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Abstract

Currently, event-related potential (ERP) signals are analysed in the time domain (ERP technique) or in the frequency domain (Fourier analysis
and variants). In techniques of time-domain and frequency-domain analysis (short-time Fourier transform, wavelet transform) assumptions
concerning linearity, stationarity, and templates are made about the brain signals. In the time—frequency component analyser (TFCA), the
assumption is that the signal has one or more components with non-overlapping supports in the time—frequency plane. In this study, the
TFCA technique was applied to ERPs. TFCA determined and extracted the oscillatory components from the signal and, simultaneously,
localized them in the time—frequency plane with high resolution and negligible cross-term contamination. The results obtained by means of
TFCA were compared with those obtained by means of other commonly used techniques of ERP analysis, such as bilinear time—frequency
distributions and wavelet analysis. It is suggested that TFCA may serve as an appropriate tool for capturing the localized ERP components in
the time—frequency domain and for studying the intricate, frequency-based dynamics of the human brain.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction the frequency components is of high resolution and has neg-
ligible cross-term contamination. In addition, a comparison
The present paper introduces a technique of signal analy-of this technique with existing techniques of time—frequency
sis in the time—frequency plane. The technique characterizesanalysis used for electrical signals of the brain is presented.
the oscillatory components of the complex neuroelectric  The brain emits temporally-ordered electrical signals,
responses of the brain by identifying and extracting the max- which can be recorded from the scalp of animals or hu-
imal energies of the oscillatory components and localizing mans. These electrical fluctuations can be measured as the
them in the time—frequency plane. It simultaneously displays event-related potentials (ERPs), which are the time-domain
all significant components in the time—frequency plane and responses to external or internal stimiigton et al., 1974;
thus presents them in their entirety. The time localization of Picton, 1988. The basic technique for ERP waveform anal-
ysis is averaging. This technique is used for extracting the
components of the evoked ERP from the superimposed, ran-
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1929; Adrian, 1942 Recently, the analysis of the oscilla- domains, time—frequency signal processing is the natural
tory responses of the brain to external or internal stimuli, tool for the analysis of non-stationary signals with local-
the event-related oscillations (EROs), has gained much ac-ized time—frequency supports. Time—frequency distributions
ceptance. Another approach to brain’s neuroelectricity has (TFDs) are two-dimensional functions that assign the en-
thus become its analysis in the frequency domain. Intensive ergy content of signals to points in the time—frequency plane
research shows that the oscillations at various frequencies(Cohen, 1989 The performance of a TFD is related to its
are valid indices of the brain’s information processing opera- accuracy in describing the signal’s energy content in the
tions (for review, se®agr, 1998, 1999; Porjesz et al., 2002; time—frequency plane, keeping spurious terms negligible.
Kamarajan et al., 2004 Composite (multi-component) signals, such as biological,
The time evolution of the amplitudes, i.e. the ERP acoustic, seismic, speech, radar and sonar signals, whose
waveform alone cannot provide the time localization components have compact time—frequency supports form an
of the frequency components. Frequency-domain anal-importantapplication area for time—frequency signal analysis
ysis involves the decomposition of ERP into its con- (Cohen, 199%
stituent oscillations (for a review, se®ag;r, 1980, Awidely used approximation to time—frequency represen-
1999. Growing amount of research shows that the compound tation of brain signals is digital filtering (DF). In this method,
ERP and the ERP components are determined by the superindependent filters are consecutively applied to ERP. Filter
position of oscillations, called event-related oscillations, in limits in DF may be obtained in a response-adaptive way
various frequency range84gar, 1980, 1998; Bas et al., such that the low and high cut-off frequencies of the filters
2000; Baar and Ungan, 19j)3Karakaset al. (2000a, 2000b)  are determined from the frequency range of the resonant se-
have demonstrated that, for a series of cognitive paradigms,lectivities in the corresponding AFCC6ok 11l and Miller,
the amplitudes of the ERP components are determined by1992; Farwell et al., 1993; Bag 198(. DF thus produces
a specific combination and phase relationship of oscillatory oscillatory components of varying amplitudes within the
components, specifically in the delta and theta ranges. Theempirically or theoretically determined filter limits. DF is
importance of phase relationship of multiple oscillatory com- not well suited to discern the time evolution of an oscil-
ponents in the production of the average waveform has beenlation in a given frequency range in the time—frequency
demonstrated in the influential study akeig et al. (2002) domain.
This study showed that the average event-related potentialisa Another commonly used technique is the wavelet analy-
combination of phase resetting of ongoing EEG activity with sis (WA) (Samar et al., 1999This time—frequency approach
concurrent energy increases. It thus emphasized the imporis a technique that decomposes the signal into a set of basis
tance of oscillatory components and stimulus-induced phasefunctions, called wavelets. If the components of ERP can be
resetting. represented by using distinct wavelet basis components, then
One of the widely used methods for demonstrating the wavelet decomposition is successful on the desired ERP.
oscillatory responses of the brain is the transient (evoked) re-When different sizes of wavelets are used, WA may provide
sponse frequency characteristics method (TRFC). In TRFC, a better time-scale localization than DF. Results obtained by
the amplitude—frequency characteristics are computed by theWA thus depend on the chosen wavelet prototype. Quadratic
application of one-sided Fourier transform to the transient B-spline wavelet and orthogonal cubic spline wavelet have
response folodovnikov, 1960; Parvin et al., 1980; Bas proved useful in demonstrating the frequency components in
1980, 1998; Jervis et al., 1983; Brandt and Jansen, 1991;ERP signalsBagar, 1998; Demiralp et al., 1998, 1999, 2001,
Roschke et al., 1995; Kolev and Yordanova, 1p%ince the Bagar et al., 1999; Yordonova et al., 200®ther approaches
amplitude—frequency characteristics are not computed by thesuch as continuous wavelet transform with matching pursuits
successive application of different frequencies, rapid transi- and wavelet packet models use multiple wavelet prototypes
tions that occur in the brain signal do not present a problem that are selected from a predefined set. The modifications by
for the TRFC method. The peaks in the amplitude—frequency Rosso et al. (2001have made it possible to calculate the
characteristics (AFC) reveal the resonant frequencies of thewavelet entropy and the relative wavelet energy of the differ-
system: its excitability and also its response susceptibility ent frequency components. Thus, WA provides the time lo-
(Bagar, 1998; Yordanova and Kolev, 1998 he AFC graph calization of the frequency components. The efficiency of the
thus demonstrates amplitude variations of frequency selec-localization, however, depends on the suitability of the cho-
tivities. However, it cannot provide the time localization of sen wavelet basis to the complex and highly non-stationary
the components. The technique also assumes that the systefBRPs.
studied is linear. Owing to these, the distinctly appearing  Short-time Fourier transform (STFT) may be a natural
peaks in TRFC are used in the literature to obtain only a choice when analysing the time—frequency characteristics of
global description of the tuning frequencies of the system the ERP signal@ohen, 1989 However, STFT fails to re-
(for review, seeBagar, 1998, 1999 solve those ERP components that are closely localized in the
Since the oscillatory and non-stationary signal compo- time—frequency plane. To increase the resolution of the ERP
nents whose superposition form the ERP waveform are components in the time—frequency plane, the Wigner distri-
concurrently localized in both the time and frequency bution can be usedCohen, 1989 The Wigner distribution
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W(t, f) of a signalx(t) is defined by the following integral of time—frequency distributiongQohen, 1981 In this class,
the time—frequency distributions of a sigmé) are given by
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Although the use of Wigner distribution significantly im- (2)
proves the resolution of the individual ERP components, the

