0.0040 

1.50 0.0059 0.0076 0.0029 0.0060 

2.00 0.0089 0.0116 0.0032 0.0097 

2.50 0.0129 0.0167 0.0033 0.0163 

3.00 0.0187 0.0217 0.0037 0.0266 
 Weibull  

5  

0.50 0.0032 0.0034 0.0028 0.0031 

1.00 0.0041 0.0047 0.0028 0.0040 

1.50 0.0063 0.0082 0.0028 0.0066 

2.00 0.0090 0.0117 0.0032 0.0098 

2.50 0.0129 0.0166 0.0031 0.0138 

3.00 0.0166 0.0206 0.0030 0.0185 
 Lognormal  

5  

0.50 0.0032 0.0033 0.0029 0.0031 

1.00 0.0043 0.0050 0.0031 0.0041 

1.50 0.0058 0.0075 0.0030 0.0053 

2.00 0.0079 0.0106 0.0030 0.0068 

2.50 0.0114 0.0158 0.0035 0.0101 

3.00 0.0139 0.0187 0.0038 0.0124 

 

From Table 4.12, it is clearly seen that the WV-EWMA method produces the overall best 

type-Ι errors for all the distributions. It is closely followed by the classic EWMA for the 

gamma distribution, both the WSD-EWMA and the classic EWMA for the Weibull 

distribution and lastly by the WSD-EWMA for the lognormal distribution when the skewness 

is less than or equal to 1.50.  
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 Table 4.13 Table of Results for n=5 and lambda=0.30 

 λ=0.30 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

5 

Gamma  

 

0.50 0.0030 0.0030 0.0027 0.0029 

1.00 0.0041 0.0039 0.0026 0.0034 

1.50 0.0065 0.0057 0.0028 0.0049 

2.00 0.0096 0.0079 0.0030 0.0074 

2.50 0.0144 0.0111 0.0032 0.0124 

3.00 0.0203 0.0130 0.0035 0.0198 
 Weibull  

5  

0.50 0.0030 0.0030 0.0026 0.0028 

1.00 0.0041 0.0038 0.0026 0.0035 

1.50 0.0064 0.0057 0.0024 0.0048 

2.00 0.0096 0.0081 0.0030 0.0075 

2.50 0.0137 0.0108 0.0030 0.0103 

3.00 0.0181 0.0132 0.0033 0.0137 
 Lognormal  

5  

0.50 0.0031 0.0030 0.0027 0.0029 

1.00 0.0044 0.0042 0.0029 0.0036 

1.50 0.0063 0.0059 0.0030 0.0047 

2.00 0.0086 0.0077 0.0032 0.0056 

2.50 0.0121 0.0111 0.0037 0.0078 

3.00 0.0147 0.0128 0.0042 0.0096 

 

From Table 4.13, it is seen that the WV-EWMA produces the overall best type-Ι error for all 

the distributions. It is closely followed by the WSD-EWMA which produces good results 

when the skewness is less than or equal to 1.50 for all the distributions. The SC-EWMA also 

produces considerably good results for all the distributions when the skewness is less than or 

equal to 1.50. The latter can therefore be used as an alternative to the former under such 

experimental conditions. 

 

 

 

 



55 

 

 Table 4.14 Table of Results for n=5 and lambda=0.40 

 λ=0.40 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

5 

Gamma  

 

0.50 0.0030 0.0028 0.0026 0.0027 

1.00 0.0044 0.0035 0.0027 0.0032 

1.50 0.0068 0.0046 0.0028 0.0043 

2.00 0.0107 0.0059 0.0032 0.0060 

2.50 0.0154 0.0070 0.0035 0.0089 

3.00 0.0218 0.0080 0.0038 0.0145 
 Weibull  

5  

0.50 0.0030 0.0027 0.0024 0.0025 

1.00 0.0043 0.0034 0.0026 0.0032 

1.50 0.0070 0.0044 0.0026 0.0041 

2.00 0.0106 0.0059 0.0032 0.0059 

2.50 0.0150 0.0076 0.0034 0.0079 

3.00 0.0192 0.0089 0.0038 0.0103 
 Lognormal  

5  

0.50 0.0031 0.0029 0.0027 0.0028 

1.00 0.0048 0.0037 0.0030 0.0034 

1.50 0.0070 0.0050 0.0032 0.0043 

2.00 0.0095 0.0066 0.0036 0.0052 

2.50 0.0136 0.0085 0.0044 0.0069 

3.00 0.0159 0.0095 0.0048 0.0081 

 

