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ABSTRACT

GEOMETRIC STRUCTURES ON RIEMANN SURFACES
AND REIDEMEISTER TORSION

Hatice ZEYBEK

Doctor of Philosophy, Department of Mathematics
Supervisor: Prof. Dr. Yasar SOZEN

June 2020, 70 pages

Let 3 be a closed orientable surface of genus at least 2 and Rep(X, G) be the smooth
part of the representation variety of homomorphisms’ conjugation classes from funda-
mental group of X to Lie group G.

In this thesis, the Reidemeister torsion formulas of the representations corresponding
to geometric structures in two different categories, real and complex, are clearly stated
that they can be calculated through the related symplectic forms.

This thesis consists of two main parts:

In the first part, real projective structures are discussed. The deformation space B(X)
of convex real projective structures on the surface has the Goldman coordinates in the
literature and this space also contains the Teichmiiller space. Using these coordinates,
H.C. Kim clearly expressed the Atiyah-Bott-Goldman symplectic form wpgp,3r) on the
representation space Rep(PSL(3,R)). In this part, in the light of all this information,
the formula that calculates the Reidemeister torsion of representations Rep(PSL(3,R))
is obtained through the symplectic form wpgy,3 r).

In the second part, complex projective structures are considered. There is a natural

holomorphic projection from CP(X) the space of isotopy classes of complex projective



structures on the surface to the Teichmiiller space. Any smooth section s of this projec-
tion yields a diffeomorhism between CP(X) and the cotangent bundle space T*Teich(X).
There is the symplectic form wpgy,2,c) on CP(X) which is open in Rep(PSL(2, C)) and
the symplectic form wy,; on T*Teich(3). In this part, the Reidemeister torsion of the
representations in CP(X) are expressed by wyay and wpsL(2,c) symplectic forms thanks
to considered s section is Bers, Schottky, Earle and Fuchsian section, respectively. In
addition, the results are applied to 3-manifolds that its boundary consisting of closed

surfaces with genus at least 2.

Keywords: Reidemeister torsion, projective structures, representation space, sym-

plectic form, geodesic lamination, 3-manifolds.
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OZET

RIEMANN YUZEYLERI UZERINDEKI GEOMETRIK
YAPILAR VE REIDEMEISTER TORSIYON

Hatice ZEYBEK

Doktora, Matematik Boliumii
Tez Danigsmani: Prof. Dr. Yasar SOZEN

Haziran 2020, 70 sayfa

Y} cinsi en az 2 olan kapali yonlendirilebilir bir yiizey ve G bir Lie grubu olmak
tizere Rep(X, G) yiizeyin temel grubundan G grubuna giden homomorfizmalarin eglenik
siniflarindan olusan temsil uzayinin piiriizsiiz kismini gostersin.

Bu tezde reel ve kompleks olmak tizere iki farkli kategorideki geometrik yapilara karsilik
gelen temsillerin Reidemeister torsiyonunun ilgili simplektik formlar araciligiyla hesa-
planabilecegi formiiller acik bir gekilde ifade edilmistir.

Bu tez iki ana boliimden olugmaktadir:

Ik boliimde reel projektif yapilar ele alinmigtir. Yiizey tizerindeki konveks reel pro-
jektif yapilarin deformasyon uzay1 B(3) tizerinde literatiirdeki Goldman koordinatlari
bulunmaktadir ve ayrica bu uzay Teichmiiller uzaymi da kapsamaktadir. H.C. Kim
bu koordinatlar1 kullanarak Rep(PSL(3,RR)) temsil uzay1 iizerindeki wpgr,3r) Atiyah-
Bott-Goldman simplektik formunu agik bir sekilde ifade etmistir. Bu boliimde tiim bu
bilgilerin 1g181nda, Rep(PSL(3,R)) temsillerinin Reidemeister torsiyonunu hesaplayan
formiil wpgr(3r) simplektik formu aracihgiyla elde edilmistir.

Ikinci boliimde ise kompleks projektif yapilar diigiiniilmiistiir. Yiizeydeki kompleks pro-

jektif yapilarin izotopi simiflar1 uzay1 CP(X) dan Teichmiiller uzayma giden dogal 6rten

il



bir izdiisiim fonksiyonu bulunmaktadir. Bu izdiigtimiin herhangi bir s piirtizsiiz kesiti
yardimiyla CP(X) ve T*Teich(X) kotanjant demeti uzaylar: difeomorfiktir. Rep(PSL(2, C))
i¢inde acik olan CP(X) iizerinde wpgy,(2,c) ve T*Teich(X) uzay1 lizerinde ise wyay simplek-
tik formlar1 bulunmaktadir. Bu boliimde, bahsedilen s kesiti sirasiyla Bers, Schottky,
Earle ve Fuchsian kesiti alinarak, CP(X) uzayima karsilik gelen temsillerin Reidemeis-
ter torsiyonu wp,y ve wpsre,c) simplektik formlar: cinsinden ifade edilmistir. Bunlara
ek olarak, elde edilen sonuglar sinir1 cinsi en az 2 olan kapali yiizeylerden olusan 3-

manifoldlara uygulanmigtir.

Anahtar Kelimeler: Reidemeister torsiyon, projektif yapilar, temsil uzayi, simplektik

form, jeodezik laminasyon, 3-manifoldlar.
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1 INTRODUCTION

Throughout this thesis, let ¥ denote a closed orientable surface of genus at least 2
and Rep(G) be the smooth part of the representation variety of homomorphisms from

fundamental group of ¥ to Lie group G.

Reidemeister torsion is a topological invariant with many applications in several branches
of mathematics and theoretical physics. In 1935, this topological invariant was first
introduced by K. Reidemeister, in the paper classifying 3-dimensional lens spaces [1].
W. Franz classified the higher dimensional lens spaces extending the Reidemeister tor-
sion [2]. In 1964, G. de Rham extended the results of Reidemeister and Franz to spaces
of constant curvature +1 [3]. R.C. Kirby and L.C. Siebenmann proved that the Rei-
demeister torsion for manifolds is a topological invariant [4]. Then, T.A. Chapman
proved the invariance for arbitrary simplicial complexes [5, 6]. Therefore, the classifi-

cation of lens spaces made by Reidemeister and Franz proved to be actually topological.

In 1961, J. Milnor disproved Hauptvermutung through Reidemeister torsion by con-
structing two homeomorphic but combinatorially distinct finite simplicial complexes
[7]. He also identified Reidemeister torsion with the Alexander polynomial which plays

an important role in knot theory and links [8, 9].

In 1991, E. Witten introduced the real symplectic chain complex notion [10]. By
combining this notion and Reidemeister torsion, he also computed the volume of rep-
resentation space Rep(G). J. Dubois also used the symplectic chain complex and
Reidemeister torsion together and introduced a volume element which is related to

Reidemeister torsion, on a special representation space [11, 12].

Hom(m(X), G)/G is the orbit space of all homomorphisms from 7 (X) to the Lie group
GG modulo conjugation in GG has the structure of a real analytic variety. Note that this
space is not necessarily Hausdorff. However, Rep(m(2),G) = Hom™ (71(X), G)/G of

all reductive representations of 7 (X) in G is Hausdorff.

Hitchin investigated the connected components of the space Rep(m(2), G) for a split



real semisimple Lie group G, and proved the existence of an interesting connected
component not detected by characteristic classes [13]. The Hitchin component Hit,, (3)

is a preferred component of the character variety
Hom(%, PSL(n,R)) = {homomorphisms ¢ : m(X) — PSL(n,R)}/PSL(n,R)

consisting of all group homomorphisms from the fundamental group to the Lie group
PSL(n,R), up to conjugation. Note that when n = 2, the Hitchin component is just

the Teichmiiller space.

Teichmiiller space Teich(X) is the space of isotopy classes of complex structures on 3.
It is a differentiable manifold diffeomorphic to R3X®*). Here, x(X) denotes the Euler
characteristic of the surface. It is well-known that Teich(X) is a connected component

of Rep(m (X), PSL(2,R)), where 7;(X) is the fundamental group of .

As is well-known, Teichmiiller space inherits three forms: wy p Weil-Petersson 2-form,
wpsr(2,r) Atiyah-Bott-Goldman symplectic form, and wrhuston Thurston real symplec-
tic form through a maximal geodesic lamination A [14, 15, 16]. In 1984, Goldman
expressed wyp in terms of wpgr2r) symplectic form [15]. On the other hand, S6zen
and Bonahon expressed wpgy,2,r) in terms of Wrhurston Symplectic form on the real vec-

tor space Z(A;R) of transverse cocycles on A [17].

In the literature, usually Reidemeister torsion is defined and investigated for SU(2),
PSL(2,C), or PSL(2,R) valued representations. In 2012, Sozen showed that it can
also be defined PSL(n,R) valued Hitchin representations for n > 2 and established a
formula for Reidemeister torsion of such representations in terms of wpgr,nr) Atiyah-

Bott-Goldman symplectic form [18].

Let B(X) denote the deformation space of convex real projective structures on the
surface which contains the Teichmiiller space. In 1990, Goldman introduced the co-
ordinates on this space which is known as Goldman coordinates in the literature [19].
Then, Kim expressed the Atiyah-Bott-Goldman symplectic form wpgr,3r) on the rep-
resentation space Rep(PSL(3,R)) through the Goldman coordinates [20)].



In section 3, we will give the Reidemeister torsion formula of representations Rep(PSL(3, R))

is obtained through the symplectic form wpgr, (3 ).

Let CP(X) denote the space of isotopy classes of complex projective structures on the
surface. A complex projective structure is also a holomorphic structure thus there is
a natural holomorphic projection p : CP(X) — Teich(X) from this space to the Te-
ichmiiller space. Any smooth section s of p yields a diffeomorhism between CP(X) and
cotangent bundle T*Teich(X). There is the symplectic form wpg,2c) on CP(X) which
is open in Rep(PSL(2,C)) and the symplectic form wy,; on T*Teich(X).

In 1996, Kawai established the relation between wy,: and wpsr2,c) [21] considering the
s section as Bers section. Then, Biswas generalized this result by considering Schot-
tky section [22]. With the help of Earle section, it was generalized by Ares-Gastesi

and Biswas [23]. In 2015, by the Fuchsian section, Loustau expressed wy,; in terms of

wpsr(2,c) and wy p.

In section 4, we will give the Reidemeister torsion formula of the representations in
CP(X) through wyae and wpsr2,c) symplectic forms thanks to considered s section is
Bers, Schottky, Earle and Fuchsian section, respectively. Moreover, the results are ap-

plied to 3-manifolds that its boundary consisting of closed surfaces with genus at least 2.

This thesis aims to show that topological invariant Reidemeister torsion, which has
many applications in several branches of mathematics also in theoretical physics, and
one of the fundamental instruments of low-dimensional topology/geometry, namely
geodesic laminations, can be used efficiently and effectively in the deformation spaces

B(¥) and CP(X) with increasing importance in low-dimensional topology/geometry.

The techniques developed in this thesis can be used in many fundamental problems.
Especially, combining Reidemeister torsion and symplectic chain complex method has
potential and powerful applications on certain problems with geometric significance
well known by the experts, such as shedding a light on understanding the size of the

space of geometric structures on a surface [10, 24].



2 PRELIMINARIES

2.1 Basic Definitions

In this section, we will give some well-known definitions. One can find more detail

about the given subjects through the references.

Let us consider an n-dimensional geometric space X and a group of similarities G of

X.

Definition 2.1.1 (/25/)Let ® : {¢; : U; — X}icr be a family of functions called
charts for an n-manifold M. If & satisfy the following conditions then it is called an

(G, X)-atlas for M:

e for each i, the set U;(coordinate neighborhood) is an open connected subset of

M.
e for each i, the chart ¢; maps U; homeomorphically onto an open subset of X.
e M is covered by the coordinate neighborhoods {U; }ie;.
e if U; and U; overlap, then the coordinate change function
¢;0; " diUiNU;) = (U N Uy),

agrees in a neighborhood of each point of its domain with an element of G.



Pi oy
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Figure 2.1: A coordinate change map

It is well-known that there is a unique maximal (G, X)-atlas for M containing ®.

Definition 2.1.2 A maximal (G, X)-atlas for M is called an (G, X)-structure for an
n-manifold M and an n-manifold M with an (G, X)-structure is called an (G, X)-

manifold.

Definition 2.1.3 If the geometric space X = RP? the real projective plane then this
type of structure on a manifold is called a real projective structure and if X = CP' the
complex projective line then this type of structure on a manifold is called a complex
projective structure. And also, if the geometric space X = C then this type of structure

on a manifold is called a complex structure.

