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ABSTRACT

GEOMETRIC STRUCTURES ON RIEMANN SURFACES

AND REIDEMEISTER TORSION

Hatice ZEYBEK

Doctor of Philosophy, Department of Mathematics

Supervisor: Prof. Dr. Yaşar SÖZEN

June 2020, 70 pages

Let Σ be a closed orientable surface of genus at least 2 and Rep(Σ, G) be the smooth

part of the representation variety of homomorphisms’ conjugation classes from funda-

mental group of Σ to Lie group G.

In this thesis, the Reidemeister torsion formulas of the representations corresponding

to geometric structures in two different categories, real and complex, are clearly stated

that they can be calculated through the related symplectic forms.

This thesis consists of two main parts:

In the first part, real projective structures are discussed. The deformation space B(Σ)

of convex real projective structures on the surface has the Goldman coordinates in the

literature and this space also contains the Teichmüller space. Using these coordinates,

H.C. Kim clearly expressed the Atiyah-Bott-Goldman symplectic form ωPSL(3,R) on the

representation space Rep(PSL(3,R)). In this part, in the light of all this information,

the formula that calculates the Reidemeister torsion of representations Rep(PSL(3,R))

is obtained through the symplectic form ωPSL(3,R).

In the second part, complex projective structures are considered. There is a natural

holomorphic projection from CP(Σ) the space of isotopy classes of complex projective
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structures on the surface to the Teichmüller space. Any smooth section s of this projec-

tion yields a diffeomorhism between CP(Σ) and the cotangent bundle space T∗Teich(Σ).

There is the symplectic form ωPSL(2,C) on CP(Σ) which is open in Rep(PSL(2,C)) and

the symplectic form ωnat on T∗Teich(Σ). In this part, the Reidemeister torsion of the

representations in CP(Σ) are expressed by ωnat and ωPSL(2,C) symplectic forms thanks

to considered s section is Bers, Schottky, Earle and Fuchsian section, respectively. In

addition, the results are applied to 3-manifolds that its boundary consisting of closed

surfaces with genus at least 2.

Keywords: Reidemeister torsion, projective structures, representation space, sym-

plectic form, geodesic lamination, 3-manifolds.
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ÖZET

RİEMANN YÜZEYLERİ ÜZERİNDEKİ GEOMETRİK

YAPILAR VE REİDEMEİSTER TORSİYON

Hatice ZEYBEK

Doktora, Matematik Bölümü

Tez Danışmanı: Prof. Dr. Yaşar SÖZEN

Haziran 2020, 70 sayfa

Σ cinsi en az 2 olan kapalı yönlendirilebilir bir yüzey ve G bir Lie grubu olmak

üzere Rep(Σ, G) yüzeyin temel grubundan G grubuna giden homomorfizmaların eşlenik

sınıflarından oluşan temsil uzayının pürüzsüz kısmını göstersin.

Bu tezde reel ve kompleks olmak üzere iki farklı kategorideki geometrik yapılara karşılık

gelen temsillerin Reidemeister torsiyonunun ilgili simplektik formlar aracılığıyla hesa-

planabileceği formüller açık bir şekilde ifade edilmiştir.

Bu tez iki ana bölümden oluşmaktadır:

İlk bölümde reel projektif yapılar ele alınmıştır. Yüzey üzerindeki konveks reel pro-

jektif yapıların deformasyon uzayı B(Σ) üzerinde literatürdeki Goldman koordinatları

bulunmaktadır ve ayrıca bu uzay Teichmüller uzayını da kapsamaktadır. H.C. Kim

bu koordinatları kullanarak Rep(PSL(3,R)) temsil uzayı üzerindeki ωPSL(3,R) Atiyah-

Bott-Goldman simplektik formunu açık bir şekilde ifade etmiştir. Bu bölümde tüm bu

bilgilerin ışığında, Rep(PSL(3,R)) temsillerinin Reidemeister torsiyonunu hesaplayan

formül ωPSL(3,R) simplektik formu aracılığıyla elde edilmiştir.

İkinci bölümde ise kompleks projektif yapılar düşünülmüştür. Yüzeydeki kompleks pro-

jektif yapıların izotopi sınıfları uzayı CP(Σ) dan Teichmüller uzayına giden doğal örten
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bir izdüşüm fonksiyonu bulunmaktadır. Bu izdüşümün herhangi bir s pürüzsüz kesiti

yardımıyla CP(Σ) ve T∗Teich(Σ) kotanjant demeti uzayları difeomorfiktir. Rep(PSL(2,C))

içinde açık olan CP(Σ) üzerinde ωPSL(2,C) ve T∗Teich(Σ) uzayı üzerinde ise ωnat simplek-

tik formları bulunmaktadır. Bu bölümde, bahsedilen s kesiti sırasıyla Bers, Schottky,

Earle ve Fuchsian kesiti alınarak, CP(Σ) uzayına karşılık gelen temsillerin Reidemeis-

ter torsiyonu ωnat ve ωPSL(2,C) simplektik formları cinsinden ifade edilmiştir. Bunlara

ek olarak, elde edilen sonuçlar sınırı cinsi en az 2 olan kapalı yüzeylerden oluşan 3-

manifoldlara uygulanmıştır.

Anahtar Kelimeler: Reidemeister torsiyon, projektif yapılar, temsil uzayı, simplektik

form, jeodezik laminasyon, 3-manifoldlar.
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1 INTRODUCTION

Throughout this thesis, let Σ denote a closed orientable surface of genus at least 2

and Rep(G) be the smooth part of the representation variety of homomorphisms from

fundamental group of Σ to Lie group G.

Reidemeister torsion is a topological invariant with many applications in several branches

of mathematics and theoretical physics. In 1935, this topological invariant was first

introduced by K. Reidemeister, in the paper classifying 3-dimensional lens spaces [1].

W. Franz classified the higher dimensional lens spaces extending the Reidemeister tor-

sion [2]. In 1964, G. de Rham extended the results of Reidemeister and Franz to spaces

of constant curvature +1 [3]. R.C. Kirby and L.C. Siebenmann proved that the Rei-

demeister torsion for manifolds is a topological invariant [4]. Then, T.A. Chapman

proved the invariance for arbitrary simplicial complexes [5, 6]. Therefore, the classifi-

cation of lens spaces made by Reidemeister and Franz proved to be actually topological.

In 1961, J. Milnor disproved Hauptvermutung through Reidemeister torsion by con-

structing two homeomorphic but combinatorially distinct finite simplicial complexes

[7]. He also identified Reidemeister torsion with the Alexander polynomial which plays

an important role in knot theory and links [8, 9].

In 1991, E. Witten introduced the real symplectic chain complex notion [10]. By

combining this notion and Reidemeister torsion, he also computed the volume of rep-

resentation space Rep(G). J. Dubois also used the symplectic chain complex and

Reidemeister torsion together and introduced a volume element which is related to

Reidemeister torsion, on a special representation space [11, 12].

Hom(π1(Σ), G)/G is the orbit space of all homomorphisms from π1(Σ) to the Lie group

G modulo conjugation in G has the structure of a real analytic variety. Note that this

space is not necessarily Hausdorff. However, Rep(π1(Σ), G) = Hom+(π1(Σ), G)/G of

all reductive representations of π1(Σ) in G is Hausdorff.

Hitchin investigated the connected components of the space Rep(π1(Σ), G) for a split
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real semisimple Lie group G, and proved the existence of an interesting connected

component not detected by characteristic classes [13]. The Hitchin component Hitn(Σ)

is a preferred component of the character variety

Hom(Σ,PSL(n,R)) = {homomorphisms φ : π1(Σ)→ PSL(n,R)}/PSL(n,R)

consisting of all group homomorphisms from the fundamental group to the Lie group

PSL(n,R), up to conjugation. Note that when n = 2, the Hitchin component is just

the Teichmüller space.

Teichmüller space Teich(Σ) is the space of isotopy classes of complex structures on Σ.

It is a differentiable manifold diffeomorphic to R3|χ(Σ)|. Here, χ(Σ) denotes the Euler

characteristic of the surface. It is well-known that Teich(Σ) is a connected component

of Rep(π1(Σ),PSL(2,R)), where π1(Σ) is the fundamental group of Σ.

As is well-known, Teichmüller space inherits three forms: ωWP Weil-Petersson 2-form,

ωPSL(2,R) Atiyah-Bott-Goldman symplectic form, and ωThurston Thurston real symplec-

tic form through a maximal geodesic lamination λ [14, 15, 16]. In 1984, Goldman

expressed ωWP in terms of ωPSL(2,R) symplectic form [15]. On the other hand, Sözen

and Bonahon expressed ωPSL(2,R) in terms of ωThurston symplectic form on the real vec-

tor space Z(λ;R) of transverse cocycles on λ [17].

In the literature, usually Reidemeister torsion is defined and investigated for SU(2),

PSL(2,C), or PSL(2,R) valued representations. In 2012, Sözen showed that it can

also be defined PSL(n,R) valued Hitchin representations for n > 2 and established a

formula for Reidemeister torsion of such representations in terms of ωPSL(n,R) Atiyah-

Bott-Goldman symplectic form [18].

Let B(Σ) denote the deformation space of convex real projective structures on the

surface which contains the Teichmüller space. In 1990, Goldman introduced the co-

ordinates on this space which is known as Goldman coordinates in the literature [19].

Then, Kim expressed the Atiyah-Bott-Goldman symplectic form ωPSL(3,R) on the rep-

resentation space Rep(PSL(3,R)) through the Goldman coordinates [20].
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In section 3, we will give the Reidemeister torsion formula of representations Rep(PSL(3,R))

is obtained through the symplectic form ωPSL(3,R).

Let CP(Σ) denote the space of isotopy classes of complex projective structures on the

surface. A complex projective structure is also a holomorphic structure thus there is

a natural holomorphic projection p : CP(Σ) → Teich(Σ) from this space to the Te-

ichmüller space. Any smooth section s of p yields a diffeomorhism between CP(Σ) and

cotangent bundle T∗Teich(Σ). There is the symplectic form ωPSL(2,C) on CP(Σ) which

is open in Rep(PSL(2,C)) and the symplectic form ωnat on T∗Teich(Σ).

In 1996, Kawai established the relation between ωnat and ωPSL(2,C) [21] considering the

s section as Bers section. Then, Biswas generalized this result by considering Schot-

tky section [22]. With the help of Earle section, it was generalized by Ares-Gastesi

and Biswas [23]. In 2015, by the Fuchsian section, Loustau expressed ωnat in terms of

ωPSL(2,C) and ωWP .

In section 4, we will give the Reidemeister torsion formula of the representations in

CP(Σ) through ωnat and ωPSL(2,C) symplectic forms thanks to considered s section is

Bers, Schottky, Earle and Fuchsian section, respectively. Moreover, the results are ap-

plied to 3-manifolds that its boundary consisting of closed surfaces with genus at least 2.

This thesis aims to show that topological invariant Reidemeister torsion, which has

many applications in several branches of mathematics also in theoretical physics, and

one of the fundamental instruments of low-dimensional topology/geometry, namely

geodesic laminations, can be used efficiently and effectively in the deformation spaces

B(Σ) and CP(Σ) with increasing importance in low-dimensional topology/geometry.

The techniques developed in this thesis can be used in many fundamental problems.

Especially, combining Reidemeister torsion and symplectic chain complex method has

potential and powerful applications on certain problems with geometric significance

well known by the experts, such as shedding a light on understanding the size of the

space of geometric structures on a surface [10, 24].
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2 PRELIMINARIES

2.1 Basic Definitions

In this section, we will give some well-known definitions. One can find more detail

about the given subjects through the references.

Let us consider an n-dimensional geometric space X and a group of similarities G of

X.

Definition 2.1.1 ([25])Let Φ : {φi : Ui → X}i∈I be a family of functions called

charts for an n-manifold M . If Φ satisfy the following conditions then it is called an

(G,X)-atlas for M :

� for each i, the set Ui(coordinate neighborhood) is an open connected subset of

M .

� for each i, the chart φi maps Ui homeomorphically onto an open subset of X.

� M is covered by the coordinate neighborhoods {Ui}i∈I .

� if Ui and Uj overlap, then the coordinate change function

φjφ
−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj),

agrees in a neighborhood of each point of its domain with an element of G.

4



φi φj

φj ◦ φ−1
i ∈ G

φi(Ui) φj(Uj)

Ui Uj

Figure 2.1: A coordinate change map

It is well-known that there is a unique maximal (G,X)-atlas for M containing Φ.

Definition 2.1.2 A maximal (G,X)-atlas for M is called an (G,X)-structure for an

n-manifold M and an n-manifold M with an (G,X)-structure is called an (G,X)-

manifold.

Definition 2.1.3 If the geometric space X = RP2 the real projective plane then this

type of structure on a manifold is called a real projective structure and if X = CP1 the

complex projective line then this type of structure on a manifold is called a complex

projective structure. And also, if the geometric space X = C then this type of structure

on a manifold is called a complex structure.

Definition 2.1.4 A holomorphic function is a complex valued function of one or more

complex variables which is complex differentiable in a neighborhood of every point of

its domain.

Definition 2.1.5 Let Diff+(Σ) denote the group of orientation preserving diffeomor-

phisms of Σ and Diff+
0 (Σ) be the identity component of Diff+(Σ).
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� The quotient

Teich(Σ) := { all complex structures on Σ}/Diff+
0 (Σ)

is called the Teichmüller space of Σ. Its elements are called marked Riemann

surfaces.

� The quotient

CP(Σ) := { all complex projective structures on Σ}/Diff+
0 (Σ)

is called the deformation space of all complex projective structures on Σ. Its

elements are called marked complex projective surfaces.

For more detail about the Teichmüller space, the reader is referred to [26, 27, 28].

In particular, a complex projective atlas is a complex atlas on Σ, namely transition

functions are holomorphic. Thus, a projective structure defines an underlying complex

structure. This gives a forgetful map

p : CP(Σ)→ Teich(Σ).

Definition 2.1.6 Let P be a polyhedron with V vertices (0-dimensional), E edges

(1-dimensional), and F faces (2-dimensional). The Euler characteristic of P is defined

χ(P ) = V − E + F.

b b

b

b

bb

b

b

For example, let us compute the Euler characteristic of above cube in 3-dimension.

There are 8 vertices, 12 edges and 6 faces in the above diagram. Therefore,

χ(cube) = V − E + F

= 8− 12 + 6

= 2.

6



If Σ is a g-hole torus then we have the following formula

χ(Σ) = 2− 2g.