resultant time—frequency description is heavily cluttered by (Cohen, 1989, 1995and A(v, 7) is the symmetric ambi
3 l x\V, -

the cross-terms of the distribution. The cross-terms are oscil- ity function (AF) which is defined as the two-di ional
latory artefacts in the time—frequency plane. These artefactsd4!y func |0r_1( ) whichiis defined as he two-dimensiona
nverse Fourier transform (FT) of the Wigner distribution

may interfere with the auto-components and decrease the
interpretability of the Wigner distribution. The cross-terms Y
that occur due to the interaction of different signal compo- Ax(v, 1) = /

nents (i.e. auto-components) in a multi-component signal are -~
calledouter interference (cross) terms, and the cross-terms _ / X (t + Z) e (t _ Z) d2mt g 3)
that occur due to the interaction of a single-signal component 2

with itself are callednnerinterference (cross) termbif. 1)

where «(v, 1) is called the kernel of the transformation
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(Hlawatsch and Flandrin, 199 Because of the existence of Traditionally, the low-pass smoothing kerrél, 7) is de-
cross-terms, the Wigner distribution of ERPs cannot provide signed to let pass the auto-terms that are centered at the ori-
the desired result. gin of the AF plane, and to suppress the cross-terms that are

To overcome cross-term cluttering in the Wigner located away from the origin. The properties of the result-
distribution-based analysis of ERP, a short-time analysis tech-ing time—frequency distribution are thus closely related to
nique has recently been proposed that applies adaptive filterdhose of the chosen kernel (for a review of some of this type
on the Wigner distributionJones and Baraniuk, 1995;glak of time—frequency distributions witlixed kernelsseePage,
et al., 2002, in pregsTo emphasize the high frequency fea- 1952; Mergenau and Hill, 1961; Choi and Williams, 1989;
tures that have low energy, ERP was decomposed into sixCohen, 1980 Usually, these distributions perform well only
sub-bands. Using short time, adaptively filtered Wigner dis- for a limited class of signals whose auto-terms in the AF
tributions, time—frequency analysis was made on each sub-plane are located inside the pass-band region of the kernel
band. Finally, using a frequency weighting to provide the «(v, 7). For other signals, they offer a trade-off between good
overall time—frequency representation, the time—frequency cross-term suppression and high auto-term concentration.
distributions corresponding to each of the six sub-band sig- To overcome the shortcomings of the TFDs with fixed
nals were merged. Asin all STFT applications, there is a pay- kernels, TFDs with signal-dependent kernels were proposed
off between time and frequency localization. The narrower (Baraniuk and Jones, 1993; Czerwinski and Jones,)1 985
the chosen time interval, the better the temporal resolution instance, the well-known optimal radially Gaussian kernel
but the poorer the frequency resolution, and vice versa. (ORGK) design adaptively chooses the kerréb, 1) to

Since cross-terms in the Wigner distribution are large- cover the auto-terms and to keep cross-terms out of its pass-
amplitude oscillations, another approach to suppress themband Baraniuk and Jones, 1993Signal-dependent TFDs
is to smooth the Wigner distribution. In a unified framework, that adapt the pass-band of the kernel to the location of the
the distributions obtained by smoothing the Wigner distribu- auto-terms in the AF domain usually offer better cross-term
tion were studied under the name of Cohen'’s bilinear class suppression and higher resolution than the TFDs with fixed
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Fig. 1. Wigner distributions of some artificially generated signals. The dashed lines outline the support of the respective auto-componenisth@) Whe
time—frequency support of the signal is convex (a time—frequency sufpsrtalledconvexif for each pair of its points\; = (t, fi) andB; =(tj, fj)) in §