Definition 2.1.4 A holomorphic function is a complex valued function of one or more
complex variables which is complex differentiable in a neighborhood of every point of

its domain.

Definition 2.1.5 Let Diff " (X) denote the group of orientation preserving diffeomor-
phisms of ¥ and Diff] () be the identity component of Diff " (¥).



e The quotient
Teich(X) := { all complex structures on %} /Diff ()

is called the Teichmiiller space of X. Its elements are called marked Riemann

surfaces.
e The quotient
CP (%) := { all complex projective structures on X} /Diff$ (2)

is called the deformation space of all complex projective structures on . Its

elements are called marked complex projective surfaces.

For more detail about the Teichmiiller space, the reader is referred to [26, 27, 28].

In particular, a complex projective atlas is a complex atlas on X, namely transition
functions are holomorphic. Thus, a projective structure defines an underlying complex

structure. This gives a forgetful map
p: CP(X) — Teich(X).

Definition 2.1.6 Let P be a polyhedron with V' vertices (0-dimensional), F edges

(1-dimensional), and F faces (2-dimensional). The Fuler characteristic of P is defined

X(P)=V —E+F.

For example, let us compute the Euler characteristic of above cube in 3-dimension.

There are 8 vertices, 12 edges and 6 faces in the above diagram. Therefore,
Xx(cube) = V-E+F
= 8—-12+6

= 2.



If 3 is a g-hole torus then we have the following formula

X(X) =2-2g.

For example, the Euler characteristic of the following surface ¥ with 2 genus equals

X(Z)=2-2.2=-2

Definition 2.1.7 Let F': M — N be a smooth map and p € M be an arbitrary point.

The push-forward map
F, . TpM — TF(p)N

yields a dual map
To avoid confusion of stars, this map is expressed
u — Fru

and called the pullback map associated with F' for u € Tj,N. Here, (F*u)(v) :=
u(Fv) for ve T,M.

Definition 2.1.8 A covering map is a surjective continuous map p : M — M between
connected, locally path connected spaces, with the property that every point p € M
has a neighborhood U that is evenly covered, meaning that each component of p~*(U)

is mapped homoeomorphically onto U by p.

For more detail about these notions, see [29].



2.2 Reidemeister Torsion of a Chain Complex

In this section, we will give the required definitions and the basic facts about one of the
main notion of this thesis the Reidemeister torsion. For more information and detailed

proofs, we refer the reader to [30, 31, 10] and references therein.
Let us consider a chain complex

C.=Cp 2 C i — o — O 2 Cy— 0

of a finite dimensional vector spaces over I, where IF denotes the field R or C.

This chain complex has the p—th homology H, = Z,/B, for p=0,...,n and

B, = Im{0ps1: Cpr1 —> Oy}
Z, = Ker{0,:C, — C,_1}.
Let b, = {b;), ...,bp”} and h, = {hzl,, ..., hy?} be the bases of the spaces B, and H,,

respectively. By the result of the 1—st Isomorphism Theorem, we get

0—2,—=C,—» B,_1 =0, (2.1)

and by the definition of H,, we get
0—B,—Z,—» H,—0 (2.2)

If we consider the section [, : H, — Z, and the short-exact sequence (2.2) then we can
get a new basis b, Ul,(h,) for Z,. After that, we take a section s, : B,_; — C, and the

short-exact sequence (2.1). Therefore, we get a new basis for C,, as b,Ul,(h,)Us,(b,y_1).

Definition 2.2.1 Let C,, B, and H, have bases c,, b, and h, respectively for p =

—e

0,1,...,n. The torsion of the compler C, with respect to bases {c,}7_g, {hp};—o is

defined as follows

n

T(C., {ep}img, (o) = [ [0y L ip(hy) L sp(byor), €]

p=0
Here, [f,e] denotes the determinant of the change-base-matrix M from e to f for a

vector space V' with bases e and f.



Note that torsion does not depend on the bases b, and the sections s,,1, (see [33]).

This means torsion is well-defined.

Remark 2.2.2 (Change-base-formula) Let c), and hj, be also bases for C, and H,

respectively. Then, one can see that

n

[c, cpl (=17
T(C., {el)y, (B} >—H(ﬁ) T(C (e} ().

Let us take a short-exact sequence of chain complexes as
0= A, < B, > D, — 0. (2.3)

By using the Zig-Zag Lemma, we get a long-exact sequence with the length 3n 4 2 as
follows:
C: oo — Hypr (A) 5 Hypy (B) 25 Hy (D)
|
!
H, (A) % Hy (B.) % H, (D.)

|
[ (2.4)
H

o1 (AL) 25 Hyoy (B 255 Hyoy (D))

|
[

where Cs, = H,(D,), Cspr1 = Hp(A,), and Cspro = Hy(By).

It is clear that the bases hl, h/!, and h serve as bases for Cs,, Cspp1, and Cypyo,
respectively. J. Milnor proved in [33] that the alternating product of the R-torsions
of the chain complexes in (2.3) equals to the R-torsion of the chain complex (2.4).

Namely,

Theorem 2.2.3 ([33]) Let ¢, c¥, ¢l hil, h? andhl be bases of A,, By, D,, Hy(A,),

p» Cpr Cp
H,(B,), and H,(D,), respectively. If, moreover, Cg‘, Cf, and cll)) are compatible in the
sense that [c, ¢ ;‘EBCD] +1, where j <E;D/> =cp, then

T(B*’ {05}87 {hf}g) = T(A*7 {CA}(?JL’ {hA}g)T(D*7 {C p 0 {hD}O)
xT(Cy, {esp}o™ ™ {0}5").

9



This result clearly yields the following sum-lemma:

Lemma 2.2.4 Assume that A,, D, be two chain complexes. Assume also that c]’;‘, CI?,

h?, and h]? are bases of A,, D,, H,(A,), and H,(D,), respectively. Then,

y

T(A. ® D {c; & ¢}, {hy @ h;}5) = T(A., {c;}5, {h)}5) - T(Ds, {c;}5, {1} }5)-

Definition 2.2.5 Let C, : 0 — Chy 28 Chpy —> -+ = Cpp = -+ — Oy B Cp — 0
be a chain complex of finite dimensional real or complex vector spaces of length 2n(n
odd). Forp=0,...,2n,let wyo,—p : C,xCyy—p, — F be a 0—compatible anti-symmetric

non-degenerate bilinear form. To be more precise,

Wp,2n—p (aa7 b) = (_1)p+1wp+1,2n7(p+1)(a’ 8b)’

Wp2n—p(@, b) = (=1)Pwap_pp(b, a).

Then, the triple (C., Os, {ws 2n—+}) is called an F-symplectic chain complez.

Let us note that if C, is a symplectic chain complex, then [wpon,—p] @ H,(Cy) %
Hs,—,(Cy) — T defined by [wpon—p]([2], [¥]) = wpon—p(®,y) is an anti-symmetric and

non-degenerate bilinear map.

Definition 2.2.6 Let C, be a symplectic chain complex of length 2n and c, be a

basis of C},, p = 0,...,2n. The bases c,, ca,—, of Cp, Coy,—p, respectively are called

w—compatible, if the matrix of wy 2,,—, in bases ¢, g, is the k x k identity matrix Iy
Ot Lisa

when p # n and when p = n. Here, k = dimy C), = dimg Cy,,—,

—1 0
Ix1 Ix1 21x 2l

and 2/ = dimy C,,.

Clearly, every symplectic chain complex has w—compatible bases.

Suppose that C, is a symplectic chain complex and h,, hs,_, are bases of H,(C.),
Hs,—,(Cy), respectively. Let us denote the determinant of the matrix of the non-

degenerate pairing [wp 0,y : Hp(Ci) X Hop—p(Ci) — F in the bases hy, ha,_, by

Ap,anp(hpv h2n*p)-
If there is no ambiguity, we will write A, ,_,(C) instead of A, 2,_p(hy, ha,—p).

10



The following result suggests a formula for computing R-torsion of symplectic chain

complexes.

Theorem 2.2.7 ([31, 32]) If C. is an F—symplectic chain complex of length 2n, and
forp=0,...,2n, ¢, are w-compatible bases of C,, and h, are bases of H,(C.), respec-
tively, then the following formulas hold:

o [f C, is an R—symplectic chain complez, then
(O*a {Cp}p 07 H AP 2n— p An,ﬂ(c*)
o [fC, is a C—symplectic chain complex, then

T (C*>{Cp}p 0’{hp ’— H‘APZH -p |( o |Ann(C)]

Details and unexplained subjects can be found in [31, 32] and references therein.

2.3 Reidemeister Torsion of Representations

Let ¥ be a compact surface with genus at least 2 and without boundary. Let us also
denote the universal covering of ¥ by 5 and the Lie group by G, the Lie algebra of G
by g, and the non-degenerate Killing form on g by B. Here, the Lie group GG denotes
the Lie groups PSL(3,R) and PSL(2,C).

Let ¢ : m(X) — G be a homomorphism and Ey = 5 x g/ ~ be the associated adjoint
bundle over ¥. Here, for all v € m(X), (v-x,v-t) ~ (x,t), v acts in the first com-

ponent as a deck transformation and in the second component by adjoint action, more

precisely ¢(v)té(y) ™!

Let K be a cell-decomposition of ¥ for which the adjoint bundle E, is trivial over each
cell. Let us denote by K the lift of K to ¥ and let

p
Zlm (X)) = {Zmi%’ sm; € Z, v €m(X), p€ N}
i=1
be the integral group ring. Then, C,(K;gaq,) is defined as C.(K;Z) ® g/ ~, where,

o@t ~y-o0®7-t,Vy € m (), the action of 7,(X) on % is by the deck transformation,

11



and the action of 71(2) on g is adjoint action.

Clearly, there is the following chain complex:

0 — Co(K;gaa,) 25 C1(K; gaa,) 22 Co(K; gaa,)—0, (2.5)

where 0, is the usual boundary operator. Let us denote the homology of the chain com-
plex (2.5) by H,(K; gaq,). Similarly, C*(K’; gaa,) results the cohomologies H*(K; gaq,)-
Recall that C*(K; gaq,) is the set of Z[m;(¥)]-module homomorphism from C.(K;Z)

to g. The reader is refered to [30] and the references therein for more information.

Let us consider again the chain complex (2.5). Let {e]}7" be the generators for
Cp(K;Z). Fixing a lift € of e in the universal covering 3 of 3, j=1,...,m,, we
get a Z[m (X)]—basis ¢, = {%}szl for C,(K;Z). Suppose that A = {a,}3™9 is a B-
orthonormal basis of g, namely, the matrix of the Killing form B in the basis A is the
diagonal matrix Diag(1, p 1, —1,. L ,—1), where p+r = dimp g. Thus, ¢, = ¢, ®, A

is an F—basis for C,(K; gaq,) and called a geometric basis for Cp(K'; gaa,)-
If hy, is an F-basis of H,(K;gaq,), p=0,1,2, then

T(C.(K; gAd¢)7 {Cp ®g «4};2):0’ {hp}?g:o)

is called the R-torsion of the triple K, Ady, and {h,}>_,,.

It was proved in [18] that the definition of R-torsion does not depend on A, lifts €,
and conjugacy classes of ¢. But the sake of completeness we shall give the proof of
Proposition 2.3.1. For the independence from the cell-decomposition, the reader is

referred to [31, Lemma 2.0.5].

In the following proposition, for G = SL(3,R), we also assume that ¢ is purely loxo-

dromic representation, namely ¢() is diagonalizable in SL(3,R) for all v € m(%).

Proposition 2.3.1 (/18)) T(C.(K: gaa, ), (e o AJ2_o. {y}2_y) is independent of A
lifts €¥

S» conjugacy class of ¢, and the cell-decomposition K.

12



Proof. Let A’ be another B—orthonormal basis of g and let T be the change-base-
matrix from A’ to A. By using change-base-formula Remark (2.2.2), we get:

2 / (=1)P
, ).,
T gna) e A ) =TT (220 (26)
p=0 [ P p]
<O ga,) (6 2 AV ()3)
Here,
2 2
e} e, = [ (et 7))t = (ot 7). 27)
p=0 p=0

From the fact that A and A’ are B—orthonormal basis it follows that detT = F1.
Combining equations (2.6), (2.7), and using the fact that the Euler-characteristic x(X)

is even, A and A’ will produce the same torsion. Therefore, torsion is independent of

the basis A.

