
AN RNN-BASED APPROACH FOR DISCOVERING
INCONSISTENCIES BETWEEN PERMISSIONS AND

METADATA IN ANDROID APPLICATIONS

ANDROID UYGULAMALARINDA İZİNLER İLE META
VERİLER ARASINDAKİ TUTARSIZLIKLARI KEŞFETMEK

İÇİN RNN TABANLI BİR YAKLAŞIM

MUHAMMET KABUKÇU

ASSOC. PROF. SEVİL ŞEN AKAGÜNDÜZ

Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulfillment to the Requirements

for the Award of the Degree of Master of Science

in Computer Engineering

2019

ÖZET

ANDROID UYGULAMALARINDA İZİNLER İLE META VERİLER
ARASINDAKİ TUTARSIZLIKLARI KEŞFETMEK İÇİN RNN

TABANLI BİR YAKLAŞIM

Muhammet KABUKÇU

Yüksek Lisans, Bilgisayar Mühendisliği
Danışman: Doç. Dr. Sevil ŞEN AKAGÜNDÜZ

İkinci Danışman: Öğr. Üyesi Dr. Burcu CAN BUĞLALILAR
Eylül 2019, 88 sayfa

Mobil cihazların sürekli el altında olması sebebiyle, İnternet erişimi için mobil cihazların

etkin kullanımı her geçen gün artmaktadır. Günümüzde, mobil cihazların çoğu Android

işletim sistemini kullanmaktadır. Mobil cihazlarda genellikle mobil uygulamaları kullanarak

ihtiyaçlarımızı karşılamaktayız. Bu durum, ihtiyaçlarımız için özelleştirilmiş çok sayıda mo-

bil uygulamayı beraberinde getirmektedir. Bunun sonucu olarak da uygulamaları keşfetmek

ve indirebilmek için kullanabileceğimiz uygulama marketleri ortaya çıkmıştır. Android’in

resmi uygulama marketi Google Play ve Apple’ın resmi uygulama marketi App Store gibi

uygulama marketleri, uygulama geliştiricilerin uygulamalarını tüm dünyadaki kullanıcılara

sunmaları için pratik bir ortam sağlamaktadır. Bu marketler, uygulamanın yanında meta veri

dediğimiz uygulama tanımı, kullanıcı yorumları, uygulama skoru gibi uygulama hakkında

bilgi verecek diğer kaynakları da içermektedir. Uygulama marketleri kullanıcılara bu hizmet-

leri sağlamakla beraber, bu durumun kaçınılmaz bir sonucu olarak, kötü niyetli uygulama

i

geliştiricilere zararlı veya güvenli olmayan uygulamalarını geniş bir kitleye sunma fırsatı da

sağlamış olmaktadırlar.

Uygulama marketleri kendilerini ve kullanıcılarını kötü amaçlı ve zararlı uygulamalardan

uzak tutmak için bazı güvenlik tedbirlerine sahiptirler. Bunun yanında, cihaz üzerinde de

alınmış güvenlik önlemleri bulunmaktadır. Android İşletim Sistemi’nde izinler, kullanıcıların

farkındalıklarını arttırarak kullanıcının gizliliğini ihlal edebilecek uygulamaları yüklemelerini

önlemek için kullanılmaktadır. Bir uygulamayı kurarken (veya uygulama çalışırken), kul-

lanıcı, uygulamanın istediği tehlikeli izinleri görebilmektedir. Bu izinler, kritik sistem kay-

naklarına veya hassas kullanıcı verilerine erişen uygulama programlama arayüzlerini kul-

lanmak için uygulamalar tarafından talep edilmektedir. Gizlilik ve güvenlik açısından, bir

uygulamanın işlevselliği uygulama açıklamasında yeterince ayrıntılı olarak belirtilirse, iste-

nen izinlerin gerekliliği kullanıcı tarafından anlaşılabilir. Bu, literatürde uygulama tanımı-

talep edilen izin uyumluluğu olarak tanımlanmaktadır.

Bu çalışmada, doğal dil işleme teknikleri ve tekrarlayan sinir ağları kullanılarak istenen izin-

ler ve uygulama meta verileri arasındaki tutarsızlıkları belirlemek için uygulama tanımı-

talep edilen izin uyumluluğu problemine yönelik yeni bir yaklaşım önerilmiştir. Uygu-

lama açıklamalarının yanı sıra, kullanıcı yorumlarının da bu gibi tutarsızlıkları keşfetme

üzerindeki etkisi incelenmiştir. Deney sonuçları, önerilen yaklaşımın uygulama meta verisin-

den izin ifadelerinin çıkarılmasında yüksek doğruluk elde ettiğini ve bunun kullanıcının veri

gizliliği ve güvenliği için kullanılabileceğini göstermektedir.

Anahtar Kelimeler: Android, mobil güvenlik, mobil uygulamalar, uygulama izinleri, uygu-

lama tanımları, kullanıcı yorumları, uygulama tanımı-talep edilen izin uyumluluğu, derin

öğrenme, doğal dil işleme, tekrarlayan sinir ağları

ii

ABSTRACT

AN RNN-BASED APPROACH FOR DISCOVERING
INCONSISTENCIES BETWEEN PERMISSIONS AND METADATA IN

ANDROID APPLICATIONS

Muhammet KABUKÇU

Master of Science, Computer Engineering Department
Supervisor: Assoc. Prof. Sevil ŞEN AKAGÜNDÜZ

Co-Supervisor: Assist. Prof. Dr. Burcu CAN BUĞLALILAR
September 2019, 88 pages

Since mobile devices are increasingly on hand today, users have become more heavily in-

volved with their use in accessing the Internet. Today, most mobile devices use the Android

operating system. On mobile devices, users’ needs are generally met through the use of mo-

bile applications, and this brings along a large number of mobile applications customized

for our needs. Applications, more commonly referred to as “apps”, are usually downloaded

from an Application Store. These application stores came into existence in order for users

to discover what is available through a single location, and to download any apps they may

want. Application stores offer a wide range of apps, customized for almost everyone’s vari-

ous needs. Stores such as Android’s official market store, known as “Google Play,” and Ap-

ple’s official market store, known as “App Store”, provide a practical outlet for developers to

present their applications to users worldwide. In addition to the apps, these markets include

other resources known as metadata, which provide information about each app such as the

iii

application description, user comments, and the corresponding application score. However,

as an inevitable consequence of their design and function, application stores also provide

developers of malicious software the opportunity to introduce harmful or unsafe applications

to a wide and largely unsuspecting audience.

Application stores utilize certain security precautions in order to keep the store clean and

to steer genuine store users away from harmful content. In addition, there are also certain

security precautions installed on handheld devices. With the Android mobile operating sys-

tem, “permissions” are used in order to prevent users from installing apps that might violate

the user’s privacy by raising their awareness. When installing an app (or when an app is

running), users are notified of any permission requests from apps that are perceived as be-

ing dangerous (i.e., permissions to access critical system resources or privacy-sensitive user

data). These permissions are requested by apps in order to use application programming

interfaces (APIs) that access critical system resources or sensitive user data. From a privacy

and security perspective, if the functionality of an app is sufficiently detailed in its descrip-

tion, the need for the requested permissions can be readily understood by the user. This is

defined as description-to-permission fidelity in the literature.

In the current study, a novel approach for the description-to-permission fidelity problem is

proposed in order to identify inconsistencies between requested permissions and application

metadata by using natural language processing techniques and recurrent neural networks.

Besides application descriptions, the effect of user reviews on discovering such inconsisten-

cies is also investigated. The experimental results show that the proposed approach achieves

a high degree of accuracy in detecting permission expressions from application metadata,

and could therefore be applied for the protection of user privacy and security.

Keywords: Android, mobile security, mobile applications, application permissions, appli-

cation descriptions, user reviews, description-to-permission fidelity, deep learning, natural

language processing, recurrent neural networks

iv

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my advisors Assoc. Prof.

Sevil ŞEN AKAGÜNDÜZ and Assist. Prof. Burcu CAN BUĞLALILAR who have always

encouraged me and guided me with their valuable contributions and criticisms at all stages

of my dissertation.

Besides I would like to thank my thesis committee members for insightful comments for this

thesis.

In addition, I would like to thank everybody who supported and contributed to this study.

Especially, I would like to thank Hüseyin ALEÇAKIR, with whom I studied together in the

same project, and also all members of Hacettepe University Wireless Networks and Intelli-

gent Secure Systems Lab (WISE Lab) that I had the opportunity to meet during this study.

Finally, I thank my beloved family for their continued support throughout my educational

life.

This work is supported by the Scientific and Technological Research Council of Turkey

(TUBITAK) with the project number 118E141.

v

CONTENTS

ÖZET . i

ABSTRACT . iii

ACKNOWLEDGMENTS . v

CONTENTS . vi

TABLES . ix

FIGURES . x

SYMBOLS AND ABBREVIATIONS . xi

1. INTRODUCTION. 1

1.1. Mobile Applications and Application Stores ... 1

1.2. Security of Mobile Applications and Application Stores 3

1.3. Description-to-Permission Fidelity Problem ... 4

1.4. Major Contributions of the Thesis ... 6

1.5. Structure of the Study .. 7

2. BACKGROUND . 8

2.1. Introduction to Android Applications .. 8

2.1.1. Android Permission Mechanism . 8

2.1.2. Application Programming Interfaces (APIs) . 10

2.2. Word Embeddings.. 11

2.3. Recurrent Neural Networks ... 12

2.4. Conclusion ... 14

3. RELATED WORK . 15

3.1. WHYPER Framework... 16

3.2. AUTOCOG Tool.. 18

3.3. ACODE Framework.. 21

3.4. AC-Net Framework .. 23

3.5. Other Related Studies... 25

3.6. Discussion .. 28

vi

4. MODEL. 31

4.1. Sentence-Based Model... 33

4.2. Description-Based Model .. 35

4.3. Implementation Details .. 39

5. EXPERIMENTS AND RESULTS . 40

5.1. Datasets .. 40

5.1.1. Existing Datasets for Assessing Description-to-Permission Fidelity in

the Literature . 41

5.1.2. Evaluation of Existing Datasets for Assessing Description-to-Permission

Fidelity. 43

5.1.3. The DesRe Dataset . 47

5.2. Evaluation Metrics ... 49

5.3. Experiments and Results.. 51

5.3.1. Performance of the Sentence-Based Model . 51

5.3.2. Performance of the Description-Based Model . 58

6. CONCLUSION. 60

6.1. Conclusion ... 60

6.2. Limitations of the Study... 61

6.3. Future Work ... 62

A APPENDIX : GLOBAL MARKET SHARE HELD by LEADING MOBILE OSs . . 63

B APPENDIX : DANGEROUS PERMISSIONS and PERMISSION GROUPS 65

C APPENDIX : ANDROID VERSIONS and API LEVELS . 66

D APPENDIX : PR CURVES of the SENTENCE-BASED MODEL EXPERIMENTS 67

E APPENDIX : EXAMPLE RESULTS of the SENTENCE-BASED MODEL 70

REFERENCES . 79

THESIS ORIGINALITY REPORT . 87

CURRICULUM VITAE . 88

vii

TABLES

Table 3.1. Performance of WHYPER . 18

Table 3.2. Performance of AUTOCOG . 21

Table 3.3. Comparison of ACODE with WHYPER and basic keyword-based search 23

Table 3.4. Performance of AC-Net . 25

Table 5.1. Details of WHYPER dataset . 41

Table 5.2. Keywords used by WHYPER for the keyword-based search 42

Table 5.3. Details of AC-Net dataset . 43

Table 5.4. Comparison of DesRe dataset with WHYPER and AC-Net datasets 49

Table 5.5. Performance of sentence-based model on AC-Net dataset 52

Table 5.6. Performance of related studies on AC-Net dataset 1 . 52

Table 5.7. Example results for READ CONTACTS permission with sentence-based

model . 54

Table 5.8. Example results for READ CONTACTS permission with sentence-based

model (continued). 55

Table 5.9. Performance of sentence-based model on DesRe dataset 57

Table 5.10. Performance of description-based model on AC-Net dataset 59

Table 1.1. Mobile operating system market share from 2009 to 2013 63

Table 1.2. Mobile operating system market share from 2014 to 2019 64

Table 2.1. Dangerous permissions and permission groups [1] . 65

Table 3.1. Android versions and API levels . 66

Table 5.1. Top scored true positive and lowest scored true negative results for

RECORD AUDIO permission with sentence-based model 70

Table 5.2. Top scored false positive results for RECORD AUDIO permission with

sentence-based model. 71

viii

Table 5.3. Lowest scored false negative results for RECORD AUDIO permission

with sentence-based model . 72

Table 5.4. Top scored true positive and lowest scored true negative results for

READ CONTACTS permission with sentence-based model. 73

Table 5.5. Top scored false positive results for READ CONTACTS permission

with sentence-based model . 74

Table 5.6. Lowest scored false negative results for READ CONTACTS permis-

sion with sentence-based model. 75

Table 5.7. Top scored true positive and lowest scored true negative results for

STORAGE permission group with sentence-based model. 76

Table 5.8. Top scored false positive results for STORAGE permission group with

sentence-based model. 77

Table 5.9. Lowest scored false negative results for STORAGE permission group

with sentence-based model . 78

ix

FIGURES

Figure 1.1. Global market share of leading mobile OSs between 2009 - 2019 2

Figure 2.1. A basic RNN unit . 13

Figure 2.2. An LSTM unit . 14

Figure 3.1. Design of the WHYPER framework. 17

Figure 3.2. Design of the AUTOCOG tool . 20

Figure 3.3. Design of the AC-Net framework. 24

Figure 4.1. Overview of the sentence-based model . 34

Figure 4.2. Architecture of the sentence-based LSTM model . 35

Figure 4.3. Overview of the description-based model . 36

Figure 4.4. Architecture of the description-based LSTM model . 37

Figure 4.5. Test phase of the description-based LSTM model . 38

Figure 4.1. PR curves of experiments for READ CONTACTS permission (DesRe) . 67

Figure 4.2. PR curves of experiments for RECORD AUDIO permission (DesRe) . . . 68

Figure 4.3. PR curves of experiments for STORAGE permission (DesRe) 69

x

SYMBOLS AND ABBREVIATIONS

Abbreviations

aapt Android Application Packaging Tool

Adam Adaptive Moment Estimation

API Application Programming Interface

APK Android Package (Kit)

App Application

AUC Area Under Curve

CBOW Continuous Bag of Words

DesRe Descriptions and Reviews of Android Applications

DEX Dalvik EXecutable

DPR Description-to-Permission Relatedness

DVM Dalvik Virtual Machine

ESA Explicit Semantic Analysis

FOL First Order Logic

GloVe Global Vectors

GRU Gated Recurrent Unit

kNN k-Nearest Neighbors

LDA Latent Dirichlet Allocation

LSTM Long Short-Term Memory

MLP Multilayer Perceptron

NLG Natural Language Generation

NLP Natural Language Processing

OS Operating System

POS Part-Of-Speech

PR Precision Recall

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

xi

Abbreviations

ROC-AUC Area Under the Receiver Operating Characteristic Curve

SVM Support Vector Machines

tf-idf term frequency-inverse document frequency

URI Uniform Resource Identifier

WSD Word Sense Disambiguation

xii

1. INTRODUCTION

The number of Internet users has increased rapidly in recent years. The daily number of

new users going online reached one million for the first time in January 2018 [2]. According

to the Global Digital Report 2019 [2], there are a total of 4.39 billion active Internet users

worldwide (or 57% of the total population), with 3.99 billion being mobile users. In January

2019, from a total of 3.26 billion social media users, 3.48 billion accessed social media via

mobile devices. This number is 297 million higher than recorded the previous year. In 2018,

a total of 194 billion mobile applications were downloaded worldwide, with users spending

US$101 billion on mobile applications.

Another statistical study [3] showed that in Turkey, as of 2019, there were 76.34 million mo-

bile subscriptions (93% of a total population of 82.44 million), and that 77% of the adult pop-

ulation were smartphone users. The total number of active mobile Internet users in Turkey

was reported to be 56.03 million. When it came to social media usage, the study showed a

total of 52.00 million social media users, with 44.00 million of those being active users of

mobile social media apps. In 2018, a total of 2.87 billion mobile apps were downloaded in

Turkey, with users spending US$360.5 million on mobile apps.

All of these statistics demonstrate the significance of the Internet, and the evolution of the

way that it connects daily life across the global population. Each day, people are becoming

more heavily involved with mobile device usage of the Internet. The most important factor in

this picture of such widespread usage are the mobile devices that many people have to hand

virtually all the time.

1.1. Mobile Applications and Application Stores

In using mobile devices, users generally have their needs met through the usage of mobile

applications or apps. Mobile apps make users’ lives easier; a fact supported by the vast

number of mobile apps available that have been customized to the needs of users. Apps are

downloaded and installed to mobile devices from central platforms referred to as Application

Stores. It is reported that there were almost 2.5 million applications available on the Android

official market store (Google Play), and almost 2 million on the iOS official market (Apple

App Store) during the second quarter of 2019 [4].

1

Android is currently the most widely used mobile operating system (OS). Recent statistics

show that from May 2018 to May 2019, 75.27% of the global mobile operating system

market share belongs to Android, with 22.74% belonging to Apple’s iOS [5]. Android also

has a higher share of the Turkish market with 82.29%, whereas iOS has only 16.91% [6].

Figure 1.1. illustrates the global market shares of the leading mobile operating systems from

2009 to 2019 [7]. Detailed market share data can be seen in Appendix A. The numbers

emphasize the importance and necessity of Google Play which, as the official application

store of the Android OS, was first launched on October 22, 2008 under the name Android

Market. In addition to enabling users to search for and download apps, application stores

also include content such as games, music, movies, and e-books.

0

10

20

30

40

50

60

70

80

90

20
09

-1
20

09
-2

20
09

-3
20

09
-4

20
10

-1
20

10
-2

20
10

-3
20

10
-4

20
11

-1
20

11
-2

20
11

-3
20

11
-4

20
12

-1
20

12
-2

20
12

-3
20

12
-4

20
13

-1
20

13
-2

20
13

-3
20

13
-4

20
14

-1
20

14
-2

20
14

-3
20

14
-4

20
15

-1
20

15
-2

20
15

-3
20

15
-4

20
16

-1
20

16
-2

20
16

-3
20

16
-4

20
17

-1
20

17
-2

20
17

-3
20

17
-4

20
18

-1
20

18
-2

20
18

-3
20

18
-4

20
19

-1
20

19
-2

Global Market Share of leading mobile OSs for last 10 years

Android iOS Series 40 Symbian OS BlackBerry OS Samsung Others

Figure 1.1. Global market share of leading mobile OSs between 2009 - 2019

2

1.2. Security of Mobile Applications and Application Stores

Application stores enable users to discover and download applications and other content as

previously mentioned. While application stores provide users with these services, they also

offer a practical way for application developers to deliver their apps to a global user audience.

