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In this thesis, we address the risks that are related to the random residual lifetime of 

insureds. These risks could be classified as catastrophic mortality risk and longevity risk. 

Catastrophic mortality risk represents the sudden increases in mortality rates which means 

that the insurance companies or pension plans would have to make sudden payments to 

many policyholders. While catastrophic mortality risk describes the shorter lifetime than 

anticipated of an individual or a group, its counterpart longevity risk represents the 

uncertain evolution in mortality rates. When a group or an individual live longer than 

anticipated, insurance companies or pension plans would make annuity payments longer 

than expected. Since the catastrophic mortality risk and longevity risk could cause serious 

financial consequences, management of these risks is important for insurance companies 

and pension plans. 
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Catastrophic mortality risk often causes transitory jumps on the mortality curve. Several 

stochastic mortality models have been developed to capture these jump effects. To the 

best of author’ knowledge, all these jump models in the actuarial literature assume that 

the mortality jumps occur once a year, or they used a Poisson process for their jump 

frequencies. Due to their low probability and high-impact nature, the timing and the 

frequency of future catastrophic events and hence mortality jumps are unpredictable, 

however, the history of events could give information about their future occurrences. In 

this thesis, a new approach for the modelling of the frequency of catastrophic mortality 

risk is introduced and a specification of the Lee-Carter model using a renewal process is 

proposed. The history of events can be included in jump modelling by using this process. 

  

We perform several statistical tests on the inter-arrival times data of the catastrophic 

events to show that the renewal process could be used for jump frequencies. For this 

purpose, first, we detect outliers on the mortality time index. The statistical tests are 

applied to the inter-arrival times of these detected outliers. According to the test results, 

we can use the lognormal renewal process to model jump frequencies for all selected 

countries. 

  

Longevity risk is another risk factor that we examined in this thesis. We use index-based 

longevity swaps to hedge this risk. Index-based securities have many advantages. In such 

capital market solutions, it is possible to transfer the longevity risk to capital markets at 

lower costs. However, the potential differences between hedging instruments and pension 

or annuity portfolio cause longevity basis risk. Furthermore, we extended the proposed 

mortality model to incorporate longevity basis risk. We modelled reference population’s 

mortality by using the proposed mortality model and then the portfolio’s mortality is 

modelled by using the information of the reference population. According to our analysis, 

the common age effect is important for both populations. 

  

Since the longevity-linked derivatives are traded in the over-the-counter markets, an 

insurer or a pension plan can be exposed to counterparty default risk. In this thesis, we 

provide a hedging framework for longevity basis risk in the context of collateralization. 
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We assume that both parties are posting the collateral and they re-hypothecate it to 

increase the benefits of this transaction.  

  

We build hypothetical pension plan and index-based longevity swap transaction to show 

the effects of collateralization and risk reduction level. Our analysis present that bilateral 

collateral posting increases longevity basis risk reduction level and hedge effectiveness. 

 

 

Keywords: Catastrophic mortality risk, renewal process, longevity basis risk, 

collateralization, bilateral collateral posting, hedge effectiveness. 
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Bu tezde, sigortalı bireylerin kalan yaşam sürelerindeki belirsizlikten kaynaklanan riskler 

ele alınmıştır. Bu riskler katastrofik ölümlülük riski ve uzun ömürlülük riski olarak 

sınıflandırılabilir. Katastrofik ölümlülük riski, ölüm oranlarında meydana gelen ani 

artışları ifade etmektedir. Bu durum sigorta şirketlerinin birçok poliçe sahibine anlık 

ödemeler yapması anlamına gelmektedir. Katastrofik ölümlülük riski bireylerin 

beklenilenden daha kısa süre yaşaması riskini ifade ederken uzun ömürlülük riski 

bireylerin ölüm oranlarındaki gelişimin belirsizliğini göstermektedir. Bir grup ya da bir 

bireyin beklenenden daha uzun süre yaşaması durumunda sigorta şirketleri veya emeklilik 

planları da anüite ödemelerini beklenenden daha uzun süre yapmak zorunda 

kalmaktadırlar. Bu sebeple katastrofik ölümlülük riski ve uzun ömürlülük riski ciddi 

finansal kayıplara sebep olmaktadır ve bu risklerin yönetimi sigorta şirketleri ve emeklilik 

planları için büyük önem taşımaktadır. 
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Katastrofik ölümlülük riski, ölüm eğrileri üzerinde kısa süreli geçici sıçramalara sebep 

olmaktadır. Ölüm eğrisi üzerindeki bu sıçrama etkilerini modelleyebilmek amacı ile 

stokastik ölümlülük modelleri geliştirilmiştir. Bilindiği kadarı ile aktüerya literatüründe 

sıçramaları dahil eden ölümlülük modelleri, sıçramaların ya yılda bir kez meydana 

geldiğini ya da sıçrama sıklıklarının Poisson sürecine sahip olduğunu varsaymaktadır. 

Ölümlülük sıçramalarının meydana gelme olasılıklarının düşük olması ve yüksek şiddetli 

bir yapıya sahip olmaları nedeniyle ortaya çıkma zamanları tahmin edilememektedir; 

Ancak olayların geçmişi, gelecekteki meydana gelme olasılıkları hakkında bilgi 

vermektedir. Bu tezde, katastrofik ölümlülük sıçramalarının sıklığının modellenmesi için 

yeni bir yaklaşım geliştirilmiş ve yenileme süreci kullanılarak Lee-Carter ölümlülük 

modelinin farklı bir versiyonu önerilmiştir. Yenileme süreci kullanılarak olayların 

geçmişinin sıçrama sıklıklarının modellenmesine dahil edilmesi sağlanmıştır.  

  

Yenileme sürecinin sıçrama sıklıklarının modellenmesinde kullanılabileceğinin 

gösterilebilmesi amacı ile birkaç istatistiksel test uygulanmıştır. Bu amaçla, öncelikle uç 

değer analizi yöntemi kullanılarak ölümlülük zaman indeksindeki uç değerler tespit 

edilmiştir. Bu uç değerlerin meydana gelmeleri arasındaki geçen zamanlara istatistiksel 

analizler yapılmıştır. Test sonuçlarına göre sıçrama frekanslarının modellenmesinde 

lognormal yenileme sürecinin kullanılmasının seçilen bütün ülkeler için uygun olacağı 

görülmüştür. 

  

Bu tezde ele alınan bir başka risk faktörü ise uzun ömürlülük riskidir. Bu riskten korunma 

sağlamak amacı ile indekse bağlı uzun ömürlülük swapları kullanılmıştır. Ancak korunma 

araçları ve emeklilik veya sigortacı portföylerinin ölümlülük yapıları arasında farklılıklar 

ortaya çıkabilmektedir. Portföylerin ölümlülükleri arasındaki farktan kaynaklanan bu risk 

uzun ömürlülük baz riski olarak adlandırılmaktadır. Bu riskten korunma sağlamak ve 

modellemeye dahil edebilmek amacı ile önerilen ölümlülük modeli baz riski çerçevesinde 

genişletilmiştir. Önerilen model kullanılarak korunma aracının bağlı olduğu 

popülasyonun ölümlülüğü modellenmiştir. Daha sonra buradan elde edilen bilgiden de 
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faydalanılarak korunma sağlanan portföyün ölümlülüğü modellenmiştir. Analiz 

sonuçlarına göre ortak yaş etkisinin her iki popülasyon için önemli olduğu görülmüştür. 

  

Ölümlülüğe bağlı türev ürünler tezgâh üstü piyasalarda işlem gördüğü için bir sigorta 

şirketi ya da emeklilik planı karşı taraf temerrüt riski ile karşı karşıya kalmaktadır. Bu 

tezde, teminatlandırma bağlamında uzun ömürlülük baz riski için bir riskten korunma 

çerçevesi önerilmektedir. Önerilen çerçevede her iki tarafın da teminat verdiği ve 

teminatlandırma işleminin faydasını arttırmak amacı ile verilen teminatların yeniden 

kullanımının da yapıldığı varsayılmaktadır. 

  

Teminatlandırma işleminin etkilerini ve risk azalım seviyesini göstermek amacı ile 

varsayımsal bir emeklilik planı oluşturulmuş ve indekse bağlı uzun ömürlülük swap 

işlemi ele alınmıştır. Analiz sonuçları karşılıklı teminat alımının uzun ömürlülük baz 

riskinde önemli bir azalma sağladığını ve riskten korunma etkinliğini arttırdığını 

göstermektedir. 

 

 

Anahtar Kelimeler: Katastrofik ölümlülük riski, yenileme süreci, uzun ömürlülük baz 

riski, teminatlandırma, karşılıklı teminat alımı, korunma etkinliği. 
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1. INTRODUCTION 

Insurance companies and pension plans are constantly exposed to risks that have an 

impact on their long-term financial liabilities, including inflation risks, interest-rate risks, 

longevity risks, and catastrophic mortality risks. “Catastrophic mortality risk” describes 

dramatic increase in mortality rates over certain periods of time. This risk might be caused 

by catastrophic events like pandemics or wars. These events are infrequent; however, 

their occurrences could cause many death claims. Hence, insurance companies or pension 

plans have to make sudden payments to many policyholders. It is therefore important to 

manage their catastrophic mortality risk exposure for insurers or pension plans. 

 

The number of catastrophic events has risen in the last four decades. According to the 

World Disasters Report in 2016, rising global temperatures are causing global climate 

changes that increase the frequency of natural disasters. The timing and the severity of 

future catastrophic events are unknown; however, the history of such events could give 

information about their future occurrences. In this thesis, a new approach for the 

modelling of the frequency of catastrophic mortality risk is introduced and a specification 

of the Lee-Carter model using a renewal process is proposed. With this process, the 

history of events can be included in the modelling process. To the author's best 

knowledge, this is the first such approach to be presented in the actuarial literature. 

 

Another uncertainty for human mortality level is longevity risk that is the uncertain 

evolution of mortality recorded at adult and elderly ages. Mortality rates improved rapidly 

in the past decades with the improvements in hygienic and medical techniques. For 

example, the life expectancy of Canadian female and male new-borns was approximately 

66 and 62 years in 1940, respectively, while in 2011, new-born females and males could 

respectively be expected to be lived to 84 and 80. For developed countries such as Japan 

and Canada, dramatic increases in life expectancy have been recorded. Although such 

increases in life expectancy throughout the 20th century may be regarded among the 

greatest achievements of human society, the uncertainty related to this increase in life 

expectancy has effects on the financial strength of the insurance industry. The uncertainty 

of longevity improvements has increased pressures on annuity providers and pension 
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plans since they might end up paying the annuity benefits for longer periods of time than 

they expect [47]. As uncertainty regarding future mortality could cause important 

financial implications for individuals, annuity providers, pension plans, and social 

insurance program, the hedging of longevity risk is also an important consideration for 

both pension plan providers and companies offering life insurance. 

 

By definition, there are two important aspects involved in longevity risk: the uncertainty 

underlying human mortality and the adverse financial consequences for providers of 

pension plans and for insurance companies. It is important that both aspects be addressed 

while studying longevity risk. An appropriate stochastic mortality model can accurately 

measure the underlying uncertainty. For risk management purposes, we also need to 

investigate how we can efficiently manage adverse financial consequences. 

 

Various solutions have been presented to both manage and mitigate longevity risk. 

Reinsurance is a common and effective strategy for protection against large losses. 

However, due to the high costs of reinsurance, annuity and pension providers are limited 

in the extent to which they apply this strategy. Another approach is product diversification 

solutions, including the natural hedging strategy discussed by Cox and Lin [46] or the 

reinsurance swap presented by Lin and Cox [97]. These solutions have several 

advantages. For example, a liquid market is not required, and they can also be arranged 

at lower transaction costs. It is possible for insurance companies to diversify their 

products, life insurances, and annuities optimally for the hedging of longevity risk [123]. 

However, natural hedging's effectiveness depends on the mortality rates' age-specific 

distributions. Although Cox and Lin [46] indicated that natural hedging is an effective 

hedging strategy, the usage of this strategy is restricted in a way that involves the 

adjustment of the sales volume of annuity products and life insurance in order to maintain 

the proportion of liability [137]. 

 

Capital market solutions represent another hedging method; they include mortality 

securitization with the application of mortality- or longevity-linked securities such as 

longevity bonds or longevity swaps. In such capital market solutions, it is possible for an 
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insurance company to transfer its mortality or longevity risk exposure to capital markets. 

Securitization has remained an important financial innovation for pension plan providers 

and life insurance companies since 1988. This is because securitization could serve to 

increase the value of a firm by decreasing the agency and transaction costs, taxation, 

regulation, and informational asymmetries [44]. That is why capital market strategies are 

adopted for the hedging of longevity risk in this thesis. 

 

The mortality must be modelled for the assessment of longevity risk and the valuation of 

longevity-linked derivatives. While modelling and forecasting mortality, it is essential to 

use an appropriate mortality model. This model can be applied for quantifying the risk 

and providing a foundation for pricing and reserving. Due to the inadequacy of the quality 

and size of portfolio data, a reference population index is commonly used by hedgers. 

Therefore, mortality risk trading usually entails two different populations: the first is 

affiliated with the portfolio of the hedger, while the other is linked to the hedging 

instrument. As an example of this, we may consider the Swiss Re mortality bond, which 

was issued by Swiss Re in 2003. That bond was associated with a broad population 

mortality index; meanwhile, the hedger's exposure was linked to some insured lives [139]. 

Population basis risks are risks that are associated with differences in the experience of 

mortality between different populations of individuals who are associated with hedging 

instruments and the populations of individuals who are associated with the underlying 

exposure. Here, a multi-population mortality model is required for measuring the basis 

risk and for modelling mortality.  

 

Several multi-population mortality models have recently been presented. For example, 

Carter and Lee [29] proposed the so-called joint-k model, which models the mortality 

dynamics for two different populations by applying the same time-varying mortality 

index for both. Li and Lee [92] and Li and Hardy [91] proposed an augmented common 

factor model and the co-integrated Lee-Carter model. Furthermore, Venter and Şahin 

[127] extended the joint mortality modelling in the Bayesian shrinkage context. A number 

of single-population mortality models containing jump effects have been developed and 

broadly applied, while Zhou et al. [139] have been the only authors to date to consider a 

two-population model incorporating transitory jump effects. It is necessary to consider 
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mortality jump risks in the modelling of mortality securitization as they pose an important 

problem for a life insurer's solvency. The model of Zhou et al. [139] may be viewed as a 

generalization of that of Chen and Cox [34], who applied the two-population Lee-Carter 

model for the modelling of mortality. In the model of Lee and Carter [84], central 

mortality rates are modelled in such a way as to be correlated log-linearly with a time-

dependent mortality index as well as adjusted for age-specific effects via the use of two 

sets of age-dependent coefficients. Since extreme events and mortality improvements 

have different effects in different age groups, adjustments for age groups are necessary. 

With this approach, the model is able to successfully capture overall mortality trends as 

well as the age-specific changes occurring for different age groups [34]. Since mortality 

should be forecast accurately, we need a period- and age-dependent mortality model. For 

this purpose, the specification of the Lee-Carter mortality model is used for mortality 

jump modelling. 

 

Another risk factor that an insurer could be exposed to while trading longevity risk is the 

counterparty default risk. Since longevity-linked instruments are traded over the counter, 

there is always counterparty default risk existing. The previous financial crisis and 

historical experiences showed that counterparty default risk often leads to crucial losses 

for companies. Hence, a counterparty default risk mitigation tool should be considered. 

ISDA [71] indicates that the most credit-enhancing way is posting collateral regarding 

the value of longevity-linked security. 

 

This thesis has a twofold aim. First, the history of catastrophic events will be included in 

the mortality modelling process and a realistic modelling approach will thus be provided. 

For this reason, the renewal process will be introduced for mortality jump frequencies 

and it will be shown that the renewal process fits the data best. To the author's knowledge, 

no other study in the actuarial literature to date has used the renewal process for jump 

frequencies. 

 

The second aim is the introduction of collateralization for counterparty default risk within 

the framework of longevity basis risk management. This thesis provides a hedging 
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framework in the context of collateralization and further rehypothecates the posted 

collateral to increase the benefits of this transaction and to provide a meaningful risk 

reduction. Again, to the best of the author's knowledge, this hedging framework is the 

first study of its kind in the actuarial literature. 

 

The organization of the thesis is as follows. In the next chapter, we will identify the 

outliers that cause mortality jumps in the time series of mortality and we will also examine 

the causes of the outliers and their effects on human mortality. As the first step, we will 

apply an outlier detection method to the mortality time index and detect outliers on the 

mortality curve. In this chapter, a building block is constructed to model mortality jumps. 

 

In Chapter 3, we will model transitory mortality jumps with the renewal process. In the 

first step, we will perform statistical analysis to show that the renewal process can be used 

for mortality jump frequencies. Afterwards, a specification of the Lee-Carter model with 

mortality jumps will be proposed. We will then price a hypothetical bond to show the 

impact of the renewal process on bond prices. 

 

In Chapter 4, we will review longevity hedging products. In this chapter, the stakeholders 

of the longevity risk market will be introduced, followed by a comparison of the index 

versus customized hedging and a presentation of their advantages and disadvantages. The 

steps for constructing a hedge for longevity basis risk will also be described in this 

chapter.  

 

In Chapter 5, steps for the building a two-population mortality model will be described. 

The existing literature for multi-population mortality models are examined. The relative 

approach is used for constructing the two-population mortality model. After modelling 

the mortality rates, future mortality rates are obtained by using the semi-parametric 

bootstrapping method. 
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In Chapter 6, we will present the general hedging framework for longevity basis risk. 

Then we construct a hedging framework for longevity basis risk in the presence of 

counterparty default risk and collateralization. A hypothetical pension plan will be used 

to show the collateralization. Furthermore, optimal recovery rates will be obtained for 

hedging and the effect of the collateralization on hedge effectiveness will be examined. 

 

In the final section, conclusions and suggestions for future research will be presented. 

 

  

 

  



 

 7 

2. DETECTION OF OUTLIERS IN MORTALITY TIME INDEXES  

2.1. Introduction 

Interrupting phenomena have been a trending topic in the analysis of time series with the 

study of mortality trends. The main objective is finding the interruptions that are not 

consistent with normal trends of the mortality index. For instance, catastrophic events, 

pandemics, or terrorist attacks could bring about an immeasurable number of deaths. In 

recent years, for example, the avian flu in 2006 and the Ebola virus in 2014 caused 

approximately 1 million deaths. These interruptive events create spikes, which have a 

short effect, in the time series of mortality trends. In the statistical literature, they are thus 

referred to as outliers [88]. 

 

A variety of sources cause outliers, such as nonrepetitive exogenous events in a mortality 

index. By examining these outliers, significant information about mortality shocks that 

have an impact on time series could be discovered. The presence of outliers could be 

misleading in the analysis of time series of mortality [65]. Moreover, knowledge about 

the frequency, timing, and size of outliers could assist researchers in their efforts to 

forecast how time series of mortality might behave in the case of the occurrence of events 

of a similar interruptive nature. Thus, detecting these outliers is important for both model 

estimation and forecasting [88]. 

 

Several methods have been developed for analysing outliers in a time series. In 1972, Fox 

introduced innovative outliers and additive outliers. An iterative approach for identifying 

outliers was proposed by Tsay [124]. Chang et al. [32] developed likelihood ratio criteria 

to test for existing outliers for both criteria and types to distinguish them, and they 

introduced an iterative procedure to estimate time-series parameters in ARIMA models. 

A partially graphical method based on the mapping of time series into multivariate 

Euclidean space was proposed by Gather et al. [60]. More recently, Galeano and Pena 

[61] dealt with outliers in seasonal ARIMA models. Unfortunately, not many studies have 

examined the existence of outliers in historical mortality trends. Lee and Carter [84] 

considered the influenza pandemic of 1918 as being anomalous and they dealt with it by 

applying an intervention model. However, outlier analysis is commonly used in stochastic 
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investment modelling. A detailed discussion of it may be found in the works of Chan [30] 

and Chan and Wang [31]. 

 

Identifying the types and the locations of outliers is a common way to deal with them. 

Effective methods for finding the locations of outliers and for the estimation of the effects 

of largely isolated outliers have been considered by a few researchers; however, in this 

regard, some unresolved issues remain  

 

• The existence of outliers might lead to inappropriate modelling. 

• Certain outliers might fail to be detected as a result of a masking effect. 

• Outliers present in a time series could create bias in the parameter estimates and 

therefore could have an impact on the efficiency of outlier detection.  

 

Chen and Liu [37] proposed an iterative estimation method to solve these problems. In 

this chapter, we use the proposed method of Chen and Liu [37] to detect the outliers in 

the mortality index. Our aim here is to find the outliers that cause spikes in the mortality 

curve and construct a background for the jump modelling process. We do not consider 

the outlier adjustment problem.  

 

The main aim of this chapter is to provide a basis for modelling mortality jump frequency 

by identifying the locations of outliers. Here, we will only focus on the additive outliers 

that have an immediate and one-time short effect on the mortality index. With this goal 

in mind, time-series analysis is performed for a mortality index obtained from the Lee-

Carter model. We will seek the additive outliers of the mortality index and then the 

detected outliers will be matched with the events that might have caused them. Mortality 

data for the US, the UK, Switzerland, France, and Italy will be used here. 

 

In the next subsection, the events that cause the outliers are introduced. Afterwards, in 

Section 2.3, mortality data are described. Section 2.4 provides the definition and 

properties of the Lee-Carter mortality model. In Section 2.5, definitions are given for four 

types of outliers and then the detection procedure is explained. Finally, in Section 2.6, 
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Chen and Liu's method is applied to find the outliers of the mortality of the US, the UK, 

Switzerland, France, and Italy. The conclusions of this chapter are presented in Section 

2.7. 

 

2.2. Sources of Outliers 

There are several factors that cause outliers in a mortality time index. They may be 

classified as follows [59]: 

 

•  Miscalculation of claim levels 

• Random statistical fluctuations 

• Misestimation of mortality trends 

• Catastrophic events 

 

Catastrophic events are the most important of these factors. Since catastrophic events 

might be the source of substantial increase in losses within a narrow time period, they 

present a threat to insurers and pension plans. In this section, the possible reasons for 

these outliers are presented. 

 

2.2.1. Catastrophic Events 

Catastrophic events may be defined as events that cause significant and typically abrupt 

suffering or damage; in other words, they are disasters. Catastrophic events could be 

summarized as follows. 

 

2.2.1.1. Wars 

Throughout history, millions of military personnel and civilians have died because of 

wars. The estimated numbers of deaths due to the 20th century's deadliest wars are shown 

in Table 2.1. Estimating the losses that arise from wars, however, is quite difficult due to 

unreliable data, the multitude of different causes of deaths, and historians' varying views. 

The estimates in the table are constructed to show the magnitude of these events. 
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As a result, life insurers want to have war exclusion clauses in their policy contracts to 

avoid paying out claims that are related to wars [118]. 

 

Table 2.1: Five Deadliest Wars 

Years War Estimated Number of 

Deaths 

1914-1918                          World War I                                15,000,000 

1917-1922 Russian Civil War                             9,000,000 

1928-1937                  1st Chinese Civil War                          5,000,000 

1939-1945                         World War II                              66,000,000 

1960-1975                   2nd Indo-China War                           4,200,000 

Source: CRED [49]. 

 

2.2.1.2. Natural Disasters 

A natural disaster is another event that causes significant loss of human lives and 

destruction [49]. Earthquakes, floods, extreme temperatures, cyclones, wildfires, volcanic 

activities, and droughts are all examples of natural disasters. Table 2.2 shows the 5 

deadliest natural disasters of the 20th century. It can be understood from the table that 

floods and droughts are typically the deadliest natural disasters, and these events occur 

most often in developing countries. Since the populations of such countries are often 

large, the effect on the life insurance industry could be even larger [68]. 

 

Table 2.2: Five Deadliest Natural Disasters 

Years Country Natural Disaster Estimated Number of Deaths 

1928 China Drought 3,000,000 

1931 China Flood 3.700,000 

1942 India Drought 1,500,000 

1943 Bangladesh Drought 1,900,000 

1959 China Flood 2,000,000 

Source: CRED [49]. 
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2.2.1.3. Transport, Industrial, and Other Accidents 

Examples of industrial accidents are leaks or spills of toxic chemicals and various types 

of explosions. Accidents in boat, air, road, and rail transport are some examples of 

transport accidents. Fires and structural collapses are other types of accidents. Table 2.3 

presents the 5 deadliest transport and industrial accidents since 1900. 

 

It should also be noted here that a nuclear accident could cause increased mortality rates 

over a longer time period. For instance, the Chernobyl disaster of 1986 was the world's 

worst nuclear power plant accident in history and caused up to 50 deaths in the immediate 

fire and explosion. However, it is estimated that it may have also caused between 4,000 

and 985,000 subsequent cancer deaths in the years since 1986 [133]. 

 

Table 2.3: Five Deadliest Transport and Industrial Accidents 

Year Country Accident Estimated Number of 

Deaths 

1923 Japan Fire 3,800 

1956 Colombia Explosion 2,700 

1984 India Gas leak 2,500 

1987 Philippines Boat accident 4,000 

2002 Senegal Boat accident 1,860 

Source: CRED [49]. 

 

2.2.1.4. Terrorist Attacks 

Terrorism is planned, politically motivated violence against non-combatant targets 

perpetrated by agents or subnational groups [109]. Because data on terrorist attacks are 

obtained from open sources rather than government collection programs, the data are 

incomplete. The deadliest terrorist attack in history was the September 11 terrorist attack 

of 2001, in which approximately 3,000 people died. Other terrorist attacks such as 

bombings and hijackings have resulted in many deaths. Moreover, biological weapons 

also cause substantial numbers of deaths [68]. The deadliest terrorist attacks in recent 

times are shown in Table 2.4. 
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Table 2.4: Five Deadliest Terrorist Attacks 

Year Country Accident Estimated Number of 

Deaths 

1978 Iran: Abadan Mujahideen-I-

Khalq 

430 

1994 Rwanda: Gikoro Hutus 1,180 

2001 United States: NYC 

Washington 

Al-Qaeda 3,000 

2004 Nepal: Bedi Communist 

Party of Nepal 

518 

2007 Iraq: Sinjar Islamic State of 

Iraq 

430 

Source: National Counterterrorism Center [109]. 

 

2.2.2. Disease 

2.2.2.1. AIDS and SARS 

Human immunodeficiency virus (HIV) leads to acquired immunodeficiency syndrome 

(AIDS). immune system's cells are infected with this virus that weakens it. The average 

time to develop AIDS for an HIV-infected individual is 10-15 years [135]. The World 

Health Organization considers HIV as a pandemic. The deadliest outbreak of HIV 

occurred more than four decades ago and caused approximately 60 million people to be 

infected, nearly 30 million of whom died due to AIDS-related causes. However, therapy 

and HIV prevention efforts have become increasingly available, leading to decreases in 

AIDS-related deaths and HIV infections [77]. 

 

Severe acute respiratory syndrome (SARS) is thought to be a virus that has crossed over 

from animals to humans. The SARS coronavirus is the cause of this serious respiratory 

illness [112]. In 2002, the first SARS outbreak occurred in China, and the last one 

occurred in 2003. During this period a total of 8,096 SARS cases caused 774 deaths across 

26 countries. As long as the SARS coronavirus continues to exist in wildlife species, the 

possibility of another SARS epidemic remains [132]. 
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2.2.2.2. Pandemics 

A pandemic could be defined as a geographically widespread outbreak of an infectious 

disease. In such a case, the disease may spread around the whole world, infecting a 

substantial proportion of the global population. The World Health Organization [134] has 

stated that a pandemic could be triggered by the following conditions being met: 

 

• An agent that has been absent from the human population for a long time or is 

new could cause a global disease outbreak; 

• A human could be affected directly by the agent and acquire a serious illness; 

• The agent could spread sustainably and efficiently among humans. 

 

On the contrary, an epidemic is a disease that affects people in a more specific 

geographical region [113]. Throughout history, several notable pandemics have occurred, 

such as smallpox, plague, and tuberculosis [108]. Furthermore, diseases such as anthrax, 

Crimean-Congo haemorrhagic fever, avian influenza, Ebola, human monkeypox, H1N1 

influenza virus or other influenzas, Hendra virus infection, and tularemia could be 

considered as possible sources of future pandemics [135]. 

 

2.2.3. Influenza Pandemics 

An influenza pandemic is the spread of an infectious viral disease that causes a large 

number of deaths. The future occurrence of an influenza pandemic is inevitable, since 

these viruses may mutate, leaving the human immune system unable to recognize them 

[111]. 

 

Although seasonal influenza epidemics are an annually occurrence, in general, influenza 

pandemics are infrequent and unpredictable. In the last century, 4 pandemics occurred: 

the Spanish flu, the Asian flu, the Hong Kong flu, and the H1N1 flu. These are 

summarized in Table 2.5. 
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Table 2.5: Four Influenza Pandemics 

Year   Country Disease Estimated Deaths 

2009-2010 (H1N1 flu) Mexico H1N1 18,500 

1968-1969 (Hong Kong flu) China H3N2 1,000,000 

1957-1958 (Asian flu) China H2N2 1,000,000-2,000,000 

1918-1919 (Spanish flu) Global H1N1 50,000,000-100,000,000 

Source: WHO [135]. 