From Table 4.14, it is seen that the WV-EWMA produces the overall best type-Ι error for all 

the distributions. It is closely followed by the WSD-EWMA which produces good results 

when the skewness is less than or equal to 1.50 for all the distributions. The SC-EWMA also 

produces considerably good results which are very close to those of the WSD-EWMA for all 

the distributions when the skewness is less than or equal to 1.50. The latter can therefore be 

used as an alternative to the former under such experimental conditions. 
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Table 4.15 Table of Results for n=5 and lambda=0.70 

 λ=0.70 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

5 

Gamma  

 

0.50 0.0033 0.0027 0.0028 0.0027 

1.00 0.0054 0.0027 0.0030 0.0028 

1.50 0.0084 0.0028 0.0035 0.0032 

2.00 0.0132 0.0027 0.0044 0.0038 

2.50 0.0188 0.0024 0.0051 0.0043 

3.00 0.0258 0.0024 0.0058 0.0053 
 Weibull  

5  

0.50 0.0029 0.0022 0.0023 0.0021 

1.00 0.0051 0.0024 0.0027 0.0025 

1.50 0.0089 0.0025 0.0033 0.0029 

2.00 0.0133 0.0028 0.0044 0.0038 

2.50 0.0183 0.0029 0.0050 0.0043 

3.00 0.0232 0.0031 0.0056 0.0050 
 Lognormal  

5  

0.50 0.0034 0.0028 0.0029 0.0029 

1.00 0.0056 0.0031 0.0035 0.0033 

1.50 0.0084 0.0035 0.0039 0.0038 

2.00 0.0117 0.0042 0.0048 0.0046 

2.50 0.0162 0.0048 0.0059 0.0057 

3.00 0.0189 0.0050 0.0066 0.0064 

 

From Table 4.15, it is noticed that the SC-EWMA produces the smallest and hence best type-

Ι errors for all the distributions. It was seconded by both the WV-EWMA and the WSD-

EWMA which produce results that are very closely related for all the distributions. Any one 

of these two methods could be used as alternatives for the SC-EWMA under this 

experimental condition. 

 

 

 

 



57 

 

 Table 4.16 Table of Results for n=7 and lambda=0.10 

 λ=0.10 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

7 

Gamma  

 

0.50 0.0030 0.0033 0.0029 0.0033 

1.00 0.0038 0.0051 0.0029 0.0046 

1.50 0.0049 0.0081 0.0032 0.0075 

2.00 0.0071 0.0131 0.0038 0.0132 

2.50 0.0096 0.0189 0.0043 0.0220 

3.00 0.0138 0.0264 0.0052 0.0346 
 Weibull  

7  

0.50 0.0031 0.0034 0.0028 0.0034 

1.00 0.0041 0.0051 0.0031 0.0052 

1.50 0.0054 0.0088 0.0032 0.0085 

2.00 0.0070 0.0130 0.0037 0.0133 

2.50 0.0100 0.0196 0.0040 0.0195 

3.00 0.0123 0.0253 0.0041 0.0257 
 Lognormal  

7  

0.50 0.0031 0.0034 0.0029 0.0033 

1.00 0.0034 0.0051 0.0029 0.0044 

1.50 0.0045 0.0080 0.0029 0.0062 

2.00 0.0059 0.0120 0.0031 0.0086 

2.50 0.0082 0.0187 0.0036 0.0130 

3.00 0.0098 0.0220 0.0036 0.0155 

 

From Table 4.16, it is seen that the WV-EWMA produces the overall best type-Ι error for all 

the distributions. It was followed by the classic EWMA which produces good results for all 

the distributions when the skewness is smaller than or equal to 1.50. Therefore, the latter can 

be used as an alternative for the former under this experimental condition. 
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Table 4.17 Table of Results for n=7 and lambda=0.20 

 λ=0.20 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

7 

Gamma  

 