However, as an inevitable consequence of their design and function, application stores also

provide developers of malicious software the opportunity to introduce harmful or unsafe

applications to a wide and largely unsuspecting audience. The exponential increase seen in

the number of mobile apps has also motivated malware developers to attempt to illegitimately

acquire sensitive user data. According to the McAfee Mobile Threat Report [8], malware

applications in the mobile world has continued to increase in both scope and complexity

during 2019.

Application stores take certain security precautions in order to distance themselves and their

users from the detrimental impact of malicious activities. Since Android OS is the most

widely used mobile OS, Google Play is also utilized by the vast majority of mobile users.

Under the circumstances, the security of Google Play is of vital significance to the industry

at large. For an application to be offered through Google Play, application developers need

to comply with certain Google Play policies. Google performs an analysis on applications

for policy violations (e.g., hate speech, violence, sensitive events, impersonation, intellectual

property) prior to authorizing the release of applications onto the market [9]. For example,

image analysis is performed in order to detect applications that include images considered

to be of an adult nature (known as adult content). Applications are also analyzed as to

whether or not they include code recognized as being malicious. All of these analyses are

collectively known as Google Play Protect [9] (which started out as Google Bouncer [10]

and was rebranded and enhanced to become Google Play Protect in 2017 [11, 12]). As from

2015, in addition to the automated analysis systems, an internal team of human reviewers

started analyzing applications manually for policy violations [13].

The aforementioned precautions are just some of the security-based methods employed on

the application store side. Just as the Google Play Protect analyzes applications within the

Play Store for malicious applications, it can also be activated on users’ devices too. It scans

applications prior to installation on a mobile device, and also scans them after installation.

If permissions of a mobile app are granted by the user, Google Play Protect uploads the scan

results to Google Play and applies them for the protection of other users. There are also other

3

actions that can be taken on the user side. Apps can be analyzed during or after installation on

a mobile device by applying security solutions such as mobile anti-virus programs. Harmful

applications that can access sensitive resources may already be installed on mobile devices.

Therefore it is these circumstances that reveal the vital importance of security solutions being

applied both to the market and the user sides in order to protect users prior to an application

being installed.

The permission mechanism is one of the most significant Android security mechanisms since

it permits or prohibits applications’ from accessing critical resources. Applications require

permission approval by device users in order to access critical system resources or sensi-

tive user data. According to the device’s Android version or application’s target Software

Development Kit (SDK) version, permission requests considered dangerous are presented

to the user for approval during the application installation process, or when the application

is running (when a critical resource receives an access attempt by an app) (Section 2.1.1.).

Permissions are requested by apps in order to use certain Application Programming Inter-

faces (APIs) (Section 2.1.2.) that access critical system resources or sensitive user data. The

mechanism assumes that users are able to determine whether or not the listed permissions are

genuinely required for the functionality of the application. For example, if a word-processing

application demands access to location data, the user should reconsider whether or not to pro-

ceed to install the application.

1.3. Description-to-Permission Fidelity Problem

The permission mechanism assumes that users are sufficiently competent and able to deter-

mine whether or not an application actually needs the requested permission in order to fulfill

its expected functionality. However, users are not always that careful or they may not be ad-

equately discerning to make the necessary inference about perceived irregularities between

requested permissions and expected functionality. In order to evaluate the awareness of users

with regard to the Android permission mechanism, Felt et al. (2012) [14] conducted a survey

and laboratory study. Their study showed that 42% of participant users were not aware of

the permission mechanism at all, and only 17% of the participants actually noticed requested

permissions during the installation of applications. Furthermore, just 3% of the participant

users actually understood and recalled the exact functionality of an application seeking the

requested permissions. Consequently, it can be concluded that users are inclined to install

4

potentially harmful applications by blindly or inadvertently accepting, although not needed,

the permissions requested by the malicious application.

Android applications are distributed centrally through application markets. Application mar-

kets provide application metadata such as the description of an application, user scores, and

user comments with application packages. Application metadata could therefore be used for

the benefit of users’ security and privacy. In recent years, application metadata has been

used for malware detection [15, 16]. There have also been studies on detecting applications

that request permissions beyond their needs by defining correlations between application de-

scription topics and the required API usage [17]. Another important usage of metadata is

to discover inconsistencies between requested permissions and application descriptions [18–

20]. From a privacy and security perspective, if the functionality of an application is suffi-

ciently detailed in the application description, the need for the requested permission can be

much better understood by the user. This is termed as description-to-permission fidelity [19]

and this is what is expected from an application developer. If there is no identifier found

in the application description (or in the rest of the application metadata such as application

screenshots) indicating the need for a requested permission considered to be dangerous, the

application may be legitimately considered as a suspicious application.

In the current study, a novel approach is defined in order to detect text parts in applica-

tion metadata that reveal the necessity of a requested permission that is considered as being

potentially dangerous. As previously mentioned, users do not adequately benefit from the

permission mechanism in order to adequately protect their security and privacy [14]. Rather

than permissions, users may benefit more from application descriptions, since they are non-

technical and therefore more likely to be considered understandable by users. At this stage,

the work within the scope of this thesis can be considered as a supporting tool to the permis-

sion mechanism. The approach and tool proposed in the current study can therefore be used

as follows:

• To warn mobile device users if an application description does not explain the necessity

of a requested permission (user benefit).

• To encourage application developers to better express their application functionality

for requested permissions prior to uploading an application to an application market

(developer benefit).

5

• To prevent the upload of applications which have insufficient descriptions for requested

permissions from a security and privacy perspective (application market benefit).

1.4. Major Contributions of the Thesis

A novel approach for the description-to-permission fidelity problem is proposed in the cur-

rent study in order to identify inconsistencies between requested permissions and application

metadata through the use of natural language processing (NLP) techniques and recurrent

neural networks (RNNs). The basic assumption was that the need for permissions consid-

ered to be dangerous must be adequately defined in the application description, and that the

absence of permission needs in the description creates a suspicion. Applications detected as

suspicious can then be analyzed using more complex techniques. The experimental results

show that the proposed approach achieves a high degree of accuracy in detecting permission

expressions from application metadata, and could be used for the protection of users’ privacy

and security. In addition to application descriptions, the effect of user reviews on discovering

inconsistencies was also investigated in the study.

In order to achieve the objectives of the thesis:

• Dataset was created with 2,641 applications containing description texts for three dif-

ferent permissions (READ CONTACTS 832 apps, RECORD AUDIO 1008 apps, and

STORAGE 801 apps). The dataset is called DesRe1 (DEScriptions and REviews of

Android applications).

• A novel model which uses state-of-the-art NLP techniques and RNNs was proposed in

order to discover inconsistencies between application permission requests and appli-

cation metadata.

• The effects of user reviews on assessing application fidelity was investigated.

• An extensive evaluation of the proposed model against other state-of-the-art models is

presented, and the results discussed.

1Instructions to use the DesRe dataset is presented in the dataset web page: https://
wise.cs.hacettepe.edu.tr/projects/security-risks/dataset/

6

1.5. Structure of the Study

The structure of the thesis is as follows:

Chapter 2 presents the essential background knowledge. It starts off by presenting the back-

ground to the Android application, and also provides an overview of the Android permission

mechanism. Background information on NLP is then given, followed by a brief introduction

to RNNs.

Chapter 3 provides an overview of previous published studies that assessed the description-

to-permission fidelity of Android applications. Specific focus is given to studies employing

NLP techniques and RNNs by using application descriptions for Android application secu-

rity. In addition to studies that use application descriptions, studies using other metadata are

also investigated. This chapter also presents other prominent studies on the topic, ending

with a discussion on related studies.

Chapter 4 describes the proposed model which uses state-of-the-art NLP techniques and

RNNs in order to establish inconsistencies between application permission requests and ap-

plication metadata. An overview of the model is presented, as well as two different versions

of the model; a sentence-based model, and a description-based model.

Chapter 5 introduces the dataset used in the study. Additionally, datasets from related stud-

ies which are also used in the current study are also described. Metrics used for the evaluation

of the study’s experiments are defined. Finally, the experimental results are presented and

then discussed.

Chapter 6 concludes the thesis with a brief summary of the work undertaken and its contri-

butions made to the field of Android application security. The chapter and thesis ends with

a discussion on the limitations of the study, and suggestions as to future topics that could be

studied based on the context of the current study.

7

2. BACKGROUND

In this chapter, background information is given in order to follow the context and approaches

presented in subsequent the sections of this study. First of all, basic information about An-

droid applications and the Android permission mechanism is given in Section 2.1.. Then,

in Section 2.2., word embeddings are explained, and then recurrent neural networks (RNNs)

are introduced briefly in Section 2.3..

2.1. Introduction to Android Applications

An Android application can be implemented using programming languages such as Java [21],

C++, and Kotlin [22]. Android Software Development Kit (SDK) tools are used in order to

build and implement Android application projects [23]. In the build operation, implemented

source code, resource files and dependent libraries are processed by compilers. The source

code is then converted to a Dalvik Executable (DEX) [24] file, which is then executed by

Dalvik Virtual Machine (DVM) and the remainder of the inputs are converted into compiled

resources. The DEX file is then combined with the compiled resources into an APK file

by the APK Packager, which is then signed. The APK file is an archive used to install the

application to a mobile device using the Android OS.

The Android OS is a multiuser Linux environment that regards each application as a different

user through use of unique user IDs [23]. Each user ID is known only by the OS, and is

used to set permissions for all files within the application. Each application has its own

process and own virtual machine (an instance of DVM). This means that each application

runs within an isolated environment, within its own security sandbox, without adversely

affecting other applications, operating systems or users. This creates a secure environment

in which an application can only access the resources and system components it has the

necessary permission for. The primary purpose of this type of secure environment is to

protect users’ security and privacy.

2.1.1. Android Permission Mechanism

An Android application needs to obtain permission approval in order to access sensitive

user data (e.g., SMS messages or images) or critical system features (e.g., a mobile device’s

8

camera or microphone) [25]. The permissions required by the app must be listed in the

application’s manifest file. With respect to the resources the application requests access to,

permissions can be granted either by the OS automatically or manually by the device user.

The aforementioned manifest file, which is strictly named as “AndroidManifest.xml,” is used

by Android SDK, the Android OS and also by Google Play. It is positioned at the root

directory of the project. The manifest file defines the application ID (which is actually a

package name such as “com.android.chrome”), permissions requested by the application,

application components (e.g., activities, services, broadcast receivers and content providers),

and the required hardware and software features. Permissions needed by the application are

declared by using the <uses-permission> tag in the manifest file.

When a permission is requested by an application, either the Android OS requests that the

device user grants permission, or the Android OS automatically grants the permission [25].

The Android OS decides which option to apply based on the requested permission type, i.e.,

who the protection level of the permission belongs to. There are three different protection

levels; normal permissions, signature permissions, and dangerous permissions. Normal per-

missions permit the application access to data or system features outside of its sandbox, but

access to them by an app does not present much of a risk. Some examples for normal per-

missions are INSTALL SHORTCUT or VIBRATE. Normal permissions are automatically

granted by the Android OS during the installation of an app. Signature permissions are also

granted automatically by the Android OS during the installation of an app. However, these

permissions are only used if the requesting application is signed with the same certificate

as the app that declared the permission, e.g., BIND PRINT SERVICE. On the other hand,

requested dangerous permissions are listed for user’s prompt, meaning that the user has to

explicitly approve the requested permission. As these permissions relate to data that have

the potential to violate the user’s privacy or present a risk to the usual operation of the sys-

tem, they are considered to be potentially dangerous. For example, READ CONTACTS,

READ CALENDAR and RECORD AUDIO are considered to be dangerous permissions.

Only dangerous permissions are presented to the device user, and are prompted as permission

groups. Dangerous permissions and permission groups are listed in Appendix B. Permissions

are listed to the user for approval at the time of an application’s installation where the device’s

Android version is 5.1.1 or lower, or the application’s target SDK version is API level 22 or

lower while running on any version Android OS (Section 2.1.2.). In this case, all dangerous

permissions are presented to the user with two options, either to accept all of them or to reject

9

all of them. If the device user opts to reject, the app’s installation is canceled by the OS.

However, if the mobile device is running on Android 6.0 OS or above, and the application’s

target SDK version is API level 23 or above, then no permissions are requested at the point

of an application’s installation. When the device user runs the application, if a source that

requires a granted dangerous permission is attempted to be reached by the application, a

dialog box appears and presents a permission group header to the device user. If a device’s

user does not approve the request, the related source is not used, but the application remains

running, but only performs operations for which it uses granted permissions and permitted

sources. In order to change permission approvals one-by-one, the device user needs to open

and adjust certain system settings.

2.1.2. Application Programming Interfaces (APIs)

Application Programming Interfaces (APIs) allow the capabilities of an application/service/-

platform (e.g., Google, Ubuntu, Android) to be used by another application. The rules and

limitations defined by the provider must be followed in order to utilize these capabilities. In

order to develop Android applications, developers need to interact with the underlying An-

droid operating system, and Android SDK provides Android Platform APIs for this purpose.

Android SDK is a set of development tools, and aside from APIs it also includes relevant

documentation for APIs (API docs), libraries, and tutorials for the Android OS, etc. Appli-

cation developers need to use Android SDK in order to develop Android-compatible mobile

applications. The Android API Package includes resource classes that are used by mobile

apps, and it also defines application permissions for system features. On the other hand,

media APIs includes classes to play or record, i.e., to manage media in audio and video.

Each Android OS release comes with an upgraded set of APIs. Actually, each Android

release has a version, a dessert (code) name1, and an API Level. Detailed Android release

chronology is presented in Appendix C. Whilst different API Levels or different Android

versions may have the same corresponding code name, for each Android version there is a

specific API level. API levels are defined with an increasing integer value. API updates are

released in a way so that they remain compatible with previously released versions.

1Starting from Android 10, released in August, 2019, Google no longer names Android releases after dessert
names and uses just numbers.

10

2.2. Word Embeddings

In 1954, a linguist called Zellig S. Harris [26] posed the question of whether or not languages

have distributional structures. According to Harris [26], languages can be structured in terms

of certain features such as social intercourse, historical change, and distribution, and that this

structure is detectable. Harris inspected language by evaluating the distributional structure of

various language elements, together with their occurrence with other language elements, dis-

regarding certain independent features. Even though most humans believe that they choose

random words when conversing, in fact they choose words according to certain linguistic

rules, from a set of sentence parts that are then presented together. Even the order in which

these parts occur is distributionally structured

In order to process textual data, different mathematical representation methods can be ap-

plied to text. One approach to represent words is one-hot-encoding. Word representations

are created by using vocabulary size vectors filled with zeros and using one for a correspond-

ing word. The drawback here is that since the vectors are high-dimensional sparse vectors,

it is computationally too costly in fact to use them. Also as the number of words grows,

representation size also grows. Another approach to representing words is through the use of

distributional representations. The idea uses co-occurrences of terms in a corpus as a means

to representing them. To find similarities between two texts, co-occurrence of sentence parts

can be applied, because sentence parts that have similar meanings happen to occur in sim-

ilar contexts. To extract relations of words or texts, contexts are held as weighted vectors

with respect to frequency counts or term frequency-inverse document frequency (tf-idf) [27]

scores of words in texts. The meaning of any given word can therefore be represented as a

vector of that word’s relatedness to each context.

In 2013, Mikolov et al. [28] introduced the “word2vec” representation model as a prediction-

based unsupervised method. The key principle behind the model is to use each entry in

a vector as a hidden feature in order to represent the words. This feature can represent a

semantic relation or syntactic relation. There are two different models used by word2vec

to create word embeddings, and these are ‘continuous bag of words’ (CBOW) and ‘skip-

gram.’ In CBOW, the word which stays in the center is attempted to be predicted using the

words that surround it. CBOW is considered to work better on smaller rather than larger

datasets . On the other hand, in the skip-gram model, the word at the center of the window is

used in order to predict the surrounding words. The skip-gram model works better on larger

11

rather than smaller datasets. The skip-gram model requires more computational power than

the CBOW model. Using these models, word embeddings can be created using text data as

input. There are also pretrained word2vec embeddings that have been trained using these

models on Google news data. GloVe [29] is another word representation model in which co-

occurrences of words are used for training. In GloVe, one can find embeddings with vector

sizes of 25, 50,100, 200, and 300.

Another model for creating word embeddings is fastText [30]. FastText uses bag of character

n-grams as input to the neural network, which consist of the substrings of any given word.

For example, for the word network, with “n” equal to three, <net, etw, two, wor, ork> tri-

grams are used by fastText as input to the neural network and representations are created for

each. The fastText representation of the word network is obtained by adding these vectors.

As a result, fastText achieves a good level of performance on word representations.

In the current study, pretrained fastText word vectors were used as word embeddings with

a vector dimension size of 300. These vectors were trained using Common Crawl [31] and

Wikipedia [32] data, with character n-grams of length 5, i.e., 5-grams.

2.3. Recurrent Neural Networks

The human brain processes or learns from many data types sequentially. These data types

include song lyrics, textual data, video data, and audio data, which are all examples of se-

quential data. Recurrent neural networks (RNNs) achieve superior levels of performance

in modeling sequential data. This ability comes through the help of a mechanism that al-

lows information to flow from one time step to the next. A basic RNN Unit is presented in

Figure 2.1.. Therefore, RNNs are able to remember previous inputs so that they can make

decisions based on both previous inputs and the current input. On the contrary, feed forward

neural networks process data only at a given time step, and thereby independently from the

input given to previous time steps.

Neural networks are trained using the backpropagation method. A forward pass is performed

through the network and predictions are calculated. After that, predictions are compared with

ground truths and as a result of this process, error values are subsequently derived. These

error values are calculated by using loss functions and are regarded as to how weakly the

network performs, i.e., its performance strength. Taking these error values into account,

12

internal weights of the network can then be adjusted. The adjustment value is called the

gradient and is calculated through a backpropagation algorithm with respect to the effect of

the gradients of the previous layer. Gradients are values that tell us how much to change the

weights in order to efficiently decrease the cost (i.e., to decrease the number of errors) of the

network. The goal with backpropagation is to update each of the weights in the network so

that the actual output is closer to that of the target output, thereby minimizing the error for

each output neuron, as well as that of the network as a whole.