the connecting line segmeA{A; is also contained irg), the Wigner distribution has a very high auto-term concentration, and there is negligible cross-
term interference. (b) On the other hand, a non-convex auto-term support produces cross-terms, inner interference terms, in the time—frequepcy pla
Multi-component signals lead to outer interference terms that are due to the interaction between different auto-terms in the time—frequency plane.
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kernels. However, design of a single kernel for the entire interference terms) and within the component itself (inner
signal may lead to some compromises when analysinginterference terms), while preserving the time—frequency
multi-component signalsipnes and Baraniuk, 1995The localization of the auto-components. As ERPs have localized
adaptation of the kernel at each time to achieve optimal local time—frequency supports, the TFCA technique may be an
performance usually provides better TFDs at the expense ofappropriate tool for high-resolution ERP analysis. It may
significantly increased computational complexilpies and  provide both an accurate time domain identification and rep-
Baraniuk, 199% Nevertheless, the design of a single kernel resentation of the frequency components that constitute the
at each time instant may lead to similar compromises as ERP. TFCA can also extract individual signal components
in ORGK when there are signal components that overlap from noisy recordings.
in time. The aim of the present study has been to describe
This paper presents a new technique, TFCA, that pro- the TFCA technique, and to test its applicability to
vides a high-resolution time—frequency characterization of time—frequency analysis of ERP signals. The technique was
localized signal componentéi(ikan et al., 20030zdemir tested on a simulated signal and on ERPs that were obtained
and Arikan, 2000, 20010zdemir et al., 20010zdemir, under the active oddball (OB) paradig®utton et al., 1965
2003. The only assumption made about the components Since the ERP components and also the ERO components that
of the signal is that they have non-overlapping supports in form the OB waveform have been well establishBdgr-
the time—frequency plane. As explained in Sectibd.2 Eroglu et al., 1992; Polich and Kok, 1995; Karaketsal.,
this assumption on the signal components can be relaxed a2000a, 2000 ERP of OB is an appropriate signal for test-
well. Under the assumption of non-overlapping signal com- ing the utility of a signal analysis technique, and for demon-
ponents, the TFCA technique makes use of a componentstrating the advantages that the technique may possess over
adaptive time warping operation to transform analysed signal others currently used, and cited in the literature. The present
components with non-convex supports into ones with convex study compared the findings that were obtained with TFCA
supports. The warped signal components are extracted byto those obtained with the commonly used time—frequency
using a time—frequency domain incision algorithm and their technique, the Wigner analysis.
corresponding distributions are computed by using direction-
ally smoothed Wigner analysis. The idea is that, for signals
with convex supports Wigner distribution provides superior 2. Methods and materials
time—frequency resolution with negligible cross-term inter-
ference. Finally, by using an inverse warping transformation, 2.1. Subjects
the cross-term free distribution of the original, i.e. unwarped,
components are obtained. In TFCA, after a componentisex- The data were acquired from 20 young volunteering
tracted and its distribution is computed, that component is adults (18-29 years; 5 males and 15 females) who were
subtracted from the analysed signal and the same analysigecruited from the university student population. Subjects
is conducted on the residual signal until distributions for all were naive to electrophysiological studies. Only those
components are obtained. individuals who reported being free of neurological or
One of the contributions of this paper is introduction of psychiatric problems were accepted. Individuals who were,
warping transformation into time—frequency analysis of ERP at the time of testing, under medication that would have
signals. As detailed, the warping function is computed by affected cognitive processes or who stopped taking such
using short-time Fourier transformation, which provides a medication, were excluded. The hearing level of the potential
coarse but cross-term free distribution. Then, the support of subjects was assessed through computerized audiometric
the analysed signal component is isolated by using an imagetesting prior to the experimental procedures. Individuals
segmentation algorithm. After the orientation of the isolated with hearing deficits were not included in the study,
support is identified, time—frequency domain rotations and either.
translations (enabled by fractional Fourier transformation,
time shifts and frequency modulations, respectively) are uti- 2.2. Stimuli and paradigms
lized to obtain a support which has a positive and single-
valued spine Finally, the warping function corresponding The auditory stimuli had 10 ms r/f time, 50 ms duration
to estimated spine is computed by quadrature techniquesand were presented over the headphones at 65dB SPL. The
Hence, in TFCA, it is assumed that the signal components deviant stimuli i =30-33, 2000 Hz) occurred randomly with
of the brain have localized time—frequency supports whose a probability of about 0.20 within a series of standard stimuli
corresponding spines can be transformed into positive and(n=120-130, 1000 Hz) that were presented with a probabil-
single-valued spines by using time—frequency domain rota- ity of about 0.80. According to the procedures of the oddball
tions and translations. paradigm, participants had to mentally count the occurrence
In contrast to Wigner distribution and its smoothed ver- of deviant stimuli and to report them after the session had
sions, TFCA yields negligible cross-term cluttering between been terminated (for details of the methodology,lsarakas
the different components in the composite signal (outer et al., 2000a
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2.3. Electrophysiological procedures

Electrical activity of the brain, the prestimulus elec-
troencephalogram (EEG) and the poststimulus ERP, were
recorded in an electrically shielded, sound-proof chamber.
Recordings were taken from 15 recording sites (ref: linked
earlobes; ground: forehead) of the 10-20 system under
eyes-open condition. The present study reports findings
from the Fz recording site.

Bipolar recordings were made of electro-ocular and elec-
tromyographic activity for online rejection (of responses
whose amplitudes exceeded50uV) and offline rejec-
tion (through visual inspection) of artefacts. Rejection oc-
curred for epochs that contained gross muscular activity,
eye-movements or blinks. Electrical activity was amplified
and filtered with a bandpass between 0.16 and 70Hz (3dB
down, 12 dB/octave). It was recorded with a sampling rate
of 500Hz and a total recording time of 2048 ms, 1024 ms

of which served as the prestimulus baseline. EEG-ERP data

acquisition, analysis, and storage were achieved by a com-
mercial system (Brain Data 2.92). A notch filter (50 Hz) was
not activated.

2.4. Description of TFCA: procedures and applications

In this section, TFCA is presented in detail. In Section
2.4.1, some preliminaries on the fractional domain warp-
ing transformation are provided. Then, in Secti#.2, the
analysis of multi-component signals by TFCA is demon-
strated. Using simulated data, the performance of TFCA
is compared to several other techniques of time—frequency
analysis.

2.4.1. Time—frequency analysis of mono-component
signals by fractional domain warping

Time domain warping is especially useful in process-
ing frequency-modulated signalséda, 1980; Brown and
Rabiner, 1982; Wulich et al., 1990; Coates and Fitzgerald,
2000. A typical member of this class of signals is of the
form of x(t) = A(t)e?™¢(®), whereA(t) is the amplitude and
¢(t) is the phase in Hz. Ideally, the warping functiat),

for this signal should be chosen as the inverse of its phase,

c(t) =~ 1(fst), wherefs>0 is an arbitrary scaling constant.
With this choice, the warped function takes the following
form: x.(t) = A(¢(r))€?™/+, which is a sinusoidal function at
frequencyfs with envelopeA(z(t)). Consequently, the algo-
rithms designed to operate on sinusoidal signals can be uti-
lized on the warped signal, which has a narrow bat)).

Fractional Fourier transformation (FrFT) is a one-
parameter generalization of the ordinary Fourier transform.
The ath-order,x4(t), a € R, |a] <2 fractional Fourier trans-
form of a function is defined a®\(meida, 1993

xalt) = (Fox)(1) & / B ONO )
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where the kernel of the transformatiBg(t, t') is
Bu(t.1') = Ay exp(in(:? cotg — 21t cscg + 12 cot)),
exp(—jm sgn(sing)/4 + j¢/2) T
Ay = , =a—=. (5
¢ | sing|1/2 ¢ “2 ©)

From this definition, it follows that first-order FrFT is the or-
dinary Fourier transform and zeroth-order FrFT is the func-
tion itself. The definition of the FrFT is easily extended to
outside the interval{2, 2] by noting thaF* is the identity
operator for any integecand FrFT is additive in index, i.e.
{FaL{Fox}(r) = (FUtazx)().

Fractional domain warping is the generalization of the
time domain warping to fractional Fourier transform do-
mains Ozdemir et al., 2001 The warped fractional Fourier
transform of a signak(t) is obtained by replacing the time-
dependence of its FrFT by a warping functigt). Thus, if
X(t) is the time domain signal with theth-order FrETxa(t),
then the warped FrFT of the signal is given by

Xa, (1) = xa(£(2)), (6)

where¢(t) is the warping function associated witg(t).