0.50 0.0031 0.0032 0.0029 0.0031 

1.00 0.0041 0.0043 0.0029 0.0043 

1.50 0.0054 0.0062 0.0030 0.0066 

2.00 0.0079 0.0092 0.0032 0.0110 

2.50 0.0111 0.0125 0.0035 0.0183 

3.00 0.0154 0.0169 0.0039 0.0296 
 Weibull  

7  

0.50 0.0031 0.0030 0.0027 0.0032 

1.00 0.0041 0.0042 0.0029 0.0047 

1.50 0.0059 0.0063 0.0030 0.0071 

2.00 0.0077 0.0090 0.0032 0.0111 

2.50 0.0106 0.0129 0.0032 0.0158 

3.00 0.0137 0.0164 0.0033 0.0210 
 Lognormal  

7  

0.50 0.0029 0.0031 0.0028 0.0030 

1.00 0.0038 0.0043 0.0029 0.0041 

1.50 0.0052 0.0063 0.0030 0.0055 

2.00 0.0068 0.0088 0.0031 0.0073 

2.50 0.0095 0.0127 0.0034 0.0107 

3.00 0.0115 0.0151 0.0038 0.0130 

 

From Table 4.17, it is seen that the WV-EWMA produces the overall best type-Ι error for all 

the distributions. It was followed by the classic EWMA which produces good results for all 

the distributions when the skewness is smaller than or equal to 1.50. Therefore, the latter can 

be used as an alternative for the former under this experimental condition. 
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 Table 4.18 Table of Results for n=7 and lambda=0.30 

 λ=0.30 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

7 

Gamma  

 

0.50 0.0030 0.0029 0.0027 0.0030 

1.00 0.0040 0.0036 0.0027 0.0037 

1.50 0.0054 0.0047 0.0026 0.0053 

2.00 0.0082 0.0064 0.0028 0.0087 

2.50 0.0118 0.0087 0.0030 0.0147 

3.00 0.0162 0.0111 0.0032 0.0240 
 Weibull  

7  

0.50 0.0029 0.0027 0.0024 0.0028 

1.00 0.0041 0.0034 0.0027 0.0039 

1.50 0.0062 0.0049 0.0027 0.0059 

2.00 0.0084 0.0067 0.0031 0.0091 

2.50 0.0114 0.0089 0.0028 0.0125 

3.00 0.0148 0.0110 0.0030 0.0167 
 Lognormal  

7  

0.50 0.0028 0.0027 0.0026 0.0028 

1.00 0.0040 0.0037 0.0028 0.0037 

1.50 0.0055 0.0048 0.0029 0.0046 

2.00 0.0073 0.0064 0.0030 0.0061 

2.50 0.0104 0.0091 0.0035 0.0086 

3.00 0.0122 0.0108 0.0037 0.0105 

 

From Table 4.18, it is clearly seen that the WV-EWMA produces the best overall results for 

all the distributions. For the gamma distribution, it is closely followed by both the SC-

EWMA and the WSD-EWMA which produce results that are very close to one another when 

the skewness of the distributions is less than or equal to 1.50. For the Weibull distribution, 

the former is followed by both the WSD-EWMA and the SC-EWMA with the SC-EWMA 

having smaller results when the skewness of the distribution is less than or equal to 1.50. 

Lastly, for the lognormal distribution, the former is seconded by both the WSD-EWMA and 

the SC-EWMA with the WSD-EWMA producing smaller results when the skewness of the 

distribution is less than or equal to 1.50. It can therefore be deducted that the SC-EWMA and 

the WSD-EWMA can be used as alternatives to one another under this experimental 

condition. 
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Table 4.19 Table of Results for n=7 and lambda=0.40 

 λ=0.40 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

7 

Gamma  

 

0.50 0.0029 0.0027 0.0026 0.0027 

1.00 0.0041 0.0032 0.0026 0.0034 

1.50 0.0059 0.0039 0.0025 0.0046 

2.00 0.0090 0.0050 0.0029 0.0073 

2.50 0.0127 0.0061 0.0031 0.0119 

3.00 0.0176 0.0075 0.0034 0.0193 
 Weibull  

7  

0.50 0.0027 0.0026 0.0023 0.0024 

1.00 0.0044 0.0033 0.0026 0.0031 

1.50 0.0071 0.0045 0.0026 0.0041 

2.00 0.0107 0.0059 0.0032 0.0059 

2.50 0.0151 0.0076 0.0034 0.0079 

3.00 0.0198 0.0087 0.0039 0.0103 
 Lognormal  

7  

0.50 0.0032 0.0030 0.0028 0.0029 

1.00 0.0046 0.0037 0.0029 0.0033 

1.50 0.0069 0.0050 0.0032 0.0043 

2.00 0.0093 0.0064 0.0035 0.0052 

2.50 0.0136 0.0087 0.0044 0.0070 

3.00 0.0158 0.0095 0.0047 0.0081 

 