 

2.3. Data Description 

In this thesis, mortality data for the US, the UK, Switzerland, France, and Italy are used. 

We need both the central death rates and exposed to risk data to be able to fit the Lee-

Carter model and conduct outlier analysis. 

 

The US mortality data originate from the National Center for Health Statistics (NCHS) 

for the years of 1900-2017 and for all ages. The UK, Swiss, and French data originate 

from the Human Mortality Database (HMD); they are from the period of 1922-2016 and 

again for all ages. The Italian mortality data are also obtained from the HMD for the 

period of 1922-2014 and for all ages. 

 

2.4. The Lee-Carter Model 

This model describes the logarithm of central death rates in the following way: 

 
, ,ln( )x t x x t x tm a b k e= + +   (2.1) 

Here, xa  is an age-specific component; the time-varying tk  parameter summarizes the 

general level mortality level; and the other age-specific parameter, xb , explains how 

slowly or how rapidly mortality varies for each age as the mortality index changes. 
,x te  is 

an error term reflecting age-specific influences that are not captured by the model. 
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The Lee-Carter model is an overparameterized model. For obtaining a unique solution,  

xa  is taken to be the arithmetic mean of 
,ln( )x tm  overtime and the sums of  xb  and tk  are 

respectively normalized to unity and zero. Because the parameters on the right-hand side 

of Equation (2.1) are not observable, using the method of ordinary least squares to fit the 

model would be impossible. A two-stage estimation procedure is used to overcome this 

problem and this procedure gives the exact solution. We can apply the singular value 

decomposition (SVD) method to the matrix of 
,ln( )x t xm a−  for obtaining the estimates of  

xb  and tk  as the first step. As the second step, the time-varying terms are iteratively 

reestimated given the values of  xa  and  xb , which come from the first step. This makes 

the actual sum of death at time t equal to the implied sum of deaths at time t. 

,( (exp( ))),t x t x x t

x

D P a b k= +  

where 
tD  represents the actual sum of deaths at time t, and 

,x tP  signifies the population 

composing age group x at time t. In the original Lee-Carter model, the autoregressive 

integrated moving average (ARIMA) model is applied for the modelling of the dynamics 

of tk  [89]. 

 

Several alternative methods have also been presented in the actuarial literature to estimate 

parameters of the Lee-Carter model. For instance, Brouhns et al. [23] proposed a 

regression-type model with Poisson assumption for number of deaths ( tD ). This strategy 

was found to have very good statistical properties when numbers of deaths had a Poisson 

distribution. However, this assumption may lead to incorrect inferences when tD  

includes outliers as a result of pandemics, wars, or other catastrophic events [88]. In 

addition, as indicated by Brouhns et al. [23], the estimation results from both methods are 

almost the same. Therefore, we adopt the SVD method to obtain the parameters. 

 

The two-stage SVD procedure is thus implemented for the historical mortality data of the 

US, the UK, Switzerland, Italy, and France for the relevant time periods. We obtain the 

fitted xa  and xb  values given in Table 2.6 and the time-varying mortality index tk  in 

Figure 2.1. Parameter values of xa  show that mortality demonstrates an upward trend in 
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general; the younger ages reveal lower rates of mortality while the older ages reveal 

higher mortality. Parameter xb  reflects mortality's tendency at age x to change as the 

general level of the mortality index is changing. As we can see from Table 2.6, the values 

of xb  are positive, indicating that mortality decreases for all ages. The decreasing trend 

of time-varying mortality index tk  highlights the improvement of mortality with time for 

all countries. Moreover, sudden increases that cause mortality jumps in the 1910s and 

1970s may be seen in Figure 2.1, which will be discussed in later sections. 

 

            Table 2.6: Estimated Values of xa  and xb from the Lee-Carter Model 

 US UK Switzerland Italy France 

Age Group    xa          xb  xa          xb  xa          xb  xa          xb  xa          xb  

<1 

1-4 

5-14 

15-24 
25-34 

35-44 

45-54 
55-64 

65-74 

75-84 
>85 

-3.593    0.146 

-6.450    0.192 

-7.401   0.153 

-6.399   0.096 
-6.085   0.097 

-5.575   0.082 

-4.858   0.061 
-4.095   0.051 

-3.317   0.048 

-2.483   0.043 
-1.661   0.029 

-4.022   0.147 

-6.698   0.193 

-7.877   0.152 

-7.037   0.106 
-6.737   0.097 

-6.105   0.077 

-5.208   0.063 
-4.285   0.051 

-3.367   0.047 

-2.459   0.041 
-1.589   0.026 

-4.204   0.133 

-7.033   0.165 

-7.846   0.136 

-6.892   0.094 
-6.678   0.094 

-6.194   0.085 

-5.341   0.073 
-4.442   0.067 

-3.514   0.066 

-2.533   0.056 
-1.575   0.031 

-3.662   0.151 

-6.520   0.206 

-7.621   0.136 

-6.785   0.106 
-6.542   0.099 

-6.061   0.079 

-5.276   0.057 
-4.414   0.046 

-3.475   0.047 

-2.470   0.043 
-1.549   0.029 

-3.947   0.152 

-6.828   0.172 

-7.781   0.135 

-6.677   0.109 
-6.344   0.103 

-5.793   0.078 

-5.036   0.057 
-4.230   0.053 

-3.492   0.057 

-2.552   0.053 
-1.597   0.032 

 

2.5. Analysis of Outliers 

After fitting the Lee-Carter model, we can proceed to the outlier analysis of the mortality 

time index, tk . Two key issues should be considered in analysing the outliers of time-

series data: 

 

• Searching for the outliers' types and locations (i.e., outlier detection problem) 

• Incorporating the outliers' effects into a model for obtaining improved parameter 

estimates of an underlying time-series model (i.e., outlier adjustment problem) 
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Figure  2.1: Estimation of tk  for All Countries 

 

Since we want to incorporate the timing and frequency of outliers into our mortality 

modelling process, only the first issue is considered in this thesis. The problem of outlier 

detection in time series was addressed first in the work of Fox [58], who adopted 

likelihood ratio testing for detecting outliers [88]. Chen and Liu [37] later presented an 

augmented iterative method for use in the joint estimation of both outlier effects and 

model parameters. 

 

This thesis employs the method of Chen and Liu [37], which is based on outliers' effects 

on estimated residuals for the detection of outliers. We will restrict the analysis to the 

necessary points for detecting the outliers. The first step in the process of detecting 

outliers is specifying the correct ARIMA model to be used for a mortality time index that 

is free of outliers. 
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2.5.1. Outlier Models in Time Series 

It is possible to apply the adopted method to general seasonal and nonseasonal ARIMA 

processes. Let tz  be a time series that follows an ARIMA process without outliers: 

 ( )(1 ) ( )d

t tB B z B a − =                                           (2.2) 

where 1t tBz z −= ; ta  is normally distributed white noise. A time series that is subject to 

the influences of a nonrepetitive event could be described as follows:  

 *

1( ) ( ),t t tz z wL B I t= +  (2.3) 

where tz  follows the general ARIMA process as described in Equation (2.2), w is the 

magnitude of the outlier, and 1( ) 1tI t =  if 1t t=  and 1( ) 0tI t =  otherwise. 1( )tI t  is an 

indicator function here for the occurrence of outlier effects, while 1t  is the outlier's 

possible location, and w  and ( )L B  respectively signify the magnitude and the dynamic 

pattern of the outlier effect. If we know the dynamic pattern and the location of an outlier, 

then model (2.3) is the intervention model from the work of Box and Tiao [17]. Here we 

assume the estimation problem where neither dynamic pattern nor location is known. The 

applied approach aims to classify outliers' impacts into four categories with the imposing 

of a special structure on ( )L B . These categories include additive outliers (AOs), 

innovational outlier (IOs), temporary changes (TCs), and level shifts (LSs), respectively 

defined as follows [37]: 

 AO:  ( ) 1L B = , (2.4) 

 IO:  ( ) ( ) / ( )L B B B = , (2.5) 

 TC:  ( ) 1/ (1 ),L B B= −  (2.6) 

and 

 LS:  ( ) 1/ (1 ).L B B= −  (2.7) 

 

A discussion on structure and the nature of these outliers may be found in the works of 

Fox [58], Tsay [124], and Chen and Tiao [38]. 
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2.5.2. Impact of Outliers on the Time-Series 

The impacts of outliers on observed time series are model-independent, except for that of 

an IO. In addition, LS and AO are two boundary cases of TCs, for which 0 =  and 1. =  

The effect of a TC will exponentially decay according to a dampening factor,  , on the 

time series at a given time. In practice, the value of the dampening factor lies between 0.6 

and 0.8 [99]. However, Chen and Liu [37] recommended that 0.7 =  be used to identify 

a TC. The LSs generate step changes in the series that are abrupt and permanent. For a 

time series, all observations are affected by an IO beyond time T via the memory of the 

underlying outlier-free process. In the case of AOs, the outlier exerts one short and 

immediate effect on the time series [37]. 

 

Using Equation (2.5), in the event that an IO occurs at 1t t= , this outlier's effect on 
1t kz +

, 

for 0k  , equals kw , where w  represents initial effect and k  is the kth coefficient of 

the ( )B  polynomial, where: 

( ) ( ) / ( )B B B  =  

2

0 1 2{ ( ) ...},B B  = + + +  
0 1. =  

A graphical illustration of the effects of the outliers is given in Figure 2.21. If time series 

tz  is subject to m outliers, Equation (2.3) becomes the following:  

 *

1

( ) ( ),
m

t t j j t j

j

z z w L B I t
=

= +  (2.8) 

where ( ) ( ) / ( )jL B B B =  for IOs, ( ) 1jL B =  for AOs, ( ) 1/ (1 )jL B B= −  for LSs, and 

( ) 1/ (1 )jL B B= −  for TCs at jt t=  [37]. 

 

2.5.3. Detection of Outliers 

The first step in the process of outlier detection is the specification of the appropriate 

ARIMA model to be applied for an outlier-free series.  

 
1 Figure 2.2 is taken from the study of Li and Chan [88], and T represents the outlier time in the figure. 
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Figure 2.2: Types of Outliers. 

 

Chen and Liu [37]'s method is used for the detection of outliers. They assumed that time-

series parameters are known and that the series is being observed from t J= −  to t n= . 

Here, J  is an integer that is larger than p q+ , where p and q are the orders of 

polynomials ( )B  and ( )B . They defined the ( )B  polynomial as a first step: 

1 2 2( ) ( ( )(1 ) ) / ( ( )) 1 ...dB B B B B B    = − = − − −  

Here, the j  weights for j beyond a large J  will equal 0, because ( )B 's roots are all 

outside of the unit circle.  The estimated residuals te  may then be written as follows: 

           
*( ) ,t te B z=     for      t =1,2, …  (2.9) 

If the estimated residuals are rearranged for the outlier types, then we have 

 AO:    
1

ˆ ( ) ( )t t te w B I t a= +                    (2.10) 

 IO:    
1

ˆ ( )t t te wI t a= +  (2.11) 
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 TC:     
1

ˆ ( ( ) / (1 B)) ( )t t te w B I t a = − +    (2.12) 

and 

 LS:  
1

ˆ ( ( ) / (1 B)) ( )t t te w B I t a= − +    (2.13) 

 Alternatively, Equations (2.10) - (2.13) can be rewritten as follows: 

 ˆ ,t it te wx a= +   
1 1, 1,..., ,t t t n= +     and  1,2,3,4,i =  (2.14) 

where 0tx =  for 1t t , 1tx = , and for all 1k  , 
11( ) 0t kx + = , 

12( )t k kx + = − , 

13( ) 1
1

k

t k jj
x + =

= − , and 
1

1 1

4( ) 1

kk k

t k j kj
x    

− −

+ =
= − − . For the effect of the outlier at 

1t t= , using the least squares estimate makes it possible to express the following: 

1

1

2

1 2

2

ˆ
ˆ ( ) ,

n

t tt t

AO n

tt t

e x
w t

x

=

=

=



 

11
ˆ ˆ( ) ,IO tw t e=  

1

1

4

1 2

4

ˆ
ˆ ( ) ,

n

t tt t

TC n

tt t

e x
w t

x

=

=

=



 

1

1

3

1 2

3

ˆ
ˆ ( ) ,

n

t tt t

LS n

tt t

e x
w t

x

=

=

=



 

Here it should be noted that, for the last observation, 1,t t=

ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) .AO IO LS TC nw n w n w n w n e= = = =  Hence, it is not possible to distinguish the type 

of an outlier if that outlier occurs at the end of a time series [37]. 

 

A possible method for detecting outliers was discussed by Chang et al. [32], who found 

the maximum value of standardized statistics for outlier effects: 

( )
1

1/2

2

1 2 1
ˆ ˆ ˆ( ) ( ) / ,

n

AO t AO a

t t

t x w t 
=

 
=  
 
  

1 1
ˆ ˆ ˆ( ) ( ) / ,IO IO at w t =  
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   ( )
1

1/2

2

1 4 1
ˆ ˆ ˆ( ) ( ) / ,

n

TC t TC a

t t

t x w t 
=

 
=  
 
  

 ( )
1

1/2

2

1 3 1
ˆ ˆ ˆ( ) ( ) / .

n

LS t LS a

t t

t x w t 
=

 
=  
 
            (2.15) 

These statistics follow an approximately normal distribution for a given location. The 

final test statistic is given below: 

ˆ ˆ ˆ ˆmax{| ( ) |,| ( ) |,| ( ) |,| ( ) |}.t IO AO LS TCt t t t    =  

If 1
ˆmax | ( ) | ,

pt t t t C =   C being a predetermined critical value, then the type of an outlier 

detected at 1t ; 
pt  is AO, IO, TC, or LS. For a reasonable level of sensitivity, in this thesis 

it is assumed that C=2.5, as per the recommendation of Liu and Hudak [99]. 

 

2.5.4. Estimation of the Residual Standard Deviation  a  

We must estimate a  to obtain the outliers' test statistics as given by Equation (2.15). 

The detection of outliers might be sensitive to this estimate. Therefore, if outliers exist 

and if the usual sample standard deviation is used, a  could be overestimated. There are 

a few methods that provide a better estimation of a . The first one is the median absolute 

deviation (MAD) method, the second one is the α% trimmed method, and the last one is 

the omit-one method.  

  

In this study we employ the MAD estimate of residual standard deviation, which is 

expressed as follows: 

ˆ ˆ{| |} 1.483,a tmedian e e = −   

Here, e  represents the estimated residual median [5]. Using this method allows us to 

decrease the possibility of misdetection due to inflated estimates of residual standard 

deviation. If the outliers' locations are specified and their impacts are also estimated, then 

we can calculate a  on the basis of the adjusted residuals' sample standard deviation. 
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2.6. Outlier Detection for Countries 

In this section, a step-by-step illustration of the detection of outliers is provided for the 

mortality indexes, tk s, which are obtained from the mortality data of five countries. 

  

Step I: To implement the outlier detection process, we need to specify the order of the 

underlying outlier-free ARMA process for the mortality index. We use the Box and 

Jenkins method to identify the order of the model and the mortality time-series index, ,tk   

is modelled as AR(1), which is a more appropriate order for the mortality indexes for the 

countries. Furthermore, Leng and Peng [85] showed the consistency of the dynamics of 

the mortality index if tk  follows an AR(1) model, but an AR(p) model leads to a different 

conclusion and gives inconsistent results [94]. Please see Figure 2.3. The ACF figure 

demonstrates the AR effect on the time series and PACF shows the order of AR. 

 

Figure 2.3: ACF and PACF for the Countries 

 

Then the parameter of the AR process is estimated from the mortality time series. The 

parameter values and their standard errors are shown in Table 2.7 for all countries. 
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Table 2.7: Parameters of AR Process 

 US UK Switzerland Italy France 

 0.9982 0.9988 0.9992 0.9989 0.9963 

s.e. 0.0025 0.0018 0.0011 0.0014 0.0049 

 

Step II: By using the AR(1) model, we obtain the residuals. As we mentioned before, we 

only focus on additive outliers because of our mortality jump modelling purposes. For      

t = 1,…n, the test statistic ˆ ( )AO t  is computed by using the estimated residuals obtained 

from the model. Let ˆmax{| ( ) |},t AO t =  and if 
1

ˆmax | ( ) |t t AO t C =  , then it means that 

there is an outlier at time 1t .  

  

According to this detection procedure, we compute the outliers, which signify jumps in 

the mortality curve, in the mortality time series for all countries. The years of detected 

outliers’ years for the countries and their test statistic values are shown in Table 2.8. 

 

For the US, in 1901 the occurrence of an extreme heat wave was the source of 9,500 

deaths. That heat wave stretched across half of both June and July along the eastern coast 

of the United States and, more than 100 years later, is still considered as one of the worst 

heat waves of history. In the 1918-1919 period, the additive outliers are the consequence 

of the Spanish flu pandemic. Effects of World War I and the pandemic could be the reason 

for the outliers in 1920 and 1921. In the 1937-1941 period, floods and hurricanes caused 

many deaths. In 1974 and 1975, 148 tornadoes occurred across 13 states. In 1978, six 

natural disasters occurred in the US: a firestorm, tropical storm, cold wave, hurricane, 

blizzard, and tornado. The 1980 heat wave, though less devastating than that of 1901, 

nevertheless claimed at least 1,700 lives. 

  

For the UK, the number of deaths in 1929 was almost double that of 1928. A possible 

cause is the Great Depression, which had a four-year effect on UK mortality. The Second 

World War could be the reason for the outlier in 1941. In 1950, South and North Korea 

went to war. That three-year war included thousands of UK conscripts; in particular, the 
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English and Welsh populations lost notable numbers of healthy, younger individuals. This 

war could be the reason for the outlier in 1952. Floods, outbreaks, a flu pandemic, and 

severe winter weather could have caused the outlier in 2009. 

 

Table 2.8: Years of Detected Outliers and Test Statistic Values 

US             

Year 1901 1918 1919 1920 1921 1937 1938 1941 1974 1975 1978 1980 

Test 

statistic 

-2.6 6.9 -8.3 -3.3 -3.5 -3.1 -3.2 -2.5 -3.1 -2.7 7.3 -9.8 

UK             

Year 1929 1939 1941 1942 1952 2009       

Test 

statistic 

3.9 2.7 -3.8 -2.9 -2.6 -2.5       

Switzerland             

Year 1941 1949 2016          

Test 

statistic 

-3.4 -2.7 -4.5          

France             

Year 1939 1941 1943 1945 1946 1947 1998 2005     

Test 

statistic 

6.2 -4.7 5.9 -9.9 -6.2 -2.8 -3.7 -3.2     

Italy             

Year 1945 1946 1947 1982         

Test 

statistic 

-2.9 -3.2 -2.6 -3.2         

 

The data on catastrophic events cannot be obtained separately for Switzerland, France, 

and Italy. In addition, they have similar geographical features and their outlier times are 

close to each other. For this reason, we try to analyse their jump effects based on the 

World Disasters Report. According to the catastrophic events around the world, general 

causes of outliers can be listed as follows: 

 

• In the 1920s, natural disasters, such as floods and droughts, caused approximately 

7 million people to die. 

• During 1939-1945, World War II had an enormous impact on mortality around 

the world. This is the reason for the outliers of these countries between these years. 
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• In 1982, nearly 200 natural disasters occurred around the world and these natural 

disasters caused 8 million people to die. The deadliest of these natural disasters 

were floods and extreme weather. 

• In 1998, approximately 300 natural disasters were recorded, the most important 

of which were floods, extreme weather, and earthquakes. Nearly 400 natural 

disasters were recorded in 2016 and the deadliest ones were floods and 

earthquakes. 

 

These results are consistent with the natural disaster data. 

 

Interim Conclusion: Outlier Analysis in the Mortality Indexes 

In this chapter, we have performed an outlier detection procedure for the mortality 

indexes of the US, the UK, Switzerland, France, and Italy, which are obtained from the 

well-known Lee-Carter model. First, we present sources of the outliers. Catastrophic 

events, diseases, and influenza pandemics are the possible reasons for the outliers. We 

then explain the Lee-Carter model, followed by fitting the historical data to the model for 

all countries. 

  

Secondly, we have described the outlier types and showed their effects on time series. For 

mortality modelling purposes, we only consider the additive outliers, which have short 

and immediate effects on time series. Then we perform the outlier detection procedure 

and obtained the outliers. 

  

It can be inferred from this outlier analysis that the US, Switzerland, France, and Italy are 

more vulnerable to natural disasters such as floods and heat waves, while the UK is more 

vulnerable to pandemics and wars. The obtained outliers are consistent with the historical 

disasters. By detecting the outliers, the timing and the severity of the outliers can also be 

found, and in this way, consistent forecasting methods might be developed. Our main aim 

here is to find the location of outliers on the mortality curve and to analyse their inter-

arrival times. As a result, we can model mortality in a more realistic way. 
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3. TRANSITORY MORTALITY JUMP MODELING WITH 

RENEWAL PROCESS AND ITS IMPACT ON PRICING OF 

CATASTROPHIC BONDS 

3.1. Introduction  

Insurance companies and pension plans face risks of uncertainty in future mortality. Such 

risk could stem from improvements in mortality or shocks such as catastrophic mortality 

events [68]. The latter is called “catastrophic mortality risk”, which is the risk that, over 

short periods of time, mortality rates are much higher than expected [26]. Due to a shorter 

lifetime of an individual or group than expected, an insurer or a pension plan may have 

to make sudden pay-outs to many policyholders. Hence, seriously negative financial 

consequences could be experienced, including breaches in capital requirements and 

regulatory solvency [67]. As a result, the management of catastrophic mortality risk is 

fundamental for insurance companies and pension plans. 

 

Catastrophic events, such as infectious diseases/pandemics, natural disasters, terrorist 

attacks, wars, and accidents, may cause sudden increases in mortality curves. These 

sudden increases are called mortality jumps and they were discussed in the previous 

section in detail. For instance, the Spanish flu virus killed 50 to 100 million people in 

1918 and caused very large jumps in mortality rates. Avian flu in 2006 and the Ebola 

virus in 2014 also caused approximately 1 million deaths [7]. 

 

According to statistics from the Emergency Events Database (EM-DAT), frequencies, 

magnitudes, and durations of natural disasters have all increased since 1975. The World 

Disasters Report in 2016 stated that rising global temperatures caused global climate 

change and more natural disasters. These climate changes and natural disasters lead to 

catastrophic events, which have caused many diseases and deaths in recent years. In the 

1970s, there were roughly 100 catastrophic events per year, and this number has 

consistently increased more than three times in the last decade. For the period of 1994-

2013, EM-DAT records show 6,873 natural disasters causing 1.35 million deaths on 

average each year. Furthermore, in 2018, 348 climate-related and geophysical disaster 
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events were recorded in the International Disaster Database, and 68 million people were 

reported to have been affected around the world. 

 

The occurrence of catastrophic events could cause a large number of deaths and hence a 

higher rate of unexpected death claims. Consequently, financial impacts from 

catastrophic events for an insurer’s solvency require effective risk management to 

eliminate and reduce the risk [75]. In the United States, the three largest natural disasters 

recorded before Hurricane Katrina in 2005 caused a total insured loss of $23 billion and 

a few reinsurers became insolvent to pay claims [141]. Moreover, in Germany, a dramatic 

pandemic could generate approximately €45 billion of additional claim expenses 

according to the estimations of Stracke and Heinen [119]. This amount is equivalent to 

100% of the German life insurance market's policyholder bonus reserves. Some experts 

from the field of public health predict that a new pandemic is overdue and will occur 

without fail because of inter-species transmission, intra-species variation, and alterations 

in virulence [7]. 

 

The frequency of catastrophic events and the degree to which they are accurately priced 

are serious concerns in managing extreme mortality risks. In recent years, catastrophic 

bonds have been used by insurers as tools for risk management. The first catastrophic 

bond was that issued by Swiss Re, called Vita I, in 2003, with the aim of reducing impacts 

of catastrophic events. Due to the great success of that bond, large numbers of newer 

catastrophic mortality bonds are now being issued (see [15], [14]). Several stochastic 

models are now available to capture jump effects in mortality and to value catastrophic 

bonds. These models have differences in the severity of mortality jumps and the type of 

jumps. For instance, Cox et al. [48] combined geometric Brownian motion with a 

compound Poisson process for the modelling of age-adjusted rates. Cox et al. [48] then 

modelled permanent mortality jumps by considering Poisson jump counts. Chen and Cox 

[34] used a normal distribution for jump severity, while Chen et al. [35] combined two 

types of jumps in their model. Similarly, Deng et al. [52] considered the mortality time 

index as a double-exponential jump process. In contrast to those studies, Liu and Li [100] 

investigated age patterns within the jump effects on mortality. 
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All of these mentioned jump models in the literature assume that mortality jumps occur 

once a year, or they used a Poisson process for their jump frequencies. Due to their low 

probability and high-impact nature, the timing and the frequency of future catastrophic 

events and hence mortality jumps are unpredictable [34]. On the other hand, the history 

of such events can give information about their future occurrences. In the Poisson process, 

inter-arrival times between events are taken to be independent and exponentially 

distributed. However, the Poisson process has a limitation arising from the 

memorylessness of the exponential distributions. In this thesis, the aim is to include the 

history of catastrophic events. One way to incorporate the history of these events is to use 

duration dependence models. Instead of a constant hazard function, these models have 

time-varying hazard functions. This property is important for duration analysis since the 

hazard function is applied for capturing the duration dependence. Hazard functions reflect 

the waiting times between events. For instance, an increasing hazard function represents 

longer waiting times between events compared to a decreasing hazard function. In these 

models, events are dependent such that arrival of a minimum of one event (versus the 

arrival of none) up to time t will influence the probability of another event's arrival in 

t t+  . Thus, a link exists between the counting model and timing process. This class is 

known as renewal processes [78].  

 

Winkelmann [131] was the first to derive a counting process by using the renewal process 

with gamma distributed inter-arrival times. Many other models were derived by using 

different inter-arrival times afterwards. McShane et al. used the Weibull distribution for 

inter-arrival times, while a log-normal distribution was used by Everson and Bradlow 

[56], Bradlow et al. [19], and Miller et al. [106] [8]. 

 

A new approach is proposed in this thesis for modelling the arrivals of mortality jumps. 

Inter-arrival time implies the time between two jumps, and we want to use the renewal 

process for modelling. For this purpose, we will detect jumps in the mortality time series 

and perform statistical tests for inter-arrival times of mortality jumps to show that we can 

use the renewal process as a counting process. Afterwards, we will use the Lee-Carter 

model together with a jump-diffusion process to model mortality, as well as the log-

normal renewal process to model jump count probabilities. This model will be tested with 
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historical data and a comparison will be performed for the goodness of fit of models with 

jump sizes and jump count processes for the US, the UK, Switzerland, Italy, and France. 

To the author's best knowledge, the use of the renewal process for jump counts is new in 

mortality modelling.  

 

It can be reasonably assumed here that the renewal process exerts impacts on the pricing 

of catastrophic mortality bonds. To show this impact, our proposed mortality model will 

be used for the pricing of a catastrophic mortality bond. The pricing problem is not 

explicit in an incomplete market; however, it might be met by no-arbitrage methods (see 

[26], [34], [87] and [95]), insurance-based methods (see [35] and [130]), or economic 

methods [138].  

 

The no-arbitrage approach was used often in earlier studies on the pricing of mortality-

linked securities. In this method, risks' market prices cannot be uniquely identified. As a 

result, an arbitrary assumption is necessary for pricing. One might also use canonical 

valuation for the creation of a probability measure that is risk neutral. Canonical valuation 

could be applied without any arbitrary decision-making [139]. For this reason, we use 

canonical valuation for creating the aforementioned risk-neutral probability measure and 

for obtaining mortality risk premiums. The canonical valuation method was introduced 

by Stutzer [120], after which it was applied to insurance markets by Li and Ng [95], Li 

[87], and Chen et al. [36]. In this thesis, the Swiss Re mortality bond is used for a 

martingale constraint. The desired risk-neutral probability measure is identified by using 

this method and thus the hypothetical mortality bonds may be priced in an incomplete 

market. 

 

This section is organized in the following way. Section 3.2 defines the renewal count 

process. Section 3.3 presents the mortality data. Section 3.4 gives the proposed model's 

specifications and the statistical analysis of mortality jumps. Section 3.5 demonstrates a 

numerical example of pricing mortality-linked security. Finally, Section 3.6 concludes. 
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3.2. Renewal Process 

Since we want to include the history of events in our jump frequency model, we need to 

use a renewal process. This is a stochastic model for events occurring randomly in time, 

which are typically referred to as “renewals” or “arrivals”. The times between the 

successive arrivals are taken to be independent and identically distributed, having an 

arbitrary distribution, and the renewal process might be applied for a foundation upon 

which to build more realistic models. 

 

There are three ways to specify the renewal process. The first is by finding the joint 

distributions of the arrival epochs. The second is by the joint distributions of the inter-

arrival times. Finally, the third is by finding joint distributions of the counting process 

( ); 0N t t  . The simplest way for specifying the renewal process is by using the inter-

arrival times, since they are iid. Because the process probabilistically begins again with 

each arrival period, these processes are referred to as “renewal processes”. 

