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ABSTRACT
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Master of Science, Department of Mechanical Engineering
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January 2020, 104 pages

In this study, model-based and data-driven H,, robust controller synthesis methods are
developed for line of sight control problem of stabilized platforms. Within the scope of
the study, frequency response functions of the platform are obtained by using the
input/output signals obtained by open-loop system identification tests. The parameters of
the nominal plant model to be used in the design of model-based controllers are
determined with the help of defined optimization problems. Full-order and fixed-order
model-based H, robust controller synthesis processes are discussed within the
framework of the S/KS /T mixed-sensitivity problem. On the other hand, the synthesis of
fixed-order data-driven H,, robust controller is realized by means of a novel two-step
method that is developed within the scope thesis study. The stability and performance
characteristics of the designed controllers are determined by examining the frequency

domain responses of closed-loop transfer functions. Finally, reference tracking and



disturbance rejection performances of the designed controllers are compared by real-time
experiments carried out with the stabilized platform used in military applications.

Key Words: stabilized platform, line of sight stabilization, H,, robust control, model-

based control, data-driven control



OZET

STABILIiZE PLATFORMLAR iCiIN MODEL TABANLI VE VERIYE DAYALI
H,, KONTROLCU SENTEZI

Ayhan Arda ARAZ

Yiksek Lisans, Makina Miihendisligi Boliimii
Tez Damismani: Dog. Dr. Selahattin Caglar BASLAMISLI

Ocak 2020, 104 sayfa

Bu calismada, stabilize platformlarin goriis hatti1 stabilizasyonu kontrol problemine
yonelik, model tabanli ve veriye dahali H, girbiuz kontrolcli sentez yontemleri
gelistirilmistir. Gergeklestirilen ¢alisma kapsaminda, ag¢ik dongii sistem tanilama testleri
ile elde edilen giris/cikis sinyalleri kullanilarak, platformun frekans tepki fonksiyonlari
elde edilmistir. Model tabanli kontrolciilerin tasariminda kullanilacak nominal tesis
modelinin parametreleri, tanimlanan optimizasyon problemleri yardimiyla belirlenmistir.
Tam dereceli ve sabit dereceli model tabanli H,, glrbuz kontrolcli sentezi islemleri,
S/KS/T karisik duyarlilik problemi gergevesinde ele almmustir. Ote yandan, sabit
dereceli veriye dayali H,, gurblz kontrolcii sentezi, tez ¢alismasi kapsaminda gelistirilen
iki agamal1 yeni bir yontem araciligiyla gergeklestirilmistir. Tasarlanan kontrolculerin
kararlilik ve performans oOzellikleri, kapali dongili transfer fonksiyonlarmin frekans
alanindaki tepkileri incelenerek tespit edilmistir. Son olarak, askeri uygulamalarda

kullanilan stabilize platform ile gergeklestirilen gergek zamanli deneyler araciligiyla,



tasarlanan kontrolculerin referans takibi ve bozucu etki giderimi performanslari

karsilastirilmistir.

Anahtar Kelimeler: stabilize platform, goriis hatt1 stabilizasyonu, H,, glrbiz kontrol,

model tabanli kontrol, veriye dayali kontrol
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1. INTRODUCTION

1.1. Problem Definition

Stabilized platform is a structure that is used in many different fields like military

applications, space technology and robotic systems. Examples for the applications of the

stabilized platforms are shown in Figure 1.1.

Figure 1.1. Applications of stabilized platforms [1]

Although the requirements in stabilized platform control problem may vary from one field
to another, a common objective is to control line of sight (LOS) which is also called as

aim point of the platform.

In the literature, LOS is defined as a vector from an observer to an observed object. In
LOS control problems, target tracking and LOS stabilization are the two main objectives.
In target tracking problem, LOS vector should be rotated for pointing its direction to the
target object. On the other hand, LOS stabilization problem is related to control of
platform angular speed by eliminating external disturbances. Controlled variables of
target tracking and LOS stabilization problems are the angular position and angular speed
of the LOS vector, respectively. LOS control problem is illustrated in Figure 1.2. Within

the scope of thesis study, only LOS stabilization problem is considered.
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Figure 1.2. LOS control problem

1.2. Some Basic Principles in LOS Stabilization Control Problem

One of the most basic performance criteria in control problems of stabilized platform is
to ensure that the platform remains stationary relative to an inertial coordinate system
LOS stabilization. In this context, the basic approach to be performed is to apply counter
torque, that eliminates the net torque acting on the platform. Although the stabilized
platforms used today generally have a very sensitive electromechanical design, torque
disturbances from different sources can affect the platform and cause undesirable
reactions. On the other hand, another objective in control problems of the stabilized
platform is controlling the motion of the platform according to the reference command.
Therefore, gyroscopic sensors are usually integrated to the platforms to measure the
inertial movement of the platform that require LOS stabilization and reference tracking.

In the single-axis stabilized platform shown in Figure 1.3, it is aimed to design a controller
that provides the LOS stabilization despite of the base movement. During the mechanical
design process, the suspension should be designed to minimize the friction. Also, the
entire system should be balanced about axis of rotation to minimize imbalance torques.
Finally, for successful mechanical design, the inertial properties and dynamics of the

structure should be taken into account.

Figure 1.4 illustrates the angular speed feedback control loop used in a stabilized
platform. When the reference command w, is set to zero, the controller’s main task is to

produce the torque input which is equal to the disturbance torque in opposite direction.
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Figure 1.3. Stabilization in single-axis [1]
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Figure 1.4. Angular speed feedback control loop for single-axis stabilized platform [1]

The bandwidth of a closed-loop control system is the main indicator for reference tracking

and disturbance rejection performances of the designed controller. Figure 1.5 shows that

the torque disturbances within the closed-loop system bandwidth can be successfully

suppressed in an application of an angular speed feedback control.
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Figure 1.5. The effect of closed-loop system’s bandwidth on disturbance rejection

performance [1]



Although it is desirable to obtain the high closed-loop bandwidth, in practice, the
fundamental limit for the bandwidth is determined by the dynamical characteristics of the
system’s components such as actuator and sensor and flexible modes of the system.
Despite the fact that the Pl-controller cascaded with the anti-resonance filter is widely
used in real-time applications to minimize structural mode interactions, it has been shown
that more complex and high-performance controllers can be synthesized by the more

complex controller design algorithms.

1.3. Challenges in LOS Stabilization Control Problems

As discussed in previous section, main objective of the stabilized platform control
problems is designing a controller that satisfies the precise reference tracking with high
stabilization performance requirement. However, there are some challenging factors in

control problems of this platforms such as:

e Low damped resonance/anti-resonance modes,

e Pole-zero flipping due to the use of non-collocated actuator/sensor pairs,
e Control/observation spillover,

e Non-linear effects,

e Variations in system parameters,

o Difficulties arise from mechanical design and hardware.

The details of the above mentioned challenges of the stabilized platform control problems

are presented in this section.

The stabilized platforms may contain both bending and torsional modes as shown in
Figure 1.6. In metallic structures, low structural damping and high resonant amplification
is common. Increasing of the system stiffness or isolation of base motion can reduce the
effect of bending modes. On the other hand, controllers should be carefully designed to
reduce the effect of torsional modes which can directly affect the performance of the
closed-loop system. In practice, it is generally possible to add a notch filter to the
controller structure to reduce torsional flexibility by increasing closed-loop bandwidth of

the system.
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Figure 1.6. A general frequency response function of flexible mechanical system [1]

Another disturbance effect due to the flexibility is caused by the flexibility at the point
where the platform connects to the main structure. In the stabilized platform applications,
which relative motion should be precisely measured according to the inertial coordinate

system, the base vibration have negative effects on the controller performance.

In the most of the stabilized platform control applications, the actuator and the sensor
cannot be placed to the same degree of freedom, which results with a non-collocated
control system [2]. In collocated control systems, the poles and the zeros of the plant are
located in a sequential order in a position close to the imaginary axis. This property
ensures the asymptotic stability of the closed-loop system regardless of the system
parameters. In contrast to the collocated control structures, in non-collocated structures
location of the poles and the zeros of the system can be affected even by small changes
in system parameters. The shifting of poles and zeros of the low damping flexible modes
of the system, which are located near to the imaginary axis, is called “pole-zero flipping”.
In non-collocated control systems, pole-zero flipping situation may result with even an
unstable closed-loop system due to the small changes in system parameters. In [2], pole-
zero flipping situation for non-collocated control systems which is resulted with unstable
closed-loop system is visualized with the two-mass control problem as shown in Figure
1.7. In this problem, notch filter is designed to control the displacement of the second
mass. The small changes in natural frequency of the flexible mode of the system results

with an unstable closed-loop system.
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Figure 1.7. Notch filter design for the two-mass control problem in non-collocated control
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system [2]

Since the modeling of the mechanical systems that contain flexible modes, is finite, the
frequency response function of the system can be obtained up to a certain frequency level.
Moreover, to reduce the complexity of the controller synthesis procedure, the model of
the plant may be simplified by reducing its order. In practice, controller can produce a
signal that may excite the high frequency modes which are not modeled. As a result of
this situation, the unmodeled dynamics of the system are excited and the responses in the
high frequency band are measured by the sensors. When these measurements are used in
the feedback loop of the control systems, the stability of the system cannot be guaranteed.
This type of instability in the control system is called as control/observation spillover. To
prevent the spillover phenomena, it is recommended that filter the sensor measurements

with phase-locked loop pre-filter [3].

Friction, hysteresis, backlash, and flexibility in the torque transmission unit or other
connections in the system can be considered as non-linear effects. In practice, it is
possible to define all these non-linear effects as model uncertainty and to design a robust
controller that can be operate under the defined uncertainty level. On the other hand, it is
also possible to design a parallel control loops to reduce the effect of these non-linear

disturbances.

The variations of the system parameters can influence the performances of the controller.
Parameter uncertainties can be observed in flexible structures whose parameters are
determined by the system identification tests. This leads to differences between the real
system and its parametric model. In [4], the effect of variation of the system parameters
on frequency response function of the system is analyzed. In this study, a two mass-

spring-damper system is used to model flexible robot manipulator and it is shown that the

6



parameters that represent the stiffness (green lines) and arm inertia (blue lines),
significantly influence the frequency response of the parametric model as shown in Figure
1.8. This type of analysis on flexible mechanical systems is important to determine the

uncertainty level of the system.
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Figure 1.8. The effect of variations of model parameters on frequency response function

[4]

In stabilized platform control applications, mechanical design and hardware selection can
also lead some difficulties. For example, proper selection of the sensor, motor and, its
driver is essential to obtain high reference tracking and stabilization performances. On
the other hand, a good mechanical design can eliminate the additional friction and

vibration problems.

1.4. Control Methods for Flexible Mechanical Systems

As explained in previous section, one of the main objective in control problems of
stabilized platforms is to obtain good reference tracking and stabilization performances
under existence of flexible modes. Therefore, throughout the literature survey, in addition
to stabilized platforms, control methods for flexible mechanical systems from different
fields are investigated.

In flexible mechanical systems control problems, one of the oldest idea is shaping of
reference signal to reduce the vibration of the system [5]. Although there are different
input shaping methods in the literature, the main difference between these methods is the
robustness property of the methods. Input shaping methods are used for suppressing

vibration in flexible mechanical systems by pole-zero cancellation. One popular method
7



for input shaping is convolution of impulse commands. In this method, amplitudes and
applying times of impulse commands are calculated to obtain zero residual vibration [6].
In order to improve the robustness property of this method, design of impulse commands
are performed with the additional constraint that the derivative of residual vibration with
respect to the frequency is equal to zero at the modelling frequency [7]. This constraint
results in adding a second zero on the resonance pole. In [8], it is suggested that the instead
of exact pole-zero cancellation, the additional zeros are placed at the neighborhood of the
resonance poles to obtain further increase in robustness property of input shaping
methods. Input shaping method with convolution of impulse commands are usually used
with feedback control methods in practical applications [9].

The method of shaping input signal by convolution of impulse commands is insufficient
to determine the response time of the system. To overcome this problem, there are studies
in the literature on the method of input shaping through the selection of response signal.
By means of this method, the designer can determine the time and shape of the response
within the limits of actuator. After determining response signal, the input signal is
calculated by inverse dynamic methods. However, performance of this method mainly
depends on the appropriate selection of response signal. In [10], response signal is defined
as a polynomial function. However, this selection may result with an oscillatory motion
in between and outside of the design points which are defined as displacement, velocity,
and acceleration in particular time. In [11], response signal is determined as an

exponential function to obtain asymptotic behavior.

In collocated control systems for lightly damped flexible mechanical systems, active
damping strategy is another well-known control approach. The main objective of the
active damping control strategy is to increase the negative real parts of resonance poles
of the system. Active damping control strategy requires relatively low control efforts,
therefore these methods are also named as Low Authority Control (LAC) [2]. Direct
Velocity Feedback (DVF) control is one of the active damping control strategies where
the control signal of negative feedback loop is basically calculated by multiplying the
velocity measurement with an appropriate gain. In [12], DVF strategy is performed for
large space structures control problems. In some situations, because of the physical nature
of the flexible mechanical systems, there may arise an additional zero pair at high

frequencies of the system plant, and in this situation, transfer function of the controller
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should consist of more poles than the zeros. To overcome this problem, Positive Position
Feedback (PPF) control method is proposed [13]. In [14], PPF controller is designed to
trajectory tracking control of single-link flexible manipulator. Another active damping
strategy is formulated by adding small portion of the actuator signal to the measurement
signal which is called as Integral Resonant Control (IRC) [15]. This strategy resulted in
an additional pair of zeros at a desired frequency, which is generally selected as lower

than the first resonance mode of the flexible mechanical system.

Although above mentioned active damping methods are effective for reducing the effects
of disturbances near the resonance frequencies of the flexible mechanical system, to
obtain good stabilization and reference tracking performances under existence of wide-
band disturbances, the poles of the plant must be substantially relocated. High Authority
Control (HAC) methods are usually performed in control problems of flexible mechanical

systems to improve the closed-loop performances.