From Table 4.19, it is clearly seen that the WV-EWMA produces the best overall results for 

all the distributions. For the gamma distribution, it is closely followed by both the SC-

EWMA and the WSD-EWMA which produce results that are very close to one another when 

the skewness of the distributions is less than or equal to 1.50. For the Weibull distribution, 

the former is followed by both the WSD-EWMA and the SC-EWMA with the SC-EWMA 

having smaller results when the skewness of the distribution is less than or equal to 1.50. 

Lastly, for the lognormal distribution, the former is seconded by both the WSD-EWMA and 

the SC-EWMA with the WSD-EWMA producing smaller results when the skewness of the 

distribution is less than or equal to 1.50. It can therefore be deducted that the SC-EWMA and 
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the WSD-EWMA can be used as alternatives to one another under this experimental 

condition. 

  

Table 4.20 Table of Results for n=7 and lambda=0.70 

 λ=0.70 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

7 

Gamma  

 

0.50 0.0033 0.0027 0.0028 0.0027 

1.00 0.0052 0.0027 0.0029 0.0028 

1.50 0.0087 0.0029 0.0036 0.0033 

2.00 0.0132 0.0027 0.0043 0.0036 

2.50 0.0191 0.0026 0.0052 0.0044 

3.00 0.0259 0.0025 0.0060 0.0053 
 Weibull  

7  

0.50 0.0031 0.0023 0.0024 0.0025 

1.00 0.0046 0.0024 0.0026 0.0029 

1.50 0.0077 0.0026 0.0029 0.0036 

2.00 0.0110 0.0026 0.0034 0.0044 

2.50 0.0154 0.0030 0.0041 0.0055 

3.00 0.0194 0.0032 0.0046 0.0066 
 Lognormal  

7  

0.50 0.0033 0.0028 0.0028 0.0028 

1.00 0.0054 0.0030 0.0033 0.0031 

1.50 0.0084 0.0035 0.0038 0.0037 

2.00 0.0118 0.0042 0.0049 0.0047 

2.50 0.0164 0.0050 0.0061 0.0059 

3.00 0.0190 0.0051 0.0068 0.0066 

 

From Table 4.20, it is seen that the SC-EWMA produces the overall best results for the type-

Ι error for all the distributions. For the gamma distribution, it was followed by both the WV-

EWMA and the WSD-EWMA which produce very good results for all the skewness. The 

results produced by these two distributions were close to each other with the WSD-EWMA 

having smaller values. For the Weibull distribution, the SC-EWMA was followed once more 

by both the WV-EWMA and the WSD-EWMA with the WV-EWMA producing smaller 

results for all the skewness. For the lognormal distribution, the SC-EWMA was followed by 
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both the WV-EWMA and the WSD-EWMA. Here, the WSD-EWMA emerged with the 

smaller results for all the skewness.  

  

Table 4.21 Table of Results for n=10 and lambda=0.10 

 λ=0.10 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

10 

Gamma  

 

0.50 0.0028 0.0030 0.0027 0.0031 

1.00 0.0034 0.0042 0.0028 0.0046 

1.50 0.0045 0.0065 0.0033 0.0080 

2.00 0.0063 0.0099 0.0041 0.0138 

2.50 0.0084 0.0142 0.0049 0.0222 

3.00 0.0106 0.0190 0.0057 0.0334 
 Weibull  

10  

0.50 0.0033 0.0031 0.0027 0.0036 

1.00 0.0041 0.0046 0.0033 0.0058 

1.50 0.0048 0.0066 0.0034 0.0088 

2.00 0.0063 0.0097 0.0040 0.0135 

2.50 0.0078 0.0144 0.0043 0.0196 

3.00 0.0098 0.0186 0.0045 0.0251 
 Lognormal  

10  

0.50 0.0028 0.0030 0.0027 0.0031 

1.00 0.0034 0.0044 0.0030 0.0043 

1.50 0.0042 0.0063 0.0031 0.0061 

2.00 0.0051 0.0092 0.0034 0.0081 

2.50 0.0066 0.0141 0.0036 0.0113 

3.00 0.0077 0.0175 0.0040 0.0140 

 