 

Formally, we may take { , 1,2,...}nX n =  to be the sequence of independent nonnegative 

random variables with the common distribution of F, and we further suppose 

(0) Pr( 0) 1nF X= =  . It is possible to express nX  as the time between the (n-1)st and 

nth events. Next, we may write 

0

[ ] ( )

n

nE X xdF x=   

as the average time between successive events. Due to our assumptions of 0nX   and 

(0) 1F  , 0 [ ]nE X   follows. We write 

0 0,S =  
1

,
n

n i

i

S X
=

=  1,n   

where nS  represents the arrival time of the nth event. The number of events occurring by 

time t will equal n's largest value, for which the nth event occurs before or at time t, and 

thus the number of events ( )N t  by time t is given as follows: 

 ( ) sup{ : }.nN t n S t=                          (3.1) 
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An important question here is to ask whether or not it is possible for an infinite number 

of renewals to occur within a finite amount of time. To answer this question, the strong 

law of large numbers is used: 

/ [ ],n nS n E X→      as     .n →   

Since [ ] 0,nE X   nS  must be moving towards infinity as n itself moves towards infinity. 

Hence, it is possible for nS  to be less than or equal to t for only a finite number of values 

of n. Thus, applying Equation (3.1), it is seen that ( )N t  has to be finite and may be written 

as follows: 

( ) max{ : }.nN t n S t=   

 

3.2.1. Distribution of N(t) 

The relationship between timing and count process, where the number of renewals by 

time t will be greater than or equal to n if and only if the nth renewal occurs before or at 

time t, is used to obtain the distribution of ( )N t . That is, 

 ( )N t n     if and only if     nS t  (3.2) 

By using the relationship between arrival times and count process, ( ) ( ( ) ),nS t N t n =   

the distribution function of the count process might be determined in terms of the inter-

arrival times' distribution function: 

 

 Pr( ( ) ) Pr( ( ) ) Pr( ( ) 1)N t n N t n N t n= =  −  +  (3.3) 

1Pr( ) ( )n nS t S t+=  −   

Since the iX s are independent and they also have a common distribution F, nS  is 

distributed as nF , the n-fold convolution of F with itself. Thus, we have the following 

thanks to Equation (3.3): 

1Pr( ( ) ) ( ) ( ).n nN t n F t F t+= = −  
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Let us now assume that ( ) [ ( )]m t E N t=  and ( )m t  is the renewal function. Generally, 

renewal theory is concerned about the determination of its properties. The relationship 

between ( )m t  and F can be written as follows: 

 
1

( ) ( ).n

n

m t F t


=

=  (3.4) 

Equation (3.4) can be reorganized in terms of F as follows: 

0

( ) ( ) ( ) ( ).

t

m t F t m t x dF x= + −  

The generating function is: 

1

1
( ) 1 1 ( ) .n

t n

n

Q z F t z
z



=

 
= + − 

 
  

In general, these equations cannot be obtained explicitly because of the computation of 

convolutions. Another important question for the renewal process is what the behaviour 

of ( )N t  will be as t → . We take ( ) lim ( )
t

N N t
→

 =  to show the total number of 

occurring renewals, and then the following result can be obtained: 

( )N  =    with probability 1. 

As a result, ( )N t  approaches infinity as t →  as well. At the same time, it is also 

important to identify the rate at which ( )N t  approaches infinity. Hence, the problem 

becomes a limiting problem about ( ) /N t t , which is the time-average renewal rate over 

/ [ ]n nS n E X→ the interval (0, t]. This could be explained with the strong law of large 

numbers for the renewal process. We should note that /nS n  is the sample average of n 

inter-renewal intervals and it approaches [ ]nE X  with probability 1 as t → , as 

discussed before. Let ( )nN S  denote the number of renewals for the period of the nth 

renewal, and let ( ) /n nN S S  be equal to / nn S . Since / [ ]n nS n E X→  as n → , one can 

expect that / nn S  approaches 1/ [ ]nE X . Thus,  lim ( ) / 1/ [ ]n
t

N t t E X
→

=  with probability 1 

[117]. 
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3.2.2. Computation Methods for the Renewal Process 

As mentioned before, the computation of convolutions is not simple. There are several 

ways to compute the renewal count probabilities and the expected number of renewals. 

Lomnicki [103] proposed a method to compute count probabilities with the Weibull inter-

arrival times and an approach built on the exponential function's expansion into 

Poissonian functions. McShane et al. [107] evaluated distribution probabilities by using 

the expansion into the powers of t. That method was also used by Jose and Abraham [78] 

for obtaining a counting process respectively with Mittag-Leffler and Gumbel inter-

arrival times. 

 

However, the count probabilities' convergence cannot be provided for all distributions. 

Let us assume that 
0 ( )P t  denotes the survival function and gives the probability of the 

occurrence of zero events by time t. The computational techniques can be summarized as 

follows:  

 

• Expanding out the exponential functions by applying series transformations to 

increase the speed of convergence: this approach is commonly used for Weibull 

renewal processes. However, it can also be utilized for other distributions. 

• Monte Carlo simulations may be used for generating the renewal times up to the 

time t. 

• Using the Laplace transform, we can obtain the survival distribution generating 

function, and we can convert it to the required probability's transform and invert 

that transform. 

• Fast Fourier transform can be applied for convolutions. 

• The required count probabilities can be obtained directly as convolution integrals. 

 

The Monte Carlo approach is easy to use, and it is very useful for double-checking the 

results obtained from other methods. Nevertheless, its accuracy is not high. Convolutions 

could be done either directly or by taking the Fourier or Laplace transforms of survival 

distributions and inverting the results. Although accuracy cannot be guaranteed for all 
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distributions, the use of transform methods has advantages over other methods [8]. A 

direct convolution method is used in the present thesis to obtain count probabilities. 

 

3.2.3.1. Computation of Probabilities by Convolution 

Before discussing the count probabilities for the renewal process, a general definition of 

the convolution method will be provided.  

 

Let us take 1, , nX X  to be n independently distributed nonnegative random variables 

that have common probability density function f. First, we consider the two-fold 

convolution 
1 2X X+ , 

1 22

0

( ) ( ) ( ) ( ) .

t

X Xf t f t f t s f s ds+= = −  

It is possible to calculate the probability density function of 
1 nX X+ +  recursively. 

Assuming the probability density function of 1 1nX X −+ +   is given by the (n-1)-fold 

convolution, the probability density function of 
1 nX X+ +  is then the n-fold 

convolution, given by: 

1 1

0

( ) ( ) ( ) ( ) .
n

t

n X X nf t f t f t s f s ds+ + −= = −  

The distribution function is obtained similarly and the distribution function of n-fold 

convolution is given by [126]: 

1 1

0

( ) ( ) ( ) ( ).
n

t

n X X nF t F t F t s dF s+ + −= = −  

We can calculate the renewal count probabilities by using these equations. Let ( )R n  show 

the probability of the nth event, obtained by using  1( ) ( ) ( )n nR n F t F t+= − . An evaluation 

of the convolutions of the form 
0

( ) ( )
t

F t s f s ds−  is now necessary. To solve this integral, 

we need to evaluate the following recursive relationship: 

1

0 0

( ) ( ) ( ) ( ) ( )

t t

n n nR t F t s f s ds F t s f s ds−= − − −   
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 1

0

( ) ( ) .

t

nR t s f s ds−= −  (3.5) 

Here it can be noted that 0 ( ) 1F t =  for all t and 
1( ) ( )F t F t= . This gives us 

0 0 1( ) ( ) ( ) 1 ( )R t F t F t F t= − = − , which leads us to the survival function. Using Equation 

(3.5), it is now possible for us to compute 1( )R t : 

1 0

0

( ) ( ) ( ) .

t

R t R t f s ds=   

Finally, we can obtain ( )nR t  probabilities by using the recursive formula [107]. 

 

3.3. Data Description 

Mortality data are used in this thesis for the US, the UK, Switzerland, France, and Italy. 

As explained previously, the US mortality data originate from the National Center for 

Health Statistics (NCHS) for the years of 1900-2017 and include all ages. The data from 

the UK, Switzerland, and France originate from the Human Mortality Database (HMD) 

for the period of 1922-2016 for all ages. Finally, the Italian mortality data also originate 

from the HMD, but they are for the period of 1922-2014, again for all ages.   

 

The data are arranged in 10-year age intervals as follows:  <1, 1-4, 5-14, 15-24, ..., 75-

84, 85+. 

 

3.4. Transitory Mortality Jump Modelling with Renewal Process 

3.4.1. A Specification of the Lee-Carter Model 

This section presents the proposed model, which is built on the original Lee-Carter model 

[84]. The model's details have been given in Section 2.4, and it is possible to express it as 

follows: 

, ,ln( )x t x x t x tm a b k e= + + . 

Here, ,x xa b , and 
,x te  have the same meanings and constraints as in the original version 

of the Lee-Carter model. Mortality index tk  is taken as being free of jumps; hence, 
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changes in tk  could be understood to signify a general change in the overall mortality 

level (please note that this general change is not an extreme change). However, a suitable 

model is required for capturing the features of shape, trend, and jumps, as well as for 

forecasting the future mortality rates. Although the Lee-Carter model is a long-term 

mortality model, its time-varying mortality index should capture the short-term effects 

for effective mortality modelling. In the original version of the Lee-Carter model, the tk  

parameters are modelled using a random walk with drift. However, it is possible to model 

tk  as a stochastic process to deal with the uncertainty over mortality trends. Moreover, 

tk  includes both negative and positive values. Hence, geometric Brownian motion does 

not fit the process since a negative value is not generated from the positive starting value. 

Therefore, we will use standard Brownian motion. We thus introduce the short-term jump 

effects with a diffusion process due to the existence of the transient mortality jumps in 

Figure 2.1. We need to choose an appropriate jump-diffusion process in order to reflect 

the features of time-varying mortality index tk . 

 

The descriptive statistics of 1t t tk k k+ = −  indicate leptokurtic features for all countries, 

as shown in Table 3.1. 

Table 3.1: Skewness of tk  for All Countries 

 US UK Switzerland Italy France 

Skewness -0.598 -1.061 -1.197 -1.237 -0.427 

 

The tk  distributions skew towards the left, and they have higher peaks and heavier tails 

than normal distributions do, as shown in Figure 3.1. Therefore, we must consider a 

distribution that is heavy tailed instead of a normal distribution for the jump severities. 

 

We model tk  as a Merton jump-diffusion model in order to include the leptokurtic 

features of tk . This model can be specified as follows [105]: 

 
( )

1

( 1) .
N t

t t i

i

dk dt W d V 
=

 
= + + − 

 
  (3.6) 
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Figure 3.1: Distribution of tk  for all countries. 

Here,   and   are constants, tW  represents standard Brownian motion and ( )N t  

represents a counting process, while iV  represents a sequence of iid nonnegative variables 

signifying the sizes of the jumps. 

 

By integrating Equation (3.6), we obtain the following [52]: 

 
( )

2

0

1

1
( ) ( ) .

2

N t

t i

i

k k t W t Y  
=

= + − + +  (3.7)  

Here, iY  is defined as log( )Y V= .  

 

In the original Merton model, the jump sizes, log( )Y V= , are normally distributed. 

However, the tk s have both heavier tails and higher peaks than normal distributions do 

for the countries examined. Thus, we consider that the jump sizes have exponential 

distribution. Moreover, it is assumed here that jump count variable ( )N t  is a renewal 
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process. Although our aim is to introduce a renewal process to model the mortality jumps, 

we analyse different jump sizes and count processes to compare and choose the best 

model. Therefore, we propose four models: normal jump and Poisson process, 

exponential jump and Poisson process, normal jump and renewal process, and 

exponential jump and renewal process. The originality of this work lies in introducing the 

renewal process in these models for the mortality jump counts. The jump sizes will also 

be compared by using normal and exponential distributions. 

 

In order to model the count variable as a renewal process, analysis of inter-arrival times 

between jumps should be performed. For this reason, we use the detected jumps from 

Section 2.5. After obtaining the inter-arrival times between detected jumps, we can 

proceed to the statistical analysis of the outliers to show that we can use the renewal 

process for our count variable. 

 

3.4.2. Statistical Analysis of the Outliers 

Now we need to analyse the inter-arrival times of these outliers that cause jumps in the 

mortality curves to show that the renewal process can be used for modelling the jump 

frequencies. The inter-arrival times between the outliers (mortality jumps) are used for 

the analysis. Several statistical tests should be performed to confirm that a renewal 

process is appropriate for the arrivals of the jumps. The first indicator that this process is 

not a Poisson process is the uniformity test, and a formal statistical test of uniformity can 

be performed using the Kolmogorov--Smirnov test. This test is used to compare an 

empirical distribution function against a cumulative distribution function. All obtained p-

values are lower than 0.05, meaning that we can reject the uniformity and constant mean 

for the process [3]. 

 

We need to analyse the inter-arrival times to check whether they are stationary, 

independent, and identically distributed. For this reason, we will apply the Ljung-Box test 

to the inter-arrival times. This test can be defined as follows: 

2

1

( 2) ,
k

d
k

d

r
Q n n

n d=

= +
−

  
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where dr  represents the autocorrelation coefficient for the lags 1 d k   and n represents 

the series' length. The kQ  statistic will be compared with a 
2  distribution having k 

degrees of freedom for the purpose of testing the null hypothesis, which is “there is no 

correlation between inter-arrival times'”. We apply the test for all lags for inter-arrival 

times. Based on Ljung-Box test statistics [79], the inter-arrival times are stationary and 

independent for all countries. 

 

After confirming that the inter-arrival times between outliers are stationary and 

independent, we next need to determine the inter-arrival times' distribution. For this 

purpose, the inter-arrival times' properties should be considered. Since the inter-arrival 

time counts between the outliers are less than four, the distribution of inter-arrival times 

cannot be fitted for Switzerland or Italy. The estimated skewness coefficients of the inter-

arrival times are 1.9, 2.1, and 2.6 for the US, the UK, and France, respectively. Since they 

have positive skewness, right-skewed distributions could be considered, such as Weibull, 

gamma, and log-normal distributions. We fit these three distributions to the inter-arrival 

times and the fitted results are displayed in Table 3.2. 

 

According to this table, a log-normal distribution fits the inter-arrival times best. Since 

Switzerland and Italy have statistical properties similar to those of the other countries, we 

assume that their inter-arrival times follow log-normal distributions as well. 

 

As a result, all of the analyses show that we can use the renewal process to model the 

counting process, ( )N t . We obtain the count probabilities, which are computed by 

convolution techniques, for a log-normal renewal process by using “R” software. Now 

we can proceed to constructing and comparing the mortality models. 

 

3.4.3. A Model with Normal Jump and Poisson Process 

In the original Merton model, ( )N t  is a Poisson process having rate t  and log( )Y V=

follows a normal distribution having the following density:  
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Table 3.2: Fitted Results 

US Weibull Distribution Gamma Distribution Lognormal Distribution 

Parameters Shape=0.78, scale=6.05 Shape= 0.73, rate=0.10 Mean=1.15, sd=1.22 

Log-likelihood -31.74 -32.09 -30.24 

BIC 68.72 69.35 65.71 

 

UK Weibull Distribution Gamma Distribution Lognormal Distribution 

Parameters Shape=0.62, scale=9.34 Shape= 0.51, rate=0.04 Mean=1.41, sd=1.56 

Log-likelihood -16.99 -17.25 -16.37 

BIC 37.20 37.71 35.95 

 

France Weibull Distribution Gamma Distribution Lognormal Distribution 

Parameters Shape=0.62, scale=6.16 Shape= 0.50, rate=0.05 Mean=1.05, sd=1.38 

Log-likelihood -21.06 -21.73 -19.56 

BIC 46.02 47.46 43.12 

 

        

2

2

( )

2
1

( ) ,
2

y m

s
Yf y e

s

−
−

=   2, , 0y m s−   −     (3.8) 

We must identify the density function of the one-period increments 1i i i ir k k k −=  = −  to 

estimate parameters and make forecasts. If we consider the one-period increment for the 

Merton model, conditional on event ( ( ) )N t n= , we can write 1 2 nX Y Y Y= + + + , where 

2( , )iY N m s  are independent, and then 
2( , )X N nm ns . Then we obtain the conditional 

density for increments, namely the sum of  
2( , )N m s  and 2 2(( 0.5 ), )N   − . 

 

By using the convolution technique, the density is found as 

2 2 2(( 0.5 ) , )N nm ns  − + +  [63]. Then the unconditional density for a one-period 

increment is: 

 
0

( ) ( ) ( | ),i i

n

f r P n f r n


=

=  (3.9) 
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where ( )
!

t ne t
P n

n

 −

=  and ( | )if r n  represents the conditional density of one-period 

increments, conditional on the given number of the jumps. 

 

Let 
0 1, ,..., tC k k k=  denote the time-varying mortality factors at equally spaced times of 

1,2,...,t T= . Then the log-likelihood of one-period increment observations is: 

1

( ; , , , , ) log( ( )).
T

i

i

L C m s f r  
=

=  

These parameters can be estimated by applying maximum likelihood estimation (MLE). 

 

3.4.4. A Model with Exponential Jump and Poisson Process 

tk  has a heavier tail than a normal distribution, as shown in Figure 3.1. Thus, we assume 

the jump sizes follow an exponential distribution having the following density: 

  ( ) ,y

Yf y e  −=      0, 0.y    (3.10) 

The count process is a Poisson process having rate t . Conditional on event ( ( ) )N t n= , 

we can write 1 2 nX Y Y Y= + + + , where exp( )iY   and iY  are independent, and then 

( , )X n  . The conditional density of X is: 

1( | ) .
( 1)!

n
n X

Xf X n X e
n

 − −=
−

 

Now we can determine two conditional densities for the no-jump case and the $n$-jump 

case. For the no-jump case, the conditional density is: 

2 2

2

( 0.5 )

2
1

( | 0) .
2

ir

if r e

 





− +
−

=  

For the n-jump case, the conditional distribution equals the independent sum of ( , )n   

and 
2 2(( 0.5 ), )N   − . Applying convolution techniques, the following can be 

obtained: 

2 2

2

( 0.5 )

1 2

0

1
( | )

( 1)! 2

ir Xn
n X

if r n X e e dx
n

 

 




− − +
−

− −=
−  



 

 43 

 

2 2

2

1
( 0.5 )

1 2

0

.
( 1)! 2

i
n X r X

nX e dx
n

  







− − − − +

−=
−

  

The unconditional density of a one-period increment is [114]: 

 
1

( ) (0) ( | 0) ( ) ( | ).i i i

n

f r P f r P n f r n


=

= +  (3.11) 

Thus, the log-likelihood function becomes: 

1

( ; , , , ) log( ( )).
T

i

i

L C f r   
=

=  

 

3.4.5. A Model with Normal Jump and Renewal Process 

Now we assume that our counting process, ( )N t , is a renewal process, and we aim to 

include the history of catastrophic events to model tk . Thus, the model has the 

information of the frequency of the events and we accomplish this by combining the 

Merton model and a renewal process. Jump sizes log( )Y V=  follow normal distribution 

as in the original Merton model with density as follows: 

            

2

2

( )

2
1

( ) ,
2

y m

s
Yf y e

s

−
−

=         2, , 0y m s−   −     

The count process is renewal process, and conditional on ( ( ) )N t n= , we can write 

1 2 nX Y Y Y= + + + , where 2( , )iY N m s  and iY  are independent. Then   

2( , )X N nm ns . Considering the jumps, we obtain the conditional density for 

increments, which is equal to the sum of   
2( , )N m s  and 

2 2(( 0.5 ), )N   − . By using 

the convolution technique, the density is obtained as 
2 2 2(( 0.5 ) , )N nm ns  − + +  [63]. 

Letting R(n) be the renewal process, it shows the probability of the nth jump. Then the 

unconditional density for ( )if r  is: 

0

( ) Pr( ( ) ) ( | ).i i

n

f r N t n f r n


=

= =  
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0 1, ,..., tC k k k=  denote the time-varying mortality factors at equally spaced times of 

1,2,...,t T= . Then the log-likelihood of one-period increment observations is: 

1

( ; , , , , , ) log( ( )).
T

i

i

L C m s f r   
=

=  

 

3.4.6. A Model with Exponential Jump and Renewal Process 

As in Section 3.4.4, we assume that the jump sizes follow exponential distribution with 

density as follows: 

( ) ,y

Yf y e  −=      0, 0.y    

To estimate the parameters and to make forecasts, we need to find the density function of 

the one-period increments, which might be shown by 
1i i i ir k k k −=  = − . If we consider 

the one-period increments for the Merton model, conditional on event ( ( ) )N t n= , we 

might write 1 2 nX Y Y Y= + + + , where exp( )iY   and iY  are independent, and then 

( , )X n  . The conditional density of X  is: 

1( | ) .
( 1)!

n
n X

Xf X n X e
n

 − −=
−

 

Now we determine two conditional densities for the no-jump case and the n-jump case. 

For the no-jump case, the conditional density is: 

2 2

2

( 0.5 )

2
1

( | 0) .
2

ir

if r e

 





− +
−

=  

For the n-jump case, the conditional distribution equals the independent sum of ( , )n   

and 2 2(( 0.5 ), )N   − . By using the convolution technique, we obtain: 

2 2

2

( 0.5 )

1 2

0

1
( | )

( 1)! 2

ir Xn
n X

if r n X e e dx
n

 

 




− − +
−

− −=
−  

 

2 2

2

1
( 0.5 )

1 2

0

.
( 1)! 2

i
n X r X

nX e dx
n

  







− − − − +

−=
−

  
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Our next step is deriving the unconditional density of the one-period increments. The 

unconditional density for ( )if r  is: 

 
1

( ) (0) ( | 0) ( ) ( | ).i i i

n

f r R f r R n f r n


=

= +  (3.12) 

Let 
0 1, ,..., tC k k k=  denote the time-varying mortality factors at equally spaced times of 

1,2,...,t T= . Then the log-likelihood of one-period increment observations can be given 

as follows: 

1

( ; , , , , ) log( ( )).
T

i

i

L C f r    
=

=  

Based on the observations 
0 1, ,..., ,tC k k k=  the parameters can be estimated by 

maximizing the following log-likelihood function: 

 
1 1

log (0) ( | 0) ( ) ( | ) .
T

i i

i n

R f r R n f r n


= =

 
+ 

 
   (3.13) 

 

3.4.7. Estimation Results 

Solving the jump process from the diffusion components poses a significant challenge in 

the calibration of the underlying process. The diffusion process captures independent 

increments of the underlying process and jumps capture the extreme increments. A 

method for calibration is required for the generation of accurate parameters of large 

severity and low frequency for mortality jumps. In the work of Ait-Sahalia and Hansen 

[2], it was demonstrated that the use of MLE can be advantageous in solving jumps from 

diffusion. Furthermore, the process of jump-diffusion is a linear one having explicit 

transition density and independent increments. Hence, it is able to satisfy the requirements 

for complete specification of transition density in order to apply MLE. As a result, the 

MLE method will be used here in order to calibrate the necessary parameters. 

 

We estimate parameters of the time-varying mortality factors for the jump-diffusion 

models introduced in the previous subsections for five countries. Following Cox et al. 
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[48], we allow maximum jump counts of 10 for a year and the estimated parameters are 

as given in Table 3.3. 

 

As Table 3.3 shows, the mortality factor's expected rate of change,  , is -0.2637 for the 

renewal process with exponential jumps for the US. This suggests that the mortality factor 

is decreasing by an annual average rate of 0.2637.   having a negative sign here is 

consistent with the improvement of the US population's mortality rate with time. The 

annual mortality rate of change has volatility of 0.1599 for the renewal process with the 

exponential jump model for the US. The average severity of jumps is equal to 0.6757 

(1/ )  in a year. Similar comments hold for the other countries. Additionally, significant 

differences exist among the means and the variances of jump frequency distributions of 

these two models. It can be realized here that the distribution of jump severities is 

important, but the process for jump frequencies is more important. 

 

The Bayesian information criterion (BIC) is applied for model selection. Results in Table 

3.3 show that the Merton model with renewal process is the best model for all countries. 

The reasons for this can be summarized as follows. 

 

To begin with, the outliers present in the time-series data lead to the existence of both fat 

tails and a high peak within the distribution of increment tk , which negates the 

possibility of a normal distribution. In the Lee-Carter model, outliers are treated in the 

same way as other points present in the evolution process of the mortality time series. For 

this reason, outliers increase the process's volatility, and they also lead us to overestimate 

standard deviation  . In the proposed model, we apply a renewal process that is separate 

from the process of Brownian motion diffusion. As a result, we are able to avoid the 

problematic mismatching of the high peak and fat tail with normal distribution and thus 

the model is able to provide a better fit. Secondly, the Poisson process does not include 

the history of jumps. However, the history of jumps could give information about the 

future occurrences of jumps. Besides, the nonconstant hazard function property of the 

renewal process enables us to obtain more realistic models for jump frequency. 
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Table 3.3: Estimated Parameters for All Countries 

The US NJ with 

Poisson P. 

EJ with Poisson 

P. 

NJ with 

Renewal P. 

EJ with 

Renewal P. 

  =-0.2471  =-0.2594  =-0.2415  =-0.2637 

  =0.1772  =0.1448  =0.1713  =0.1599 

 m=0.0332  =1.4874 m=0.0284  =1.4794 

 s=0.5292  =1.0108 s=0.4414  =0.0190 

  =1.006   =0.00031  =0.6051 

    =0.6030  

log(L) -77.9282 -44.3847 -30.3421 -29.2499 

BIC values 179.7098 107.8522 89.31 82.3532 

 

The UK NJ with 

Poisson P. 

EJ with Poisson 

P. 

NJ with 

Renewal P. 

EJ with 

Renewal P. 

  =-0.2369  =-0.2189  =-0.2389  =-0.2364 

  =0.2874  =0.1204  =0.2195  =0.1788 

 m=0.0322  =1.4794 m=-0.0355  =1.4963 

 s=0.6124  =0.7435 s=0.3640  =0.00091 

  =0.6277   =0.0029  =0.6135 

    =0.6009  

log(L) -72.8151 -45.6658 -37.4425 -36.7632 

BIC 

values 

164.3995 109.5471 102.2082 96.2958 

 

Switzerland NJ with 

Poisson P. 

EJ with 

Poisson P. 

NJ with 

Renewal P. 

EJ with 

Renewal P. 

  =-0.2468  =-0.2141  =-0.2345  =-0.2506 

  =0.3626  =0.1641  =0.4128  =0.1887 

 m=0.0413  =1.4806 m=0.0259  =1.4891 

 s=0.1778  =1.0014 s=0.0581  =0.0118 

  =1.0472   =0.0011  =0.6127 

    =0.7038  

log(L) -48.6356 -44.3310 -35.7192 -33.5098 

BIC values 120.0406 106.8775 98.7617 89.7889 
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Table 3.3: Estimated Parameters for All Countries (Continue) 

Italy NJ with Poisson 

P. 

EJ with Poisson 

P. 

NJ with 

Renewal P. 

EJ with 

Renewal P. 

  =-0.2293  =-0.2243  =-0.2498  =-0.2232 

  =0.3694  =0.0932  =0.3359  =0.1879 

 m=-0.0232  =1.4759 m=-0.0116  =1.4858 

 s=0.4399  =1.0942 s=0.4346  =0.0136 

  =1.0212   =0.0019  =0.6078 

    =0.6301  

log(L) -77.9737 -56.1175 -51.0489 -47.4151 

BIC values 178.6105 130.3653 129.2334 117.4931 

 

France NJ with 

Poisson P. 

EJ with Poisson 

P. 

NJ with 

Renewal P. 

EJ with 

Renewal P. 

  =-0.2057  =-0.2170  =-0.2112  =-0.2208 

  =0.2246  =0.0970  =0.1863  =0.1384 

 m=-0.0736  =1.4993 m=-0.0353  =1.4595 

 s=0.9114  =1.1631 s=0.5677  =0.0194 

  =1.0019   =0.0022  =0.5524 

    =0.5304  

log(L) 108.7111 -52.2698 -46.6672 -38.6063 

BIC values 240.1916 122.7551 120.6577 99.3819 

 

We also conduct likelihood ratio test in order to compare the renewal and Poisson 

processes. The null and the alternative hypotheses of the test are respectively as follows: 

0 0H  = =  and 1 1.H  = =  

 Here, 0  signifies the Poisson process while 1  represents the renewal process. We can 

calculate likelihood ratio test statistic LR in the following way: 

1 0
ˆ ˆ2 ( ),LR l l=  −  

where 0l̂  represents the maximized log-likelihood of the Poisson process and 0l̂  is the 

maximized log-likelihood of the renewal process. The statistics of the log-likelihood ratio 

test and p-values are given in Table 3.4. According to these test results, for the models 

with exponential jumps, all results are higher than the chi-square value, 3.84, of this test. 

Therefore, the null hypothesis is rejected for all cases. 
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Table 3.4: LR Test Statistics 

 US UK Switzerland Italy France 

LR 30.28 17.81 21.64 17.41 27.93 

Critical Value 3.84 3.84 3.84 3.84 3.84 

p-value 0.00 0.00 0.00 0.00 0.00 

 

In order to see the difference between the Poisson process and the renewal process in 

terms of the expected number of mortality jumps, we can calculate the expected values 

for the jump frequencies by using Equation (3.4) and the parameters estimated in Table 

3.3. We present the results for the expected jump frequencies in a year for the Poisson 

process and the renewal process models with exponential jumps in Table 3.5. 