We now prove the independence of the torsion from the lifts. Firstly, we can get
another lift of {e},... e/, } taking another lift of ] and leave the others the same.
Let us denote this lift by ¢, = {€} e~,..., € }. Since ¢| ey ®t = €] ® v o t, where
the action in the second place is by Adg(,), namely conjugation by ¢(v). Then, we
have ¢; ® A = ¢; ® Adg(y)(A). From Change-base-formula (2.2.2) and equation (2.7)
it follows that

[c}, ci]

2 (-1)°
T(C.(K; gaq,), {¢; @6 A}, {hi}5) = H([h?M)

1=0

X T(C(K gaa, ), {ei @6 A, {hi}p)
= (det T)—X(C*(K§9Ad¢))
X T(C(E gaa, ), {ci @ A}g, {hi}p).
Here, T' is the matrix of Adyn) : g —> g with respect to basis A. The fact that
o(7y) € g it follows that ¢(v) can be diagonalizable. To be more precisely, there exist a

Q = Q(v) € G so that Qé(v)Q™' = D = Diag(\y, ..., A\y), where \;’s are eigenvalues
of ¢(7y). Using this, we obtain the following equality:

Add)(’y) = AdQ—lDQ = (AdQ)il e} AdD 9 AdQ

From this fact, once we fix a basis for g, to compute the determinant of Adg,) it

suffices to find the determinant of Adp. To do this, since the determinant of Adp is

13



independent of basis of g, we will consider the following basis:

and

Ekja k %j)
By — Epiprr, 1<k<n-1

sl(n,R) —

Here, E;; denotes the matrix with 1 in the ¢j entry and O elsewhere. Thus, by using
given basis one can easily find the determinant of Adp and see that this matrix has

determinant 1. Finally, since det 7' = 1 then we have the same torsion.

Independence of conjugacy class of ¢: If ¢, ¢" are conjugate represantation, then the
corresponding twisted chains and cochains are isomorphic. Therefore, ¢ and ¢ will

produce the same torsion.
This finishes the proof of Proposition 2.3.1.

Since R-torsion of representations is invariant under subdivision, instead of

T(C.(K; gad,), {c,}3,{h,}3) we can write T(3, {h,}?).

Before writing the Reidemeister torsion formula for representations, we will give some
definitions: Kronecker pairing, cup product and intersection forms. Recall that let X
be a compact hyperbolic surface, ¢ : m(X) — G be a homomorphism, and let K be
a cell decomposition of ¥. We associated the twisted chains C,(K; gaq ¢) and cochains
C*(K;9ad,) = Homz[m(g)}(C*(f(;Z),g). Here, K is the lift of K to the universal

covering 3 of ¥
Definition 2.3.2 The Kronecker pairing
() : C"(K;gaq,) X C; (K;gaa,) — F

is defined by
(0,004t) = B(t,0(0)),

14



where B denotes the Cartan-Killing form.
Clearly, the pairing can be extended to
() - H' (S5 9a9,) ¥ H; (5;9aq,) — F.

Definition 2.3.3 The cup product

—p: CY(K;gaq,) X CV(K; gaa,) — CT(5;F)
defined by (0; —p 0;)(0i+;) = B(0i((0i+;)tront)); 05 (04 Jback)-
Note that —p5 can be extended

—p H'(3;gaa,) X H (S gaq,) = H™ (3 F).

Assume that K’ is the dual cell-decomposition of 3 associated to the cell-decomposition
K. Assume also that cells 0 € K, 0/ € K’ meet at most once, this assumption is not
loss of generality because of the invariance of R-torsion under subdivision. Let us
denote by ¢, the basis of Cp(IA(/’; Z) associated to the basis ¢, of C,(K;Z), and also by
c, = ¢, @y A the basis for C,,(K'; gag,), where A is a B-orthonormal basis of the Lie

algebra g of G.

Definition 2.3.4 The intersection form

(- )ig—i : Ci(K; gaa,) X Comi(K';gaa,) = F

defined by
(01 ®@t1,00 @ l2)ip— = Z o1.(7 - 02) B(t1,7 - t2).
e (D)
Here, “.” denotes the intersection number pairing. Clearly, “.” is compatible with

the usual boundary operator and thus (-,-);2—; are d—compatible. It is also anti-

W

symmetric, because of the fact that intersection number form is anti-symmetric

and B is invariant under adjoint action.

We can naturally extend the intersection form to twisted homologies. From the fact
that twisted homologies are independent of the cell-decomposition, we get the following

non-degenerate form

(s )i2—i » Hi(E; gaa,) X Ha—i(359aq,) = F. (2.8)
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The isomorphisms induced by the Kronecker pairing and the intersection form yield

the Poincaré duality isomorphisms

Kronecker pairing Intersection form

PD : H*'(3; gaa,) = Hy (¥ 9aa,)" = H;(3; gad,)-
For 7 = 0,1, 2, there is the following commutative diagram
H* (S5 9aa,) x  H'Y(Z;gaa,) —> H*(3F)

|PD |PD ® L s

(7)i,2—i
Hi(E;gAd¢) X H2—i(Z§gAd¢) — F.

Therefore, for i = 0,1, 2,

wy—ii + H* /(25 0aa,) X H' (3 gaa,) —> H*(3;F) £, (2.9)

is a dual pairing.

In the case of ¢ is irreducible we have Hy(3; gaq,), Ha(X; gaa,), H(2; gaq,), and

H?(X; gaa,) are all zero. Hence,

HY(Z;0a0,) x HY(Z;0a0,) — H*(SF)

|PD |PD o |y (2.10)

Hi(359a0,) % Hi(¥59aq,) by F.

Recall that we : H'(3;gaa,) X H(3Z; gaa,) — H*(3;F) A F is called the Atiyah-
Bott-Goldman symplectic form for the Lie group G.

Theorem 2.3.5 ([18]) If D, denotes C.(K;gaq,) ® Cu(K';9aqa,), then it is a sym-
plectic chain complex with w-compatible bases, which are obtained from the geometric

bases.
Since the product of the determinant of the matrix associted to
(', ')i,Q—i : Hi(ZQQAd¢) X HZ—i(z;gAd¢) —F (2-11)
for basis h;, hy_; and the determinant of the matrix associated to
Wa—i; : HQ*Z‘(ESQA%) X Hi(ESQAd¢) — H2(2§F> i F. (2.12)

for basis h’, h*~* is equal 1, one can easily get rid of the coefficient in [32, Theorem
4.4]. For more detail about this see [35, 36]. Using this fact the formula in [32] turns

into following theorem:
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Theorem 2.3.6 Let ¥ be a closed oriented Riemann surface of genus at least 2 and
¢ m(X) — G be an irreducible, purely lozodromic representation. Let K be a cell

decomposition of X3, ¢, the geometric basis of Cy,(K; gaq,). Then the following formulas
hold:

e [f the Lie group G is PSL(3,R), then

wa
Tor(%,{0,h,0}) = |det
hl
e [f the Lie group G is PSL(2,C), then
wa
| Tor(, {0,h',0})| = | |det 1
h
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3 REAL PROJECTIVE STRUCTURES

The real projective plane, denoted by RP?, is a very well-known object for many
reasons. It can be the simplest example of a closed non-orientable surface. If we remove
a disc from the real projective plane, then we get another familiar non-orientable surface
the Mobius band. It is also the unique non-orientable surface with Euler characteristic
equal to 1. The real projective plane is one of the first examples of a non-Euclidean

geometry. Therefore, it is an elementary example in topology or algebraic geometry.

Figure 3.1: The real projective plane

One can define the real projective plane in two different point of view. The first one is
topologically. It can be described as the quotient space of the closed disc by identifying
opposite points on the boundary. The other one is geometrically. It can be described

as the space of lines through the origin in 3-space.

Let us consider an open subset 2 of the real projective plane RP?. A map ® :  — RP?
is called locally projective if for each component W C €2, there is a projective trans-
formation g € PGL(3,R) such that the restriction ®|y equals the restriction g|W.

Distinctly a locally projective map is a local diffeomorphism.

Let Y be a connected smooth surface. An RIP?-atlas on X is a collection of coordinate
charts {¢; : U; — RP?},¢; satisfying the following:

e {U;} is an open covering of ¥,

e Each ¢; is a diffeomorphism U; — ¢;(U;),
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e For each U; and Uj, the coordinate change function
o0 pi(UsNU;) — ¢;(U; N U;),
is locally projective.
A maximal RP?-atlas on ¥ is called a real projective structure (or RP*-structure) on ¥

and a manifold with an RP?-structure is called an RP*-manifold.

Let f : M — N be a smooth map, where M and N are RP* manifolds. If for each
coordinate chart (U;, ¢;) on M and each (U;, ¢;) on N, the composition

¢jo fod; ' i(Uin f7H(U)) = ¢;(U; N f(U3))

is a locally projective map, then f is called a projective map(or RIP’Q—map).

gjofop;t
~

b:(U:Nf~H(U;y))

¢ (U;Nf(Us))

Figure 3.2: A projective map

An RP?*-map between RP?-manifolds is necessarily a local diffeomorphism. Contrar-
ily, if f : M — N is a smooth map which is a local diffeomorphism, and N is an

RP?-manifold, there is a unique RP?-structure on M such that f is an RP* -map with
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respect to these structures.

Now, we will recall the following well-known basic theorem.

Theorem 3.0.1 [37] Let p : M — M be a universal covering map of an RP*-manifold

M and 7 denote the corresponding group of covering transformations.

1. There exists a projective map dev : M — RP? and a homomorphism h : ™ —

SL(3,R) such that for each vy € 7 the following diagram commutes:

M % Rrp?

ol Lh()
M % Rrp?

2. Let (dev', 1) be another pair satisfying above conditions. Then there exists a
projective transformation g € SL(3,R) such that dev' = godev and ' = 1,0 h
where v, : SL(3,R) — SL(3,R) denotes the inner automorphism defined by g,

namely h'(y) = (tg 0 h)(y) = goh(y)og™:
M &% RP? L, RP?
vl lh(v) lh’(v)
M %5 RP2 L, RP?
The projective map dev : M — RP? is called a developing map and h : 1 — SL(3,R) is
called the holonomy homomorphism. The image I' = h() is called the holonomy group.

Definition 3.0.2 A domain 2 in RP? is called convez, if the following two conditions

are satisfied:
e There exists a projective line [ € RP? such that Q ¢ RP? — 1,
e For all z,y € Q, the line segment 7y lies in ().

As is well-known that a discrete group I' is a topological group in which the topology
is discrete. Recall also that a discrete group I' acts properly on § if for every compact

sets A, B C 2, the following set
I'(A,B) = {g €T|gAN B # 0}
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is finite. Moreover, if a discrete group I' has a trivial stabilizer subgroup namely

Iy = {g € I'|gz = x} is trivial then it is called acting freely on €.

3.1 Goldman Coordinates of Deformation Space B(X)

In this section, we are going to first consider Goldman’s very significant article [19]
which gives the parametrization of the deformation space of convex RP?-structures on

¥ and then the Hong Chan Kim’s paper [20].

Let RP? be the real projective plane and PGL(3,R) the group of projective transfor-
mations RP? — RP?. A convex RP*manifold is a quotient M = Q/I' where 2 is
a convex domain in RP? and T is a discrete group of PGL(3,R) acting properly on
Q2. Let us consider the two such quotients M; = /'y and My = Qy/T'y. They are
projectively equivalent, if there exists a projective transformation h € PGL(3,R) such

that h(Ql) =y and hFlh_l =T

Let ¥ be a closed smooth surface and M be a convex RP?*-manifold. A conver RP?-
structure is an equivalence class [(f, M)], where f : ¥ — M is a diffeomorphism and
two such pairs (f, M) and (f’, M') are regarded as equivalent if there exists a projective
equivalence h : M — M’ such that ho f isotopic to f’. For a convex RP*structure on
Y, the action of the fundamental group 7;(3) by deck transformations on the universal
covering space of ¥ determines a homomorphism ¢ : 7 (3) — PGL(3,R) which is well
defined up to conjugacy in PGL(3,R). Up to above equivalence relation of convex RP2-
structures on X, the equivalence classes has a natural topology which can be identified
with an open subspace of the representations space Hom(7(2), PGL(3,R))/PGL(3,R).
This space is called the deformation space of convexr RP?-structures on ¥ and denoted
by B(X). In [19], Goldman determines explicit coordinates on this space and proved

the following theorem:

Theorem 3.1.1 ([19]) Let ¥ be a closed orientable surface of genus g > 1. Then the
deformation space B(X) of convex RP*-structures on Y is diffeomorphic to an open cell

of dimension 16(g — 1).
In this part we will give the necessary information for the parametrization of the de-
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formation space B(X). For unexplained subjects and more details see [19].