In TFCA, high resolution distribution of signal compo-
nents with non-convex time—frequency suppdiig( 2b) is
obtained using adaptively chosen fractional domain warp-
ing transformations. For each analysed signal component,
the warping function is determined on the basis of the com-
ponent’s spine, defined as the centre of mass along the
time—frequency domain support of the signal component. To
compute the warping functiog(t), a single-valued spine is
needed. Ifthe support of the signal componé€t)tis as shown
in Fig. 2e, its spine is a multiple valued function of time. How-
ever, if the support is rotated as showrFig. 2, the spine
corresponding to the rotated support becomes a single val-
ued function of time and is identical with the instantaneous
frequency. The required time—frequency rotation can be per-
formed by the fractional Fourier transformatiofilfeida,
1994).

If the spine of the fractional Fourier transformed signal
Xa(t) shown inFig. X is given byyra(t), tj <t <ts, the inverse
of the warping function is computed &zZdemir and Arikan,
2000

t
r@=|[ v.)d', f<t<t,

fi (7
M) =0 4h n=r=n,
where fy, is the mean of the spine
I
foa = / va(t') dt' /(2 — ). 8)
5

With these equations, the warping functigit) becomes

£(t) = I~ (fy,(t = 1)), 9)

If the spiney4(t) is a strictly positive function of time[’(t)
defined in(7) is a monotonically increasing function of time.

L=t =I.
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Fig. 2. (a) A signak(t) and (b) its (0.75)th-order FrF&_o.75(t); (c) the Wigner distributions of(t) and (d)x—o.75)t); (€) the spines of(t) and (f)x—o.75t)
plotted on the support of their auto-term Wigner distributions. Although the spine in (e) is a multi-valued function of time, the spine correspbediotated
support becomes a single-valued function of time as shown in (f).

time—frequency representation of the signal in thh
fractional domain. Then, this fractional domain represen-
tation has to be rotated back in order to obtain the desired
time—frequency representation. The mathematical details of
these operations are given i@£demir and Arikan, 2000
The resultant TFD ofk(t) obtained by fractional domain
warping analysis is given iRig. 3b.

Therefore, its inverse given {®) exists and it is unique. Oth-
erwise, the frequency-modulated sign%(t) 2 x, ()2 is
used, wherés is chosen such that the spimé’ (D& va(t) +
8¢ of x&f (¢) is a strictly positive function of time. Hence, for
the clarity of the presentation, it will be assumed thaf) is
a strictly positive function of time. To illustrate this, the effect
of the warping operation on the simulated signdtig. 2a is
shown inFig. 3a. In this example, the warped signal (t) is
computed by using4) and (6)with a=—0.75 ands; =0. 2.4.2. Application of TFCA to the analysis of

After the warping operation, time—frequency support of multi-component signals
the signaka (1) is localized around the line segment (y,), In this section, the TFCA and its steps are demonstrated
ti <t < t, in the time—frequency plane. Thus, by using the on a three-component signgt) = Z?zls'(t), produced by
warping operation, the signal component with non-convex combining the three componentshig. 4a—c with the simu-
time—frequency support is transformed to a component with lated additive noiseuv(r) in Fig. 4d. The mean ratio of the
convex support in the time—frequency pla@z@demir and signal-to-noise power spectral densities was chosen to be
Arikan, 2000. 5dB. The noisy signai(r) = s(¢) + w(r) and its Wigner dis-

In order to determine the time—frequency representation tributionW(t, f) are shown irFig. 4e and f, respectively. The
of the mono-component signal, first, the Wigner distribution plot of the Wigner distribution clearly exhibits significant
of the warped signal is used to calculate a high-resolution cross-terms.
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Fig. 3. (a) The warped fractional Fourier transform of the signdtim 2a and (b) the time—frequency distributionx¢f) obtained by using the fractional
domain warping analysis.
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Fig. 4. The three-component signéf) shown in (e) is formed by combining the three synthetically generated components given in (a)—(c) with additive noise
shown in (d). The Wigner distributiov(t, f) of the composite signal is given in (f). The signal component in (a) that lies in the upper right part of (f) has a
non-convex—f support, and it suffers from inner interference terms. On the other hand, the component in (c) that lies close to center of (f) is completely masked
by the outer interference terms.

The analysis of multi-component signals by TFCA starts  In the second stage of TFCA, a component to be analysed
with estimating support of the signal in the time—frequency by TFCAischosen asthe componentwhere the outer interfer-
plane. To this end the short-time Fourier transform can ence term contamination is lower. In the presented example,
be utilized. The advantage in using STFT is that it does this component could be either of the two components lying
not produce cross-term interference, since it is linear, con- in the lower left part and upper right part of the plane,
trary to bilinear time—frequency distributions. On the other respectively, as shown Fig. 5b. In order to present all steps
hand, STFT has a lower resolution compared to bilinear of TFCA in detail, we chose, in this example, the first com-
time—frequency distributions. However, since TFCA uses ponentsl(t) to be analysed by TFCA as the one that lay in
STFT only to obtain &rudeestimate of the signal’s support the upper right part of the-f plane. It had a non-convexf
in the time—frequency plane, it may be an acceptable first support.
approach Durak and Arikan, 2003 In Fig. 5a, the short- Having thus chosen the first component, the appropri-
time Fourier transform, STK{t, f) of the multi-component  ate FrFT of ordela; was chosen. As discussed in Section
signalx(t) is shown wheré(r) = e~ was used as the win-  2.4.1 a single valued spine is needed to transform the non-
dow function in computing STFT. Although STFT has lower convex support into a convex one. Thus, the orjeof the
resolution then the Wigner distribution, the supports of all FrFT is chosen such that aftayr/2 radians rotation of the
components can be detected when the watershed segmentdime—frequency support oft) in the clock-wise direction,
tion algorithm is used\incent and Soille, 199las shownin  the spine of the analysed component becomes a single val-
Fig. So. ued function of time. In the exampla, = —0.75 was chosen.
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Fig. 5. (a) The short-time Fourier transformxgf) in Fig. 4e computed by using the window functialy) = e*”'z; (b) supports of the components in STFT
computed by using the watershed segmentation algoritfincént and Soille, 1991 (c) the indicator functionM,, (¢, f), ag =—0.75, of the support of the
componens; (t) in the )th fractional domain; (d) the computed spine and the actual instantaneous frequency of the commettie @;)th fractional
domain; (e) the warped FrFd,, .,)(¢) of the signal irFig. 4e; and (f) its short-time Fourier transform STXIE,LQ (¢, ). The horizontal and vertical lines in (f)
outline the supports of the frequency and time domain incision masks, respectively, which are utilized by TFCA to extract the signal compoluesttéuht is
inside the dashed rectangular box.