 

Table 3.5: Expected Jump Frequencies 

Country EJ with Poisson P. EJ with Renewal P. 

US 1.01 2.71 

UK 0.74 2.43 

Switzerland 1.00 1.40 

Italy 1.09 1.43 

France 1.16 1.90 

 

As shown in Table 3.5, the expected jump frequencies are higher for the model with 

renewal process which is caused by the use of lognormal distribution and thus time-

varying hazard function for the inter arrival times. Although renewal process produces 

higher values for all countries, the difference is particularly significant for the US and the 

UK. 

 

3.5. Swiss Re Mortality Bond 

In this section, we use the Swiss Re mortality bond to obtain a probability measure that 

is risk-neutral, which can then be used for pricing hypothetical bonds. As the first 

mortality-linked security, this bond was issued by the Swiss Re insurance company in 

December 2003. The coupons of the bond were paid quarterly at a 3-month LIBOR rate 
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plus a spread value of 135 basis points. The bond's principal repayment is dependent on 

a mortality index, and the bond's purpose was to expand the insurance market's capacity 

for paying catastrophic losses. A special purpose vehicle, Vita Capital, was used to issue 

the bond, thereby allowing Swiss Re to eliminate extreme catastrophic risk from its 

balance sheet [34]. 

 

The bond had 3-year maturity and the issue size was $400 million. The mortality index, 

tq , was obtained as the weighted average of mortality rates across five countries, for both 

females and males and for a range of ages. These countries were the UK, the US, France, 

Switzerland, and Italy. It was a principal-at-risk bond. In the event that the mortality index 

exceeded 1.3 times the actual 2002 base level, 0q , in any year of the bond's life, a reduced 

principal repayment would be received by the investors. Otherwise, the principal was 

repayable in full. The bond's coupon payment schedules are given by the following 
tCP  

function: 
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Here, the tLoss  function signifies the amount of payment lost as a result of experienced 

mortality [52]: 
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3.5.1. Risk-Neutral Pricing 

The catastrophic mortality bond market is incomplete due to the impossibility of pricing 

securities via the construction of a replicating portfolio in this market. Among the steps 

in the performance of risk-neutral valuation, a critical one is to specify a risk-neutral 

probability measure with which mortality bond prices might become computable in such 

an incomplete market. This desired risk-neutral measure could be obtained by several 

approaches. The no-arbitrage method is commonly used by investors. To implement this 
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approach, estimating the distribution of future rates of mortality in the real-world 

probability measure is the first step. Following that, the real-world distribution must then 

be transformed to its risk-neutral counterpart. This process is based on the observed 

market prices. The mortality-linked security price could be obtained by discounting under 

the identified risk-neutral probability measure at a risk-free rate. Due to this approach 

taking actual market prices into consideration, it is challenging to apply it in mortality-

linked securities markets. 

Another way is using a stochastic mortality model identified in the real-world measure 

and then fit to historical data. The model must then be calibrated to market prices, which 

will yield a risk-neutral mortality process that security prices can then be calculated from. 

However, the market price of risk is not able to be identified uniquely with only one 

security price in this method. Hence, an arbitrary assumption must be made before 

pricing. 

 

A distortion operator could be utilized for obtaining a probability measure that is risk 

neutral. Unless the assumed mortality model is kept simple, the distortion operator's 

parameters will not be unique if sufficient market price data are not given. 

 

More recently, researchers have started to use a new no-arbitrage method known as 

canonical valuation. In this approach, a risk-neutral probability measure is defined by 

minimizing the Kullback--Leibler information criterion, subject to the constraint of 

market price. It is possible to apply this without any arbitrary decision-making about the 

market price of risk [138] and the canonical valuation method is thus adopted in this 

thesis. 

 

The first step to implement this valuation method is generating a number of future 

mortality rate sample paths with equal probability from the mortality model, which is 

defined according to the real-world probability measure. This scenario can be obtained 

by bootstrap method. The generated sample paths may be understood as a collection of 

all of the states of nature. Hence, if M sample paths have been generated, then the 

following statement will provide state of nature w's probability mass function under real-

world probability measure P: 
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1
Pr( ) ,j jw w

M
= = =  1,2,..., .j M=  

This probability is referred to as the empirical probability distribution. The aim is 

obtaining w's probability distribution under risk-neutral probability measure Q, 

equivalent to P. Here, M=10000 is used in the calculations. 

 

Assume that n distinct primary securities are included in the market, the values of which 

are evolving according to state of nature w. The ith primary security, 1,2,..., ,i M=  has 

the time-0 price of iF  and random discounted payoff of ( )if w  at the risk-free rate. 

Considering *,j  1,2,..., ,j M=  as the risk-neutral probability distribution under Q, the 

martingale constraints can be reorganized as follows: 

 *

1

[ ( )] ( ) ,
M

Q

i i j i

j

E f w f w F
=

= =        1,2,..., .i n=  (3.14) 

If n M= , we can consider the market as complete. However, if n M , then the market 

is understood to be incomplete and several risk-neutral probability measures exist to 

satisfy Equation (3.14). We will take Q  to be the set of all of the measures equivalent to 

P and satisfying Equation (3.14); in other words, Q  represents the set of all of the 

equivalent risk-neutral measures. For a security to be priced in an incomplete market, we 

must choose a martingale measure in Q . This choice could be accomplished by using the 

Kullback--Leibler information criterion [83], defined as follows: 
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*
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Under the canonical valuation principle, risk-neutral measure 0Q  is obtained with the 

minimization of the Kullback--Leibler information criterion, as follows: 

0 arg min ( , ),
Q

Q D Q P


=
Q

 

subject to *

1
1

N

jj


=
= . Equation (3.14) specifies the relevant martingale constraints. Here 

0Q  will be referred to as the canonical measure. This valuation setup is also called the 

maximum entropy principle. 
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From the statistical point of view, the canonical measure is justified by the fact that it can 

incorporate all of the information that is contained in the prices of the m  primary 

securities that are traded in the market and no other irrelevant or unnecessary information. 

It is also possible to justify the canonical measure from other geometric and economic 

points of view (see [57] and [95]). 

 

Given the risk-neutral measure, a security that has the same underlying payoff structure 

may be priced. Let us consider a security with a payoff, discounted at the risk-free interest 

rate to time zero, of ( )jg w  in state of nature j. This security's price as implied by 
0Q  is  

*

1
( ) ,

N

j jj
g w 

=  where *, 1,2,..., ,j j N =  represents w's probability distribution under 
0Q  

[100]. 

 

3.5.2. Derivation of Canonical Measure 

The martingale constraint of n =1 is considered here; this is on the basis of the Swiss Re 

mortality bond's price. The payment structure of the Swiss Re bond was summarized in 

Section 3.5. We might derive the risk-neutral measure on the basis of the market's actively 

traded mortality-linked securities, the fair prices of which are known, and then it will be 

possible to apply the same measure to unknown mortality-linked securities. Based on the 

Swiss Re mortality bond, the canonical risk measure might be expressed as follows: 

 
2006

2004

,
t

Q

t t

t

E D CP C
=

=

 
  

 
  (3.15) 

where C=$400 million, tCP  is defined as previously, and tD  represents a risk-free 

discount factor. We assume that coupon payments are paid annually. The risk-free interest 

rate is 3%, as in the work of Zhou et al. [139]. 

 

We take ( )jV w  to be the value of 
2006

2004

t

t tt
D CP C

=

=
   in state of nature j (i.e., a simulated 

mortality scenario). It is possible to show that w's distribution under the resultant 

canonical measure is: 
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Here, the Lagrangian multiplier ̂  can be given as follows [95]: 

1

ˆ arg min exp( ( ( ) 400,000,000)).
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

 
=

= −  

In the present calculations, the applied mortality scenarios are obtained from 10,000 

simulations of time-varying factor tk  for 2004-2006 on the basis of the known mortality 

time-varying factor of 2003. We use the Merton jump-diffusion model given in Equation 

(3.6) to simulate the time series of mortality with exponential jump and count processes 

for all countries. The mortality rates are calculated for different age groups according to 

the following formula: 
, exp( )x t x x tm a b k= + . The standard population of the year 2000 

together with the corresponding weights will be applied for computing weighted average 

mortality index 
tM  for the US. These weights are used on the basis of the technique 

explained in NCHS report GMWK293R. The age weights' calculation is based on 

exposure data for other countries and they are presented in Table 3.6. We then calculate 

the distribution of w under the canonical measure by using Equation (3.16) for the 

simulated scenarios. We use the same methodology for each mortality model and obtain 

the risk premiums. 

 

Table 3.6: Age Weights for All Countries 

Age Group US UK Switzerland Italy France 

<1 0.013818 0.011436 0.009806 0.009412 0.012336 

1-4 0.055317 0.045715 0.040615 0.037047 0.049835 

5-14 0.145565 0.126983 0.115676 0.095351 0.123835 

15-24 0.138646 0.127065 0.117012 0.106701 0.129935 

25-34 0.135573 0.136169 0.138486 0.150067 0.134373 

35-44 0.162613 0.152864 0.167278 0.156862 0.144262 

45-54 0.134834 0.127953 0.138976 0.131998 0.139694 

55-64 0.087247 0.113205 0.116313 0.121131 0.102405 

65-74 0.066037 0.083906 0.081884 0.103889 0.085608 

75-84 0.044842 0.056444 0.054777 0.067138 0.059768 

>85 0.015508 0.018263 0.019177 0.020405 0.017948 
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3.5.3. Pricing Hypothetical Mortality Bonds 

The important point about mortality-linked securities is the premium that investors might 

obtain from the transaction. The premium spreads of hypothetical mortality bonds are 

calculated using the risk-neutral measure. The premium spread may be expressed as the 

premium that will compensate the investors for assuming responsibility for the extreme 

mortality risk. 

 

We assume that our hypothetical bond's payment structure resembles that of the Swiss Re 

mortality bond. The three-year bond was issued in 2003 and written on mortality index 

tq  with its base level in 2003. The mortality index depends on the US, UK, Swiss, Italian, 

and French death rates, respectively. The index is a weighted average across the age 

groups based on the weights for each country. We estimate parameters for 2003 mortality 

rates and these parameters are used for premium calculations of the proposed model. 

 

For attracting diverse investors, the bond is structured into two tranches with differing 

lower and upper strikes M and U, as illustrated in Table 3.7. The payment of each tranche 

is based on the Swiss Re mortality bond payment structure. The premium spreads are 

calculated for each tranche on the basis of the proposed model and the model with 

exponential jump and Poisson process. 

 

Tranche I has both the lowest lower strike and upper strike; in other words, investors in 

Tranche I face the highest risk of the loss of some or all of the principal. Tranche I 

obviously entails the highest premium spread. Hence, the estimated premium spreads 

decrease while the lower and upper strikes increase. The reason for this decrease is the 

investors should earn less premium spread as the risk of bond reduces.  As expected, the 

premiums that the investors earn from this transaction are higher for the trances with 

renewal process. This can be explained by the jump severities and jump frequencies. The 

risk increases with the jump frequencies and jump severities. Thus, the investors could 

earn more premium spreads from the tranches with the renewal process. This result is 

important for the investors because obtaining lower premiums than they need would cause 

financial problems for them. 
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Table 3.7: Premium Spreads of Trance I and II for All Countries 

 US UK Switzerland Italy France 

 I II I II I II I II I II 

Tranche Size $100 $100 $100 $100 $100 $100 $100 $100 $100 $100 

Upper Strike U 1.04 1.12 1.04 1.12 1.04 1.12 1.04 1.12 1.04 1.12 

Lower Strike M 1.02 1.10 1.02 1.10 1.02 1.10 1.02 1.10 1.02 1.10 

Premium S. 

(Poisson P.) 

45.41 43.10 65.04 63.74 50.03 47.97 21.52 20.21 73.23 71.24 

Premium S. 

(Renewal P.) 

107.53 106.34 106.09 104.80 157.51 155.72 44.14 42.85 93.52 90.93 

 

Tranche I has both the lowest lower strike and upper strike; in other words, investors in 

Tranche I face the highest risk of the loss of some or all of the principal. Tranche I 

obviously entails the highest premium spread. Hence, the estimated premium spreads 

decrease while the lower and upper strikes increase. The reason for this decrease is the 

investors should earn less premium spread as the risk of bond reduces.  As expected, the 

premiums that the investors earn from this transaction are higher for the trances with 

renewal process. This can be explained by the jump severities and jump frequencies. The 

risk increases with the jump frequencies and jump severities. Thus, the investors could 

earn more premium spreads from the tranches with the renewal process. This result is 

important for the investors because obtaining lower premiums than they need would cause 

financial problems for them.  

 

As we can infer from the results different structure of jumps yield significantly different 

premium spreads.  However, tranche I has the highest premiums for all cases, which 

means that the higher risk causes a higher risk premium. 

 

3.6. Interim Conclusions: Transitory Mortality Jump Modelling with Renewal 

Process and Its Impact on Pricing of Catastrophic Bonds 

This section has presented an investigation of the impacts of the history of catastrophic 

events on mortality modelling. We use the log-normal renewal process with exponential 

jumps as the counting process for transitory mortality jumps. A specification of the Lee-

Carter model has been proposed, which provides a better fit for different countries. The 

proposed model has been applied to mortality data from the US, the UK, Switzerland, 

France, and Italy. This model was found to be the best for all examined countries 
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compared to the models with normal jump with Poisson process and exponential jump 

with Poisson process. 

 

We needed to perform some statistical analysis to show that we can use the renewal 

process for inter-arrival times of jumps. Statistical analysis of mortality jumps has shown 

that the inclusion of the history of events is significant for mortality modelling. Analyses 

have been done for the US, the UK, Switzerland, Italy, and France. Since the mortality 

time indexes have similar statistical properties, we can use the renewal process for jump 

count probabilities for all countries.  

 

After performing the statistical tests for the renewal process, we introduced the properties 

of our proposed mortality model. Then we calculated and compared the premium spreads 

of the hypothetical bonds for all countries to show the impact of the renewal process on 

pricing. We conclude that the bond with the renewal process has a higher risk premium 

than the bond with the Poisson process. 
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4. A REVIEW OF LONGEVITY HEDGING PRODUCTS 

4.1. Introduction 

“Longevity risk” describes the risk of individuals living longer than is expected. It is a 

crucial financial concern for both pension plans and life insurers since they may have to 

make more payments than expected. Life expectancy continues to rise in association with 

improvements in nutrition, hygiene, medical knowledge, lifestyle, and health care. 

Uncertainty about future mortality improvements could have significant economic 

implications for annuity providers, pension providers, and social insurance programs. 

Although individuals have different lifetimes, longevity risk will affect all pension plans 

and life insurers, and hence it is not possible to diversify it with an increase in portfolio 

size. The hedging of longevity risk therefore has critical importance for both pension plan 

providers and life insurance companies [93].  

 

Generally, three approaches are used for financial institutions to manage and mitigate 

their longevity risk. Reinsurance is the first of these approaches. During a reinsurance 

transaction, unwanted risks are transferred to a reinsurer after the paying of a risk 

premium. For instance, an insurer or a pension plan could buy annuities from a life office 

in order to transfer the risk away, or they could establish an agreement with a reinsurer to 

hedge the longevity risk. Traditionally, reinsurance is an effective tool to protect against 

large losses. However, reinsurance costs are high, and the providers of pensions and 

annuities will apply it only to a limited degree. The natural hedging solution is the second 

approach [90]. Natural hedging is a strategy for diversification that uses opposite changes 

in life insurances and annuities. This strategy might be feasible for large companies that 

have financial resources and structures to sell both kinds of policies, but the restrictions 

in the application of the natural hedging strategy include adjusting the sales volumes of 

life insurance and also that annuity products maintain the liability proportion [137].  

 

The third approach is securitization of insurance-linked risks, which is also called capital 

market solutions, and securitization has gained considerable attention in the past years. 

Longevity- or mortality-linked derivatives and securities constitute capital market 

solutions. In this approach, companies have the ability to transfer their longevity 
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exposures to capital markets at a lower cost. Securitization of insurance is a method that 

entails securitizing a line of business in the form of a complex bundle and then selling 

these securities to investors [93]. Capital market solutions provide flexibility, 

transparency, and additional capacity, all of which are helpful in complementing the 

existent insurance solutions [43]. These securities, such as longevity swaps, buy-outs, or 

buy-ins, constitute specially tailored transactions for specific portfolios. 

 

The Life and Longevity Markets Association (LLMA) was founded with the 

collaboration of several international reinsurers, insurers, and investment banks in the UK 

in 2010. They aimed to improve the development of a liquid “life market” that would 

provide a trading platform for insurers, market investors, and reinsurers for various 

mortality- and longevity-linked liabilities and assets. The capital market has the potential 

to absorb longevity risks from pension plans and insurers in exchange for risk-adjusted 

returns. Additionally, market investors might want to diversify across a new market sector 

of longevity that is uncorrelated with traditional asset classes. Since then, the longevity 

risk market has shown enormous growth, both from pension plans to insurance markets 

and from insurers to reinsurer markets [122]. For instance, in 2011, JP Morgan issued a 

10-year q-forward contract worth \pounds 70 million for the Pall pension fund. In 2014, 

$36.6 bn of longevity risk underwent a transfer, being shifted from pension schemes to 

insurers and reinsurers. Of that sum, $25.4 bn was related to only longevity transactions 

and this was more than twice the volume that had been written in the last three years [69].  

 

There are two types of contracts used for securitization. The first type, customized 

contracts, including pension buy-ins and buy-outs, are associated with the insurer's or the 

pension plan's portfolio's actual mortality experience. The hedger is able to design an 

exact hedge to entirely eliminate the longevity risk with this type of instrument. Since the 

data on mortality from an individual insurer or pension plan tend to be limited, the 

securitization and the pricing of this type of contract are difficult, which makes the costs 

higher. Moreover, as these are linked to hedgers' mortality, instruments of this type have 

poor liquidity [91]. 
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The second type is the index-based contract, such as index-based swaps or q-forwards, 

which are associated with specific national populations' mortality experiences. The first 

one was a q-forward contract launched by JP Morgan in 2007 with Lucida, a UK 

monoline insurer. Further examples are the 10-year q-forward transacted by JP Morgan 

with the Pall pension fund in 2011 for £70 million, or the index-based longevity swap of 

€12 billion between Aegon and Deutsche Bank in 2012. In index-based contracts, the 

payments are associated with a metric or longevity index that is based on a reference 

population, but not the (book) population that underlies the portfolio that is being hedged. 

Tradable longevity indexes are provided by the LLMA and Xpect Club Vita Index [98]. 

There are several advantages of index-based contracts over customized contracts, such as 

faster execution, greater transparency, liquidity potential, and lower costs. Additionally, 

they provide significant capital savings and allow effective risk management. Although 

index-based contracts have many advantages, their failure to eliminate the hedger's 

longevity risk exposures completely should also be noted [93]. Residual risk, also referred 

to as basis risk which will be discussed in the following chapters. 

 

In this chapter, a review of the longevity risk transfer instruments and the stakeholders of 

this market are discussed. In Section 4.2, an evaluation of the longevity risk transfer 

market will be presented. Then, in Section 4.3, stakeholders of the longevity risk market 

are described. In Section 4.4, we will compare the index and the customized hedge and 

longevity-linked securities will be introduced. Finally, Section 4.5 will conclude. 

 

4.2. Evaluation of the Longevity Risk Market 

The longevity risk market began over a decade ago.  Before that, two life insurers, Legal 

& General and Prudential, had been dominating the market. The total UK market size was 

approximately £2.7 trn. In November 2006, Paternoster launched the first buy-out of the 

Cuthbert Heath Family Plan, which was a small plan with 33 members. In January 2007, 

with Hunting PLC, Paternoster performed the first buy-in. 

 

The longevity swap, which was the first publicly announced mortality-linked swap, was 

organized in April 2007 between Friends' Provident and Swiss Re.  In that year, the Life 

Metrics Indices that includes the US, England and Wales, Germany, and the Netherlands 
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was released by the Pension Institute and Willis Towers Watson and JP Morgan. Deutche 

Börse launched the Cohort Indices and Xpect Age in March 2008. These indices provide 

a benchmark for longevity-linked securities' trading.  

 

A q-forward contract took place between JP Morgan and Lucida in January 2008; that 

was the first capital market security transaction. Canada Life then employed a longevity 

swap in order to hedge £500 million of its annuity book. This event was the first capital 

market longevity swap to be undertaken, and their longevity risk was thus transferred to 

investors including insurance-linked securities funds and hedge funds. In 2010, Mercer 

launched a pension buy-out index for the UK to examine the cost charged by companies. 

The cost was 44% higher than the accounting value of the liabilities, leading to a search 

for cheaper alternatives to transfer longevity risk, such as longevity swaps. 

 

The LLMA was established by Aviva, Deutsche Bank, Morgan Stanley, JP Morgan, 

Swiss Re, AXA, and Prudential in 2010. The LLMA’s goal was the development of a 

liquid market to address mortality- or longevity-related risks and support the development 

of methodologies and consistent standards. 

 

In 2010, Swiss Re released a longevity-spread bond with a term of eight years. The value 

of the bond was \textdollar50 million and Kortis Capital, as a special purpose vehicle, 

was used to launch it. The bond's design was orchestrated for providing the desired hedge 

for Swiss Re's longevity and mortality exposure. In January 2011, the first longevity swap 

for both active and deferred pension plan members was executed between JP Morgan and 

Pall. This swap's design was calculated to be able to provide the desired hedge for the 

longevity risk of Pall's pension liabilities. In December 2011, to find a cheaper solution 

for larger pension plans with liabilities above £500 million, Long Acre Life entered the 

market. In this solution, companies sell their pension liabilities to an insurance vehicle. 

In this way, they can invest and share their profits with investors. They aimed to provide 

a 15% return from this transaction. 
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In 2012, a €12 bn longevity swap was executed by Deutsche Bank for the insurer Aegon. 

This particular longevity swap was designed to be index-based. The index depends on the 

national population of the Netherlands, and the insurer could provide a hedge for its 

annuity book liabilities. According to the swap, floating payments were made by 

Deutsche Bank and Aegon paid the fixed premiums. The main objective of this swap was 

to reduce Aegon's regulatory capital, a goal that was successfully achieved. In June 2012, 

the globally largest longevity risk and pension transfer agreement was made between 

General Motors Co. (GM) and PICA. According to the deal, GM would transfer up to 

$26 bn of its pension liabilities to PICA. In the US, the total market for buy-out deals was 

$36 bn in the year 2012. 

 

The first bulk annuity deal to be medically underwritten was the one executed by the UK 

firm Partnership in 2013. In this transaction, each member filled out a medical 

questionnaire, and according to their medical histories and lifestyles, accurate 

assessments were provided of their life expectancies. In 2013, in November, the 

Longevity Experience Option (LEO) was introduced by Deutsche Bank. Its maturity was 

10 years. The survival rates of the bond were based on the Netherlands LLMA longevity 

indexes and the populations of England and Wales. It was traded over the counter. It 

allowed the transferring of longevity risk between insurance companies, investors, and 

pension funds. It aimed to provide a more liquid, cheaper alternative to bespoke longevity 

swaps. 

 

The Mercer Global Pension Buy-out Index was released in 2014. Also, in 2014, the 

biggest single buy-out was announced by L&G in the UK. It transferred £3 bn of ICI 

liabilities and assets. In the UK, about £13 bn of bulk annuity agreements were introduced 

and the total de-risking agreement in 2014 was £35 bn, including buy-outs, buy-ins, and 

longevity swaps. 

 

In 2015, Philips Pension Fund completed the largest buy-out of pension benefits of 26,000 

members, a transaction valued at £2.4 bn, with PIC. This deal was furthermore conducted 

in combination with longevity hedging. Hannover Re then acted as the reinsurer for the 

longevity risk. An additional important product to be issued was equity release mortgage, 
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which allowed individuals the option of declaring equity in their homes for the purpose 

of funding their retirements while avoiding any obligation of downsizing. June of 2015 

also saw the launching of the Mercer Pension Risk Exchange, which provides pricing of 

buy-ins and buy-outs according to the data of pension plans to their clients.  

 

In total, £8.6 bn worth of buy-outs and buy-ins with an additional £1.6 bn worth of 

longevity swap transactions were executed in 2016. The PGL Pension Scheme's buy-in 

agreement was for 4,400 pensioners with £1.2 bn with Phoenix Life and it was the largest 

buy-in in 2016. Moreover, streamlining and contract standardization increased in the 

same year. 

 

In 2017, one of the most important deals was made between the UK pension fund of Mars 

& McLennan Companies and both PICA and Canada Life Reinsurance. It was a longevity 

swap valued at a total of £3.4 bn. In this transaction, risk was shared equally by two 

reinsurers and they used the ICC vehicle, which made this deal more cost-effective from 

the pension fund's perspective. Another longevity hedge based on an index was organized 

between NN Life and Hannover Re in December 2017. The agreement was designed to 

cover longevity trend risk for €3 bn of insurer liabilities. Hedge maturity was 20 years 

and NN Life's solvency capital requirements were reduced by €35 m. This deal provided 

an effective risk transfer for the insurer [16]. 

 

4.3. Longevity Market Stakeholders 

Strategies for managing risk require that companies be managing their longevity risk in 

the most effective ways possible. Blake et al. [15] discussed some possible approaches to 

longevity risk management. For managing longevity risk, the most effective strategy 

involves capital market solutions, which have been focused on in this thesis. However, 

several conditions need to be ensured to construct a flourishing capital market (see [102]). 

First, sufficient exposure or participants must be provided for this market. This condition 

is of economic importance and hedging could not be adequately performed through the 

already existing securities. Additionally, an agreement that is both transparent and 

homogeneous is required for the market to allow sufficient exchanges to occur between 
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agents [39]. Before discussing such securities in more detail, it will be helpful to first 

outline which parties might have interest in markets for longevity-linked securities. 

4.3.1. Stakeholders for Longevity-Linked Securities in Markets 

In this section, different classes of participants of the market are examined. 

 

4.3.1.1. Hedgers 

Hedgers are one of the stakeholders. They have exposure to longevity risk, and their aim 

is to offset this particular risk. For instance, life assurers gain if mortality improves, while 

annuity providers lose. These offsetting exposures show that life assurers and annuity 

providers could each hedge the longevity risk of the other party. As a second alternative, 

a life assurer or pension plan may decide to hedge the longevity risk with its transfer to 

the capital markets, or by reinsuring it. 

 

4.3.1.2. General Investors 

The institutions constituting capital markets, like hedge funds or investment banks, might 

have interest in accepting longevity risk exposure in the event that the expected returns 

are reasonable. Because the correlation with the risk factors of the financial market is not 

high, the positive alpha value and the low value of beta mean that longevity-linked 

securities are appealing investment options worth considering for diversified portfolios. 

 

4.3.1.3. Speculators and Arbitrageurs 

Speculators are short-term investors and they are trading their opinions on the directions 

of individual movements of security prices. When they are involved, the market is apt to 

be more liquid. Arbitrageurs, meanwhile, pursue gains from whatever pricing anomalies 

might be present within related securities. Carefully established relations for pricing are 

necessary between these related securities for ensuring the success of arbitrage. 

 

4.3.1.4. Government 

There are many reasons for a government to take interest in longevity-linked securities. 

A government may desire the promotion of markets and may want to provide assistance 
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for financial companies that face longevity risk exposure. Governments could provide 

longevity bonds for the hedging of longevity risk. Such actions could serve to reduce the 

bankruptcy probabilities of such companies. The government also has the responsibility 

of being the residual risk holder if a default event occurs for private-sector pension plan 

funds or insurance companies. 

 

4.3.1.5. Regulators 

There are two primary goals of financial regulators: enhancing financial stability and 

ensuring the provision of fair deals for customers in the retail sector. 

 

4.3.1.6. Other Stakeholders 

Organized exchanges, health care providers, equity release mortgages providers, and 

security managers are some of the other relevant stakeholders. These parties will be able 

to gain benefits from novel sources of fee-based income [15]. 

 

4.4. Index versus Customized Hedge 

An insurer might prefer a hedge that is free of basis risk, whereby the insured population 

equals the reference population, for its longevity or mortality risk.  On the other hand, an 

insurer may use a hedge wherein the reference and insured populations are different. In 

index hedging, effectiveness of the hedge depends on the reference or index population. 

Understanding the difference between index and customized hedges is important. 

Furthermore, managing and measuring the basis risk in index hedges is important for 

capital requirements. 

 

As discussed by Coughlan et al. [42], index hedges have important advantages over 

customized hedges. For instance, a customized hedge eliminates all basis risk. However, 

their premiums and costs are higher. On the other hand, index hedges are advantageous 

in terms of cost, their simple nature, and better liquidity potential. Due to advantages of 

index-based hedge, we adopt index-based hedging solutions in this thesis. However, 

index hedges do not provide a perfect hedge and they leave a residual risk.  
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The disadvantages and the advantages of these hedges are summarized in Table 4.1. 