Although there are numerous advanced controller design techniques, in many practical
applications of control problems of flexible mechanical systems, linear proportional-
integral-derivative (PID) type controllers are employed in control loops. In order to cope
with the problems related to their limitations in dealing with non-linearity and
uncertainty, different enhancement techniques are proposed. Some of these methods are,
using cascaded multiple PID [16], gain scheduled or adaptive PID [17,18], and enlarging

the PID-controller with different anti-resonance filters [19].

Besides of PID-controller design methods, pole-placement approach which is one of the
most popular state-space control methods can be used in control problems of flexible
mechanical systems. In the pole-placement approach, the desired locations of closed-loop
poles should be selected carefully to obtain the required closed-loop performances. In
[20], a state-feedback controller is calculated by pole-placement approach and overall
control structure enhanced with feedforward terms and trajectory pre-filter for position
control of ball screw test bed. While determining the desired closed-loop pole locations
of the system, damping ratios of resonant poles are increased without changing their
damped natural frequencies. In [21], the same strategy is used for determining the desired
closed-loop pole locations of a non-collocated flexible manipulator control system. The
performances of the designed state feedback controllers obtained by pole-placement

method highly depend on the accuracy of the parametric model of the plant.
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Linear Quadratic Gaussian control with Loop Transfer Recovery (LQG/LTR) is one
efficient method for systems that have known or estimated uncertainties. Linear Quadratic
Regulator (LQR) is one of the optimal control methods which has guaranteed stability
properties [22]. However, to be able to perform the LQR strategy, all states of the system
should be measured, which is not possible in practice. Therefore, most of the time, state
feedback controller is used with a state estimator. However, introduction of a state
estimator may negatively affect the robustness property of the closed-loop system. The
main idea of LQG/LTR method is designing a state estimator in such a way that the
obtained loop transfer function approaches the ideal LQR loop transfer function [23,24].
In [25], LQG/LTR method is performed to design a LOS control for two-axis gimbal
system. According to the experimental study, stability of the closed-loop system with
LQG/LTR controller is shown to be higher than the closed-loop system with Lead-Pl-
controller. Although LTR technique may be performed for a non-minimum phase system,
the recovery of stability characteristics of the closed-loop system cannot be guaranteed.
Moreover, designing a LQG/LTR controller is a complicated procedure generally

resulting with a higher order complex controller.

Besides of the LQG/LTR method, H,, method is an another robust control method. In H,,
control problems, controller design problem is formulated as an optimization problem
with stability and performance constraints [26]. In H,, control problems, performances of
the closed-loop system are strongly related with the selection of frequency dependent
weighting functions. In [27], a genetic algorithm based method is proposed to determining
the weighting functions. In [28], a comparative study is performed to analyze LOS
stabilization performances of different robust controllers designed in LQG/LTR and H,,
frameworks, and the experimental results show that the closed-loop system with H,,

controller has better performance.

One of the biggest issues in the classical H,, control method is to obtain a high order
controller which may lead to implementation problems in real-time systems with limited
processing capability. In [29] and [30], non-smooth optimization techniques are proposed
to solve H, optimization problem with additional constraints related to order and
structure of controller. In [31], these methods are performed to obtain lower order H,
controllers for stabilized platform. In [32], both full-order and fixed-order H,, controllers

are designed for two-axis gimbal system and their disturbance rejection and reference
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tracking performances are compared experimentally. According to the experimental
results, although the performances of the full-order H,, controller is slightly better than
the fixed-order H,, controller, a simple Pl-controller, which is synthesized based on the
non-smooth optimization technique in [30], can also be employed instead of a higher

order complex controller in control loop.

Discussed HAC synthesis methods up to this point were model-based control methods.
In other words, the performances of the closed-loop system obtained with the model-
based controller, mainly depends on the accuracy of the parametric model [33]. Although
data-driven control (DDC) methods, which eliminate the need for parametric plant model,
are relatively new compared to the model-based control (MBC) methods, the prevalence
of use increases with the developments in information science and technology. According
to [34], DDC covers all available control theories and methods and controller synthesis
is performed by directly using input/output data without any knowledge about the

mathematical plant model.

In the literature, one categorization of DDC methods is realized according to the type of
data usage. According to this categorization, simultaneous perturbation stochastic
approximation (SPSA) [35], model-free adaptive control (MFAC) [36], and unfalsified
control (UC) [37] are the methods classified as on-line data-base DDC methods. On the
other hand, iterative feedback tuning (IFT) [38], correlation-based tuning (CbT) [39],
virtual reference feedback tuning (VRFT) [40], and non-iterative data-driven model
reference control [41,42] methods are the examples of off-line data-base DDC methods.
Moreover, there also hybrid DDC methods like iterative learning control (ILC) [43,44] in
which both on-line and off-line data are used to synthesize controller. DDC methods are
also sorted into two categories according to the controller structure: DDC methods with
pre-specified fixed controller structure and DDC methods with unknown controller

structure.

There are limited number of experimental studies in the literature, which cover the

implementation of DDC methods. In [45] and [46], frequency domain data-driven

approaches are proposed to suppress vibration of SISO and MIMO systems, respectively.

In these studies, mixed-sensitivity H,, control problem is formulated as a non-convex

optimization problem by using open-loop system identification input/output data, and

parameters of the controller which has fixed structure and order, are calculated by solving
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the constraint non-convex optimization problem via a global optimization technique.
Experimental results show that, the vibration suppression performance of the low order
data-driven controllers is similar with model-based higher order H,, controllers, for both
SISO and MIMO systems. Another non-convex optimization approach is introduced for
both stable and unstable systems in [47], by using input/output data obtained from the
closed-loop system identification tests performed with three different initial controllers.

Besides of the non-convex optimization approaches, in [48], frequency domain off-line
data-driven method is developed to calculate the unknown parameters of linearly
parameterizable controller. In this study, stability and H, performance criteria are
formulated as a convex feasibility problem with the help of selected line on the Nyquist
plot, and the proposed approach is validated by experimental studies on a double mass-
spring-damper system. On the other hand, in [49], convexification of the non-convex
robust performance constraints is performed with the help of the desired loop transfer
function. However, in these convex optimization approaches, the coefficients in the
denominator of the specified controller transfer function cannot be included in the

optimization problem and must be predetermined by the designer.

1.5. Methodology and Contributions

Within the scope of this thesis study, design methodologies of model-based and data-
driven H,, robust controllers are proposed for LOS stabilization problem of stabilized
platform. Three different robust controllers which are named as full-order model-based
H,, controller, fixed-order model-based H,, controller, and fixed-order data-driven H,,

controller are synthesized by using open-loop system identification test data.

Before designing proposed linear controllers, firstly plant model of the stabilized platform
must be derived. To obtain linearized plant model, identification of the friction which is
considered as the main non-linear effect on the system is performed. Then, non-
parametric model set in frequency domain is calculated by using discrete Fourier
transform based method. After obtaining non-parametric model set, parameters of
nominal model of the plant is calculated by considering two different optimization
problems that are solved by applying non-linear least squares approximation technique.
Finally, multiplicative uncertainty region is determined by calculating difference between
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the frequency response functions obtained for open-loop system identification tests
performed with different excitation signals and the nominal parametric model.

After calculating nominal parametric plant model, both full-order and fixed-order H,
robust controllers are designed by treating model-based approaches. Synthesis of these
controllers is performed by applying S/KS/T mixed-sensitivity approach. Moreover,
fixed-order data-driven H,, robust controller is synthesized by using non-parametric plant
model set without need of a parametric plant model. To calculate unknown parameters of
the fixed-order data-driven controller, a novel two-stage method is developed. Finally,
reference tracking and disturbance rejection performances of the designed controllers are

measured by real-time tests.

One major contribution of this thesis study is proposing a model-based robust method to
calculate unknown parameters of the Pl-controller enhanced with anti-resonance filter.
Even if this controller structure is frequently used by designers [50], most of the designers
calculate parameters of the controllers by heuristic approach. In this thesis study, a fixed-
order model-based H,, controller design method is proposed to determine the unknown

parameters of this controller.

In previous works, even if the controller structure is either non-linear [51,52] or linear
[50,53], designers performed model-based approaches to synthesis LOS stabilization
controller. Meanwhile, in this thesis study, the design of a data-driven method which is
based on the direct use of input/output data obtained from open-loop system identification
tests eliminates the need for a parametric plant model, and synthesis of fixed-order data-
driven H, controller is performed by offline optimization methods. In [48,49],
researchers proposed different data-driven approaches for synthesis of fixed-order H,,
robust controllers. However, the main disadvantage of these methods is that the
coefficients in the denominator of the transfer function of the controller should be
predetermined without being included in the optimization problem. Therefore, in this
study, the synthesis of the fixed-order data-driven H,, controller has been carried out in
two steps. With the help of the novel two-stage method, the unknown coefficients of the
denominator of the fixed-order controller structure can also be calculated by using open-
loop input/output data without the need of a parametric plant model. The proposed
method has been validated using the synthesis of the controller to be used in the speed
control loop of the traverse axis of a military stabilized platform.
13



Finally, the comparison of the model-based and data-driven H,, controllers is performed
by measuring the reference tracking and disturbance rejection performances with real-
time tests.

1.6. Outline of the Thesis

In Chapter 2, a general review of robust control theory is presented. Firstly, co-norm of
signals and transfer functions are discussed. Then, the standard configuration of the
feedback control system and closed-loop transfer functions are expressed. After
presenting internal stability condition for feedback system, design objectives are given
by considering fundamental limitation of the feedback system. Next, different weighting
functions are introduced and common methodology for selection of these functions is
discussed. The types of representation of uncertainty in the system are given and this
chapter ends with the derivation of nominal stability, nominal performance, robust

stability, and robust performance conditions for multiplicative uncertainty case.

In Chapter 3, the H,, robust controller design methods are discussed. First of all, a general
control problem formulation for feedback control systems is given and calculation of
generalized plant and closed-loop transfer function from exogenous inputs to exogenous
outputs are investigated. After that, full-order and fixed-order model-based H,, controller
synthesis methods and their solutions are introduced. Finally, fixed-order data-driven H,,
control problem is formulated as a convex optimization problem with the help of desired

open-loop transfer function.

In Chapter 4, system identification methodology which is performed to obtain both non-
parametric and parametric model of stabilized platform. First, experimental test setup is
introduced briefly. Then, friction model is identified to eliminate its non-linear effect on
the system. After that, frequency response functions (FRFs) of the system are calculated
by using open-loop system identification tests’ input/output data. To obtain parametric
plant model, general structure of plant model of stabilized platform is introduced and
unknown parameters of this structure are calculated by applying non-linear least squares
approximation technique. Chapter 4 ends with identification of the multiplicative

uncertainty region for the stabilized platform.

Chapter 5 is devoted to the design of H,, robust controllers. After discussion of the

weighting functions selection, full-order model-based H,, controllers are designed in
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mixed-sensitivity framework. Then, PI-controller enhanced with anti-resonance filter is
synthesized by performing fixed-order model-based H, controller design method.
Lastly, unknown parameters of the controller which has the same structure with fixed-
order model-based H,, controller, are calculated by applying a novel two-stage data-
driven method. In the first step of the proposed method, unknown parameters of the anti-
resonance filter are calculated to reduce the effects of flexible modes of the stabilized
platform. Then, linearly parameterized H,, controller is calculated by solving convex
optimization problem in the second stage of the proposed method. At the end of this
chapter, comparison of frequency domain performances of the designed controllers is

presented.

Chapter 6 starts with the discussion about the implementations of designed H,
controllers. First, balanced truncation method is investigated to reduce the order of full-
order model-based H, controllers. After that, discretized H, controllers are
implemented to the stabilized platform and reference tracking and disturbance rejection
performances of the designed controllers are measured by real-time tests. Chapter 6 ends
with the comparison of time domain performances of the model-based and data-driven

H,, controllers.

Chapter 7 includes summary of the thesis and discussion about some future works. At the
end of the thesis study, information about the references utilized throughout the thesis

study is presented.
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2. REVIEW OF ROBUST CONTROL

In this chapter, the necessary information about robust control theory is presented to the
reader in order to form the basis of the studies in this thesis. Within the scope of thesis
study, H,, controllers will be designed for SISO system. Therefore, the following sections

is discussed in this context.

2.1. Signal and System Norms

In control applications, the performance of a control system can be measured by the size
of signal under interest. For instance, in reference tracking or disturbance rejection
applications, the size of error signal indicates the performance of control system. The
concept pf signal norm which must satisfy the following properties can be used as an

indicator of size of any signal:

() lull = 0

(i)  llull = 0ifand only if u(t) = 0, vt
(i) |lau|l = |alllul|, va € R

(iv)  lu+ vl < [[ull + vl

There are several norm definitions for signals and systems which are appropriate for
different cases. For example, the least upper bound of absolute value of signal is defined

as co-norm:
llulleo = suplu(®)] (1)
t

On the other hand, co-norm of a transfer function G (jw) is equal to the peak value of

Bode magnitude plot of G(jw):

16 Gl = suplG(jw) @

2.2. Feedback Loop and Closed-Loop Transfer Functions

Standard configuration of a one degree of freedom feedback system is shown in Figure

2.1, where K(s) and G(s) are the transfer functions of controller and plant, respectively.
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Figure 2.1. Standard configuration of feedback system

In this configuration, there are four exogenous input signals: reference (command) input
signal r, input disturbance d;, output disturbance d,, and sensor (measurement) noise n.
The other signals in the standard feedback configuration are the measured error e, the

control input u and the system output y.

According to the standard configuration of feedback system shown in Figure 2.1, we
define the (open) loop transfer function, L from the measured error to the system output

as

L(s) =2 = GIK(S) ©

the sensitivity function, S from the output disturbance to system output as,
y -1 -1
S(s) = = (I+G(HK(s)) = (1+L(s)) (4)
o

and the complementary sensitivity function, T from the reference (command) input to

system output as
T(s) =2=1-5(s) = (I + G(IK(s)) G()K(s) = (I +L(s)) L(s). (5)
Using the definitions of closed-loop transfer functions, the system output is equal to:

Y(s) = S(s)Dy(s) + S(s)G(s)D;(s) + T(s)(R(s) — N(s)) (6)

The measured error is equal to:
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E(s) = S(s)(R(s) = Do (s)) = S(s)G(s)D;(s) + T(s)N(s) (7)

The control input is equal to:
U(s) = K(s)S(s)(R(s) — N(s) — Do(s)) + T(s)D;(s) (8)
2.3. Internal Stability

In stability analysis of the feedback system, the signals  and n can be neglected since
the transfer functions from these signals to u is equal to transfer function from d,, to u.
Then the general configuration of the feedback loop in Figure 2.1 can be rearranged for

stability analysis with two exogenous input such that w, = d; and w, = d, in Figure 2.2,

w1
Yy
A +
+
> K(S) r\
< G(s) [«
+ \ 4
U
w2

Figure 2.2. Internal stability analysis configuration of feedback system

Two outputs of the feedback system in Figure 2.2 are equal to:
u=U+KG)w, — KU+ GK) lw, 9)
y=GU+KG) *w, + (I +GK) 'w, (10)

With the assumption of no right half plane pole-zero cancellations between G(s) and
K(s), the internal stability of the feedback system can be guaranteed by four transfer
functions in Eg. 9 and Eq. 10 being all stable [26].