For example, the Euler characteristic of the following surface Σ with 2 genus equals

χ(Σ) = 2− 2 · 2 = −2.

Definition 2.1.7 Let F : M → N be a smooth map and p ∈M be an arbitrary point.

The push-forward map

F∗ : TpM → TF (p)N

yields a dual map

(F∗)
∗ : T∗F (p)N → T∗pM.

To avoid confusion of stars, this map is expressed

F ∗ : T∗F (p)N → T∗pM

u 7→ F ∗u

and called the pullback map associated with F for u ∈ T∗F (p)N . Here, (F ∗u)(v) :=

u(F∗v) for v ∈ TpM .

Definition 2.1.8 A covering map is a surjective continuous map p : M̃ →M between

connected, locally path connected spaces, with the property that every point p ∈ M
has a neighborhood U that is evenly covered, meaning that each component of p−1(U)

is mapped homoeomorphically onto U by p.

For more detail about these notions, see [29].
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2.2 Reidemeister Torsion of a Chain Complex

In this section, we will give the required definitions and the basic facts about one of the

main notion of this thesis the Reidemeister torsion. For more information and detailed

proofs, we refer the reader to [30, 31, 10] and references therein.

Let us consider a chain complex

C∗ = Cn
∂n−→ Cn−1 −→ · · · −→ C1

∂1−→ C0 −→ 0

of a finite dimensional vector spaces over F, where F denotes the field R or C.

This chain complex has the p−th homology Hp = Zp/Bp for p = 0, . . . , n and

Bp = Im{∂p+1 : Cp+1 −→ Cp}

Zp = Ker{∂p : Cp −→ Cp−1}.

Let bp = {b1
p, . . . , b

mp
p } and hp = {h1

p, . . . , h
np
p } be the bases of the spaces Bp and Hp,

respectively. By the result of the 1−st Isomorphism Theorem, we get

0→ Zp ↪→ Cp � Bp−1 → 0, (2.1)

and by the definition of Hp, we get

0→ Bp ↪→ Zp � Hp → 0 (2.2)

If we consider the section lp : Hp → Zp and the short-exact sequence (2.2) then we can

get a new basis bpt lp(hp) for Zp. After that, we take a section sp : Bp−1 → Cp and the

short-exact sequence (2.1). Therefore, we get a new basis for Cp as bptlp(hp)tsp(bp−1).

Definition 2.2.1 Let Cp, Bp and Hp have bases cp,bp and hp respectively for p =

0, 1, . . . , n. The torsion of the complex C∗ with respect to bases {cp}np=0, {hp}np=0 is

defined as follows

T(C∗, {cp}np=0, {hp}np=0) =
n∏

p=0

[bp t lp(hp) t sp(bp−1), cp]
(−1)(p+1)

.

Here, [f, e] denotes the determinant of the change-base-matrix M from e to f for a

vector space V with bases e and f .

8



Note that torsion does not depend on the bases bp and the sections sp, lp (see [33]).

This means torsion is well-defined.

Remark 2.2.2 (Change-base-formula) Let c′p and h′p be also bases for Cp and Hp,

respectively. Then, one can see that

T(C∗, {c′p}np=0, {h′p}np=0) =
n∏

p=0

(
[c′p, cp]

[h′p,hp]

)(−1)p

· T(C∗, {cp}np=0, {hp}np=0).

Let us take a short-exact sequence of chain complexes as

0→ A∗
ι
↪→ B∗

π
� D∗ → 0. (2.3)

By using the Zig-Zag Lemma, we get a long-exact sequence with the length 3n+ 2 as

follows:

C∗ : · · · −→ Hp+1 (A∗)
ıp+1−→ Hp+1 (B∗)

jp+1−→ Hp+1 (D∗)

Hp (A∗)
ıp−→ Hp (B∗)

jp−→ Hp (D∗)

Hp−1 (A∗)
ıp−1−→ Hp−1 (B∗)

jp−1−→ Hp−1 (D∗)

...

(2.4)

where C3p = Hp(D∗), C3p+1 = Hp(A∗), and C3p+2 = Hp(B∗).

It is clear that the bases hDp , hAp , and hBp serve as bases for C3p, C3p+1, and C3p+2,

respectively. J. Milnor proved in [33] that the alternating product of the R-torsions

of the chain complexes in (2.3) equals to the R-torsion of the chain complex (2.4).

Namely,

Theorem 2.2.3 ([33]) Let cAp , c
B
p , c

D
p , h

A
p , h

B
p , and hDp be bases of Ap, Bp, Dp, Hp(A∗),

Hp(B∗), and Hp(D∗), respectively. If, moreover, cAp , cBp , and cDp are compatible in the

sense that [cBp , c
A
p ⊕ c̃Dp ] = ±1, where j

(
c̃Dp

)
= cDp , then

T(B∗, {cBp }n0 , {hBp }n0 ) = T(A∗, {cAp }n0 , {hAp }n0 )T(D∗, {cDp }np=0, {hDp }n0 )

×T(C∗, {c3p}3n+2
0 , {0}3n+2

0 ).
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This result clearly yields the following sum-lemma:

Lemma 2.2.4 Assume that A∗, D∗ be two chain complexes. Assume also that cAp , cDp ,

hAp , and hDp are bases of Ap, Dp, Hp(A∗), and Hp(D∗), respectively. Then,

T(A∗ ⊕D∗, {cAp ⊕ cDp }n0 , {hAp ⊕ hDp }n0 ) = T(A∗, {cAp }n0 , {hAp }n0 ) · T(D∗, {cDp }n0 , {hDp }n0 ).

Definition 2.2.5 Let C∗ : 0 → C2n
∂2n→ C2n−1 → · · · → Cn → · · · → C1

∂1→ C0 → 0

be a chain complex of finite dimensional real or complex vector spaces of length 2n(n

odd). For p = 0, . . . , 2n, let ωp,2n−p : Cp×C2n−p → F be a ∂−compatible anti-symmetric

non-degenerate bilinear form. To be more precise,

ωp,2n−p (∂a, b) = (−1)p+1ωp+1,2n−(p+1)(a, ∂b),

ωp,2n−p(a, b) = (−1)pω2n−p,p(b, a).

Then, the triple (C∗, ∂∗, {ω∗,2n−∗}) is called an F-symplectic chain complex.

Let us note that if C∗ is a symplectic chain complex, then [ωp,2n−p] : Hp(C∗) ×
H2n−p(C∗) → F defined by [ωp,2n−p]([x], [y]) = ωp,2n−p(x, y) is an anti-symmetric and

non-degenerate bilinear map.

Definition 2.2.6 Let C∗ be a symplectic chain complex of length 2n and cp be a

basis of Cp, p = 0, . . . , 2n. The bases cp, c2n−p of Cp, C2n−p, respectively are called

ω−compatible, if the matrix of ωp,2n−p in bases cp, c2n−p is the k×k identity matrix Ik×k

when p 6= n and


 0l×l Il×l

−Il×l 0l×l




2l×2l

when p = n. Here, k = dimFCp = dimFC2n−p,

and 2l = dimFCn.

Clearly, every symplectic chain complex has ω−compatible bases.

Suppose that C∗ is a symplectic chain complex and hp, h2n−p are bases of Hp(C∗),

H2n−p(C∗), respectively. Let us denote the determinant of the matrix of the non-

degenerate pairing [ωp,2n−p] : Hp(C∗)×H2n−p(C∗)→ F in the bases hp, h2n−p by

∆p,2n−p(hp,h2n−p).

If there is no ambiguity, we will write ∆p,2n−p(C∗) instead of ∆p,2n−p(hp,h2n−p).

10



The following result suggests a formula for computing R-torsion of symplectic chain

complexes.

Theorem 2.2.7 ([31, 32]) If C∗ is an F−symplectic chain complex of length 2n, and

for p = 0, . . . , 2n, cp are ω-compatible bases of Cp and hp are bases of Hp(C∗), respec-

tively, then the following formulas hold:

� If C∗ is an R−symplectic chain complex, then

T
(
C∗, {cp}2n

p=0, {hp}2n
p=0

)
=

n−1∏

p=0

∆p,2n−p(C∗)
(−1)p ·

√
∆n,n(C∗)

(−1)n

.

� If C∗ is a C−symplectic chain complex, then

|T
(
C∗, {cp}2n

p=0, {hp}2n
p=0

)
| =

n−1∏

p=0

|∆p,2n−p(C∗)|(−1)p ·
√
|∆n,n(C∗)|

(−1)n

.

Details and unexplained subjects can be found in [31, 32] and references therein.

2.3 Reidemeister Torsion of Representations

Let Σ be a compact surface with genus at least 2 and without boundary. Let us also

denote the universal covering of Σ by Σ̃ and the Lie group by G, the Lie algebra of G

by g, and the non-degenerate Killing form on g by B. Here, the Lie group G denotes

the Lie groups PSL(3,R) and PSL(2,C).

Let φ : π1(Σ)→ G be a homomorphism and Eφ = Σ̃× g/ ∼ be the associated adjoint

bundle over Σ. Here, for all γ ∈ π1(Σ), (γ · x, γ · t) ∼ (x, t), γ acts in the first com-

ponent as a deck transformation and in the second component by adjoint action, more

precisely φ(γ)tφ(γ)−1.

Let K be a cell-decomposition of Σ for which the adjoint bundle Eφ is trivial over each

cell. Let us denote by K̃ the lift of K to Σ̃ and let

Z[π1(Σ)] =

{
p∑

i=1

miγi ;mi ∈ Z, γi ∈ π1(Σ), p ∈ N

}

be the integral group ring. Then, C∗(K; gAdφ) is defined as C∗(K̃;Z) ⊗ g/ ∼, where,

σ⊗ t ∼ γ ·σ⊗γ · t,∀γ ∈ π1(Σ), the action of π1(Σ) on Σ̃ is by the deck transformation,

11



and the action of π1(Σ) on g is adjoint action.

Clearly, there is the following chain complex:

0 → C2(K; gAdφ)
∂2⊗id−→ C1(K; gAdφ)

∂1⊗id−→ C0(K; gAdφ)−→0, (2.5)

where ∂p is the usual boundary operator. Let us denote the homology of the chain com-

plex (2.5) byH∗(K; gAdφ). Similarly, C∗(K; gAdφ) results the cohomologiesH∗(K; gAdφ).

Recall that C∗(K; gAdφ) is the set of Z[π1(Σ)]-module homomorphism from C∗(K̃;Z)

to g. The reader is refered to [30] and the references therein for more information.

Let us consider again the chain complex (2.5). Let {epj}
mp
j=1 be the generators for

Cp(K;Z). Fixing a lift ẽpj of epj in the universal covering Σ̃ of Σ, j = 1, . . . ,mp, we

get a Z[π1(Σ)]−basis cp = {ẽpj}
mp
j=1 for Cp(K̃;Z). Suppose that A = {ak}dim g

k=1 is a B-

orthonormal basis of g, namely, the matrix of the Killing form B in the basis A is the

diagonal matrix Diag(
p

1, . . . , 1,
r

−1, . . . ,−1), where p+ r = dimF g. Thus, cp = cp⊗φA
is an F−basis for Cp(K; gAdφ) and called a geometric basis for Cp(K; gAdφ).

If hp is an F-basis of Hp(K; gAdφ), p = 0, 1, 2, then

T(C∗(K; gAdφ), {cp ⊗φ A}2
p=0, {hp}2

p=0)

is called the R-torsion of the triple K, Adφ, and {hp}2
p=0.

It was proved in [18] that the definition of R-torsion does not depend on A, lifts ẽpj ,

and conjugacy classes of φ. But the sake of completeness we shall give the proof of

Proposition 2.3.1. For the independence from the cell-decomposition, the reader is

referred to [31, Lemma 2.0.5].

In the following proposition, for G = SL(3,R), we also assume that φ is purely loxo-

dromic representation, namely φ(γ) is diagonalizable in SL(3,R) for all γ ∈ π1(Σ).

Proposition 2.3.1 ([18]) T(C∗(K; gAdφ), {cp⊗φA}2
p=0, {hp}2

p=0) is independent of A,
lifts ẽpj , conjugacy class of φ, and the cell-decomposition K.
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Proof. Let A′ be another B−orthonormal basis of g and let T be the change-base-

matrix from A′ to A. By using change-base-formula Remark (2.2.2), we get:

T(C∗(K; gAdφ), {cp ⊗φ A′}2
0, {hp}2

0) =
2∏

p=0

(
[c′p, cp]

[hp,hp]

)(−1)p

(2.6)

× T(C∗(K; gAdφ), {cp ⊗φ A}2
0, {hp}2

0).

Here,
2∏

p=0

[c′p, cp]
(−1)p =

2∏

p=0

((detT )(−1)p dimCp)−1 = (detT )−χ(Σ). (2.7)

From the fact that A and A′ are B−orthonormal basis it follows that detT = ∓1.

Combining equations (2.6), (2.7), and using the fact that the Euler-characteristic χ(Σ)

is even, A and A′ will produce the same torsion. Therefore, torsion is independent of

the basis A.

We now prove the independence of the torsion from the lifts. Firstly, we can get

another lift of {ei1, . . . , eimi} taking another lift of ei1 and leave the others the same.

Let us denote this lift by c′i = {ẽi1 • γ, . . . , ẽimi}. Since ẽi1 • γ ⊗ t = ẽi1 ⊗ γ • t, where

the action in the second place is by Adφ(γ), namely conjugation by φ(γ). Then, we

have c′i ⊗ A = ci ⊗ Adφ(γ)(A). From Change-base-formula (2.2.2) and equation (2.7)

it follows that

T(C∗(K; gAdφ), {c′i ⊗φ A}2
0, {hi}2

0) =
2∏

i=0

(
[c′i, ci]

[hi,hi]

)(−1)i

×T(C∗(K; gAdφ), {ci ⊗φ A}2
0, {hi}2

0)

= (detT )−χ(C∗(K;gAdφ
))

×T(C∗(K; gAdφ), {ci ⊗φ A}2
0, {hi}2

0).

Here, T is the matrix of Adφ(γ) : g −→ g with respect to basis A. The fact that

φ(γ) ∈ g it follows that φ(γ) can be diagonalizable. To be more precisely, there exist a

Q = Q(γ) ∈ G so that Qφ(γ)Q−1 = D = Diag(λ1, . . . , λN), where λi’s are eigenvalues

of φ(γ). Using this, we obtain the following equality:

Adφ(γ) = AdQ−1DQ = (AdQ)−1 ◦ AdD ◦ AdQ.