 

Table 4.1: Index vs. Customized Hedge 

 Advantages Disadvantages 

Index Hedge Lower cost Imperfect hedge 

Lower operational costs Basis Risk 

Shorter maturity Base table estimation risks 

Lower counterparty risk Roll Risk 

Customized Hedge No basis risk More expensive 

Requires minimal monitoring High operational costs 

 Less liquidity 

 Credit risks 

 Less attractive for investors 

Source: Coughlan [41]. 

 

4.4.1. Customized Longevity Risk Transfer Securities 

Selling the annuity book's or pension plan's liabilities by using reinsurance or insurance 

contracts is a traditional way to deal with longevity risk. This transaction is referred to as 

pension buy-out. Additionally, longevity insurance and pension buy-ins have been started 

to use to transfer longevity risk recently. In these solutions, the hedger can fully 

indemnifies its risk exposure.   

 

4.4.1.1. Pension Buy-outs 

 A pension buy-out is a financial asset which provides a hedge for any liabilities of a 

pension plan in exchange for a fixed premium. The advantage of this transaction is that 

the pension liabilities of trustees are fully eliminated. Pension buy-out transactions have 

become popular in the UK and the US since 2006. In 2016, the largest buy-out transaction 

was made by Legal & General. 

4.4.1.2. Pension Buy-ins 

Buy-ins are financial asset that provides a hedge including investment, inflation, 

longevity risk and interest rate of a pension plan. A buy-in transaction includes the bulk 



 

 67 

purchase of annuities that covers the characteristics of the members of the pension plan, 

such as gender, age and pension amount. It is similar to buy-out transactions. It provides 

hedge in exchange for a fixed premium. 

 

4.4.1.3. Longevity Insurance 

This solution is the insurance-based version of the longevity swaps. Only the longevity 

risk is transferred in this transaction. It has similar dynamics like longevity swaps that 

involves paying the fixed cash flows in exchange for floating cash flows. Different from 

the buy-ins and buy-outs, they do not provide a hedge for investment risk or other risks 

related to the pension plan [16]. 

 

4.4.2. Index-Based Longevity Risk Transfer Securities 

Different investors will use different instruments depending on their portfolio and 

hedging purposes. For instance, pension buy-outs and buy-ins tend to be mostly used by 

insurers. On the other hand, longevity swaps are generally used by reinsurers and 

investment banks. Index-based longevity risk transfer instruments are examined in this 

section. 

 

4.4.2.1. Longevity Bonds 

Two primary types of longevity bonds exist. ``Principal-at-risk" longevity bonds are the 

first type, which can be represented by the Swiss Re bond. With such bonds, investors 

face risks of the loss of part of or even the entire principal if events related to mortality 

occur. The second type is the ``coupon-based" longevity bond, which can be represented 

by the EIB/BNP bond. With these, the coupon payments are mortality-dependent. The 

dependence may be variable: payments may be functions of mortality indexes, or the 

investor could lose all or a part of the coupon in the event that the mortality index exceeds 

a certain point. This type of bond could be issued in the format of annuity bonds, and 

there is no terminal payment for the principal since they are designed as hedge 

instruments. However, there are also other sorts of longevity bonds, including, for 

example, the repayment-of-principal type. 
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• Classical Longevity Bonds: The first longevity bond is that proposed by Blake 

and Burrows [13]. Its coupon payments are kept in proportion to the survival rate 

of the specified reference population, while its final payments finish upon the 

death of the final surviving individual from that reference cohort. 

• Zero-Coupon Longevity Bonds: These bonds envisage a single coupon payment. 

The attraction of zero-coupon longevity bonds stems from the fact that they can 

offer blocks upon which tailor-made positions can be built. 

• Deferred Longevity Bonds: These are bonds with deferred payment dates. 

Longevity bonds with deferrals could be viewed as a sort of mortality forward 

contract. They can take many different forms as forward contracts. 

• Principal-at-Risk Longevity Bonds: A principal-at-risk bond has a similar 

structure to the Swiss-Re mortality bond. A pension plan or annuity provider 

issues these bonds via a so-called special purpose vehicle (SPV). For the 

beginning of the agreement, annuity providers or pension plans and investors are 

funding the SPV. Generally, principal and coupons are fully payable to investors. 

In the event that the survivor index surpasses a specific limit, however, the 

principal repayment to the investor will be reduced. The residual payment would 

be paid to a pension plan or an annuity provider [15]. 

 

4.4.2.2. Longevity Futures 

If longevity bonds have a liquid market, it may be feasible to develop a futures market 

that will apply bond prices as the core foundation. The LIFFE Long Gilt futures contracts 

are the nearest equivalent example to this in the UK. 

 

Involvement of speculators and arbitrageurs is the key issue here. Interest rate changes 

cause unpredictability in the prices of longevity bonds from day to day, but the changes 

in longevity risk emerge over long periods. According to the arbitrageurs and speculators, 

shifts in interest rates within the gilt market do not get mirrored correctly in the market 

for longevity bonds [15]. 

 

 



 

 69 

4.4.2.3. S-forwards and q-forwards 

A q-forward is a mortality forward rate contract, and among the possible longevity 

hedging instruments, it is the simplest one [42]. For establishing a q-forward contract, the 

two signing parties agree on exchanging a sum that will be in proportion to the given 

population's actual realized mortality rate for a sum that will be in proportion to a 

mortality rate that is fixed. A q-forward could be seen as a swap designed for exchanging 

realized mortality with fixed mortality. 

 

Another related agreement is the S-forward, which is based on a survivor index. The index 

is obtained by using mortality rates. In this case, longevity swaps will involve streams of 

S-forwards with different maturities. The first S-forward was introduced by Dowd [53] 

[16]. 

 

4.4.2.4. Longevity Swaps 

Longevity swaps are agreements that parties will be exchanging at least one cash flow in 

the upcoming future on the basis of a minimum of one (random) survivor index. The 

structure of longevity swaps is similar to reinsurance contracts. However, there are major 

differences between them. The most important one is that longevity swaps are not 

insurance contracts; this means that they are not subject to the legal features that are in 

place and upheld for an insurance contract. Longevity swaps, in contrast, are held subject 

to the laws for securities. As an example, insurance contracts do not allow for speculation 

about random variables, but longevity swaps do. Moreover, a longevity swap does not 

require that policyholders possess insurable interest, while insurance contracts do. 

 

Diverse forms of longevity swaps exist. A detailed discussion of this may be found in the 

works of Cox and Lin [45] and Dowd et al. [55]. 

 

• One-Payment Longevity Swaps: Among longevity swaps, a one-payment 

longevity swap is the most simple type. It entails exchanging one single random 

longevity-dependent payment with one single preset payment. Let us suppose that 

two firms formally agree on swapping a random amount in exchange for a preset 
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amount at a specified future date of t. It is possible to interpret the preset amount 

as a coupon in affiliation with an implicit notional principal. Moreover, the swap 

agreements are specified such that the participating parties are exchanging the net 

differences between the two payments to keep credit risk down, and not more than 

that. The random amount is related to a specific reference population. 

• Vanilla Longevity Swaps: One-payment longevity swaps could be regarded as 

central foundations for vanilla longevity swaps. With this type of swap, the parties 

make an agreement for exchanging some series of payments on a periodic basis 

until the swap's maturity. Vanilla longevity swaps share similarities with interest-

rate swaps. They both involve a floating leg, which is connected with a market 

rate, and a fixed leg. However, there are several major differences. In an interest-

rate swap, the fixed-leg payments are constant over time, whereas in a vanilla 

longevity swap, the fixed-leg payments will be decreasing with the passage of 

time together with the survivor index that is anticipated at a time of 0. 

Additionally, an interest-rate swap's floating leg will always be connected with 

some market rate, while a vanilla longevity swap's floating leg will be dependent 

upon a survivor index at time t. Interest-rate swaps are priced under zero-arbitrage 

conditions since the market is liquid. However, it is possible to value a vanilla 

longevity swap within the settings of an incomplete market. 

• Other Longevity Swaps: There are also many other longevity swaps. For instance, 

some swaps may include exchanging one floating payment for a different one. 

Other types of swaps could be organized according to companies' needs, such as 

longevity spreads, longevity swaps across currencies, and longevity swaps with 

embedded properties such as options. 

 

4.4.2.5. Advantages of Longevity Swaps 

There are several advantages of longevity swaps in comparison to longevity bonds. For 

example, it is possible to arrange longevity swaps that have lower transaction costs. 

Furthermore, it is easier to cancel them than it is to cancel a bond. They offer increased 

flexibility, and they can be uniquely designed with the goal of suiting diverse scenarios. 

Longevity swaps have no requirement for a liquid market; they merely need 

counterparties willing to trade their views about mortality over time [15]. 
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4.4.2.6. Uses of Longevity Swaps 

• Insurance Companies' Uses: For an insurer, one possible usage of a longevity 

swap would be hedging the longevity risks in their life book. A longevity swap 

requires the matching of preset payments with the payouts of life policies that are 

being anticipated. An insurer could use a longevity swap to reduce their longevity 

risk. 

 

Another reason for an insurer to use a vanilla swap is to manage their exposure to 

risks over a reference population. It is possible for participating parties to 

exchange their risks over differing reference populations. For instance, one US 

insurance company can enter a swap agreement with a UK insurance company. 

Since the UK and the US longevity risks do not have perfect correlation, both 

companies can decrease their risks. An insurer could use a longevity swap for 

many other purposes. Further discussion of this topic is available in the work of 

Dowd et al. [55]. 

• Uses by Other Investors: Other financial companies, such as banks or long-term 

investors, are also interested in longevity swaps. These companies constantly 

pursue avenues for improving their expected returns based on risks. Similar to the 

terms for capital asset pricing models, companies try to find new investment assets 

that have low beta values as measured based upon the existing portfolios. 

• Speculative Uses: Investors can also use longevity swaps to serve as tools that 

will allow speculation about longevity risks. Let us assume that a company has an 

opinion about future mortality. The company thinks that future mortality would 

be lower than the rate that is generally expected. This company thus indicates that 

improvement in the mortality rate will be higher than the current predictions. This 

company enters into a longevity swap agreement as to the preset payer. In the 

event that the company's beliefs are correct, the mortality rates will decline and 

received payments will rise in turn. Hence, this hypothetical company would 

profit from this swap transaction [55]. 

 

4.4.2.7. A Nascent Market in Longevity Swaps 

Longevity swaps are traded over the counter (OTC). The OTC market at this point is still 

in its earliest stages. However, many reassurers and companies transact OTC longevity 
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swaps, with the floating leg connected to the counterparty's realized mortality and the 

fixed leg being connected with some published mortality projection [15]. Some of the 

recent survivor longevity transactions are listed in Table 4.22. 

 

Table 4.2: Recent Longevity Swap Transactions 

Pension Fund 

or Sponsor 

Provider(s) Solution(s) Amount Date 

Delta Llyod RGA Re Index-based 

longevity swap 

€12 billion June 2015 

Aegon Canada Life Re Longevity swap 

and reinsurance 

€6 billion July 2015 

Manweb Abbey Life Longevity swap £1 billion Aug. 2015 

AXA France RGA Re Longevity swap 

and reinsurance 

€1.3 billion Nov. 2016 

Pension 

Insurance 

SCOR Longevity swap 

and reinsurance 

£1 billion July 2017 

British 

Airways 

Pension 

Partner Re Longevity swap 

and reinsurance 

£1.6 billion Aug. 2017 

 

 

4.5. Interim Conclusion: A Review of Longevity Hedge Products 

An evaluation of the longevity risk market has been examined in this section, together 

with the longevity risk market stakeholders. Moreover a review of the longevity risk 

transfer securities are presented. An investigation should be done carefully about market 

structure, stakeholders and risk transfer securities to increase the liquidity and 

effectiveness of the longevity risk market.  

 

An important increase has been seen recently in longevity-linked securities, since they 

can be arranged at lower costs and provide significant capital gain. In the first subsection, 

the evaluation of the longevity risk transfer market is examined. Then the stakeholders of 

this market are presented. In final subsection, index and customized longevity risk 

transfer securities are described and compared. Their advantages and disadvantages are 

discussed. All of those mentioned products provide effective hedging; however, index-
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based longevity swaps have more advantages than other products. They deliver higher 

levels of flexibility, and they can be designed uniquely to meet the needs of diverse 

scenarios. Hence, index-based longevity swaps were adopted as the hedging instrument 

for this thesis. 
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5. BUILDING A TWO-POPULATION MORTALITY MODEL 

5.1. Introduction  

Index-based longevity transactions are better at attracting increased interests both from 

within and from outside of the worlds of insurance and pensions. That is because these 

transactions offer significant capital savings and they provide management of risks 

effectively, as well as at decreased costs. However, as noted before, the potential 

differences between hedging instruments and the annuity or pension portfolios creates 

longevity basis risk which arises from mismatches in demographics between the “book 

population” (namely the portfolio's or the pension's population) and the “reference 

population” that is associated with the hedging instrument (namely the national 

population).  The differences between two populations, and whether this involves two 

populations that are completely unlike each other or a population that is actually a 

subpopulation of the first one, can cause such demographic mismatches. It is possible to 

classify these mismatches on the basis of a few main characters [116], such as age, gender, 

or socioeconomic class. 

 

If the two populations of concern possess profiles that are similar to each other in terms 

of these specified characters, then the basis risk will be small. If they possess profiles that 

are not so similar, there will then be a larger basis risk.  

 

The sources of basis risk are as follows: 

 

• Structuring risk arises from the difference between the payoff structure of the 

hedging instrument and the hedged portfolio. As an example, hedging instruments 

could make their payments annually, while portfolios can make monthly 

payments. 

• Sampling risk is the risk that arises from random outcomes that occur within 

individual lives. 

• Demographic risk arises from the socioeconomic and demographic differences 

between the populations of the hedging instrument and portfolio [64]. 
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There are well-established approaches to model the structuring and sampling risk. 

Simulating the cash flow payoffs under the instrument and the portfolio could facilitate 

an assessment for structuring risk, whereas sampling risks might be evaluated by 

simulations of cash flows. However, an established, widely recognized method for 

assessing demographic basis risks do not yet exist [128] 

 

Only a few papers have been published in the literature on quantifying the demographic 

basis risk and the impacts of that risk on longevity hedges' success. The lack of a suitable 

framework for the quantification of these risks means that it is not a simple matter to 

determine whether a transaction has good monetary value, or the transaction's potential 

impacts for the capital requirements and the overall risk profile of the insurer or the 

pension scheme. Previous research on quantifying basis risk have followed the framework 

that was constructed by Coughlan et al. [43]. In their approach, the first step for assessing 

longevity basis risk involves the detailed analysis of the history of both the reference and 

the book population with the aim of gaining a thorough comprehension of the differences 

in mortality between those two populations [128]. 

 

Due to these differences in portfolios, basis risk causes imperfect hedge. As discussed in 

[14], the demand side of the market has challenges to address measuring the basis risk in 

a longevity hedge, optimizing the index-based longevity hedge in the presence of 

longevity basis risk and building a multi-population mortality model. 

 

In order to assess and measure basis risks, it is necessary to have a model capable of 

capturing the trends of mortality within the reference population and in the portfolio's 

population for which the risk is going to be hedged [101]. In recent years, researchers 

have begun to explore the basis risks between populations associated with pension plans 

and hedging instruments. Subsequent to those efforts, several multi-population stochastic 

mortality models have been proposed in the literature. Therefore, we review the existing 

multi-population models and address how to build a two-population mortality model to 

construct a hedge framework in this chapter. 
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In section 5.2, the notation that is used throughout this thesis is defined and a review of 

the existing multi-population models is presented. In section 5.3, steps for building a two-

population model to measure longevity basis risk are examined. Section 5.4 concludes 

the chapter. 

 

5.2. Notation 

We begin with the introduction of helpful notations. Let us denote the reference 

population by R, and B will be used for the book population whose longevity risk is going 

to be hedged. An assumption is made that time will be measured in units of years, and 

here year t will refer to time interval [t, t+1]. For the reference population, R

xtD  and R

xtE  

show the death counts and exposure to risk at age x at last birthday in year t. Central 

mortality rates for any individual of the reference population of age x in year t will be 

signified by R

xtm  and computed as /R R R

xt xt xtm D E= . Likewise, the same values for the book 

population are given here as B

xtD , B

xtE  and /B B B

xt xt xtm D E=  [128]. 

 

A further assumption being made here is that the data for the reference and book 

populations can be different regarding specified sets of ages and specified amounts of 

years. For instance, we have R

xtD  and R

xtE  for consecutive ages 
1,..., Rnx x x=  and 

consecutive calendar years 
1,..., Rnt t t=  in the reference population, while ,B

xtD  B

xtE  are 

available for ages 
1,..., Bnx x  and calendar years 

1,..., Bnt t t=  in the book population. 

 

The reference population's data might be provided for a longer time frame than that of the 

book population, which is R Bn n . Moreover, the calendar years of data in a book may 

be provided as a subset of the comparable calendar years for the reference population, 

R Bn nt t . Also, the ages provided by the book might constitute a smaller portion of those 

that are provided for the reference population. 
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5.2.1. Literature Review 

We need to specify an appropriate two-population model for R

xtm  and B

xtm  that has the 

capability of capturing the trends of mortality that are present within the reference 

population that supports the hedging instrument as well as those within the book 

population whose risk is going to be hedged in order to assess basis risk. This model 

should consistently and stochastically forecast the rates and trends of future mortality. 

 

As mentioned before, several models have been developed to show the mortality 

evaluation of a minimum of two related populations. Generally, these models serve to 

expand the previous single-population models with the specification of correlations and 

interactions existing between populations. While the majority of research on modelling 

multi-population scenarios has been conducted relatively recently, the seeds of such work 

may be traced back to the influential paper published by Carter and Lee [29], where they 

introduced feasible approaches for the extension of their single-population model for 

differences in US mortality between men and women. Their model suggested applying 

independent Lee-Carter models to individual populations, and this was the first approach 

for multi-population models. Afterwards, the joint-  model, based on the assumption 

that populations' mortality dynamics will be driven by one commonly shared time-

varying factor, was developed. The third approach was based on an extension of the Lee-

Carter model, applying co-integration techniques and estimating the populations jointly. 

The definitions of new models established on the basis of the Lee-Carter model are given 

below: 

 

i. Independent Modelling: In this approach, mortality is modelled with the 

utilization of two independent Lee-Carter models. Let i

xtm  be the central death 

rate for population i in year t at age x. The model can then be expressed as follows: 

 

 , ,ln( ) ,i i i i i

x t x x t x tm a b k e= + +     i = R, B. (5.1) 

All of those parameters hold the same meanings that they possess in the original 

Lee-Carter model. It is possible to estimate the model parameters with the 

application of singular value decomposition, the Markov chain Monte Carlo 
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approach, or maximum likelihood estimation. For a forecast of mortality, a 

mortality index could be modelled using two independent ARIMA processes. It 

is easy to apply this method, but in this case, dependences between two 

populations' mortality rates are completely ignored. The basis risks would be 

overestimated in the event that this is the method selected to be used. 

ii. The Joint-k Model: This model is based on the assumption of the mortality rates 

of both populations both being driven along by one single mortality index. This 

model may be expressed in the following way: 

                                   , ,ln( ) ,i i i i

x t x x t x tm a b k e= + +     i = R, B.                    (5.2) 

In the joint-k model, the mortality index is the driving force behind the changing 

of rates of mortality for both of the populations. Model parameters are estimated 

as in the previous approach. Mortality index tk  will be modelled here with the 

utilization of an appropriate ARIMA process. However, mortality improvements 

of two populations are perfectly correlated. Additionally, the common factor's 

presence suggests identical advancements in mortality for all populations all of 

the time. Hence, the assumption cannot be said to be realistic. Li and Lee [92] 

thus introduced a population-specific factor for this model, referred to as the 

“augmented common factor model”. 

iii. Augmented Common Factor: For the first approach, that of the two independent 

Lee-Carter models, life expectancy divergence increases in the long run. The 

joint-k model cannot completely resolve this issue, since discrepancy between two 

populations in terms of parameter i

xb  could generate divergences in the mortality 

predictions. 

 

Li and Lee [92] present criteria for the divergence problem, as given below: 

- R B

x xb b=  for all x. 

- R

tk  and B

tk  have identical drift terms of the ARIMA process. 

Given these conditions, Li and Lee introduced a specific factor for the Lee-Carter 

model: 

 , ,ln( ) ,i i i i i

x t x x t x t x tm a b k b k e= + + +     i = R, B (5.3) 
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The i i

x tb k  term serves to capture variations in the changing rate of mortality of 

population i from the long-term mortality change tendencies suggested by the 

common factor, x tb k . The i

tk  factors are modelled using the AR(1) process to 

ensure the avoidance of any divergence from the mortality projections [91]. 

 

Another modelling approach for two-population mortality is the extension of the Cairns-

Blake-Dowd (CBD) mortality model for a single population [26]. A version of the CBD 

model for two populations and its variants were introduced by Li et al. [96]. For example, 

the two-population variant of the CBD model with the incorporation of quadratic effects, 

known as the M7 model, may be given as follows: 

 logit ,1 ,2 2 2 ,3

, ( ) (( ) ) ,i i i i i

x t t t x t t xq x x x x     −= + − + − − +     i = R, B (5.4) 

where x  represents average age and 2

x  is the average value of 2( )x x− . ,1i

t  and ,2i

t  

are two stochastic processes and furthermore represent the model's two time indexes. 

Time index ,1i

t  reflects the level of mortality as measured at time t, while  ,2i

t  denotes 

the model's slope and affects every age differently. i

t x −
 parameter shows the cohort 

effect. Li et al. [96] considered three different approaches, which were presented in the 

work of Zhou et al. [140] to forecast future mortality rates. 

 

The use of an age-period-cohort (APC) model with two populations was presented by 

Cairns et al. [25] and Dowd et al. [54]. This model may be expressed in the following 

way: 

   ,log ,i i i i

x t x t t xm a k  −= + +         i = R, B (5.5) 

,i

xa  i

tk  and i

t x −
 are the age, period and cohort effects of the populations.  

 

Spreads that exist between the state variables that underlie models of mortality can be 

modelled as a mean-reverting process for each population and this allows for differing 

short-term trends in rates of mortality, whereas there are parallel long-term 

improvements. In the work of Cairns et al. [25], a Bayesian framework was used, which 

allows for the estimating of the state variables that are not observable and the parameters 
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of the stochastic process that drives them to be performed in just one stage. In another 

important study, Dowd et al. [54] developed a gravity approach wherein mortality rates 

of two populations experience attraction to one other, which is determined by a dynamic 

gravitational force. That force depends on the comparative sizes of the two populations 

in question [125]. 

 

Jarner and Kryger [74] and Cairns et al. [25] recognized the comparative value of the 

reference population supporting the index and the population whose longevity risk is 

going to be hedged. Their approach centers on the reference population at the beginning, 

after which the dynamics of book mortality must be given for the incorporation of 

characteristics from the reference population. This relative method includes the following 

important aspects [64]: 

 

• It permits the mismatching of data between the book and reference population. 

• The method is applicable in the typical case in which a book population is 

significantly smaller than a reference population. 

• Models for reference populations have been studied in considerable depth and are 

easy to find, meaning that this aspect of the model might be considered to be 

thoroughly established, which allows us to instead shift our attention to informed 

decision-making regarding the model's book part. 

• There is consistency present in the modelling of several book populations when 

the same reference population is used for all of them. 

• Joint models may lead to an unrealistically strong correlation between the rates of 

mortality in two groups for different age brackets. If correlations between 

mortality dynamics are unrealistic, then it is not possible to claim that the analysis 

of the success of the hedging will have any reliability. It can be expected that 

multi-population models will generate a correlation between the mortality rates of 

two different populations that will not be perfect. In the relative approach, 

mortality models produce a non-perfect correlation. 

 

There are other multi-population applications of well-known single-population models. 

For instance, Biatat and Currie [11] expanded the P-spline approach to encompass 
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scenarios with two populations; previously, it had been utilized with success for cases of 

single populations. Hatzopoulos and Haberman [66] and Ahmadi and Li [1] applied a 

multivariate generalized linear model (GLM) for obtaining coherent forecasting of 

mortality in cases of multiple populations [128]. 

 

Existing multi-population models generally focus on two or more related populations' 

mortality rates in terms of the following (see [64] and [93]): 

 

• Males and females in a specified population or country. 

• National populations within different countries. 

• Smokers and non-smokers in a specified population or country. 

• Basis risk in terms of income, deprivation, and affluence index. 

 

Although there are many multi-population mortality models, only a few investigate the 

measuring of longevity basis risks. Some of the earlier research designed for quantifying 

basis risk, such as that by Cairns et al. [27], Ngai and Sherris [110], and Li and Hardy 

[91], have applied the original framework constructed by Coughlan et al. [43]. 

 

5.3. Building a Two-Population Mortality Model 

The first step in constructing the hedge is to establish a two-population mortality model 

in order to measure the longevity basis risk. 

 

5.3.1.  Mortality Data 

All of the examples given here utilize historical UK mortality data, which were collected 

from the Continuous Mortality Investigation (CMI) and the Human Mortality Database 

(HMD). The first data represent the mortality experience of CMI assured male lives that 

are being hedged. The subsequent dataset is for the reference population, which provides 

the mortality experience of male lives in England and Wales (EW). For the reference 

population, a sample period from 1961 to 2016 is considered, while for the book 
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population, the sample period comprises the years of 1961-2005. The sample age range 

being considered is 65 to 89. 

 

5.3.2. Modelling the Reference Population 

A relative approach is applied in this thesis, as in [64], since it has many advantages over 

joint modelling. However, the modelling framework of this thesis is slightly different 

from the original formulations that were used for the reference model. The model 

proposed here is a Lee-Carter model with exponential transitory jumps and renewal 

process. As indicated before, mortality jumps exert important impacts for mortality 

dynamics; therefore, it is essential that they are incorporated into the modelling process. 

We assume that transitory jumps are only valid for the reference population because of 

the quality and size of the available data for the national population. Our proposed model 

is given by the following: 

 ,log( ) ,R R R R

x t x x tm a b k= +  (5.6) 

 
( )

2

0

1

1
( ) ( ) .

2

N t
R R

t i

i

k k t W t Y  
=

= + − + +  (5.7) 

Here, ,

R

x tm  denotes the central death rate in year t for age x, R

xa  represents the age pattern 

of the death rates, R

tk  reflects variations that exist across time in the log mortality rates, 

R

xb  represents the mortality rates' sensitivity to changes in time-varying mortality index 

R

tk , ( )W t  signifies standard Brownian motion, ( )N t  denotes the renewal process, and, 

finally, iY  represents a sequence of iid exponential random variables representing the size 

of the jumps.  

 

There are two identifiability constraints, which means that unique solutions exist for all 

of the model's parameters. These identifiability constraints are given as follows: 

1,R

x

x

b =  0.R

t

t

k =  

We will estimate the model's parameters using the MLE method. First, reference 

population parameters R

xa , R

xb , and R

tk  are estimated. Afterwards, Equation (5.7) is used 
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to calibrate the time-varying mortality index. We need to find the density function of the 

independent one-period increments, 
1,

R R R

i i i ik r k k − = = −  to estimate the parameters of the 

calibrated model. 

 

Let 
0 1{ , ,..., }tD k k k=  represent the mortality time series at times of 1,2,..., ,t T=  which 

have equal spacing. The one-period increments are iid. Unconditional density for the one-

period increment ( )if r  may be given as follows: 

 
( )

1

( ) (0) ( | 0) ( ) ( | ),
N t

i i i

n

f r R f r R n f r n
=

= +  (5.8) 

where (0),R  ( )R n  are the probability of no jump and n jumps in the renewal process. 

( | 0),if r  ( | )if r n  are conditional densities for a one-period increment; more specifically, 

they are conditional on the given numbers of jumps, which were provided in the previous 

section. We can write the log-likelihood of the model as follows: 

1

( ; , , , , ) log( ( )).
T

i

i

L D f r    
=

=  

The fitted , , , , , ,R R

x xa b       parameter values are shown in Table 5.1, while time-

varying index R

tk  is illustrated in Figure 5.1. 

 

Figure 5.1: Estimated Values of R

tk  
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Table 5.1: Estimated Parameters for the UK 

Age 
xa  xb  Age 

xa  xb  

60 -4.2486 0.0388 75 -2.7879 0.0356 

61 -4.1505 0.0391 76 -2.6909 0.0349 

62 -4.0451 0.0399 77 -2.6061 0.0335 

63 -3.9482 0.0402 78 -2.5122 0.0325 

64 -3.8408 0.0408 79 -2.4167 0.0314 

65 -3.7472 0.0409 80 -2.3246 0.0298 

66 -3.6598 0.0401 81 -2.2401 0.0278 

67 -3.5517 0.0410 82 -2.1366 0.0272 

68 -3.4593 0.0404 83 -2.0461 0.0257 

69 -3.3607 0.0401 84 -1.9495 0.0250 

70 -3.2684 0.0392 85 -1.8587 0.0233 

71 -3.1758 0.0378 86 -1.7637 0.0227 

72 -3.0687 0.0381 87 -1.6793 0.0213 

73 -2.9749 0.0379 88 -1.5959 0.0195 

74 -2.8755 0.0369 89 -1. 5088 0.0179 

 

Jump Diffusion Parameters 

 =-0.2640  =0.2764  =1.4792  =0.0015  =0.6173 

 

Given the estimated parameters, the closed-form expression for the expected future 

central death rates can be derived as follows: 

 
( )

2

, 0

1

1
ˆ[ ] exp( ( ( ) ( ) )).