When performing backpropagation, by the time this information flows through states, each

node in a layer calculates its gradient based on the effects of gradients in the layer before. As

a result of this, in RNNs, the effect of the information to next state vanishes exponentially

as information flows layer over layer. In other words, RNNs may experience difficulties in

retaining information from previous layers. This constraint is called the vanishing gradient

problem [33], and its result is defined as short-term memory problem in RNNs.

Neural Network
Layer Vector Transfer

Xt

ht

Merge Copy

tanh

tanh

Figure 2.1. A basic RNN unit

“Neurons that fire together, wire together.”(Hebbian Theory)

Long Short Term Memory (LSTM) networks offer a solution to RNNs’ short-term memory

problem by employing gates to adjust information flow in the network. By doing so, LSTMs

13

aims to pass only the relevant information to proceeding sequences and forget rest of it to

make better predictions. An LSTM unit is presented in Figure 2.2..

Pointwise Operation

tanh Neural Network Layer

Vector Transfer

Xt

σ

X

tanh σ

X

ht

tanh

σ

X +

ht-1 ht

Ct-1 Ct

Merge

Copy

Figure 2.2. An LSTM unit

2.4. Conclusion

In this section, the essential background knowledge is presented that is subsequently referred

to throughout the remainder of the thesis. As the current study focuses primarily on the usage

of neural networks for mobile application security, a general overview of the field is given

from an application security perspective using basic terms and definitions. Additionally,

word embeddings and terms considered significant to Android applications are presented.

14

3. RELATED WORK

Mobile users review application descriptions in order to see whether or not an application

meets their needs. This makes application descriptions indispensable in the communication

between application developers and mobile device users. From the privacy and security per-

spective, if an application’s functions are presented to the mobile device user in sufficient

detail within the application description, then the reasons why the requested permissions

are needed could be much better understood, which is termed ‘description-to-permission

fidelity’ [19]. However, since users are not always that careful, or sometimes unable to

infer a level of corroboration between the requested permissions and the application de-

scription [14], there is considerable potential in the idea of studying application descriptions

and requested permissions as a means towards the protection of users’ privacy and secu-

rity [15, 17–20, 34].

The purpose of the current study is therefore to examine the levels of consistency between

application metadata and requested permissions. As a first step, prominent studies in this

context were analyzed in detail. The key studies are listed as follows in accordance with

their date of publication:

• The first prominent study in the area presented the WHYPER [18] framework (2012),

which aimed to assess description-to-permission fidelity of a mobile application by us-

ing NLP techniques for sentence structure analysis. The framework used WordNet [35]

to create a semantically-related vocabulary set of a requested permission.

• Then, a fully-automated framework called AUTOCOG [19] was introduced in 2014,

which uses application descriptions rather than API documents to extract semantic

information.

• Another important study was ACODE [34] (2015), which was a largescale study that

combined static code analysis and text analysis.

• The most recent study related to the area of assessing description-to-permission fidelity

is AC-Net [20] (2019), which utilizes RNNs in order to learn and detect semantic

relations.

15

There have also been other studies relating to assessing the fidelity of applications. A set

of leading studies and their approaches are briefly summarized in the following subsections,

followed by a discussion of the prominent studies.

3.1. WHYPER Framework

A primitive way of assessing description-to-permission fidelity is to perform a basic keyword-

based search on a mobile app’s application description. This takes a set of words related to

a given permission and checks as to whether or not any of the keywords appear in the appli-

cation description text. One problem experienced with keyword-based searches is gathering

all the keywords related to the permission. Another problem is the detection of semantic re-

latedness of words or texts. By its very nature, keyword-based searches look for exact terms

specified in the query. A word can have different meanings in different texts and that can

have confounding effects on the results of keyword-based searches. Another disadvantage of

the keyword-based search arises when semantic inferences are used within sentences. Here,

semantic inference means describing the usage of a permission without use of a particular

word. Consequently, keyword-based searches overlook semantic relationships between the

words in the search text and the keywords, adversely affecting the search results. In order to

overcome the impact of these disadvantages, NLP techniques can be employed.

The first published work on assessing the description-to-permission fidelity proposed a frame-

work called WHYPER [18] which employs NLP techniques. WHYPER creates a semantic

graph for each permission by using API documents and a lexical database called Word-

Net [35]. WHYPER also creates first order logic (FOL) representations of description sen-

tences. Using the semantic graph and FOL representations, the model identifies whether or

not there is a need for a permission according to the application description.

Permissions are requested by applications in order to be able to use APIs that require access

to critical system resources or to sensitive user data. In WHYPER, for a requested permission

(e.g., READ CONTACTS), a semantic graph is defined as an illustration of resources man-

aged by actions. In creating the semantic graph, noun phrases (as resources) and verb phrases

(as actions) are extracted from the related API documents (e.g., android.media.AudioRecord

for the RECORD AUDIO permission). For each resource and action, related words from

WordNet [35] (also known as synsets) are added to the semantic graph. As a result, a set of

16

noun phrases for resources and a set of verb phrases as actions are held for each permission’s

semantic graph. These semantic graphs then together form the semantic model.

Another input to the WHYPER framework is the application description. Taking the descrip-

tion text of a mobile application, WHYPER extracts grammatical relationships of words and

part-of-speech (POS) tags of each word within sentences using Stanford Parser [36, 37].

Then, WHYPER creates a FOL representation of each sentences. Taking these representa-

tions and the semantic model of a specific permission as its input, the WHYPER framework

detects sentences that indicate a legitimate need for the requested permission. Detected sen-

tences are called permission sentences. The design of this framework is summarized in

Figure 3.1..

APPLICATION
DESCRIPTION

Period HandlingSentence Boundaries
Seperators

Named Entity Handling Abbreviation Handling

PRE-PROCESSED DOCUMENTS

NLP Parser
(Stanford Parser)

Intermediate
Representation Generator

STANFORD-TYPED DEPENDENCIES

SEMANTIC ENGINE

FOL REPRESENTATION OF SENTENCE

Semantic Graph
Generator

API Docs

Application
Permission

SEMANTIC GRAPHS

ANNOTATED SENTENCES

Figure 3.1. Design of the WHYPER framework

In the scope of the current study, semantic graphs were created for three specific permissions.

These per-missions are READ CONTACTS, RECORD AUDIO, and READ CALENDAR.

17

The framework was tested for 9,953 manually labeled sentences extracted from the descrip-

tion texts of 581 free-of-charge popular applications (collected in January 2012). The results

(see Table 3.1.) show that WHYPER is able to find out permission sentences with an average

recall of 81.5% and an average precision of 82.8%. The WHYPER results were also compared

with keyword-based search results, with the WHYPER results showing a 40% improvement

on precision .

Table 3.1. Performance of WHYPER

Permission #App #S #SI Precision Recall F-Score Accuracy
READ CONTACTS 190 3,379 204 91.2 79.1 84.7 97.9

READ CALENDER 191 2,752 288 83.7 85.1 84.4 96.8

RECORD AUDIO 200 3,822 259 75.9 79.7 77.4 97

#S Number of sentences
#SI Number of sentences identified as permission sentences

3.2. AUTOCOG Tool

In their study called AUTOCOG, Qu et al. (2014) [19] took the use of NLP techniques one

step further in extracting permission sentences from application descriptions. Their study

defined the following limitations with regards to the WHYPER framework:

• Since API documents cannot contain all possible patterns of related words that are

correlated with a certain permission, there is a need for additional resources to obtain

additional semantic information. lack of API documents for certain permissions pre-

vents the framework from being used for applications that request these permissions.

• Manual work is required in WHYPER in order to extract patterns for semantic graphs

from API documents. Without some level of automation, extending the use of WHYPER

to other permissions does not seem feasible.

Due to these limitations in WHYPER, Qu et al. [19] proposed a fully-automated framework

called AUTOCOG, in which semantics are gathered only from application descriptions. In

AUTOCOG, the semantic relatedness of a description and a permission are measured using

Explicit Semantic Analysis (ESA) [38, 39]. Instead of using a dictionary-based corpus like

18

WordNet [35], as performed in WHYPER, ESA uses a known large knowledgebase (i.e.,

Wikipedia) in order to create vectorial representations of the texts. The key point here is

that dictionary-based approaches do not propose a solution to the word sense disambiguation

problem. On the other hand, approaches such as ESA work on the meaning of a word or

document rather than its vocabulary form. The word sense disambiguation problem is caused

by different meanings of a word in different contexts. In Wikipedia-based ESA, to extract

relations of words or texts, a concept is created for each article and these concepts are held

as weighted vectors with respect to term frequency-inverse document frequency (tf-idf) [27]

scores of words in articles. The meaning of any given word can then be represented as

a vector of that word’s relatedness. This vector can be considered as a projection of an

input article into Wikipedia-based concepts. The input text is represented by a vector and

the semantic relation between two texts is estimated by calculating the cosine similarity of

vectors.

Using ESA, two models are developed by AUTOCOG, the Description Semantics Model and

the Description-to-Permission Relatedness (DPR) Model. The Description Semantics Model

is used in order to understand the meanings of application descriptions, and is able to measure

semantic relatedness of two texts. The DPR Model is used to extract noun phrases and np-

counterparts1 that have a statistically positive correlation with a given permission in related

description documents. The design of the AUTOCOG tool is summarized in Figure 3.2..

In the learning phase, AUTOCOG extracts noun phrases from descriptions and creates a se-

mantic relatedness score matrix among them using ESA. After filtering out less frequent

noun phrases, the remaining noun phrases with a semantic relatedness score higher than a

predefined threshold are then grouped together. By using these groups and their relatedness

scores, a relatedness dictionary is created between noun phrases. To relate permissions with

noun phrases, just considering the number of times permissions and noun phrases are used

together will lead to an increase in false positives. Considering these concerns, a special

metric is defined so as to relate permissions with noun phrases. Then, using a final threshold

value (500) over relatedness results, correlations between noun phrases and permissions can

be defined by the DPR Model. In a final step, AUTOCOG extends noun phrases by pairing

them with related np-counterparts. As a result, each permission has a list of related noun

phrases and np-counterpart pairs.

1np-counterpart is defined in AUTOCOG as verb-phrases and noun-phrases that are detected as governor-
dependant pairs with noun-phrases residing at leaf node of Stanford Parser output. In addition to this, if the
noun-phrase contains the own relationship, relative possessive is also an np-counterpart.

19

APPLICATION
DESCRIPTION

- Stopword removal
- Lemmatization

Sentence Boundary
Disambiguation

- Phrase Parsing
- Named Entity Recognition
- Grammatical Structure

<np-counterpart, noun phrase>

Description Semantics Model

APPLICATION
PERMISSION

DECISION

Description-to-Permission
Relatedness Model

LABELED SENTENCES

PERMISSIONS

Extract phrases and tagged words with relation
between them

Figure 3.2. Design of the AUTOCOG tool

Given an application description and a requested permission, AUTOCOG extracts noun phrase

np-counterpart pairs from the description text and then identifies whether or not a need for

the requested permission is stated in the description text.

A large application dataset (37,845 application descriptions collected from Google Play Store

in August 2013) was then used in order to train the Description Semantic Model and the DPR

Model. Evaluations were performed for 11 different permissions using 1,785 applications

downloaded from the Google Play Store in May 2014. The results show that AUTOCOG

achieves1 an average recall of 92% and average precision of 92.6%. Test results for the

studied permissions are presented in Table 3.2..

Another evaluation test was performed with 45,811 application descriptions downloaded

from the Google Play Store. As the conclusion of the test, it was observed that only 9.1% of

the descriptions had indications for all the requested permissions by the application.

1In WHYPER, number of sentences is used to calculate experiment results. On the other hand AUTOCOG
evaluates results in terms of number of descriptions. Results of the WHYPER framework in the terms of
number of descriptions for average precision, recall, F-score, and accuracy are %85.5, %66.5, %74.8, and
%79.9 respectively.

20

Table 3.2. Performance of AUTOCOG

Permission Precision Recall F-Score Accuracy
READ CONTACTS 95.2 91.7 93.4 92.6

READ CALENDAR 94 92.9 93.5 94.4

RECORD AUDIO 92.1 91.4 91.8 89.5

GET ACCOUNTS 89.5 87.2 88.3 94

WRITE CONTACTS 93.4 90.5 91.9 93.3

CAMERA 90.5 91.8 91.2 91.3

WRITE EXTERNAL STORAGE 89.8 91.4 90.6 92.7

ACCESS FINE LOCATION 95 93.4 94.2 95.3

ACCESS COARSE LOCATION 98 92.5 95.1 96.7

RECEIVE BOOT COMPLETED 89.5 91.1 90.3 92.7

WRITE SETTINGS 90.3 97 93.5 94

AVERAGE 92.6 92 92.3 93.2

While AUTOCOG performs much better than WHYPER, since it uses unsupervised learning,

it could equally extract semantic relationships that may not actually exist, which may in turn

lead to false positives.

3.3. ACODE Framework

While WHYPER is proposed as a means to alleviate the shortcomings of a keyword-based

approach (confounding effects that a word can have different meanings and semantic infer-

ence that describes the usage of a permission without using a particular word), Watanabe et

al. (2015) [34] proposed a keyword-based approach called ACODE (Analyzing COde and

DEscription) due to being considered lightweight in performance terms for larger datasets,

since ACODE does not require the labeling of application descriptions.

Their basic keyword-based search takes a set of words related to a given permission and

checks whether or not any of the keywords appear in the description text. Being a lightweight

method makes keyword-based search expedient for operations on large data volumes. Us-

ing this advantage of the method, ACODE performed experiments on 200,000 applications

(100,000 from Google Play and 100,000 from third-party application stores) without any

21

need for the manual labeling of description texts. By doing so, ACODE sets itself apart from

other prominent studies that also analyze application descriptions [18–20].

In order to extract keywords for a permission, ACODE performs static code analysis. The ob-

jective of the static code analysis is to find out whether or not the application code has code

parts that use the requested permission. As such, ACODE extracts the AndroidManifest.xml

file from the application package file using the Android Asset Packaging Tool (aapt) [40]. In

finding declarations of a permission from the AndroidManifest.xml file, ACODE searches for

APIs or Uniform Resource Identifiers (URI) that require this permission in order to access

critical system resources or sensitive user data in the application code. They use PScout [41],

which maps permissions with APIs and URIs, in order to check whether or not the declared

permissions in the manifest file are in fact needed. After that, using Apktool [42], ACODE

disassembles the application’s DEX file in order to search for a function call to separate un-

used code parts from those actually used. Since ACODE does not label description sentences

manually, descriptions of applications that have used function calls are assumed as being

relevant description texts. Keywords for the keyword-based search are selected by evalu-

ating relevance weights of terms from relevant and non-relevant descriptions texts. Once

the keywords have been identified for dangerous permissions, the keyword-based search is

performed in order to find out whether or not an application description includes access to

sensitive user data or access to critical system resources.

By combining static code analysis with text analysis, ACODE performs better than a basic

keyword-based search used for comparison with WHYPER in [18] and produces comparable

results with WHYPER. The comparative results of ACODE with the WHYPER Framework

and a basic keyword-based method is presented in Table 3.3.. Other than being lightweight

and not requiring manual text annotation, since ACODE is a keyword-based approach, it can

be applied to different languages without too much effort or level of change.

22

Table 3.3. Comparison of ACODE with WHYPER and basic keyword-based search

Permission Framework Accuracy

READ CONTACTS

ACODE 0.84
WHYPER 0.89
Keyword Search 0.74

READ CALENDAR

ACODE 0.89
WHYPER 0.92
Keyword Search 0.74

RECORD AUDIO

ACODE 0.74
WHYPER 0.86
Keyword Search 0.76

3.4. AC-Net Framework

The closest work to the current study in terms of the applied technique was recently proposed

by Feng et al. (2019) [20]. The framework, called AC-Net, utilizes RNNs in order to learn

and detect semantic relations. Application descriptions are sequential data and since RNNs

are able to remember previous inputs, they are good at modeling sequential data. However,

RNNs suffer from vanishing gradient problem due to using the backpropagation method of

learning. This problem is defined as short-term memory problem in RNNs. Gated Recur-

rent Unit (GRU) [43], as used in AC-Net, offers a solution to RNNs’ short-term memory

problem by employing gates in order to adjust information flow in the network. In AC-Net,

labeled application descriptions for 11 different permission groups are used for the purposes

of training. Predictions over test data for learned permissions are generated as probability

distributions in the model. The design of this system is summarized in Figure 3.3..

23

APPLICATION
DESCRIPTIONS

Sentence Split

- Stopword removal
- Stemming

Word Vector
Initialization

LABELED
PERMISSIONS

DECISION

TextGRU

LEARNED MODEL

PREDICTIONS FOR EACH SENTENCE
AS PROBABILITY DISTRIBUTIONS FOR

PERMISSIONS
APPLICATION

DESCRIPTIONS

Sentence Split

- Stopword removal
- Stemming

Word Vector
Initialization

Figure 3.3. Design of the AC-Net framework

In the scope of the AC-Net study, embeddings were created by using 69,941 application

descriptions (containing 783,199 sentences and 39,800 unique words) using word2vec [28].

Experiments were also performed using GloVe [29] and Common Crawl [44] word embed-

dings. Comparative results for different embeddings showed that newly created embeddings

have a positive effect on the results. One possible explanation for this effect is that appli-

cation descriptions which are domain-specific inputs are used to creating embeddings. As

a result of this, relations between words in this specific context are likely to be learned and

presented better by newly-created embedding vectors.

The system was evaluated by using approximately 25,000 sentences extracted from descrip-

tion texts of 1,415 popular applications (collected in December 2015). The results of AC-

Net on three permissions1 that were also evaluated by the previous related studies are pre-

sented in Table 3.4.. The results show that AC-Netwas able to identify permission sentences

with 24.5% more accuracy than the previous studies.

1AC-Net performed the evaluation using permission groups rather than permissions. CONTACTS per-
mission group includes READ CONTACTS, WRITE CONTACTS, and GET ACCOUNT permissions. CAL-
ENDAR permission group includes READ CALENDAR and WRITE CALENDAR permissions. MICRO-
PHONE permission group includes RECORD AUDIO permission.