From this fact, once we fix a basis for g, to compute the determinant of Adφ(γ) it

suffices to find the determinant of AdD. To do this, since the determinant of AdD is
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independent of basis of g, we will consider the following basis:

sl(2,C)→





E12,

E21,

E11 − E22,

and

sl(n,R)→





Ekj, k 6= j,

Ekk − Ek+1,k+1, 1 ≤ k ≤ n− 1.

Here, Eij denotes the matrix with 1 in the ij entry and 0 elsewhere. Thus, by using

given basis one can easily find the determinant of AdD and see that this matrix has

determinant 1. Finally, since detT = 1 then we have the same torsion.

Independence of conjugacy class of φ: If φ, φ′ are conjugate represantation, then the

corresponding twisted chains and cochains are isomorphic. Therefore, φ and φ′ will

produce the same torsion.

This finishes the proof of Proposition 2.3.1.

2

Since R-torsion of representations is invariant under subdivision, instead of

T(C∗(K; gAdφ), {cp}2
0, {hp}2

0) we can write T(Σ, {hp}2
0).

Before writing the Reidemeister torsion formula for representations, we will give some

definitions: Kronecker pairing, cup product and intersection forms. Recall that let Σ

be a compact hyperbolic surface, φ : π1(Σ) → G be a homomorphism, and let K be

a cell decomposition of Σ. We associated the twisted chains C∗(K; gAdφ) and cochains

C∗(K; gAdφ) = HomZ[π1(Σ)](C∗(K̃;Z), g). Here, K̃ is the lift of K to the universal

covering Σ̃ of Σ.

Definition 2.3.2 The Kronecker pairing

〈·, ·〉 : Ci
(
K; gAdφ

)
× Ci

(
K; gAdφ

)
−→ F

is defined by

〈θ, σ⊗φt〉 = B (t, θ (σ)) ,
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where B denotes the Cartan-Killing form.

Clearly, the pairing can be extended to

〈·, ·〉 : H i
(
Σ; gAdφ

)
×Hi

(
Σ; gAdφ

)
−→ F.

Definition 2.3.3 The cup product

^B: Ci(K; gAdφ)× Cj(K; gAdφ)→ Ci+j(Σ̃;F)

defined by (θi ^B θj)(σi+j) = B(θi((σi+j)front)), θj((σi+j)back).

Note that ^B can be extended

^B: H i(Σ; gAdφ)×Hj(Σ; gAdφ)→ H i+j(Σ;F).

Assume that K ′ is the dual cell-decomposition of Σ associated to the cell-decomposition

K. Assume also that cells σ ∈ K, σ′ ∈ K ′ meet at most once, this assumption is not

loss of generality because of the invariance of R-torsion under subdivision. Let us

denote by c′p the basis of Cp(K̃ ′;Z) associated to the basis cp of Cp(K̃;Z), and also by

c′p = c′p ⊗φ A the basis for Cp(K
′; gAdφ), where A is a B-orthonormal basis of the Lie

algebra g of G.

Definition 2.3.4 The intersection form

(·, ·)i,2−i : Ci(K; gAdφ)× C2−i(K
′; gAdφ)→ F

defined by

(σ1 ⊗ t1, σ2 ⊗ t2)i,2−i =
∑

γ∈π1(Σ)

σ1.(γ · σ2) B(t1, γ · t2).

Here, “.” denotes the intersection number pairing. Clearly, “.” is compatible with

the usual boundary operator and thus (·, ·)i,2−i are ∂−compatible. It is also anti-

symmetric, because of the fact that intersection number form “.” is anti-symmetric

and B is invariant under adjoint action.

We can naturally extend the intersection form to twisted homologies. From the fact

that twisted homologies are independent of the cell-decomposition, we get the following

non-degenerate form

(·, ·)i,2−i : Hi(Σ; gAdφ)×H2−i(Σ; gAdφ)→ F. (2.8)
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The isomorphisms induced by the Kronecker pairing and the intersection form yield

the Poincaré duality isomorphisms

PD : H2−i(Σ; gAdφ)
Kronecker pairing∼= H2−i(Σ; gAdφ)∗

Intersection form∼= Hi(Σ; gAdφ).

For i = 0, 1, 2, there is the following commutative diagram

H2−i(Σ; gAdφ) × H i(Σ; gAdφ)
^B−→ H2(Σ;F)

yPD
yPD 	

y∫
Σ

Hi(Σ; gAdφ) × H2−i(Σ; gAdφ)
(,)i,2−i−→ F.

Therefore, for i = 0, 1, 2,

ω2−i,i : H2−i(Σ; gAdφ)×H i(Σ; gAdφ)
^B−→ H2(Σ;F)

∫
Σ−→ F (2.9)

is a dual pairing.

In the case of φ is irreducible we have H0(Σ; gAdφ), H2(Σ; gAdφ), H0(Σ; gAdφ), and

H2(Σ; gAdφ) are all zero. Hence,

H1(Σ; gAdφ) × H1(Σ; gAdφ)
^B−→ H2(Σ;F)

yPD
yPD 	

y∫
Σ

H1(Σ; gAdφ) × H1(Σ; gAdφ)
(,)1,1−→ F.

(2.10)

Recall that ωG : H1(Σ; gAdφ) × H1(Σ; gAdφ)
^B−→ H2(Σ;F)

∫
Σ−→ F is called the Atiyah-

Bott-Goldman symplectic form for the Lie group G.

Theorem 2.3.5 ([18]) If D∗ denotes C∗(K; gAdφ) ⊕ C∗(K
′; gAdφ), then it is a sym-

plectic chain complex with ω-compatible bases, which are obtained from the geometric

bases.

Since the product of the determinant of the matrix associted to

(·, ·)i,2−i : Hi(Σ; gAdφ)×H2−i(Σ; gAdφ)→ F (2.11)

for basis hi,h2−i and the determinant of the matrix associated to

ω2−i,i : H2−i(Σ; gAdφ)×H i(Σ; gAdφ)
^B−→ H2(Σ;F)

∫
Σ−→ F. (2.12)

for basis hi,h2−i is equal 1, one can easily get rid of the coefficient in [32, Theorem

4.4]. For more detail about this see [35, 36]. Using this fact the formula in [32] turns

into following theorem:
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Theorem 2.3.6 Let Σ be a closed oriented Riemann surface of genus at least 2 and

φ : π1(Σ) → G be an irreducible, purely loxodromic representation. Let K be a cell

decomposition of Σ, cp the geometric basis of Cp(K; gAdφ). Then the following formulas

hold:

� If the Lie group G is PSL(3,R), then

Tor(Σ, {0,h1, 0}) =

√√√√√det


ωG

h1


.

� If the Lie group G is PSL(2,C), then

∣∣Tor(Σ, {0,h1, 0})
∣∣ =

√√√√√

∣∣∣∣∣∣
det


ωG

h1



∣∣∣∣∣∣
.
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3 REAL PROJECTIVE STRUCTURES

The real projective plane, denoted by RP2, is a very well-known object for many

reasons. It can be the simplest example of a closed non-orientable surface. If we remove

a disc from the real projective plane, then we get another familiar non-orientable surface

the Möbius band. It is also the unique non-orientable surface with Euler characteristic

equal to 1. The real projective plane is one of the first examples of a non-Euclidean

geometry. Therefore, it is an elementary example in topology or algebraic geometry.

Figure 3.1: The real projective plane

One can define the real projective plane in two different point of view. The first one is

topologically. It can be described as the quotient space of the closed disc by identifying

opposite points on the boundary. The other one is geometrically. It can be described

as the space of lines through the origin in 3-space.

Let us consider an open subset Ω of the real projective plane RP2. A map Φ : Ω→ RP2

is called locally projective if for each component W ⊂ Ω, there is a projective trans-

formation g ∈ PGL(3,R) such that the restriction Φ|W equals the restriction g|W .

Distinctly a locally projective map is a local diffeomorphism.

Let Σ be a connected smooth surface. An RP2-atlas on Σ is a collection of coordinate

charts {φi : Ui → RP2}i∈I satisfying the following:

� {Ui} is an open covering of Σ,

� Each φi is a diffeomorphism Ui → φi(Ui),
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� For each Ui and Uj, the coordinate change function

φjφ
−1
i : φi(Ui ∩ Uj)→ φj(Ui ∩ Uj),

is locally projective.

A maximal RP2-atlas on Σ is called a real projective structure (or RP2-structure) on Σ

and a manifold with an RP2-structure is called an RP2-manifold.

Let f : M → N be a smooth map, where M and N are RP2-manifolds. If for each

coordinate chart (Ui, φi) on M and each (Uj, φj) on N , the composition

φj ◦ f ◦ φ−1
i : φi(Ui ∩ f−1(Uj))→ φj(Uj ∩ f(Ui))

is a locally projective map, then f is called a projective map(or RP2-map).

f

φi φj

φj ◦ f ◦ φ−1
i

M N

Ui f−1(Uj) Uj
f(Ui)

φi(Ui)

φi(Ui∩f−1(Uj))
φj(Uj∩f(Ui))

φj(Uj)

Figure 3.2: A projective map

An RP2-map between RP2-manifolds is necessarily a local diffeomorphism. Contrar-

ily, if f : M → N is a smooth map which is a local diffeomorphism, and N is an

RP2-manifold, there is a unique RP2-structure on M such that f is an RP2-map with
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respect to these structures.

Now, we will recall the following well-known basic theorem.

Theorem 3.0.1 [37] Let p : M̃ →M be a universal covering map of an RP2-manifold

M and π denote the corresponding group of covering transformations.

1. There exists a projective map dev : M̃ → RP2 and a homomorphism h : π →
SL(3,R) such that for each γ ∈ π the following diagram commutes:

M̃
dev−→ RP2

γ
y yh(γ)

M̃
dev−→ RP2

2. Let (dev′, h′) be another pair satisfying above conditions. Then there exists a

projective transformation g ∈ SL(3,R) such that dev′ = g ◦ dev and h′ = ιg ◦ h
where ιg : SL(3,R) → SL(3,R) denotes the inner automorphism defined by g,

namely h′(γ) = (ιg ◦ h)(γ) = g ◦ h(γ) ◦ g−1:

M̃
dev−→ RP2 g−→ RP2

γ
y

yh(γ)
yh′(γ)

M̃
dev−→ RP2 g−→ RP2

The projective map dev : M̃ → RP2 is called a developing map and h : π → SL(3,R) is

called the holonomy homomorphism. The image Γ = h(γ) is called the holonomy group.

Definition 3.0.2 A domain Ω in RP2 is called convex, if the following two conditions

are satisfied:

� There exists a projective line l ⊂ RP2 such that Ω ⊂ RP2 − l,

� For all x, y ∈ Ω, the line segment xy lies in Ω.

As is well-known that a discrete group Γ is a topological group in which the topology

is discrete. Recall also that a discrete group Γ acts properly on Ω if for every compact

sets A,B ⊂ Ω, the following set

Γ(A,B) = {g ∈ Γ|gA ∩B 6= ∅}
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is finite. Moreover, if a discrete group Γ has a trivial stabilizer subgroup namely

Γx = {g ∈ Γ|gx = x} is trivial then it is called acting freely on Ω.

3.1 Goldman Coordinates of Deformation Space B(Σ)

In this section, we are going to first consider Goldman’s very significant article [19]

which gives the parametrization of the deformation space of convex RP2-structures on

Σ and then the Hong Chan Kim’s paper [20].

Let RP2 be the real projective plane and PGL(3,R) the group of projective transfor-

mations RP2 → RP2. A convex RP2-manifold is a quotient M = Ω/Γ where Ω is

a convex domain in RP2 and Γ is a discrete group of PGL(3,R) acting properly on

Ω. Let us consider the two such quotients M1 = Ω1/Γ1 and M2 = Ω2/Γ2. They are

projectively equivalent, if there exists a projective transformation h ∈ PGL(3,R) such

that h(Ω1) = Ω2 and hΓ1h
−1 = Γ2.

Let Σ be a closed smooth surface and M be a convex RP2-manifold. A convex RP2-

structure is an equivalence class [(f,M)], where f : Σ → M is a diffeomorphism and

two such pairs (f,M) and (f ′,M ′) are regarded as equivalent if there exists a projective

equivalence h : M →M ′ such that h ◦ f isotopic to f ′. For a convex RP2-structure on

Σ, the action of the fundamental group π1(Σ) by deck transformations on the universal

covering space of Σ determines a homomorphism φ : π1(Σ)→ PGL(3,R) which is well

defined up to conjugacy in PGL(3,R). Up to above equivalence relation of convex RP2-

structures on Σ, the equivalence classes has a natural topology which can be identified

with an open subspace of the representations space Hom(π1(Σ),PGL(3,R))/PGL(3,R).

This space is called the deformation space of convex RP2-structures on Σ and denoted

by B(Σ). In [19], Goldman determines explicit coordinates on this space and proved

the following theorem:

Theorem 3.1.1 ([19]) Let Σ be a closed orientable surface of genus g > 1. Then the

deformation space B(Σ) of convex RP2-structures on Σ is diffeomorphic to an open cell

of dimension 16(g − 1).

In this part we will give the necessary information for the parametrization of the de-
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formation space B(Σ). For unexplained subjects and more details see [19].

One can consider the real projective plane as a space of all lines through the origin in

R3. Therefore if (x, y, z) ∈ R3 − {0} is a nonzero vector in R3 the corresponding point

in RP2 will be denoted 
xy
z




in homogeneous coordinates.

Let A be an invertible element of the group of linear transformations of R3, namely

GL(3,R). Then A preserves lines through the origin and induces a projective trans-

formation of RP2. Recall that PGL(3,R) is the group of projective transformations of

RP2. Clearly, we have the following exact sequence

{1} → R∗ → GL(3,R)→ PGL(3,R)→ {1},

where the scalar matrices R∗ in GL(3,R) act trivially on RP2. The analytic homomor-

phism from GL(3,R) to SL(3,R) defined by

A 7→ A

(detA)1/3

defines an isomorphism from PGL(3,R) to SL(3,R) as analytic groups. Thus, one can

consider only the group SL(3,R).

Let us consider the three points

p1 =


1

0
0


 , p2 =


0

1
0


 , p3 =


0

0
1




corresponding to the coordinate axes in R3 and the three lines l1 =
←→
p2p3 , l2 =

←→
p3p1,

l3 =
←→
p1p2, correspond to the coordinate planes and divide the real projective plane RP2

into four triangular regions:

∆0 = {[x, y, z] ∈ RP2 | x > 0, y > 0, z > 0},

∆1 = {[x, y, z] ∈ RP2 | x < 0, y > 0, z > 0},

∆2 = {[x, y, z] ∈ RP2 | x > 0, y < 0, z > 0},

∆3 = {[x, y, z] ∈ RP2 | x > 0, y > 0, z < 0}.