2

N t
R R R R

x t x x i

i

E m a b k t W t Y  
=

= + + − + +  (5.9) 

 

5.3.3. Modelling the Book Population 

With the reference population in hand, it is now time to investigate the book population's 

mortality dynamics. Estimating the reference population first allows us to make 

knowledgeable decisions regarding the model's book part, and we can also incorporate 

features from the reference population [128].  

 

The dynamics of the book population's mortality are specified through the log mortality 

differences of the book population and the reference population. Generally, the models 
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can be classified as Lee-Carter family, CBD family, and other models as discussed in the 

previous section (also see [64]). In this thesis, we compare the Lee-Carter (LC) model, 

the age-period-cohort (APC) model, the Cairns-Blake-Dowd (CBD) model, and common 

age effect models to model the book population. 

 

Note that for all the models being compared we assume that  ( , ).B B B

xt xt xtD Poisson E q  

 

5.3.3.1. The LC Model 

The dynamics of the book population are given as follows: 

 , ,log( ) log( ) .B R B B B

x t x t x x tm m a b k− = +  (5.10) 

The term B

xa  denotes the difference in the book population's level of mortality compared 

to that of the reference population for age x. Thus, we can conclude that the mortality 

level in the book equals R B

x xa a+ .  

Time index B

tk  contributes to establishing the difference that exists in the mortality 

trends. The B

xb  term shows us how differences in mortality for age x will respond if any 

change occurs in time index B

tk  [64]. 

 

5.3.3.2. The Common Age Effect Model 

This model may be seen as an extension of the Lee-Carter model that possesses a common 

age effect. It can be given by the following equation: 

 , ,log( ) log( ) .B R B R B

x t x t x x tm m a b k− = +  (5.11) 

The B

xa  and B

tk  parameters here are the same as in the LC model for the book population. 

Different from the LC model, there is a common age effect parameter, R

xb , which is the 

same as for the reference model.  

 

 

5.3.3.3. The APC Model 
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The APC model was introduced by Currie [500 and it is widely used in the literature. It 

can be regarded as a generalization of the LC model and a two-population version of this 

model may be written in the following way: 

 , ,log( ) log( ) .B R B B B

x t x t x t t xm m a k  −− = + +  (5.12) 

,B

xa  ,B

tk  and B

t x −
 respectively represent the age, the period, and the cohort effects of the 

book population [50]. The B

t x −
 term is utilized here in order to account for differences 

that exist in the cohort effect in the two populations of interest. These parameters reflect 

the mortality differences between the two populations. 

 

5.3.3.4. The CBD Model 

Cairns et al. [26] introduced the following model with the aim of fitting the mortality 

rates: 

 ,1 ,2

, ,logit( ) logit( ) ( ) .B R B B

x t x t t tq q x x − = + −  (5.13) 

,1B

t  and ,2B

t  are two stochastic processes and represent the time indexes of book 

population. These parameters reflect the mortality differences between the two 

populations as in the APC model. 

 

The analysis of the models considered in this section becomes something of a challenge 

due to the CBD model directly modelling one-year death rate 
,x t

q  while the others that 

are being studied here model central death rates 
,x tm . In order to compare the models in 

a consistent way, we must introduce an additional step for the modelling of 
,x t

q . We 

transform the one-year death probabilities in the central death rates using the identity 

, ,log(1 ).x t x tm q= − −  For all mentioned models, the estimation of the parameters is done 

with two main steps. As indicated before, estimation of the model's reference population 

is to be performed first, and as the second step the estimation of the model's book 

population will be done, conditional on the parameters of the previously estimated 

reference population. Under Poisson assumption, the log-likelihood function of the book 

population is as follows: 
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,

( ln ln ln( !)).B B B B B B B B

xt xt xt xt xt xt xt

x t

l D E D m E m D= + − −  

We estimate the parameters by applying the maximum likelihood method. The model 

parameters thus obtained for the book population are illustrated in Figures 5.2 and 5.3. 

Figure 5.2: Estimated Parameters of Book Population 

Figure 5.3: Estimated Parameters of Book Population 

 

According to Figure 5.2 and 5.3, the ,B

xa  parameter shows that the younger ages reveal 

lower rates of mortality while the older ages reveal higher mortality. The positive values 
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of B

xb  demonstrate that mortality decreases for all ages. These results are valid for all ,B

xa  

and B

xb  parameters for all mortality models of book population. The mortality index, ,B

tk

reflects the changes in mortality rates over the years for the LC, Common age and APC 

models. The B

t x −
 parameter represents the cohort related effects in the book population. 

The negative values of ,1B

t  parameter in the CBD model indicate the lower mortality 

rates while the positive values reflect the higher mortality rates. The ,2B

t  parameter 

controls these lower and higher mortality rates in the CBD model for the book population. 

 

The BIC values for fitting four models for book population mortality are given in Table 

5.2. The common age effect model has the lowest BIC value according to Table 5.2. 

Therefore, we model the book population's mortality as in the common age effect model. 

According to our analysis, common age effect is important for both populations. 

 

Table 5.2: BIC Values for the Book Population of Models 

LC Model Common Age 

Effect Model 

APC Model CBD Model 

12684.89 12531.63 12809.69 12759.64 

 

Finally, we complete the modelling framework by specifying the period's dynamics and 

the cohort terms, which will be used to forecast and simulate the future rates of mortality. 

A detailed analysis regarding the selection of the time series to be used in the dynamics 

can be found in the work of Li et al. [96]. This part of the thesis confines itself to focusing 

on the models that are more commonly applied in the literature. We assume that the two 

populations will experience similar improvements in the long run and thus we assume 

that the spread in both time indexes and cohort effects should be modelled as a stationary 

process. 

 

In this thesis, the time-varying mortality indexes of the book population B

tk  are modelled 

as an autoregressive process of order one, or AR(1); we are thus able to write 

0 1 1

B B

t t tk k  −= + +  for the LC, the common age effect, and the APC models. In the long 
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term, the mean of B

tk  equals 
0 0/ (1 ) −  if 

1| | 1.   The autocorrelation depends on the 

size of 1.  For additional details about the more technical aspects of time-series 

modelling, interested readers may refer to the work of Tsay [125]. 

 

5.3.4. Future Simulations 

In evaluating the uncertainty of future outcomes and finding the optimal model to assess 

longevity basis risk, it is necessary to address all of the parameter errors, process errors, 

and model errors from a modelling or a regulatory perspective such as that of Solvency 

II [121]. “Parameter error” refers to the uncertainty in estimating model parameters, while 

“process error” arises from variations that exist within the time series and finally “model 

error” reflects the uncertainty that is present in the model selection. 

 

In the literature, a number of studies have been proposed to allow for both process error 

and parameter error in index-based hedging. For instance, Brouhns et al. [23] used a 

parametric Monte Carlo simulation method for the generation of examples of model 

parameters following a multivariate normal distribution. Later, in a subsequent work, 

Brouhns et al. [22] also explored a semi-parametric bootstrapping procedure designed for 

the simulation of death rates from the Poisson distribution with the obtained mean 

equalling the observed numbers of deaths. On the other hand, Renshaw and Haberman 

[115] utilized fitted numbers of deaths by using the Poisson process. In another study, 

Koissi et al. [82] used a bootstrap method for the residuals of a fitted Lee-Carter model. 

 

Different from the existing methods, Czado et al. [51] and Kogure et al. [81] suggested 

the application of Bayesian adaptations of the LC model. Li [86] quantitatively compared 

possible methods for simulations; according to the conclusions of that study, sampling 

results will all be relatively close to each other regardless of whether the method applied 

is parametric, semi-parametric, Bayesian, or residual bootstrapping. All of these various 

simulation methods possess individual advantages and disadvantages. In this thesis, the 

bootstrapping method of Brouhns et al. [22] has been selected due to its ability to 

helpfully include both parameter errors and process errors in simulating future mortality 

rates. The bootstrapping procedure is detailed as follows: 
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1. Estimation of the parameters of the LC model is performed by using original data. 

Once they are obtained, those estimated parameters are then applied for estimating 

the numbers of deaths for both the reference and the book population by , ,
ˆ ,R R

x t x tm E

, ,
ˆ .B B

x t x tm E  

2. The new data on numbers of deaths are simulated from a binomial distribution for 

the book population to include the sampling risk and Poisson distribution is used 

for the reference population. It should be noted that it is possible to simulate the 

reference population's future number of lives by following the same steps; 

however, this is omitted here to keep the computational burden lighter, because 

the reference population's size is quite large for binomial assumptions to be made. 

The newly simulated data will then be used for estimation of the reference and 

book populations' mortality parameters. Incorporating this step means that the 

model can allow for parameter error. 

3. Next, we must fit time-series processes to the new data sample's temporal model 

parameters, R

tk  and ,B

tk  since we want to be able to simulate their future values. 

Furthermore, the inclusion of this step means that the model can allow for process 

error. R

tk  is modelled by using the proposed model and B

tk  is modelled by using 

AR(1). 

4. We generate future mortality rate samples for all x and future t with the 

incorporation of the parameters obtained in step (2) and the simulated values that 

we gained in step (3) into ,log( )R

x tm  and ,log( ).B

x tm  As a result, our set of future 

mortality rates will form one random future scenario. 

5. We repeat steps (1) to (4) until we have produced a total of 10,000 random future 

scenarios. 

 

In a previous study [64], parameter errors of the reference population were ignored. 

Furthermore, in that work, bootstrapping was not applied to the reference population. In 

this thesis, in contrast, bootstrapping is performed for both of the populations with the 

intentions of formalizing the total procedure.  

A sample from the simulated mortality paths are shown in Figure 5.4. 
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Figure 5.4: Sample Paths of 
, .x tm  

5.3.5. Sampling Risk 

Book and reference population's finite sizes and the randomness of outcomes of 

individual lives cause the sampling risk. If the size of populations is infinite, the future 

outcomes will converge the true expected values according to the law of large 

numbers. Nevertheless, the size of populations is limited in reality. Although the 

bigger countries have very large population sizes, the annuity or pension portfolio's 

size is usually small. Hence the book and reference populations’ outcomes will 

deviate randomly from their true expected values and also from each other. To reflect 

the effect of the portfolio size, the number of lives is simulated as: 

1, 1 , ,( ,1 )B B B

x t x t x tl Binomial l q+ + −  

,

B

x tl  is the future number of lives aged x at time t of the book population. ,

B

x tq  is the 

future mortality rate at age x at time t and it is simulated from the semi-parametric 

bootstrapping method. Simulating the number of lives of the book population by using 

the binomial distribution provides protection from the sampling risk [93]. 

5.4. Interim Conclusion: Building A Two-population Mortality Model 
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Steps for constructing a two-population mortality model is explained in detail in this 

chapter, together with the existing literature on multi-population mortality models.  

 

An appropriate two-population model was constructed for EW male lives and CMI 

assured male lives to measure longevity basis risk, and we adopt the relative approach to 

model the populations. The reference population is modelled first, followed by the 

modelling of the dynamics of the book population's mortality. According to the results, 

the LC model with renewal process and exponential jumps and the common age effect 

model provide a better fit for the historical data. Moreover, the relative method allows us 

to use portfolios with different sizes and for different sample periods. 

 

The bootstrap approach of Brouhns et al. [22] is applied in order to include both parameter 

error and process error in our simulations of future rates of mortality. We thus obtain the 

simulated mortality rates, taking their average values to be the best estimates for the future 

mortality rates. The future mortality rates are shown in Figure 5.5. The Poisson 

distribution is used for the simulation of the reference population's lives and the binomial 

distribution is used for the simulation of the book population's lives. Using the binomial 

distribution for the book population allows providing protection for the sampling risk. 

 

Figure 5.5: Future 
,x tm  Values for Age 65, 75 and 85. 
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6. A HEDGING FRAMEWORK FOR LONGEVITY BASIS RISK 

AND COLLATERALIZATION IN INDEX-BASED 

LONGEVITY SWAPS 

6.1. Introduction 

Longevity swaps that are based on indexes are advantageous in many ways when 

compared to other longevity-linked securities. Their properties and advantages have 

already been discussed in the chapter 4. As a result of those features, significant growth 

has been seen in longevity swap transactions in the market of longevity-linked securities 

and derivatives since 2008. Capital market solutions make it possible for pension schemes 

and annuity providers to swap their longevity risks. In this thesis, we use index-based 

longevity swaps for hedging. Since longevity-linked instruments are traded OTC, each 

involved party will be exposed to the default risk of the counterparty. Counterparty 

default risk can be defined as the risk that the counterparties might not meet their 

obligations regarding swap payments. This risk always exists whenever an insurer or a 

pension plan provides hedging with longevity-linked securities or derivatives [12]. 

Historical experiences show that counterparty default risk often leads to significant losses, 

and this risk has become particularly apparent following the recent global financial crisis. 

Therefore, regulators have emphasized the role of credit risk mitigation tools such as 

clearing and collateralization for the improvement of swap contracts' credit quality [10]. 

The International Swap and Derivatives Association [71] indicates that the best strategy 

for enhancing credit is to post collateral regarding the swap contract's value. 

 

Collateralization is a hedging strategy that includes exchanging the assets between two 

parties to reduce the counterparty default risk. The main idea is quite simple: securities, 

financial instruments or cash are passed to the counterparty to provide hedging for the 

default exposure. According to the ISDA, for financial institutions, nearly all swaps that 

are conducted will be collateralized “bilaterally” [72], which means that either of the 

parties will need to post collateral based on the swap's market value being either negative 

or positive. Recent research has shown that 73.7% of all OTC derivative trades are subject 

to collateralization and there are currently about 16,000 collateralized counterparties in 

the markets [73]. The collateralization of derivatives is performed based on the Master 

Swap Agreement's Credit Annex, a policy that had been introduced by the ISDA in 1994. 
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Bilateral collateral posting is a risk mitigator of importance for both of the parties entering 

into an agreement for a longevity swap. The premium that an insurer might end up paying 

for a swap when default risk is included and the premium to be paid when default risk is 

excluded is expected to be close to each other in collateralization. Amounts posted as 

collateral might differ according to the swap's market value. Different collateral 

arrangements exist, such as full collateralization and partial collateralization [12]. For 

instance, if a counterparty defaults, the surviving party has larger collateral inflows in the 

event of being in-the-money, as collateral reduces default losses and can be invested in 

the financial market. 

 

In the absence of collateral, swap rates will be determined by the following factors: the 

best estimated probability of survival for the hedged population, and the extent of the 

covariation existing between the swap's floating leg and the defaultable term structure of 

the interest rates that the hedge supplier and the hedger will be faced with. In other words, 

a complete and effective longevity swap analysis must take into account the sponsor's 

covenant in the event that the hedger is a pension plan. If collateralization is present, the 

rates of the longevity swap will be additionally influenced by anticipated collateral costs, 

and swap valuation formulas entail a discount rate that reflects the collateral's opportunity 

costs [76]. 

 

Collateralization has many benefits, both privately and socially speaking (for more 

details, please see [9]). Collateralization decreases losses conditional on default. 

Whichever party received the collateral will keep the collateral, meaning that the maximal 

loss will be total exposure with the subtraction of any collateral that was posted. 

Furthermore, collateral also decreases the required regulatory capital. Transactions that 

are collateralized typically create a zero credit-risk weighting, which helpfully serves to 

make limited capital available to be used for other aims. Finally, if collateral is posted, it 

will decrease the odds of a counterparty defaulting [76]. 

This approach is different from traditional swap pricing methods. As a result of 

collateralization, payments by counterparties are generated between established intervals 

of swap dates. As cash payments such as these may bring accompanying financial 



 

 95 

benefits/costs for the receiver/payer and are an inherent part of the initiation of the swap 

contract, it is necessary to take them into account whenever valuing a swap. 

 

To date, such transactions primarily included pension funds and annuity providers who 

desired to hedge longevity risk exposure without facing any basis risk [12]. This thesis 

aims to provide a hedging framework for quantifying and managing longevity basis risks 

when collateralization and counterparty default risk are present in the scenario. This 

should provide market participants (risk hedgers, regulators, etc.) with effective risk 

mitigation solutions and furthermore allow them to better understand the allocation 

between their exposure to the general population longevity trend risk and their specific 

population longevity risk. 

 

This work makes two primary contributions to the existing literature on hedging longevity 

basis risk: i) collateralization rules are extended with the existence of longevity basis risk, 

and ii) the existing framework for a pension portfolio is also extended in the presence of 

default risk, basis risk, and collateralization. The central aim of this section is to construct 

a hedging framework for population basis risk and quantify its impact on hedge 

effectiveness. It is found here that posting collateral increases risk reduction if 

counterparty default risk is present. Such an extension and hedging framework is 

presented here for the first time in the actuarial literature to the author's best knowledge. 

 

This section is organized in the following way. Section 6.2 will present the general basis 

risk hedging framework. Thereafter, Section 6.3 will construct a hedge for longevity basis 

risk and define the nature of index-based longevity swaps. Section 6.4 will present the 

bilateral collateral posting rules for index-based longevity swaps, followed by a 

description of the framework for modelling longevity basis risk with counterparty default 

risk and collateralization. Finally, Section 6.5 will conclude. 

 

6.2. A General Hedging Framework for Longevity Basis Risk 
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6.2.1. Analysis of Basis Risk 

A general framework will be provided in this section for the analysis of hedge 

effectiveness and basis risk. Analysis of basis risk needs to be arranged appropriately with 

hedging objectives such as time horizons, metrics, and the selected analytical methods 

that are to be applied. 

6.2.1.1. Metrics 

A lot of different metrics exist that could be utilized for providing an understanding of a 

longevity hedge's basis risk. Due to the complicated relationship that exists among 

mortality experiences across years of birth, times, and ages, it is important to analyse the 

historical performance of all key factors given below: 

 

• Liability cash flows 

• Mortality improvements 

• Survival rates 

• Liability values 

• Life expectancies 

• Mortality rates 

 

Among various possible metrics, mortality rates are used most often in the assessment of 

basis risk, since they constitute the raw data associated with longevity. Nevertheless, 

performing direct comparisons between two populations' rates of mortality often 

generates an inaccurate picture of the situation's basis risk and of the hedge's 

effectiveness. 

 

Using percentage changes in mortality rates for evaluating longevity basis risks includes 

the analysis of sampling variability, long-term trends, and age-bucketing.  

 

Since a pension plan's population's survival rates state the number of survivors receiving 

a pension and the life expectancy correlates with the anticipated time frame in which 

pension payments will need to be made, these particular metrics have a closer relationship 

with hedge effectiveness than they do with mortality rates. 
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Although the metrics above may be valuable for improving our comprehension of basis 

risk, they are not sufficient to quantify hedge effectiveness. Although hedging studies 

typically focus most of their attention on eliminating variations in liability cash flows or 

the variation in the value of those cash flows, an effective study of basis risk must also 

consider the effect on cash flows and their values. The financial impacts of basis risk are 

mirrored directly by the metrics described here; for that reason, these metrics are 

understood to be suitable choices in studies aimed at evaluation of the effectiveness of 

longevity hedging.  

 

The value of cash flows is of greater utility in the quantification of basis risk than the 

other metrics described here, but the primary disadvantage is the dependence on unique 

details of the benefit structure of particular annuity portfolios or pension plans. For this 

reason, they require complicated calculations to be performed, such as future cash flow 

discounting, and furthermore, these calculations need to be performed again in full every 

time for each new scenario. On the other hand, life expectancy and rates of survival or 

mortality are all independent of the benefit structure's unique details. Therefore, if suitable 

interpretation is performed, these are able to provide helpful knowledge about basis risk. 

 

6.2.1.2. Time Horizon 

The choice of the time horizon has critical value when basis risk is to be assessed. When 

longevity risk is being considered within the context of large populations, it must be 

understood as a risk with a cumulative trend that builds quite slowly and needs to be 

measured across longer time horizons. For this criterion to be met, it is necessary to 

evaluate the metrics across horizons that span several years at a minimum. When 

comparing mortality rate evolutions for two different populations, for example, the 

changes in their rates of mortality must be evaluated across time horizons that span 

multiple years. 

 

However, as a result of using long horizons, the number of independent observations from 

any given historical dataset will be notably reduced. Hence, selection of a time horizon 

in the analysis of basis risk requires that we make a choice between, on the one hand, a 

horizon that will be sufficiently long to determine the trends and, on the other hand, a 
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horizon that will be sufficiently short to offer the number of independent data points 

needed for an effective analysis. 

 

6.2.1.3. Analytical Method 

It is also necessary when evaluating basis risk to select an appropriate analytical method 

that will suit the hedging objective in terms of both time horizon and metric. With this 

goal in mind, it is necessary to make decisions about assorted analytical details, such as 

choosing to perform a comparison of the levels of some certain metric or rather comparing 

the changes that occur within that metric for each studied population. Once these 

particular analytical details are specified, we will then need to clarify our approach to the 

comparison of the results that we obtain from the two studied populations. Such a 

comparison might be performed qualitatively, e.g., by using graphs, or it might be done 

quantitatively with the aid of statistical analysis, e.g., by utilizing correlations.  

 

In the analysis of longevity basis risk, the general goal is searching for a long-term and 

durable relationship between two selected populations. In the event that it is possible to 

identify such a relationship, it will then be possible in turn to calibrate suitable index-

based hedging via the determination of the hedging instrument's optimized hedge ratios. 

 

6.2.2. Hedge Calibration 

Hedge calibration may be described as a process for designing a hedging instrument so 

as to ensure the maximization of its effectiveness in decreasing risks in light of the 

specified hedging objectives. Two main components are present here. The first 

component is the identification of both a suitable structure and the ideal features of the 

hedging instrument (e.g., maturity, instrument type, or the index that will be applied). The 

second component is ensuring optimized amount determination for the hedge with the 

aim of maximizing hedge effectiveness. Part of this second component includes finding 

the ideal “hedge ratios” for each component of the chosen hedging instrument.  

 

As an illustration, we can take a hedging instrument that has only a single component 

intended for hedging a pension liability's value at some time in the future. This will be 
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called the “hedge horizon”. Let us assume that the hedger has purchased h units of the 

hedge for each single unit of the liability: in other words, h is the hedge ratio. In this 

illustration, the hedged portfolio comprises the liability together with h units of the 

hedging instrument. We will also make the assumptions of future random liability 

( )L L T=  at time T and a hedging instrument with value ( ),H H T=  also at time T. 

Following these assumptions, the portfolio's value at time T will be ( ) .P h L hH= +  

Assuming that the hedger uses the variance as a tool for measuring the risk, then the 

optimal hedge ratio will be as follows: 

 * ,L

L

h





= −  (0.1) 

where ( , ).Cor L H =  

 

6.2.3. Hedge Effectiveness 

In the assessment of hedge effectiveness, it is necessary to consider the chosen hedging 

objectives together with the type of risk that will be hedged in order to ensure the 

development of a suitable methodology. In choosing this methodology, one key question 

is whether we will be assessing the hedge effectiveness prospectively or retrospectively.  

 

Analysing hedge effectiveness in a prospective manner entails the development of 

forward-focused scenarios for anticipating the future success that a hedging instrument 

might demonstrate. This can be done with Monte Carlo simulations of possible future 

pathways for mortality rates, as the hedging instrument's prospective performance can be 

predicted from such simulations in relation to the longevity exposure underlying the case. 

Here, it is necessary to take the basis risk into consideration in an explicit fashion, 

ensuring that simulations of future mortality rate scenarios consistently reflect observable 

relationships between the hedging population and the exposed population. For the best 

results, a stochastic mortality model with two populations must be used. 

 

On the other hand, performing hedge effectiveness analysis retrospectively entails the use 

of real historical data in order to evaluate the success that a hedging instrument might 

have achieved in the past. For this type of effectiveness testing, basis risk is considered 
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by incorporating the historic relationships between the mortality outcomes observed for 

the hedging population and for the exposed population.  

 

After specifying our effectiveness method, we must go on to make a second choice 

regarding the so-called basis for comparison, which means that we will be determining 

the details of exactly how we will be comparing the performances of hedged exposure 

and unhedged exposure. A straightforward choice is possible here in terms of risk 

reduction degree: 

 2 [ ( )]
( ) 1 .

[ ]

Var P h
R h

Var L
= −  (0.2) 

Perfect hedges would obviously reduce the risks to zero, which clearly corresponds to 

risk reduction of 100% [43]. 

 

6.3. Longevity Basis Risk Hedging Framework and Collateralizing 

Upon obtaining the future mortality and survivor rates in the previous chapter, we need 

to build an effective longevity hedge for basis risk. Constructing and executing a 

longevity hedge that is based on an index necessitates the existence of a framework that 

can provide a thorough comprehension of the basis risk that exists within the scenario 

being examined and the calibration of the hedging instrument, as well as the evaluation 

of hedge effectiveness. Although the measurement of basis risk is being performed in 

demographic terms, hedge effectiveness should be quantified economically. The critical 

step in efforts to design a suitable approach to hedge effectiveness lies in the 

determination of the hedging objectives, which reveal the reality of the risk to be hedged 

and additionally call attention to the degree of risk reduction, again to be expressed in 

economic terms. 

 

Determining the risk metric is the first step in constructing such a hedging framework for 

basis risk analysis. It may be helpful to apply different metrics in order to obtain fresh 

perspectives on the basis risks connected to longevity hedges. As a result of the 

complicated relations among experiences of mortality across ages, periods, and cohorts, 

an examination of the historic performance of all key metrics is also necessary. These 
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metrics are mortality improvements, mortality and survival rates, life expectancies, 

liability cash flows, and liability values.   

 

The most commonly used metric is that of mortality rates, since they function as the 

underlying raw data in association with longevity. However, directly performing a 

comparison between the mortality rates of two related populations often brings about an 

inaccurate view of both the basis risk and the effectiveness of the studied longevity hedge. 

While life expectancy and survival rates may help to resolve this disadvantage by serving 

as metrics for the analysis of basis risk, it needs to be stressed that none of the metrics are 

truly ideal for the quantification of hedge effectiveness. For this reason, it is 

recommended that works on basis risk be focused on the impacts on liability cash flows 

and/or value. Metrics such as these can be used to mirror the monetary effects on basis 

risk; furthermore, they are suitable metrics to apply in the evaluation of hedge 

effectiveness in longevity hedging [43]. Our general hedging framework steps are shown 

in Figure 6.1. 

Figure 6.1: General Hedging Framework Steps 

We use liability values as the hedging objective for assessing longevity basis risk. The 

liability to be hedged consists of a stream of uncertain future cash flows with regular 

payment dates payable to a population of individuals from the time of their retirement 

until death. The liability of the longevity risk can be represented by a set of model points, 

which are the age, gender, and annual benefits of a pension plan member and the age, 

gender, and annual benefits of the pension plan member's spouse or dependent. These 

factors all together are called “exposure”. For simplicity in calculations, the spouses' or 

dependents' benefits are not included in the analysis of this thesis. 

 

There are two types of liabilities that we should consider in an index hedge. The first one 

is the liability being hedged, or in other words the current value of the set of cash flows 

that are promised to the population of pensioners/annuitants. This reflects the aggregate 

experience of mortality for the hedger's own population, which is the book population. 
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We assume that the hedger's own mortality has the same underlying mortality rates as 

those for the CMI male assured lives dataset, and we will thus be calculating the pension 

liability by making reference to both current and projected CMI mortality. We assume 

that the hedger wishes to minimize exposure to longevity risk and thus a longevity hedge 

is constructed with an index-based hedging instrument. 

 

The index-based hedging instrument provides the hedge and cash flows dependent on a 

longevity index that is different from that associated with the exposure being hedged, 

which generates the second liability. The cash flows of a hedging instrument are linked 

with a longevity index that is dependent on the general population's mortality rather than 

that of a defined set of individuals. The population that is associated with a hedging 

instrument is referred to as the reference population and it is assumed that the underlying 

mortality rates are based on the EW male population. The longevity index should be set 

up as closely as possible to the future value of liabilities in a way that minimizes basis 

risk [28].  

 

In this thesis, index-based longevity swaps are applied as hedging instrument, and they 

consist of floating-leg payments and fixed-leg payments. In longevity swaps, an insurer 

or a pension plan will receive the floating-leg payments on the basis of a reference 

population's rate of survival and will make fixed-leg payments of a priorly determined 

size, again on the basis of survival rates. We use variance risk metric to minimize the 

variations in the expected future cash flows of the longevity swap and the hedge 

effectiveness level is calculated by simulating and the valuating the liability values. 

 

However, as indicated before, entering a swap transaction provides hedging for an insurer 

or pension plan, but it also introduces counterparty default risk, which is the probability 

that a counterparty cannot meet its obligations. Such default risk might have a negative 

impact on the price of swaps. Due to recent financial crises, this issue has become more 

important. With the effects of the financial crisis of 2008 being widely felt by companies 

around the world, the area of risk became the central point of attention for cautious, 

thorough analysis with the goal of obtaining more highly accurate measurements of risk, 
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especially for counterparty default risk. Companies have become more cognizant of the 

fact that accurate estimations of risk will deliver more control of that risk's effects [6]. 