From Table 4.21, it is clearly seen that the WV-EWMA produces the smallest type-Ι errors 

for all the distributions. When the skewness is less than or equal to 1.50, the classic EWMA 

also performs very well and can be used as an alternative for the WV-EWMA for all the 

distributions. Another important remark which can be made from this Table is the fact that 

the WSD-EWMA and the SC-EWMA produce very good results for all the distributions 

when the skewness was extremely small and almost symmetrical. 
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Table 4.22 Table of Results for n=10 and lambda=0.20 

 λ=0.20 

n Distribution 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

10 

Gamma  

 

0.50 0.0031 0.0031 0.0029 0.0033 

1.00 0.0037 0.0038 0.0028 0.0044 

1.50 0.0049 0.0050 0.0030 0.0069 

2.00 0.0067 0.0069 0.0033 0.0115 

2.50 0.0092 0.0100 0.0041 0.0195 

3.00 0.0123 0.0129 0.0046 0.0298 
 Weibull  

10  

0.50 0.0031 0.0029 0.0025 0.0034 

1.00 0.0040 0.0036 0.0028 0.0048 

1.50 0.0054 0.0053 0.0031 0.0078 

2.00 0.0066 0.0069 0.0033 0.0116 

2.50 0.0086 0.0099 0.0034 0.0166 

3.00 0.0111 0.0127 0.0037 0.0216 
 Lognormal  

10  

0.50 0.0030 0.0030 0.0028 0.0031 

1.00 0.0036 0.0038 0.0029 0.0041 

1.50 0.0045 0.0050 0.0030 0.0053 

2.00 0.0055 0.0069 0.0030 0.0067 

2.50 0.0075 0.0099 0.0034 0.0093 

3.00 0.0092 0.0118 0.0036 0.0114 

 

From Table 4.22, it is noticed that the WV-EWMA produces the overall best results for the 

type-Ι errors for all the distributions. It was closely followed by both the classic EWMA and 

the SC-EWMA which produce relatively similar results for all the distributions when the 

skewness is less than or equal to 1.50. 

 

  

Table 4.23 Table of Results for n=10 and lambda=0.30 

 λ=0.30 
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n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

10 

Gamma  

 

0.50 0.0028 0.0026 0.0026 0.0028 

1.00 0.0037 0.0032 0.0026 0.0039 

1.50 0.0050 0.0041 0.0027 0.0059 

2.00 0.0070 0.0051 0.0029 0.0096 

2.50 0.0097 0.0069 0.0033 0.0159 

3.00 0.0127 0.0086 0.0035 0.0249 
 Weibull  

10  

0.50 0.0031 0.0027 0.0025 0.0032 

1.00 0.0039 0.0031 0.0026 0.0043 

1.50 0.0053 0.0041 0.0026 0.0066 

2.00 0.0070 0.0052 0.0029 0.0097 

2.50 0.0092 0.0069 0.0029 0.0132 

3.00 0.0118 0.0087 0.0031 0.0176 
 Lognormal  

10  

0.50 0.0029 0.0028 0.0027 0.0029 

1.00 0.0039 0.0034 0.0029 0.0037 

1.50 0.0046 0.0041 0.0027 0.0046 

2.00 0.0061 0.0053 0.0029 0.0057 

2.50 0.0087 0.0075 0.0035 0.0077 

3.00 0.0102 0.0088 0.0037 0.0092 

 

From Table 4.23, it is observed that the WV-EWMA produces the best overall results for the 

type-Ι error for all the distributions. The SC-EWMA comes second and produces very good 

results for all the distributions when the skewness is less than or equal to 1.50. It can therefore 

be used as an alternative to the WV-EWMA for this interval. The classic EWMA and the 

WSD-EWMA also produce considerable results for all the distributions when the skewness 

is smaller than or equal to 1.50. 
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Table 4.24 Table of Results for n=10 and lambda=0.40 

 λ=0.40 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

10 

Gamma  

 