24

Table 3.4. Performance of AC-Net

Permission Group ROC-AUC PR-AUC
AC-Net Key-Based WHYPER AUTOCOG ACODE AC-Net Key-Based WHYPER AUTOCOG ACODE

CONTACTS 0.97 0.72 0.6 0.68 0.76 0.74 0.41 0.28 0.41 0.43
CALENDAR 0.99 0.98 0.65 0.89 0.95 0.84 0.71 0.28 0.5 0.71
MICROPHONE 0.96 0.8 0.59 0.79 0.79 0.49 0.44 0.24 0.4 0.51

3.5. Other Related Studies

There are also other studies on assessing the fidelity of applications. Gorla et al. (2014) [17],

in their study called CHABADA, applied clustering techniques in examining the relations be-

tween requested permissions and application metadata. Processing application descriptions

collected from the Google Play Store, topics for each application are first specified by means

of Latent Dirichlet Allocation (LDA) [45]. By using k-Means [46] on specified topics, ap-

plication clusters are then generated. Sensitive APIs used by applications within each cluster

are then extracted. If an application uses an API different from the set of APIs extracted for

its topic, it is considered as a potentially harmful application. The approach does not require

a labeled training dataset, since it is an unsupervised method.

Felt et al. [14] analyzed users’ behaviors and their awareness on Android permission mech-

anism. Although 42% of users were not aware of the permission mechanism at all, and 42%

of users were aware of Android permission mechanism but did not look at the permissions

requested during app installation, only 17% of the participants actually noticed the requested

permissions. One way to benefit from this would be to make use of the experience and at-

tention of these more cautious users. One of the most effective ways of doing so would be to

utilize data from the user reviews. However, only a few studies exist on exploring the effects

of user reviews in Android applications.

AUTOREB [47] makes application-level behavior inferences based on security- and privacy-

related user reviews. In doing so, AUTOREB introduced the concept of review-to-behavior

fidelity to the literature. They used text mining, information retrieval, and also machine

learning techniques in order to analyze user reviews and classify applications into four dif-

ferent categories (Spamming, Financial Issues, Over-Privileged Permission, Data Leakage).

Their experimental results showed that the introduced system is capable of predicting secu-

rity behaviors of applications with accuracy as high as 94.04% through utilizing user reviews

as input data.

25

User reviews constitute a favorable direct communication channel between mobile device

users and application developers. Developers update their apps with respect to user reviews

on application markets in order to make their apps more useful or more preferable to users.

These updates are sometimes implemented on user interfaces, sometimes they aim to im-

prove the performance of an app, and sometimes the updates are related to improvements in

security and privacy. Nguyen et al. (2019) [48] were inspired by this, and recently inves-

tigated the relationship between security- and privacy-related application updates and user

reviews. They extracted privacy-related user reviews using a keyword-based approach. They

also extracted security- and privacy-related changes in the code by way of static analysis.

Based on these extractions, the user reviews were then able to be mapped to the correspond-

ing application updates. Their results showed that 60.77% of the security- and privacy-related

reviews triggered a security and privacy update.

In research by Wu et al. (2017) [49], PACS was presented as another study that benefits

from application descriptions and user reviews. In order to achieve that, it collects applica-

tion descriptions, user reviews, and Android package (APK) files from applications in the

market store. First, PACS decompiles the APK files and extracts the requested permissions

of applications from their AndroidManifest.xml files. Then, PACS classifies the applications

into 10 categories based on application descriptions and user reviews using Support Vector

Machines (SVM) [50]. Similar to CHABADA [17], PACS uses descriptions for classify-

ing applications. Then, it builds maximum frequently used permission item sets for each

category by using Apriori Algorithm [51]. Using description and user reviews of a new ap-

plication, PACS first finds the application’s category and then lists the permissions that are

expected to be requested by the app. Any additional permissions requested by the app are

then considered as suspicious requests.

Due to the importance of application descriptions, there have also been studies conducted

on the automated generation of application descriptions (AutoPPG [52], DescribeMe [53]),

and the automated creation of informative text (DREBIN [54]) by prioritizing security and

privacy concerns. DescribeMe [53] aimed at generating descriptions by taking into account

the use of sensitive APIs by an application. First, the security behavior graphs of an app are

created by static analysis, then natural language generation (NLG) techniques are employed

in order to generate descriptions by traversing and parsing these graphs. DREBIN [54] trans-

fers the attributes it collects from applications to a vector space and determines whether or

26

not an application is malicious or benign by using SVM [50]. In addition, it creates a text de-

scribing why the application is classified as malicious. This text is created by adding phrases

that match with attribute sets to predefined sentence patterns. The system also provides users

with a confidence level value about the decision made.

AutoPPG [52] generates privacy policy for Android apps by using static code analysis and

NLP techniques. It aims to generate easy-to-understand texts that inform device users about

how their information will be collected, used, and ultimately disclosed. First, API documents

are analyzed in order to identify personal information used by APIs. Then, by employing

static code analysis, invoked sensitive APIs and their mappings to personal information are

extracted. The information under which conditions these APIs are invoked and how the

personal information is processed (e.g., stored, transferred) are also obtained in this step.

Finally, NLP techniques are employed to generate privacy policies.

A recent study claimed that descriptions created by DescribeMe, AutoPPG, and also by

DREBIN were too technical for end-users, therefore they proposed a system called PER-

SCRIPTION [55] through which personalized security-specific descriptions are created by

learning users’ security concerns. PERSCRIPTION collects approved and unapproved per-

missions by users and ranks them according to their proportion (allowed or denied) to detect

security and privacy concerns of a specific user. By using the permission ranks and reordering

the permission sentences’ list collected from DREBIN, PERSCRIPTION creates a descrip-

tion for a given application by using its application category (defined in the application store)

and permission requests. The overall aim being to provide device users with the most relevant

sentences about the permissions that are of most concern to the user. PERSCRIPTION also

benefits from certain psychological approaches in serving to users’ linguistic preferences.

Security and privacy concerns of mobile device users are determined based on changes made

by users to the default installation settings of previously installed apps. According to the

category distribution of apps previously installed, using the Big Five Model [56], the user’s

language preference is determined. Then, based on this information, a description of the

application is created in a language style that the user can more readily understand and in

a way that takes the user’s security and privacy concerns into consideration. In this way, it

is aimed to help users to understand security risks more easily and thereby to make more

accurate decisions in time by becoming more conscious about the security and privacy of

their mobile device and personal data.

27

Recently, metadata of applications has also been utilized for detecting malicious mobile ap-

plications. Martin et al. [15] proposed a detection system called ADROIT that uses metadata

with permissions in order to discriminate malicious applications from the benign. In order

to achieve that aim, classifiers are generated with the help of text mining methods. The re-

searchers performed experiments by using six different classification algorithms (Random

Forest, KNN, Decision Tree, AdaBoost, Naive Bayes, and Bagging). First, applications are

labeled as malware or benignware by leveraging antivirus engines. Then, by using applica-

tion metadata (e.g., description, developer ID and organization, user ratings, and permission

list from the manifest), words that are expressed as different patterns are extracted. In order

to do that, a corpus is created with the collected descriptions, and then this corpus is cleaned

by using NLP techniques (e.g., removing stopwords and stemming). Then, the resulting set

is converted to a term-document matrix by using the terms that have a frequency exceeding

a predefined threshold. This matrix is then used in order to generate classifiers by using

each of the six aforementioned algorithms. In another study [16], also uses metadata such

as application category and description, besides API calls and permissions for the detection

of malware in mobile apps. As a means of characterizing Android malware, Yang et al. [57]

proposed a topic-specific approach based on application descriptions that uses information

flow.

3.6. Discussion

As the purpose of the current study is to examine consistency between application metadata

and the permissions requested by mobile device applications, this section presents a detailed

discussion of the aforementioned prominent studies in this context [18–20, 34].

The keyword-based approach [34] is considered to be the most primitive approach for ex-

amining the reliability of mobile apps by comparing application metadata with requested

permissions. This is considered to be a lightweight method, thereby making it possible to be

applied to a large-sized database, and without the need for the manual labeling of text data.

The method proposed by [34] makes the framework easily adaptable to other languages.

Watanabe et al. [34] used a large-sized dataset containing 200,000 applications in order to

assess description-to-permission fidelity. In doing so, ACODE produced results that were

comparable to other studies that focused on description analysis. However, the approach

28

encounters problems in the gathering of all the relevant words related to a requested permis-

sion. Another important challenge of keyword-based approaches is that they cannot detect

semantic inferences within description texts.

The WHYPER framework offers the use of API documents in order to collect keywords

for requested permissions. It also uses synsets of words from WordNet, which holds se-

mantic relatedness of words, in order to compare descriptions against the requested permis-

sions. Although two shortcomings of keyword-based searching (confounding effects that a

word can have different meanings, and semantic inference that describes the usage of a per-

mission without using a particular word) are addressed, WHYPER seems to fail at certain

points. Since there are certain permissions that may not have related API documents, the

task of collecting all the related words, i.e., obtaining complete semantic patterns, may not

be achievable. Another weakness is due to use of words in synsets, which is devoid of con-

text information, and can thereby result in the detection of unrelated sentences as permission

sentences. This, naturally, can adversely affect the number of false positives. There is also

a defined element of manual work in using the framework, which requires a considerable

amount of effort for such a system.

AUTOCOG resolves the automation and missing API document problems by using only de-

scriptions within its automated structure. By using ESA, relations of words are attempted to

be found without losing context information. While AUTOCOG performs much better than

WHYPER, it is also more susceptible to extracting relationships which are actually unrelated

in context due to being an unsupervised approach.

The most recent study, AC-Net, which was developed during the same time interval as

the current study, uses a specific implementation of RNN called GRU Networks to assess

description-to-permission fidelity. Since RNNs are good at modeling sequential data such as

application descriptions, hence AC-Net achieves better predictions than the previous studies

by using this approach. Different from the previous studies, the AC-Net model extracts not

just binary results for sentences as to whether or not they include explanation of a particular

permission, but generates the degree of description-to-permission fidelity of the application.

Created word embeddings in the scope of the AC-Net study enables a GRU-based RNN to

learn from a domain-specific input. This seems to be the factor that resolves AUTOCOG’s

context problem, and as a result decreases the number of false positives.

29

As a conclusion, using RNNs for assessing the description-to-permission fidelity is the most

suitable approach seen within the related studies. Since application descriptions are sequen-

tial data, and RNNs are good at modeling sequential data, the approach seems very promising

for the issue of description-to-permission fidelity. Having the same idea in mind, both AC-

Net and the current study, which were conducted independently and mutually unaware, uti-

lized different specifications of RNNs in order to assess description-to-permission fidelity of

mobile applications. While AC-Net uses GRU Networks, the proposed model of the current

study uses Long Short-Term Memory (LSTM) Networks, which utilizes a more complicated

gate structure in order to remember the previous data, and thereby resolve the short-term

memory problem associated with RNNs. As another contribution, rather than only using

application descriptions, the current study’s proposed model also utilizes user reviews for

assessing description-to-permission fidelity.

30

4. MODEL

This chapter presents the proposed approach which uses state-of-the-art NLP techniques and

RNNs in order to discover inconsistencies between mobile application permission requests

and application metadata. The aim is to detect indications of permission needs (expressions

that reveal the need for a required dangerous permission) within application descriptions and

user reviews. There are two different models implemented within the scope of the approach:

• A Sentence-Based Model was used to process each sentence within application de-

scriptions in order to detect permission expressions within these sentences. Each sen-

tence that was found was then labeled manually and the model trained using these

manually labeled sentences. Once the model was trained, test data was then fed into

the model on a sentence by sentence basis. Each sentence was classified as a per-

mission sentence, with those that reveal a need for a requested dangerous permission

being labeled as “1,” or as a statement sentence and labeled as “0.” Further details of

the sentence-based model are described in Section 4.1..

• A Description-Based Model was designed so as to evaluate the effect of user reviews

during the test phase. The model was trained using only application descriptions,

with user reviews excluded at the training phase, but included at the test phase. Two

different evaluation tests were performed for the description-based model. The first

evaluation used only application descriptions at both the training and the test phases in

order to define ground truth data. The second evaluation was performed in order to see

the effects of user reviews beside descriptions. For the training phase, only application

descriptions were used, but for the test phase, if the trained model did not find a per-

mission expression in the application description, then the test was repeated for that

application using user reviews of the relevant application as input. This description-

based model is described in more detail in Section 4.2..

Within the context of the current study, each model was trained separately for each stud-

ied permission. This means that a binary classification was performed for each studied

permission. The main reason for having chosen binary classification over multiclass clas-

sification was to avoid the burden of retraining the entire model each time a new permis-

sion was added to the system. Since three permissions were studied (RECORD AUDIO,

31

READ CONTACTS, and STORAGE), three separate sentence-based models and three sep-

arate description-based models were created and trained independently from each other.

The real world problem aimed at being resolved in the current study was to extract indicators

of a requested permission from application metadata (namely application descriptions and

user reviews) in order to assist mobile device users in protecting their security and privacy.

A neural network model was designed in order to perform this task. Descriptions and user

reviews are both textual data and are sequential. Recurrent neural networks (RNNs) [58]

are known to be successful on handling sequential data because unlike feed-forward neural

networks, RNNs have an internal memory. RNNs use this memory in order to process input

sequences and to remember previous inputs, thereby enabling RNNs to make decisions based

on earlier inputs to the system.

Neural networks are trained using backpropagation. In performing backpropagation, when

information flows through states, each node in a layer calculates its gradient using the effects

of gradients in the previous layer. As a result, in RNNs, the effect of the information to next

state vanishes exponentially as information flows over layers. In other words, RNNs may

have difficulties in retaining information from previous layers. This constraint is known as

the vanishing gradient problem [33], and its result is defined as short-term memory problem

in RNNs. Long Short Term Memory (LSTM) networks [59] offer a solution to tackle RNNs’

short term memory problem by employing gates so as to adjust information flow within the

network. In doing so, LSTMs only pass relevant information to proceeding sequences and

disregard other data in order to arrive at better predictions.

In the current study, LSTM networks [59] were used for the encoding of text data. In order to

process textual data through an LSTM, the application descriptions were preprocessed. The

preprocessing task involved sentence tokenization, word tokenization, punctuation removal,

stopwords elimination, non-alpha character removal, and stemming1 (Porter stemmer was

used [60]). Once the model had been trained, the same preprocessing tasks were also applied

for the test data.

Once the textual data has been preprocessed, syntactic and semantic features of each word

within a sentence are represented by low-dimensional dense representation vectors. Within

the current study, fastText [61] pretrained word embedding vectors for English were used for
1Applying stemming to input text did not have considerable effect on the results. The reason behind is,

since fastText uses character 5-grams to encode words, stems and subwords were already encoded into the
word embedding vectors.

32

word representations (Section 2.2.). These representation vectors were constructed (learned)

using the distributional characteristics of words from largescale documents, and as a result,

leading words with similar meanings were found to have similar representations.

4.1. Sentence-Based Model

An overview of the sentence-based model is presented in Figure 4.1., with the training phase

on the left side and the test phase on the right. For the training phase, after preprocessing,

each description sentence was fed into the model using fastText word embedding vectors. At

the end of the training phase, the LSTM learned to create the compositional representation of

a sentence. Also, the implemented binary classifier learned classifying sentences into either

permission sentences or statement sentences.

In the test phase, a new application description sentence was given as an input to the trained

model. The same preprocessing operations were applied and embedding vectors fetched for

each word. Then, the model classified the new sentence as a permission sentence where it

included an indicator for the studied permission.

The architecture of the sentence-based LSTM model is illustrated in Figure 4.2.. For each

word within each description sentence, fastText embedding vectors were fetched, starting

from the first word to the last word.

si = LSTM(x1:n, i) (1)

The ith sentence in currently processed application description is sentencei = {x1, · · · , xn},
and the embedding vector for the jth word within the sentence is xj . The output of the LSTM

is the compositional vector representation of the input sentence as in si in Equation 1. This

vector representation, is then fed into a multilayer perceptron (MLP) for the purposes of

classification. The prediction result, as in oi in Equation 2, is the output of the sigmoid acti-

vation function. The given result is 1 (representing a permission sentence) or 0 (representing

a statement sentence).

oi = sigmoid(MLP (si)) (2)

33

New
Description

Sentence

PREDICTION
(Binary classification value for the

description sentence)

Description
Sentence
(labeled)

P
ER

M
ISSIO

N

LSTM Based Learning
Model

Word Embeddings

Feature Vectors

LEARNED MODEL

Word Embeddings

Feature Vectors

PREDICTION MODEL
TE

ST
 P

H
A

SE

TR
A

IN
 P

H
A

SE

Figure 4.1. Overview of the sentence-based model

Since the model performs binary classification, binary cross-entropy was used as the loss

function. The loss function is presented in Equation 3. y and ŷ stands for the target output

and prediction result, respectively.

L(y, ŷ) = −(y ∗ log(ŷ) + (1− y) ∗ log(1− ŷ)) (3)

In the test phase, a new application description sentence was given as an input to the trained

model. The same preprocessing operations were applied and embedding vectors fetched for

each word. Then, the model classified the new sentence as a permission sentence where it in-

cluded an indicator for the studied permission. Prediction result of the sentence-based model

is a value between 1 (representing a permission sentence) and 0 (representing a statement

sentence).

34

Word Embedding Layer

LSTM LSTM LSTM LSTM LSTM

D
ES

C
RI

P
TI

O
N

 S
EN

TE
N

C
E

V
ecto

r Rep
resentatio

n of a
D

escription Sen
ten

ce

HIDDEN LAYER OUTPUT LAYERINPUT LAYER

PREDICTION

recordExample sentence: save unl imited recordingsaudio

Figure 4.2. Architecture of the sentence-based LSTM model

4.2. Description-Based Model

An overview of the description-based model is shown in Figure 4.3., with the training phase

presented on the left side and the test phase on the right. The objective of the description-

based model is to evaluate the effect of user reviews on assessing description-to-permissions

fidelity. For this purpose, two evaluation tests were performed. For both tests, the model was

trained using only application descriptions. The aim of the first test was to find ground truth

results using only application descriptions at the test phase. On the other hand, the purpose

of the second evaluation was to find the effects of user reviews, therefore both application

descriptions and user reviews were given, as follows, as inputs in the test. If the prediction

35

New
Application
Description

PREDICTION
(Binary classification value for the

application description or user reviews)

Application
Description

(labeled)

P
ER

M
ISSIO

N

LSTM Based Learning
Model

Word Embeddings

Feature Vectors

LEARNED MODEL

Word Embeddings

Feature Vectors

PREDICTION MODEL
TE

ST
 P

H
A

SE

TR
A

IN
 P

H
A

SE Related
User

Reviews

Figure 4.3. Overview of the description-based model

result of the description was smaller than 0.5, then the test was repeated for that application

using user reviews as input to the trained model.

In the datasets, each sentence in the application descriptions was labeled. In order to define

the label of each application description, the sentence labels were taken into consideration. If

an application description contained at least one sentence labeled as a permission sentence,

then the label of the application description was defined as “1,” else it was defined as “0”

(statement sentence).