Actually, anya; in the interval of [-0.50,—1.00] could have is subtracted from the signal and TFCA technique proceeds
reliably been used for this purpose. Note thatin the case of sig-as detailed before for non-overlapping signal components. A
nal components with overlapping time—frequency supports, detailed study and automatization of such an approach shall
such as two crossing chirp components with one increasingbe the subject for future work.

in frequency and the other decreasing in frequency, itmaynot  In the next stage of the TFCA, the sping, (r) of the

be possible to obtain a single-valued spine. In such a casefirst componenril(t) in the domain of the fractional Fourier
first the overlapping signal components should be extractedtransforms is estimated. Since after the rotation, the spine
from the composite signal. To this purpose, the techniques of sgl(t) becomes a single valued function of time, an in-
such as those iMcHale and Boudreaux-Bartels (199%)d stantaneous frequency estimation algoritiBodgshash and
Hlawatsch et al. (1994Wwhich can synthesize signals from O’Shea, 1993; Cohen, 1995; Katkovnik and Stankovic, 1998;
partially known, i.e. non-overlapping part of Wigner domain Baraniuk et al., 2001; Kwok and Jones, 2D68n be used to
information, can be used. Inthese techniques, the optimal sig-determine the spine. In this paper, the spine is obtained as
nal that best fits to a given Wigner distribution with don't care

regions is obtained. Once, such a signal extraction technique

is used, the identified signal component can be synthesized foo FISTFT., (1, )M, (t, )12df
even if its Wigner distribution cannot be specified over the v, (1) = —=> @z il ,
region of overlap. Then, the synthesized signal component ST ISTF T, (& )My (1, f)I2df

(10
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where the magnitude squared STFT is called spectrogram, After extraction of the first component, the same analysis
which is a smoothed bilinearf distribution Cohen, 1995 is repeated on the residual sigma(r) = x(r) — 51(¢) in or-
andthe masWk/,, (¢, f)isthe indicator function of the support  der to estimate the second component and its corresponding
of sil(t), which was obtained automatically using watershed TFD. Continuing in this manner, all components of the com-
segmentation algorithmV{ncent and Soille, 1991 In the posite signal will eventually be estimated.Hig. 6d and g,
presented example, the estimate of the spiné), computed the estimates of the remaining signal components are plot-
by using the indicator functiotd,, (¢, f) in Fig. 5c, was ob- ted superimposed by the actual components constitufthg
tained as shown iRig. &d. In this example, the corresponding from Fig. 4b and c, respectively. As the plots show, TFCA
root mean square estimation error for the spine was 0.102 Hz.provided quite accurate estimates of the actual signal com-
Then, the warped FrFT im, )(#) Fig. 5¢ was computed.  ponents in this simulation example.
In order to determine the support of the first warped compo-  Before comparing the performance of TFCA with some
nent, the short-time Fourier transform STIE .)(¢, f) of well-known time—frequency analysis techniques, it should be
the warped signal, was calculatded. 5f). The STFT com- noted that, if the identified support of the warped signal com-
ponent with convex support corresponds to the first warped ponent is free of outer interference terms, the TFCA can de-
component. Note thatin the computation of the STFT, a Gaus-termine the time—frequency distribution of that component
sian windowi () = e—m2/4, was used. without the use of signal extraction. Otherwise, the signal
The next stage of processing involved the extraction of components that have outer interference terms can only be
the warped signal component. For this purpose, variousanalysed reliably after the extraction of those signal com-
time—frequency processing techniques (ellgwatsch et al., ponents that cause the interference. The extraction of signal
1994, 2000; Erden et al., 1999; Hlawatsch and Kozek, 1994; components is a must in this case. Since TFCA aims not
McHale and Boudreaux-Bartels, 1993; Boudreaux-Bartels only to determine the time—frequency distribution, but also
and Parks, 198&an be used. In the following, results based to extract the identified signal components, signal extraction

on the time—frequency domain incision techniqiiéden  is always an integral part of TFCA.

et al., 1999 will be presented. The warped signal compo- ~ Once the TFCA isolates the individual signal compo-
nent could be extracted by using a simple incision tech- nents, their corresponding high-resolution time—frequency
nique by first applying a frequency domain mask(f) to representations could be obtained as described in Section

S(f) and then a time domain masis(t) to the result of the ~ 2.4.1 for mono-component signals. The TFDs of the
first step. To determine the supports of the frequency andindividual components are displayed fig. b, e and h,
time domain masks, first, the support of the warped signal respectively. TFCA then computed the time—frequency
component was automatically computed by using the wa- distribution of the composite signal by summation of the
tershed segmentation algorithm. Then, the supports of thecomputed time—frequency distributions of the individual
masks were chosen such as to enclose the support of the firssomponents as shownfig. 7b. As the figure clearly shows,
component in STEJ, (¢, f) into the rectangular region the _co_mputed dist_ributio_n has a very sharp resolution and
between the horizontal and vertical dashed lifég.(). In negligible outer or inner interference terms.

this way, the time—frequency support of the estimated sig-  Fig. €, fand i demonstrate the application of WA to the
nal component was bounded by the dashed-box around thiscomposite signal irFig. 4e to the estimation of the signal
component. Formally, the warped component estimate wascomponents irFig. 6a, d, and g. Using quadratic B-splines

obtained as as basis for WA, the composite signal was sampled at 16 Hz
and decomposed into wavelet coefficients up to the third level.
sgm(t) = ho()[h1(t) * xay,, ()], (11) From the coefficients of the wavelet decomposition, the cor-

responding responses were recovered for the frequency inter-
where hy(t) is the time domain masky (t) is the inverse  vals[2,4], [1,2], [0,1] Hz Fig. &c, f and i). In this simulation
Fourier transform of the frequency domain mas$K{), and scenario, the wavelet transform failed to yield the components
* denotes the convolution operation. Having obtained an of the simulated signal iRig. 6a, d, and g (cf. alsbig. 4a—c).
estimate fors} . (1), an estimate o6'(t) could easily be  This happened because the components of the simulated sig-
computed by inverse warping, and inverse fractional Fourier nal were not localized in the frequency intervals determined

transformation operations, respectively by wavelet transform, which uses fixed basis functions.
In order to asses the performance of TFCA qualitatively,
20 =50 ), 3t=FCsk ), (12)  the auto-term Wigner distribution ifig. 7a may be utilized.