2.4. Design Objectives of the Feedback Control

In this section, fundamental tradeoff of the feedback control is discussed first and then
design objectives of the feedback control are formulated by using the closed-loop transfer

functions.
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2.4.1. Fundamental Tradeoff of the Feedback Control

According to the definitions of sensitivity and complementary sensitivity functions, the

following relationship between these two function can be:
S+T=1I (11)

For a feedback system, “perfect control” can be achieved by eliminating measured error
such that e =y —r = 0. From Eq. 7, zero measured error requirement can also be

described by following relationship:
e~0.r—0.dyp—0.P.d; +0.n (12)

The first three requirements in Eq. 12 named as reference tracking, output and input
disturbance rejection are obtained with S ~ 0 or |L| — co. On the other hand, the last
requirement in Eq. 12 is related to noise cancellation and it is obtained with T = 0 or
from Eq. 11 S =1 (|[L| - 0). This conflicting situation illustrates the fundamental
tradeoff of the feedback control system. In other words, to obtain good reference tracking
and disturbance rejection, high loop gain is needed, however this also leads to noise

attenuation problems.

Another important signal in feedback control system is control input u. In physical
systems, the control input is produced by the actuators that have physical limits.
Therefore, the control input must be small to avoid saturation of the actuator. From Figure
2.1, the control input is given by u = K(r —y — n) and to obtain small control input,

feedback controller K and L = GK must also be small.
The general design objectives in the feedback control are listed below [26]:

Good input and output disturbance rejection performance: Large L
Good reference tracking performance: Large L

Stabilization of unstable plant: Large L

Reducing the effect of measurement noise: Small L

Limiting magnitude of control input: Small L

Nominal stability: Small L (due to right half plane zeros and time delays)

N o ok~ D oE

Robust stability: Small L (due to neglected and uncertain dynamics)

The contradictory design objectives in feedback control listed above are generally related
with the different frequency ranges. Therefore, one can realize a good feedback controller

design by obtaining high loop gain (|L| > 1) at low frequencies (below the crossover
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frequency) to improve the disturbance rejection and reference tracking performances, and
small loop gain (|]L| < 1) at high frequencies (above the crossover frequency) for
robustness and sensor noise reduction. In the crossover region between w. (|L| = 1) and
w1go (L = 180°) stability requirements should be considered. For stability, the loop
gain should be less than 1 at w;g, and 2L > —180° at w,.. According to these

requirements, desired loop gain is shown in Figure 2.3.

log|L(jw)|
A

Disturbance Rejection
&
Reference Tracking

Performances Stability

: > logw
Low Frequency  Crossover High Frequency

Region Region Region

Figure 2.3. Desired loop gain |L(jw)| for feedback control

2.4.2. Weighting Functions

In the previous section, the performance objectives are described in terms of open-loop
transfer function (L). An alternative strategy to formulate performance objectives in
feedback control is shaping the closed-loop transfer functions such as sensitivity (S) and
complementary sensitivity (T) functions. For example, the performance criterion may be
specified by defining frequency dependent bounds for sensitivity function.
{IS(jw)I <A, Vo < w,
ISGw)| <M, Vo > w,
However, in H, control problems, the performance objectives are formulated by
choosing the appropriate weighting functions which reflects system requirements. For

instance, preceding performance objective can be written as:
[Wp(jw)S(jw)| £ 1, Vo

where
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. _(1/A, Vw < w,

We(jo)| = {1/M, Yo > o,
In multivariable control systems, using weighting functions are essential for pointing out
the importance of the signals and making signals with different units are comparable.
Moreover, most important frequency range for minimizing error signals can be described
by using weighting functions. The standard configuration of feedback control system in

Figure 2.1 can be modified with weighting functions, and it is shown in Figure 2.4.

~

u T E’f
MI Wﬂ'. de
~ d] 0
________ + N
w3 o K “ g G 3 Yol wp 2

Figure 2.4. Standard feedback configuration with weighting functions

In H,, control, choosing the weighting functions in Figure 2.4 is a very important step for
controller design process and these functions are chosen according to design objectives
and knowledge of the exogenous input signals such as disturbances and sensor noise. For
example, W, W, , and W;, are usually determined to represent frequency contents of the
input and output disturbances and measurement noise, respectively, On the other hand,
Wp is selected to shape sensitivity function (S(ja))), while W, is used to specify the
physical limits of the actuator. Finally, W, may be added the control loop to shape

reference command.

As already discussed, sensitivity function is a very good indicator for both disturbance
rejection and reference tracking performances of the closed-loop system. By shaping the
sensitivity function, the desired performance of the closed-loop system can be achieved.

There are some typical specifications for sensitivity function:
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1. Peak value of [S(jw)|, M

2. Minimum bandwidth frequency, wjg

3. Maximum steady-state tracking error, A
4

. Slope of S(jw) below the bandwidth frequency

If the peak value of |S(jw)]| is large, then the maximum overshoot can be large and also
noise and the robustness problems may arise. Therefore, M which represents the upper
bound of 1/|W,(jw)| at high frequencies should not be very large for good controller
design. On the other hand, wy may be chosen to satisfy the closed-loop bandwidth
requirement of the system. In many control applications, it is desirable that the steady-
state tracking error with respect to step input be equal to zero. However, in H,, control
weighting functions cannot contain pure integrators [54]. Hence, a very small tracking
error with respect to a step input may be defined by using a design parameter A which
represents the upper bound of 1/|W,(jw)| at low frequencies. Then, described

performance requirements can be achieved if the following inequality is ensured:

ISGw)| < 1/[Wp(jw)|, Y (13)
where,
_S/M + wp
W) = 9

In some applications, a steeper slope between the low and high frequencies for S(jw)

may be desired, and then second order weighting function in Eqg. 15 may be used.

2
<)
M2 (15)

WP(S) = 2

1
(s + a)gAf)

Magnitude of the inverse weighting function 1/|Wp(jw)| is shown in Figure 2.5.

Magnitude of the inverse performance weighting function 1/|W,(jw)|Figure 2.5.
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Figure 2.5. Magnitude of the inverse performance weighting function 1/|Wp(jw)]|

Prescribed performance objectives are satisfied if the magnitude of sensitivity function,
|S(jw)| stays below 1/|W,(jw)| at all frequencies, i.e. [|[WpS|| < 1.

Actuator constraint weighting function W, is selected by considering the control signal
equation:
u=KS(r—d,—n)—Td,

The magnitude of |KS]| is limited by using weighting function W, to avoid saturation of

the actuator. Therefore, W,, may be simply selected as [26]:
1
Wy1(s) = — (16)
max

where 7,4, represents the saturation limit value of the actuator. On the other hand,
beyond the desired control bandwidth, W, may be modified to attenuate the effects of

noise and disturbance by rolling of the magnitude of |KS| [54]:

S+ wpe/T
Wua(s) = —— == (17)
C

One may obtain the faster roll of with higher order weighting function I, in Eq. 18.

k
wbc
(s ¥ /—m> (18)
('Vf_ls + (‘)bc)k

Magnitude of different inverse weighting function 1/|W,,(jw)| in Eqg. 16 and Eq. 17 are

Wu,z’(s) =

shown in Figure 2.6.
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Figure 2.6. Magnitude of the inverse actuator constraints weighting function 1/|W,,(jw)|

Prescribed actuator constraints are satisfied if the magnitude of |[K(jw)S(jw)| stays
below 1/|W, (jw)| at all frequencies, i.e. ||W,KS||e < 1.

Although some standard forms of the weighting functions are given in this section, one
should also note that, in H,, control design problems, selection of the weighting functions
is a very important step which often involves many iterations and may differ from one

problem to another.

2.5. Uncertainty and Robustness for SISO Systems

In this section, different representations of uncertainty are discussed and robust stability

and robust performance conditions for SISO systems are analyzed.

2.5.1. Model Uncertainty

In classical and modern control design methods are based on a single model which
represents the relationship between the inputs and the system responses. In reality,
however, a single mathematical model cannot reflect the exact system behavior in all
circumstances. Therefore, a set of mathematical models is needed to describe the dynamic
behavior of the system. The key idea of the robust control methods is based on this
phenomenon. In robust control methods, success of the controller is analyzed for all
possible models that represent the system dynamics and to represent all possible models,
model uncertainty definition that refers to the difference between the reality and

mathematical model, is used. Model uncertainty may arise from different sources:
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1. In linear plant models, there may be parameters that are only known
approximately.

2. Parameters of the linear model may vary in time due to operating conditions or
nonlinearities.

3. Obtaining the mathematical model is hard especially at high frequencies.

4. Even if the exact mathematical model of the plant is achieved, one may use a

simpler model to facilitate the control design problem.
There are two approaches to represent uncertainty:

1. Structured (parametric) uncertainty (parameter bounds)
2. Unstructured uncertainty (frequency domain bounds)

Structured uncertainty can be used if the exact structure of the plant model and the real
perturbations of the model parameters are known and using this type of uncertainty,
unmodeled dynamics cannot be covered. Due to these reasons, structured uncertainty is
usually avoided in robust control methods and representing uncertainty by defining
frequency domain bounds is preferred. In unstructured uncertainty, disc-shape regions are
used to represent uncertainty regions. For example, additive uncertainty definition in Eq.

19 generates perturbed plant model set in disc-shape regions around a nominal model.
My Gp(s) = G(s) + Wu(s)A4(s); [M(jw)l =1 Vo (19)

where perturbed plant model set Gp(jw) is defined in a disc-shape region that is centered

at nominal model G (jw) with disc radius |W,(jw)| as shown in Figure 2.7.

Another representation of disk-shape regions is multiplicative uncertainty definition in
Eq. 20.

Mi: Gp =G(s)(1+ Wi ()A(8)); 1A,(w) <1 Vo (20)

In the multiplicative uncertainty case, both nominal model G and open-loop transfer
function L = GK are affected by the same uncertainty as given in Figure 2.8.
Multiplicative uncertainty is often preferred in robust control problems for representing
the model set, so in this thesis, robust stability and robust performance conditions are

discussed with multiplicative uncertainty.
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Figure 2.7. Additive uncertainty representation in Nyquist diagram

> Re

L(jw)

(Wi (jw) L(jw)|

Figure 2.8. Multiplicative uncertainty representation in Nyquist diagram

2.5.2. Weighting Function for Unstructured Uncertainty

To describe all possible model set IT with the disc-shape uncertainty, the following

procedure may be followed [26]:
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1. Determine a nominal model G (jw).

2. In additive uncertainty case, smallest radius of the disc () is equal to:
l(@) = max|Gp (jw) — G(jw)| (21)
Then, the weighting function (WA(ja))) that represents the additive uncertainty must be
selected to be equal or greater than the smallest radius of the disc at all frequencies.
Wa(jw)l = ly(w), Vo (22)
3. In multiplicative uncertainty case, smallest radius of the disc (l,(w)) is equal to:

Gp(jw) — G(jw)
G(w)

(23)

L(w) = max

and, the multiplicative uncertainty weighting function (W,(ja))) can be determined as:

W, (jw)| = [}(w), Vo (24)

2.5.3. Stability and Performance with Multiplicative Uncertainty

In robust control theory, following conditions are discussed to analyze stability and

performance of the designed controller:

e Nominal Stability (NS): designed controller K (s) stabilizes the nominal plant
G(s).

e Nominal Performance (NP): designed controller K(s) ensures the defined
performance objectives for nominal plant G(s).

e Robust Stability (RS): designed controller K (s) stabilizes all perturbed plants
Gp(s) in the model set I1.

e Robust Performance (RP): designed controller K(s) ensures defined

performance objectives for all perturbed plants G (s) in the model set II.

In the following sections, above conditions are derived under existence of multiplicative

uncertainty.
2.5.3.1 Nominal Stability (NS)

Nominal stability condition is satisfied if the designed controller K(s) stabilizes the
nominal plant G(s). Nominal stability of the closed-loop system is analyzed by using

Nyquist diagram. If the open-loop transfer function L(jw) = G(jw)K(jw) does not
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encircle the point (—1,0) in the Nyquist diagram for all frequencies, closed-loop system

Is said to have nominal stability.
2.5.3.2 Robust Stability (RS)

Robust stability condition for the closed-loop feedback system in Figure 2.9 is satisfied,

if the designed controller K (s) stabilizes all perturbed plants G, (s) in the model set I1.

Y

Figure 2.9. Closed-loop feedback system with multiplicative uncertainty

With multiplicative uncertainty the open-loop transfer function is defined as:
Lp(jw) = Gp(jw)K(jw) = G(1 + W,A)K =L + W;LA,, |A(jw)| <1, Vo (25)

From Eq. 25, perturbed loop transfer function L, can be illustrated in Nyquist diagram
by a disc with center L and radius |W;L| as shown in Figure 2.10. According to the
Nyquist stability criterion, robust stability of the closed-loop system in Figure 2.9 is
satisfied if Lp(jw) does not encircle the point (—1,0) in the Nyquist diagram for all
frequencies. In other words, if the distance between the center of the disc and the point
(—1,0) is larger than the radius of the disc, closed-loop system is said to have robust

stability.