Using the application descriptions with these labels in the training phase (Figure 4.4.), an

evaluation was performed in order to define the ground truth results. Another evaluation

was then performed so as to find the effect of the user reviews. For the training phase of

the evaluation, the model was trained using the application descriptions (Figure 4.4.). For

the test phase, the classification was performed using only application description at first.

If the prediction result for the application description was smaller than 0.5, which means no

36

Word Embedding Layer

LSTM LSTM LSTM LSTM LSTM

A
P

PL
IC

A
TI

O
N

D

ES
C

R
IP

TI
O

N

V
e

cto
r R

ep
resen

tatio
n

 o
f an

A

p
plication

 D
escrip

tion

HIDDEN LAYER OUTPUT LAYERINPUT LAYER

PREDICTION

Figure 4.4. Architecture of the description-based LSTM model

expression was found relevant to the permission under test, the user reviews of the application

were used as input to the test phase (Figure 4.5.). For this reason, user reviews are represented

with a dashed arrow in Figure 4.3.. In such cases, the prediction result of the application was

updated with the results achieved using user reviews. Here, the most helpful three user

reviews, rated as five stars, were concatenated and then used the as input text.

The architecture of the description-based LSTM model is illustrated in Figure 4.4.. In Equa-

tion 4 and Equation 5, application descriptions are used. But, in cases where reviews were

used for the test phase, the descriptions were replaced with concatenated user reviews (di
–>ri). For the rest of the section, descriptions are supposed to be thought as reviews where

user reviews are used as input. Test phase of the description-based model is illustrated as

shown in Figure 4.5..

37

Word Embedding Layer

LSTM LSTM LSTM LSTM LSTM

A
P

PL
IC

A
TI

O
N

 D
ES

C
R

IP
TI

O
N

U
S

ER
 R

EV
IE

W
S

O
F

TH
E

 A
PP

LI
C

A
TI

O
N

di

Vector Representation of
Application Description

Word Embedding Layer

LSTM LSTM LSTM LSTM LSTM

ri

Vector Representation of User Reviews

DECISION

oi = MLP(di)
if oi < 0.5
oi = MLP(ri)

MULTILAYER PERCEPTRON

Figure 4.5. Test phase of the description-based LSTM model

For each word within each description, fastText embedding vectors were fetched, starting

from the first word, to the last word of the description.

di = LSTM(x1:n, i) (4)

The ith application description is descriptioni = {x1, · · · , xn} and the embedding vector

for the jth word within the description is xj . The output of LSTM is the compositional

representation of the input application description. This vector representation, as in di in

Equation 4, is then fed into MLP for classification. Prediction result, as in oi in Equation 5,

is the output of the sigmoid activation function as 1 (application description including an

indicator of the studied permission), or 0 (application description without permission need).

oi = sigmoid(MLP (di)) (5)

38

4.3. Implementation Details

The inputs for both models are text data and by nature the length of text inputs are variable.

Under the circumstances a dynamic framework is needed to implement the neural network

and DyNet library [62] is assigned for the task. For representation of words, as explained in

Section 2.2., pretrained fastText [30] word embedding vectors are used. The vector dimen-

sion size of each word embedding is 300. Therefore the input size of LSTM network is set

to 300. The hidden layer size of LSTM network is 128. MLP also has hidden layer size 128.

Output of the model is gained from a sigmoid activation function and the prediction result is

a value between 0 and 1.

Since the problem is handled as a binary classification problem, binary cross entropy is used

as the loss function.

To update network weights in training, Adaptive Moment Estimation (Adam) optimizer [63]

is used. Adam is an optimization algorithm introduced in 2015, and it can be used instead

of the classical stochastic gradient descent procedure [64]. Some advantages of using Adam

are as follows; it is computationally efficient, it has low memory requirement, and it fits to

problems with very sparse gradients.

Before training, sentences are shuffled (in description-based model descriptions are shuffled)

in order to prevent the model from being effected by the order of sentences (or descriptions)

in input data. 10-fold cross-validation is applied for both sentence-based and description-

based models.

39

5. EXPERIMENTS AND RESULTS

In this chapter, the dataset prepared for the study and the datasets used from related stud-

ies for comparative purposes are introduced in Section 5.1.. The metrics that are used for

the experimental evaluations are defined in Section 5.2.. Finally, Section 5.3. presents the

experimental results and a discussion.

5.1. Datasets

Three different datasets were used in order to evaluate the study’s proposed models and

compare them with the related studies in the literature. Applications in all these datasets

were downloaded from the Google Play Store. The DesRe (DEScriptions and REviews of

Android applications) dataset was introduced in the current study. Please note that although

it is suggested in its name, the dataset does not contain annotated user reviews. However,

in the future, user reviews are planned to be included to the data set. In addition to DesRe,

other two other datasets from the related studies, namely WHYPER [18] and AC-Net [20]

are given in details in this thesis. All of the datasets include mobile application descriptions,

and each sentence in the application descriptions were labeled as positive or negative, based

on being either a permission sentence or not for each particular permission. In addition, user

reviews of applications in the AC-Net dataset were downloaded from the Google Play Store

in this thesis. These user reviews were used in order to evaluate the effect of user reviews on

assessing the description-to-permission fidelity of applications.

In the remainder of this subsection:

• Datasets from related studies which are used for comparative purposes against the

proposed approach are detailed in Section 5.1.1.

• Existing datasets in related works are discussed, and their shortcomings listed in Sec-

tion 5.1.2.. The section also describes how each of these shortcomings are handled

during the preparation of the DesRe dataset.

• The DesRe dataset is introduced and its preparatory phases explained in detail in Sec-

tion 5.1.3.

40

5.1.1. Existing Datasets for Assessing Description-to-Permission Fidelity in the Liter-
ature

Since the current study uses supervised machine learning techniques in order to find permis-

sion indicators among application metadata, existing datasets in this research domain were

examined and utilized, and are reviewed in this section. These datasets include description

sentences labeled as positive or negative for specific application permissions. The datasets

were used for both training and testing purposes in the current study.

The WHYPER [18] framework takes the description of an application and evaluates it ac-

cording to the semantic model formed by the study’s researchers, and tries to determine

whether or not the description includes a sentence about the application permission. The

original study used a total of 581 applications for three permission types, and 9,953 sen-

tences in total. The three permissions in the WHYPER dataset are READ CONTACTS,

READ CALENDAR, and RECORD AUDIO.

The 581 mobile applications that form the WHYPER dataset were selected from an applica-

tion repository that contained 16,000 applications. The repository held the 500 most down-

loaded free applications from within each application category in January 2012 from the

Google Play Store. Of these applications, 200 were randomly selected that included each of

the aforementioned three permission types. From these 600 applications, 581 had definitions

in the English language and were used to create the WHYPER dataset (Table 5.1.).

Table 5.1. Details of WHYPER dataset

Permission #Application #Application+ #Sentence #Sentence+
READ CONTACTS 190 107 3,379 235

READ CALENDER 191 86 2,752 283

RECORD AUDIO 200 119 3,822 245

#Application Number of applications
#Application+ #Application containing manually labeled permission sentence
#Sentence Number of sentences
#Sentence+ #Sentence manually labeled as permission sentence

41

Three people (annotators) marked each sentence in the dataset manually by inspecting sen-

tences as to whether or not they contained an expression indicating if one of the three permis-

sions existed. In cases in which at least two of the annotators agreed, the relevant sentences

were marked as positive. In cases in which there was only one annotator, the review/mark-

ing process was subsequently assessed by all three annotators. The three annotators also

marked sentences by performing a keyword-based search according to the keywords listed

in Table 5.2..

Table 5.2. Keywords used by WHYPER for the keyword-based search

Permission Keywords
READ CONTACTS contact, name, number, email, data

READ CALENDER calendar, year, day, event, month, date

RECORD AUDIO capture, audio, microphone, voice, record

AC-Net [20] was another study that used labeled application descriptions for the purpose of

research experimentation. The study used the description of an application and evaluated it in

order to determine whether or not the description included a statement about the permission.

The study involved 1,415 popular applications labeled for 11 different permission groups.

The application descriptions contained a total of 24,724 sentences. Table 5.3. lists the per-

mission groups with the corresponding number of applications for each group, the number

of sentences, and the number of positively labeled sentences. The main difference with the

WHYPER dataset is that sentences were labeled for multiple permissions in the AC-Net

dataset, rather than only one specific permission.

42

Table 5.3. Details of AC-Net dataset

Permission Group #Application #Sentence #Sentence+
STORAGE 1,304 23,101 1,338

CONTACT 951 17,353 937

LOCATION 732 12,887 724

CAMERA 406 7,372 522

MICROPHONE 350 6,371 319

SMS 337 6,484 524

CALL LOG 282 5,457 323

PHONE 280 5,445 199

CALENDAR 197 3,637 289

SETTINGS 369 7,016 560

TASKS 538 10,203 344

#Application Number of applications
#Sentence Number of sentences
#Sentence+ #Sentence manually labeled as permission sentences

Three people (annotators) marked each sentence in the dataset manually by inspecting sen-

tences according to whether or not they contained expressions indicating any of the afore-

mentioned permission groups. In total, 14 annotators took part in the labeling process. In

cases in which at least two of the annotators agreed, the relevant sentence were marked as

positive. In cases in which there was only one annotation, the review/marking process was

subsequently assessed using additional annotators.

5.1.2. Evaluation of Existing Datasets for Assessing Description-to-Permission Fidelity

During the examination of the manually labeled data from the WHYPER and AC-Net datasets,

the researcher revealed certain labeling patterns and differences between the labeling ap-

proaches of each study.

Similarities that were noted between the sentences labeled as positive for the RECORD AUDIO

permission are listed as follows:

43

• Expressions meaning any voice interaction between a user and a mobile device (includ-

ing voice commands, interactive learning, reaction to user voice, karaoke, blowing into

the microphone etc.);

• Operations based on a user’s voice (speech recognition, using application as a hearing

aid etc.);

• Sentences that mean recording every input to the device (e.g., record everything);

• Statements that include creating or saving file types (e.g., MP3, WAV using the user’s

voice);

• Screen capturing (based on capability to capture audio with the screen);

• Sentences that mean recording calls.

Additionally, on the labeling of the RECORD AUDIO permission, the following different

approaches were noted:

• Expressions that include recording video (record video, video recording etc.) were

considered as positive samples for the RECORD AUDIO permission by the AC-Net

dataset. On the other hand, the WHYPER dataset took them into account as negative

samples. In such cases, the Android Developer Guide [65] was consulted. The Camera

API Guide [66] shows that the RECORD AUDIO permission is needed in order to

implement a video recording application.

• For the RECORD AUDIO permission, sentences that mean making calls are con-

sidered as positive samples by the AC-Net dataset, but as negative samples by the

WHYPER dataset. In the Android Developer Guide [65], the development instruc-

tions for implementing a calling application [67] do not require the RECORD AUDIO

permission.

Since the performance of the proposed models are each affected by labeling, statements in-

cluding recording video, recording calls and making calls were labeled separately and differ-

ently for possible comparison with the WHYPER or AC-Net datasets within future studies.

Expressions that include recording video were labeled as 5, recording call were labeled as

6 and sentences that mean making call were labeled as 7. For evaluation tests, meaning of

44

recording video and recording a call were considered as a requirement for RECORD AUDIO

permission.

The assessment of annotations for READ CONTACTS permission is presented below:

• Sharing something via e-mail or text message was labeled as statement sentence in

AC-Net but in WHYPER those expressions were labeled as permission sentences. In

the scope of this study, a sentence about sharing something over e-mail was consid-

ered as statement sentence unless there was a specific expression mentioning reading

contact data. On the other hand a sentence for sending text messages was considered

as permission sentence by this study.

• Expressions about sharing something with friends and family were taken into consid-

eration as statement sentences in AC-Net. On the other hand different labels were

encountered for these expressions in WHYPER dataset. These sentences were consid-

ered as permission sentences in the scope of this study.

• Sentences about cloud synchronization operations were labeled as permission sen-

tences in AC-Net dataset. In WHYPER dataset, there was not any cloud synchro-

nization expression. The expressions for cloud synchronization of contacts were con-

sidered as permission sentences and labeled as 1 in the created dataset.

• Another conflict relates to tagging phrases such as “share ... via social media ac-

counts” as permission sentences for the READ CONTACTS permission. While both

the WHYPER and AC-Net datasets tagged such sentences as permission sentences,

these apps were essentially just sending simple data to other apps. As understood from

Android’s intent mechanism [68, 69], an application which provides its users with a

sharing mechanism through the medium of an external application does not require

permissions which are already required by the external application. In other words, it

is the external application that is responsible for accessing the contacts data of its user.

Therefore, these were tagged as statement sentences in the DesRe dataset constructed

under the current study. Again, for such cases, the Android Developer Guide [65] was

followed.

STORAGE permission group was not included in the WHYPER dataset. Investigating the

AC-Net dataset, it was seen that there were 1,304 applications requesting STORAGE per-

mission and there were 23,101 sentences within these applications. 1,338 sentences from

45

23,101 were labeled as permission sentences, which corresponds to 5.8% of the total number

sentences within applications that requested the STORAGE permission.

STORAGE permission group contains two individual permissions which are used in order to

access the external storage of a mobile device. These permissions are as follows;

• READ EXTERNAL STORAGE

• WRITE EXTERNAL STORAGE

Instructions residing at the Android Developer Guide [70, 71] illustrates the differences of

internal storage and external storage as follows:

• Internal storage is always available, on the other hand external storage can be removed

from the device;

• Internal storage is readable only for the application itself, but the files in external stor-

age is available to any application;

• Files in external storage are not removed if the application is uninstalled from the de-

vice. On the contrary, files saved in internal storage are removed when the application

that saved the files is uninstalled from the device.

To determine whether or not a sentence included a requirement for the STORAGE permis-

sion, instructions from Android Developer Guide and the investigation of AC-Net dataset

were taken into consideration. In addition to the base rules listed, the following approaches

were used:

• Sentences that mean using any external storage device were labeled as positive (SD-

card, flash drive etc.).

• Expressions meaning any data synchronization or data backup were considered as a

permission requirement.

• Operations based on sharing data via social media (video, photo etc.) were labeled as

negative.

46

• Sentences that mean recording video, audio, and voice were considered as permission

sentences.

• Statements that include downloading or saving data to mobile device were considered

as permission sentences unless the usage of data was described to be within the ap-

plication. An expression of saving books for offline reading is a good example of a

sentence to be labeled as negative.

Certain mislabeled sentences were also encountered in the existing datasets, with such in-

correct markings evaluated as having been applied by human error. Regardless of the labels,

similar sentences (which obviously should have been marked as positive) were marked as

positive samples in the DesRe dataset (e.g., “Make it your own deck by adding your voice

or your child’s!” or “record and playback up to 6 tracks, if not sufficient, then drag ’n’ drop

one track onto another and they will merge into one”).

There were also some expressions found that were labeled both positive and negative within

the AC-Net and WHYPER datasets. Those expressions were also considered as having

been marked as such by human error and were therefore excluded (e.g., “This is a simple

voice recorder” was marked as positive, but “RecForge is a high quality sound recorder

(far better than default sound recorder)” was marked as negative in the WHYPER dataset,

whereas similar sentences were marked as positive in the DesRe dataset of the current study.

It should be noted that sentences considered as being incorrectly marked by human error

could be readily detected through a simple keyword-based search.

5.1.3. The DesRe Dataset

For the purposes of the current study, for each studied permission, a set of applications with

corresponding descriptions were downloaded from the Google Play Store. The selection

criteria for the downloaded applications were as follows:

• Applications having been downloaded by users at least 10,000 times;

• Applications with description lengths of at least 500 characters;

• Applications that are “free to download” (no monetary fee).

47

Since the current study employed supervised machine learning techniques in order to find

inconsistencies between the requested permissions and application descriptions, the DesRe

dataset was carefully constructed to contain annotated descriptions (description sentences)

and permissions. Not only do mobile device users need to understand the functionality of

selected permissions through reading app descriptions, but also that these permissions need

to be able to gain access to critical resources (dangerous permissions [72]). Therefore, this

should be explicitly given within the app description.

In the current study, priority was given to those permissions used in previous studies [18–

20, 34] for comparative purposes. Based on these criteria, two permissions in the DesRe

dataset were selected among the permissions used by all of the aforementioned previous

studies, RECORD AUDIO and READ CONTACTS. In total, three permissions were in-

cluded in the DesRe dataset due to difficulties posed in labeling all dangerous permissions

manually. Therefore the last entry in the DesRe dataset was the STORAGE permission

group. This group contains two individual permissions, READ EXTERNAL STORAGE

and WRITE EXTERNAL STORAGE, which are used in order to access the external storage

of a mobile device. The reason for including STORAGE as a permission group rather than

one specific permission was that any application granted WRITE EXTERNAL STORAGE

permission is also implicitly granted READ EXTERNAL STORAGE permission [73]. The

STORAGE permission group is one of the most requested permissions in mobile applica-

tions [19, 20]. It can also be found among the most comprehended permissions by users [14],

and is the most mentioned permission in security-related user reviews [48]; indicating that

users are significantly concerned with access to external resources by mobile applications.

Therefore, the STORAGE permission group was specifically included in the current study.

For each permission, at least 1,000 applications from various categories were downloaded.

After filtering out invalid applications (such as those having non-English sentences in their

descriptions), the application descriptions were split into sentences by using the Natural Lan-

guage Toolkit (NLTK) [74], and were then annotated manually by two people in order to in-

dicate whether or not the requested permission was mentioned in the application description.

Table 5.4. presents the details of DesRe dataset and comparison of it with WHYPER and

AC-Net datasets.

48

Table 5.4. Comparison of DesRe dataset with WHYPER and AC-Net datasets

Dataset
READ CONTACTS RECORD AUDIO STORAGE

#App #S #S+ #App #S #S+ #App #S #S+

WHYPER 190 3,379 235 200 3,822 245 - - -

AC-Net 951 17,353 937 350 6,371 319 1,304 23,101 1338

DesRe 832 25,011 1,740 1,008 31,989 2,224 801 25,909 764

#App Number of applications
#S Number of sentences
#S+ Number of sentences manually labeled as permission sentences

5.2. Evaluation Metrics

In this section, the metrics used to evaluate the results of the current study, as well as the

metrics used to make comparisons with the related studies, are described.

As stated in Chapter 3., WHYPER [18] and AUTOCOG [19] use accuracy, precision, recall

and F-Score metrics to evaluate their performance. ACODE [34] uses accuracy and preci-

sion values. In order to calculate the values of these metrics, the confusion matrix must be

calculated (number of true positives (TP), true negatives (TN), false positives (FP) and false

negatives (FN) need to be calculated).