22



If a projective transformation A ∈ SL(3,R) fixes the points p1, p2, p3 then, it is repre-

sented by a unique diagonal matrix in SL(3,R) and it leaves invariant one triangular

region ∆i if and only if it is represented by a diagonal matrix with positive eigenvalues.

The full group of diagonal matrices in SL(3,R) is denoted by A and also the subgroup

of diagonal matrices with positive eigenvalues by A+.

If an element of SL(3,R) has three distinct real eigenvalues then it is called hyperbolic.

Moreover, if it is conjugate in SL(3,R) to a diagonal matrix with positive eigenvalues

then, it is called positive hyperbolic. Let us denote this subset of SL(3,R) by Hyp+.

Let us consider A ∈ Hyp+, then it is represented by the diagonal matrix



λ 0 0

0 µ 0

0 0 ν


 (3.1)

with the properties λµν = 1 and 0 < λ < µ < ν. The real eigenvalue of A having

the smallest absolute value is denoted by λ(A) and sum of the other two eigenvalues

is denoted by τ(A). Namely, λ(A) = λ and τ(A) = µ+ ν.

One can easily show that A ∈ Hyp+ is determined up to SL(3,R)-conjugacy by the set

of eigenvalues of A which are

λ = λ(A),

µ =
1

2

[
τ(A)−

√
τ(A)2 − 4

λ(A)

]
,

ν =
1

2

[
τ(A) +

√
τ(A)2 − 4

λ(A)

]
.

Therefore, we get a complete invariant of the SL(3,R)-conjugacy class of A, namely

(λ(A), τ(A)).

Proposition 3.1.2 ([19]) If we consider the action of SL(3,R) on Hyp+ by conju-

gation, then the restriction of SL(3,R) → R2 with A 7→ (λ(A), τ(A)) to Hyp+ is a

SL(3,R)-invariant fibration with image the following region

R =

{
(λ, τ) ∈ R2| 0 < λ < 1,

2√
λ
< τ < λ+

1

λ2

}
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and moreover, Hyp+ = (λ, τ)−1(R).

Let us now recall another pair of invariants (`,m) of Hyp+ which is more closely related

to the geometry of convex RP2-manifolds. If A ∈ Hyp+ as in (3.1) with the properties

λµν = 1 and 0 < λ < µ < ν, then `(A),m(A) are defined as follows

`(A) = ln
(ν
λ

)
> 0, (3.2)

m(A) = 3 ln(µ).

Using the definitions, one can easily show that the conditions λµν = 1, 0 < λ < µ < ν

are equivalent to the conditions

`(A) > 0

`(A) > |m(A)|.

And also the relation between these two invariant pairs can seen as follows

λ(A) = exp

(
−`(A)

2
− m(A)

6

)
, (3.3)

τ(A) = exp

(
`(A)

2
− m(A)

6

)
+ exp

(
m(A)

3

)
.

The correspondence in (3.3) between (λ(A), τ(A)) and (`(A),m(A)) defines a diffeo-

morphism

R↔ {(`,m) ∈ R+ × R | |m| < `}

giving another set of parameters for conjugacy classes in Hyp+.

Let us consider A ∈ Hyp+ which is represented by a diagonal matrix (3.1). Let us

denote the fixed point corresponding to the eigenvector for λ as a repelling fixed point

Fix−(A), the fixed point corresponding to the eigenvector for ν as an attracting fixed

point Fix+(A), and the fixed point corresponding to the eigenvector for µ as a saddle

point Fix0(A). Let Fix(A) denotes the stationary set consisting of these three points.

Let l(A) ⊂ RP2 denote the principle line for A, namely the line joining the attracting

and repelling fixed points of A. The principal reflection for A is the unique reflection

R ∈ SL(3,R) with stationary set Fix(R) = l(A) ∪ Fix(A). Clearly, R commutes with

A. Finally, the principle segments for A are two A-invariant segments which are the

separation of l(A) by two fixed points of A on l(A).
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Definition 3.1.3 The complement of a projective line l in RP2 is called as an affine

space A in RP2 and the intersection of a projective line l′ distinct from l with the affine

space A = RP2 − l is called as affine line in RP2.

Definition 3.1.4 Let S be a subset of RP2. If there exists an affine space A in RP2

containing S such that S is convex in the usual sense (namely, if x, y ∈ S then the line

segment xy lies in S), then S is convex.

Lemma 3.1.5 ([19]) If A ∈ Hyp+ and x ∈ RP2 does not lie on an A-invariant line,

then the closure of any convex set containing the < A >-orbit of x contains a principle

segment for A.

Now, let us consider the following matrix for s ∈ R

As =




λs 0 0

0 µs 0

0 0 νs


 , (3.4)

and a point in RP2 with homogeneous coordinates as

p0 =


x0
y0
z0


 ,

where x0, y0, z0 are positive. The matrix in (3.1) lies on a unique one-parameter sub-

group comprised of elements in (3.4). If we choose a projective line l∞ which is not

meeting the triangular region

∆0 = {[x, y, z] ∈ RP2 | x > 0, y > 0, z > 0},

then the convex hull of the orbit {As(p0) | s ∈ R} in RP2 − l∞ equals






xy
z


 ∈ RP2 | x, y, z > 0,

(
x

x0

)ln(ν/µ)(
z

z0

)ln(µ/λ)

>

(
y

y0

)ln(ν/λ)



 .

Here, the action of As to the point p0 is matrix multiplication

As(p0) =




λs 0 0

0 µs 0

0 0 νs







x0

y0

z0


 =




λsx0

µsy0

νsz0


 .
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In general, the families of < A >-invariant convex sets is defined as

Wη =






xy
z


 ∈ RP2 | x, y, z ≥ 0, xln(ν/µ)zln(µ/λ) ≥ ηyln(ν/λ)





for each η > 0.

If we also consider the one-parameter subgroup of the diagonal matrices in SL(3,R)

comprised of elements

Bs =




e−s 0 0

0 e2s 0

0 0 e−s


 (3.5)

for s ∈ R, then Bs commutes with A. The line segments joining Fix0(A) to the principal

line of A are the orbits of the one-parameter subgroup {Bs | s ∈ R}. Moreover, Bs

maps the convex set Wη to Wη′ where

η′ = (ν/λ)−3sη.

Finally, the invariant `(A) in (3.2) can be interpreted geometrically. For a principal

segment σ for A and an x ∈ σ, then the cross-ratio of the following four points

Fix−A, x,A(x),Fix+(A)

on the principal line l for A equals e`(A). If boundary of a convex domain Ω is a conic,

then the Hilbert metric is the hyperbolic metric, and `(A) equals the geodesic length

displacement function. Let us now briefly explain the cross-ratio and Hilbert distance.

Let Ĉ = C ∪ {∞} be the extended complex numbers and D4(Ĉ) ⊂ Ĉ × Ĉ × Ĉ × Ĉ

denotes the set of all distinct four points. The mapping X : D4(Ĉ)→ Ĉ defined by

X{w1, w2;w3, w4} =
(w1 − w3)(w2 − w4)

(w1 − w2)(w3 − w4)
,
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is called cross-ratio and it is invariant under the GL(2,C)-action onD4(Ĉ). If a1, a2, a3, a4

are collinear (i.e. they lie on a single straight line) distinct four points of RP2, then

there is B ∈ SL(3,R) such that the second homogeneous coordinate of each B(ai) is

zero for i = 1, 2, 3, 4. If we consider the following identification



x

0

z


 =





x/z if z 6= 0,

∞ if z = 0,

we can think of B(ai) ∈ R∪{∞} the extended real line and moreover, they are distinct.

Let CD4(RP2) ⊂ RP2 × RP2 × RP2 × RP2 consist of all collinear distinct four points.

Then the cross-ratio CR : CD4(RP2)→ R is defined by

CR{a1, a2; a3, a4} = X{B(a1), B(a2), B(a3), B(a4)}

= X






a1

0
a′1


 ,


a2

0
a′2


 ,


a3

0
a′3


 ,


a4

0
a′4







= X

{
a1

a′1
,
a2

a′2
,
a3

a′3
,
a4

a′4

}

=

(
a1

a′1
− a3

a′3

)(
a2

a′2
− a4

a′4

)

(
a1

a′1
− a2

a′2

)(
a3

a′3
− a4

a′4

) .

Suppose that there is another such B′ ∈ SL(3,R), then one can show that B−1B′ ∈
SL(2,R) via the identification


a b

c d


↔




a 0 b

0 1 0

c 0 d


 .

Therefore, the cross-ratio on CD4(RP2) is independent of the choice of B ∈ SL(3,R).

The Hilbert distance h : RP2 × RP2 → R+ is defined by

h(a, b) = inf
→
xy

(lnCR{x, a, b, y}).

Here, a, b lie on the oriented segment
→
xy with a is the first, b the second point and inf

runs over all such
→
xy. Recall that if boundary of a convex domain Ω is a conic, then
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the Hilbert distance defines a metric and it is called the Hilbert metric. Furthermore,

it is an hyperbolic metric.

Let A ∈ Hyp+. It can be uniquely decomposed as A = HV product of two matrices

up to SL(3,R)-conjugation. Here,

H =




λ
√
µ 0 0

0 1 0

0 0 ν
√
µ




is called horizantal factor and

V =




1√
µ

0 0

0 µ 0

0 0 1√
µ




is called vertical factor of the decomposition of a positive hyperbolic transformation.

Lemma 3.1.6 If a ∈ RP2 and A ∈ Hyp+, then the Hilbert distance

h(a,A(a)) = ln CR{Fix−(A), a, A(a),Fix+(A)}.

Now, let us consider the Hilbert distance between a and H(a) for any a = [1−s, 0, s]t ∈
σ(A) = σ(H).

h(a,H(a)) = ln CR{Fix−(H), a,H(a),Fix+(H)}

= ln CR






1

0
0


 ,


1− s

0
s


 ,


(1− s)λ√µ

0
sν
√
µ


 ,


0

0
1







= ln CR

{
∞, 1− s

s
,
λ

ν

1− s
s

, 0

}

= ln

(
∞− λ

ν
1−s
s

) (
1−s
s
− 0
)

(
∞− 1−s

s

) (
λ
ν

1−s
s
− 0
)

= ln
(ν
λ

)

= `(A).

So, we call `(A) = h(a,H(a)) the horizontal translation length, and it is the length of

the boundary component represented by A.

28



Let us consider V and the stationary set which is the line joining [1, 0, 0]t, [0, 0, 1]t and

the fixed point [0, 1, 0]t. We can assume µ > 1 without loss of generality. So, for any

a = [1 − s, y, s]t in the line segment joining [1 − s, 0, s]t and [0, 1, 0]t, the point V (a)

goes toward [0, 1, 0]t since µ > 1. Thus, the Hilbert distance between a and V (a) is

h(a, V (a)) = ln CR{Fix−(V ), a, V (a),Fix+(V )}

= ln CR








1− s
0

s


 ,




1− s
y

s


 ,




(1−s)√
µ

yµ

(1−s)√
µ


 ,




0

1

0








= ln X




B




1− s
0

s


 , B




1− s
y

s


 , B




(1−s)√
µ

yµ

(1−s)√
µ


 , B




0

1

0








= ln X






1

0
0


 ,


1

0
y


 ,


1/
√
µ

0
yµ


 ,


0

0
1







= ln X

{
∞, 1

y
,

1

yµ3/2
, 0

}

= ln

(
∞− 1

yµ3/2

)(
1
y
− 0
)

(
∞− 1

y

)(
1

yµ3/2 − 0
)

= ln
(
µ3/2

)

= m(A).

We call m(A) = h(a, V (a)) the vertical translation length.

Consequently, one can easily see the relations among H,V , and A as follows:

`(H) = ln

(
ν
√
µ

λ
√
µ

)
= ln

(ν
λ

)
= `(A),

m(H) =
3

2
ln(1) = 0,

`(V ) = ln

(
1/
√
µ

1/
√
µ

)
= ln(1) = 0,

m(V ) =
3

2
ln(µ) = m(A).

Therefore, A and H have the same horizontal translation length; A and V have the
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same vertical translation length.

3.2 Convex RP2-structures on a Pair-of-pants

Let Σ be a pair-of-pants; that is, a compact oriented surface of genus zero with three

boundary components A,B,C. The main result of Goldman is the following theorem.

A

B C

Figure 3.3: A pair-of-pants

Theorem 3.2.1 ([19]) The deformation space B(Σ) of convex RP2-structures on Σ is

an open 8-dimensional cell and the map Θ∂Σ : B(Σ) → R3 obtained by associating to

a convex structure the boundary invariants

((λ, τ)A, (λ, τ)B, (λ, τ)C)

is a fibration over an open 6-cell with fiber a 2-dimensional open cell.

Sketch of Proof. Let M be a convex RP2-structure representing a point in B(Σ) and

(dev, h) be a development pair. Therefore, we have

h : π1(Σ) → SL(3,R)

A 7→ h(A),

and similarly we get h(B) and h(C) for the boundaries B,C, respectively. Let us also

consider four triangular regions ∆0,∆a,∆b,∆c ⊂ RP2 (see Figure 3.4) and three pro-

jective transformations A,B,C ∈ SL(3,R) (here, A,B,C denote the holonomy trans-

formations of h(A), h(B), h(C) of boundaries,respectively) which satisfy the following

conditions:
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� ∆a,∆b,∆c each intersect ∆0 along each of the three edges of ∆0,

� ∆0 ∪∆a ∪∆b ∪∆c is a convex hexagon,

� CBA = I and A(∆b) = ∆c, B(∆c) = ∆a, C(∆a) = ∆b,

� A,B,C ∈ Hyp+ and the vertices of ∆0 are the repelling fixed points Fix−(A),

Fix−(B),Fix−(C) of A,B,C respectively and satisfy

∆a ∩∆b = Fix−(C), ∆b ∩∆c = Fix−(A), ∆c ∩∆a = Fix−(B).

The set of all (∆0,∆a,∆b,∆c, A,B,C) satisfying above conditions is denoted by O′

and the projective group SL(3,R) acts properly and freely on O′, thus the quotient is

denoted by O.

The following lemma will conclude the proof of the Theorem 3.2.1.