Mathematically, robust stability condition may be expressed as following equations:

RS = W, (jw)L(jw)| < |1+ L(jw)], Yo (26)
W (jw)L(jw . . 27
RS & W, ()T G)ll < 1 (28)

By manipulating Eq. 27, robust stability condition for SISO systems may be written as:

RS = |T(jw)| < 1/|W;(jw) (29)
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L(jw)

Figure 2.10. Robust stability condition in Nyquist diagram

From Eq. 29, one can easily observe that the multiplicative uncertainty weighting function
W, determines the upper bound of the complementary sensitivity function T. For robust
stability of the closed-loop system in Figure 2.9, magnitude of the complementary
sensitivity function should be small in the frequency region (mostly in the high
frequencies) where the relative (multiplicative) uncertainty is high.

2.5.3.3 Nominal Performance (NP)

Nominal performance condition for the closed-loop feedback system in Figure 2.11 is
satisfied, if the designed controller K(s) ensure the performance requirements that is

determined by the weighting function Wy (s) for nominal plant model G (s).
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Figure 2.11. Closed-loop feedback system with the performance weighting function

In the Nyquist diagram, if the open-loop transfer function L(jw) stay outside a disc which
is centered at the point (—1,0) with radius |Wp(jw)| for all frequencies, closed-loop
system is said to have nominal performance. In other words, for the nominal performance,

the distance between the point (—1,0) and L(jw) should be larger than the disc radius
Wp(jw)l.

Nominal performance condition shown in Figure 2.12 may be expressed mathematically

by following equations:

NP < |Wpr(jw)| < |1+ L(jw)|, Vo (30)

NP & M <1 Vw & [W(w)S(w)|<1, Yo (31)
1+ L(jw) ’ P '

NP & [[Wp(jw)S(jw)lle <1 (32)

By manipulating Eq. 31, nominal performance condition for SISO systems may be written
as:

NP = [S(jw)| < 1/|Wp(jw)] (33)

From Eg. 33, one can easily observe that the performance weighting function W,
determines the upper bound of the sensitivity function S. For nominal performance of the
closed-loop system in Figure 2.11, magnitude of the sensitivity function should be small
in the frequency region (mostly in the low frequencies) where the performance weighting

function is high in magnitude.
2.5.3.4 Robust Performance (RP)

Robust performance condition for the closed-loop feedback system in Figure 2.13 is
satisfied, if the designed controller K(s) ensure the performance requirements that is
determined by the weighting function Wy (s) for all perturbed plants Gy (s) in the model
set II.
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Figure 2.12. Nominal performance condition in Nyquist diagram

o

Figure 2.13. Closed-loop feedback system with multiplicative uncertainty and the

>z

Y
S

performance weighting function

For robust performance, nominal performance condition which is discussed in previous
section should be satisfied for all perturbed plants Gp(s) in the model set I1. Therefore,
all perturbed loop transfer function L, defined by a disc with radius |W;L|, should stay
outside a disc which is centered at the point (—1,0) with radius |Wp(jw)| for all
frequencies. In other words, if these two discs do not intersect for all frequencies, closed-
loop system is said to have robust performance. If the sum of radii of these two discs is
less than the distance between the point (—1,0) and L(jw), then the specified condition

is guaranteed.

Robust performance condition shown in Figure 2.14 may be expressed mathematically

by following equations:
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RP & [Wp(jw)| + W (jw)L(jw)| < |1+ L(jw)], Yo (34)

Wp(jw) W,(jw)L(jw)

RP(:)‘1+L(]'0)) T+ L) <1, Vw (35)
RP & [Wr(jw)S(w)| + IW,(jw)T(jw)| <1, Vw (36)
Alm

-----

(Wi (5w) L(jw)]

L(jw)

Figure 2.14. Robust performance condition in Nyquist diagram

2.5.3.5 Summary of Stability and Performance

For a SISO system with multiplicative uncertainty, nominal stability (NS), nominal
performance (NP), robust stability (RP), and robust performance (RP) conditions can be

summarized as:

NS < Nyquist Stability Criteria (37)
NP & |WpS| <1, Vw (38)
RS & [WT| <1, Vw (39)
RP & |[WpS|+ W, T| <1, Vw (40)
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3. MODEL-BASED AND DATA-DRIVEN H,, CONTROL

3.1. Obtaining A General Form for Control Configuration

In [55], a general control problem formulation method is proposed to design almost any
linear controller. This formulation is based on using general control configuration that is

shown in Figure 3.1.

We—e— —> 2

A
>

Figure 3.1. General control configuration

In Figure 3.1, the signals w,u,z, and v are named as (weighted) exogenous inputs,
control signals, (weighted) exogenous outputs, and sensed outputs respectively. On the
other hand, P(s) and K (s) represent generalized plant and controller, respectively. The

controller design problem can be formulated as:

Design a controller K(s) to reduce the effect of exogenous inputs w on exogenous
outputs z (or minimize the closed-loop norm from w to z) by generating control signals

u according to the information in v.

3.1.1. Obtaining the Generalized Plant

To obtain the generalized plant P(s), signals w,u, z, and v should be identified first.
Consider the feedback system shown in Figure 3.2. According to the controller design
problem in Figure 3.2, the exogenous input signals w consist of reference signal, r output
disturbance, d, and measurement noise, n. In this configuration, the sensed output signal
is the difference between the reference signal » and the measured output y,,,. On the other
hand, exogenous output z may be defined as the difference between the reference signal

r and the actual output y to specify controller performance.
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Figure 3.2. Obtaining generalized plant from feedback control configuration

W1 T
W=[Wz]=[dl ; Z=Tr—Y ; V=Tr—Ynp,=T—Yy—n
W3 n

Then, the generalized plant P(s) that represents the matrix from [w  u]7 to [z

obtained as:
z=r—y=r—(Gu+d,) =1Iw; — Iw, — Gu
v=r—yn=r—(Gu+d,+n)=Iw;, —Iw, —Iw; — G,

p=[l 1 0 G

I -1 -1 -G

3.1.2. Generalized Plant with Weighting Functions

(41)

v]T is

(42)

(43)

(44)

In H,, control problems, controller synthesis problem is formulated with weighting

functions, so the generalized plant P(s) should be obtained with the addition of weighting

functions. Reconsider the previous example in Figure 3.2 and assume that the frequency

content of the error signal is shaped with the defined weighting function W, (s) as shown

in Figure 3.3. Then, the exogenous output z in Eq. 42 is modified as:
Z = Wp(r — y) = WPW1 — WPW2 — WPGU.
and the generalized plant P(s) is equal to:

i
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n

Figure 3.3. Obtaining generalized plant from feedback control configuration with

weighting function

3.1.3. Obtaining Closed-loop Transfer Function

In H,, controller synthesis problem, the general control configuration in Figure 3.1 is
used, however to analyze the performance of the closed-loop system, the structure in

Figure 3.4 is preferred.

— Y5 N(s) pPH——

Figure 3.4. General structure for analysis of closed-loop performance

By using the general analysis structure in Figure 3.4, one can easily obtain:
z = Nw 47

To obtain the closed-loop transfer function N(s) from exogenous inputs w to exogenous
outputs z, partitioning of the generalized plant should be performed first as shown in the

following equations:

Z:P11W+P12u ; U:P21W+P22u (48)

P P
P — [ 11 12] 49
Py Py (49)

The closed-loop transfer function N(s) can be obtained by eliminating u and v from Eg.

48 and Eq. 49 with the help of following controller equation:

u=Kv (50)
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N is then defined by:
N(s) =P11+P12K(1_P22K)_1P21éFl(P,K) (51)

In Eq. 51, F;(P, K) denotes a lower linear fractional transformation (LFT) of P with K
and in general, the design objective of the H,, control problem is to minimize the co-norm

of this transfer function.

3.2. Model-Based H,, Control

In this section, both full-order and fixed-order model-based H,, controller synthesis

problems are discussed.

3.2.1. Full-Order Model-Based H ., Control

In H,, control problems, the general control configuration in Figure 3.1 is used to find
controller K (s) that minimizes the co-norm of the F; (P, K). In this problem, generalized
plant P is defined by state space realization:

A B, B,

Cl D11 D12
CZ D21 D22

P = (52)

In [56], an algorithm is proposed to solve H,, control problems that is based on the state
space solutions and this algorithm needs to solve two algebraic Riccatti equations. H,
controller that is obtained by aforementioned algorithm has the same state dimension as
the generalized plant P. The assumptions given below are generally used for H,, (and

also H,) control problems [26]:
(Al) (A4, B,,C,) is stabilizable and detectable.
(A2) D;, and D, have full rank.

(A3) [A jol D ] has full column rank Yw.
12

(A4) [A jol D ] has full row rank V.
21

(A5) D11 = D22 = O

Assumption (Al) guarantees the existence of stabilizing controllers K(s), and
assumption (A2) is required for K(s) to be proper and therefore realizable. Assumptions

(A3) and (A4) provide that the controller K(s) does not involve pole — zero cancellation
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on the imaginary axis in complex plane which leads to instability in the closed-loop.
Assumption (Ab) is defined for H, control problems. On the other hand, in H,, control
problems, assumption (A5) which is not a necessary condition, simplifies the problem. In
some cases, additional assumptions may be used to further simplify the problem such as
[26]:

(AB) Dy, = D2T1 = [(I)]

(A7) DI,C = B,Df, = 0.
(A8) (A, B,) and (4, C,) are stabilizable and detectable, respectively.

In standard H,, optimal control problems, the general objective is to find all stabilizing
controllers K(s) that minimize co-norm of the transfer function from exogenous inputs

w to exogenous outputs z.
M| Tzl (53)

In most of H,, control problems, the objective of the control problem is defined as to find
a sub-optimal H,, controller instead of obtaining the optimal one. Finding a sub-optimal
H,, controller is computationally simpler and this controller is close to the optimal H,,
controller in the sense of co-norm. Let the co-norm of the transfer function in Eq. 53 be
equal to y,,;n With the optimal H,, controller. Then the H,, sub-optimal control problem

is defined as finding all stabilizing controllers K (s) such that:

ITwzlleo <¥ (54)

where y > yin- In [56], an efficient iterative algorithm is proposed to solve the sub-

optimal H,, control problem in Eq. 54.

General H,, Algorithm: With the assumptions (A1) to (A8), there exist a sub-optimal
H,, controller which satisfies the Eq. 54, if and only if following conditions are satisfied
[26]:

(i) X = 01is asolution to the algebraic Ricatti equation:
ATXoo + XA+ CICy + Xoo(y 2BBT — B,BI)X,, =0 (55)
such that Re A;[A + (y "2B;BT — B,BI)X,,] < 0,V,.

(if) Y, = 0 is a solution to the algebraic Ricatti equation:
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AYy + Y AT + BiBT + Y (y~2CI'C, — CIC,)Y, =0 (56)

such that Re A;[A + Y, (y "2CTC, — CIC,)] < 0,v,.
(iii) p(XooYoo) < ¥2.

Then, the sub-optimal H,, controller K(s) is obtained such that:
K(S) = _ZooLoo(SI - Aoo)_lFoo (57)
where

Fo=—BIXy, Zow=(U—-y"YuXe)™ !, Lo =—YoCF
(58)
Aw =A+V 2BBf X + ByFpo + ZLooC,
The controller in Eq. 57 can also be written as combination of the state estimator

(observer) and state feedback:
X = AX + Biy 2BT X% + Byu + ZoyLoo (Co% — V) (59)
u=F.x (60)

Y — lteration: co-norm of the transfer function from exogenous inputs w to exogenous

outputs z can be reduced by performing bisection algorithm on y [26].
3.2.1.1 Mixed-Sensitivity Framework

In mixed-sensitivity H,, control problems, sensitivity function S is shaped with one or
two other closed-loop transfer functions such as complementary sensitivity function T or
KS. As explained in Chapter 2, all three closed-loop transfer functions are needed to be
shaped for different purposes. For both regulation and reference tracking problems,
magnitude of the sensitivity function S should be small at low frequencies for good
disturbance rejection and command tracking performance, respectively. On the other
hand, shaping of the complementary sensitivity function T is required for preventing
robust stability and noise amplification problems. Moreover, to avoid actuator saturation
problems K S should be shaped. Mixed-sensitivity configuration for regulation problem
is defined by using the block diagram in Figure 3.5. In mixed-sensitivity problem,

generalized plant is defined by following equation:

W, WG
0o -w

P = u 1
0 -WG (61)
Sy G-
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Then the cost function of the mixed-sensitivity H,, control problem is equal to:

WpS
I Tzl = ‘ W,KS (62)
wr 1l
; S Wy >z 1P
" Wy——>22 [ 5
E > _WI > 23 - :
E ‘u}:do :
E + i
1 - G t y - :
E ¥ |
u : r=20 v |
K |«

Figure 3.5. S/KS /T mixed-sensitivity problem

3.2.2. Fixed-Order Model-Based H ., Control

In this thesis study, fixed-order model-based H,, controller synthesis is performed by
using non-smooth optimization techniques in [30]. In fixed-order model-based H.,
controller design problem, classical H,, problem is solved under additional constraints

which are related to the structure of controller. The controller synthesis problem is given

by
min| Tyl (63)

where K € K represents the controller structure constraints. If the controller K is
structured with parameter 8, then the closed-loop transfer function from exogenous inputs

w to exogenous outputs z can be written as a function of controller as shown in Eq. 64.

A(K(9)) B(K(®))

Tw.(P,K(6)) = c(k(®) D(K(®))

(64)
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Then, objective function of fixed-order model-based H,, controller synthesis problem

becomes a non-smooth, non-convex function as shown in Eq. 65.
f(0) = ||T.(P,K ()|

-1 (65)
= max & (C(K () (jol - A(K()) B(K()) + D(K(6))

where & represents the maximum singular value of the function. The non-convex
optimization problem in Eq. 65 is solved by using non-smooth optimization techniques

and the details of the solution method can be found in [30].
3.3. Fixed-Order Data-Driven H,, Control
In this section, fixed-order data-driven H,, control theory is discussed. Although there are

different approaches are proposed for data-driven H,, controller synthesis problems in the

literature, in this thesis study, the method discussed in [49] is followed.