As shown in this figure, the auto-term Wigner distribution has
In the presented example, the FrFT ordeais —0.75. The no cross-term interference and it has a very high auto-term
resultant signal obtained after these operations is shown inconcentration. Itis therefore reasonable to expect that a good
Fig. 6a superimposed by the actual comporg(t) in Fig. 4a. time—frequency analysis algorithm yield a time—frequency
The good fit between the estimated and actual signals indi-distribution close to the auto-term Wigner distribution. In-
cates the accuracy of the time—frequency domain incision deed, a comparison dfig. 7a and b shows that there is a
algorithm despite a high noise level. good fit between the auto-term Wigner distribution and TFD
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Fig. 6. Parts (a), (d) and (g) are the same componentskig.ida—c, together with their estimates. In these plots, the estimated components are superimposed
by the actual components to show the performance of TFCA at a high noise level. Parts (b), (€) and (h) show the TFDs of the respective components obtaine
with TFCA. The components of the composite signdFig. 4e are also estimated by using a wavelet decomposition of order 3. The signal details D2 and D3

in (c) and (f), and the approximation signal in (i) do not resemble the actual signal componEigs4a—c, respectively. Hence, as this example shows, the
wavelet analysis may fail to recover the actual signal components, since the wavelet transform uses fixed basis functions.

obtained with TFCA. It should however be noted thatthistype =~ The performance of TFCA was compared with that of
of comparison is only possible f@imulatedsignals since  the smoothed pseudo-Wigner distributidfig. 7c) and the
the auto-term Wigner distribution can only be computed for well known data-adaptive technique, the optimal radially
a limited set of simulated signals but not for real ERP signals. Gaussian kernel TFD techniquBdraniuk and Jones, 1993
The auto-term Wigner distribution plotted ffig. 7a also (Fig. 7d). If the smoothing of the Wigner distribution can-
provides a clue of the low performance of the wavelet anal- not sufficiently suppress the cross-terms, cross-terms remain
ysis when applied to simulated signals. As it can be seen inin the resulting TFD. Otherwise, the auto-term concentra-
the auto-term Wigner distribution iiRig. 7a, all three signal  tion degrades considerably. Fig. 7d, the result for ORGK
components have considerable energy in the frequency in-time—frequency distribution is given at a volume parameter
tervals [2, 4], [1, 2] and [0, 1] Hzrecovered by the wavelet «=3. Although ORGK is able to resolve all three compo-
analysis. It should therefore not be surprising that the wavelet nents, there is significant cross-term interference in the aris-
analysis could notidentify any of the three signal components ing TFD. Furthermore, there is a distortion in the auto-term
in Fig. 6as single entities, and that the recovered frequency of the component with non-convexf support. A quantita-
bands did not provide accurate estimates of the actual sig-tive comparison of TFCA, and other TFDs can be found in
nal components. These findings clearly demonstrate that, ifOzdemir (2003) The steps of the implementation of TFCA
a fixed wavelet basis and frequency intervals are used in thecan be summarized as Algorithm 1.
analysis of signals whose components overlap in frequency,
the wavelet analysis fails to identify the signal components Algorithm 1. Steps of the time—frequency component
and to extract them. analyser.

2 Note that, if the frequency interval] fi,] is chosen, the wavelet analysis Purpose of the algorithm Given a multi-component
recovers the frequency intervd[fp] U[—fy, —fal. sampled signalx(n/Ayx), —N/2<n<N/2—1, extract its
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Fig. 7. (a) Auto-term Wigner distribution of the simulated signalFig. 4e which was obtained by removing the interference terms from the Wigner

distribution in Fig. 4f. Note that, although the auto-term Wigner distribution is a desired distribution, it is, in practice, not computable. It could
have been computed in this simulation example, because the simulated components, which constitute the multi-component signal, were asailable. Par
(b)-(d) show the time—frequency distributions obtained with TFCA, the smoothed pseudo-Wigner distribution and the optimal radially Gausisian kern

time—frequency distribution, respectively. In this example, the volume parameter of ORGK was atw3eand respective lengths of the time and fre-
quency smoothing windows for the smoothed pseudo-Wigner distribution were chédE@mandN/4, whereN was the duration of the sampled analysed
signal.

components and compute its time—frequency distribution. It g

is assumed that(t) is scaled before its sampling so that its

Compute the sampled warped sigrjglé (kT) as

Wigner distribution is inside a circle of a diametf < /N ALy {(KT) = €27k -1,
(seeOzaktas et al., 1996 L s
; 2Ty = @B (k).

1.

2.

Steps of the algorithm

Initialize the residual signal and the iteration number as
rO(t) :=x(t), i := 1, respectively.

Identify the time—frequency support of the compo-
nents(t) using the watershed segmentation algorithm
(Vincent and Soille, 1991 After manually determining
the appropriate rotation angdg and the fractional do-

Estimate theith component by incision of the
time—frequency domain as

() = ha() () % 7y ¢ (0,

Wherehz(t) is a time—domain mask arfg(t) is the in-
verse Fourier transform of a frequency domain mask

Ha(f).

main a; = 2¢i/7, estimate the sping; , () of the frac- 7. For each TFD slice of(t), compute y,, g (kT) =

tional Fourier transformx,,(r) using an instantaneous 2 ¢ (kT)e2m4v kT, after choosing the slice offset,,.

frequency estimation algorithm. Then, determine the g Compute the sampled TFDF,, (mT fu), /T <

amount of the required frequency shiff on the spine m < ty/T of y,, (1) using the directional smoothing

Via; (1). _ algorithm (cf.Ozdemir and Arikan, 20Q0whereT is
3. Compute the sampled FriJ, (kT), a = 2¢i/x, from the sampling interval of the TFD slice.

r'=1(kT) using the fast fractional Fourier transform algo- 9. The TFD slice o () is given by

rithm (seeOzaktas et al., 1996

. Define the warping functiong;(r) = I“i‘l(f,,,i(t —
1)), where I;(1) = [} [Va(t) +85]1d and fy, =
I;(ty)/(ty — 11). Compute the sampled warping func-
tion ¢;(KT).

TF,i(1,(mT), f,(mT)) = TFy, (mT, fy),

where ¢.(mT), f.(mT)) define a curve in the
time—frequency plane parameterized by the variable
mT
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T T Seti=i+1, andGOTO step 2,
t,(mT) = ¢(mT) COS( et =1 an step

N—"

— (W(s(mT)) slse

. (aiT Compute tha—f distribution of the composite
Ay)sin(—), . o ;
FAy)si ( 2 ) signal as the sum of thef distributions of in-
£,(mT) = ¢(mT) sin(g) + (W (E(mT)) dividual signal components.
azn " . endif
i N
+ageos(). FEms T

10. Estimate the samplesi(t) by taking the inverse of 3. Results
the warping, frequency modulation and the fractional

Fourier transformation on the samp@id{_(t) Fig. 8 shows the results of the TFCA analysis of the av-
' ' o eraged ERPHig. 8a) of a trial subject (“GUOZ”). The ERP
522 (kT) = @S l("T)§Z§2;,(;;1(kT)), was obtained in response to deviant stimuli under the oddball
. o o0 o paradigm. The ORGK provided a highly blurred distribution
8 (KT) = e 05,7 (kT), of the ERP components in the time—frequency plétig. @b).
§(kT) = {F)5 Y(kT). TFCA showed thatthe ERP was composed of one prestimulus
. _ ‘ ‘ (component 1) and four poststimulus (components 2-5) sig-
11. Compute the residual signat'(kT) = ri= kT — nal componentsHig. &, e, g, i and k) and these were clearly
§'(KT). _ _ _ _ _ and sharply localized in the time—frequency plaffig(8&d, f,
if any signal component is left in residual signal h, jand1). The high amplitude components 2 and 3 along with
r'(kT) then component 4 contributed to the P300 component of the time
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Fig. 8. TFCA analysis of the average ERP evoked by deviant stimuli under the OB paradigm in a trial subject (‘GUOZ"). Right axes (b, d, f, h, j and I):
frequency in Hz. Note that the individual time—frequency representations have scales proportional to the strength of the corresponding @apaieat.