Lemma 3.2.2 ([19]) O is an open cell of dimension 8 and the map

O → R3

(∆0,∆a,∆b,∆c, A,B,C) 7→ ((λ, τ)A, (λ, τ)B, (λ, τ)C)

is a fibration with fiber an open 2-cell over the 6-cell R3. Moreover, there is an em-

bedding Teich(Σ) ⊂ B(Σ) ⊂ O, where Teich(Σ) is the deformation space of convex

hyperbolic structures on Σ, namely the Teichmüller space.

Let us choose the coordinates in RP2 such that


1

0
0


 ,


0

1
0


 ,


0

0
1




are the homogeneous coordinates of the vertices of ∆0. Here,

∆0 = {[x, y, z] ∈ RP2 | x > 0, y > 0, z > 0},

and also [1, 0, 0] is the repelling fixed point of A, [0, 1, 0] is the repelling fixed point

of B, and [0, 0, 1] is the repelling fixed point of C. In the homogeneous coordinates,

the remaining vertices of ∆a,∆b,∆c are respectively [−1, b1, c1], [a2,−1, c2], [a3, b3,−1].

Note that the other triangular regions are given by
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∆a = {[x, y, z] ∈ RP2 | x < 0, 0 < y < −b1x, 0 < z < −c1x},

∆b = {[x, y, z] ∈ RP2 | 0 < x < −a2y, y < 0, 0 < z < −c2z},

∆c = {[x, y, z] ∈ RP2 | 0 < x < −a3z, 0 < y < −b3z, z < 0},

respectively.

Here, we will recall two lemmas about cross ratio. For more detail, see [38].

Lemma 3.2.3 ([38]) If a, b, c, d are four points in the projective plane RP2 and o is a

point which is not on this line, then the cross-ratio can be calculated as

(a, b; c, d) =
[o, a, c][o, b, d]

[o, a, d][o, b, c]
.

bb
b

b

b

b

b

b
b

b

b

b
∆0

[
1
0
0

]

[
0
1
0

] [
0
0
1

]

[
1
b1
c1

]

[
a2
1
c2

]

[
a3
b3
1

]

b

b

b

b

b b

∆a

∆b

∆c

Figure 3.4: The cross-ratios of four lines
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Thanks to above Lemma 3.2.3 and Figure 3.4, we can compute the cross-ratios of the

four lines which contains edges of the incident triangles as follows:




0

0
1


 ,


0

1
0


 ;


a3
b3
1


 ,


a2

1
c2




 =

∣∣∣∣∣∣∣

1 0 a3

0 0 b3

0 1 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

1 0 a2

0 1 1

0 0 c2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0 a2

0 0 1

0 1 c2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

1 0 a3

0 1 b3

0 0 1

∣∣∣∣∣∣∣

=
(0− b3)(c2 − 0)

(0− 1)(1− 0)
= b3c2 = ρ1




0

0
1


 ,


1

0
0


 ;


a3
b3
1


 ,


 1
b1
c1




 =

∣∣∣∣∣∣∣

0 0 a3

1 0 b3

0 1 1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

0 1 1

1 0 b1

0 0 c1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

1 0 1

1 0 b1

0 1 c1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

0 1 a3

1 0 b3

0 0 1

∣∣∣∣∣∣∣

=
(−1)(0− a3)(−1)(c1 − 0)

(−1)(0− 1)(−1)(1− 0)
= a3c1 = ρ2




0

1
0


 ,


1

0
0


 ;


a2

1
c2


 ,


 1
b1
c1




 =

∣∣∣∣∣∣∣

0 0 a2

0 1 1

1 0 c2

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

0 1 1

0 0 b1

1 0 c1

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣

0 0 1

0 1 b1

1 0 c1

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

0 1 a2

0 0 1

1 0 c2

∣∣∣∣∣∣∣

=
(0− a2)(b1 − 0)

(0− 1)(1− 0)
= a2b1 = ρ3

The hexagon ∆0∪∆a∪∆b∪∆c is convex if and only if all b1, c1, a2, c2, a3, b3 are positive

and all the cross-ratios, namely ρ1, ρ2, ρ3 are greater than 1.

There are also 2 internal parameters s, t > 0. From the details in [19], one can easily

see that
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t =
a2b3

a3

and s is determined as the unique positive solution to any one of the three equations

below:

ρ1 = b3c2 = 1 + τ(A)

√
λ(A)λ(C)

λ(B)
s+

λ(C)

λ(B)
s2

ρ2 = a3c1 = 1 + τ(B)

√
λ(A)λ(B)

λ(C)
s+

λ(A)

λ(C)
s2

ρ3 = a3b1 = 1 + τ(C)

√
λ(B)λ(C)

λ(A)
s+

λ(B)

λ(A)
s2.

Finally, for the Σ which is a pair-of-pants, the parametrization is

((λ(A), τ(A)), (λ(B), τ(B)), (λ(C), τ(C)), (s, t)) ∈ R8.

Thus, the fiber of the boundary invariant map O → R3 is parametrized by arbitrary

pairs (s, t) ∈ R+ × R+ such that O → R3 is 2-cell fibration over the open 6-cell R3.

This concludes the proof of Theorem 3.2.1.

Theorem 3.2.4 ([19]) Let Σ be a compact surface with negative Euler characteristic

and having n ≥ 0 boundary components. Then the map Θ∂Σ : B(Σ) → B(∂Σ) is a

fibration over the 2n-cell B(∂Σ) with fiber an open cell of dimension −8χ(Σ) − 2n,

where χ denotes the Euler characteristic.

Let Σ be a compact surface with boundary components b1, . . . , bn, and cut Σ along

disjoint one-sided simple closed curves a1, . . . , am. If we decompose the surface into

pair-of-pants Pl for l = 1, . . . ,−χ(Σ) along simple closed curves c1, . . . , cp. One can

easily see that n+m+ 2p = −3χ(Σ).

If, for example, Σ is a surface of genus 2 with 3 boundary components, then the Euler

characteristic of this surface is

χ(Σ) = 2− 2g − n = 2− 2 · 2− 3 = −5.
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Moreover, if we decompose this surface into pair-of-pants then we get 5 pair-of-pants

along 6 simple closed curves. So, we have

n+m+ 2p = 3 + 0 + 2 · 6 = 15

which equals −3χ(Σ) = (−3)(−5).

There is one more part of this parametrization. In [19], Goldman defines the R2 ac-

tion Ψ on B(Σ) that generalizes the earthquake flow on the Teichmüller space. The

action of an element (u, v) ∈ R2 is defined on a point in B(Σ). Therefore, a new convex

RP2-manifold Ψ(u,v)(M) is constructed for (u, v) ∈ R2 which represents a point in B(Σ).

Let p : M̃ → M be a universal covering and (dev, h) be a development pair. For a

simple closed geodesic C on M and a representative element γ ∈ π1(M) chosen such

that h(γ) ∈ A is represented by the diagonal matrix (3.1) satisfying the properties

λµν = 1 and 0 < λ < µ < ν. Obviously, the centralizer of h(γ) in SL(3,R) equals A.

A+ is the identity component of A and it is the direct product of the two one-parameter

groups

T u =



e−u 0 0

0 1 0

0 0 eu


 , U v =



e−v 0 0

0 e2v 0

0 0 e−v


 ,

where u, v ∈ R. The flows Ψ(u,0) and Ψ(0,v) on B(Σ) are special cases of the generalized

twist flows on Hom(π, SL(3,R)). These flows generates the vector fields ∂
∂θγ
, ∂
∂βγ

and

they are called the generalized twisting vector fields whose potential functions are `(γ)

and m(γ), respectively.

Consequently, the following map

B(Σ)→ Rn ×Rm × (R× R2)p × (R+ × R+)−χ(Σ)

defined by

M 7→ {(λ(bi), τ(bi))}ni=1 × {(λ(aj), τ(aj))}mj=1

×{(λ(ck), τ(ck), (u, v)(ck))}pk=1 × {((s, t)(Pl))}
−χ(Σ)
l=1
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is a diffeomorphism of B(Σ) onto a −8χ(Σ)-dimensional cell.

3.3 The Symplectic Structure on Rep(π,G)

Let us recall that B(Σ) embeds into Hom(π, SL(3,R))/(SL(3,R)). Therefore, we should

recall the basic properties of Hom(π,G). Here, π denotes the fundamental group of a

compact oriented smooth surface M = Σ(g, n) with genus g ≥ 2 and n boundary, and

also G is a connected Lie group.

Hom(π,G) is not smooth, in general. Therefore, we look for a smooth part of it. First

of all, let Hom(π,G)− denote the set of nonsingular points of Hom(π,G). And then,

Hom(π,G)−− be the subset of Hom(π,G)− which consists of homomorphisms whose

image does not lie in a parabolic subgroup of G. So, Hom(π,G)−− is a Zariski open

subset of Hom(π,G)−, and Hom(π,G)−−/G is a Hausdorff smooth manifold of dimen-

sion −dimG · χ(M). Details and unexplained subjects can be found in [15].

In this thesis, we will consider the surfaces without boundary. So, we will study the

symplectic form on the moduli space of a closed surface. And also, when we say

Rep(π,G) we mean the smooth locus Hom(π,G)−−/G.

First, let us recall Fox’s calculus in [39]. By using this, one can define the explicit

formula for the symplectic 2-form on Rep(π,G).

Let F be a free group with basis {x1, . . . , xn} and ZF be its integral group ring. The

Fox derivation of ZF is a Z-linear map D : ZF → ZF which satisfies

D(fg) = D(f)ξ(g) + fD(g).

Here, f, g ∈ ZF and ξ : ZF → Z is the augmentation homomorphism which defined

by

ξ
(∑

niσi

)
=
∑

ni.

ZF is an F -bimodule such that F acts on the right by trivial and on the left by
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left-multiplication. For an arbitrary x, y ∈ F , since ξ(y) = 1

D(xy) = D(x)ξ(y) + xD(y)

= D(x) + xD(y),

the Fox derivation is a 1-cocycle on F with coefficients in ZF .

Lemma 3.3.1 ([39]) Let {x1, . . . , xn} be the generators for group F and Der(F ) be

the set of all Fox derivations. If we define

(D ◦ f)(x) = D(x)ξ(f),

where D ∈ Der(F ), f ∈ ZF and x ∈ F , then Der(F ) is freely generated as a right

ZF -module by n elements ∂i = ∂/∂xi, i = 1, . . . , n so that (∂/∂xi)(xj) = δijI. Here, I

is the identity element of F .

Now, let us recall the group homology theory in [40]. Let F be a group and ZF denote

its integral group ring. The freely generated Z-module F ×· · ·×F is denoted by Cn(F )

and C0(F ) = Z. The boundary operator ∂n : Cn(F ) → Cn−1(F ) is defined as follows

for n ≥ 2

∂n(u1, . . . , un) = ξ(u1)(u2, . . . , un) +
n−1∑

i=1

(−1)i(u1, . . . , uiui+1, . . . , un)

+(−1)n(u1, . . . , un−1)ξ(un),

and ∂1(u) = 0.

For example, let us write ∂2 : C2(F )→ C1(F ):

∂2(u1, u2) = ξ(u1)u2 − u1u2 + u1ξ(u2),

and ∂3 : C3(F )→ C2(F ):

∂3(u1, u2, u3) = ξ(u1)(u2, u3)− (u1u2, u3) + (u1, u2u3)− ξ(u3)(u1, u2).
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Now, let us check ∂2 ◦ ∂3:

∂2(∂3(u1, u2, u3)) = ξ(u1)∂2(u2, u3)− ∂2(u1u2, u3) + ∂2(u1, u2u3)− ξ(u3)∂2(u1, u2)

= ξ(u1)[ξ(u2)u3 − u2u3 + u2ξ(u3)]

−[ξ(u1u2)u3 − u1u2u3 + u1u2ξ(u3)]

+[ξ(u1)u2u3 − u1u2u3 + u1ξ(u2u3)]

−ξ(u3)[ξ(u1)u2 − u1u2 + u1ξ(u2)]

= 0.

One can easily see that ∂n ◦ ∂n+1 = 0. Therefore, the group homology is:

Hn(F ) =
Zn(F )

Bn(F )
.

Here, Zn(F ) is the kernel of ∂n : Cn(F ) → Cn−1(F ) and Bn(F ) is the image of

∂n+1 : Cn+1(F )→ Cn(F ).

For the rest of this subsection, we refer the reader [20]. Let us consider a closed surface

group π = F/R where π is a group generated by 2g generators A1, B1, . . . , Ag, Bg and

with the relation

R = A1B1A
−1
1 B−1

1 · · ·AgBgA
−1
g B−1

g . (3.6)

If we consider the 2-chain on π

ZR =

g∑

i=1

(
(
∂R

∂Ai
, Ai) + (

∂R

∂Bi

, Bi)

)

=
∑

i

ni(xi, yi) ∈ Z(π × π),

then the boundary ∂ZR = 0. Recall that ZR is called the fundamental cycle of the

fundamental group π.

Finally, we are ready to give the explicit formula of the symplectic form on Rep(π,G).

Here, π is the fundamental group of a closed surface Σ, G = SL(3,R) is a connected al-

gebraic Lie group and g = sl(3,R) is the Lie algebra of G. Let B : sl(3,R)×sl(3,R)→
R be an Ad-invariant nondegenerate symplectic bilinear form, e.g. it can be the trace
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form.

If u, v ∈ Z1(π; sl(3,R)Adφ) then a Z-linear map B∗(u, v) : Z(π × π)→ R is defined by

B∗(u, v)

(
k∑

i=1

ni(xi, yi)

)
=

k∑

i=1

ni{B(u(xi), xi · v(yi))}.

Here, xi ·v(yi) = Adφ(xi)v(yi) for (xi, yi) ∈ π×π ⊂ C2(π), therefore B∗(u, v) ∈ Z2(π;R).

Definition 3.3.2 The symplectic form ωG on Rep(π,G), which is called Atiyah-Bott-

Goldman symplectic form, is defined as follows:

ωG : H1(π; gAdφ) × H1(π; gAdφ)→ R

ωG([u], [v]) = B∗(u, v)ZR.

Here, ZR is the fundamental cycle of π, G is a Lie goup and g is the Lie algebra of G.

Let us consider the set of nontrivial homotopically distinct disjoint simply closed

geodesics Γ = {γi}i=1,...,3g−3 on Σ so that Σ is decomposed as the disjoint union of

2g − 2 pair of pants by Γ. So, for each γi there are two length parameters `i,mi and

two twisting parameters θi, βi, where `i ∈ R+ and mi, θi, βi are real numbers. The co-

ordinate fields ∂
∂θi
, ∂
∂βi

are the generalized twisting vector fields generated by the flows

Ψγi(u,0),Ψγi(0,v) and their potential functions are `i,mi. Thus, we have following

ωG

(
∂

∂θi
,

)
= −d`i, ωG

(
∂

∂βi
,

)
= −dmi.