On the other hand, in AC-Net [20] and in this study, area under receiver operating char-

acteristic curve (ROC-AUC) and precision-recall curve (PR-AUC) are used to evaluate the

performance of the models.

Accuracy is the ratio of correctly predicted sentences (or descriptions) to the total number of

sentences (or descriptions). It is a significantly meaningful metric when the number of false

positives and false negatives are found to be close to each other.

Accuracy =
TP + TN

TP + FP + FN + TN

49

Precision is the ratio of the number of correctly predicted positive labels to the total number

of positively predicted labels.

Precision =
TP

TP + FP

Recall is the ratio of correctly predicted positive labels to the total number of actual positive

labels. This metric can be used as the sensitivity value of the system.

Recall =
TP

TP + FN

F-Score value is the weighted harmonic mean of Precision and Recall.

F − Score =
2 ∗Recall ∗ Precision

Recall + Precision

Area Under Receiver Operating Characteristic Curve (ROC-AUC) and Precision-Recall
Curve (PR-AUC)

There was a significant imbalance found within the classes of both the datasets (AC-Net

dataset and also DesRe dataset). For instance, only 1,740 of 25,011 sentences are labeled as

permission sentences for the READ CONTACTS permission in DesRe dataset. The standard

accuracy metric is not considered suitable for imbalanced datasets. The cost of errors will not

be the same for different classes in such highly imbalanced datasets. Therefore, ROC-AUC

and PR-AUC were used as evaluation metrics in the current study, and are known to be useful

for domains with imbalanced class distribution. They are also widely used in studies which

require evaluation metrics that are insensitive to imbalanced class distribution [75, 76].

To evaluate the success of the model, using scikit-learn library [77] in python, area un-

der precision-recall curve (PR-AUC) and area under receiver operating characteristic curve

(ROC-AUC) values are calculated for each experiment. The ROC curve shows the per-

formance of a binary classifier system as its threshold is varied. The curve information is

summarized into one number by calculating the area under the ROC curve (Equation 6).

50

ROC − AUC =

∑
iεpositive class ranki −

Np∗(Np+1)

2

Np ∗Nn

(6)

Here Np and Nn denote the number of positive and negative samples.

The precision-recall curve illustrates the trade-off for different threshold values between pre-

cision and recall. When input data is imbalanced, precision-recall metric is a useful metric

to determine the success of data classification. In the current study, the average precision

score metric is used to summarize precision-recall curve as the weighted mean of precisions

achieved at each threshold, by using the increase in recall from the previous threshold as the

weight (Equation 7).

PR− AUC =
∑
n

(Rn −Rn−1)Pn (7)

where Pn and Rn are the precision and recall values .

5.3. Experiments and Results

Experiments were performed separately for the sentence-based model and for the description-

based model.

5.3.1. Performance of the Sentence-Based Model

Experiments for the sentence-based model were performed first using the AC-Net dataset,

and then using the DesRe dataset. The results of the two experimentations were then com-

pared. Also, for each studied permission, the sentence-based model was trained and then

tested separately.

For each experiment, k-Fold Cross-Validation was applied to the AC-Net and DesRe datasets,

taking the value of k = 10. First, the sentences were shuffled. Then, for the 10-Fold Cross-

Validation, the dataset was divided into 10 equal groups. Nine groups are used together for

51

the training phase, and the remaining group was used for the testing phase, and the experi-

mental score was calculated. This process was then repeated nine times (10 in total). In each

repetition, the data used for the test phase was selected from data not previously used for

testing. The overall score of the model was gained by calculating the arithmetic mean of the

10 repetition scores.

AC-Net dataset includes 24,724 description sentences. By feeding 22,251 labeled descrip-

tion sentences into the model, LSTM learns to create the compositional vector representation

of a description sentence, and MLP learns to classify it as a permission sentence or a state-

ment sentence. Then, the remainder of the description sentences (2,473 sentences) were used

as test sentences and fed into the trained model one by one. With respect to the features to

be learned, LSTM creates a vector representation of each test description sentence, and then

MLP classifies them as permission sentences or statement sentences. Test results were then

calculated for each iteration of the k-Fold Cross-Validation.

The results of the sentence-based model’s experiments using the AC-Net dataset are pre-

sented in 5.5. and results of related studies are presented for comparative purposes in Ta-

ble 5.6..

Table 5.5. Performance of sentence-based model on AC-Net dataset

Permission Group
fastText Embeddings
ROC-AUC PR-AUC

CONTACTS 0.97 0.71

CALENDAR 0.98 0.72

MICROPHONE 0.94 0.39

Table 5.6. Performance of related studies on AC-Net dataset 1

Permission Group ROC-AUC PR-AUC
AC-Net Key-Based WHYPER AUTOCOG ACODE AC-Net Key-Based WHYPER AUTOCOG ACODE

CONTACTS 0.97 0.72 0.6 0.68 0.76 0.74 0.41 0.28 0.41 0.43
CALENDAR 0.99 0.98 0.65 0.89 0.95 0.84 0.71 0.28 0.5 0.71
MICROPHONE 0.96 0.8 0.59 0.79 0.79 0.49 0.44 0.24 0.4 0.51
STORAGE 0.94 0.67 0.56 0.63 - 0.66 0.4 0.33 0.35 -

1 These results are taken from [20]

When the test results were examined excluding the AC-Net, it was clear that the proposed

model was more successful than the previous studies with respect to ROC-AUC metric for all

three permissions. It was also observed that the proposed model were better than the previous

52

studies with respect to PR-AUC metric except for MICROPHONE permission. When results

of all studies presented in the table and results of the current study were examined, it is

seen that two keyword-based studies gave better results for the MICROPHONE permission.

The reason behind these results is the keywords used for MICROPHONE permission. The

keywords presented in Table 5.2. were considered as powerful discriminators for detecting

necessity of the MICROPHONE permission.

When the results were compared with AC-Net, it was seen that ROC-AUC scores were very

close, but the results of this study were slightly lower in the PR-AUC scores. In order to

investigate the reason behind this difference, the test results for READ CONTACTS permis-

sion were examined in detail. At this stage, READ CONTACTS permission was selected

because the READ CALENDAR permission was not used in the DesRe dataset and the per-

formance of AC-Netwas also lower than the keyword-based studies for the MICROPHONE

permission.

In order to evaluate results, sentences are extracted with manually-applied labels and pre-

diction results calculated by the system. After that, False Positives (sentences manually la-

beled as statement sentences but classified as permission sentences by the model) and False

Negatives (sentences manually labeled as permission sentences but classified as statement

sentences by the model) were analyzed for the READ CONTACTS permission.

On the AC-Net dataset, for the READ CONTACTS permission, there were 23,780 sen-

tences manually marked as statement sentences. The prediction result of the proposed model

was < 0.50 for 23,545 of the 23,780 sentences. When the threshold was raised to 0.75, the

number of sentences rose to 23,720. The remaining 60 sentences were then examined, and

the false positive results with high prediction results are detailed as follows, with sample

53

sentences presented in Table 5.7. and in Table 5.8.:

Table 5.7. Example results for READ CONTACTS permission with sentence-based model

S# Sentence PR ML
1. Contact your group to the new boss 0.76 0

2. Go to the account area and use the Booking Number and PIN from

your confirmation

0.84 0

3. Please contact us at team loves to hear from its users 0.0003 0

4. If you have questions about your premium account please email

us at and we’ll respond as quickly as we can

0.001 0

5. Find apps that can access to your personal information (GPS lo-

cation read contact data

0.81 0

6. SMS feature is required to share special photo moments in the

kitchen with your contact list

0.91 0

7. When the synchronization is turned off your contact data is not

read or modified

0.87 0

8. Most of the permissions you see are to deliver content to your

device like contact details or dialing a phone call if you choose to

0.85 0

9. Block numbers from those you dont want to be able to contact

you

0.91 0

10. Blacklist Plus is an easy to use call blocker 0.85 0

11. Powerful call blocker and blacklist (text SMS blacklist too) 0.78 1

12. Blocking of anonymous (private) numbers Blocking of unknown

numbers

0.8 1

13. Transform your everyday photos and videos into works of art and

share them with your family and friends via social media

0.08 1

14. The app also allows you to share the scripture with friends via

email text message and popular social media sites

0.36 0

15 Register with your Facebook account or your email and join the

Poker madness today

0.63 1

S# Sentence number.
CS Prediction result of the proposed model
ML Manual label applied by annotators

54

Table 5.8. Example results for READ CONTACTS permission with sentence-based model (con-
tinued)

S# Sentence PR ML
16 After installing and registering verify your cell phone number (for

security reasons) and your Facebook account

0.73 0

17 On more than million devices around the world people are read-

ing listening to watching and sharing the Bible using the #1 rated

Bible Appcompletely free

0.0003 1

18 Clash of Spartan is absolutely free but some games may need to

be paid for

0.0007 1

19 This application will deeply analyze your phonebook and bring it

close to perfection

0.004 1

20 This component provides core functionality like authentication to

your Google services synchronized contacts access to all the latest

user privacy settings and higher quality lower-powered location

based services

0.08 1

S# Sentence number.
CS Prediction result of the proposed model
ML Manual label applied by annotators

• There were sentences including the word “contact” or “account” that were defined as

permission sentences with a high prediction result (Sentences 1 to 4). Even though it

seems words like “contact” and “account” have confounding effects on the results at

first, the findings show that they do not have such an effect. The proposed method suc-

cessfully classifies sentences with prediction results < 0.01 for several sentences, such

as those containing expressions of “contact us,” “contact of this app,” “contact sup-

port,” “account management,” “official account,” and “premium account.” The reason

for this is that the proposed method is able to extract meaning from these expressions

based on context since there were several examples in AC-Net dataset to learn from,

but insufficient to learn the use of the word “contact” and “account” in the contexts of

those which were incorrectly classified.

55

• Sentences such as Sentence 5 were clearly missed by the proposed method, but which

was not an easy sentence to define. However, as far as the researcher is aware, it would

not be handled any better by any other previously introduced system.

• When Sentences 6, 7, and 8 were examined (there are also additional examples), even

though they were marked manually as statement sentences, the researcher believes that

these sentences explicitly specify a requirement for the READ CONTACTS permis-

sion, and should thereby be marked as permission sentences. Similar sentences were

also found which had already been labeled as permission sentences in the same dataset.

Under such circumstances, these sentences do not appear to be false positives, but fur-

ther instances of incorrect human annotation. The researcher, therefore, aimed to avoid

similar errors in annotation when preparing the DesRe dataset.

• In the evaluation of both false positive and false negative results, the researcher encoun-

tered description sentences for call-blocking applications that had been annotated as

statement sentences (Sentences 9 and 10). When the AC-Net database was searched,

sentences with similar meanings and words were found, but with different labels (e.g.,

Sentence 11). There were also sentences describing an application to block anonymous

numbers, but these had been labeled as permission sentences (e.g., Sentence 12). It is

therefore suggested that a certain number of false positives and false negatives may

stem from this same scenario.

• Similar situations were encountered in sentences related to sharing on social media.

There were sentences labeled differently, even though they stated similar actions and

needs. The results of the proposed method seemed to be consistent, yet because of the

aforementioned scenario, for the given two example sentences (Sentences 13 and 14),

under the proposed method one sentence was under the true negative category and the

other under the false negative category.

The researcher believes that the last two circumstances had confounding effects on the

training of the proposed system.

The number of sentences annotated as permission sentence in the AC-Net dataset was 943

for the READ CONTACTS permission. Using the proposed method, the prediction result

was found to be > 0.50 for 560 of these 943 sentences. When the sentences were investi-

gated along with the results, the researcher found that the proposed method predicted result as

56

< 0.25 for 239 sentences. These 239 sentences can be spilt within four different categories.

Two are sentences based on call-blocking applications or for sharing on social media, the ef-

fect of which was been previously discussed. Another category found was for sentences con-

nected to account-related applications. In the AC-Net dataset, sentences were annotated for

the CONTACTS permission group, rather than only for the READ CONTACTS permission.

The CONTACTS permission group contains the READ CONTACTS, WRITE CONTACTS,

and also the GET ACCOUNTS permissions. Several of these sentences were found to be la-

beled as permission sentences (e.g., Sentence 15), and several as statement sentences (e.g.,

like Sentence 16). In the current study, the researcher created a dataset that included the

READ CONTACTS permission, and thereby attempted to avoid the confusion between ap-

plication account data and user contact data during the annotation process. The final category

found was also connected to human errors of annotation and inaccurate markings, which are

of course possible with any such human-effort-based exercise (e.g., Sentences 17 and 18).

However, two example sentences which indicate requiring permission (Sentences 19 and 20)

failed to be detected in the experimentation of the proposed method.

The results of the presented analysis on READ CONTACTS permission showed that the con-

sistency of the dataset has a great effect on the success of the proposed supervised methods.

Taking these into consideration, DesRe dataset of annotated descriptions (to be more precise,

description sentences) is created with careful attention. To create the dataset, the develop-

ment instructions from the Android Developer Guide [65] were followed for annotation.

Finally, the proposed method was trained and evaluated on the DesRe dataset that was created

and introduced in the current study. The results are presented in Table 5.9..

Table 5.9. Performance of sentence-based model on DesRe dataset

Permission Group
Fasttext Embeddings
ROC-AUC PR-AUC

READ CONTACTS 0.98 0.81

RECORD AUDIO 0.96 0.80

STORAGE 0.97 0.72

In evaluation of binary classifiers that are used for classifying imbalanced datasets, PR curves

are more descriptive on reliability of classification performance [78]. The PR curves for

57

3 permissions, and for each fold within 10-fold Cross Validation were illustrated in Ap-

pendix D.

The test results showed a considerable increase in PR-AUC scores. At the same time, it

was seen that the ROC-AUC scores increased and got closer to 1. When these results were

considered, it was seen that the proposed supervised learning-based model was successful

in learning the expressions about permissions and can be used successfully in evaluating

the fidelity of an application. The increase in results also illustrated us the importance of

consistency in preparing datasets for supervised machine learning models. Sample sentences

from the sentence-based model test results are presented in the Appendix E together with the

prediction scores for a detailed examination.

5.3.2. Performance of the Description-Based Model

In order to evaluate the effects of mobile device users’ reviews, a description-based model

was trained and tested on the AC-Net dataset. The description-based LSTM model was

trained using application descriptions as input to the LSTM, rather than feeding in the sen-

tences within the description. Therefore, the model was trained using each description as

a single document. In order to define the label for each description, sentence labels were

investigated. If an application description contained at least one sentence labeled as a per-

mission sentence, then the label of the application description was defined as “1,” else it was

defined as “0.” Using the application descriptions with these labels for the training phase, an

evaluation test was performed in order to define ground truth results.

Another evaluation test was performed in order to discover the effects of user reviews on

assessing description-to-permission fidelity. In this test, each description was tested as to

whether or not the permission under test was stated in the description. If the prediction score

for the application description was found to be <0.5, which means no expression was found

relevant to the permission under test, the user review data of the application was evaluated.

In such a case, the prediction score for the application was updated in accordance with the

result from the user reviews assessment. The most helpful three user reviews, which were

each rated with five stars, were concatenated and used as input text. The results are presented

in Table 5.10..

58

Table 5.10. Performance of description-based model on AC-Net dataset

Permission Group
Without Reviews With Reviews

ROC-AUC PR-AUC ROC-AUC PR-AUC
READ CONTACTS 0.57 0.41 0.69 0.53

RECORD AUDIO 0.48 0.15 0.61 0.21

STORAGE 0.65 0.56 0.51 0.47

The results show the positive effects of user reviews on the detection of permission expres-

sions, especially for the READ CONTACTS and RECORD AUDIO permissions. However,

the performance of the description-based model was found to be considerably lower than for

the sentence-based model. This was deemed to be due mostly to the number of training sam-

ples, with the number of descriptions considerably less than the total number of sentences

within the dataset. This effect was also observed for the STORAGE permission.

Even though using user reviews increased the detection capability of the description-based

model for READ CONTACTS and RECORD AUDIO permissions, user reviews did not

seem to be helpful for STORAGE permission group. The STORAGE permission group was

selected as the third permission in this study because it was one of the most requested per-

missions in applications [19, 20] and also was found to be among the most comprehended

permissions by users [14]. Moreover, it was the most mentioned permission in security re-

lated user reviews [48]. One reason for the unexpected experiment results for STORAGE

permission group can be defined as the small number of permission expression samples

within the dataset. The lack of positive samples adversely affects the learning rate of the

description-based model. Another important reason is related to the way the user reviews are

used. In the proposed model, most helpful 5-starred three user reviews are chosen to be used

as input for description-based model. If these reviews are not security or privacy related re-

views, than they are not useful for assessing the description-to-permission fidelity. One way

to solve this problem is to filter each downloaded user review using the trained model. Then

in the case that application description prediction result is < 0.5, only the privacy or security

related user reviews will be used, if there is any. Another improvement can be made by using

descriptions and user reviews together at the test phase by giving weights to descriptions and

user reviews, in cases where the prediction result of description is < 0.5.

59

6. CONCLUSION

6.1. Conclusion

In this thesis, a novel approach for the description-to-permission fidelity problem was pro-

posed in order to identify inconsistencies between requested mobile application permissions

and application metadata by using NLP techniques and RNNs. To this end, a new annotated

description dataset called DesRe was created. Therefore, the contribution of this study to the

literature is twofold.

Since the proposed model was a supervised machine learning model, the existing datasets and

their preparation approaches were investigated. Taking these approaches and Android appli-

cation implementation instructions into consideration, a new annotated description dataset

with 2641 applications for three types of permissions, namely RECORD AUDIO (1008

apps), READ CONTACTS (832 apps) and STORAGE (801 apps), was introduced. The

newly created dataset called DesRe was shared with the community 1.

The prominent studies assessing the description-to-permission fidelity were analyzed in de-

tail, an extensive evaluation of the proposed model with other state-of-the-art models was

given and the results were discussed in the thesis.

In the scope of the study, two different models were introduced; sentence-based model and

description-based model. The sentence-based model is able to detect if a given sentence

is a permission sentence or a statement sentence. On the other hand, the description-based

model was introduced in order to see the effects of user reviews on assessing the description-

to-permission fidelity of an application.