ERP; (b) its ORGK TFD; (c, €, g, i and k) time domain representations of ERP components obtained with TFCA; (d, f, h, j and I) corresponding components
(1-5) in the time—frequency distributions; (m) absolute value of the difference between the reconstructed superposition and the originaliERE; diven
superposition of the extracted time—frequency representations.
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domain. Component 3 also formed the general waveform of quency range) contributed to the P300. Component 2 helped
the early negative complex in the ERP waveform. Taking the shape the waveform of the early negative complex and com-
central value into account, components 2 and 3 were basicallyponent 3 produced N100 and N200 components. When the
due to the delta frequency. However, there were transitionsreconstructed waveform, the sum of the components that were
to neighboring frequencies such that components 2 and 3obtained with TFCA, was subtracted from the grand average
also included the theta frequency. Component 4 contributed ERP, the residual signal again had a very small mean ampli-
to N100 and N200 in the ERP waveform. Concerning the tude of the order of 0.gV. Fig. 9, e and g each present the
frequency, component 4 covered basically the theta but alsoERP waveform of a different subjedtig. 9d, f and h present
the alpha frequencies. Component 5 was the smallest boththe distribution of the respective TFCA components for these
in amplitude and energy and it was due to the beta oscilla- subjectsFig. 9shows that the time—frequency distribution of
tion. It contributed to the early N100 and N200 peaks on the the TFCA components are similar across single-trial subjects
ERP waveform. The mean amplitude of the residual which and also are well represented by the distribution for the grand
was obtained by subtracting the reconstructed ERP from theaverage ERP.

recorded ERP was of the order of @& (Fig. 8m). This in- Fig. 10allows an intra-subject (“FEBE”) comparison of
dicated that composite TFCAig. 8) yielded an accurate the distribution of TFCA components for three successive
decomposition of the ERP. portions (1-30, 31-60 and 61-100%) of the total number

Fig. 9 demonstrates the inter-subject stability of compo- of epochs.Fig. 10a—c shows the average ERP waveforms
nents produced by TFCA:ig. 9a presents the time domain for the trial subject for the three successive portions of the
grand (ensemble) average ERP waveform computed from therecording period. Each portion of epochs yielded similar post-
individual responses (508 sweeps from 20 subjects) in re- stimulus components={g. 1y—). There was a high ampli-
sponse to deviant stimuli under the OB paradigm leigd 9 tude component in the delta frequency range: this was com-
presents the composite distribution of components producedponent 2 in all recordings. Another component was in the
by TFCA. According to TFCA, the grand average ERP was theta frequency range: In all epochs, this was component 3.
composed of three poststimulus signal components and thes@ he time—frequency distribution of the components in the
were clearly and sharply localized in the time—frequency composite TFCA are given iRig. 10m—o. The residuals in
plane. The high amplitude components 1 and 2 (due basi-Fig. 1o, rand s are of the order 0§/, indicating that TFCA
cally to delta but also to the theta frequency range) along with yielded an accurate decomposition of the ERP. The value is
component 3 (due basically to theta but also to the alpha fre-higher than that calculated for the total number of sweeps
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Fig. 9. TFCA analysis of the grand average ERP and averages for single-trial subjects (“GUOZ", “FEBE” and “GOOZ") evoked by deviant stimuli under the
OB paradigm. Right axes (b, d, f and h): frequency in Hz. Note that the individual time—frequency representations have scales proportionakicethertarg
component corresponding to each subject. (a and b) Grand average ERP and the composite time—frequency representation produced by TFCA; R, e and g) ER
averages for single-trial subjects (“GUOZ", “FEBE” and “GOOZ"); (d, f and h) the composite time—frequency representations for each ERP avecagde prod

by TFCA.
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Fig. 10. TFCA analysis of ERPs of a single-trial subject (“FEBE”") averaged for the three successive portions of the recording period. Right axes (m-o)
frequency in Hz. (a—c) Original ERPs; (d-I) time domain representations of ERP components obtained with TFCA; (m—o0) the corresponding composite
time—frequency representations produced by TFCA,; (p, r and s) absolute value of the difference between the reconstructed and the originalrE@Ps given

(b) and (c), respectively.

(for single trial averages: 0.59-0.64/; for grand average:
0.14-0.2Q.V). This would be expected since the total num- previous studies on the frequency-domain responses of
ber of sweeps were divided into three, lending a fewer numberthe brain
of sweeps per block for analyses. Overgll. 10shows that

the time—frequency distribution of the TFCA components are

similar across the recording period.

4. Discussion

representation. Having properties, the TFCA technique

4.1. Comparison of our results with TFCA with those of

There is an extensive literature of studies on the cognitive

psychophysiology of the stimulus-related time signals: the
peaks on the ERP waveforrgijtton et al., 1965; Donchin
etal., 1986; Donchin and Coles, 1988; Johnson, 198&Bas
Eroflu et al., 1992; Karakad997; Karakasand Basar, 1998;
Karakaset al., 2000a, 200QbThe ERP peaks at a latency
around 200 ms are related to attention: the early N200 to
The present study applied the TFCA technique with the preattention and the late N200 to focused attenfitaatanen,
aim at describing the electrical responses of the brain in the 1982, 1990, 1992; Ritter et al., 1992; Naatanen et al., 1993;
time—frequency plane. This was achieved by the application Winkler et al., 1992; Tervaniemi et al., 1994ccordingly,
of fractional Fourier transform, warping and the fractional the overall N200 peak was obtained, in the present study, in a
domain incision, all utilized by the TFCA technique. TFCA distinct form under the OB paradigm in response to deviant
suppressed cross-term interference (both inner and outer)stimuli where trial subjects concentrated on, and counted the
and had a high accuracy in auto-term time—frequency stimuli.