One can consider the real projective plane as a space of all lines through the origin in
R3. Therefore if (z,y, z) € R* — {0} is a nonzero vector in R? the corresponding point

in RP? will be denoted

ISENS

in homogeneous coordinates.

Let A be an invertible element of the group of linear transformations of R3, namely
GL(3,R). Then A preserves lines through the origin and induces a projective trans-
formation of RP?. Recall that PGL(3,R) is the group of projective transformations of

RP?. Clearly, we have the following exact sequence
{1} - R* — GL(3,R) — PGL(3,R) — {1},

where the scalar matrices R* in GL(3,R) act trivially on RP?. The analytic homomor-

phism from GL(3,R) to SL(3,R) defined by

A

A [
™ (det A)1

defines an isomorphism from PGL(3,R) to SL(3,R) as analytic groups. Thus, one can
consider only the group SL(3,R).

Let us consider the three points

1 0 0
p1=|0|,p2= 1] ,p3= |0
0 0 1

corresponding to the coordinate axes in R*® and the three lines I, = p<2—p)3 o = p@l,

I3 = pﬁg, correspond to the coordinate planes and divide the real projective plane RP?

into four triangular regions:
Ay = {[r,y,2] ERP*| 2> 0,y >0,z >0},
Ay = {[r,y,2] ERP* |z <0,y >0,z > 0},
Ay = {[r,y,2] ERP* |z >0,y <0,z >0},
Az = {[r,y,2] ERP?| x>0,y >0,z <0}
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If a projective transformation A € SL(3,R) fixes the points p1, ps, p3 then, it is repre-
sented by a unique diagonal matrix in SL(3,R) and it leaves invariant one triangular
region A; if and only if it is represented by a diagonal matrix with positive eigenvalues.
The full group of diagonal matrices in SL(3,R) is denoted by .4 and also the subgroup

of diagonal matrices with positive eigenvalues by A, .
If an element of SL(3,R) has three distinct real eigenvalues then it is called hyperbolic.
Moreover, if it is conjugate in SL(3,R) to a diagonal matrix with positive eigenvalues

then, it is called positive hyperbolic. Let us denote this subset of SL(3,R) by Hyp,.

Let us consider A € Hyp_, then it is represented by the diagonal matrix

A0 O
0 pu O (3.1)
0 0 v

with the properties A\uvy = 1 and 0 < A < p < v. The real eigenvalue of A having
the smallest absolute value is denoted by A(A) and sum of the other two eigenvalues

is denoted by 7(A). Namely, A(A) = X and 7(A) = p + v.

One can easily show that A € Hyp, is determined up to SL(3, R)-conjugacy by the set

of eigenvalues of A which are

o= g |- ﬂAV—ﬁ ,
L[ , 4 :
v o= 5_7’(/1)—1— 7(A) —m_

Therefore, we get a complete invariant of the SL(3,R)-conjugacy class of A, namely

(A(A), 7(A)).

Proposition 3.1.2 (/19]) If we consider the action of SL(3,R) on Hyp, by conju-
gation, then the restriction of SL(3,R) — R? with A — (A(A),7(A)) to Hyp, is a
SL(3,R)-invariant fibration with image the following region

2 1
— 2
m—{()\,T)GR‘O<)\<1,ﬁ<T<)\+ﬁ}
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and moreover, Hyp, = (A, 7)1 (R).

Let us now recall another pair of invariants (¢, m) of Hyp, which is more closely related
to the geometry of convex RP*-manifolds. If A € Hyp 4 as in (3.1) with the properties
Apv =1and 0 < A < pu < v, then ((A), m(A) are defined as follows

/(A) = In (§)>0, (3.2)
m(A) = 3ln(u).

Using the definitions, one can easily show that the conditions A\ur = 1,0 < A< p< v

are equivalent to the conditions

And also the relation between these two invariant pairs can seen as follows

AA) = exp (—@ . @) , (3.3)
) = o (102 (0,

The correspondence in (3.3) between (A(A),7(A)) and (¢(A), m(A)) defines a diffeo-
morphism

R {(l,m) eRy xR ||m| <}

giving another set of parameters for conjugacy classes in Hyp_ .

Let us consider A € Hyp, which is represented by a diagonal matrix (3.1). Let us
denote the fixed point corresponding to the eigenvector for A as a repelling fixed point
Fix_(A), the fixed point corresponding to the eigenvector for v as an attracting fixed
point Fix, (A), and the fixed point corresponding to the eigenvector for p as a saddle

point Fixg(A). Let Fix(A) denotes the stationary set consisting of these three points.

Let [(A) € RP? denote the principle line for A, namely the line joining the attracting
and repelling fixed points of A. The principal reflection for A is the unique reflection
R € SL(3,R) with stationary set Fix(R) = [(A) U Fix(A). Clearly, R commutes with
A. Finally, the principle segments for A are two A-invariant segments which are the

separation of [(A) by two fixed points of A on [(A).
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Definition 3.1.3 The complement of a projective line [ in RP? is called as an affine
space A in RP? and the intersection of a projective line I’ distinct from [ with the affine

space A = RP? — [ is called as affine line in RP?

Definition 3.1.4 Let S be a subset of RP?. If there exists an affine space A in RP?
containing S such that S is convex in the usual sense (namely, if z,y € S then the line

segment Ty lies in ), then S is convex.

Lemma 3.1.5 ([19]) If A € Hyp, and x € RP? does not lie on an A-invariant line,
then the closure of any convex set containing the < A >-orbit of x contains a principle

segment for A.

Now, let us consider the following matrix for s € R

A0 0
A= 10 p* 0], (3.4)
0o 0 v°

and a point in RP? with homogeneous coordinates as

Zo
Po = Yo | »
20

where zg, Yo, 2o are positive. The matrix in (3.1) lies on a unique one-parameter sub-
group comprised of elements in (3.4). If we choose a projective line [, which is not

meeting the triangular region

Ao = {[z,y,2] ERP? |2 >0,y >0,z > 0},

then the convex hull of the orbit {A4%(p) | s € R} in RP? — [, equals

" In(v/p) In(p/) In(/A)
y| €RP? | 2,y,2>0, (1> <3) > (i)
> Lo 20 Yo

Here, the action of A® to the point py is matrix multiplication

X0 0 |z Nz
A(po) = {0 p* O] |wo| = 1%
0 0 v |z vz



In general, the families of < A >-invariant convex sets is defined as

W, =4 || €RP? |2,y 2 > 0,0/ ) > ity
z

for each n > 0.

If we also consider the one-parameter subgroup of the diagonal matrices in SL(3,R)

comprised of elements

e 0 0
B'=10 e 0 (3.5)
0 0 e°

for s € R, then B* commutes with A. The line segments joining Fixy(A) to the principal
line of A are the orbits of the one-parameter subgroup {B*® | s € R}. Moreover, B*

maps the convex set W, to W,, where

= @/A) ",

Finally, the invariant ¢(A) in (3.2) can be interpreted geometrically. For a principal

segment o for A and an = € o, then the cross-ratio of the following four points

Fix_A, z, A(z), Fix, (A)

on the principal line [ for A equals €Y. If boundary of a convex domain € is a conic,
then the Hilbert metric is the hyperbolic metric, and ¢(A) equals the geodesic length

displacement function. Let us now briefly explain the cross-ratio and Hilbert distance.

~

Let C = C U {oo} be the extended complex numbers and Dy(C) ¢ C x C x C x C
denotes the set of all distinct four points. The mapping X : D4(@) — C defined by

(w1 — w3)(wz — wy)
(w1 — wa)(ws — wy)’

X{w17 Wa; W3, w4} -
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is called cross-ratio and it is invariant under the GL(2, C)-action on D4(@). If ai, as, as, as
are collinear (i.e. they lie on a single straight line) distinct four points of RP?, then
there is B € SL(3,R) such that the second homogeneous coordinate of each B(a;) is

zero for 1 = 1,2,3,4. If we consider the following identification

. x/z if z#0,
o =

oo if z2=0,
2

we can think of B(a;) € RU{oo} the extended real line and moreover, they are distinct.
Let CD4(RP?) C RP? x RP? x RP? x RP? consist of all collinear distinct four points.
Then the cross-ratio CR : CD4(RP?) — R is defined by

CR{ai,as;a3,a4} = X{B(a1),B(as), B(as), B(a)}

ar __ a2 as __ a4
/ ! ! !
ay Ay as ay

Suppose that there is another such B’ € SL(3,R), then one can show that B~'B’ €

a; ag Cls a4

SL(2,R) via the identification

a 0 b
a b
<10 1 0
c d
c 0 d

Therefore, the cross-ratio on CD4(RP?) is independent of the choice of B € SL(3,R).

The Hilbert distance h : RP? x RP? — Rt is defined by

h(a,b) = inf(in CR{z, a, b, y}).

zy
Here, a, b lie on the oriented segment ﬁ/ with a is the first, b the second point and inf

runs over all such x—>y Recall that if boundary of a convex domain €2 is a conic, then
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the Hilbert distance defines a metric and it is called the Hilbert metric. Furthermore,

it is an hyperbolic metric.

Let A € Hyp,. It can be uniquely decomposed as A = HV product of two matrices

up to SL(3, R)-conjugation. Here,

AE 00

is called horizantal factor and

H = 0 1 0
0 0 vyu
1
\/_;70 0
V=10 pu 0
0o 0 +

Vi

is called wertical factor of the decomposition of a positive hyperbolic transformation.

Lemma 3.1.6 Ifa € RP? and A € Hyp, , then the Hilbert distance

h(a, A(a)) = In CR{Fix_(A),a, A(a), Fix, (A)}.

Now, let us consider the Hilbert distance between a and H(a) for any a = [1—s,0, s]" €

o(A)=0(H).

h(a, H(a))

In CR{Fix_(H), a, H(a), Fix, (H)}

1 1—s 1—3s)A
In CR [O 1 0 . ( O> v ;
0

0
0
S sU\/p 1

So, we call £(A) = h(a, H(a)) the horizontal translation length, and it is the length of

the boundary component represented by A.
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Let us consider V and the stationary set which is the line joining [1,0, 0], [0, 0, 1]* and

the fixed point [0, 1,0]*. We can assume p > 1 without loss of generality. So, for any

a=[1-sy,s|

in the line segment joining [1 — s,0, s]* and [0, 1, 0], the point V (a)

goes toward [0, 1,0]" since p > 1. Thus, the Hilbert distance between a and V(a) is

h(a,V(a))

T 0
= In CR 0O |s| v ||y |5]|1
1—s O

= In CR{Fix_(V),a,V(a), Fix,(V)}

[(1-s)

(1=3)

3

We call m(A) = h(a,V(a)) the vertical translation length.

Consequently, one can easily see the relations among H,V, and A as follows:

Therefore, A and H have the same horizontal translation length; A and V' have the

((H) = In (K\{;):ln <§>:€(A),
m(H) — gln(l):o,

(V) = In G;—\/Z — (1) = 0,
m(V) = 3 in(s) = m(A)
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same vertical translation length.

3.2 Convex RP?-structures on a Pair-of-pants

Let X be a pair-of-pants; that is, a compact oriented surface of genus zero with three

boundary components A, B, C'. The main result of Goldman is the following theorem.

Figure 3.3: A pair-of-pants

Theorem 3.2.1 ([19]) The deformation space B(X) of convex RP*-structures on ¥ is
an open 8-dimensional cell and the map Opx, : B(X) — R3 obtained by associating to

a convex structure the boundary invariants

<<)‘7 T)Av <)‘> T)B> <)‘7 T)C)
18 a fibration over an open 6-cell with fiber a 2-dimensional open cell.

Sketch of Proof. Let M be a convex RP-structure representing a point in B(X) and

(dev, h) be a development pair. Therefore, we have

h:m(X) — SL(3,R)
A — h(A),

and similarly we get h(B) and h(C') for the boundaries B, C, respectively. Let us also
consider four triangular regions Ag, A,, Ay, A. C RP? (see Figure 3.4) and three pro-
jective transformations A, B,C € SL(3,R) (here, A, B, C' denote the holonomy trans-
formations of h(A), h(B), h(C) of boundaries,respectively) which satisfy the following

conditions:
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o A,, Ay, A, each intersect A, along each of the three edges of Ay,

AgUA, UA,UA, is a convex hexagon,

CBA =1 and A(A}) = A, B(A,) = A, C(A,) = A,

A, B,C € Hyp, and the vertices of Ay are the repelling fixed points Fix_(A),
Fix_(B),Fix_(C) of A, B, C respectively and satisfy

A,NA, =Fix_(C), AynA,=Fix_(A), A.NA,=TFix_(B).