The proposed sentence-based approach outperforms the previous studies in the literature,

namely WHYPER [18], AUTOCOG [19] and ACODE [34]. On the hand hand, the proposed

method shows comparable with the most recent study in the literature, AC-Net [20]. Since

both study is based on RNN, these results are expected. However, the proposed approach

shows better results (higher ROC-AUC and PR-AUC) on the DesRe dataset than the AC-

Net dataset. Because it is believed that the DesRe dataset is more correctly annotated based

on the Android Developer Guide than the other datasets in the literature as shown in the

thesis.
1https://wise.cs.hacettepe.edu.tr/projects/security-risks/dataset/

60

The proposed method is similar to the recent neural model called AC-Net [20], since both

utilize RNNs. However, the AC-Net model is based on GRUs, whereas the current study

uses LSTMs. Another difference between the AC-Net model and the current study is the

inclusion of mobile device users’ reviews. Whilst it is possible that some descriptions do

not adequately mention the required permissions, it has been shown in this study that it is

possible to interpret application descriptions by way of examining user reviews. The results

of the current study’s experimentations showed that using user reviews could improve the

classification capability of models designed to assess the description-to-permission fidelity.

To the best of our knowledge, it is the first study that explores the effects of users reviews on

this problem. In order to explore the effects of users reviews, user reviews of applications in

the AC-Net dataset were downloaded and used in experiments.

The models introduced within this thesis can be used in real life as a supporting tool for

permission mechanism. The approach and tool proposed in this thesis can be used in order

to warn the users if the application description does not explain the necessity of a requested

permission, or to encourage application developers to better express their application func-

tionality for requested permissions and also to prevent the upload of an application which

has insufficient description for a requested permission.

6.2. Limitations of the Study

In the scope of the current study, experimentation showed that the results for the description-

based model were considerably lower than for the sentence-based model. The main reason

for this outcome is deemed to be the number of samples in the dataset that was used. Since the

number of description sentences far exceeded the application descriptions, the description-

based model could not learn as much in training as the sentence-based model.

Extending the dataset would likely have a positive effect on the description-based model

results and even the sentence-based results. Another limitation of the proposed approach re-

lates to the way that the user reviews were used. User reviews were added to the description-

based model tests, but only where the classification score of the application description is

lower than 0.5. The most helpful three user reviews that were rated with five stars were

concatenated and then used as input text. If these user reviews were not privacy- or security-

related reviews and more importantly if they do not include any explanation of the usage of

61

permission under the test, then using these reviews could have been adversely affected the

results. It was not considered efficient to manually label users’ reviews because there were

too many, and manually annotating them would require an excessive time. However, user

reviews could be annotated automatically using the trained model in the future. Then those

annotations could be verified manually in a more efficient way than annotating all reviews

manually.

6.3. Future Work

Since the description-based model suffers from inadequate sample numbers from which to

learn, extending the dataset to train models could improve the experiment results. In order to

improve the model, in future studies, user review data could be annotated using the trained

sentence-based model. If a review includes a permission sentence, it could be annotated as a

permission review as well. Hence, when the prediction score of an application description is

less than a predefined threshold, a set of such user reviews of the application under test that

is annotated as permission reviews, could be used for classification.

In the scope of the current study, in order to evaluate the effects of user reviews on detecting

indicators of permission needs and to compare these results with AC-Net [20], user reviews

of applications in the AC-Net [20] dataset were downloaded. In the future, the DesRe

dataset is planned to be extended with annotated user reviews regarding permission usage in

applications. Hence, the effects of useful user reviews (permission reviews) could be better

evaluated.

62

A APPENDIX : GLOBAL MARKET SHARE HELD by LEADING
MOBILE OSs

In this appendix, Mobile Operating System Market Shares held by the leading mobile OSs

from 2009 to 2019 [7] are presented (Table 1.1. and Table 1.2.). A visual representation of

this data is in Figure 1.1..

Table 1.1. Mobile operating system market share from 2009 to 2013

Quarter Android iOS Series 40 Symbian BlackBerry Samsung Others
2009-1 1,69 37,45 0 36,94 4,37 0 19,55

2009-2 1,27 38,11 0 38,23 7,13 0 15,26

2009-3 2,27 33,01 0 31,8 8,79 1,43 22,7

2009-4 3,36 31,41 0 36,37 9,54 1,84 17,47

2010-1 5,43 31,92 0 33,91 11,71 1,69 15,34

2010-2 4,44 28,26 0 33,28 14,43 2,78 16,81

2010-3 9,01 24,81 0 32,1 17,13 2,91 14,04

2010-4 12 22,66 0 31,43 18,49 3,48 11,93

2011-1 15,22 24,64 0 30,51 14,52 4,53 10,57

2011-2 17,27 21,72 0 32,23 12,83 5,26 10,69

2011-3 20,13 20,17 0 32,14 11,71 5,81 10,04

2011-4 21,94 23,44 0 31,51 8,53 5,43 9,15

2012-1 23,83 24,47 0 31,22 6,7 5,68 8,1

2012-2 24,23 23,79 9,54 21,89 5,67 6,73 8,14

2012-3 28,01 24,5 14,96 12,75 4,71 6,66 8,4

2012-4 31,75 23,56 14,97 11,1 3,9 6,6 8,12

2013-1 37 26,71 12,69 8,35 3,33 4,83 7,09

2013-2 38,17 25,79 12,9 7,71 3,4 4,62 7,41

2013-3 39,26 23,61 14,24 6,34 3,72 4,68 8,13

2013-4 41,29 21,45 13,73 5,61 3,75 4,76 9,41

63

Table 1.2. Mobile operating system market share from 2014 to 2019

Quarter Android iOS Series 40 Symbian BlackBerry Samsung Others
2014-1 46,84 23,38 10,91 4,01 2,7 3,89 8,27

2014-2 51,79 23,6 8,69 3,06 1,96 3,1 7,8

2014-3 54,72 24,4 7,17 2,39 1,61 2,43 7,28

2014-4 58,77 24,23 5,72 1,8 1,3 1,77 6,41

2015-1 60,85 22,84 5,15 1,54 1,23 1,44 6,93

2015-2 63,73 20,4 4,43 1,31 1,21 1,12 7,79

2015-3 65,49 19,18 3,39 1,06 1,27 0,91 8,7

2015-4 66,29 18,7 2,95 0,87 1,06 0,84 9,29

2016-1 66,91 19,29 2,47 0,72 0,96 0,74 8,91

2016-2 68,51 19,21 1,99 0,57 0,91 0,68 8,12

2016-3 69,02 19,77 1,59 0,46 0,66 0,64 7,86

2016-4 71,61 18,95 1,06 0,32 0,51 0,52 7,03

2017-1 71,71 19,56 0,85 0,26 0,41 0,45 6,74

2017-2 72,46 19,52 0,67 0,21 0,3 0,35 6,47

2017-3 73,21 19,48 0,53 0,18 0,26 0,33 6

2017-4 73,24 20,08 0,51 0,17 0,2 0,34 5,45

2018-1 74,46 20,18 0,41 0,15 0,15 0,3 4,34

2018-2 76,38 19,04 0,32 0,12 0,11 0,26 3,77

2018-3 76,92 20,17 0,22 0,08 0,08 0,26 2,26

2018-4 74,15 22,85 0,2 0,07 0,06 0,3 2,37

2019-1 74,66 22,83 0,17 0,05 0,05 0,28 1,96

2019-2 75,24 22,75 0,12 0,04 0,05 0,23 1,56

Operating Systems labeled as others : Windows, Nokia, Sony Ericsson, Linux, bada, LG,

Tizen, Playstation, Firefox OS, MeeGo, Nintendo 3DS, Nintendo, Brew, webOS and rest of

them.

64

B APPENDIX : DANGEROUS PERMISSIONS and PERMISSION
GROUPS

Table 2.1. Dangerous permissions and permission groups [1]

Permission Group Permissions

CALENDAR
READ CALENDAR,

WRITE CALENDAR

CALL LOG

READ CALL LOG,

WRITE CALL LOG,

PROCESS OUTGOING CALLS

CAMERA CAMERA

CONTACTS

READ CONTACTS, WRITE CONTACTS,

GET ACCOUNTS

LOCATION

ACCESS FINE LOCATION,

ACCESS COARSE LOCATION,

ACCESS BACKGROUND LOCATION,

ACCESS MEDIA LOCATION

MICROPHONE RECORD AUDIO

PHONE

READ PHONE STATE,

READ PHONE NUMBERS,

CALL PHONE,

ANSWER PHONE CALLS,

ACCEPT HANDOVER,

ADD VOICEMAIL,

USE SIP

SENSORS
BODY SENSORS,

ACTIVITY RECOGNITION

SMS

SEND SMS, RECEIVE SMS,

READ SMS,

RECEIVE WAP PUSH,

RECEIVE MMS

STORAGE
READ EXTERNAL STORAGE,

WRITE EXTERNAL STORAGE

65

C APPENDIX : ANDROID VERSIONS and API LEVELS

Table 3.1. Android versions and API levels

Name Version API Level Released Build Version Code
Android 10 10.0 29 Aug 2019 .Q

Pie 9.0 28 Aug 2018 .P

Oreo 8.1 27 Dec 2017 .OMr1

Oreo 8.0 26 Aug 2017 .O

Nougat 7.1 25 Dec 2016 .NMr1

Nougat 7.0 24 Aug 2016 .N

Marshmallow 6.0 23 Aug 2015 .M

Lollipop 5.1 22 Mar 2015 .LollipopMr1

Lollipop 5.0 21 Nov 2014 .Lollipop

Kitkat Watch 4.4W 20 Jun 2014 .KitKatWatch

Kitkat 4.4 19 Oct 2013 .KitKat

Jelly Bean 4.3 18 Jul 2013 .JellyBeanMr2

Jelly Bean 4.2-4.2.2 17 Nov 2012 .JellyBeanMr1

Jelly Bean 4.1-4.1.1 16 Jun 2012 .JellyBean

Ice Cream Sandwich 4.0.3-4.0.4 15 Dec 2011 .IceCreamSandwichMr1

Ice Cream Sandwich 4.0-4.0.2 14 Oct 2011 .IceCreamSandwich

Honeycomb 3.2 13 Jun 2011 .HoneyCombMr2

Honeycomb 3.1.x 12 May 2011 .HoneyCombMr1

Honeycomb 3.0.x 11 Feb 2011 .HoneyComb

Gingerbread 2.3.3-2.3.4 10 Feb 2011 .GingerBreadMr1

Gingerbread 2.3-2.3.2 9 Nov 2010 .GingerBread

Froyo 2.2.x 8 Jun 2010 .Froyo

Eclair 2.1.x 7 Jan 2010 .EclairMr1

Eclair 2.0.1 6 Dec 2009 .Eclair01

Eclair 2.0 5 Nov 2009 .Eclair

Donut 1.6 4 Sep 2009 .Donut

Cupcake 1.5 3 May 2009 .Cupcake

Base 1.1 2 Feb 2009 .Base11

Base 1.0 1 Oct 2008 .Base

66

D APPENDIX : PR CURVES of the SENTENCE-BASED MODEL
EXPERIMENTS

READ_CONTACTS fold 1 READ_CONTACTS fold 2 READ_CONTACTS fold 3

READ_CONTACTS fold 4 READ_CONTACTS fold 5 READ_CONTACTS fold 6

READ_CONTACTS fold 7 READ_CONTACTS fold 8 READ_CONTACTS fold 9

 READ_CONTACTS fold 10

Figure 4.1. PR curves of experiments for READ CONTACTS permission (DesRe)

67

RECORD_AUDIO fold 1 RECORD_AUDIO fold 2 RECORD_AUDIO fold 3

RECORD_AUDIO fold 4 RECORD_AUDIO fold 5 RECORD_AUDIO fold 6

RECORD_AUDIO fold 7 RECORD_AUDIO fold 8 RECORD_AUDIO fold 9

 RECORD_AUDIO fold 10

Figure 4.2. PR curves of experiments for RECORD AUDIO permission (DesRe)

68

STORAGE fold 1 STORAGE fold 2 STORAGE fold 3

STORAGE fold 4 STORAGE fold 5 STORAGE fold 6

STORAGE fold 7 STORAGE fold 8 STORAGE fold 9

 STORAGE fold 10

Figure 4.3. PR curves of experiments for STORAGE permission (DesRe)

69

E APPENDIX : EXAMPLE RESULTS of the SENTENCE-BASED
MODEL

Table 5.1. Top scored true positive and lowest scored true negative results for RECORD AUDIO
permission with sentence-based model

S# Sentence PR ML
1. Audio Recorder - Voice Recorder app has beautiful and friendly

interface as a tape recorder.

0.98 1

2. The Audio Recorder - Voice Recorder app is easy to use as a tape

recorder.

0.98 1

3. Other names which you can call it: voice recorder, audio

recorder, sound recorder.

0.98 1

4. Record Audio: The app supports recording your own samples. 0.98 1

5. Screen recorder - Recorder and Video Editor is a free, stable and

easy-to-use screen recorder application, the highest quality video

for Android devices, allowing you to record video on the phone

screen while playing games smoothly and clearly.

0.98 1

6. Play with him and explore all the fun-filled corners of his house. 0.0000002 0

7. 2nd, multiple number: burner number, disposable number,

anonymous free call, anonymous texting

0.0000002 0

8. Here, you can explore temples in the desert with a chance of

finding E-Cores to unlock new skills and weapons.

0.0000003 0

9. Subscribe to your favorite celebrities, brands, websites, artists,

or sports teams to follow their News Feeds from the convenience

of your Facebook Lite app!

0.0000003 0

10. We provide you with the best typing experience and it is for

FREE.

0.0000003 0

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

70

Table 5.2. Top scored false positive results for RECORD AUDIO permission with sentence-based
model

S# Sentence PR ML
1. Pro Guitar Tuner is a chromatic tuner that works like an ordinary

guitar tuner but right on your Android device.

0.97 0

2. Screen Recorder is a free screen recorder no root app to record and

capture your mobile screen in video formats with or without front

camera.

0.96 0

3. can not record phone calls. 0.95 0

4. Record –Automatically record test results with a digital logbook

that eliminates manual entry.

0.95 0

5. Record the shooting location information 0.95 0

6. In Tune by Ear mode - Chromatic Guitar Tuner will play out each

note for you so you can tune your instrument.

0.94 0

7. Pause/resume screen recording 0.93 0

8. [Voice Talkback] Voice Talkback anywhere, as if you are at home. 0.93 0

9. 2 recordings can be analyzed in comparison 0.93 0

10. Chromatic tuner 0.93 0

11. It’s a stable screen video recorder for you to record the tutorials of

any app

0.93 0

12. VideoShow Recorder allows you to record game while playing,

capture screen with one touch and edit video with filters, effects,

music.

0.92 0

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

71

Table 5.3. Lowest scored false negative results for RECORD AUDIO permission with sentence-
based model

S# Sentence PR ML
1. Add polish to your vocals with studio effects. 0.00004 1

2. A: Spectroid uses dBFS (Full Scale) where 0 dB is the maximum

power that the microphone can measure, so the decibel values are

negative because the measured power is less than the maximum

power.

0.00006 1

3. USE YOUR OWN SOUND SAMPLES === 0.00006 1

4. the ability to determine the deviation from the base frequency in

cents.

0.00007 1

5. Check your headset and microphone to make sure they are working

properly.

0.00011 1

6. Flipgrid is the leading video discussion platform used by millions

of PreK to PhD students, educators, and families around the world.

0.00012 1

7. Check in on your pets while at the office, keep tabs on the nanny

while on vacation, or find out who’s been stealing those Amazon

packages from your front door – with Foscam App, you can.

0.00013 1

8. Adopt panda Kiki as your very own virtual pet, talk to him, pet and

poke him, feed him, dress him up, garden and even mix the magic

color with him!

0.00013 1

9. FreeConferenceCall.com is an easy-to-use collaboration tool that

provides the freedom and flexibility to hold online meetings with

HD audio, video conferencing and screen sharing.

0.00013 1

10. Sound Meter is in the 4th set of the Smart Tools collection. 0.00014 1

11. USB Microphone support (More info: https://sbaud.io/wavstudio-

usb-microphone-support/)

0.00016 1

12. The recognition speed depends on the speed of internet. 0.00018 1

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

72

Table 5.4. Top scored true positive and lowest scored true negative results for READ CONTACTS
permission with sentence-based model

S# Sentence PR ML
1. In some android devices, contacts deleted from SIM card reap-

pears after phone restart, we are working on to resolve this issue.

0.99 1

2. Contact Sync - Save your friends ’ contacts to your phone. 0.99 1

3. Duplicate Email (Same email id in all contacts) : Here app

merges contacts and make a single contact.

0.99 1

4. Access to contacts (phone book): App uses contacts/addresses in

the phone book for the location search service (e.g.

0.99 1

5. Duplicate Contacts Manager- Number Based : (Free Feature)

Same Contact Number stored in different Names ?

0.99 1

6. We match you with 2 million drivers that we’ve screened and

trained so that you can relax in knowing that your goods are in

safe hands.

0.0000076 0

7. Write to us- management@goibibo.com 0.0000077 0

8. If you have any feedback, questions, concerns, leave us a review

on Google Play Store or email us at: care@hike.in

0.0000079 0

9. If you have any suggestions to us or there are any ringtones you

want us to provide for you, you can mail to us.

0.0000078 0

10. Any unused portion of a free trial period, if offered, will be for-

feited when the user purchases a subscription to that publication,

where applicable

0.0000083 0

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

73

Table 5.5. Top scored false positive results for READ CONTACTS permission with sentence-based
model

S# Sentence PR ML
1. Securely wipe all contacts or a single contact, clipboard, etc. 0.99 0

2. Search through local and server contacts (Gmail, MSN Hotmail,

Outlook and Live) with search suggestions as you type

0.98 0

3. Manage contact ringtone 0.98 0

4. For any enquiries, please contact: 24/7 call-center (1240) and in-

app live chat, or True iService.

0.97 0

5. VoIP to native dialer integration (optional) and integration with the

native contact list

0.97 0

6. You get access to the address, contact number, pictures and menu

of the restaurant, all at one single place.

0.97 0

7. Known loved by over 10 million users worldwide, Contacts+ is

brought to you by the Contacts Plus Team - awarded ‘top developer’

on Google Play!

0.97 0

8. have a chat with Contact centre agent 0.97 0

9. Get together with 1 or 24 of your friends and family on a HD video

call.

0.96 0

10. And, of course, because they are away from their parents in many

of these cases, they need a mobile app like family locator to stay

safe and in constant contact with their parents.

0.96 0

11. Visit ecu.org or contact a member service representative at

800.999.2328 to gain instant access.

0.95 0

12. Note: when you send any message (even to your Saved messages)

your status will be ”online” for a short time (ghost always works

this way), so it is recommended to set Last activity in privacy set-

tings to ”Nobody” or ”My contacts”.