 

Due to the need of covering all losses, pension plans and insurance companies have 

started to develop more robust and accurate risk estimates. Moreover, Solvency II has 

been more effective since 2014 and insurance companies are now faced with the reality 

of new legislation addressing the financial buffers that they traditionally utilize for their 

risks. The primary aims of this new solvency regime are to achieve more realistic 

modelling and to thoroughly assess all types of risk that pension plans and insurance 

companies will face. Different from other legislation, solvency capital requirements 

(SCRs) are risk-based, and insurance companies are strongly advised to utilize stochastic 

internal models for assessing all risk factors with the utmost possible accuracy. 

Implementing such internal models is, however, fairly expensive, and so a scenario-based 

standard model has been established by the European Commission with collaborative 

assistance from the Committee of Insurance and Occupational Pension Supervisors 

(CEIOPS). All insurance companies are able to freely apply that new model when 

approximating their company's capital requirements [18]. 

 

The Solvency II reports (see [121]) indicate that, to maintain capital requirements in the 

face of counterparty default risk, the tool most often applied for risk mitigation is 

collateral management, and it has become increasingly crucial in derivative transactions. 

In this section, we will be constructing a hedging framework for quantifying the basis risk 

when counterparty default risk and bilateral collateral posting is present.  

 

It seems that the work of Bauer et al. [10] is the only study in the literature that has 

introduced collateral management in longevity swaps. Different from their study, the aim 

in this thesis is to construct a hedge framework under longevity basis risk. The process as 

a whole might seem complicated, but detailed descriptions will be provided of the legs of 

the index-based longevity swap, the capital requirements, and collateral management. 

This should allow market participants to better understand the allocations among their 

exposures to the general population's longevity trend risk, their specific population's 
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longevity risk, and their counterparty default risk. This, in turn, should allow them to 

accurately determine the solvency capital for their risks. 

 

6.3.1. Index-Based Longevity Swaps 

Due to their need to able to maintain an adequate level of capital or reserves and to absorb 

their losses, insurance companies and pension plans have started to use longevity-linked 

derivatives whose payoffs are based on mortality indexes. A number of mortality-

dependent derivatives have been proposed recently, and one alternative is an index-based 

longevity swap. In a longevity swap, the payoffs of which will be tied to the outcome of 

at least one random survivor index, an agreement is made for the future exchanging of at 

least one cash flow. Longevity swaps have advantages over other mortality-linked 

derivatives. For instance, they are more flexible; it is possible to arrange them to have 

lower transaction costs; the cancellation process is simpler; and their unique designs can 

be freely customized in order to be applicable to many different diverse scenarios. A 

liquid market is not necessary for longevity swaps. What is required instead is simply that 

counterparties be willing to share their viewpoints on expectations for future 

developments in mortality [55]. The structure of longevity swaps was discussed in more 

detail by Lin and Cox [97]. 

 

Since longevity swaps are traded OTC, they might come with serious exposure to 

counterparty credit risk, which is a common problem in the trading of OTC derivatives. 

Typical approaches to addressing the problem of counterparty credit risk in OTC 

derivative markets might also be productively applied for longevity swaps. One way is to 

use credit insurance and credit derivatives. Insurance companies, for example, may 

purchase credit insurance arrangements with the aim of protecting themselves in the event 

that a counterparty defaults. It is also possible to complement longevity swaps with credit 

derivatives, a type of supplementation that guarantees payments in the case that 

prespecified credit events happen. However, credit insurance and derivatives have the 

potential to be quite costly, so they need to be chosen carefully. 

Another way is to use credit enhancement strategies. These strategies include collateral 

agreements, re-collateralization with marking to market, credit triggers (whereby a 

counterparty that has suffered from a specified credit downgrade must give up its swap 
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position and pay any remaining active debts), options for mutual termination, re-

couponing (a type of cash exchange that is practiced when exposures reach a prespecified 

threshold, and the scheduling of payments is reset in order to return the swap value to a 

zero rate) [55]. Each of these methods helps companies in the management of the 

counterparty credit risks that are associated with the existing types of swaps, but 

collateralization has more advantages over the other methods and it has become a popular 

risk-reduction method for banks and financial institutions for many reasons, such as its 

reduction of capital requirements [72]. In this thesis, collateral management is used as a 

credit-risk management tool for this reason. 

 

In the remainder of this section, a definition of longevity swaps is provided, together with 

information about how they might be priced in an incomplete market. Then default risk 

and collateralization are introduced. We will show how a hypothetical pension portfolio 

is valued in the presence of bilateral collateral posting and counterparty default risk. 

 

6.3.2. Nature of Index-Based Longevity Swaps 

Longevity swaps are used for hedging against the unpredictable nature of anticipated 

survival probabilities by insurance companies or pension schemes. Here we will be 

following a notation similar to that of Dowd et al. [55], who developed longevity swaps 

to hedge longevity risk. 

 

Let us consider two companies entering into a swap agreement at time 0 for swapping a 

prespecified sum ( )K t  for a random sum ( )F t  at some time t in the future. Company A 

is an insurer, facing exposure to longevity risks in their portfolio of annuitants, while 

counterparty B makes an agreement for exchanging payments on a prespecified schedule 

whereby these repeated exchanges will last for some specified amount of time. The preset 

amount ( )K t  is paid by A and the floating amount ( )F t  is paid by B at each payment 

date of t. 

Here it needs to be noted that our hypothetical companies shall only be exchanging the 

difference between two payments. If ( ) ( ),K t F t  A pays B the amount ( ) ( ),K t F t−  

while B's payment to A will equal ( ) ( ),K t F t−  in the case of ( ) ( ).F t K t  Company A 
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will need to receive payment in the event that the actual number of survivors in the 

company's portfolio is more than was expected, while there are no profits for the company 

if the actual number of survivors happens to be below an anticipated level. 

 

The insurer's prespecified payments are thus made based on anticipated future rates of 

survival for a particular population selected at the beginning of the swap with the 

agreement of both parties, and those survival rates will be derived from the expected 

mortality rates of the book population. The sum that the counterparty will be paying is 

dependent upon the actual rates of survival of the reference population. 

 

In this subsection, we are ignoring the default risk in the first place to focus on the 

individual payment structure of longevity swaps. Now we will give detailed descriptions 

of the legs of a longevity swap. We consider a hypothetical case study for a UK pension 

plan comprising only male members. As indicated before, the plan in our hypothetical 

study does not pay benefits for spouses or dependents for the sake of simplicity. The 

current date will be assumed to be the beginning of calendar year 2016. Supposing that 

all pensioners enrolled in our hypothetical plan are currently 65 years of age and that each 

pension is paying $1 annually on survival between the ages of 66 and 90 years, then we 

will also assume that our pension plan members share the same underlying mortality rates 

provided by the CMI male assured lives dataset [27]. The sponsor of the pension plan in 

our case study wishes to minimize exposure to longevity risk with the construction of a 

longevity hedge that will include index-based longevity swaps. We work with the 

assumption of the availability of an index-based longevity swap with a 10-year term 

entailing yearly payment exchanges in the de-risking market, whereby the EW male 

population constitutes the floating leg's reference population. On the other hand, the 

swap's fixed-leg payments will be based on central estimates of mortality rates in the 

future, taking the reference population as the base. Let r represent an interest rate that is 

risk-free. We use the same notation as in the work of Li et al. [93]. 

 

The present value of the pension plan's future liability, ( ),L t  equals, 

10

65 ,

1

( ) (1 ) ,B t

t t

t

L t l r −

+

=

= +  
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As a floating-leg receiver, the present value of the longevity swap's future cash inflows, 

S(t), may be written as 

10
;

65 65

1

( ) ( )(1 ) .R R forward t

t t

t

S t p p r −

=

= − +  

For this equation, we calculate random future survivor index 
65

R

t p  and forward survivor 

index ;

65

R forward

t p  by applying the survival probability formula, as follows: 

65 65,0 66,0 65 1, 1(1 )(1 )...(1 ).R R R R

t t tp q q q + − −= − − −  

Furthermore, the present value of the aggregate pension plan position after longevity 

hedging may be expressed with the following statement: 

10 10
;

65 , 65 65

1 1

(1 ) ( )(1 ) .B t R R forward t

t t t t

t t

l r w p p r− −

+

= =

+ − − +   

Finally, the cash outflow for the net position at individual times of t = 1, 2,…, 10 may be 

signified by ;

65 , 65 65( ).B R R forward

t t t tl w p p+ − −  Weight w here denotes the notional amount of 

longevity swap necessary for successful hedging to be performed [93]. The notional 

amount w of the swap can be obtained in several ways. The most common way to 

calculate this amount is by minimizing the variance of the present value of the aggregate 

position. It is assumed in the present thesis that the notional amount equals 1 in order to 

allow us to focus on collateralizing, the topic of the next subsection. 

 

6.4. Collateral Management 

Collateral management is a hedging process between two counterparties which are 

exchanging the cash or financial assets to reduce the counterparty default risk. The 

counterparties could be pension funds, insurance companies, banks, asset managers, 

hedge funds and brokers. The main idea is quite simple: securities, financial instruments 

or cash are passed to the counterparty to provide hedging for the default exposure.  The 

basic collateralization is illustrated in Figure 6.2 for the case that Party A is in-the-money 

and Party B is out-of-the-money. Collateral management began with Bankers Trust and 

Salomon Brothers in the 1980s. They took collateral against credit risk. They did not have 

legal standards and they did the majority of their calculations by hand. Derivative 
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collateralization grew to be more common in the following decade, and the first ISDA 

documentation in 1994 introduced standardization conditions. 

 

Figure 6.2: Basic Collateral Transfer 

Collateral agreements outline the tolerable level of credit exposure for all involved 

parties. Assume that the market value of longevity swap is positive, then there is 

counterparty default risk arising from the swap payments. However, collateral 

transactions restrict the default exposure by defining the value of the collateral. If the 

party, that posts collateral, defaults, the counterparty would be the economic owner of the 

collateral. Before 2008, companies and banks assumed that large banks or companies 

could rarely default and hence they required collateral only for riskier and smaller 

customers. However, the 2008 financial crisis showed that all companies have a default 

risk whenever they have an obligation to make future payments. Now, collateralization is 

required for all companies. Although the main reason for collateralization is to reduce the 

default risk, there are other reasons to make collateral agreements. The reasons could be 

listed as follows [62]: 

 

i. Collateralization provides capital savings and increases market liquidity. 

ii. It allows doing more business by reducing the counterparty default risk. 

iii. It allows making agreements with a specific party without rating restrictions. 

iv. It allows obtaining the more competitive prices for derivatives. 

 

Collateralization provides many advantages to counterparties. The primary one is the 

mitigation of the counterparty default risk. Holding collateral protects from the negative 

results of the counterparty default risk by acting as a buffer for insolvency. Another 

advantage is collateralization provides them to access larger markets and hence enables 
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them to trade in larger markets. Lastly, collateralization ensures the validation of the 

portfolios of companies. Since collateralization has important features and advantages, 

the collateral transactions have shown an increase in recent years. 

 

There are many types of collaterals used by parties. Cash, government securities, equities, 

covered bonds, and corporate bonds are types of collateral. However, parties most 

commonly use cash and government securities. The securities which are used for 

collateral, are different from the physical assets in terms of nature and type. For physical 

assets the asset value is subject to delays in the bankruptcy process, although the traders 

have a claim on specific assets. On the other hand, the usage of the collateral is under the 

control of the counterparty and it could be liquidated in the default event.  

 

Securities that are used as collateral are traded in the collateral markets to obtain cash or 

other securities. The markets for collateral are important for companies. It supports their 

financial growth in the following ways [104]: 

 

i. Life insurance companies could have securities which are used as collateral to 

borrow cash at the low interest rates and reinvest them to earn a spread. 

ii. Hedge funds have portfolios of securities which are obtained by pledging the 

securities as collateral. By this way, they provide finance for the portfolio at a 

lower rate instead of unsecured borrowing. 

iii. Companies could have an opportunity to lend out their cash at a low interest rate. 

 

The posted collateral amount might differ, or full collateralization could occur, but there 

are still other collateral arrangements in existence. As an example, collateral might be 

posted only in the event that a swap value surpasses a prespecified limit; in this case, the 

amount above the threshold is the sum that will be posted as collateral. Conversely, 

perhaps only a portion of the swap value will be posted as collateral. ISDA reports 

indicate that the posted collateral amounts should be specified based on the swap value. 

This is all dependent on the details agreed upon between the participating parties of each 

such collateral arrangement. 
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Let start by determining the mechanics of collateral modelling. First, we assume that there 

are two default risky parties who want to enter longevity swap agreements. Both parties 

have the same credit rating and are subject to the same default probabilities. Furthermore, 

we denote their default times as 
i  and c  for insurer and counterparty, respectively. We 

follow the notation and market considerations of Brigo and Capponi [21]. We assume 

that portfolio time horizon T +  is fixed and we have risk-neutral pricing model 

( , , )G  with filtration 
[0, ]( ) .t t TG 

  We do not consider random default times, and 
i  

and c  are  the G-stopping times. tF  space, which is a right-continuous subfiltration, 

includes all observable market quantities and default events. Hence, we can write 

.t tF G  The first default to occur between the two parties may be defined in the 

following way: 

: i c  =   

The probability of default in one year, [0,1],jp   is taken to have a constant value over 

time. This value is dependent on the solvency rating or the credit of the parties and we 

consider j {AAA, AA, …, B & CCC or lower}. The rating values are those that were 

given by the Solvency II legislation (see [121]) and they are shown in Table 6.1. 

 

Table 6.1: One-year Probabilities of Default According to QIS5 

Rating j jp  

AAA 0.002% 

AA 0.01% 

A 0.05% 

BBB 0.24% 

BB 1.2% 

B & CCC or lower 4.175% 

 

Let us assume that 0( )t tC   is the collateral process and it indicates the quantity of cash, 

,tC  that will be posted at each time t before default in reaction to shifts or fluctuations in 

market conditions, depending on the swap's market value. With this starting point, our 
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analysis will be developed by taking the insurer's perspective, such that 0tC   ( 0)tC 

signifies that the insurer is holding (posting) collateral.  

 

More specifically, the collateral taker is the one who holds the collateral account, and the 

participating parties will post or withdraw collateral during the maturity of the longevity 

swap agreement. The collateral provider is the other party. If 0,tC   the collateral is in 

favor of the insurer and the exposure is paid by the counterparty, whereas if 0tC  , the 

collateral is in the favor of the other party instead and the exposure should be paid by the 

insurer.   

 

The collateral account is taken to be a risk-free cash account for this thesis. We assume 

that 0tC =  for all 0t   as well as  0tC =  if .t T   Furthermore, we assume the 

collateral preceding the default of either of the parties as a fraction of the value of the 

longevity swap in order to obtain all possibilities, as in the work of Biffis et al. [12]: 

 
0 0

{ } { }( 1 1 ) .
t t

c i

t S S t
C S  −

− − 

= +  (0.3) 

Here, 
i  and c   denotes the fraction of the swap which is the posted collateral amount 

for insurer or counterparty and 1H  is the indicator which takes the value of unity if the 

event occurs, zero otherwise. We assume that tS  denotes the longevity swap value at time 

t and 
t

S −  denotes the swap value before the default. Posted collateral amount is specified 

as fraction of the market value of the swap at time t. We should note that tC  will have a 

negative value whenever the longevity swap is out of money from the insurer's 

perspective.  

 

Bilateral collateral posting is a valuable tool for mitigating the risks for both parties 

entering a longevity swap. In such an arrangement, both of the swap's parties are required 

to post collateral. Collateral being posted in this way decreases the odds of swap payments 

being lost in the event of a defaulting counterparty, as the insurer will have a claim on the 

collateral if the swap has a positive value when looked at from the insurer's viewpoint 

[12]. 
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Generally speaking, the frequency with which collateral is to be posted is uncertain when 

considering longevity swaps. Here we assume that collateral will be posted on a yearly 

basis. Moreover, we allow for rehypothecation in order to increase the benefits of 

collateralization in this thesis.  

 

In this subsection, the rules for collateral posting and rehypothecation will be briefly 

described. We will examine the payoffs from the insurer's viewpoint and then we will 

examine the cases for default of the insurer, default of the counterparty, and no default by 

considering partial collateralizing. Afterwards, we will find the longevity basis risk 

reduction and hedge effectiveness. 

 

6.4.1. Collateral Rehypothecation 

We will extend the longevity basis risk hedging framework in the presence of collateral 

rehypothecation in this subsection. Rehypothecation is a transaction that uses the posted 

collateral amount as a further collateral or as an investment. Assume that swap value for 

an insurer is positive and the counterparty is posting collateral. If the rehypothecation is 

allowed, then the insurer can use the collateral as an investment or as a cash [20].  

 

In a case of no default, the party that posts collateral will be expecting to receive the 

remainder of the collateral back again at the end of the swap maturity. Similarly, if a party 

defaults earlier, the party that posted collateral will be expecting to receive the remainder 

of it. In some cases, however, the party that holds collateral will have unlimited use of it 

up until the maturity of the swap. This usage involves several possibilities, including 

being able to sell the collateral on the market to a third party.  Further possibilities are 

deciding to lend the collateral or to sell it as part of a “repo” agreement, or 

rehypothecating it. So far, the collateral amount was only invested at a risk-free rate for 

longevity swaps. While the interest on collateral will be partially rebated, it is possible 

for the benefits to be more significant in the event that the collateral can be 

rehypothecated, as is the case within the interest-rate swap market. This thesis aims to fill 

this existent gap and propose a framework with rehypothecation of collateral.  
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In the rehypothecation case, it is necessary that the collateral provider take into account 

the odds that only a fraction of the collateral might be recovered. We assume that '

iREC  

denotes the recovery fraction of the collateral rehypothecated by the defaulted insurer. 

Similarly, in the event that the counterparty is receiving the collateral, we take '

cREC  to 

signify the recovery fraction of the collateral that is rehypothecated by the counterparty. 

Loss of collateral suffered by the counterparty in the case of insurer default is defined as 

' '1 ,i iLGD REC= −  while ' '1c cLGD REC= −  is the loss of collateral experienced by the 

insurer in the event of counterparty default. ( )i cREC REC  denotes the recovery fraction 

of the swap value that will be received by the counterparty (insurer) upon the defaulting 

of the insurer (counterparty). 

 

We should note that, if ' '

i cREC REC=  is taken as 1, then the collateral cannot be 

rehypothecated. In this case, the collateral needs to be kept into a segregated account. 

 

Let us start by introducing some notations that will be used in this subsection. Since all 

of the payoffs in our scenario are being seen from the perspective of the insurer, longevity 

exposures will be more capital-intensive because of the fact that the insurer receives 

collateral if the reference mortality is lower. In contrast, the insurer posts collateral if 

reference mortality is higher, and so, in such a case, less capital-intensive longevity 

protection is being provided.  

 

Using the notation : max( ,0)X X+ =  and : min( ,0),X X− =  all possible liabilities under 

collateralization and rehypothecation will be considered here. 

 

1. On the insurer's default event, ,it  = =  the counterparty posts collateral and the 

longevity swap value is paid to the insurer if 0.
t

S −   The exposure of 

counterparty is reduced by collateral and this amount is paid to the insurer. The 

posted collateral rehypothecated by the insurer and the '( )i t tREC S C −−  amount is 
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obtained, and the remaining amount is paid to the counterparty. Then the insurer 

has: 

'

{ } { 0}1 1 (( ) ( ) )
i t

S t t i t tS C REC S C  −

+ −

=  − + −  

2. On the insurer's default event, ,it  = =  if 0,
t

S −   then the insurer posts 

collateral. The counterparty uses the collateral to reduce exposure and only a 

fraction of the swap is exchanged. The remaining collateral returned to the 

investor (if any). If the remaining collateral is not enough, then investor would 

have a loss for remaining value. Then the insurer has: 

{ } { 0}1 1 ( ( ) ( ) )
i t

S i t t t tREC S C S C  −

− +

=  − − − −  

3. On the counterparty's default event, ,ct  = =  the insurer pays the swap value to 

the counterparty if 0
t

S −   and the collateral was posted by the insurer. Then the 

insurer uses the collateral to reduce exposure. The collateral rehypothecated by 

the counterparty and remaining collateral is returned to the investor (if any). Then 

the insurer has: 

'

{ } { 0}1 1 ( ( ) ( ) )
c t

S t t c t tS C REC S C  −

− +

=  − − + −  

4. On the counterparty's default event, ,ct  = =  if 0,
t

S −   the counterparty posts 

some collateral which is used by insurer to reduce its exposure.  Only a fraction 

of the swap is exchanged, and the remaining collateral is returned to the 

counterparty (if any). Then the insurer has: 

{ } { 0}1 1 ( ( ) ( ) )
c t

S c t t t tREC S C S C  −

+ −

=  − + −  

 

The aggregated cash flows should be rearranged to determine liabilities arising from the 

swap payments for insurer. The liabilities of insurer can be expressed as follows: 

'

{ } { 0} { 0}1 [1 ((1 ) (1 ) ) 1 ( (1 ) ((1 ) )]
i t t

i i i i

t S i S iS REC REC     
− −

+ − − +

=  − + − + − − − −  

{ } { 0}1 [1 ( (1 ) (1 ) )
c t

c c

t S cS REC   
−

+ −

= + − + −  

 '

{ 0}1 ( (1 ) (1 ) )].
t

c c

S cREC 
−

− +

+ − − + −  (6.4) 
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The net portfolio value should be reorganized by including collateralization.  Let ( ),L t  

be the liability value without hedge that is equal to 
10

651
(1 )

T B t

tt
p r

= −

=
+  and let S(T) be the 

cash flows arising from the hedging instrument that is equal to 

10
'

{ } { 0}

1

(1 ) 1 [1 ((1 ) (1 ) )
i t

t i i

t S i

t

r S REC   
−

− + −

= 

=

+ − + −  

{ 0}1 ( (1 ) (1 ) )]
t

i i

S iREC  
−

− +

+ − − − −  

{ } { 0}1 [1 ( (1 ) (1 ) )
c t

c c

t S cS REC   
−

+ −

= + − + −  

'

{ 0}1 ( (1 ) (1 ) )] .
t

c c

S cREC 
−

− +


+ − − + −


 

The portfolio value after taking the hedge and collateralization at time $t$ can be 

expressed as follows: 

10

65

1

[ ( ) ( )] (1 )
T

Q B t

t

t

E L T S T p r
=

−

=

− = +  

10
'

{ } { 0}

1

1 [1 ((1 ) (1 ) )
i t

T
t i i

t S i

t

p S REC   
−

=
+ −

= 

=

− − + −
  

{ 0}1 ( (1 ) (1 ) )]
t

i i

S iREC  
−

− +

+ − − − −  

{ } { 0}1 [1 ( (1 ) (1 ) )
c t

c c

t S cS REC   
−

+ −

= + − + −  

'

{ 0}1 ( (1 ) (1 ) )] .
t

c c

S cREC 
−

− +


+ − − + −


 

The aim is to minimize variations in the value of unanticipated future cash flows and to 

find the optimal recovery values that vary depending on the collateral amount since we 

investigate the impact of collateral amount on the hedge. The hedged portfolio can be 

formulated mathematically as follows for per $1 notion: 

 ( )
* (0,1)

min ( ( ) ( ))
REC

Var L T S T


−   for T=1, 2, … (6.5) 

where *REC  is the optimal recovery value. By minimizing the variance of the hedged 

portfolio, we obtain the optimal recovery fractions for this transaction. The variance of 

the hedged portfolio can be expressed as: 
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 [ ( ) ( )] ( ( )) ( ( )) 2cov( ( ), ( ))Var L T S T Var L T Var S T L T S T− = + −  (6.6) 

( ( ))Var L T  is the variance of the pension plan and ( ( ))Var S T  is the variance of the 

hedging instrument's cash flows. The complexity here is arising from the variance of the 

hedging instrument. If the Equation (6.4) is rearranged according to the market value of 

the swap payments, then ( ( ))Var S T  can be expressed as follows: 

( ( )) [ ( )(2 (1 ))]c

cVar S T Var S T REC = −  

Equation (6.6) can be rewritten as: 

2 2( ( )) 4 (1 ) ( ( )) 2 (1 )cov( ( ), ( ))c c

c cVar L T REC Var S T REC L T S T − − − −  

where (0,1)  is a constant parameter that reflects the fraction of the market value of 

the swap. We calculate this ratio for different values of .  Different   values lead to 

different collateral amounts in the hedged portfolio. Assume that both parties are subject 

to the same default probabilities and they are both AA and B & CCC or lower rated 

companies to examine the best and the worst scenario. Moreover, we consider the basic 

case in which ' '

i c i cREC REC REC REC= = =  and 
i c  = =  to examine the impact of 

collateral on the hedge for longevity basis risk. Then the optimal recovery values can be 

obtained as follows: 

 * cov( ( ), ( ))
.

(1 ) ( ( ))

L T S T
REC

Var S T
=

−
 (6.7) 

The optimal recovery rate depends on the collateral rate, covariance between liabilities 

and hedging instrument, and variance of the hedging instrument. We assume that r=0.03 

for our calculations, and the obtained recovery ratios are shown in Table 6.2. 

 

As we can see from the table, the recovery rates increase while the collateral amount 

increases for both scenarios. An increasing recovery rate means that the insurer gets more 

collateral and more market value of the swap in the case of default. For instance, for the 

AA rated companies with 75% collateral rate, the non-defaulting party could obtain 

9644% of the longevity swap's market value, if the counterparty defaults. 
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Table 6.2: Recovery Values for Different   Values 

Collateral Rate *REC  (AA rated) *REC  (B & CCC or 

lower rated) 

0 0.2411 0.0742 

0.25 0.3215 0.0989 

0.50 0.4822 0.1484 

0.75 0.9644 0.2968 

 

For the B & CCC or lower rated companies, if the counterparty defaults, the non-

defaulting party would obtain 2968% of the market value of the longevity swap. The high 

difference between the default probabilities has led to these differences in recovery 

values. However, the important point is the non-defaulting party would obtain a fraction 

of the longevity swap even if the counterparty defaults and hence this transaction will 

reduce his exposure. Therefore, he is providing a better hedge for his longevity basis risk 

and counterparty default risk. 

 

6.4.1.1. Hedge Effectiveness 

Hedge effectiveness that is based on an index could be defined in terms of the extent to 

which the longevity risk is transferred away. A well-structured hedging position should 

achieve the maximum possible level of effectiveness. The remaining risk may be 

conceptualized as longevity basis risk. Following Coughlan et al. [43], the longevity risk 

reduction level for longevity hedging will be defined as follows: 

Longevity Risk Reduction = 
( )

1 100%.
( )

risk hedged

risk unhedged

 
−  

 
 

Here, the terms risk(unhedged) and risk(hedged) refer to the portfolio's aggregated 

longevity risk before and after taking the hedge. Using this metric gives us the percentage 

of the portfolio's initial longevity risk that is being hedged away. The most common 

measures for risk comprise variance, 99.5% value-at-risk, standard deviation, and 99.5% 

expected shortfall [93]. In this thesis, we adopt the variance risk measure to calculate the 

risk reduction level. 
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We calculate the risk reduction levels for different values of .  The obtained values are 

shown in Table 6.3. As we can see from the table, the level of risk reduction increases 

while   increases. For smaller values of ,  the change of risk reduction is smaller. 

However, when collateral is close to 1, the risk reduction level increases more for both 

scenarios. Even for the B & CCC or lower rated companies, the risk reduction level is 

4455% for 75% collateral rate. This result leads to a situation in which more collateral 

provides more hedging and hence more risk reduction. These results reveal that using 

collateral reduces the longevity basis risk and counterparty default risk. 

 

Table 6.3: Risk Reduction Levels for Different   Values 

Collateral Rate Risk Reduction (AA 

rated) 

Risk Reduction (B & 

CCC or lower rated) 

0 0.56576 0.0275 

0.25 0.56577 0.0497 

0.50 0.56600 0.1484 

0.75 0.78288 0.4455 

 

6.5. Interim Conclusion: A Hedging Framework for Longevity Basis Risk and 

Collateralization in Index-Based Longevity Swaps 

This section has provided a hedging framework to be utilized for longevity basis risk and 

counterparty default risk. First, the steps for constructing a hedge for longevity basis risk 

is presented. The framework of Coughlan et al. [43] was utilized for this purpose, which 

includes five steps to construct a hedge. 

 

After that, we introduce the index-based longevity swaps and their nature. Since they are 

traded OTC, each party is exposed to counterparty default risk. For this reason, we have 

constructed a hedging framework to hedge longevity basis risk and counterparty default 

risk in the presence of collateralization. Step I requires that the hedging objectives be 

defined. Also included in this step is the definition of the hedging position and hedge 

horizon T. The liability to be hedged in this thesis is a UK pension plan with a 10-year 

horizon. Step II includes choosing the hedging instrument to reduce the risks. We adopt 

an index-based longevity swap. In Step III, we define the method to be used for assessing 

the hedge effectiveness. Step III has great importance since an unsuitable selection could 
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generate inaccurate results about hedge effectiveness. Furthermore, this step also requires 

that we choose a risk metric, and in this thesis, variance is the risk metric that is selected. 