3.3.1. H,, Control Problem Formulation

In this section, class of models and controllers that are used in fixed-order data-driven
control problems are introduced. Moreover, the design specification that is used as linear

or convex constraints of the optimization problems is derived.
3.3.1.1 Non-Parametric Model Set

In fixed-order data-driven control problems, set G that involves m non-parametric
models with (unstructured) multiplicative uncertainty is used. This model set can be
defined by using multiplicative uncertainty weighting functions W;; discussed in Chapter

2 as shown in Eq. 66.
G={G()[1+W,;(w)d] ; i=12,..,m} (66)

Non-parametric model set G can be obtained from either parametric model or frequency

domain data.
3.3.1.2 Linearly Parameterized Controllers
Linearly parameterized controllers are defined as follows:
K(s,p) = p"¢(s) (67)

where p and ¢ (s) are column vectors that includes controller parameters and stable and

known transfer functions with bounded infinity norms, respectively
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pT =[P1 P2 = Pal (68)

PT(s) = [Po(s) Pi(s) . Pn1(s)] (69)

where n is the number of controller parameters and ¢;(s) may be chosen as orthonormal
basis functions like Laguerre functions, Kautz functions or generalized orthonormal

functions [57]. Generalized form of orthonormal functions are given as:

V2R{&}

¢i(s) = Tfid)i_l(s) s i=12,..,n—1
i _ (70)
6 =[5 ww=1
k=1

where &, and &, are complex conjugate pairs. One of the special form of generalized
orthonormal functions is Laguerre basis defined as:

J2&(s -t
(s + &)t '

Do(s) =1 ; ¢;i(s) = =12,...n—1 (71)

with & > 0. It can be proven that, by increasing the number of controller parameters with
the appropriate choice of &, Laguerre basis can approximate any finite order stable
transfer function [57].

Besides of orthonormal functions that are mentioned above, PID controllers can also be

written in the linearly parameterized form as:

1 T
K(s,p) = p"d(s) = [Kp Ki Kol [1 - 1+Srfsl (72)

where derivative time constant Ty is assumed to be known.

By using linearly parameterized controllers, loop transfer function L can be defined as a
linear function of controller parameters as shown in the following equation and this
property helps formulating fixed-structure H,, controller synthesis problem as a convex

optimization problem.
L(jw,p) = K(jo,p)G(jo) = p'¢(jw)G(jw) (73)
3.3.1.3 Design Specifications

In fixed-order data-driven H,, control problem, robust performance criterion which is

shown in Eq. 40 is considered and finite number of linear or convex constraints are
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produced with the help of Nyquist diagram. These constraints guarantee that the closed-

loop system with designed controller satisfies the robust performance criterion.

3.3.2. Fixed-Order Data-Driven H,, Controller Design

3.3.2.1 Constraints of Control Problem

Multiplying the robust performance criterion in Eq. 40 by the distance between the point
(=1,0) and L(jw, p) gives:

(Wp(jw)| + W, (jo)L(jw,p)| < |1+ L(jw,p)|, Y (74)

One may remember that, if the two discs which are centered at (—1,0) and L(jw, p) with
a radius of |W,(jw)| and [W,(jw)L(jw, p)|, do not intersect for all frequencies in the
Nyquist diagram, closed-loop system is said to have robust performance [26]. These non-
convex robust performance constraints can be redefined by considering a straight line d*
which is orthogonal to the line between the point (—1,0) and L(jw, p) and tangent to the
circle with radius [Wp(jw)|. The line d* divides the Nyquist diagram into two regions
and, if the loop transfer function L(jw, p) stays in the region that does not contain the
critical point (—1,0) for all frequencies, the nominal performance condition is satisfied

as shown in Figure 3.6.

However, d* is a function of the controller parameters p, therefore this condition cannot
be specified as a convex function. For representing robust performance criterion as
convex or linear constraints, desired loop transfer function L, (jw) which has a known
frequency response function is defined. Then, a new line d which is tangent to the same
circle as d* but orthogonal to the line between the point (—1,0) and L, (jw), is formed to
formulate robust performance criterion under convex or linear constraints. The closed-
loop system is said to have nominal performance, if the actual loop transfer function
L(jw, p) is at the right hand side of the line d, for all frequencies in the Nyquist diagram,
and the desired loop transfer function L, (jw) is close to the actual one as shown in Figure
3.7.

As shown in Figure 3.7, the equation of the line d(w) is independent of the controller

parameters and is defined as:

(Wp(j)[1 + La(G)l| = [1 + R{LaGw)}[1 + x] = I{Ls(w)}y = 0 (75)

where x and y represent the real and imaginary parts of a point on the complex plane.
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L(jw, p)

Figure 3.6. Modified nominal performance condition in Nyquist diagram

Alm

L(jw, p)

Figure 3.7. Linear constraints for nominal performance condition in Nyquist diagram
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The linear constraints for nominal performance criterion can be represented as:

[Wp(jw)[1 + La(j)]| = [1 + R{LsGw)}[1 + R{L(w, p)}] -

(76)
Sla(jw)}3HL(jw,p)} <0, Yo

Above equation guarantees that the loop transfer function L(jw, p) remains at the region
which does not include the point (—1,0) in Nyquist plot for all frequencies. Above

equation may be simplified by using following relationships:

R{Ly(0)) = 5 [La(e) + La(~j)]
(77)
1
S{La(jw)} = > [Lg(jw) — Lg(—jw)]
Then, substituting Eq. 77 into the Eq. 76 yields:
Wp(jw)[1 + La(G)]l = R{[1 + La(—jw)][1 + L(jw,p)]} <0, Vo (78)

To satisfy robust performance criterion, condition in Eq. 78 should be satisfied for all
models which is represented by a multiplicative uncertainty region. By approximating
disc shaped uncertainty region by a polygon with g > 2 vertices, robust performance
condition in Eqg. 40 may be expressed as linear constraints [49]. If all vertices of the
polygon stay in the right side of the line d(w), then the robust performance condition is

satisfied:

Wp(jw)[1 + La(Gw)]| = Re{[1 + La(—jw)][1 + Lp(jw, p)]} <0,

(79)
Vw&n=1,..,q
where L,(jw, p) = K(jw, p)G,,(jw) and
i) = 6 [w—] -
COSs (E)

Another alternative for representing robust performance criterion is using uncertainty
circle with radius |W;(jw)L(jw,p)| directly to define all possible models. This

alternative results with following convex constraints [49]:

(Wp(jw)[1 + La(G) ]l + W (jw)L(jw, p)[1 + La(jw)]I

(81)
—R{[1+ Ls(—jw)][1+ L(w,p)]} <0, Vo
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These two alternatives of representation of the robust performance constraint are shown
in Figure 3.8. Although the number of linear constraints are g times more than number of

convex constraints, using convex constraints complicates the optimization problem.

Alm

(Wi (jwo)L(jio, )] -
L{jw,p) Lal5)
Figure 3.8. Linear or convex constraints for robust performance condition in Nyquist

diagram

3.3.2.2 Objective Function of Control Problem

In fixed-order data-driven H, controller synthesis problem, robust performance
condition is represented as either linear or convex constraints with the help of the defined
desired loop transfer function L;(jw). However, to guarantee the robust performance
condition for the actual closed-loop system, desired loop transfer function L, (jw) should
be the good approximation of the actual one L(jw, p). Therefore, the objective function
of the optimization problem is defined as minimizing the difference between these two

loop transfer functions as shown in following equation:

min||L(jw, p) — LaG) I} = min||p” $(jw)G(w) — LyGw)]|; (82)
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If the optimization problem which is defined by the objective function in Eq. 82 is solved

under linear constraints in Eq. 79 or convex constraints in Eq. 81, robust performance

constraint in Eq. 40 is satisfied. Moreover, to improve the fixed-order data-driven H,

controller performance, co-norm of the transfer function from exogenous inputs w to

exogenous outputs z can be reduced by performing bisection algorithm on y [26].

3.3.3. Choice of Desired Loop Transfer Function

The proper choice of desired loop transfer function L;(jw) should be “close” to actual

loop transfer function L(jw, p) to satisfy the robust performance criterion by the obtained

closed-loop system. Therefore, following suggestions should be applied while

determining the desired loop transfer function L, (jw).

The solution of the full-order model-based H,, controller problem is based on
stable pole-zero cancelation of the plant by the designed controller. Thus, desired
loop transfer function L,;(jw), should contain the unstable poles of the plant.
Similarly, desired loop transfer function L;(jw), should also contain the right
half-plane zeros.

The number of integrators in the desired loop transfer function should be equal
to total number of integrators of plant and controller. For example, if a PID-
controller is designed for a plant that also contains another integrator, the number
of the integrator in desired loop transfer function should be equal to two.

The characteristic polynomial of the closed-loop system with the desired loop
transfer function should satisfy Routh-Hurwitz stability criterion. Therefore,
parameters of the desired loop transfer function should be selected by considering
closed-loop stability.

For improving the performance of the closed-loop system, desired loop transfer

function can be selected iteratively. For example, if the initial controller K,(jw)
is designed with the initial choice of LE}) (jw), then the new desired loop transfer

function can be selected based on K,(jw)as L%Z) (jw) = G(w)Ky(jw).
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4. SYSTEM IDENTIFICATION

In this chapter, the system used in experimental studies is introduced. Then, the system
identification method which is performed to obtain both non-parametric and parametric

plant models is discussed.

4.1. Experimental Setup

In this part of the study, H,, controller synthesis methods explained in Chapter 3 are
implemented on a military two-axis stabilized platform named as “System A”. Note that,
results for an additional experimental study with another stabilized platform named as

“System B” are presented in the Appendix.

In general, two-axes stabilized platforms are defined as platforms which can be moved

and stabilized in both traverse and elevation axes which are shown in Figure 4.1.

Elevation Axis

Traverse Axis

Figure 4.1. Traverse and elevation axes of stabilized platform

In these platforms, one brushless DC motor is used as an actuator for each axis. These
motors have a resolver which is used to provide commutation as well as to generate motor
position and speed information. Although torque transmission structure used in two-axis
stabilized platforms may vary from one platform to another, the torque transfer process
is carried out by means of the gearbox on the traverse axis of the system used in this thesis
study. The position information required for guiding the axes is provided by encoders
which are placed to different axes. Finally, relative angular velocities of the axes with
respect to the ground that are required for stabilization are measured by a two-axis
gyroscope generally mounted on the elevation axis. The control software running within
the motor drive unit continuously calculates the amount of current to be supplied to the
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motors by using sensor data in the feedback loop. Signal flow for the closed-loop system
of the traverse axis angular speed control is shown in Figure 4.2.

Target |
Tracking l
Requirements :
Angular Speed : External
Reference ; Disturbance:

3 ' y ' ,

Servo Controller | Current DC Motor & | Torque ! |Stabilized Platform . Traverse Axis
; ' Angular Speed

I
I

Output |  Gearbox | Qutput : o
0 A%

Gyroscope

Angular Speed ﬁ

Feedback

A

Figure 4.2. Signal flow for the closed-loop system of experimental test setup

4.2. System Identification Method

In this section, the traverse axis of the two-axis stabilized platform (System A) is analyzed
and plant model from motor torque input to the angular velocity output of the traverse
axis is identified to synthesize different the H,, controllers discussed in Chapter 3. In this
section, identification of the friction model which is the main non-linear effect on the
system is introduced. Then, proposed system identification method in frequency domain
to obtain non-parametric and parametric plant models is discussed.

4.2.1. Friction Model

To identify a LTI model of the traverse axis of the two-axis stabilized platform, non-linear
effects should be identified first. In traverse axis, the main nonlinear effect originates
from friction between the moving parts which are mechanically in contact with each
other. By considering Newton’s second law, friction torque applied to the system can be
calculated from:

]9 = Tapp — Tfr (83)

If the system moves with constant velocity (6 = 0), the friction torque (7, ) is equal to
applied motor torque (z,,,). To make use of this fact, reference tracking tests are

performed in both counter clockwise and clockwise direction with different velocity
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commands and motor torque input is detected in constant velocity region. In following
figures, variation of applied motor torque relative to the axis position are shown for

different velocity commands.

15 1 deg/s Angular Speed Command

—Positive Torque (Mean = 0.68 Nm)
- - ‘Negative Torque (Mean = -0.68 Nm)

Torque [Nm]
°
o (3,

1
o
(3]

-1

_1.5 1 I 1 ! L I L 1
-80 60 -40 -20 0 20 40 60 80 100

Position [deg]

Figure 4.3. Friction identification test (1 deg/s angular speed command)

5 deg/s Angular Speed Command

—Positive Torque (Mean = 0.64 Nm)
- - ‘Negative Torque (Mean = -0.67 Nm)
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Figure 4.4. Friction identification test (5 deg/s angular speed command)
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As shown in Figure 4.3 and Figure 4.4, the magnitude of the friction torque varies
negligibly with respect to the velocity of the platform and direction of motion. Therefore,
friction model used in thesis study is considered as Coulomb friction model and parameter
of the model (ffr) is calculated by taking average of the obtained data from different

tests. The friction torque is calculated by using following equation:
Tpp = ffrsign(é) (84)
4.2.2. Linear Platform Model

To obtain linear model of the system, open-loop system identification tests were
performed. In these tests, sinusoidal motor torque input signals with different amplitudes
were applied to the system. Excitation signals used in open-loop system identification

tests are defined as follows:
Tapp,i = Aicos(wit) ; i=1,..,4 & w,=1,15,..,150 Hz. (85)

where amplitudes of the excitation signals (4;) have a relationship such that 4; < 4, <
A; < A,. Inorder to obtain linear model of the system from net torque to angular velocity
of the traverse axis, friction torque was subtracted from applied torque as shown in Figure
4.5.

Linear Model

Tnet | Stabilized | 9
Platform

app

A J

NL;

A

Figure 4.5. Subtraction of non-linear friction effect to obtain linear model of the system

In this thesis study, both non-parametric and parametric models were identified to
describe the dynamical behavior of the system. To obtain these models, frequency domain

system identification method was performed.
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4.2.2.1 Non-Parametric Model Set

In non-parametric modelling approach, behavior of the system is described by using
input/output data obtained from system identification tests. In this thesis study, frequency
domain approach is used and non-parametric model of the system is determined by using

frequency response function (FRF) of the system.

Measurement of the FRF is a fundamental and crucial step in control applications. For
stable systems, FRF can be measured by performing open-loop system identification
tests. In these tests, input signal in a specific frequency band of interest is applied to the
system directly and both input and output signals are recorded in the time domain. When
a stable plant is excited with a sinusoidal input at a certain frequency (u(t) = cos(wt)),
steady-state response of the plant is at the same frequency as the input signal and has a

certain phase difference.