By using above duality formula, if

X ∈ Vect(B(Σ))\ < ∂

∂`k
> and Y ∈ Vect(B(Σ))\ < ∂

∂mk

>

then we can determine that

ωG

(
∂

∂θk
, X

)
= −d`k(X) = 0

ωG

(
∂

∂βk
, Y

)
= −dmk(Y ) = 0.
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Lemma 3.3.3 ([20]) Let Σ be a closed surface with genus g which is having an orien-

tation reversing map ρ fixing the elements of a partition Γ = {γi} and preserving the

real projective structure on Σ. For each i and j,

ωG

(
∂

∂θi
,
∂

∂θj

)
= ωG

(
∂

∂`i
,
∂

∂`j

)
= ωG

(
∂

∂βi
,
∂

∂βj

)
= ωG

(
∂

∂mi

,
∂

∂mj

)
= 0,

and also for any j and k,

ωG

(
∂

∂sj
,
∂

∂sk

)
= ωG

(
∂

∂tj
,
∂

∂tk

)
= 0.

Finally, the main theorem of [20] is following:

Theorem 3.3.4 ([20]) If Σ is a closed smooth surface with genus g, then the symplectic

form on B(Σ) of convex real projective structures is

ωG =

3g−3∑

i=1

d`i ∧ dθi +

3g−3∑

i=1

dmi ∧ dβi +

2g−2∑

j=1

dtj ∧ dsj. (3.7)

Here,

`i,mi −→ length parameters,

θi, βi −→ twisting parameters,

sj, tj −→ internal parameters,

on B(Σ). Therefore, B(Σ) is symplectomorphic to R16g−16.

3.4 Reidemeister Torsion of Representations Associated to

RP2 via the Goldman Parametrization

Thanks to Goldman parametrization of the deformation space of convex RP2-structures,

we have the following diffeomorphism:

f : (B(Σ), ωG) ↪→
(
R16g−16, ωnat

)
, (3.8)

where the image of f is an open cell of dimension 16g − 16, ωG is the Atiyah-Bott-

Goldman symplectic form, and ωnat is the well-known natural symplectic form on

R16g−16. This map defines a symplectomorphism, namely

f ∗(ωnat) = ωG.
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Here, f ∗ is the pullback of f .

Finally, we are ready to give the main result of this section of the thesis.

Theorem 3.4.1 Let Σ be a closed orientable surface with genus at least 2 and φ :

π1(Σ) → SL(3,R) be the element of the deformation space B(Σ). If α = {αi}16g−16
i=1 is

a basis of the open cell of dimension 16g − 16 then we have the following formula

Tor(Σ, {α}) =

√√√√√det


ωnat

α


.

Proof.

Let us consider the differential

f∗ : H1(Σ, sl(3,R)Adφ)→ R16g−16

of f in (3.8). Here, H1(Σ, sl(3,R)Adφ) denotes the first cohomology group of the

deformation space Σ with basis h1 = f−1
∗ (α) . Let σ1, σ2 be the elements of the

H1(Σ, sl(3,R)Adφ), so we have

ωG(σ1, σ2) = f ∗(ωnat)(σ1, σ2)

= ωnat(f∗(σ1), f∗(σ2))

= ωnat(α1, α2),

where, αi ∈ R16g−16 for i = 1, 2. Using the fact that f ∗(ωnat) = ωG, f∗(h
1) = α and

applying Theorem 2.3.6 we conclude the proof.

2
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4 COMPLEX PROJECTIVE STRUCTURES

In this section, we will state well-known facts about Teichmüller space. For more in-

formation and unexplained subjects, we refer the reader to [27, 28].

Recall that a surface with a class of complex structures, in other words an element of

Teich(Γ), is called a marked surface.

Let p : H → Σ be the universal covering of Σ with covering transformation group

Γ. Here, H ⊂ C is the upper half-plane and Γ ⊂ PSL(2,R) is a strictly hyperbolic

Fuchsian group acting on H by linear fractional transformations. Taking a base point

z ∈ H lying over x ∈ Σ establishes a canonical isomorphism between Γ and π1(Σ, x)

and thus determines a system of generators A1, . . . , Ag, B1, . . . , Bg of Γ that correspond

to the elements a1, . . . , ag, b1, . . . , bg, so that

g∏

i=1

AiBiA
−1
i B−1

i = 1.

This called a marking of Γ and also the group Γ with a marking is called a marked

Fuchsian group. Throughout the following subsection, a marking of Σ and the corre-

sponding marking of Γ will be fixed.

4.1 Bers Section

For more information about this subsection, we refer the reader to [21].

Definition 4.1.1 Let q : H→ C be a holomorphic function. If q satisfies the following

equality for all γ ∈ Γ, z ∈ H

q(γz)γ′(z)2 = q(z)

then it is called a (holomorphic) quadratic differential for Γ. The space of all quadratic

differentials denoted by A2(H,Γ).

The Schwarzian derivative of a holomorphic function f of one complex variable z is

defined by

(Sf)(z) =
f
′′′

(z)

f ′(z)
− 3

2

(
f
′′
(z)

f ′(z)

)2

.
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Note that, the Schwarzian derivative is a certain operator that is invariant under all

Möbius transformation.

If we consider the differential equation

S(f)(z) = q(z)

for a quadratic differential q ∈ A2(H,Γ), any solution of f of above equation turns out

to be a locally biholomorphic mapping from H into the Riemann sphere Ĉ. Therefore,

it arises a homomorphism φ : Γ→ PSL(2,C) such that

f(γz) = φ(γ)f(z)

for all γ ∈ Γ, z ∈ H. This f determines a projective structure on Σ and we call φ the

monodromy representation determined by f .

Definition 4.1.2 Let µ : H→ C be a C∞- function. If the following equation

µ(γz)
γ′(z)

γ′(z)
= µ(z)

is satisfied for all γ ∈ Γ and z ∈ H, then µ is called a (smooth) Beltrami differential

for Γ.

B(H,Γ) denotes the space of all Beltrami differentials for Γ and B(H,Γ)1 denotes the

set

{µ ∈ B(H,Γ) ; ‖µ‖∞ = sup
z∈H
|µ(z)| < 1}.

If µ is an element of B(H,Γ)1 then there exists a unique quasiconformal mapping

wµ : Ĉ→ Ĉ which satisfies the Beltrami equation




wµz = µwµz in H

wµz = 0 in C \H

and fixing the points 0,1 and ∞. Note that since µ is C∞ on H the restriction wµ|H is

a diffeomorphism (see [27]).

Let us take two elements µ, ν ∈ B(H,Γ)1 and define an equivalence relation for them

as

µ ∼ ν ⇐⇒ wµ and wν coincide on the lower half-plane H∗.
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The equivalence class of an element µ is denoted by [µ].

The set of equivalence classes of these Beltrami differentials defines the Teichmüller

space Teich(Γ).

Teich(Γ) := B(H,Γ)1 / ∼

If [µ] is an element of the Teichmüller space then one can consider the element wµ|H∗ ,
which bring out a bijection between the Teichmüller space and a certain class of locally

biholomorphic functions on H∗ (see [27]).

Now, there is an important step like taking the Schwarzian derivative of the functions

wµ|H∗ . One can shows that

(i) S(wµ|H∗) is a (holomorphic) quadratic differential for Γ on H∗, for any µ ∈
B(H,Γ)1,

(ii) S(wµ|H∗) = S(wν |H∗)⇔ [µ] = [ν] in Teich(Γ).

For more detail see [28, 27].

Definition 4.1.3 From above informations, there is a well-defined injective mapping

β : Teich(Γ) −→ A2(H∗,Γ)

[µ] 7−→ S(wµ|H∗)
(4.1)

which is called Bers embedding, where A2(H∗,Γ) denotes the (3g − 3)-dimensional

complex vector space of (holomorphic) quadratic differentials on H∗ for Γ.

If the following map (the Bers projection)

Φβ : B(H,Γ)1 −→ A2(H∗,Γ)

µ 7−→ S(wµ|H∗)
(4.2)

is analyzed closely, one can show that the image of β, which is denoted by Teichβ(Γ),

is an open (bounded) domain in A2(H∗,Γ) (see [27]). One of the possible definitions

of the complex structure of Teich(Γ) is the natural complex structure via the embed-

ding β; thus it can be biholomorphically identified with the open domain Teichβ(Γ) in

A2(H∗,Γ).

44



Let Hµ = wµ(H) be the quasidisk which depends only the Teichmüller class µ and that

mapping wµ conjugates Γ into a quasi-Fuchsian group Γµ = wµΓ(wµ)−1 acting on Hµ.

Definition 4.1.4 Attaching over each [µ] in Teich(Γ) the marked Riemann surface

Σµ = Hµ/Γµ, a representative of the Teichmüller point [µ] defines the universal Te-

ichmüller curve V (Γ).

Definition 4.1.5 If q ∈ A2(H,Γ) and z ∈ H, then one can define a Beltrami differen-

tial µ[q](z) ∈ B(H,Γ) by

µ[q](z) = λH(z)−2 q(z).

µ[q] is called the harmonic Beltrami differential formed from q. q 7→ µ[q] induces a

complex antilinear isometric embedding of A2(H,Γ) into B(H,Γ). The image space of

this embedding is denoted by HB(H,Γ).

Let us consider the quasidisk Hµ = wµ(H) and quasi-Fuchsian group Γµ = wµΓ(wµ)−1.

The Bers projection Φβ in (4.2) can be expressed in terms of the generalized Bers

projection

Φµ : B(Hµ,Γµ)1 → A2((H∗)µ,Γµ),

through the canonical biholomorphism B(Hµ,Γµ)1 → B(H,Γ)1 and the isomorphism

A2((H∗)µ,Γµ)→ A2(H∗,Γ). For more detail, see [27, 21].

Considering the differential of Φβ at the point 0 ∈ B(H,Γ)1 one has the following

isomorphisms

T[µ]Teich(Γ) ∼= HB(Hµ,Γµ)

T∗[µ]Teich(Γ) ∼= A2(Hµ,Γµ)

[27]. Here, T[µ]Teich(Γ) denotes the holomorphic tangent space and T∗[µ]Teich(Γ) de-

notes the holomorphic cotangent space to Teich(Γ) at the base point [µ] ∈ Teich(Γ).

Let Q be the total space of the holomorphic cotangent bundle T∗Teich(Γ) of the Te-

icmüller space Teich(Γ). It is well-known that Q has a canonical symplectic structure

ωnat. Let us recall the natural symplectic form on the cotangent bundle.
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Let M be an n-dimensional smooth manifold and its cotangent bundle is defined as

follows

T∗M := { linear maps f : TqM → R; q ∈M}.

If q = (q1, . . . , qn) is a choice of local coordinates on U ⊆ M , then for a fixed q ∈ U ,

a 1-form
∑n

i=1 pidqi on TqM is determined by the coefficients (p1, . . . , pn). Therefore,

local coordinates of an element l ∈ T∗M are (p, q) = (p1, . . . , pn, q1, . . . , qn).

Let X ∈ Tl(T
∗M) be a vector tangent to the cotangent bundle at the point l = (p, q) ∈

T∗M . Through the derivative

π∗ : T(T∗M)→ TM,

of the natural projection, the tangent vector X ∈ Tl(T
∗M) is mapped to the tangent

vector π∗X ∈ TqM . This defines the 1-form υ on T∗M by the relation υ(X) = l(π∗X).

A symplectic form on T∗M is defined by the exterior derivative ωnat := dυ. Clearly, it

is closed and non-degenerate. Note that in the local coordinates (p, q) described above

the natural symplectic structure ωnat is equal to dp ∧ dq [42].

The space Rep(Γ,PSL(2,C)) also admits a natural symplectic structure namely, the

Atiyah-Bott-Goldman symplectic form ωPSL(2,C). Let τ ∈ Teich(Γ) and q ∈ A2(Hτ ,Γτ ).

One has a conjugacy class of representations Γτ → PSL(2,C) and hence one can obtain

the monodromy mapping

F : Q→ Rep(Γ,PSL(2,C)) (4.3)

via the canonical isomorphisms Γτ ∼= Γ.

It was proved in [21] by S. Kawai that the mapping F : Q → Rep(Γ,PSL(2,C)) is a

symplectomorphism, more precisely

F ∗ωPSL(2,C) =
1

π
ωnat.

Using this fact, we prove:
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Theorem 4.1.6 Let Σ be a closed orientable surface with genus at least 2 and φ :

π1(Σ) → PSL(2,C) be an element of the space Rep(Γ,PSL(2,C)). If α = {αi}12g−12
i=1

is a basis of R12g−12, then

|Tor(Σ, {α})| = π6−6g

√√√√√det


ωnat

α


.

Proof. We have the symplectomorphism (4.3)

F : Q→ Rep(Γ,PSL(2,C)),

and let φ ∈ Rep(Γ,PSL(2,C)) be a representation. We can consider the differential of

this map

F∗ : TF−1(φ)Q→ TφRep(Γ,PSL(2,C)).

Considering the isomorphismsH1(Σ, sl(2,C)Adφ) ∼= TφRep(Γ,PSL(2,C)) and TF−1(φ)Q ∼=
R12g−12, we get

F−1
∗ : H1(Σ, sl(2,C)Adφ)→ R12g−12.

Here, H1(Σ, sl(2,C)Adφ) is the first cohomology group of Σ with twisted coefficients.

Considering the corresponding basis h1 = F∗(α) of H1(Σ, sl(2,C)Adφ) and Theorem

2.3.6 we have

∣∣Tor(Σ, {h1})
∣∣ =

√√√√√

∣∣∣∣∣∣
det


ωPSL(2,C)

h1



∣∣∣∣∣∣
. (4.4)

Let σ1, σ2 be elements of H1(Σ, sl(2,C)Adφ). From the fact that F ∗(ωPSL(2,C)) = 1
π
ωnat

it follows

ωPSL(2,C)(σ1, σ2) =
1

π
(F ∗)−1(ωnat)(σ1, σ2)

=
1

π
ωnat(F

−1
∗ (σ1), F−1

∗ (σ2))

=
1

π
ωnat(β1, β2), (4.5)

where, βi ∈ R12g−12 for i = 1, 2.