0.95 0

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

74

Table 5.6. Lowest scored false negative results for READ CONTACTS permission with sentence-
based model

S# Sentence PR ML
1. Personal spam filter will protect you from annoying mailings. 0.00021 1

2. Supports 6 SIP accounts, up to 6-way audio conference, and 24

virtual BLF keys

0.00025 1

3. android.permission.READ CONTACTS 0.00046 1

4. This application supports integration of up to 6 SIP accounts, 6-

way voice conferencing, and allows users to monitor their IP PBX

(such as Grandstream’s UCM6100 series IP PBX and UCM6510

IP PBX) while utilizing speed dial with up to 24 virtual BLF keys.

0.00055 1

5. First, users have to create account for which they would like to

make credit or debit entries.Accounts can be created using con-

tacts.Users can also create and define category for each account.

0.00069 1

6. Easily invite players to upcoming games and practices, communi-

cate with your players and coaches, follow your stats : whatever

your sport and your practice level.

0.00114 1

7. Lets track your loved ones and automobiles like cars, bike and van

with this amazing letstrack app.

0.00134 1

8. Instantly check the location of your children/kids, giving you the

peace of mind that they are safe and well free of charge!

0.00138 1

9. Schedule appointments, lunches, gatherings (w/ reminders) 0.00148 1

10. You can also change the way your mail list appears—simply hit the

‘Compact Mail List’ tab to get a simplified view.

0.00171 1

11. Control who sees your posts with easy-to-use privacy options 0.00215 1

12. Automatic reminders are sent to your customers on their pending

payments to help you close unpaid invoices / bills and receipts and

ensure payments are made as quickly as possible without you hav-

ing to spend much time on them.

0.00302 1

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

75

Table 5.7. Top scored true positive and lowest scored true negative results for STORAGE permission
group with sentence-based model

S# Sentence PR ML
1. - Connect with Facebook account and sync the saved progress

across multiple devices

0,99 1

2. • SD card storage 0,99 1

3. •READ EXTERNAL STORAGE: Editing photos from SD card 0,99 1

4. That means you can choose to store your recording files on SD

card.

0,99 1

5. - Send and receive faxes, by accessing photos, email attachments,

and cloud storage such as Dropbox and Box.

0,99 1

6. - You can color with 9 unique customizable painting tools. 0,000029 0

7. Please contact us at voamobileapps@gmail.com. 0,000031 0

8. “Beautiful and easy to use.” 0,000033 0

9. weight tracker for controling your weight. 0.000034 0

10. • Kids alphabet games - Preschool English learning app(Basics)

game, for kids, children of age group 2-4 years

0.000049 0

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

76

Table 5.8. Top scored false positive results for STORAGE permission group with sentence-based
model

S# Sentence PR ML
1. Export/Import contacts to/from a VCF file. 0,96 0

2. - Each record file can be renamed, shared, set as ringtone, deleted. 0,96 0

3. - Save the recording file. 0,96 0

4. VR 360 Photo Gallery : Store and access your 360 photos 0,95 0

5. Furthermore, when logged in, user-generated filters will be backed

up to the Cloud so they will never be lost.

0,94 0

6. With voice recorder - audio recorder, it is really helpful to help you

to record lectures, interviews, conference agendas, evidences, etc

or used to record, practice and edit for the best recording

0,94 0

7. Save audio recordings to internal memory and share easily if re-

quired

0,94 0

8. You don’t need to share your contacts with Yahoo or other websites

in order to have a backup.

0,93 0

9. Screen share photos, web and Google Drive, Dropbox or Box files 0,93 0

10. Audio recorder has great edit tools for cutting and joining recording

files.

0,93 0

11. Super Call Recorder can automatically record your phone calls in

real-time.

0,93 0

12. • Customizable recordings folder 0,92 0

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

77

Table 5.9. Lowest scored false negative results for STORAGE permission group with sentence-based
model

S# Sentence PR ML
1. Have fun taking selfies with your friends! 0,00054 1

2. You can now upload your own songs to play 0,00072 1

3. Car Dashdroid has built-in music features, allowing you to play

your music with a special widget for controls and track details, all

without exiting the app (an updated music player will be available

soon).

0,00079 1

4. If you like the program and want to get rid of the ads, get wireless

synchronisation and in general do a good thing, please buy the full

version.

0,00095 1

5. Whether you workout, yoga or meditation exercises, or even learn-

ing: Set up several stopwatches on your smartphone, store them

and use them again and again.

0,00104 1

6. Share real data to drive real change: Join a growing network of

thousands of Contributors around the world who are completing

tasks every day to help make policies, products or services better

for everyone.

0,00108 1

7. Powerful: Enjoy group chats up to 100,000 members, share large

videos and documents of all type, send hundreds of free emotional

stickers!

0,00119 1

8. Log in to Navitel.Friends/Cloud service using your social network

profile (Facebook, Twitter, VKontakte)

0,0016 1

9. Even if you switch devices, you’ll never lose your place. 0,00189 1

10. - Play on your device or send to your home entertainment system

via Chromecast or with Android TV.

0,00195 1

11. * Pick up where you left off on Android, iOS, or on your web

browser

0,00221 1

12. Easy photo-sharing 0,00239 1

S# Sentence number
PR Prediction result of the proposed model
ML Manual label applied by annotators

78

REFERENCES

[1] Dangerous permissions. https://developer.android.com/reference/

android/Manifest.permission.html, (Access date: September, 2019).

[2] Simon Kemp. Digital 2019: Global internet use accelerates. https://

wearesocial.com/blog/2019/01/digital-2019-global-internet-

use-accelerates, (Access date: May, 2019).

[3] Halil Bayrak. 2019 türkiye İnternet kullanım ve sosyal medya İstatistikleri.

https://dijilopedi.com/2019-turkiye-internet-kullanim-ve-

sosyal-medya-istatistikleri, (Access date: May, 2019).

[4] Statista. Number of apps available in leading app stores as of 2nd quar-

ter 2019. https://www.statista.com/statistics/276623/number-of-

apps-available-in-leading-app-stores/, (Access date: August, 2019).

[5] StatCounter. Mobile operating system market share worldwide. http:

//gs.statcounter.com/os-market-share/mobile/worldwide, (Access
date: June, 2019).

[6] StatCounter. Mobile operating system market share turkey. http://

gs.statcounter.com/os-market-share/mobile/turkey, (Access date:
June, 2019).

[7] StatCounter. Global market share held by the leading mobile operating systems.

http://gs.statcounter.com/os-market-share/mobile/worldwide/

#quarterly-200901-201902, (Access date: June, 2019).

[8] McAfee. Mcafee mobile threat report. https://www.mcafee.com/enterprise/

en-us/assets/reports/rp-mobile-threat-report-2019.pdf, (Access
date: August, 2019).

[9] JR Raphael. The big secret behind google play protect on android. https:

//www.computerworld.com/article/3210587/google-play-protect-

android.html, (Access date: May, 2019).

[10] JR Raphael. Android market security: An interview with android’s vp of en-

gineering. https://www.computerworld.com/article/2472262/

79

android-market-security--an-interview-with-android-s-vp-

of-engineering.html, (Access date: May, 2019).

[11] JR Raphael. Exclusive: Inside android 4.2’s powerful new security sys-

tem. https://www.computerworld.com/article/2473570/exclusive-

-inside-android-4-2-s-powerful-new-security-system.html, (Ac-
cess date: May, 2019).

[12] JR Raphael. How google just quietly made your android phone more secure.

https://www.computerworld.com/article/2474247/how-google-

just-quietly-made-your-android-phone-more-secure.html, (Access
date: May, 2019).

[13] Sarah Perez. App submissions on google play now reviewed by staff, will include age-

based ratings. https://techcrunch.com/2015/03/17/app-submissions-

on-google-play-now-reviewed-by-staff-will-include-age-

based-ratings/, (Access date: May, 2019).

[14] Adrienne Porter Felt, Elizabeth Ha, Serge Egelman, Ariel Haney, Erika Chin, and David

Wagner. Android permissions: User attention, comprehension, and behavior. In Pro-

ceedings of the Eighth Symposium on Usable Privacy and Security, SOUPS ’12, pages

3:1–3:14. ACM, New York, NY, USA, 2012.

[15] A. Martı́n, A. Calleja, H. D. Menéndez, J. Tapiador, and D. Camacho. Adroit: Android

malware detection using meta-information. In 2016 IEEE Symposium Series on Compu-

tational Intelligence (SSCI), pages 1–8. 2016.

[16] Tao Ban, Takeshi Takahashi, Shanqing Guo, Daisuke Inoue, and Koji Nakao. Integration

of multi-modal features for android malware detection using linear svm. In 2016 11th

Asia Joint Conference on Information Security (AsiaJCIS), pages 141–146. IEEE, 2016.

[17] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking app

behavior against app descriptions. In Proceedings of the 36th International Conference

on Software Engineering, ICSE 2014, pages 1025–1035. ACM, New York, NY, USA,

2014.

[18] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. Whyper: Towards

automating risk assessment of mobile applications. In Proceedings of the 22Nd USENIX

Conference on Security, SEC’13, pages 527–542. USENIX Association, Berkeley, CA,

USA, 2013.

80

[19] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong Chen.

Autocog: Measuring the description-to-permission fidelity in android applications. In

Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications

Security, CCS ’14, pages 1354–1365. ACM, New York, NY, USA, 2014.

[20] Y. Feng, L. Chen, A. Zheng, C. Gao, and Z. Zheng. Ac-net: Assessing the consistency of

description and permission in android apps. IEEE Access, 7:57829–57842, 2019.

[21] Build your first android app in java. https://

codelabs.developers.google.com/codelabs/build-your-first-

android-app/#0, (Access date: Oct, 2019).

[22] Build your first android app in kotlin. https://

codelabs.developers.google.com/codelabs/build-your-first-

android-app-kotlin/#0, (Access date: Oct, 2019).

[23] Application fundamentals. https://developer.android.com/guide/

components/fundamentals, (Access date: Oct, 2019).

[24] Dalvik executable format. https://source.android.com/devices/tech/

dalvik/dex-format, (Access date: Oct, 2019).

[25] Permissions overview. https://developer.android.com/guide/topics/

permissions/overview, (Access date: September, 2019).

[26] Zellig S. Harris. Distributional structure. WORD, 10(2-3):146–162, 1954. doi:10.1080/

00437956.1954.11659520.

[27] Karen Sparck Jones. A statistical interpretation of term specificity and its application in

retrieval. Journal of documentation, 28(1):11–21, 1972.

[28] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word

representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[29] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. Glove: Global vec-

tors for word representation. In Empirical Methods in Natural Language Processing

(EMNLP), pages 1532–1543. 2014.

[30] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word

vectors with subword information. TACL, 5:135–146, 2017.

[31] Common crawl. https://commoncrawl.org/, (Access date: September, 2019).

81

[32] Wikipedia. https://www.wikipedia.org/, (Access date: September, 2019).

[33] Sepp Hochreiter. The vanishing gradient problem during learning recurrent neural nets

and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-

Based Systems, 6:107–116, 1998.

[34] Takuya Watanabe, Mitsuaki Akiyama, Tetsuya Sakai, and Tatsuya Mori. Understanding

the inconsistencies between text descriptions and the use of privacy-sensitive resources

of mobile apps. In Eleventh Symposium On Usable Privacy and Security (SOUPS 2015),

pages 241–255. USENIX Association, Ottawa, 2015.

[35] George A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11):39–

41, 1995. ISSN 0001-0782. doi:10.1145/219717.219748.

[36] Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generat-

ing typed dependency parses from phrase structure parses. In Proceedings of the Fifth

International Conference on Language Resources and Evaluation (LREC’06). European

Language Resources Association (ELRA), Genoa, Italy, 2006.

[37] Marie-Catherine de Marneffe and Christopher D. Manning. The stanford typed dependen-

cies representation. In Coling 2008: Proceedings of the Workshop on Cross-Framework

and Cross-Domain Parser Evaluation, CrossParser ’08, pages 1–8. Association for Com-

putational Linguistics, Stroudsburg, PA, USA, 2008.

[38] Evgeniy Gabrilovich and Shaul Markovitch. Computing semantic relatedness using

wikipedia-based explicit semantic analysis. In Proceedings of the 20th International

Joint Conference on Artifical Intelligence, IJCAI’07, pages 1606–1611. Morgan Kauf-

mann Publishers Inc., San Francisco, CA, USA, 2007.

[39] Evgeniy Gabrilovich and Shaul Markovitch. Wikipedia-based semantic interpretation for

natural language processing. J. Artif. Int. Res., 34(1):443–498, 2009.

[40] Android asset packaging tool. https://developer.android.com/studio/

command-line/aapt2, (Access date: September, 2019).

[41] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout: Analyzing

the android permission specification. In Proceedings of the 2012 ACM Conference on

Computer and Communications Security, CCS ’12, pages 217–228. ACM, New York,

NY, USA, 2012.

82

[42] A tool for reverse engineering android apk files. https://

ibotpeaches.github.io/Apktool/, (Access date: September, 2019).

[43] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger

Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder-

decoder for statistical machine translation. CoRR, abs/1406.1078, 2014.

[44] Edouard Grave, Piotr Bojanowski, Prakhar Gupta, Armand Joulin, and Tomas Mikolov.

Learning word vectors for 157 languages. In Proceedings of the International Conference

on Language Resources and Evaluation (LREC 2018). 2018.

[45] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal

of machine Learning research, 3(Jan):993–1022, 2003.

[46] James MacQueen et al. Some methods for classification and analysis of multivariate

observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics

and probability, volume 1, pages 281–297. Oakland, CA, USA, 1967.

[47] Deguang Kong, Lei Cen, and Hongxia Jin. Autoreb: Automatically understanding the

review-to-behavior fidelity in android applications. In Proceedings of the 22Nd ACM

SIGSAC Conference on Computer and Communications Security, CCS ’15, pages 530–

541. ACM, New York, NY, USA, 2015.

[48] Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel. Short text, large effect:

Measuring the impact of user reviews on android app security privacy. 2019.

[49] J. Wu, M. Yang, and T. Luo. Pacs: Pemission abuse checking system for android ap-

plictions based on review mining. In 2017 IEEE Conference on Dependable and Secure

Computing, pages 251–258. 2017.

[50] Marti A. Hearst. Support vector machines. IEEE Intelligent Systems, 13(4):18–28, 1998.

[51] Hannu Toivonen. Apriori Algorithm, pages 60–60. Springer US, Boston, MA, 2017.

[52] L. Yu, T. Zhang, X. Luo, L. Xue, and H. Chang. Toward automatically generating pri-

vacy policy for android apps. IEEE Transactions on Information Forensics and Security,

12(4):865–880, 2017.

[53] Mu Zhang, Yue Duan, Qian Feng, and Heng Yin. Towards automatic generation of

security-centric descriptions for android apps. In Proceedings of the 22Nd ACM SIGSAC

Conference on Computer and Communications Security, CCS ’15, pages 518–529. ACM,

New York, NY, USA, 2015.

83

[54] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon, and Konrad Rieck.

Drebin: Effective and explainable detection of android malware in your pocket. 2014.

[55] Tingmin Wu, Lihong Tang, Zhiyu Xu, Sheng Wen, Cécile Paris, Surya Nepal, Marthie

Grobler, and Yang Xiang. Catering to your concerns: Automatic generation of person-

alised security-centric descriptions for android apps. CoRR, abs/1805.07070, 2018.

[56] Oliver P. John and Sanjay Srivastava. The big-five trait taxonomy: History, measurement,

and theoretical perspectives. 1999.

[57] Xinli Yang, David Lo, Li Li, Xin Xia, Tegawendé F. Bissyandé, and Jacques Klein. Char-

acterizing malicious android apps by mining topic-specific data flow signatures. Informa-

tion and Software Technology, 90:27 – 39, 2017.

[58] JL Elman. Finding structure in time. Cognitive science, 14(2):179–211, 1990.

[59] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput.,

9(8):1735–1780, 1997.

[60] M. F. Porter. Readings in information retrieval. chapter An Algorithm for Suffix Stripping,

pages 313–316. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1997.

[61] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Armand

Joulin. Advances in pre-training distributed word representations. In Proceedings of the

International Conference on Language Resources and Evaluation (LREC 2018). 2018.

[62] Graham Neubig, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Anto-

nios Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn,

Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong,

Adhiguna Kuncoro, Manish Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda,

Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin. Dynet:

The dynamic neural network toolkit. ArXiv, abs/1701.03980, 2017.

[63] Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2014.

[64] Léon Bottou. Stochastic gradient learning in neural networks. Proceedings of Neuro-

Nımes, 91(8):12, 1991.

[65] Android developer guide. https://developer.android.com/, (Access date:
May, 2019).

84

[66] Camera api. https://developer.android.com/guide/topics/media/

camera.html, (Access date: May, 2019).

[67] Build calling application. https://developer.android.com/guide/topics/

connectivity/telecom/selfManaged, (Access date: May, 2019).

[68] Intent — android developers. https://developer.android.com/reference/

android/content/Intent.html, (Access date: May, 2019).

[69] Sending simple data to other apps — android developers. https:

//developer.android.com/training/sharing/send.html, (Access date:
May, 2019).

[70] Data and file storage overview. https://developer.android.com/guide/

topics/data/data-storage#filesExternal, (Access date: Oct, 2019).

[71] Save files on device storage. https://developer.android.com/training/

data-storage/files.html#WriteExternalStorage, (Access date: Oct,
2019).

[72] Dangerous permissions. https://developer.android.com/guide/topics/

permissions/overview#dangerous permissions, (Access date: Septem-
ber, 2019).

[73] Read external storage permission. https://developer.android.com/

reference/android/Manifest.permission#READ EXTERNAL STORAGE,

(Access date: September, 2019).

[74] Natural language toolkit. https://www.nltk.org/, (Access date: September,
2019).

[75] Duc Cuong Nguyen, Erik Derr, Michael Backes, and Sven Bugiel. Short text, large effect:

Measuring the impact of user reviews on android app security & privacy. In Proceedings

of the IEEE Symposium on Security & Privacy, May 2019. IEEE, 2019.

[76] Nitesh V. Chawla. Data Mining for Imbalanced Datasets: An Overview, pages 853–867.

Springer US, Boston, MA, 2005.

[77] Scikit-learn machine learning in python. https://scikit-learn.org/stable/,

(Access date: October, 2019).

85

[78] Takaya Saito and Marc Rehmsmeier. The precision-recall plot is more informative than

the roc plot when evaluating binary classifiers on imbalanced datasets. PLOS ONE,

10(3):1–21, 2015.

86