Yes(t) = |G(jw)| cos(a)t + arg(G(/'w)) (86)

In the above equation, G(jw) represents the frequency response function of the stable
system. To obtain the complex value G(jw), open-loop system identification tests’ time
domain input/output data should be converted to the frequency domain by using Discrete
Fourier Transform (DFT). The DFT relation between the time and frequency domain data

is defined as follows [58]:

N-1 _
U(k) = \/iﬁnz:o u(nT)e N
87)

kn

1 N-1  j2min
Y (k) =ﬁ;y<nTs)e N

where N is the number of samples and T is the sampling time of the system. According
to this definition, the representation of the frequency response function of the plant at

frequency f, is expressed by following equation:

Y (k)

G(wi) = 10 (88)

When the excitation signal applied in the open — loop system identification tests covers
the frequency range required to represent dynamic behavior of the system, non-parametric

plant model is obtained in the frequency domain. The set of non-parametric plant models
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which is calculated by m system identification tests performed at K,.., frequency points

is shown by following expression:
M2 {Gl(]a)k)ll = 1,2, e, m, k= 1,2, ...,Kfreq} (89)

In this thesis study, four different open-loop system identification tests were performed
with different amplitudes of excitation signal (A4;). Linear non-parametric model set was
obtained from net motor torque to angular velocity of the traverse axis as shown in Figure
4.6.

Non-Parametric Model Set

Magnitude [abs]
=)

Phase[deg]

1 2
Freqa%ncy [Hz.] 10

Figure 4.6. Non-parametric model set for traverse axis of the stabilized platform

4.2.2.2 Parametric Model

A parametric plant model should be obtained to implement model-based controller design
methods. In parametric modelling approach, behavior of the system is characterized by
model parameters. Parameters of the mathematical model of the plant were obtained by
performing parameter estimation techniques using mean frequency response function of

the system which is shown in Figure 4.7.

According to the mean frequency response function of the system in Figure 4.7, behavior
of the system can be considered similar to behavior of the flexible mechanical systems.

For flexible mechanical systems, general structure of the plant model from motor torque
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input to body angular velocity contains rigid body dynamics and torsional structural

dynamics as shown in Figure 4.8 [1].

Mean Frequency Response Function

Magnitude [abs]
=

-
o
N

101 102

-
o
o

-200 [

Phase [deg]

® & i
© © o
e o© o

10" 102
Frequency [Hz]

-
o
o

Figure 4.7. Mean frequency response function for traverse axis of the stabilized platform
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Figure 4.8. General structure of flexible mechanical system’s plant model

According to Figure 4.8, plant model can be formed by the term that represents rigid body
dynamics of the system and a transfer function that represents the flexibility of the system
dynamics. Moreover, time delay can also be added to the plant model due to existence of
the electronic components. General structure of the plant model in Laplace domain is

given below:
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K
G(5) = — Griex(s)e " delay (90)

Model parameters in the above equation were identified separately by using frequency
domain data. The term that represents rigid body dynamics of the system was calculated
as K = 18.2555 from magnitude of the frequency response function in low frequency

range.

In the second step of the identification of parametric model, the term that represents the
torsional structural dynamics of the system was determined. This term should contain the
flexible modes of the system. Therefore, each resonance and anti-resonance pair that arise
in frequency response function of the system, was represented by a second order transfer
function that include two imaginary poles and two imaginary zeros. To represent the
torsional structural dynamics of the system, multiple cascaded bi-quad filters were used
[50] and the parameters of the bi-quad filters can be calculated by using non-linear least
squares approximation technique. General form of the bi-quad filter is shown in following

equation:

wap(s? + 28ywuys + way) (91)

Gpi-qQuaa(s) =
t-Qua wiy(s2 4+ 28pwnps + w2p)

By using non-linear least squares approximation technique, four cascaded bi-quad filters
were fitted to frequency response function that does not contain the rigid body (K/s)
term.

Gflex = Gbi—quad,lGbi—quad,zGbi—quad,3Gbi—quad,4 (92)

Initial guesses and calculated values for bi-quad filter parameters are shown in Table 4.1

and Table 4.2, respectively.

Table 4.1. Initial guesses for identification of bi-quad filter parameters

Numerator Denominator
Wy /21 [Hz. | & wy /21 [Hz. ] &
Bi—quad 1 33 0.5 36 0.5
Bi—quad 2 42 0.5 51 0.5
Bi—quad 3 61 0.5 68 0.5
Bi—quad 4 103 0.5 120.5 0.5
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Table 4.2. Calculated values for bi-quad filter parameters

Numerator Denominator
Wy /21 [Hz. ] & wy/2m [Hz. ] 3
Bi—quad 1 36.4625 0.1086 38 0.0812
Bi—quad 2 47.717 0.5242 50.864 0.0748
Bi—quad 3 64.6621 0.3869 72.0794 0.1084
Bi —quad 4 101.4478 0.0465 150 0.2374

Frequency response functions of parametric model of torsional structural dynamics and

the real system without rigid body dynamics are compared in Figure 4.9.
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Figure 4.9. Identification of torsional structural dynamics

The final term of the parametric model in Eq. 90 is the delay term (e~Stdelay) and it
should be added to the plant model to compensate the phase difference shown in Figure
4.9. To calculate time delay value (tdelay), non-linear least squares technique was

performed and the difference between the phase responses of the real system and the
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parametric plant model was minimized. The time delay value was calculated as tge1qy =
10.3606 miliseconds.

The frequency response of parametric plant model which consists of the terms that
represent the rigid body dynamics, the torsional structural dynamics, and the time delay

Is shown in Figure 4.10.
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Figure 4.10. Mean FRF of the system and FRF of the parametric model

To evaluate the success of the system identification method, the percentage “Variance
Accounted For (VAF)” between the system and the parametric model time responses that
is defined in Eq. 93, for four different open-loop system identification tests were

calculated as shown in Table 4.3.

VAF, = <1 _ M) .100% (93)
var(y;)

where y; and ¥; represent the time responses of real system and parametric model,
respectively.

When the VAF value between the two signals is equal to 1, then these two signals are
identical. As shown in Table 4.3, VAF values between the time responses of the real

system and parametric model are close to 1 and this means that, these two signals are
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almost same. Therefore, it can be said that the identified parametric model successfully

represents the real system dynamics.

Table 4.3. Percentage VAF between the system and the parametric model time responses

Test 1 Test 2 Test 3 Test 4

VAF; 97.89% 97.65% 97.65% 97.18%

Step Response

- - -System
7 ——Parametric Model |
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Figure 4.11. Step responses of the real system and the identified parametric model

Another evaluation for the success of the system identification method was performed by
comparing the step responses of the real system and the parametric model as shown in
Figure 4.11. According to the Figure 4.11, there is a high similarity between the step

responses of the real system and the identified parametric model.

4.2.3. lIdentification of Multiplicative Uncertainty

Identification of the parametric model was performed by using mean frequency response
function of the system as discussed previous section. The multiplicative uncertainty arises
from the differences between the average frequency response function and the frequency

response functions corresponding to the torque inputs with different amplitudes, and from
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errors caused by parametric modelling. Multiplicative uncertainty at the frequency wy, is

identified by using following equation:

L (wg) = Gi(ng)(j;g(iwk) ci=1,..,4 (94)

Using Eq. 94, four different uncertainty points are obtained at each frequency value.

Multiplicative uncertainty between frequency response data and identified parametric

model is shown in Figure 4.12.
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Figure 4.12. Multiplicative uncertainty between system frequency response function and

identified parametric model
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5. DESIGN OF H,, CONTROLLERS

In this chapter full-order and fixed-order model-based H,, controllers were synthesized
with the methods that are discussed in Chapter 3. While designing model-based H,,

controllers, S/KS/T mixed-sensitivity framework was used.

After synthesis of model-based H,, controllers, fixed-order data-driven H,, controller
was designed with a novel two-stage controller design method. With the help of this
method, transfer functions that have unknown parameters in their denominators can be

added to the structure of the controller that is synthesized by the optimization methods.

5.1. Weighting Functions Selection

In model-based H,, controller synthesis, S/KS/T mixed-sensitivity framework which is
shown in Figure 3.5, was used. In this framework, three weighting functions should be

included to the structure of the generalized plant.

The multiplicative uncertainty weighting function was adapted to the structure of the
generalized plant to represent the multiplicative uncertainty that arises due to
nonlinearity, parametric modelling error, and unmodeled dynamics. To represent all
possible plants in non-parametric model set, multiplicative uncertainty weighting
function (W; (jw)) should cover the multiplicative uncertainty region which is shown in
Figure 4.12. Therefore, following relationship should be considered while determining
the multiplicative uncertainty weighting function:
Gi(jwy) — G(jwy) )
G(wy) ’

|W;(fwy)| = max

i=1,..4 VYo (95)

To determine the multiplicative uncertainty weighting function (W,(jw)), “ucover”
function in MATLAB Robust Control Toolbox was used and first order weighting

function that provides the Eq. 95 was obtained as:

1941+ 2.047jw
Wi(e) = — 582 7w (%)

In S/KS/T mixed-sensitivity control problem, magnitude of |KS| is limited by using
weighting function W, to avoid saturation of the actuator. Therefore, W,, was determined

as.
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1

W, (jw) = (97)

max

where 7,4, 1S the maximum torque that can be generated by the motor that was placed to
the traverse axis of the two-axis stabilized platform. For traverse axis of the System A,

maximum motor torque is equal to 22 Nm.

Multiplicative Uncertainty Weighting Function
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Figure 5.1. Multiplicative uncertainty region and weighting function

The last weighting function that was added to the structure of the generalized plant is the
performance weighting function (WP(/'a))) . In S/KS/T mixed-sensitivity control
problem, magnitude of the sensitivity function (|S]) is limited by using the weighting
function Wp. As discussed in Chapter 2, performance weighting function was determined

according to closed-loop performance requirements as:

i 2
W
(1—14‘ ws)

Mz

— 5 M=3,0p=2n5A4= 107 (98)
(ja) + a)gAf)

WP (](1)) = 2
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5.2. Full-Order Model-Based H,, Controller Design

In this section, two different full-order model-based H,, controllers are designed with

different performance weighting functions.

Full-order model-based H, controller was designed in S/KS/T mixed-sensitivity
framework. As discussed in Chapter 3, main objective in S/KS/T mixed-sensitivity

controller synthesis problem is calculating the sub — optimal H,, controller that satisfies

where y is close to optimal value y,,;». The block diagram representation of the controller

the following inequality:

WpS
W, KS
wW,T

<y (99)

o)

synthesis problem is shown in Figure 5.2.

Z1 Z9 zZ3
T T T w = do
Wp Wu WI
A 7y A +
u +
€ » K » G >\_/ >

Figure 5.2. Block diagram representation of full-order model-based H,, controller design

problem

Generalized plant was obtained according to the block diagram representation of the
controller synthesis problem shown in Figure 5.2 by using “sysic” function in MATLAB
Robust Control Toolbox. Then, another MATLAB Robust Control Toolbox function
“hinfsyn” was performed to calculate full-order model-based H, controller. Since
“hinfsyn” function cannot be used for plant models with time delays, first order Pade

approximation was used to approximate time delay in the identified plant model:

—t s+2
e_Stdelay = %

tdelays +2 (100)

Total order of the weighting functions and order of the parametric model are equal to 3
and 10 (one extra order from Pade approximation), respectively. Therefore, generalized

plant and calculated H,, controller having order of 13.
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5.2.1. Design 1

Firstly, the full-order model-based H,, controller is designed with performance weighting
function in Eqg. 98. At the end of the full-order model-based H,, controller design
procedure, y value is calculated as 0.7245, and stability and performance properties for

the obtained closed-loop system are shown in Figure 5.3 and Figure 5.4.

Nominal Stability

o
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Figure 5.3. Nominal stability condition for closed-loop system with full-order model-

based H,, controller (Design 1)

According to Nyquist stability criterion, closed-loop system with full-order model-based
H,, controller ensures nominal stability condition as shown in Figure 5.3. Moreover, gain
and phase margins of the closed-loop system are calculated as 9.45 dB and 48.8°
respectively. On the other hand, Figure 5.4 shows that nominal performance, robust
stability, and robust performance properties which are defined in Eq. 38, Eq. 39, and Eq.

40 are satisfied.

As shown in Figure 5.5, magnitude of |KS| stays below the maximum motor torque limit.
Therefore, actuator constraint which is defined by the weighting function W,,(jw) is also
fulfilled.
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Figure 5.4. Nominal performance, robust stability, and robust performance conditions for

closed-loop system with full-order model-based H,, controller (Design 1)
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Figure 5.5. Actuator constraint for closed-loop system with full-order model-based H,,

controller (Design 1)
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5.2.2. Design 2

Another full-order model-based H,, controller is designed with a different performance

weighting function defined in Eq. 101.

] 2
5
Mz . M =3} =21(25),4 =10 (101)

Wp(jw) = N
(jw + ngi)

In second design of the full-order model-based H,, controller, y value is calculated as
0.5073, and stability and performance conditions for the obtained closed-loop system are

shown in Figure 5.6 and Figure 5.7.
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Figure 5.6. Nominal stability condition for closed-loop system with full-order model-

based H,, controller (Design 2)

According to Nyquist stability criterion, closed-loop system with full-order model-based
H,, controller ensures nominal stability condition as shown in Figure 5.6. Moreover, gain
and phase margins of the closed-loop system are calculated as 13.2 dB and 58.6°
respectively. On the other hand, Figure 5.7 shows that nominal performance, robust
stability, and robust performance conditions which are defined in Eq. 38, Eg. 39, and Eq.

40 are satisfied.
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controller (Design 2)
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As shown in Figure 5.8, magnitude of |KS| stays below the maximum motor torque limit.
Therefore, actuator constraint which is defined by the weighting function W,,(jw) is also
fulfilled.

5.3. Fixed-Order Model-Based H,, Controller Design

Fixed-order model-based H,, controller was also designed in S/KS/T mixed-sensitivity
framework. However, the structure of the controller is predetermined and the objective
of the controller synthesis problem is modified as finding controller parameters that

satisfies the inequality in Eq. 99.