47



Combining the equations (4.4), (4.5) and using the fact dimR
(
H1(Σ, sl(2,C)Adφ)

)
=

12g − 12 we obtain the formula

|Tor(Σ, {α})| = π6−6g

√√√√√det


ωnat

α


.

2

4.2 Schottky Uniformization

Let CP(Σ) be the deformation space of complex projective structures, namely the

space of equivalence classes of projective structures associated to Σ and ωCP denote

the holomorphic symplectic structure on this space obtained by pulling back, using

the developing map. Let us also consider the natural symplectic structure ωnat on the

cotangent bundle T∗Teich(Σ).

Definition 4.2.1 ([41])Let Γ be a Fuchsian group acting on the unit disc ∆ so that one

can consider the closed Riemann surface Σ as ∆/Γ. The tuple (∆,Γ, F : ∆→ Σ) is a

Fuchsian uniformization of Σ. Here Γ : 〈A1, . . . , Ag, B1, . . . , Bg :
∏g

j=1AjBjA
−1
j B−1

j =

1〉, N = 〈〈B1, . . . , Bg〉〉 be the normal envelope of B1, . . . , Bg inside Γ. The free group

G = Γ/N with rank g is a Schottky group and Ω = ∆/N is the region of discontinuity.

Now, the tuple (Ω, G, P : Ω→ Σ) is a Schottky uniformization.

Considering the section s : Teich(Σ) → CP(Σ) obtained by Schottky uniformization,

I. Biswas proved in [22] that

Ls
∗ωCP =

1

π
ωnat,

where Ls : T∗Teich(Σ)→ CP(Σ) is a smooth diffeomorphism.

4.3 Earle Uniformization

Recall that the deformation space of complex projective structures CP(Σ) is the space

of equivalence classes of projective structures associated to Σ with the symplectic form

ωCP . Let us also recall that T∗Teich(Σ) is the holomorphic cotangent bundle of the

Teicmüller space Teich(Σ) with the symplectic form ωnat.
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The natural projection p : CP(Σ)→ Teich(Σ) sends a projective structure on Σ to the

underlying complex structure on Σ. For any smooth section f : Teich(Σ)→ CP(Σ) of

this projection, namely p ◦ f = IdTeich(Σ), there is a diffeomorphism Tf : T∗Teich(Σ)→
CP(Σ) which sends (t, w) to the projective structure f(t)+w. Here, w is any cotangent

vector of Teichmüller space, over t ∈ Teich(Σ).

First of all, we will recall the Earle uniformization. For more detail about this uni-

formization, we refer to reader [43].

Let Γ be a quasi-Fuchsian group, namely the limit set Λ(Γ) is a Jordan curve in the

extended plane, that Γ maps each of the Jordan regions Ω+ and Ω− bounded by Λ(Γ)

into itself and that the quotient maps Ω+ → Ω+/Γ and Ω− → Ω−/Γ are unramified

coverings of closed Riemann surfaces with genus g. If we lift a canonical dissection of the

surface Ω+/Γ to Ω+, we can choose an ordered 2g-tuple σ = (A1, B1, A2, B2, . . . , Ag, Bg)

of Möbius transformations such that the Aj and Bj generate Γ and satisfy the relation

g∏

j=1

AjBjA
−1
j B−1

j = I.

Definition 4.3.1 The pair (σ,Γ) as in above, is called a marked quasi-Fuchsian group.

Theorem 4.3.2 ([43]) Let Σ be a closed Riemann surface of genus at least 2 with

canonical homotopy basis a1, . . . , ag, b1, . . . , bg and let φ be an automorphism of π1(Σ)

induced by an orientation reversing diffeomorphism of Σ. Then, there is a unique

normalized marked quasi-Fuchsian group Γ such that:

� the map π1(Σ)→ Γ that sends aj to Aj and bj to Bj, 1 ≤ j ≤ g, is induced by a

conformal map Σ→ Ω+/Γ,

� there is a conformal map F : Ω− → Ω+ such that

F (γz) = φ(γ)F (z),

for all γ ∈ Γ and z ∈ Ω−.

If φ is an involution then F is a Möbius transformation of order two. Moreover, F

and Γ generate a Kleinian group whose deformation space is Teich(Σ).
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In 2008, P. Ares-Gastesi and I. Biswas in [23] proved that for the holomorphic section

e : Teich(Σ)→ CP(Σ)

given by the Earle uniformization [43], following equality satisfies

L∗eωCP = πωnat. (4.6)

Here, Le : T∗Teich(Σ)→ CP(Σ) is the biholomorphism given by the section e.

Note 4.3.3 Note that, P. Ares-Gastesi and I. Biswas in [23] also expressed that the

equality in 4.6 remains true if e is replaced by a large class of sections f satisfying the

following conditions:

� f is holomorphic, and

� The Kleinian reciprocity aplies to f .

Here, for the definition of the Kleinian reciprocity see [44]. Namely, for any section

f : Teich(Σ)→ CP(Σ)

satisfying the above conditions we can consider the biholomorphism Lf and then we

get the equality

L∗fωCP = πωnat. (4.7)

Note that, Schottky section also satisfies these conditions.

By combining Note 4.3.3 and Theorem 4.1.6, we get the following result:

Corollary 4.3.4 Let Σ be a closed orientable surface with genus at least 2 and φ :

π1(Σ)→ PSL(2,C) be an element of the space Rep(Γ,PSL(2,C)). Let f : Teich(Σ)→
CP(Σ) be a section satisfying the above conditions. If α = {αi}12g−12

i=1 is a basis of

R12g−12, then

|Tor(Σ, {α})| = π6g−6

√√√√√det


ωnat

α


.

Here, α = f−1
∗ (h1) is obtained by the corresponding basis h1 of H1(Σ, sl(2,C)Adφ).
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5 APPLICATIONS

5.1 Complex Projective Structures on the Boundary of a Com-

pact 3-manifold

For a marked complex structure X on Σ, there exists a representation φ : π1(Σ) →
PSL(2,R) by uniformization theorem such that X ≈ H/Γ as a Riemann surface. Here,

Γ denotes φ(π1(Σ)). Since this quotient inherits a projective structure then it defines

a section

σF : Teich(Σ)→ CP(Σ)

to the projection

p : CP(Σ)→ Teich(Σ) (5.1)

which is called the Fuchsian section. σF(Teich(Σ)) is called as the deformation space

of Fuchsian structures on Σ. It can be considered as an embedded copy of Teich(Σ) in

CP(Σ).

Let us consider two marked complex structures (X+, X−) ∈ Teich(Σ)×Teich(Σ). Here,

Σ denotes the reversed oriented surface Σ. Then, there exists a unique representation

φ : π1(Σ) → Γ ⊂ PSL(2,C) up to conjugation. Let Ω be the domain of discontinuity

and it is the disjoint union of two simply connected domains Ω+ and Ω−. Therefore,

the given two marked complex structures (X+, X−) can be considered as X+ ≈ Ω+/Γ

and X− ≈ Ω−/Γ. From Bers’ Theorem

β = (β+, β−) : Teich(Σ)× Teich(Σ) → CP(Σ)× CP(Σ)

(X+, X−) 7→ (β+(X+, X−), β−(X+, X−))

is a holomorphic section of

p× p : CP(Σ)× CP(Σ)→ Teich(Σ)× Teich(Σ).

Definition 5.1.1 � If X− ∈ Teich(Σ) is fixed, then the following map

σX− := β+(., X−) : Teich(Σ)→ CP(Σ)

is a holomorphic section to p in (5.1), which is called a Bers section and its image

σX−(Teich(Σ)) ⊂ CP(Σ) is called a Bers slice.
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� If X+ ∈ Teich(Σ) is fixed, then the following map

fX+ := β+(X+, .) : Teich(Σ)→ CP(Σ)

is an embedding of Teich(Σ) in the fiber p−1(X+) ⊂ CP(Σ). Thus, fX+ is called

a Bers embedding.

� Finally,

QF(Σ) := β+(Teich(Σ)× Teich(Σ)) ⊂ CP(Σ)

is called the deformation space of standard quasi-Fuchsian structures on Σ. This

space is an open neighborhood of the deformation space of Fuchsian structures

on Σ in CP(Σ).

Let M̂ be a smooth, connected,oriented, compact,irreducible, atoroidal 3-manifold with

boundary and infinite fundamental group. Recall that irreducible means that every

embedded 2-sphere bounds a ball and atoroidal means that it does not contain any

embedded, non-boundary parallel, incompressible tori.

Let M denote the interior of the manifold M̂ , namely M = M̂ −∂M̂ . Assume that the

boundary ∂M̂ is incompressible and contains no tori. Here, incompressible means that

the map ι∗ : π1(∂M̂)→ π1(M̂) induced by the inclusion map ι is injective. Therefore,

∂M̂ consists of a finite number of surfaces Σ1, . . . ,ΣN of genera at least 2.

Figure 5.1: A 3-manifold with incompressible boundary
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The Teichmüller space of the boundary ∂M̂ is considered as follows

Teich(∂M̂) = Teich(Σ1)× · · · × Teich(ΣN),

and also the deformation space of complex projective structures on the boundary ∂M̂

is described

CP(∂M̂) = CP(Σ1)× · · · × CP(ΣN),

and finally there is a holomorphic “forgetful” projection

p = p1 × · · · × pN : CP(∂M̂)→ Teich(∂M̂).

Let

projk : CP(∂M̂)→ CP(Σk) (5.2)

denotes the k-th projection map.

Definition 5.1.2 The space of convex cocompact hyperbolic structures HC(M) is the

quotient of the set of convex cocompact hyperbolic metrics on M by the group of

orientation-preserving diffeomorphisms of M that are homotopic to the identity.

Note that HC(M) is a connected component of the interior of the subset of discrete

and faithful representations in the character variety Hom(M,PSL(2,C)) (see [48, 49]).

Let ϕ : HC(M) → CP(∂M̂) be the map such that for any element of HC(M) there

is a marked complex structure. Moreover, this map is holomorphic (see [50]). If we

consider the induced conformal structure on ∂M̂ , then in the following diagram

HC(M) CP(∂M̂)

Teich(∂M̂)

//ϕ

��

p

��

ψ

the map ψ = p ◦ ϕ can be defined. The following theorem due to [51, 52, 53, 54, 48,

55, 49] as follows:

Theorem 5.1.3 The map ψ : HC(M)→ Teich(∂M̂) is bijective.
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The direct result of above theorem is that the map

β = ϕ ◦ ψ−1 : Teich(∂M̂)→ CP(∂M̂)

is a canonical holomorphic section to

p : CP(∂M̂)→ Teich(∂M̂),

and β is called the generalized simultaneous uniformization section. Thanks to this

map “generalized Bers section” and “generalized Bers embeddings” can be defined as

follows. Firstly, only one of the boundary components’ conformal structure is varied

then some other or the same boundary components’ the resulting complex projective

structure is checked. More clearly, let Xi ∈ Teich(Σi) be marked complex structures

which are fixed for all i 6= j, where j ∈ {1, . . . , N}. By using the canonical injection

ιXi : Teich(Σj) → Teich(∂M̂)

X 7→ (X1, . . . , Xj−1, X,Xj+1, . . . , XN)

the map fXi,k = projk ◦ β ◦ ιXi defines as follows:

Teich(∂M̂)
β−→ CP(∂M̂)

ιXi

x
yprojk

Teich(Σj)
fXi,k−→ CP(Σk).

Here, if j = k then σ(Xi) := fXi,j is called a generalized Bers section to projj : CP(Σj)→
Teich(Σj). Otherwise, if j 6= k then fXi,k is called a generalized Bers embedding which

maps Teich(Σj) in the affine fiber P (Xk) ⊂ CP(Σk). Here, P (Xk) denotes the set of

marked projective structures on Σk whose underlying complex structure is a fixed point

Xk in Teich(Σk). For more detail see [50].

Let M̂ be a smooth connected oriented compact irreducible atoroidal 3-manifold with

boundary and infinite fundamental group. ∂M̂ denotes its incompressible boundary

which consists of a finite number of surfaces Σ1, . . . ,ΣN of genera at least 2 and contains

no tori. Let D(M̂) be the double of M̂ and φ : π1(M̂)→ PSL(2,C) be a representation

so that the restriction φ ◦ ι∗ of this representation to ∂M̂ belongs to Teich(∂M̂). Here,
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ι∗ is the induced map obtained by the inclusion ∂M̂ ↪→ M̂ . Thus, note that the map

φ ◦ ι∗ is an element of Rep(∂M̂,PSL(2,C)). We can also consider the representation

% : π1(D(M̂))→ PSL(2,C) which is defined as

π1(D(M̂))
proj

π1(M̂)−→ π1(M̂)
φ−→ PSL(2,C),

where projπ1(M̂) is the projection map.

If we consider the short-exact sequence of chain complexes

0→ C∗

(
∂M̂ ; gAdφ◦ι∗

)
→ C∗

(
M̂ ; gAdφ

)
⊕ C∗

(
M̂ ; gAdφ

)
→ C∗

(
D(M̂); gAd%

)
→ 0,

(5.3)

where C∗

(
∂M̂ ; gAdφ◦ι∗

)
= ⊕Nt=1C∗

(
Σt; gAdφ◦ιt∗

)
and ιt∗ : π1(Σt)→ π1(M̂), then we get

the following Mayer-Vietoris long exact sequence:

0→ H3

(
∂M̂ ; gAdφ◦ι∗

)
→ H3

(
M̂ ; gAdφ

)
⊕H3

(
M̂ ; gAdφ

)
→ H3

(
D(M̂); gAd%

)

H2

(
∂M̂ ; gAdφ◦ι∗

)
→ H2

(
M̂ ; gAdφ

)
⊕H2

(
M̂ ; gAdφ

)
→ H2

(
D(M̂); gAd%

)

H1

(
∂M̂ ; gAdφ◦ι∗

)
→ H1

(
M̂ ; gAdφ

)
⊕H1

(
M̂ ; gAdφ

)
→ H1

(
D(M̂); gAd%

)

H0

(
∂M̂ ; gAdφ◦ι∗

)
→ H0

(
M̂ ; gAdφ

)
⊕H0

(
M̂ ; gAdφ

)
→ H0

(
D(M̂); gAd%

)
→ 0.

(5.4)

Here, Hi

(
∂M̂ ; gAdφ◦ι∗

)
= ⊕Nt=1Hi

(
Σt; gAdφ◦ιt∗

)
for i = 0, 1, 2, 3.