The set of all (Ag, Ag, Ay, A, A, B, C') satisfying above conditions is denoted by O’
and the projective group SL(3,R) acts properly and freely on (0, thus the quotient is
denoted by O.

The following lemma will conclude the proof of the Theorem 3.2.1.

Lemma 3.2.2 ([19]) O is an open cell of dimension 8 and the map

0O - R
(A07Aa7Ab7AchaB70) — ((AaT)Aa(A7T)B7()\7T)C)

is a fibration with fiber an open 2-cell over the 6-cell R3. Moreover, there is an em-
bedding Teich(X) C B(X) C O, where Teich(X) is the deformation space of convex

hyperbolic structures on Y3, namely the Teichmiiller space.

Let us choose the coordinates in RP? such that

1 0 0
O{,{1|,|0O
0 0 1

are the homogeneous coordinates of the vertices of Aq. Here,

Ao ={[r,y,2] ERP? |z >0,y > 0,2 > 0},

and also [1,0,0] is the repelling fixed point of A, [0,1,0] is the repelling fixed point
of B, and [0,0,1] is the repelling fixed point of C. In the homogeneous coordinates,
the remaining vertices of A,, Ay, A, are respectively [—1, by, ¢1], [ag, —1, ¢}, [ag, b3, —1].

Note that the other triangular regions are given by
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A, = {[:U,y,z]ERIP’2\x<0,0<y<—b1x,0<z<—clx},
Ay = {lz,y,2] ERP* |0 <z < —agy,y < 0,0 < z < —cyz},

A, = {[z,y,2] ERP? |0 <z < —asz,0 <y < —bsz,z < 0},

respectively.

Here, we will recall two lemmas about cross ratio. For more detail, see [38].

Lemma 3.2.3 (/38]) If a,b,c,d are four points in the projective plane RP* and o is a

point which is not on this line, then the cross-ratio can be calculated as

[0, a,cl[o,b,d]
[0,a,d][o,b,c]

(a,bye,d) =

Figure 3.4: The cross-ratios of four lines
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Thanks to above Lemma 3.2.3 and Figure 3.4, we can compute the cross-ratios of the

four lines which contains edges of the incident triangles as follows:

10 as 1 a9
0 0 bs 1 1
O O as Qo 0 1 1 O (&)
Of . [1]:|bs|-|T]] =
1 0 1 Co 10 a9 10 as
0 0 1 1 b3
0 1 cf|0 0 1
(O—bg)(CQ—O)
pum— :b =
0—1)(1-0) 3C2 = P1
0 as 01 1
10 bs||1 0 b
0 1 as 1 1 1110 0 ¢
0, [of:]bs|.|bu] ] =
1 0 1 C1 1 0 1((0 1 as
10 by||1 0 b
01 ¢[00 1
—-1)(0 —a3)(—=1)(c; — 0
_ DO D=0
(=DO-1)(=DH -0)
0 (05} 01 1
1 110 by
0 1 Qs 1 1 0 ||l 0 ¢
1 ] O 7 1 9 b]_ -
0 0 Co C1 0 0 1]|0 1 a9
1 01110 1
1 C1 1 0 Co
0—as)(by —0
= ( 2) (b ):aleng

The hexagon AgUA,UA,UA, is convex if and only if all by, ¢1, as, c9, as, bs are positive

and all the cross-ratios, namely pq, p2, p3 are greater than 1.

There are also 2 internal parameters s, > 0. From the details in [19], one can easily

see that
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asb
= 23
as

and s is determined as the unique positive solution to any one of the three equations

below:

pP1 — bgcg = 1+ T(A)

)
_ _ AMAAB) - AA) o
p2 =azc; = 1+4+7(B) (@) s—|—>\(0)s
et = 1o

Finally, for the ¥ which is a pair-of-pants, the parametrization is
((M(A), 7(A4)), (A(B), 7(B)), (MC), 7(C)), (s, 1)) € R®.

Thus, the fiber of the boundary invariant map @ — R3 is parametrized by arbitrary
pairs (s,t) € Ry x Ry such that O — R? is 2-cell fibration over the open 6-cell R3.
This concludes the proof of Theorem 3.2.1.

Theorem 3.2.4 ([19]) Let ¥ be a compact surface with negative Euler characteristic
and having n > 0 boundary components. Then the map Ogs : B(X) — B(0X) is a
fibration over the 2n-cell B(0X) with fiber an open cell of dimension —8x(X) — 2n,

where x denotes the Fuler characteristic.

Let ¥ be a compact surface with boundary components by, ...,b,, and cut X along
disjoint one-sided simple closed curves aq,...,a,. If we decompose the surface into
pair-of-pants P, for [ = 1,..., —x(X) along simple closed curves ¢,...,c,. One can

easily see that n 4+ m + 2p = —3x(%).

If, for example, ¥ is a surface of genus 2 with 3 boundary components, then the Euler

characteristic of this surface is

xX)=2-2g—n=2-2-2—-3=-5.
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Moreover, if we decompose this surface into pair-of-pants then we get 5 pair-of-pants

along 6 simple closed curves. So, we have
n+m+2p=3+0+2-6=15

which equals —3x(X) = (—=3)(—5).

There is one more part of this parametrization. In [19], Goldman defines the R? ac-
tion U on B(X) that generalizes the earthquake flow on the Teichmiiller space. The
action of an element (u,v) € R? is defined on a point in B(X). Therefore, a new convex

RP?-manifold W, (M) is constructed for (u,v) € R? which represents a point in B(X).

Let p : M — M be a universal covering and (dev, h) be a development pair. For a
simple closed geodesic C' on M and a representative element v € (M) chosen such
that h(y) € A is represented by the diagonal matrix (3.1) satisfying the properties
A =1and 0 < A < g < v. Obviously, the centralizer of h(7y) in SL(3,R) equals A.
A is the identity component of A and it is the direct product of the two one-parameter

groups

e 0 0 e 0 0
TU - 0 ]. 0 ) UU - 0 621) 0 9
0 0 e* 0 0 e

where u,v € R. The flows ¥, o) and ¥ (g, on B(X) are special cases of the generalized

twist flows on Hom(7w,SL(3,R)). These flows generates the vector fields and

0 0
96 B,
they are called the generalized twisting vector fields whose potential functions are £(vy)

and m(7y), respectively.

Consequently, the following map
B(X) = R" x R™ x (R x R*)? x (R, x Ry )X
defined by

M= {(A(B), 7(bi) Fimy < {(Aay), (@) i
x{(Aler), 7(en), (s v) () Fioy x (s ) (P}
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is a diffeomorphism of B(X) onto a —8y/(X)-dimensional cell.

3.3 The Symplectic Structure on Rep(w, G)

Let us recall that B(X) embeds into Hom(, SL(3,R))/(SL(3,R)). Therefore, we should
recall the basic properties of Hom(7, G). Here, m denotes the fundamental group of a
compact oriented smooth surface M = ¥(g,n) with genus g > 2 and n boundary, and

also G is a connected Lie group.

Hom(, ) is not smooth, in general. Therefore, we look for a smooth part of it. First
of all, let Hom(7, G)~ denote the set of nonsingular points of Hom(7,G). And then,
Hom(m, G)~~ be the subset of Hom(m, G)~ which consists of homomorphisms whose
image does not lie in a parabolic subgroup of G. So, Hom(7,G)~~ is a Zariski open
subset of Hom(7, G)~, and Hom(7,G)~~ /G is a Hausdorff smooth manifold of dimen-

sion —dimG - x(M). Details and unexplained subjects can be found in [15].

In this thesis, we will consider the surfaces without boundary. So, we will study the
symplectic form on the moduli space of a closed surface. And also, when we say

Rep(w, G) we mean the smooth locus Hom(m, G)~~/G.

First, let us recall Fox’s calculus in [39]. By using this, one can define the explicit

formula for the symplectic 2-form on Rep(r, G).

Let F be a free group with basis {x1,...,2,} and ZF be its integral group ring. The
Foz derivation of ZF is a Z-linear map D : ZF — ZF which satisfies

D(fg) = D(f)&(9) + fD(g).

Here, f,g € ZF and £ : ZF — Z is the augmentation homomorphism which defined
by

f(Z niol-> = an

ZF is an F-bimodule such that F' acts on the right by trivial and on the left by
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left-multiplication. For an arbitrary x,y € F, since {(y) = 1

D(zy) = D(z)§(y) +xD(y)
= D(z) +2D(y),

the Fox derivation is a 1-cocycle on F' with coefficients in ZF'.

Lemma 3.3.1 (/39]) Let {x1,...,x,} be the generators for group F and Der(F') be
the set of all Fox derivations. If we define

(Do f)(x) = D(x)E(f),

where D € Der(F), f € ZF and x € F, then Der(F) is freely generated as a right
ZF-module by n elements 0; = 0/0x;, i = 1,...,n so that (0/0x;)(x;) = ;1. Here, I
15 the wdentity element of F'.

Now, let us recall the group homology theory in [40]. Let F' be a group and ZF denote
its integral group ring. The freely generated Z-module F' x - - - X F' is denoted by C,,(F')
and Cy(F') = Z. The boundary operator 0, : C,,(F) — C,_1(F) is defined as follows

for n > 2

—

n—

On(ur, ... un) = &(ur)(ug, ... ,up) + (—1)i(u1, e Uy 1y ey Uy
1

H(=D)"(ugy oy up—1)E(un),

.
Il

and 0;(u) = 0.

For example, let us write 0y : Co(F) — C1(F):

Gg(ul, Ug) = f(ul)UQ — U1U9 + Ulf(UQ),
and 83 : Cg(F) — CQ(F)

O3(uy, ug, ug) = &(uy)(ug, ug) — (ugug, uz) + (u1, ugus) — &(ug)(ur, ug).
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Now, let us check 0, o 0s:

0o (05(ur, ug,uz)) = &(ur)02(ug, ug) — Oo(ugug, ug) + Oa(ur, ugus) — &(us)O2(uy, us)
= {(w)[€(u2)us — ugus + uzg(us)]
—[&(urug)us — ugugus + ugus(us)]
+[E&(ur ) ugus — uyugug + ur&(ugus)]
—&(us)[§(u1)uz — urus + urg(ug)]
= 0.

One can easily see that 0, o 0,11 = 0. Therefore, the group homology is:

Here, Z,(F) is the kernel of 0, : C,(F) — C,_1(F) and B,(F) is the image of
8n+1 . Cn+]_(F) — On(F>

For the rest of this subsection, we refer the reader [20]. Let us consider a closed surface
group m = F'/R where 7 is a group generated by 2¢ generators Ay, By, ..., A,, B, and
with the relation

R=ABA'B - AyByA B (3.6)

If we consider the 2-chain on 7

b i(@%ﬂﬁﬂg—;&))

i=1

= an(xz,yz) S Z<7T X 7T)7

then the boundary 0Zr = 0. Recall that Zg is called the fundamental cycle of the

fundamental group .

Finally, we are ready to give the explicit formula of the symplectic form on Rep(w, G).
Here, 7 is the fundamental group of a closed surface ¥, G = SL(3,R) is a connected al-
gebraic Lie group and g = s[(3, R) is the Lie algebra of G. Let B : sl(3,R) x sl(3,R) —

R be an Ad-invariant nondegenerate symplectic bilinear form, e.g. it can be the trace
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form.

If u,v € Z'(m;s((3,R) aq,) then a Z-linear map B, (u,v) : Z(m x 7) — R is defined by

B*(u,v) (an Tiy Yi ) an{B : ( ))}

Here, 2;-v(y;) = Adgnv(y;) for (z;,y;) € mxm C Cy(m), therefore B, (u,v) € Z*(m; R).

Definition 3.3.2 The symplectic form wg on Rep(r, G), which is called Atiyah-Bott-

Goldman symplectic form, is defined as follows:

wot Hmigas) x H'(migas,) = R

wa(lul,[v]) = Bi(u,v)Zg.

Here, Zp is the fundamental cycle of 7, G is a Lie goup and g is the Lie algebra of G.