In this thesis study, structure of the fixed-order model-based H, controller was
determined to include an anti-resonance filter and a Pl-controller. Although different type
of anti-resonance filters can be used to reduce the effect of the flexible modes of the
mechanical systems [59], an asymmetric notch filter were added to the control structure.

Transfer function of the asymmetric notch filter is shown in Eq. 102:

S+ 28wy ps + w,%_f

(S + Rf(l)n'f)z

Gr(s) = Rf (102)
The high frequency response of the asymmetric notch filter is controlled by the parameter
R¢. On the other hand, the parameters w,( and &, determine natural frequency and
damping ratio of the asymmetric notch filter, respectively. The block diagram

representation of the fixed-order model-based H,, controller synthesis problem is shown

in Figure 5.9.
21 Z2 <3
Wp W, Wi | w=do
7 _ A A
! K.
5 : :
€Ll sl Kp+ Ki/s » ¢ Ll @ >

Figure 5.9. Block diagram representation of fixed-order model-based H,, controller

design problem
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To design fixed-order model-based H,, controller, MATLAB Robust Control Toolbox
function “hinfstruct” was used. In this function, unknown controller parameters
(Kp, K;,Rp, wp . € f) are defined as tunable parameters and “hinfstruct” tries to minimize
infinity norm of closed-loop transfer function from exogenous inputs w to exogenous
outputs z which is a function of unknown controller parameters. Calculated controller

parameters are shown in Table 5.1.

Table 5.1. Fixed-order model-based H,, controller parameters

Kp KI Rf (l)n,f/ZTE [HZ] ff

3.0882 49.8233 0.4902 81.6704 0.5

At the end of the fixed-order model-based H,, controller design procedure, y value is
calculated as 1.0822, and stability and performance conditions for the obtained closed-

loop system are shown in Figure 5.10 and Figure 5.11.
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Figure 5.10. Nominal stability condition for closed-loop system with fixed-order model-

based H,, controller
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According to Nyquist stability criterion, closed-loop system with fixed-order model-
based H, controller ensures nominal stability condition as shown in Figure 5.10.
Moreover, gain and phase margins of the closed-loop system are calculated as 8.33 dB

and 37.1° respectively.

Although robust stability condition which is defined in Eq. 39 is satisfied by the fixed-
order model-based H,, controller, Figure 5.11 shows that nominal performance and
robust performance conditions which are defined in Eg. 38 and Eg. 40 cannot be

guaranteed.

As shown in Figure 5.12, magnitude of |KS| stays below the maximum motor torque
limit. Therefore, actuator constraint which is defined by the weighting function W,,(jw)
is fulfilled.

5.4. A Novel Two-Step Method for Fixed-Order Data-Driven H,, Controller Design

Fixed-order data-driven H,, controller synthesis was performed by using S/KS mixed-
sensitivity framework. The main objective in S/KS mixed-sensitivity controller synthesis
problem is calculating the sub-optimal H, controller that satisfies the following

inequality:

WpS
||[Wu1<5”|m <Y (103)

where y is close to optimal value y,,;,. The block diagram representation of the

controller synthesis problem is shown in Figure 5.13.

Z zZ9
WP Wu w = dO
A A
+
<l 5 K Pl ¢ —

Figure 5.13. Block diagram representation of fixed-order data-driven H,, controller

synthesis problem
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In this thesis study, the H,, controller synthesis problem defined by Eq. 103 has been

reduced to Eq. 104 in order to obtain linear constraints for controller synthesis problem.
Wp(jw)SGw)l + W, (K (jw)S(jw)| <1, Vo (104)

The term |[W,,jw)K (jw)S(jw)| in Eq. 104 can be expressed as

W, (jw)K(jw)S(w)| = [W,(jo)T (jw)| (105)
where
o v W (jw)
W, (jw) = cGw) (106)

Thus, the constraints of the fixed-order data-driven H,, controller synthesis problem is
reformulated as the robust performance criterion with different multiplicative uncertainty

weighting function in Eq. 106.
[Wp(jw)S(w)| + |Wu'(ja))T(jw)| <1 Vw (107)

In this thesis study, the fixed-order data-driven H,, controller has the same structure with
the fixed-order model-based H,, controller. Due to the existence of unknown parameters
in denominator of the controller structure, the fixed-order data-driven controller synthesis
method discussed in Chapter 3 cannot be performed directly. Therefore, in this thesis
study, a new two-stage controller synthesis method is proposed to calculate unknown

parameters of the fixed-order data-driven H,, controller.

In the first step of the proposed method, unknown parameters of the asymmetric notch
filter are calculated according to an optimization problem whose objective function is
formulated as reducing the effect of flexible modes of the stabilized platform. Then,
linearly parameterized H,, controller is calculated by solving an optimization problem
under linearized H,, constraints obtained with the help of Nyquist diagram as discussed

in Chapter 3, in the second stage of the proposed method.

5.4.1. Anti-Resonance Filter Design for Flexible Mechanical Systems

For flexible mechanical systems, general structure of the plant model from motor torque
input to body angular velocity is shown in Figure 4.8. General structure of the plant model

in frequency domain is given below:

K .
G(jw) = o Griex(jw)e ™/ @tactay (108)
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In order to increase the stabilization and command tracking performances of the flexible
mechanical systems, the effect of flexible modes of the system should be minimized.
Therefore, the anti-resonance filter represented by the transfer function in Eq. 109 is
added to the structure of the fixed-order controller.
Nt (jw)
D¢(jw)

6, (jw) = (109)

Flexible modes of the stabilized platform is included to the system parametric model as
Grrex(jw) in EqQ. 108. Accordingly, when the anti-resonance filter added to the control
loop converges to G, (jw), the effect of flexible modes of the platform are minimized.
Using the non-parametric plant model, the terms Nf(jw) and Df(jw) of the anti-
resonance filter can be determined by solving optimization problem whose objective
function is shown in Eq. 110.

2

. . . K
min |Gf(]a)k)||G(]wk)| - Vwy (110)
kllo
10’ :
— G, (jw)|
- - Klw
1G,(iw)G, (i)l

10°;
0
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5,
()
g 107"
'c
(=]
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s
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Figure 5.14. Loop transfer function obtained with asymmetric notch filter and nominal

plant model
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Using the nominal non-parametric plant model calculated by taking average of the FRFs
obtained from the open-loop system identification tests, the coefficients of the
asymmetric notch filter are determined by solving the optimization problem in Eq. 110.
The loop transfer function generated when the notch filter obtained by the solution of this

optimization problem is added to the control loop is shown in Figure 5.14.

5.4.2. Linearly Parameterized Data-Driven H,, Controller Synthesis

In the second stage of the fixed-order H,, controller synthesis, the parameters of the Pl
controller that is used with the asymmetric notch filter are calculated. The structure of the

linearly parameterized H,, controller is shown in Eq. 111.

KGs.p) =79 = ke Kil[Gy(s) L] (111

According to the H,, controller synthesis problem in Eq. 107, the unknown controller
parameters in Eg. 111, K, and K, are calculated by solving the optimization problem

given below:
min|lp” p(Gw)G;(Gwy) — LaGo)ll; 5 i=1,..,4 & Vi (112)
under a finite number of linear constraints

Wp(jwi)[1 + LaGw)]l = R{L + La(—jw)][1 + Ly ok, p)1}
<0 ; Va)k

(113)

where L, jwy, p) = K(jwy, p) G, (jwy) and

W, (jw j2mn
Gn(wi) = G;(jwy) 1+Me a1 ; n=1.,q (114)

I3
cos (E)
The general structure of the flexible mechanical system’s plant model in Eq. 108 and the
controller in Eg. 111 contain integrators. Therefore, desired loop transfer function is

determined as:

S+ 2z

La(s) = K1 — (115)

A stable zero at (—z,0) is added to the transfer function of L;(s) to ensure Routh
Hurwitz stability criterion. The characteristic equation for the closed-loop system with
given loop transfer function in Eq. 115 is equals to: s? + K, s + K z. According to Routh

Hurwitz stability criterion, closed-loop system is stable when K; > 0 and z > 0. These
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parameters are chosen as K; = 50 and z = 30 according to the nominal performance
criteria and optimization problem defined in Eq. 112 is solved under linear constraints to
calculate controller parameters. Calculated controller parameters are shown in Table 5.2.

Table 5.2. Fixed-order model-based H,, controller parameters

Kp K; Rf wn,f/2n [Hz.] Ef

3.7803 59.1238 0.4325 61.4002 0.5

With calculated fixed-order data-driven H,, controller, y,,., value is calculated as

0.9172 and Nyquist diagram for obtained loop transfer function are shown in Figure 5.15.

According to Nyquist stability criterion, closed-loop system with fixed-order data-driven
H,, controller ensures nominal stability condition as shown in Figure 5.15. Moreover,
gain and phase margins of the closed-loop system are calculated as 8.73 dB and 38.5°
respectively. Moreover, the y,,q. = 0.9172 value indicates that both nominal stability
condition and actuator constraint are satisfied for the four non-parametric models with

the obtained fixed-order data-driven H,, controller.
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Figure 5.15. Nominal stability condition for closed-loop system with fixed-order data-

driven H,, controller
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For the nominal non-parametric model, magnitude of |S| and |KS| are shown in Figure
5.16 and Figure 5.17, respectively. As shown in Figure 5.16, the nominal sensitivity
function approaches the desired sensitivity function which is defined in Eq. 116 and the
magnitude of |S| stays below the magnitude of |W; !|. Therefore, nominal performance
condition which is defined in Eq. 38 is satisfied by the fixed-order data-driven H,

controller.

SZ

1+L, s+Ks+K,z

Sa(s) = (116)

As shown in Figure 5.17, magnitude of |KS| stays below the maximum motor torque
limit. Therefore, actuator constraint which is defined by the weighting function W,,(jw)

is also fulfilled.
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Figure 5.16. Nominal performance condition for closed-loop system with fixed-order

data-driven H,, controller
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Figure 5.17. Actuator constraint for-closed-loop system with fixed-order data-driven Hy,

controller

5.5. Comparison of Controllers in Frequency Domain

In this chapter, three different H,, controller synthesis method are performed to design
the speed controller of the traverse axis of the stabilized platform. The obtained frequency
domain results for the closed-loop systems with these three controllers are summarized
in Table 5.3.

Comparison of frequency response of the closed-loop transfer functions are shown in
Figure 5.18, Figure 5.19, and Figure 5.20. In these figures, closed-loop transfer functions

are obtained by using nominal non-parametric model.

According to Figure 5.18, in the low frequency region in between 1 Hz and 5 Hz, full-
order model-based H,, controller in Design 2 has the worst disturbance rejection and
reference tracking performances. On the other hand, in the high frequency region,
performances of the controllers are seen to be similar. Although all four controllers satisfy
robust stability condition which is defined by multiplicative uncertainty weighting
function W, (jw) as shown in Figure 5.19, robust stability margin of closed-loop system
which is obtained with full-order model-based H,, controller in Design 1 is low in the

high frequency region. Similarly, actuator constraint is fulfilled by the designed H,,
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controllers as shown in Figure 5.20, however, in the high frequency region the magnitudes
of the closed-loop transfer function |K(jw)S(jw)| obtained with the full-order model-

based H,, controllers is close to maximum motor torque limit.

Table 5.3. Obtained frequency domain results for designed controllers

GM PM
Order NS | NP | RS | RP Y

[@B] | [°]

Full-Order Model-Based H,
Controller (Design 1)

13 945 | 488 | v | v | v | ¥ [0.7245

Full-Order Model-Based H,,
Controller (Design 2)

13 132 | 586 | v | v | Y | YV | 05073

Fixed-Order Model-Based

H, Controller

3 833 | 371 | v | x | v | x [1.0822

Fixed-Order Data-Driven
3 8.73 385 | vV | v | Vv | YV 09173
H, Controller
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Figure 5.18. Comparison of sensitivity functions
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Complementary Sensitivity Functions
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Figure 5.19. Comparison of complementary sensitivity functions
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Figure 5.20. Comparison of closed-loop transfer functions related to actuator constraint
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6. IMPLEMENTATION OF THE H,, CONTROLLERS AND
EXPERIMENTAL RESULTS

In this chapter, discussion about the implementation of the designed H,, controllers are
presented. First of all, since the full-order model-based H,, controllers have high order,
reduced-order model-based H,, controllers are calculated by using balanced truncation
method. Then, discretization of the designed controllers is performed to implement these
controllers in real-time tests. Finally, the experimental results of reference tracking and

disturbance rejection tests are presented.

6.1. Implementation

In this section, controller order reduction is discussed first. Then, discretization method

of the controllers is presented.

6.1.1. Order Reduction for Full-Order Model-Based H,, Controller

The full-order model-based H, controller design method discussed in Chapter 3
generally results with high order complex controllers. For instance, in this thesis study,
the order of above mentioned controllers is equal to 13. Because of the process cost and
reliability issues, the lower order controllers are always preferred. Therefore, controller
reduction technique which is named as balanced truncation method [60] is performed to

reduce the order of the controllers.

In balanced truncation method, the main objective is to calculate reduced-order controller
which keeps the important dynamics of the original full-order controller and the cost

function is defined in Eq. 117
”K - Kred”oo (117)

where K,..; represents the reduced-order controller. In this thesis study, the balanced
realization of the full-order model-based H,, controller is performed by using “balancmr”
function in MATLAB Robust Control Toolbox. This function computes the balanced
realization of the controller via square root method and this method guarantees that the

error between the two controllers satisfies the following condition [61]:

n
IK = Krealls <2 ) 0 (118)

i=r+1
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where o; is the i Hankel singular value of the controller and r is the order of the reduced-

order controller. In this model, one should select r such that g, > 0, .
6.1.1.1 Reduced-Order Controller for Design 1

To determine the order of the reduced-order model-based H,, controller, Hankel singular

values of the full-order controller in Design 1 are calculated as shown in Figure 6.1.

Hankel Singular Values of the Controller

257

N

Singular Values (ai)
. @

0.5¢

1 2 3 4 5 6 7 8 9 1011 12 13
Number of States

Figure 6.1. Hankel singular values of full-order model-based H,, controllers (Design 1)

According to the Figure 6.1, order of the reduced-order model-based H,, controllers is
selected as 11 and the last two states are truncated. The frequency response of the full-
order and reduced-order controllers are shown in Figure 6.2. According to Figure 6.2,

frequency responses of these two controllers are similar.