0.50 0.0028 0.0026 0.0025 0.0027 

1.00 0.0037 0.0028 0.0024 0.0034 

1.50 0.0053 0.0034 0.0026 0.0051 

2.00 0.0074 0.0042 0.0027 0.0081 

2.50 0.0102 0.0053 0.0030 0.0135 

3.00 0.0137 0.0062 0.0031 0.0213 
 Weibull  

10  

0.50 0.0031 0.0026 0.0024 0.0030 

1.00 0.0040 0.0028 0.0025 0.0040 

1.50 0.0058 0.0034 0.0025 0.0056 

2.00 0.0077 0.0044 0.0029 0.0085 

2.50 0.0101 0.0054 0.0028 0.0112 

3.00 0.0124 0.0066 0.0030 0.0147 
 Lognormal  

10  

0.50 0.0027 0.0025 0.0025 0.0026 

1.00 0.0036 0.0030 0.0027 0.0033 

1.50 0.0050 0.0038 0.0028 0.0043 

2.00 0.0064 0.0045 0.0029 0.0050 

2.50 0.0091 0.0061 0.0035 0.0067 

3.00 0.0106 0.0070 0.0038 0.0079 

 

From Table 4.24, it is seen that the WV-EWMA produces the best overall results for the type-

Ι error for all the distributions. It is seconded by the SC-EWMA method which gives good 

results for all the distributions. It can conveniently be used as an alternative to the WV-

EWMA under these experimental conditions. The classic EWMA and the WSD-EWMA also 

produce reasonable results for all the distributions when the skewness is less than or equal to 

1.50.  
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Table 4.25 Table of Results for n=10 and lambda=0.70 

 λ=0.70 

n Dist 𝒌𝟑 EWMA EWMA_SC EWMA_WV EWMA_WSD 

10 

Gamma  

 

0.50 0.0028 0.0025 0.0025 0.0026 

1.00 0.0041 0.0026 0.0026 0.0031 

1.50 0.0062 0.0027 0.0028 0.0040 

2.00 0.0091 0.0027 0.0029 0.0056 

2.50 0.0126 0.0028 0.0033 0.0081 

3.00 0.0166 0.0027 0.0037 0.0121 
 Weibull  

10  

0.50 0.0032 0.0024 0.0024 0.0029 

1.00 0.0044 0.0024 0.0025 0.0033 

1.50 0.0065 0.0026 0.0025 0.0041 

2.00 0.0090 0.0027 0.0030 0.0056 

2.50 0.0121 0.0029 0.0033 0.0068 

3.00 0.0154 0.0032 0.0037 0.0084 
 Lognormal  

10  

0.50 0.0029 0.0026 0.0026 0.0027 

1.00 0.0041 0.0028 0.0029 0.0031 

1.50 0.0059 0.0031 0.0031 0.0036 

2.00 0.0078 0.0036 0.0035 0.0041 

2.50 0.0111 0.0042 0.0043 0.0050 

3.00 0.0129 0.0047 0.0048 0.0058 

 

From Table 4.25, it is clearly seen that the SC-EWMA produces the overall best results for 

the type-Ι errors for all the distributions. It is closely followed by the WV-EWMA for all the 

distributions. The latter can be used as an alternative to the former. The WSD-EWMA also 

produces reasonable results when the skewness is smaller or equal to 1.50. However, for the 

lognormal distribution it produces good results for all the skewness. 

 

4.4 Graphical Representation of Results 

The results obtained, tabulated and analysed above can also be represented graphically as 

follows.  
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4.4.1 Gamma Distribution 

 

Figure 4.1 Graph of the Gamma distribution when n=3 and λ=0.10 

 

 

Figure 4.2 Graph of the Gamma distribution when n=3 and λ=0.20 
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Figure 4.3 Graph of the Gamma distribution when n=3 and λ=0.30 

 

 

Figure 4.4 Graph of the Gamma distribution when n=3 and λ=0.40 
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Figure 4.5 Graph of the Gamma distribution when n=3 and λ=0.70 

 

 

Figure 4.6 Graph of the Gamma distribution when n=5 and λ=0.10 
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Figure 4.7 Graph of the Gamma distribution when n=5 and λ=0.20 

 

 

Figure 4.8 Graph of the Gamma distribution when n=5 and λ=0.30 
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Figure 4.9 Graph of the Gamma distribution when n=5 and λ=0.40 