Let us consider the set of nontrivial homotopically distinct disjoint simply closed

geodesics I' = {v;}i=1,..35-3 on ¥ so that ¥ is decomposed as the disjoint union of

2g — 2 pair of pants by I'. So, for each ~; there are two length parameters ¢;, m; and
two twisting parameters 0;, Bi, where {; € R, and m;, 0;, B; are real numbers. The co-
ordinate fields 9 ) B8 B are the generalized twisting vector fields generated by the flows

U, 1,0y Yo, (0,0) and their potential functions are £;, m;. Thus, we have following

0 0
G (6_017 > - _dgla wa (8_617 ) = _dmz

By using above duality formula, if

X € Vect(B(X))\ and Y € Vect(B(X))\ < —

TR agk o

then we can determine that

we(Lx) = oo
) = —dm(Y) =0.
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Lemma 3.3.3 ([20]) Let 3 be a closed surface with genus g which is having an orien-
tation reversing map p fizing the elements of a partition I' = {~;} and preserving the

real projective structure on . For each v and j,

Y (AN WY (CAC WY (RGN Y (RN R
“\ae. 00,) " \otoe;) — “\apop;) ¢ \omi omy )

and also for any 7 and k,
oo (29N (29
“\os; 0s, )~ 9 \ot; ot )

Finally, the main theorem of [20] is following:

Theorem 3.3.4 ([20]) If ¥ is a closed smooth surface with genus g, then the symplectic

form on B(X) of convex real projective structures is

39—3 39—3 29—2
we =Y dliNdf;+ Y dmi AdB;+ Y dt; Ads;. (3.7)
i=1 i=1 j=1
Here,
li,m; — length parameters,
0;, 6, — twisting parameters,
Sty — internal parameters,

on B(X). Therefore, B(X) is symplectomorphic to R1®9~16,

3.4 Reidemeister Torsion of Representations Associated to

RP? via the Goldman Parametrization

Thanks to Goldman parametrization of the deformation space of convex RP%-structures,

we have the following diffeomorphism:
f(B(E),we) = (R wyar) , (3.8)

where the image of f is an open cell of dimension 16g — 16, wg is the Atiyah-Bott-
Goldman symplectic form, and wy,; is the well-known natural symplectic form on
R69-16  This map defines a symplectomorphism, namely

f*(wnat) e er

40



Here, f* is the pullback of f.

Finally, we are ready to give the main result of this section of the thesis.

Theorem 3.4.1 Let ¥ be a closed orientable surface with genus at least 2 and ¢ :
m(X) = SL(3,R) be the element of the deformation space B(X). If a = {a;}.297' is

a basis of the open cell of dimension 16g — 16 then we have the following formula

What

Tor(3, {a}) = |det

Proof.

Let us consider the differential

feo H' (S, 81(3,R) aq,) — R0

of f in (3.8). Here, H'(X,sl(3,R)44,) denotes the first cohomology group of the
deformation space ¥ with basis h! = f!(a) . Let 01,00 be the elements of the

H'(%,5l(3,R) 44, ), so we have

WG(01,02) = f*(wnat)(Ul,Uz)
- wnat(f*(o-l);f*(oﬁ))

What (Oél, 042),

where, «; € R%716 for 4 = 1,2. Using the fact that f*(wa) = we, f«(h') = a and

applying Theorem 2.3.6 we conclude the proof.
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4 COMPLEX PROJECTIVE STRUCTURES

In this section, we will state well-known facts about Teichmiiller space. For more in-

formation and unexplained subjects, we refer the reader to [27, 28].

Recall that a surface with a class of complex structures, in other words an element of

Teich(T"), is called a marked surface.

Let p : H — X be the universal covering of ¥ with covering transformation group
I'. Here, H C C is the upper half-plane and I'" C PSL(2,R) is a strictly hyperbolic
Fuchsian group acting on H by linear fractional transformations. Taking a base point
z € H lying over z € ¥ establishes a canonical isomorphism between I' and 7 (%, )
and thus determines a system of generators Ay, ..., Ay, By,..., B, of I' that correspond

to the elements ay,...,a4,b1,...,by, so that

g
i=1

This called a marking of I' and also the group I' with a marking is called a marked
Fuchsian group. Throughout the following subsection, a marking of ¥ and the corre-

sponding marking of I will be fixed.

4.1 Bers Section

For more information about this subsection, we refer the reader to [21].

Definition 4.1.1 Let ¢ : H — C be a holomorphic function. If ¢ satisfies the following
equality forall y € I',z €¢ H

9(v2)7'(2)* = q(2)
then it is called a (holomorphic) quadratic differential for I'. The space of all quadratic
differentials denoted by As(H,T').

The Schwarzian derivative of a holomorphic function f of one complex variable z is

defined by




Note that, the Schwarzian derivative is a certain operator that is invariant under all

Mobius transformation.

If we consider the differential equation

for a quadratic differential ¢ € Ay(H, I'), any solution of f of above equation turns out
to be a locally biholomorphic mapping from H into the Riemann sphere C. Therefore,

it arises a homomorphism ¢ : I' — PSL(2, C) such that

f(vz) = é(7) f(2)

for all v € ', 2 € H. This f determines a projective structure on ¥ and we call ¢ the

monodromy representation determined by f.

Definition 4.1.2 Let pu: H — C be a C'*°- function. If the following equation

l(z
'(Z
is satisfied for all ¥ € T and z € H, then pu is called a (smooth) Beltrami differential
for .

~—

i)

n(vz2) = u(2)

~—

)

B(H,T') denotes the space of all Beltrami differentials for I' and B(H,I'); denotes the

set

{iw &€ BELT); lilloe = suplp(2)] <1}
If 1 is an element of B(H,T'); then there exists a unique quasiconformal mapping
w" : C — C which satisfies the Beltrami equation
=pwh in H
=0 in C\H

IR RS

w
w
and fixing the points 0,1 and co. Note that since p is C* on H the restriction w*|y is

a diffeomorphism (see [27]).

Let us take two elements pu, v € B(H,I'); and define an equivalence relation for them
as

o~ v <= w" and w” coincide on the lower half-plane H".
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The equivalence class of an element 1 is denoted by [u].

The set of equivalence classes of these Beltrami differentials defines the Teichmiiller
space Teich(T").
Teich(I") := B(H,I"); / ~

If [u] is an element of the Teichmiiller space then one can consider the element w* |g-,
which bring out a bijection between the Teichmiiller space and a certain class of locally

biholomorphic functions on H* (see [27]).

Now, there is an important step like taking the Schwarzian derivative of the functions

w*|g+. One can shows that
(i) S(w*|g~) is a (holomorphic) quadratic differential for I' on H*, for any u €
B(H, T,
(ii) S(w"|g) = S(w”|g+) < [u] = [v] in Teich(T).

For more detail see [28, 27].

Definition 4.1.3 From above informations, there is a well-defined injective mapping

B :Teich(T) — Ap(H*,T) (4.1)
] > S(w"

)
which is called Bers embedding, where As(H*,T") denotes the (3g — 3)-dimensional

complex vector space of (holomorphic) quadratic differentials on H* for T

If the following map (the Bers projection)

(I)ﬁIB(H,F)l — AQ(H*,F)

po— S(w*

(4.2)

H)

is analyzed closely, one can show that the image of 3, which is denoted by Teichg(T'),
is an open (bounded) domain in Ay(H*,T") (see [27]). One of the possible definitions
of the complex structure of Teich(T") is the natural complex structure via the embed-

ding f3; thus it can be biholomorphically identified with the open domain Teichg(I") in
Ay(H*, T).

44



Let H* = w*(H) be the quasidisk which depends only the Teichmiiller class p and that

mapping w* conjugates I' into a quasi-Fuchsian group I'* = w*T'(w*)~! acting on HH.

Definition 4.1.4 Attaching over each [u] in Teich(I') the marked Riemann surface
Y# = HH/T*H a representative of the Teichmiiller point [u] defines the universal Te-

ichmiiller curve V (T').

Definition 4.1.5 If ¢ € A3(H,T") and z € H, then one can define a Beltrami differen-
tial [q](2) € B(H,T) by

plal(2) = Mu(2) 7 q(2).

plq] is called the harmonic Beltrami differential formed from q. ¢ +— pulg] induces a
complex antilinear isometric embedding of Ay(H, T') into B(H, T"). The image space of
this embedding is denoted by H B(H,I).

Let us consider the quasidisk H* = w*(H) and quasi-Fuchsian group I'** = w#T"(w*) ™.

The Bers projection @5 in (4.2) can be expressed in terms of the generalized Bers
projection

o* . B(HF,T"), — Ao((H™)*, TH),
through the canonical biholomorphism B(H*,I'*); — B(H,I'); and the isomorphism
Ay ((H*)#*, T*) — Ao(H*,T). For more detail, see [27, 21].

Considering the differential of ®5 at the point 0 € B(H,I'); one has the following

isomorphisms

T[H]Teich(F) = HB(H“,F“)

Tj, Teich(T) = Ap(H”,T*)

27]. Here, Ty, Teich(I") denotes the holomorphic tangent space and Tj, Teich(I') de-

notes the holomorphic cotangent space to Teich(I') at the base point [u] € Teich(T").
Let @ be the total space of the holomorphic cotangent bundle T*Teich(I") of the Te-

icmiiller space Teich(T"). It is well-known that @) has a canonical symplectic structure

what- Let us recall the natural symplectic form on the cotangent bundle.
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Let M be an n-dimensional smooth manifold and its cotangent bundle is defined as
follows

T*M := { linear maps f: T,M — R; g€ M}.

If ¢ = (q1,...,qs) is a choice of local coordinates on U C M, then for a fixed ¢ € U,
a 1-form > " | p;dg; on T M is determined by the coefficients (pi, ..., p,). Therefore,

local coordinates of an element [ € T*M are (p,q) = (P1,-- Dy @1, -, Gn)-

Let X € T)(T*M) be a vector tangent to the cotangent bundle at the point [ = (p, q) €
T*M. Through the derivative

. T(T"M) — TM,

of the natural projection, the tangent vector X € T;(T*M) is mapped to the tangent
vector m, X € T,M. This defines the 1-form v on T*M by the relation v(X) = (7, X).

A symplectic form on T*M is defined by the exterior derivative wy,; := dv. Clearly, it
is closed and non-degenerate. Note that in the local coordinates (p, ¢) described above

the natural symplectic structure wy, is equal to dp A dq [42].

The space Rep(I', PSL(2,C)) also admits a natural symplectic structure namely, the
Atiyah-Bott-Goldman symplectic form wpgp,2,c). Let 7 € Teich(I') and ¢ € Ao(H™,T™7).
One has a conjugacy class of representations I'" — PSL(2, C) and hence one can obtain

the monodromy mapping
F:Q — Rep(I', PSL(2,0C)) (4.3)
via the canonical isomorphisms I'” = I'.

It was proved in [21] by S. Kawai that the mapping F' : @ — Rep(I', PSL(2,C)) is a

symplectomorphism, more precisely

1
*
F WPSL(2,C) = ;wnat-

Using this fact, we prove:
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Theorem 4.1.6 Let ¥ be a closed orientable surface with genus at least 2 and ¢ :
m(3) = PSL(2,C) be an element of the space Rep(I', PSL(2,C)). If o = {a;}, 297"
is a basis of R129712 then

What

|Tor(X, {a})| = 757% |det
o

Proof. We have the symplectomorphism (4.3)
F:Q - Rep(T', PSL(2,C)),

and let ¢ € Rep(I', PSL(2,C)) be a representation. We can consider the differential of

this map

F. : Tp 1@ — TyRep(T, PSL(2,C)).

Considering the isomorphisms H* (X, s{(2, C) 44,) = TgRep(I', PSL(2,C)) and Tp-1(4)@ =
R129712 we get

F' HY(S,81(2,C)aq,) — R

*

Here, H'(X,5l(2,C)4,) is the first cohomology group of ¥ with twisted coefficients.
Considering the corresponding basis h! = F,(a) of H'(X,5l(2,C)4q4,) and Theorem
2.3.6 we have

WPSL(2,C)

(4.4)
hl

| Tor(2, {h'})| = | |det
Let 01,09 be elements of H(X, sl(2, C)aa,). From the fact that F*(wpsL2,c)) = %wnat

it follows

wpst.0) (01, 09) = —(F*) ™ (wnat) (01, 02)

—x | =

= %wnat(F*fl(m), F*il(@))

== lwnat(ﬁbBQ)? (45)
s

where, 8; € R129712 for = 1, 2.
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Combining the equations (4.4), (4.5) and using the fact dimg (H'(3,50(2,C)aq,)) =

12g — 12 we obtain the formula

What

|Tor(2, {a})| = 707% | det
o

4.2 Schottky Uniformization

Let CP(X) be the deformation space of complex projective structures, namely the
space of equivalence classes of projective structures associated to > and wep denote
the holomorphic symplectic structure on this space obtained by pulling back, using
the developing map. Let us also consider the natural symplectic structure wy,; on the

cotangent bundle T*Teich(3).