Stability and performance conditions for the obtained closed-loop system are shown in
Figure 6.3 and Figure 6.4. According to Nyquist stability criterion, closed-loop system
with reduced-order model-based H,, controller ensures nominal stability condition as
shown in Figure 6.3. Moreover, gain and phase margins of the closed-loop system are
calculated as 9.52 dB and 44.6° respectively. On the other hand, Figure 6.4 shows that
nominal performance, robust stability, and robust performance conditions which are
defined in Eq. 38, EqQ. 39, and Eq. 40 are satisfied.
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Figure 6.4. Nominal performance, robust stability, and robust performance conditions for

closed-loop system with reduced-order model-based H,, controller (Design 1)
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Figure 6.5. Actuator constraint for closed-loop system with reduced-order model-based

H,, controller (Design 1)
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As shown in Figure 6.5, magnitude of |KS| stays below the maximum motor torque limit.
Therefore, actuator constraint which is defined by the weighting function W,,(jw) is also
fulfilled.

6.1.1.2 Reduced-Order Controller for Design 2

For order reduction, similar procedure as given in previous section is performed for the
full-order model-based H, controller in Design 2. Hankel singular values of this

controller are shown in Figure 6.6.

Hankel Singular Values of the Controller
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Figure 6.6. Hankel singular values of full-order model-based H,, controllers (Design 2)

According to the Figure 6.6, order of the reduced-order model-based H,, controllers is
selected as 9 and the last four states are truncated. The frequency response of the full-

order and reduced-order controllers are shown in Figure 6.7.

Stability and performance conditions for the obtained closed-loop system are shown in
Figure 6.8 and Figure 6.9. Although reduced-order controller is slightly different than
full-order controller according to the frequency responses of these two controllers in
Figure 6.7, stability and performance conditions are fulfilled by the closed-loop system

obtained with reduced-order controller as shown in Figure 6.8 and Figure 6.9.
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based H,, controller (Design 2)
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Figure 6.9. Nominal performance, robust stability, and robust performance conditions for

closed-loop system with reduced-order model-based H,, controller (Design 2)
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Figure 6.10. Actuator constraint for closed-loop system with reduced-order model-based

H,, controller (Design 2)
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The gain and phase margins of the closed-loop system are calculated as 8.63 dB and
56.2° respectively. As shown in Figure 6.10, magnitude of |KS| stays below the
maximum motor torque limit. Therefore, actuator constraint which is defined by the

weighting function W, (jw) is also satisfied.

6.1.2. Discretization of the Controllers with Tustin Approximation

To discretize the continuous H,, controllers, a common discretization technique called as
Tustin or bilinear approximation is used in this thesis study. In this approximation
technique, the discretization K;(z) of a continuous controller K (s) is:

_22—1
CToz+1

K;(z) =K(s) ; s (119)

In this thesis study, discretization of the continuous controllers is performed by using
“c2d” function in MATLAB Control System Toolbox.

6.2. Experimental Results

In this section, time domain performances of the H,, controllers are presented. The
reference tracking and stabilization performances of the synthesized data-driven and

model-based H,, controllers have been measured by real-time tests.

The square wave responses of the closed-loop systems are measured to determine
reference tracking performances of the designed controllers. Meanwhile, the stabilization
performances of the synthesized controllers have been examined by real-time tests with
disturbance input. A motion simulator- a Stewart platform- is used to create external
disturbance input. The change of traverse axis position of the stabilized platform under
the disturbance input is calculated to examine stabilization performances of the designed

controllers.

6.2.1. Reduced-Order Model-Based H,, Controller

Although two different reduced-order model-based H,, controllers were calculated in
previous section and were shown to theoretically satisfy stability and performance
conditions, real-time tests with reduced-order model-based H,, controller in Design 1

resulted with unstable response. Possible reasons of this situation is listed below:
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The one of the possible reason is considered as the implementation problems. As
discussed in Chapter 1, a high order controller may lead to implementation problems
in real-time systems due to its limited processing capability.

Another possible reason is considered as the spillover phenomena discussed in
Chapter 1. The frequency response function of the stabilized platform was obtained
up to a certain frequency level. Also, to reduce the complexity of the model-based
controller design procedure, the order of the plant model was not selected as too high.
Therefore, reduced-order model-based H,, controller in Design 1 may produce a
signal that may excite the high frequency modes which are not modeled. Then, the
unmodeled dynamics of the system may be excited. The responses in the high
frequency band used in the feedback loop of the control systems may cause the
unstable response.

Lastly, pole-zero flipping phenomena discussed in Chapter 1 may be another possible
reason of the unstable response. In full-order model-based H,, controller synthesis
problems, pole-zero cancellation between plant and controller generally occurs [26].
Then, pole-zero flipping may occur due to the modelling error and it may lead to

unstable closed-loop system.

In this section, experimental results obtained with reduced-order model-based H,,

controller in Design 2 are presented. The experimental reference tracking and

stabilization performances of the reduced-order model-based H,, controller are shown in

Figure 6.11 and Figure 6.12, respectively.
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Figure 6.11. Reference tracking performance of the reduced-order model-based H,,

controller

Axis Angular Speed undeeristurbance Input
0.5 | | ‘ | | | |

Angular Speed [deg/s]

Time [s]
Axis Position under Disturbance Input

Position [mrad]

Time [s]

Figure 6.12. Stabilization performance of the reduced-order model-based H,, controller

6.2.2. Fixed-Order Model-Based H ., Controller

The experimental reference tracking and stabilization performances of the fixed-order

model-based H,, controller are shown in Figure 6.13 and Figure 6.14, respectively.
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Figure 6.14. Stabilization performance of the fixed-order model-based H,, controller

6.2.3. Fixed-Order Data-Driven H,, Controller

The experimental reference tracking and stabilization performances of the fixed-order

data-driven H,, controller are shown in Figure 6.15 and Figure 6.16, respectively.
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Figure 6.16. Stabilization performance of the fixed-order data-driven H,, controller
6.2.4. Comparison of the Controllers in Time Domain

In this section, reference tracking and stabilization performances of three different H,
controller are analyzed. Comparison of the step responses of the closed-loop systems with

different H,, controllers is shown in Figure 6.17. Axis angular velocity of the stabilized
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platform under disturbance input is shown in Figure 6.18. Reference tracking and

stabilization performances of the H,, controllers are summarized in Table 6.1.

According to the Figure 6.17 and Table 6.1, although reduced-order model-based H,,
controller provided step response with lower maximum overshoot rise time of the closed-
loop system obtained with this controller is slightly higher than fixed-order controllers.
Response of closed-loop system obtained with fixed-order data-driven H,, controller has
the highest maximum percent overshoot and its settling time is slightly higher than the

other responses.

In stabilization performance tests, disturbance input at 0.2 Hz. is applied to the system. A
motion simulator- a Stewart platform- was used to create external disturbance input.
Then, standard deviation of traverse axis position of the stabilized platform is calculated
to compare performances of the controllers. At low frequencies, reduced-order model-
based H,, controller has the worst performance according to the theoretical results.
Experimental results also show that the full-order model-based H,, controller in Design
2 has the lowest disturbance rejection performance. For the applied disturbance input at
specific frequency, fixed-order model-based H,, controller has the best disturbance

rejection performance.

Table 6.1. Time domain performances of designed H,, controllers for “System A”

] ) Max. Standard Deviation
Rise Settling _ -
] ) Overshoot of Axis Position
Time [s] | Time [s]
[%] [mrad]
Reduced-Order
Model-Based H,, 0.0624 0.1847 27.7770 0.2098
Controller
Fixed-Order Model-
0.0588 0.1796 31.9740 0.1295
Based H,, Controller
Fixed-Order Data-
Driven H, 0.0561 0.1864 35.931 0.1573
Controller
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Figure 6.18. Comparison of disturbance rejection performances of closed-loop systems
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7. CONCLUSION AND FUTURE WORK

7.1. Summary

In this thesis, model-based and data-driven H,, controller design methods are used to
synthesize robust controllers which are integrated to the speed control loop of stabilized

platform used in defense industry.

After introducing the LOS stabilization problem for stabilized platforms and some
challenges in this problem, robust control theory is briefly reviewed. The general structure
of the feedback control loop, closed-loop transfer functions, and design objectives of the
control problem are presented. After defining different representations of uncertainty,
nominal stability, nominal performance, robust stability, and robust performance

conditions are derived for multiplicative uncertainty case.

After introducing the experimental test setup, system identification method is discussed.
First, linearized non-parametric model set is identified by using open-loop system
identification tests input/output data. To obtain the non-parametric model set, discrete
Fourier transformation based method is performed and non-parametric model set of the
stabilized platform is identified in frequency domain. Then, by using mean frequency
response function of the system, parametric model of the plant is derived in Laplace
domain. In the final step of the system identification procedure, multiplicative uncertainty

region between the non-parametric model set and parametric model is calculated.

Firstly, two different full-order model-based H,, controllers are designed in S/KS/T
mixed-sensitivity framework, with different performance weighting functions. Next,
fixed-order model-based controller is designed by using non-smooth optimization
technique. To obtain the fixed-order controller, structure of the controller is
predetermined as a Pl-controller enhanced with asymmetric notch filter. Finally, another
fixed-order controller with the same structure is designed by data-driven method. In this
method, a novel two-stage approach is performed to calculate the unknown parameters of
the controller. Next, comparison of frequency domain performances of the designed
controllers is presented by obtaining sensitivity and complementary sensitivity functions

for closed-loop systems.

After introducing the order reduction technique for full-order model-based H,,

controllers, designed controllers are discretized and implemented to the real system.
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Finally, reference tracking and disturbance rejection performances of the controllers are
measured by real-time tests.

According to the theoretical results for frequency domain, full-order model-based H,,
controller in Design 1 has the highest disturbance rejection performance in low frequency
region. On the other hand, the magnitude of the sensitivity function of closed-loop system
obtained with full-order model-based H,, controller in Design 2 is larger than the other
closed-loop systems up to 5 Hz. In mid frequency region which is in between 5 Hz. and
20 Hz., fixed-order controllers have the worst disturbance rejection performance. In high
frequency region, disturbance rejection performances of the closed-loop systems are seen
to be similar. Although in mid frequency region, noise attenuation performance and
robust stability margin of the fixed-order controllers are seen to be lower than the full-
order controllers, in the high frequency region, fixed-order controllers are the best in
terms of these metrics. According to the actuator constraints, closed-loop system obtained
with full-order model-based H,, controller in Design 1 is produced control input which is

close to the maximum motor torque limit in high frequency region.

Reference tracking performances of the obtained closed-loop systems are determined
experimentally by measuring the square wave responses of the closed-loop systems.
According to the real-time reference tracking tests, although the maximum percent
overshoot of the response which is obtained with full-order model-based H,, controller is
the lowest, rise time of the closed-loop system obtained with this controller is slightly
higher than the fixed-order controllers. Response of the closed-loop system obtained with
fixed-order data-driven H,, controller has the highest maximum percent overshoot and its

settling time is slightly higher than the other responses.

To measure the disturbance rejection performances of the designed controllers,
disturbance input at specific frequency is applied to the system. A motion simulator- a
Stewart platform- was used to create external disturbance input. Then, standard deviation
of traverse axis position of the stabilized platform is calculated to compare performances
of the controllers. According to tests real-time test results, full-order model-based H,,
controller has the lowest disturbance rejection performance. For the applied disturbance
input at specific frequency, fixed-order model-based H, controller has the best

disturbance rejection performance.
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7.2. Future Work

In this thesis, control design methods are applied to a SISO system. As the most essential
future study, one may consider the application of the proposed model-based and data-

driven H,, robust controller design methods on MIMO systems.

The main non-linear effect on the system is considered as the friction and the linearized
non-parametric and parametric models are obtained by eliminating this effect. However,
there may also be another non-linear effects on the system arising from backlash or
unbalance. Another future work may be to find a method for identification of these effects

on the system.

In real-time reference tracking and disturbance rejection tests, angular position of the
elevation axis is fixed its natural position. Another future work may be to analyze the

effect of the angular position of the elevation axis on controller performances.
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APPENDICES

APPENDIX A — Experimental Results for “System B”

Controller design methods described in Chapter 3 are performed for another military
stabilized platform named as “System B”. The reference tracking and stabilization
performances of the synthesized data-driven and model-based H,, controllers have been

measured by real-time tests.

Comparison of the step responses of the closed-loop systems with different H,
controllers is shown in Figure A.1. Axis angular velocity of the stabilized platform under
disturbance input is shown in Figure A.2. Reference tracking and stabilization

performances of the H,, controllers are summarized in Table A.1.

According to the real-time reference tracking tests, speed of the response which is
obtained with full-order model-based H,, controller is the lowest. Although the rise time
of the closed-loop system obtained with fixed-order data-driven H,, controller is the
lowest, its maximum percent overshoot and settling time characteristics are worse than
other closed-loop systems. According to the real-time reference tracking and disturbance

rejection tests, fixed-order model-based H,, controller has the best performance.

Table A.1. Time domain performances of designed H,, controllers for “System B”

_ _ Max. Standard Deviation
Rise Settling ) .
] ] Overshoot of Axis Position
Time [s] | Time [s]
[%] [mrad]
Reduced-Order
Model-Based H,, 0.0425 0.1621 4.156 0.1452
Controller
Fixed-Order Model-
0.0260 0.0845 2.6360 0.0941
Based H,, Controller
Fixed-Order Data-
Driven H, 0.0256 0.1292 7.142 0.1228
Controller

99



Step Response

8
6 L 4
L _'.Id Y
— i f
O o4 :
o))
[}
=
o 2 1
[}
[}
o
~ O 1
)
=]
£ .2
g
- - ‘Reference
-4+ ——Reduced-Order MBC |-
J --------- Fixed-Order MBC
--—-Fixed-Order DDC
_6 Il L 1 1

0 01 02 03 04 05 0.6 0.7 08 09 1
Time [s]

Figure A.1. Comparison of reference tracking performances of closed-loop systems with

different H,, controllers for “System B”
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Figure A.2. Comparison of disturbance rejection performances of closed-loop systems

with different H,, controllers for “System B”
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