 

 

Figure 4.10 Graph of the Gamma distribution when n=5 and λ=0.70 



72 

 

4.4.2 Weibull Distribution 

 

Figure 4.11 Graph of the Weibull distribution when n=5 and λ=0.10 

 

 

Figure 4.12 Graph of the Weibull distribution when n=5 and λ=0.20 
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Figure 4.13 Graph of the Weibull distribution when n=5 and λ=0.30 

 

 

Figure 4.14 Graph of the Weibull distribution when n=5 and λ=0.40 
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Figure 4.15 Graph of the Weibull distribution when n=5 and λ=0.70 

 

 

Figure 4.16 Graph of the Weibull distribution when n=7 and λ=0.10 
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Figure 4.17 Graph of the Weibull distribution when n=7 and λ=0.20 

 

 

Figure 4.18 Graph of the Weibull distribution when n=7 and λ=0.30 
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Figure 4.19 Graph of the Weibull distribution when n=7 and λ=0.40 

 

 

Figure 4.20 Graph of the Weibull distribution when n=7 and λ=0.70 
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4.4.3 Lognormal Distribution 

 

Figure 4.21 Graph of the Lognormal distribution when n=7 and λ=0.10 

 

 

Figure 4.22 Graph of the Lognormal distribution when n=7 and λ=0.20 
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Figure 4.23 Graph of the Lognormal distribution when n=7 and λ=0.30 

 

Figure 4.24 Graph of the Lognormal distribution when n=7 and λ=0.40 
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Figure 4.25 Graph of the Lognormal distribution when n=7 and λ=0.70 

 

Figure 4.26 Graph of the Lognormal distribution when n=10 and λ=0.10 
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Figure 4.27 Graph of the Lognormal distribution when n=10 and λ=0.20 

 

 

Figure 4.28 Graph of the Lognormal distribution when n=10 and λ=0.30 
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Figure 4.29 Graph of the Lognormal distribution when n=10 and λ=0.40 

 

 

Figure 4.30 Graph of the Lognormal distribution when n=10 and λ=0.70 
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5 CONCLUSION 

This work was mainly concentrated on the exponentially weighted moving average (EWMA) 

control chart which is also termed the geometric moving average charts. This control chart 

type was of interest because of its ability to detect smaller shifts in the process mean faster 

than the classic Shewhart chart. Works from Bai and Choi (1995); Choobineh and Ballard 

(1987), and Nelson (1979) showed that most of the time under industrial conditions, the 

variable under investigation has a skewed distribution. Because of this reason, existing 

methods of control charts for skewed distributions was studied and a new approach using the 

skewness correction technique was proposed. The performances of these methods for the 

EWMA were compared among each other for specifically chosen skewed distributions. The 

distributions chosen for this work were the gamma, Weibull and lognormal because of their 

wide range of skewness. The comparison was done with the help of a Monte Carlo simulation 

technique which was preferred to other simulation techniques like the Markov’s 

approximation and the integral methods because of its simplicity and numerical nature. The 

comparison was done based on the average type-Ι errors of the methods for a wide range of 

skewness of the various distributions involved.  

 

This work was structured into 5 chapters. Chapter 1 focused mainly on the general 

introduction of statistical process controls, experimental design as a sampling technique in 

statistics and numerous continuous distributions such as the normal distribution, the 

exponential distribution, the Weibull distribution, the lognormal distribution and the gamma 

distribution. Chapter 2 focused mainly on control charts as a technique used in industrial 

statistics and quality control. Here, the classic Shewhart’s charts which is considered as the 

mother of all control charts for variables was discussed. The EWMA was also discussed in 

all aspects with its design which is very complex to understand broken down and simplified. 

Chapter 3 also spoke about control chart for variables, but this time went into those used 

when the distribution of the variable under investigation is skewed. The EWMA was also 

adopted for use when the distribution of the variable under investigation is skewed. Here, a 

new method using the skewness correction technique was developed and adopted for the 

circumstance. Chapter 4 was where the Monte Carlo simulation was introduced. Here, the 
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algorithm used to attain our objectives was discussed in detail. The results obtained were 

tabulated and discussed subsequently.  

 

5.1 Observations, Remarks and Proposals  

Sequel to the analyses of the results made in the previous chapter, the following conclusions 

and proposals can be made.  