Definition 4.2.1 (//1])Let T be a Fuchsian group acting on the unit disc A so that one
can consider the closed Riemann surface ¥ as A/T". The tuple (A, T, F: A — YY) is a
Fuchsian uniformization of ¥. Here I' : (Ay,..., Ay, By,..., By : H]g.zl AijAj’lBj’1 =
1), N = ((By,...,By)) be the normal envelope of By, ..., B, inside I. The free group
G =T'/N with rank g is a Schottky group and 2 = A/N is the region of discontinuity.
Now, the tuple (2, G, P : Q — X)) is a Schottky uniformization.

Considering the section s : Teich(¥) — CP(X) obtained by Schottky uniformization,
I. Biswas proved in [22] that

1
*
Ls Wep = —Wnat,
T

where L : T*Teich(X) — CP(X) is a smooth diffeomorphism.

4.3 Earle Uniformization

Recall that the deformation space of complex projective structures CP(X) is the space
of equivalence classes of projective structures associated to ¥ with the symplectic form
wep. Let us also recall that T*Teich(X) is the holomorphic cotangent bundle of the

Teicmiiller space Teich(X) with the symplectic form wyg.
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The natural projection p : CP(X) — Teich(X) sends a projective structure on X to the
underlying complex structure on X. For any smooth section f : Teich(X) — CP(X) of
this projection, namely po f = Idreien(s), there is a diffeomorphism Ty : T*Teich(X) —
CP (%) which sends (¢, w) to the projective structure f(t)+w. Here, w is any cotangent

vector of Teichmiiller space, over t € Teich(X).

First of all, we will recall the Earle uniformization. For more detail about this uni-

formization, we refer to reader [43].

Let T be a quasi-Fuchsian group, namely the limit set A(T") is a Jordan curve in the
extended plane, that ' maps each of the Jordan regions Q% and Q= bounded by A(T")
into itself and that the quotient maps Qt — QF/I" and Q= — Q7 /T are unramified
coverings of closed Riemann surfaces with genus g. If we lift a canonical dissection of the
surface Q1 /T" to QF, we can choose an ordered 2g-tuple o = (Ay, By, As, Bo, ..., Ay, By)

of Mobius transformations such that the A; and B; generate I' and satisfy the relation

g
[[4B:A7'B = 1.

j=1

Definition 4.3.1 The pair (o, ") as in above, is called a marked quasi-Fuchsian group.

Theorem 4.3.2 ([/3]) Let ¥ be a closed Riemann surface of genus at least 2 with
canonical homotopy basis a1, . ..,a4,b1,...,by and let ¢ be an automorphism of m (%)
mduced by an orientation reversing diffeomorphism of X. Then, there is a unique

normalized marked quasi-Fuchsian group I such that:

e the map m(X) — I that sends a; to A; and b; to B;, 1 < j < g, is induced by a

conformal map ¥ — QT /T,
e there is a conformal map F : Q= — QF such that
F(yz) = ¢(7)F(2),
forally €T and z € Q™.

If ¢ is an wnvolution then F is a Mdbius transformation of order two. Moreover, F

and ' generate a Kleinian group whose deformation space is Teich(X).
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In 2008, P. Ares-Gastesi and I. Biswas in [23] proved that for the holomorphic section
e : Teich(X) — CP(X)
given by the Earle uniformization [43], following equality satisfies
Liwep = Twpat- (4.6)

Here, L. : T*Teich(X) — CP(X) is the biholomorphism given by the section e.

Note 4.3.3 Note that, P. Ares-Gastesi and 1. Biswas in [23] also expressed that the
equality in 4.6 remains true if e is replaced by a large class of sections f satisfying the

following conditions:
e f is holomorphic, and
e The Kleinian reciprocity aplies to f.

Here, for the definition of the Kleinian reciprocity see [44]. Namely, for any section
f : Teich(¥) — CP(%)

satisfying the above conditions we can consider the biholomorphism L; and then we
get the equality
Liwep = TWnat- (4.7)

Note that, Schottky section also satisfies these conditions.
By combining Note 4.3.3 and Theorem 4.1.6, we get the following result:

Corollary 4.3.4 Let ¥ be a closed orientable surface with genus at least 2 and ¢ :
m(X) — PSL(2,C) be an element of the space Rep(I', PSL(2,C)). Let f : Teich(X) —
CP(X) be a section satisfying the above conditions. If o = {ai}iﬁ_lz is a basis of

R'29712  then

What

|Tor(2, {a})| = 7%76 | det
o

Here, a = f, 7' (h') is obtained by the corresponding basis h' of H'(X,51(2,C)a4,).
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5 APPLICATIONS

5.1 Complex Projective Structures on the Boundary of a Com-

pact 3-manifold

For a marked complex structure X on ¥, there exists a representation ¢ : m(X) —
PSL(2,R) by uniformization theorem such that X ~ H/I" as a Riemann surface. Here,
I' denotes ¢(m1(X)). Since this quotient inherits a projective structure then it defines
a section

oz : Teich(X) — CP(X)
to the projection

p: CP(X) — Teich(X) (5.1)

which is called the Fuchsian section. ox(Teich(X)) is called as the deformation space

of Fuchsian structures on . It can be considered as an embedded copy of Teich(X) in

CP().

Let us consider two marked complex structures (X, X ) € Teich(X) x Teich(X). Here,
Y denotes the reversed oriented surface ¥. Then, there exists a unique representation
¢ :m(X) — I' € PSL(2,C) up to conjugation. Let Q2 be the domain of discontinuity
and it is the disjoint union of two simply connected domains Q7 and Q. Therefore,
the given two marked complex structures (X+, X~) can be considered as X+ ~ QF /T’

and X~ ~ Q~/I'. From Bers’ Theorem

B =(B",B87): Teich(X) x Teich(¥) — CP(X) x CP(X)
(X7 X7) = (BT(XT,X7), 87 (X, X))

is a holomorphic section of
pxp:CP(X) x CP(X) — Teich(¥) x Teich(X).
Definition 5.1.1 e If X~ € Teich(X) is fixed, then the following map
ox- = B7(,X7): Teich(Z) — CP(%)

is a holomorphic section to p in (5.1), which is called a Bers section and its image

ox-(Teich(X)) C CP(X) is called a Bers slice.
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e If X & Teich(Y) is fixed, then the following map
fx+ = pH(XT,.): Teich(Z) — CP(D)

is an embedding of Teich(X) in the fiber p~1(X*) C CP(X). Thus, fx+ is called

a Bers embedding.

e Finally,
QF(X) := B (Teich(X) x Teich(X)) C CP(X)

is called the deformation space of standard quasi-Fuchsian structures on Y. This

space is an open neighborhood of the deformation space of Fuchsian structures

on ¥ in CP(%).

Let M be a smooth, connected,oriented, compact,irreducible, atoroidal 3-manifold with
boundary and infinite fundamental group. Recall that irreducible means that every
embedded 2-sphere bounds a ball and atoroidal means that it does not contain any

embedded, non-boundary parallel, incompressible tori.

Let M denote the interior of the manifold M. , namely M = M —OM. Assume that the

boundary 0M is incompressible and contains no tori. Here, incompressible means that

the map ¢, : m (OM) — Wl(]\/i ) induced by the inclusion map ¢ is injective. Therefore,

OM consists of a finite number of surfaces Y1, ..., %y of genera at least 2.

SV, o O

Figure 5.1: A 3-manifold with incompressible boundary
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The Teichmiiller space of the boundary OM is considered as follows

Teich(@]\/j) = Teich(X) x -+ x Teich(Xy),
and also the deformation space of complex projective structures on the boundary oM
is described

—

CP(OM) =CP(%;1) x --- x CP(Sy),

and finally there is a holomorphic “forgetful” projection

—

p=p1 XX py : CP(OM) — Teich(9M).

Let

—

proj, : CP(OM) — CP(Xk) (5.2)

denotes the k-th projection map.

Definition 5.1.2 The space of convex cocompact hyperbolic structures HC(M) is the
quotient of the set of convex cocompact hyperbolic metrics on M by the group of

orientation-preserving diffeomorphisms of M that are homotopic to the identity.

Note that HC(M) is a connected component of the interior of the subset of discrete

and faithful representations in the character variety Hom(M, PSL(2, C)) (see [48, 49]).

Let ¢ : HC(M) — CP(@]\/Z) be the map such that for any element of HC(M) there
is a marked complex structure. Moreover, this map is holomorphic (see [50]). If we

consider the induced conformal structure on M , then in the following diagram

—

Teich(OM)

the map ¢ = p o ¢ can be defined. The following theorem due to [51, 52, 53, 54, 48,
55, 49] as follows:

o~

Theorem 5.1.3 The map 1) : HC(M) — Teich(OM) is bijective.
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The direct result of above theorem is that the map
B =otp~": Teich(9M) — CP(OM)

is a canonical holomorphic section to

p: CP(OM) — Teich(OM),
and [ is called the generalized simultaneous uniformization section. Thanks to this
map “generalized Bers section” and “generalized Bers embeddings” can be defined as
follows. Firstly, only one of the boundary components’ conformal structure is varied
then some other or the same boundary components’ the resulting complex projective
structure is checked. More clearly, let X; € Teich(X;) be marked complex structures

which are fixed for all ¢ # j, where j € {1,..., N}. By using the canonical injection

—

tx, : Teich(¥;) — Teich(OM)

X = (Xl,...,Xj_l,X,Xj+1,...,XN)
the map fx, r = proj, o B o tx, defines as follows:

— ﬁ —

Teich(OM) — CP(OM)

lx, T lprojk

Ix. k

Teich(3;) — CP(Zk).

Here, if j = k then o(x,) := fx, ; is called a generalized Bers section to proj; : CP(%;) —
Teich(3;). Otherwise, if j # k then fx, s is called a generalized Bers embedding which
maps Teich(3;) in the affine fiber P(X}) C CP(X)). Here, P(X}) denotes the set of
marked projective structures on ¥;, whose underlying complex structure is a fixed point

X in Teich(3). For more detail see [50].

Let M be a smooth connected oriented compact irreducible atoroidal 3-manifold with
boundary and infinite fundamental group. OM denotes its incompressible boundary
which consists of a finite number of surfaces ¥, . .., ¥y of genera at least 2 and contains
no tori. Let D(]\/Z) be the double of M and ¢ : 7r1(]\//.7) — PSL(2, C) be a representation
so that the restriction ¢ o ¢, of this representation to oM belongs to Teich(@]\/i ). Here,
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Ly is the induced map obtained by the inclusion OM — M. Thus, note that the map
¢ o 1y is an element of Rep(&]\/f\ ,PSL(2,C)). We can also consider the representation

—

0:m(D(M)) — PSL(2,C) which is defined as

—~__ Proj__ .-
1(M)
—

m(D(M m (M) -2 PSL(2,C),

where projm(m is the projection map.

If we consider the short-exact sequence of chain complexes

0— C., (8]\//7; gAdW*) - C, <J\//7, gAd¢> ® C. <1\/4\, gAd¢> — C. (D(]/\/T);gAdQ> — 0,
(5.3)
where C, (3]\7; gAdW*) =N, C., (Et; gAdmt*) and v, 1 (X)) — Wl(]/\i), then we get

the following Mayer-Vietoris long exact sequence:

0— Hj (3]\7; gAddm*) — Hj (1\//-77 gAd¢> ® Hs (1\7, gAd¢) — Hj (D(]\/Z);gAdQ>

l |

H, (8]\7; ElAdW*) — H, (]\/4\7 gAd¢> ® Hy (—7\/4\, gAd¢) — H (D(ﬂ);gmg)
l

H, (8]\/4\; gAd¢OL*) — H; (]\//T, gAd¢> ® H; (J\/f\, gAd¢> — Hy (D(M\)SQA%)
l |

Hy (0M: 84,... ) = Ho (Migaa,) @ Ho (M;8a0,) = Ho (D(M); gaa, ) = 0.

(5.4)

Here, H; (8]\//7; gAd¢OL*> =oN H; (Zt; 9Ad¢mt*> fori =0,1,2,3.