Let hM̂i denote the basis of Hi(M̂ ; gAdφ) for i = 0, 1, 2, 3. By using above sequences,

there are bases h
D(M̂)
j and hΣt

k for j = 0, 1, 2, 3, k = 0, 1, 2 and t = 1, . . . , N of

Hj(D(M̂); gAdφ), Hk(Σt; gAdφ◦ιt∗ ), respectively such that Reidemeister torsion of the

long exact sequence (5.4) in these bases equals to 1 [35, Theorem 6.2.2]. In the follow-

ing result, we will denote the basis of Hk

(
∂M̂ ; gAdφ◦ι∗

)
with h∂M̂k which is nothing but

⊕Nt=1h
Σt
k .
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Theorem 5.1.4 Let M̂, ∂M̂,D(M̂), φ, ι∗ be as in above. Let hM̂i ,h
D(M̂)
j ,hΣt

k denote the

bases for Hi(M̂ ; gAdφ), Hj(D(M̂); gAdφ), Hk(Σt; gAdφ◦ιt∗ ), respectively, i, j = 0, 1, 2, 3,

k = 0, 1, 2 and t = 1, . . . , N . Then, we get the following formula:

∣∣∣∣Tor

(
M̂,
{

hM̂i

}3

0

)∣∣∣∣ = 4

√√√√√

∣∣∣∣∣∣
det


ωG

h1



∣∣∣∣∣∣
.

Here, h1 is the Poincare dual basis of H1(∂M̂ ; gAdφ◦ι∗ ) corresponding to basis h∂M̂1 of

H1(∂M̂ ; gAdφ◦ι∗ ) and Atiyah-Bott-Goldman symplectic form ωG is considered as in [50].

Proof. Let M̂ be the 3-manifold as in above with boundary which is incompressible

and contains no tori (e.g. see Figure 5.1). Recall that the boundary is incompressible

means that the map

ι∗ : π1(∂M̂)→ π1(M̂)

induced by the inclusion map

ι : ∂M̂ ↪→ M̂

is injective. Let Σ1, . . . ,ΣN be the boundary components of M̂ . Let us denote by

gt ≥ 2 the genus of Σt, for t = 1, . . . , N . Recall that D(M̂) denotes the double of the

manifold M̂ which is a closed 3-manifold.

Let us consider a cell-decomposition K of ∂M̂ which is obtained by disjoint union of

cell-decompositions Kt of Σt for t = 1, . . . , N and K ′ be the dual cell-decomposition of

K. Considering the intersection number pairing in (5.1)

(·, ·)i,2−i : Ci(K; gAdφ◦ι∗ )× C2−i(K
′; gAdφ◦ι∗ )→ C,

we conclude that the chain complex C∗

(
∂M̂ ; gAdφ◦ι∗

)
is a symplectic chain complex.

We can extend the intersection form to twisted homologies as in subsection 2.3 and we

get the following commutative diagram for each Σt

H1(Σt; gAdφ◦ιt∗ ) × H1(Σt; gAdφ◦ιt∗ )
^B−→ H2(Σt;C)

yPD
yPD 	

y∫
Σt

H1(Σt; gAdφ◦ιt∗ ) × H1(Σt; gAdφ◦ιt∗ )
(,)1,1−→ C.

Recall that ω
(t)
G : H1(Σt; gAdφ◦ιt∗ )×H

1(Σt; gAdφ◦ιt∗ )
^B−→ H2(Σt;C)

∫
Σt−→ C is the Atiyah-

Bott-Goldman symplectic form. By using these symplectic forms, we have the Atiyah-

Bott-Goldman symplectic form
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ωG : H1(∂M̂, gAdφ◦ι∗ )×H1(∂M̂, gAdφ◦ι∗ )→ H2(∂M̂,C)

∫
∂M̂−→ C,

which was proved in [50] that

ωG = proj∗1ω
(1)
G + . . .+ proj∗Nω

(N)
G . (5.5)

Here, projt is the t-th projection map in (5.2).

Now, if we combine the fact that Reidemesiter torsion of the long exact sequence (5.4)

corresponding to above bases equals to 1 and the Theorem 2.2.3 we get:

(
Tor

(
M̂,
{

hM̂i

}3

0

))2

= Tor

(
∂M̂,

{
h∂M̂k

}2

0

)
Tor

(
D(M̂),

{
h

D(M̂
j

}3

0

)
.

On the other hand, from the fact that in [32], we have Tor

(
D(M̂),

{
h

D(M̂
j

}3

0

)
= 1.

Finally, if we use Theorem 2.3.6, then we can write the Reidemeister torsion formula

of 3-manifold M̂ through the symplectic form ωG as follows:

∣∣∣∣Tor

(
M̂,
{

hM̂i

}3

0

)∣∣∣∣ = 4

√√√√√

∣∣∣∣∣∣
det


ωG

h1



∣∣∣∣∣∣
.

Clearly from the definition of ωG through the symplectic forms ω
(t)
G it follows:

det


ωG

h1


 = det




ω
(1)
G

h1
Σ1

0 0

0
. . . 0

0 0
ω

(N)
G

h1
ΣN




. (5.6)

2

We should note that by not using symplectic property of the chain complex C∗

(
∂M̂ ; gAdφ◦ι∗

)

similar result was obtained in [35] . On the other hand, in this thesis thanks to the

definition of Atiyah-Bott-Goldman symplectic form ωG as in [50] we proved it by using

the symplectic chain complex theory.

Let ωG denote the complex symplectic structure on CP(∂M̂) as in equation (5.5) and

(τβ)∗ωnat be the complex symplectic structure obtained in [50] by the identification
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τβ : CP(∂M̂)
∼→ T∗Teich(∂M̂). B. Loustau proved in [50, Theorem 6.14] that

(τβ)∗ωnat = −iωG. (5.7)

Here, as in ωG, ωnat is also obtained by similarly as follows

proj∗1ω
(1)
nat + . . .+ proj∗Nω

(N)
nat ,

where ω
(t)
nat denotes the complex symplectic structure on T∗Teich(Σt) and projt is the

t-th projection map from T∗Teich(∂M̂) to T∗Teich(Σt).

Combining Theorem 5.1.4, equation (5.7) and using the method as in Theorem 4.1.6,

we get the following result:

Corollary 5.1.5 Under the conditions in Theorem 5.1.4 and considering the equation

(5.7), then we get

∣∣∣∣Tor

(
M̂,
{

hM̂i

}3

0

)∣∣∣∣ = 4

√√√√√det


ωnat

α


.

Here, α = {αi}
∑N
t=1(6gt−6)

i=1 is the basis of R
∑N
t=1(6gt−6) obtained by α = τβ∗ (h1). Recall

that, h1 is the Poincare dual basis of H1(∂M̂ ; gAdφ◦ι∗ ).

Note that, here ωnat denotes the standard symplectic form on R
∑N
t=1(6gt−6).
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5.2 Future Work

Let Σ be a surface with a hyperbolic metric m (i.e. Riemannian metric with constant

curvature −1). A geodesic lamination is a closed subset of Σ which can be decomposed

as a disjoint union of simple complete m-geodesics, they are called its leaves. Here, a

geodesic is complete if it cannot be extend to a longer geodesic and it is simple if it has

no transverse self-intersection point. A geodesic lamination λ is maximal if it is not

contained in any larger geodesic lamination which is equivalent to the property that

the complement Σ− λ consists of finitely many disjoint infinite triangles.

Figure 5.2: A maximal lamination

Let us fixed a geodesic lamination λ ⊂ Σ. An R-valued transverse cocycle σ for λ is a

real-valued function on the set of all arcs k transverse to the leaves of λ which satisfies

the following two conditions:

� If k is transverse to λ which is decomposed into two arcs k1, k2 with disjoint

interiors, we have the property

σ(k) = σ(k1) + σ(k2),

� If k and k′ are homotopic through a family of arcs which are all transverse to λ,

then we have

σ(k) = σ(k′).

The R-valued transverse cocycles for the geodesic lamination λ form a real vector space

Z(λ;R).

A train track Φ on the surface Σ is a family of finitely many ‘long’ rectangles e1, . . . , en

which are foliated by arcs parallel to the ‘short’ sides and which meet only along arcs
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(possibly reduced to a point) contained in their short sides. And also, a train track

must satisfy the following conditions:

� each point of the ‘short’ side of a rectangle also belongs to another rectangle,

and each component of the union of the short sides of all rectangles is an arc, as

opposed to a closed curve,

� the closure of the complement Σ − Φ has a certain number of ‘spikes’, namely

the points where at least three rectangles meet and no component of this closure

is a disc with 0, 1 or 2 spikes or an annulus with no spike.

The rectangles ei are the edges of the train track Φ and the leaves of the foliation of

Φ are the ties of the train track. The finitely many ties where several edges meet are

the switches of the train track. A tie which is not a switch is generic. The geodesic

lamination λ is carried by the train track Φ if it is contained in the interior of Φ and if

its leaves are transverse to the ties of Φ. Every geodesic lamination is carried by some

train track. For more detail see, for instance [56, 57].

For a fixed train track Φ, let W(Φ,R) denotes the vector space of all edge weight

systems for Φ. More precisely, an edge weight system assigns a(e) ∈ R to each edge e

of the train track such that for each switch s the following switch relation holds

a(ei) = a(ej) + a(ek)

where s is adjacent to the edge ei on one side and to the edges ej and ek on the other

side.

a(ei)

a(ej)

a(ek)
switch

tie

Figure 5.3: The switch relation
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If the geodesic lamination λ is carried by the train track Φ, a transverse cocycle σ ∈
Z(λ;R) defines an edge weight system aσ ∈ W(Φ,R) by

aσ(e) = σ(ke),

where ke is an arbitrary tie of the edge e. This map defines a linear isomorphism

between the spaces Z(λ;R) andW(Φ,R). In addition, if λ is a maximal geodesic lami-

nation, then these two vector spaces are isomorphic to R3|χ(Σ)|. See [58] for more detail.

So far, we consider the R-valued transverse cocycle. This can be generalized to Rn−1-

valued transverse cocycles, straightforwardly. Here, the orientation is really important

point, so for more detail see [59, 60].

For a geodesic lamination λ ⊂ Σ, a twisted Rn−1-valued transverse cocycle for λ assigns

a vector σ(k) ∈ Rn−1 to each oriented arc k ⊂ Σ that is transverse to λ such that the

following conditions hold:

� σ is finitely additive, namely

σ(k) = σ(k1) + σ(k2)

where the oriented arc k transverse to λ is split into two oriented arcs k1 and k2

with disjoint interiors,

� σ is invariant under homotopy. More precisely, if k and k′ are homotopic through

a family of arcs which are all transverse to λ,

� For every oriented transverse arc k the following equality holds

σ(k) = σ(k).

Here, k denotes the reverse orientated of k and x 7→ x is the involution map of

R2 associating x = (xn−1, xn−2, . . . , x1) to x = (x1, x2, . . . , xn−1) ∈ Rn−1.

Let Z(λ;Rn−1) denote the vector space of all twisted Rn−1-valued transverse cocy-

cles for a maximal geodesic lamination λ and the dimension of this space equal to

6(g − 1)(n− 1) + b1
2
(n− 1)c. Here, bxc denotes the largest integer that is less than or
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equal to x.

Let sl(n,R) be the Lie algebra of PSL(n,R). Let φ be an element of Hitn(Σ). Consider

the adjoint representation defined by for every γ ∈ π1(Σ)

Adφ(γ) : sl(n,R) → sl(n,R)

u 7→ φ(γ)uφ(γ)−1.

Let us consider the Cartan-Killing bilinear form B : sl(n,R)× sl(n,R)→ R is defined

as B(u, v) = 2nTr(uv), where Tr denotes the trace. Clearly B is preserved by the

adjoint representation. Therefore, this enables us to define a cup product

^B: C1(Σ, sl(n,R)Adφ)× C1(Σ, sl(n,R)Adφ)→ C2(Σ,R)

which induces an antisymmetric bilinear form

ωPSL(n,R) : H1(Σ, sl(n,R)Adφ)×H1(Σ, sl(n,R)Adφ)→ H2(Σ,R)

∫
Σ−→ R.

Here, H2(Σ,R) isomorphic to R thanks to evaluation on the fundamental class of the

oriented surface Σ.

ωPSL(n,R) is a symplectic form on Hitn(Σ) called Atiyah-Bott-Goldman symplectic form

(see [15]). Recall that TφHitn(Σ) is isomorphic to H1(Σ, sl(n,R)Adφ) [61].

In [62] for general n, ωPSL(n,R)(uσ1 , uσ2) was computed for the vectors uσ1 , uσ2 ∈ TφHitn(Σ)

associated to the infinitesimal shearing of φ ∈ Hitn(Σ) according to twisted transverse

cocycles σ1, σ2 ∈ Z(λ;Rn−1) for the geodesic lamination λ. Let us recall this formula:

Theorem 5.2.1 ([62]) Let Σ be a closed oriented surface with genus at least 2 and

let λ be a maximal geodesic lamination carried by a train track Φ in Σ. If the vectors

uσ1 , uσ2 ∈ TφHitn(Σ) are tangent to the shearing deformations of φ ∈ Hitn(Σ) along λ

respectively associated to the transverse cocycles σ1, σ2 ∈ Z(λ;Rn−1), then the Atiyah-

Bott-Goldman symplectic form,

ωPSL(n,R)(uσ1 , uσ2) =
1

2

n−1∑

a,b=1

∑

s

C(a, b)(σ
(a)
1 (eright

s )σ
(b)
2 (eleft

s )− σ(a)
1 (eleft

s )σ
(b)
2 (eright

s ))
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where s changes over all switches of the train track Φ̂ and eright
s , eleft

s denote the two

edges of Φ̂ outgoing from switch s on the right and on the left, respectively. Here,

C(a, b) =





2a(n− b) if a ≤ b

2b(n− a) if a ≥ b.

Note that, the above formula is a generalization of the case for n = 2. For more detail

about the n = 2 case see [17].

As an application, by using the above computation of the Atiyah-Bott-Goldman sym-

plectic form, we can write the Reidemeister torsion formula of some special represen-

tations. However, we should be careful about the non-degeneracy of the Atiyah-Bott-

Goldman symplectic form on the given submanifold Z(λ;R2). For example, if n = 3

this space has the odd dimension 12g− 11. Obviously, the symplectic form can not be

non-degenerate on this space. The reason of this is probably that the restriction of the

symplectic form to this submanifold has a non-trivial kernel.

As a future work, we first consider to compute this kernel of the shearing transverse

cocycle space Z(λ;R2) and then we can establish the Reidemeister torsion formula

through the restriction of Atiyah-Bott-Goldman symplectic form to this space.
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