• For n=3, when the smoothing parameter was in the interval 0.10 ≤ 𝜆 ≤ 0.20, the 

Weibull distribution produced the smallest results which were very close to the 

expected in-control value of 0.0027. The WV-EWMA emerged as the most suitable 

method to be used. As an alternative the WSD-EWMA could also be used if the 

experimenter feels like doing so because it also produced good readings.  

• For n=3, as the smoothing parameter is increased to the interval 0.30 ≤ 𝜆 ≤ 0.40, the 

Weibull distribution produced the smallest results for the type-Ι error. The WSD-

EWMA gave better readings in most cases as compared to the WV-EWMA especially 

when the skewness was extremely small. These two methods could be used as 

alternatives to each other depending on the obligations put in place by the governing 

body of the place where the experiment is being carried out.  

• For n=3, as the smoothing parameter was further increased to a higher value of 𝜆 =

0.70, the Weibull distribution produced the smallest readings when the skewness was 

less than or equal to 1.50. As the skewness is increased beyond 1.50, the gamma 

distribution overtook the former and produced the smallest results. The WSD-EWMA 

produced the smallest readings when the skewness was smaller than or equal to 1.50. 

The SC-EWMA which was the proposed method emerged as the one with the smallest 

type-Ι errors for all the distributions when the skewness was greater than 1.50. These 

two methods could be used as alternatives to each other under this circumstance.  

•  For n=5 and 7, when the smoothing parameter was 𝜆 = 0.10, the lognormal 

distribution produced the smallest results. When the smoothing parameter was 

increased to 𝜆 = 0.20, the Weibull distribution produced the smallest results. The 

WV-EWMA emerged as the most suitable method to be used. As an alternative, the 

classic EWMA could also be used if the experimenter feels like doing so because it 

also produced good readings when the skewness was smaller than or equal to 1.50.  
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• For n=5 and 7, as the smoothing parameter was increased to the interval 0.30 ≤ 𝜆 ≤

0.40, the Weibull distribution produced the smallest results for the type-Ι error. The 

WV-EWMA gave best results for the type-Ι error. The WSD-EWMA produced good 

readings when the skewness was less than or equal to 1.50 for the first situation while 

the SC-EWMA produced better results for the latter. This method could be used as 

an alternative to the former when the skewness is less than or equal to 1.50. 

• For n=5 and 7, as the smoothing parameter is increased to 𝜆 = 0.70, the gamma 

distribution produced the smallest results for the type-Ι error. The SC-EWMA which 

was the proposed method gave the smallest readings for the type-Ι error. It was closely 

followed by the WSD-EWMA which could be used as an alternative to the SC-

EWMA. 

• For n=10, when the smoothing parameter was in the interval 0.10 ≤ 𝜆 ≤ 0.20, the 

lognormal distribution produced the smallest overall results for the type-Ι error. The 

WV-EWMA also produced the best readings for the type-Ι error. It was followed by 

the classic EWMA method when the skewness was less than or equal to 1.50. Under 

this skewness, the latter could be used as an alternative to the former. 

• For n=10, when the smoothing parameter was in the interval 0.30 ≤ 𝜆 ≤ 0.40, the 

Weibull distribution produced the overall smallest readings for the type-Ι error. The 

WV-EWMA also produced the best results for the type-Ι error. It was closely 

followed by the SC-EWMA method which produced good results when the skewness 

was less than or equal to 1.50. The latter can therefore be used as an alternative to the 

former under such skewness. 

• For n=10, when the smoothing parameter was further increased to 𝜆 = 0.70, the 

gamma distribution produced the overall smallest readings for the type-Ι error. The 

SC-EWMA which was the proposed method performed best and produced the best 

results for the type-Ι error. It was followed by the WV-EWMA which produced 

considerably good results. Under these experimental conditions, the WV-EWMA 

could be used as an alternative to the SC-EWMA. 

 

In a nutshell, it can be deducted from above that the EWMA methods for skewed distributions 

are highly affected by the value of the smoothing parameter 𝜆 and the sample size n used for 
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the subgroups. It can also be suggested that if extremely small or medium shifts in the process 

mean are of interest, the WV-EWMA should be preferred to the others. If larger shifts are of 

interest, then the SC-EWMA should be preferred for optimal solutions to be obtained.    
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