Let hi]‘7 denote the basis of Hi(]\//j; gad,) for i = 0,1,2,3. By using above sequences,
there are bases h?(f/[) and hft for j = 0,1,2,3, k = 0,1,2 and t = 1,..., N of
Hj(D(]\//T);gAd¢), Hk(Et;gAd¢Obt*), respectively such that Reidemeister torsion of the
long exact sequence (5.4) in these bases equals to 1 [35, Theorem 6.2.2]. In the follow-
ing result, we will denote the basis of Hj, (8]/\/[\ 0 Ad W*) with hgﬁ which is nothing but

N 12t
SEPY L T
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Theorem 5.1.4 Let ]/\/[\, 0]\/4\, D(]\/Z), O, Ly be as in above. Let hM hD(ﬁ)

ARt |

bases for HZ-(J\/Z;gAdé),Hj(D(]\//T);gAd¢),Hk(Et;gAd¢OLt*), respectively, 1,5 = 0,1,2,3,
k=0,1,2 andt=1,...,N. Then, we get the following formula:

(=3 w
Tor(M,{th})‘: 4 ldet | ¢
0 hl

Here, h! is the Poincare dual basis of Hl(ai\/i; JAdy,,,) corresponding to basis h?ﬁ of

,h>* denote the

H, (8]\/4\; 04d,,,,) and Atiyah-Bott-Goldman symplectic form we is considered as in [50].

Proof. Let M be the 3-manifold as in above with boundary which is incompressible
and contains no tori (e.g. see Figure 5.1). Recall that the boundary is incompressible

means that the map

—

Lot T (OM) — Wl(]/\/[\)
induced by the inclusion map
L OM — M
is injective. Let Xi,...,Xxy be the boundary components of M. Let us denote by

g¢ > 2 the genus of ¥y, for t = 1,..., N . Recall that D(M) denotes the double of the

manifold M which is a closed 3-manifold.

Let us consider a cell-decomposition K of OM which is obtained by disjoint union of
cell-decompositions K; of X; for t = 1,..., N and K’ be the dual cell-decomposition of

K. Considering the intersection number pairing in (5.1)
(-, ')1,24 : Ci(K; gAd¢OL*) X 0271'(}(/; gAd¢OL*) — C,

we conclude that the chain complex C., <8M\ s 0Ad W*) is a symplectic chain complex.
We can extend the intersection form to twisted homologies as in subsection 2.3 and we

get the following commutative diagram for each 3,
H'(%y; QAd¢OLt*) x  H'(%; gAd(pOLt*) — H?(%;C)
|PD |PD o s
()1
Hi(24 944, ) % Hi(Z4 0445, ) — C.
- J;
Recall that wly : H'(Sy; gad,.,, ) X H' (56 4a,.,, ) — H*(Si;C) —% C is the Atiyah-
Bott-Goldman symplectic form. By using these symplectic forms, we have the Atiyah-

Bott-Goldman symplectic form
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wa - Hl(aﬂ, gAd¢OL*) X Hl(al\//f, gAdqboL*) — H2(8]\//7, (C) ff)j (C,
which was proved in [50] that

wo = proj’{wg) +...+ proj*Nw(GN). (5.5)

Here, proj, is the t-th projection map in (5.2).

Now, if we combine the fact that Reidemesiter torsion of the long exact sequence (5.4)

corresponding to above bases equals to 1 and the Theorem 2.2.3 we get:

(v (38 = (0.3 e o, 1)

— =~ 3
On the other hand, from the fact that in [32], we have Tor (D(M), {hD(M} > =1.
0

J

Finally, if we use Theorem 2.3.6, then we can write the Reidemeister torsion formula

of 3-manifold M through the symplectic form wg as follows:

(=3 w
Tor(M,{hf”})‘: 4 ldet |€
0 hl

(

Clearly from the definition of wg through the symplectic forms wé) it follows:

1) i
w
“ 1o 0
hgl
wa
det = det 0 . 0 . (5.6)
h §
0 0
hlzN

O
We should note that by not using symplectic property of the chain complex C', (8]\/4\ ; 0Ad dm*)
similar result was obtained in [35] . On the other hand, in this thesis thanks to the
definition of Atiyah-Bott-Goldman symplectic form wg as in [50] we proved it by using
the symplectic chain complex theory.
Let we denote the complex symplectic structure on CP((?]\/Z ) as in equation (5.5) and

77)*wnat be the complex symplectic structure obtained in [50] by the identification
Yy

57



T CP((?]\//T) = T*Teich(é?]\/i). B. Loustau proved in [50, Theorem 6.14] that
(7P)*wpat = —iwg. (5.7)

Here, as in wg, wya is also obtained by similarly as follows

projiwin + . .. + projiywin,

) denotes the complex symplectic structure on T*Teich(X,;) and proj, is the

—

t-th projection map from T*Teich(OM) to T*Teich(%;).

where w

Combining Theorem 5.1.4, equation (5.7) and using the method as in Theorem 4.1.6,

we get the following result:

Corollary 5.1.5 Under the conditions in Theorem 5.1.4 and considering the equation

(5.7), then we get

— 773 Wha
Tor(M,{th})‘:“det .
0

«

N
Here, o = {0 }=="%"% s the basis of RE169=9) obtained by oo = 78(hl). Recall
that, h' is the Poincare dual basis of H'(OM:; IAdyo,, )-

Note that, here wy,; denotes the standard symplectic form on R (69:-6)
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5.2 Future Work

Let ¥ be a surface with a hyperbolic metric m (i.e. Riemannian metric with constant
curvature —1). A geodesic lamination is a closed subset of ¥ which can be decomposed
as a disjoint union of simple complete m-geodesics, they are called its leaves. Here, a
geodesic is complete if it cannot be extend to a longer geodesic and it is simple if it has
no transverse self-intersection point. A geodesic lamination A is maximal if it is not
contained in any larger geodesic lamination which is equivalent to the property that

the complement > — A consists of finitely many disjoint infinite triangles.

Figure 5.2: A maximal lamination

Let us fixed a geodesic lamination A C X. An R-valued transverse cocycle o for A is a
real-valued function on the set of all arcs k£ transverse to the leaves of A which satisfies

the following two conditions:

e If £ is transverse to A which is decomposed into two arcs ki, ky with disjoint

interiors, we have the property

o(k) =o(ky) + o(ks),

e If &k and £’ are homotopic through a family of arcs which are all transverse to A,

then we have

The R-valued transverse cocycles for the geodesic lamination A form a real vector space

Z(\MR).

A train track ® on the surface X is a family of finitely many ‘long’ rectangles eq, ... e,

which are foliated by arcs parallel to the ‘short’ sides and which meet only along arcs
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(possibly reduced to a point) contained in their short sides. And also, a train track

must satisfy the following conditions:

e cach point of the ‘short’ side of a rectangle also belongs to another rectangle,
and each component of the union of the short sides of all rectangles is an arc, as

opposed to a closed curve,

e the closure of the complement ¥ — ® has a certain number of ‘spikes’, namely
the points where at least three rectangles meet and no component of this closure

is a disc with 0,1 or 2 spikes or an annulus with no spike.

The rectangles e; are the edges of the train track ® and the leaves of the foliation of
® are the ties of the train track. The finitely many ties where several edges meet are
the switches of the train track. A tie which is not a switch is generic. The geodesic
lamination A is carried by the train track ® if it is contained in the interior of ® and if
its leaves are transverse to the ties of . Every geodesic lamination is carried by some

train track. For more detail see, for instance [56, 57].

For a fixed train track ®, let W(®,R) denotes the vector space of all edge weight
systems for ®. More precisely, an edge weight system assigns a(e) € R to each edge e

of the train track such that for each switch s the following switch relation holds
a(e;) = a(e;) + alex)

where s is adjacent to the edge e; on one side and to the edges e; and e; on the other

side.

switch

|
1
I
T\
\\\\

Figure 5.3: The switch relation

60



If the geodesic lamination A is carried by the train track ®, a transverse cocycle o €

Z(\;R) defines an edge weight system a, € W(®,R) by

where k. is an arbitrary tie of the edge e. This map defines a linear isomorphism
between the spaces Z(A; R) and W(®,R). In addition, if A is a maximal geodesic lami-

nation, then these two vector spaces are isomorphic to R3X®) . See [58] for more detail.

So far, we consider the R-valued transverse cocycle. This can be generalized to R™"!-
valued transverse cocycles, straightforwardly. Here, the orientation is really important

point, so for more detail see [59, 60].

For a geodesic lamination A C X, a twisted R"-valued transverse cocycle for \ assigns
a vector (k) € R"™! to each oriented arc k& C ¥ that is transverse to A such that the

following conditions hold:

e o is finitely additive, namely
o(k) = o(k) + o(ks)

where the oriented arc k transverse to A is split into two oriented arcs k; and ks

with disjoint interiors,

e 0 is invariant under homotopy. More precisely, if £ and &” are homotopic through

a family of arcs which are all transverse to A,

e For every oriented transverse arc k the following equality holds

o(k) = o(k).

Here, k& denotes the reverse orientated of k and x — 7 is the involution map of

R? associating T = (v,_1,Tp_2,...,71) to x = (21, 29,...,7,1) € R*L.

Let Z(A\;R™1) denote the vector space of all twisted R"!-valued transverse cocy-
cles for a maximal geodesic lamination A and the dimension of this space equal to

6(9—1)(n—1)+ [2(n—1)]. Here, |z] denotes the largest integer that is less than or
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equal to x.

Let sl(n, R) be the Lie algebra of PSL(n,R). Let ¢ be an element of Hit,,(X). Consider
the adjoint representation defined by for every v € 71 (%)

Adg(7y) = sl(n,R) — sl(n,R)
u e (yud(y)

Let us consider the Cartan-Killing bilinear form B : sl(n,R) x sl(n,R) — R is defined
as B(u,v) = 2nTr(uv), where Tr denotes the trace. Clearly B is preserved by the

adjoint representation. Therefore, this enables us to define a cup product
—p: C'(2,8l(n,R) 4q,) x C'(Z,8l(n,R) 4q,) = C*(X,R)
which induces an antisymmetric bilinear form
Wpstng) © HY(,s1(n, R)ag,) x H'(S,s1(n,R) ag,) — HX(S,R) 25 R.

Here, H?(3,R) isomorphic to R thanks to evaluation on the fundamental class of the

oriented surface .

WpSL(n,k) 18 a symplectic form on Hit,, () called Atiyah-Bott-Goldman symplectic form

(see [15]). Recall that T4Hit,(X) is isomorphic to H'(X, sl(n, R)4,) [61].

In [62] for general n, wpst(nr) (Us, , Us, ) Was computed for the vectors u,, , uq, € TyHit, (X)
associated to the infinitesimal shearing of ¢ € Hit,,(3) according to twisted transverse

cocycles 01,09 € Z(\;R™ 1) for the geodesic lamination A. Let us recall this formula:

Theorem 5.2.1 (/62]) Let ¥ be a closed oriented surface with genus at least 2 and
let X\ be a maximal geodesic lamination carried by a train track ® in 3. If the vectors
Uy s Ugy € TyHit, (X) are tangent to the shearing deformations of ¢ € Hit,(X) along A
respectively associated to the transverse cocycles 01,09 € Z(N\;R"™1), then the Atiyah-

Bott-Goldman symplectic form,

n—1

1 a) ri e a e ri
wpsLnR) (Uoys Usy) = = Z Zc(a’ b)<0§ )(esght)Uéb)@ls fty _ 05 )(ei ft)aéb)@sght))

a,b=1 s
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right

Heht eleft - denote the two

where s changes over all switches of the train track ® and e
edges of d outgoing from switch s on the right and on the left, respectively. Here,

Olah) = 2a(n—0) if a<b

2b(n—a) if a>0.

Note that, the above formula is a generalization of the case for n = 2. For more detail

about the n = 2 case see [17].

As an application, by using the above computation of the Atiyah-Bott-Goldman sym-
plectic form, we can write the Reidemeister torsion formula of some special represen-
tations. However, we should be careful about the non-degeneracy of the Atiyah-Bott-
Goldman symplectic form on the given submanifold Z(\;R?). For example, if n = 3
this space has the odd dimension 12¢g — 11. Obviously, the symplectic form can not be
non-degenerate on this space. The reason of this is probably that the restriction of the

symplectic form to this submanifold has a non-trivial kernel.
As a future work, we first consider to compute this kernel of the shearing transverse

cocycle space Z(\;R?) and then we can establish the Reidemeister torsion formula

through the restriction of Atiyah-Bott-Goldman symplectic form to this space.
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