 

Step IV has two stages: simulation and valuation. The simulated future mortality rates for 

both the reference and the book population are obtained in Subsection 5.3.4. The 

valuation of the hedged portfolio is shown in Subsection 6.4.1. According to the valuation 

results, collateralization provides an important hedging solution for longevity basis risk 

and counterparty default risk. Finally, in Step V, it is shown that the proposed hedging 

solution provides significant risk reduction. 

 

As a result, we include collateralization into basis risk and counterparty default risk 

hedging solutions. To the author's best knowledge, this approach is new in the actuarial 

literature. 
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7. CONCLUSIONS AND FURTHER RESEARCH 

In this thesis, we have investigated longevity risk and catastrophic mortality risk, which 

are critical risk factors for insurers or pension plans.  

 

Catastrophic mortality risk arises from the uncertainty found in association with 

catastrophic events like natural disasters or disease pandemics. Section 2 present outlier 

analysis to detect these mortality jumps in mortality time indexes. Such detection is 

necessary to accurately model mortality jump frequencies, as well as to predict their 

future occurrences. In this section, a building block is provided to serve as a basis for 

mortality jump modelling with the detection of outliers. The locations of these detected 

outliers provide us the inter-arrival times of the mortality jumps. 

 

In previous studies, most researchers assumed that mortality jumps occur once a year, or 

they used the Poisson process for their jump frequencies. Although the timing and the 

frequency of catastrophic events are unknown, the history of such events can give us 

information about their future occurrences. In Section 3, the renewal process is used for 

modelling jump frequency by considering the history of catastrophic events since the 

mean time between their arrivals is no longer constant. We model the time-varying 

mortality index as a Merton jump diffusion model. In this way, the proposed mortality 

model can capture the effects of mortality jumps. The working of the new model is 

illustrated with mortality data from the US, the UK, Switzerland, France, and Italy. For 

all countries, the proposed model is better at fitting the historical data than the benchmark 

model of Lee and Carter. In this section, hypothetical mortality bonds are also priced and 

we concluded that the renewal process has a significant impact on estimated prices. 

 

In Section 4, various longevity risk products are reviewed together with the advantages 

and disadvantages of the index and customized hedges. Due to their advantages, index-

based longevity swap are used as hedging instrument in this thesis. Since index-based 

longevity swaps are being considered here, longevity basis risk needs to be analysed.  
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Mismatches between a hedger's own liability and the hedging instrument's liabilities 

cause longevity basis risk. With the aim of managing and measuring the basis risk, a two-

population mortality model was proposed in Section 5. A detailed analysis for 

constructing a two-population model is presented in this section. Our results show that 

the common age effect was found to be important for both populations. After specifying 

the appropriate model, we construct a hedging framework that is applicable for basis risk 

in the presence of counterparty default risk.  

 

In Section 6, a general framework to be applied when considering longevity basis risk in 

the presence of counterparty default risk and hedge effectiveness is presented. Moreover, 

the key objectives for constructing an effective hedge are discussed. Collateralization is 

an effective risk management tool for counterparty default risk. Hence, collateralization 

was used in this section as a default risk mitigation tool. Moreover, bilateral collateral 

posting for a pension portfolio is described and its impact on hedge effectiveness is 

quantified. Our analysis has shown that collateralization provides an important risk 

reduction. 

 

7.1. Further Research 

Mortality can be modelled by using the outlier-adjusted data as one possibility for further 

research. Outlier adjustment is important for forecasting future mortality rates. 

 

The model presented in this thesis was limited to only short-term mortality jumps. It 

would be possible to apply similar modelling efforts for capturing variations that occur 

in long-term jumps, which was discussed by Deng et al. [52]. They modelled long-term 

and short-term jumps together by using a double exponential jump process. Moreover, 

model risk is a concern of importance in the modelling of mortality, and that could also 

be taken into account in future research. 

 

We have taken into account only the process and the parameter errors while simulating 

the future mortality rates. The simulation procedure can be extended by incorporating the 

model error to investigate the effects of the different models and assumptions. 
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In this thesis, the analyses are performed within the framework of bilateral collateral 

posting; however, we ignore the cost of holding collateral. Hence, this approach can be 

extended in future research for the cost of collateral. Moreover, we could also extend the 

basis risk hedging framework in the context of economic capital. In doing so, we could 

develop a risk metric that would measure basis risk effectively in the presence of 

counterparty default risk and collateralization.



 

 123 

 

REFERENCES 

 

[1] S. Ahmadi, J.S.H. Li, Coherent Mortality Forecasting with Generalized Linear 

Models: A Modified Time-Transformation Approach, Insurance: Mathematics 

and Economics, 59:149-221, 2014. 

[2] Y. Ait-Sahalia, L.P. Hansen, Handbook of Financial Econometrics, 2004 

[3] H. Albrecher, J. Beirlant, J.L. Teugels, Reinsurance: Actuarial and Statistical 

Aspects, Wiley, 2017. 

[4] American Council of Life Insurers, Life Insurers Fact Book, 2010. 

[5] D.F. Andrews, P.J. Bickel, F.R. Hampel, P.J. Huber, W.H. Rogers, J.W. Tukey, 

Robust Estimates of Locations: Survey and Advances. NJ: Princeton University 

Press, Princeton, 1972. 

[6] P. Bag, M. Jacobs, Parsimonious Exposure-at-default Modelling for Unfunded 

Loan Commitments, The Journal of Risk and Finance, 13(1):77-94, 2011.  

[7] R.J. Bahl, Mortality Linked Derivatives and Their Pricing, The PhD Thesis of the 

University of Edinburg, Edinburg, 2017. 

[8] R. Baker, T. Kharrat, Event Count Distributions From Renewal Process: Fast 

Computation of Probabilities, 2016. 

[9] BIS, Bank for International Settlements, Collateral in wholesale financial 

markets: recent trends, risk management and market dynamics, Prepared for the 

Committee on the Global Financial System, 2001. 

[10] D. Bauer, E. Biffis, L.R. Sotomayor, Optimal Collateralization with Bilateral 

Default Risk, 2015. 

[11] V. Biatat, I.D. Currie, Joint Models for Classification and Comparison of 

Mortality in Different Countries, Proceedings of 25rd International Workshop on 

Statistical Modelling, Glasgow, 2010. 

[12] E. Biffis, D. Blake, L. Pitotti, A. Sun, The Cost of Counterparty Risk and 

Collateralization in Longevity Swaps, Journal of Risk and Insurance, 2015. 

[13] D. Blake, W. Burrows, Survivor Bonds: Helping to Hedge Mortality Risk, Journal 

of Risk and Insurance, 68:339-348, 2001. 



 

 124 

[14] D. Blake, A.J.G. Cairns, K. Dowd, R. MacMinn, The New Life Market, Journal 

of Risk and Insurance, 80:501-557, 2013.  

[15] D. Blake, A.J.G. Cairns, K. Dowd, Living with Mortality: Longevity bonds and 

other Mortality-Linked Securities, British Actuarial Journal, 12:153-197, 2006. 

[16] D. Blake, A.J.G. Cairns, A. Kessler, Still Living with Mortality: The Longevity 

Risk Transfer Market After One Decade, Research Report, 2018.   

[17] G.E.P. Box, G.C. Tiao, Intervention Analaysis With Applications to Economic 

and Enviromental Problems, Journal of American Statistical Association, 70,:70-

79, 1975. 

[18] M. Börger, Deterministic Shock vs. Stochastic Value-at-Risk-An Analysis of the 

Solvency II Standard Model Approach to Longevity Risk, 2010. 

[19] E.T. Bradlow, B.G.S. Hardie, P.S. Fader, Bayesian Inference for the Negative 

Binomial Distribution via Polynomial Expansions, Journal of Computational and 

Graphical Statistics, 11:189-201, 2002. 

[20] D. Brigo, Counterparty Risk FAQ: Credit VaR, PFE, CVA, DVA, Closeout, 

Netting, Collateral, Re-hypothecation, WWR, Basel, Funding, CCDS and Margin 

Lending, Counterparty credit risk, collateral and funding, 2012. 

[21] D. Brigo, A. Capponi, Arbitrage-Free Bilateral Counterparty Risk Valuation 

under Collateralization and Application to Credit Default Swaps, Mathematical 

Finance, 2012. 

[22] N. Brouhns, M. Denuit, I.V. Keilegom, Bootstrapping the Poisson log-bilinear 

Model for Mortality Forecasting, Scandinavian Journal of Actuaries, 31:212-224, 

2005. 

[23] N. Brouhns, M. Denuit,J.K. Vermunt, J.K, Measuring the Longevity Risk in 

Mortality Projections, Bulletin of Swiss Association Actuaries, 105-130, 2002. 

[24] A.J.G. Cairns, Mortality Seminar Series: Exploring the Future; Defining the 

Questions Abstract of the London Discussion, British Actuarial Journal, 

19(3):650-691, 2014. 

[25] A.J.G. Cairns, D. Blake, K. Dowd, G.D. Coughlan, Bayesian Stochastic Mortality 

Modelling for Two Populations, ASTIN Bulletin, 41:29-59, 2011. 

[26] A.J.G. Cairns, D. Blake, K. Dowd, A Two-Factor Model for Stochastic Mortality 

with Parameter Uncertainty: Theory and Calibration, Journal of Risk and 

Insurance, 73:687-718, 2006. 



 

 125 

[27] A.J.G. Cairns, D. Blake, K. Dowd, G.D. Coughlan, Longevity Hedge 

Effectiveness: A Decomposition, Quantitative Finance, 14:217-235, 2014. 

[28] A.J.G. Cairns, G.E. Boukfaoui, Basis Risk Index Based Longevity Hedges: A 

Guide for Longevity Hedgers, Working paper, Heriot-Watt University, 2017. 

[29] L.R. Carter, R.D. Lee, Modeling and Forecasting US Sex Differentials in 

Mortality, International Journal of Forecasting, 8(3):393-411, 1992. 

[30] W.S. Chan, Outlier Analysis of Annual Retain Price Inflation: A Cross-Country 

Study, Journal of Actuarial Practise, 6:149-172, 1998. 

[31] W.S. Chan, S. Wang, The Wilke Model for Retail Price Inflation Revisited, 

British Actuarial Journal, 4:647-652, 1998. 

[32] I. Chang, G.C. Tiao, C. Chen, Estimation of Time Series Parameters in the 

Presence of Outliers, Technometrics, 30:193-204, 1988. 

[33] H. Chen, A Family of Mortality Jump Models Applied to U.S. Data, Asia-Pacific 

Journal of Risk and Insurance, 2013. 

[34] H. Chen, S.H. Cox, Modeling Mortality with Jumps: Applications to Mortality 

Securitization, Journal of Risk and Insurance, 76:727-751, 2009.  

[35] H. Chen, J.D. Cummins, Longevity Bond Premiums: The Extreme Value 

Approach and Risk Cubic Pricing, Insurance: Mathematics and Economics, 

46:150-161, 2010. 

[36] H. Chen, R.D. MacMinn, R. Sun, Multi-Population Mortality Models: A Factor 

Copula Approach, Presented at the Ninth International Longevity Risk and 

Capital Market Solutions Conferencei, Beijing, China, 2013. 

[37] C. Chen, L.M. Liu, Joint Estimation of Model Parameters and Outlier Effects in 

Time Series, Journal of the American Statistical Association, 88:284-297, 1993. 

[38] C. Chen, G.C. Tiao, Random Level Shift Time Series Models, ARIMA 

Approximation and Level Shift Detection, Journal of Business and Economic 

Statistics, 8:170-186, 1990. 

[39] T. Cipra, Securitization of Longevity and Mortality Risk, Czech Journal of 

Economics and Finance, 60(6):545-560, 2010. 

[40] K. Clark, V. Manghani, H.M. Chang, Catastrophe Risk, IAA Risk Book, 2015. 

[41] G. Coughlan, Longevity Risk and Mortality-linked Secuirities, Risk and 

Innovation, Pension Universe Conference, London, 2007. 



 

 126 

[42] G.D. Coughlan, D. Epstein, A. Sinha, P, Honig, q-Forwards: Derivatives for 

Transferring Longevity and Mortality Risks, JP Morgan Pension Advisory Group, 

London, 2007.  

[43] G.D. Coughlan, M. Khalaf-Allah, Y. Ye, S. Kumar, A.J.G. Cairns, D. Blake,  K. 

Dowd, Longevity Hedging 101: A Framework for Longevity Basis Risk Analysis 

and Hedge Effectiveness, North American Actuarial Journal, 15:150-176, 2011. 

[44] A. Cowley, J.D. Cummins, Securitization of Life Insurance Assets and Liabilities, 

Journal of Risk and Insurance, 72(2):93-226, 2005. 

[45] S.H. Cox, Y. Lin, Natural Hedging of Life and Annuity Mortality Risks, 

Proceedings of the 14th International AFIR Colloquium, Boston, 2004. 

[46] S.H. Cox, Y. Lin, Natural Hedging of Life and Annuity Mortality Risks, North 

American Actuarial Journal, 11(3):1-15, 2007. 

[47] S.H. Cox, Y. Lin, H. Pedersen, Mortality Risk Modeling: Applications to 

Insurance Securitization, Insurance: Mathematics and Economics, 46:242-253, 

2010. 

[48] S.H. Cox, Y. Lin, S. Wang, Multivariate Exponential Tilting and Pricing 

Implications for Mortality Securitization, Journal of Risk and Insurance, 73:113-

136, 2006. 

[49] CRED, Centre for Research on the Epidemiology of Disasters, EM-DAT: The 

OFDA/CRED International Disaster Database, Brussels, 2011. 

[50] I.D. Currie, Smoothing and Forecasting Mortality Rates with P-splines, Talk 

given at the Institute of Actuaries, 2006. 

[51] C. Czado, A. Delwarde, M. Denuit, Bayesian Poisson log-bilinear Mortality 

Projections, Insurance: Mathematics and Economics, 36:260-284, 2005. 

[52] Y. Deng, P. Brockett, R. MacMinn, Longevity/Mortality Risk Modeling and 

Securities Pricing, Journal of Risk and Insurance, 79(3):697-721, 2012. 

[53] K. Dowd, Survivor Bonds: A Comment on Blake and Burrows, Journal of Risk 

and Insurance, 70(2):339-348, 2003. 

[54] K. Dowd, D. Blake, A.J.G. Cairns, G.D. Coughlan, Hedging Pension Risks with 

the Age-Period-Cohort Two-Population Gravity Model, Seventh International 

Longevity Risk and Capital Markets Solutions Conference, Frankfurt, 2011. 



 

 127 

[55] K. Dowd, D. Blake, A.J.G. Cairns, P.E. Dawson, Survivor Swaps, Journal of Risk 

and Insurance, 73:1-17, 2006. 

[56] P.J. Everson, E.T. Bradlow, Bayesian Inference for the Beta binomial distribution 

via polynomial expansion, Journal of Computational and Graphical Statistics, 

11:202-207, 2002. 

[57] M. Frittelli, The Minimal Entropy Martingale Measure and the Valuation Problem 

in Incomplete Market, Mathematical Finance, 10:39-52, 2000. 

[58] A.J. Fox, Outliers in Time Series, Journal of the Royal Statistical Society, 34:350-

363, 1972. 

[59] J. Garvey, Securitisation of Extreme Mortality Risk, 2011. 

[60] U. Gather, M. Bauer, R. Fried, The Identification of Multiple Outliers in Online 

Monitoring Data, Estatica, 54:27-35, 2002. 

[61] P. Galeano, D. Pena, Additive Outlier Detection in Seasonal ARIMA Models By 

a Modified Bayesian Information Criterion, Economic Time Series: Modeling and 

Seasonality, 317-336, 2012. 

[62] J. Gregory, Counterparty Credit Risk and Credit Value Adjustment, Second 

Edition, Wiley Finance, 2010. 

[63] N. Gugole, Merton Jump-Diffusion Model Versus The Black and Scholes 

Approach for the Log-Returns and Volatility Smile Fitting, International Journal 

of Pure and Applied Mathematics, 109:719-736, 2016.  

[64] S. Haberman, V. Kaishev, P. Millossovich, A. Villegas, S. Baxter, A. Gaches, S. 

Gunnlaugsson, M. Sison, Longevity Basis Risk A Methodology for Assessing 

Basis Risk, Research Report for The Institute and Faculty of Actuaries and the 

Life and Longevity Markets Association, 2014. 

[65] E.A. Hasan, A Method for Detection of Outliers in Time Series Data, International 

Journal of Chemistry, Mathematics and Physics, 3(3):56-66, 2019. 

[66] P. Hatzopoulos, S. Haberman, Common Mortality Modeling anc Coherent 

Forecasts, An Empirical Analysis of Worldwide Mortality Data, Insurance: 

Mathematics and Economics, 52(2):320-337, 2013. 

[67] Y. Hu, S.H. Cox, Modeling Mortality Risk from Exposure to a Potential Future 

Extreme Event and Its Impact on Life Insurance, 2004. 

[68] A. Huynh, A. Bruhn, B. Browne, A Review of Catastrophic Risks for Life 

Insurers, Risk Management and Insurance Review, 16:233-266, 2013. 



 

 128 

[69] Hymans Roberson LLP, Buy-outs, Buy-ins and Longevity Hedging, Q4, 

http://www.hymans.co.uk/media/591924/150317-managing-pension-scheme-

risk-q4-2014.pdf, 2015. 

[70] ISDA, International Swaps and Derivatives Association, Credit Support Annex, 

1994. 

[71] ISDA, International Swaps and Derivatives Association, Collateral Review, 1999. 

[72] ISDA, International Swaps and Derivatives Association, 2010 Margin Survey, 

2010. 

[73] ISDA, International Swaps and Derivatives Association, 2013 Standard Credit 

Support Annex, 2013. 

[74] S.F. Jarner, E.M. Kryger, Modelling Adult Mortality in Small Populations: The 

SAINT Model, ASTIN Bulletin, 41:337-418, 2011. 

[75] Z. Jin, Y. Wang, G. Yin, Numerical Solutions of Quantile Hedging for Guaranteed 

Minimum Death Benefits Under a Regime-Switching Jump-Diffusion 

Formulation, Journal of Computational and Applied Mathematics, 2010. 

[76] M. Johannes, S. Sundaresan, The Impact of Collateralization on Swap Rates, 

Journal of Finance, 62:383-410, 2007. 

[77] Joint United Nations Programme on HIV/AIDS, Global Report: UNAIDS Report 

on Global AIDS Epidemic, Geneva, 2010. 

[78] K.K. Jose, E. Abraham, A Counting Process with Gumbel Inter-arrival Times for 

Modeling Climate Data, Journal of Enviromental Statistics, 4(5), 2013. 

[79] T. Karagiannis, M. Molle, M. Faloutsos, A nonstationary Poisson view of internet 

traffic, in: IEEE INFOCOM, 2004. 

[80] S.H. Kim, W. Whitt, Choosing Arrival Process Models for Service Systems: Tests 

for Nonhomogeneous Poisson Process, Naval Research Logistics, 61(1), 2013. 

[81] A. Kogure, K. Kitsukawa, Y. Kurachi, A Bayesian Comparison of Models for 

Changing Mortality Towards Evaluating the Longevity Risk in Japan, Asia-

Pacific Journal of Risk and Insurance, 3:1-22, 2009. 

[82] M.C. Koissi, A.F. Shapiro, G. Hognas, Evaluating and Extending the Lee-Carter 

Model for Mortality Forecasting: Bootstrap Confidence Interval, Insurace: 

Mathematics and Economics, 38(1):1-20, 2006. 

[83] S. Kullback, R.A. Leibler, On Information and Sufficiency, Annals of 

Mathematical Statistics, 22:79-86, 1951. 



 

 129 

[84] R. Lee, L. Carter, Modeling and Forecasting U.S. Mortality, Journal of the 

American Statistical Association, 87:659-671, 1992. 

[85] X. Leng, L. Peng, Inference pitfalls in Lee-Carter model for forecasting mortality, 

2017. 

[86] J. Li, A Quantitative Comparison of Simulation Strategies for Mortality 

Projection, Annals of Actuarial Science, 8:281-297, 2014. 

[87] J.S.H. Li, Pricing Longevity Risk with the Parametric Bootstrap: A Maximum 

Entropy Approach, Insurance: Mathematics and Economics, 47(2):176-186, 

2010.  

[88] S.H. Li, W.S. Chan, Outlier Analysis and Mortality Forecasting: The United 

Kingdom and Scandinavian Countries, Scandinavian Actuarial Journal, 3:187-

211, 2005. 

[89] S.H. Li, W.S. Chan, The Lee-Carter Model for Forecasting Mortality, Revisited, 

North American Actuarial Journal, 11:68-89, 2007. 

[90] J. Li, S. Haberman, On the Effectiveness of Natural Hedging for Insurance 

Companies and Pension Plans, Insurance: Mathematics and Economics, 61:286-

297, 2015. 

[91] J.S.H. Li, M.R. Hardy, Measuring Basis Risk in Longevity Hedges, North 

American Actuarial Journal, 15:177-200, 2011. 

[92] N. Li, R. Lee, Coherent Mortality Forecasts for a Group of Population: An 

Extension of the Lee-Carter Method, Demography, 42:575-594, 2005. 

[93] J. Li, J.S.H. Li, C.I. Tan, L. Tickle, L, Assessing basis risk in index-based 

longevity swap transactions, Annals of Actuarial Science, 1-32, 2018. 

[94] Q. Liu, C. Ling, L. Peng, Statistical Inference for Lee-Carter Mortality Model and 

Corresponding Forecasts, North American Actuarial Journal, 2019. 

[95] J.S.H. Li, A.C.Y. Ng, Canonical Valuation of Mortality-Linked Securities, 

Journal of Risk and Insurance, 78(4):853-884, 2010. 

[96] J.S. Li, R. Zhou, M. Hardy, A Step by Step Guide to Building Two Population 

Stochastic Mortality Models, Insurance: Mathematics and Economics, 63:121-

134, 2015. 

[97] Y. Lin, S.H. Cox, Securitization of Mortality Risks in Life Annuities, Journal of 

Risk and Insurance, 72(2):227-252, 2005. 

[98] Y. Liu, Modeling and Managing Longevity Risk: Models and Applications, PhD 

Thesis for University of Waterloo, 2016. 



 

 130 

[99] L.M. Liu, G.B. Hudak, Forecasting and Time Series Analysis Using the SCA 

Statistical System, 1994. 

[100] Y. Liu, J.S.H. Li, The Age Pattern of Transitory Mortality Jumps and Its Impact 

on the Pricing of Catastrophic Mortality Bonds, Insurance: Mathematics and 

Economics, 64:135-150, 2015. 

[101] LLMA, Basis Risk in Longevity Hedging: Parallels with the past, Institutional 

Investor Journals, 1:39-45, 2012. 

[102] J. Loeys, N. Panigirtzoglou, R.M. Ribeiro, Longevity: A Market in the Making, 

London: JP Morgan Securities Ltd., London, 2007. 

[103] Z.A. Lomnicki, A Note on the Weibull Renewal Process, Biometrika, 53(3):375-

381, 1966. 

[104] A.M. Malz, Financial Risk Management, Second Edition, Wiley Finance, 2011. 

[105] R.C. Merton, Option Pricing When Underlying Stock Returns Are Discontinuous, 

Journal of Financial Economics, 3:125-144, 1976. 

[106] S.J. Miller, E.T. Bradlow, K. Dayaratna, Closed form Bayesian inferences for the 

logit model via polynomial expansions, Quantitative Marketing and Economics, 

4:173-206, 2006. 

[107] B. Mcshane, M. Adrian, E.T. Bradlow, P.S. Fader, Count models based on 

Weibull interarrival times, Journal of Business and Economic Statistics, 

26(3):369-378, 2008. 

[108] D.M. Morens, G.K. Folkers, A.S. Fauci, The Challenge of Emerging and Re-

Emerging Infectious Disease, Nature, 430(6996):242-249, 2004. 

[109] National Counterterrorism Center, Report on Terrorism, Washington, 2010. 

[110] A. Ngai, M. Sherris, Longevity Risk Management for Life and Variable 

Annuities: The Effectiveness of Static Hedging Using Longevity Bonds and 

Derivatives, Insurance: Mathematics and Economics, 49:100-114, 2011. 

[111] M.T. Osterholm, Preparing for the Next Pandemic, New England Journal of 

Medicine, 352:1839-1842, 2005. 

[112] J.S. Peiris, S.T. Lai, L.L.M. Poon, Y. Guan, L.Y.C. Yam, W. Lim, J. Nicholls, 

W.K. Yee, W.W. Yan, M.T. Cheung, V.C. Cheng, K.H. Chan, D.N. Tsang, R.W. 

Yung, T.K. Ng, K.Y. Yuen, Coronavirus as a Possible Cause of Severe Acute 

Respiratory Syndrome, The Lancet, 361(9366):1319-1325, 2003. 

[113] C.W. Potter, A History of Influenza, Journal of Applied Microbiology, 91(4):575-

579, 2001. 



 

 131 

[114] C. Ramezani, Y. Zeng, An Empirical Assessment of the Double-Exponential 

Jump-Diffusion Process, 2004. 

[115] A.E. Renshaw, S. Haberman, On simulation based approaches to risk 

measurement in mortality with specific reference to Poisson Lee-Carter 

modelling, Insurance: Mathematics and Economics, 42:797-816, 2008. 

[116] S.J. Richards, G. Jones, Financial Aspects of Longevity Risk, Staple Inn Actuarial 

Society: London, 2004. 

[117] S.M. Ross, Stochastic Processes, Second Edition, Wiley, 1996.  

[118] S.I. Simon, The Dilemma of War and Military Exclusion Clauses in Insurance 

Contracts, American Business Law Journal, 51:1633-1652, 1981. 

[119] A. Stracke, W. Heinen, Influenza Pandemic: The Impact on an Insured Lives Life 

Insurance Portfolio, The Actuary, 2006. 

[120] M. Stutzer, A Simple Nonparametric Approach to Derivative Security Valuation, 

Journal of Finance, 51:1633-1652, 1996. 

[121] QIS5, CEIOPS Technical Specifications, Financial Institutions, Insurance and 

Pensions, 2010. 

[122] K.S. Tan, D. Blake, R. MacMinn, Longevity Risk and Capital Markets: The 2013-

14 Update, Insurance: Mathematics and Economics, 63:1-11, 2015. 

[123] J.T. Tsai, J.L. Wang, L.Y. Tzeng, On the Optimal Product Mix in Life Insurance 

Companies Using Conditional Value at Risk, Insurance: Mathematics and 

Economics, 325-341, 2009. 

[124] R.S. Tsay, Time Series Model Specification in the Presence of Outliers, Journal 

of the American Statistical Association, 81:132-141, 1988. 

[125] R.S. Tsay, Analysis of Financial Time Series, John Wiley & Sons, New York, 

USA, 2002. 

[126] Y.K. Tse, Nonlife Actuarial Models Theory, Methods and Evaluation, Cambridge 

University Press, 2009. 

[127] G. Venter, Ş. Şahin, Semiparametric Regression for Dual Population Mortality, 

Colombia University Libraries, 2019. 

[128] A.M. Villegas, V. Kaishev, P. Millossovich, StMoMo: An R Package for 

Stochastic Mortality Modelling, Journal of Statistical Software, 2017.  

[129] M. White, Source List and Detailed Death Tolls for the Primary Megadeaths of 

the Twentieth Century, 2011. 



 

 132 

[130] S. Wills, M. Sherris, Securitization, Structuring and Pricing of Longevity Risk, 

Insurance: Mathematics and Economics, 46:173-185, 2010. 

[131] R. Winkelmann, Duration dependence and dispersion in count data models, 

Journal of Business and Economic Statistics, 13:467-474, 1995. 

[132] WHO, World Health Organization, Guidelines for the Global Surveillance of 

Severe Acute Respiratory Syndrome (SARS): Updated Recommendations, 

Geneva, 2004. 

[133] WHO, World Health Organization, Chernobyl: The True Scale of the Accident, 

2005. 

[134] WHO, World Health Organization, International Statistical Classification of 

Diseases and Related Health Problems, Geneva, 2007. 

[135] WHO, World Health Organization, HIV/AIDS Health Topics, 2011. 

[136] World Natural Disasters Report, Y\i ld\i z Technical University, 2016. 

[137] S.S. Yang, H. Huang, J. Jung, Optimal Longevity Hedging Strategy for Insurance 

Companies Considering Basis Risk, Draft Submission to Longevity 10 

Conference, 2010. 

[138] R. Zhou, J.S.H. Li, K.S. Tan, Economic Pricing of Mortality-Linked Securities in 

the Presence of Population Basis Risk, Geneva Paper of Risk and Insurance: 

Issues and Practice, 36:544-566, 2011. 

[139] R. Zhou, J.S.H. Li, K.S. Tan, K.S, Pricing Standardized Mortality Securitizations: 

A Two-Population Model with Transitory Jump Effects, Journal of Risk and 

Insurance, 80:733-774, 2013. 

[140] R. Zhou, Y.  Wang, K. Kaufhold, J.S.H. Li, K.S. Tan, Modeling Period Effects in 

Multi-Population Mortality Models: Applications to Solvency II, North American 

Actuarial Journal, 2014. 

[141] A.A. Zimbidis, N.E. Frangosi, A.A. Pantelous, Modeling Earthquake Risk via 

Extreme Value Theory and Pricing the Respective Catastrophe Bonds, Astin 

Bulletin, 37:163-183, 2007. 

  