The amplitude of the P300 peak represents the allocation

can therefore be used for a high-resolution analysis of of attentional resourcesWickens et al., 1983; Kramer
mono- and multi-component signals with linear or curved and Strayer, 1988; Humphreys and Kramer, 1994 is
thus closely related to updating of the memory for stimulus

time—frequency supports.
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recognition and working memoryS@tton et al., 1965; the OB paradigm. Beta oscillation in these components
Donchin and Coles, 1988; Johnson, 1988; Polich and contributed to the ERP peaks N100 and N200. These ERP
Margala, 199Y. Again, in line with the above findings, the peaks are related to the physical analysis of stimuli and
P300 peak was, in the present study, obtained in a distinctto attentive processes, respectivajaétanen, 1982, 1990,
form in response to deviant stimuli under the OB paradigm 1992; Ritter et al., 1992; Naatanen et al., 1993; Winkler
where the trial subjects had to recognize the stimulus, updateet al., 1992; Tervaniemi et al., 1994
memory for a correct count of successively appearing stimuli
and decide on the response to be made. 4.2. Conclusions: comparison of methods of frequency

The frequency-domain analysis of the waveforms that analysis
was demonstrated in AFC showed prominent selectivities
for the delta, theta, beta and gamma bands under various The Osci”atory responses of the brain have been pre-
COgnitive paradigms such as the Single stimulus, oddball andsented as the ’paradigm Change’ in brain research. A grow-
mismatch Karakaset al., 2000a, 200QbWhen ERPs were  jng amount of literature shows the explanatory value of these
appropriately filtered with cut-off frequencies determined sjow-wave eventsSayers et al., 1974; Bas 1980, 1998,
from the AFC curves, oscillatory activity occurred in each of  1999; Mountcastle, 1992; Karakasd Baar, 1998; Sannita,

the specified frequency rangésrakaset al. (2000a, 2000b)  2000; Rangaswamy et al., 2002, 2004; Porjesz et al., 2002;
investigated the effect of oscillatory responses on the ERP Kamarajan et al., 2004

peaks, basically on N200 and P300, under various cognitive
paradigms. The findings showed that the amplitudes of the ® Fourier transform, as a technique of frequency analysis,
peaks were determined by the type of cognitive paradigm Yields the global frequency composition of the analysed
through a combination of a major contribution of delta and  signal in the form of amplitude—frequency characteristics.
a minor contribution of theta oscillations. These findings  Digital filtering discerns the oscillatory activity over the
were statistically confirmed by stepwise multiple regression ~ time axis that is in the conventional range of brain oscil-
analysis, the results of which mathematically demonstrated lations, or between the adaptively chosen cut-off frequen-
that the ERP Components were main|y due to the additive Cies, which are determined from the maxima of the AFC.
effects of the delta and theta oscillations. The proportion Wavelet analysis determines the time localization of the
of variance that the regression model explained was in the distinct wavelet basis components.
range of 94-99% for different stimuli and paradigms. Accordingly, most of the existing methods of fre-
TFCA, a technique developed specifically for a precise ~ guency analysis impose windows on the data. Windows
time-and-frequency localization of components, also demon-  in DF are the adaptively chosen cut-off frequencies. Win-
strated that an enhanced amplitude and energy were obtained dows in WA are the appropriately chosen mother wavelets.
for components that were related to the delta and theta Therewere no predefined windows or criteriawhen signals
frequencies (components 2 and 3 in particular). As reported Were analysed with TFCA.
in Karakaset al. (2000a, 2000bthe major contribution to @ Of the existing signal analysis techniques, only AFC de-
P300 was from components in the delta frequency range. termines directly the frequency components of the signal.
However, there was a minor contribution of components in  However, this technique does not provide any information
the theta frequency range as well. The situation was reversed On the temporal localization of the frequency components.
for N200; the components with the slower frequencies TFCA yields the relevant oscillatory components that are
formed the general waveform of the early negativity. The inherent in ERP. Unlike AFC, TFCA could also determine
discrimination of N100 and N200 peaks was produced by the time domain representation of the components that
the components dominantly in the theta frequency range. shape the ERP. Using techniques that could overcome the
Recent studies have shown that beta activity should be cross-terminterference either between components (outer)
taken into account, along with the other oscillations, for a  or of the component itself (inner), TFCA could sharply lo-
better understanding of brain functioiagar et al. (2003) calize components both in the time and in the frequency
showed that beta oscillation is an integral part of the pro- domain with high temporal, and also high frequency
cess of face recognition, especially the recognition of one’s ~ resolution.
own grandmother in a photograph. Begleiter and colleagues ~ The amplitude of the residuals is a measure of the good-
(Porjesz et al., 2002; Rangaswamy et al., 2002, Péfihd ness of the time—frequency resolution achieved by TFCA.
the biochemical, and genetic basis, specifically the GABA Residuals are left-over signals after the component extrac-
receptor genes, for beta activity in the EEG at rest. The au- tions. Inthe present study, the residual values were found to
thors further showed that the power density of beta oscilla- e in the range of 0.59-0.44/ for averages from single-
tion was elevated in alcoholics suggesting that this may be trialsubjects andinthe range of 0.14-0,20for the grand
the electrophysiological index of imbalance in the excitation- ~ average. These negligible values show that the complex
inhibition homeostasis in the cortex. waveform was almost completely decomposed by TFCA.
The present study also identified and extracted the beta Summation of the extracted components could thus restore
oscillation in the ERPs evoked by deviant stimuli under  to the original waveform.
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e The residuals further demonstrate that TFCA identified

and extracted all non-negligible components. Amplitudes
of oscillatory activity existing outside the time range for a
given componentwas of the same order of the magnitude as
that of the residual. Consequently, after the TCFA analysis,
no further significant components are to be expected.
Signal analysis techniques are based on certain assump-
tions. The assumption of linearity is peculiar to AFC
and that of stationarity is peculiar to AFC and nonlin-
ear dynamic metrics. In wavelet analysis, the templates,
themselves, constitute a ‘hypothetic model’. The assump-
tion of TFCA is that the analysed signals have one or
more components with non-overlapping supports in the
time—frequency plane and each component can be rotated
in time—frequency plane to have single valued spines.

The components of ERP are the points of maximal am-
plitudes: the peaks, on the time-varying ERP. In AFC,
the components are distinct maxima of specific frequency
ranges; in DF, they are time-varying oscillations in specific
frequency ranges; and, in WA, time-varying, adaptive fre-
guency templates. Conventional filtering techniques pro-
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oscillations.Fig. 11 presents an ERP averaged from re-
sponses to deviant stimuli under the OB paradigm in a trial
subject. In this figure, component 1 occupies different fre-
quency bands in different time intervals. Part of component
1, extracted by TFCA, falls into the delta, and part of itinto
the theta range. Similarly, while the dominant frequency in
component 3 is in the alpha, it also contributes to the beta
range. Clearly, for non-stationary signals whose compo-
nents occupy different frequency bands at different times,
digital filtering will only filter-in those parts that fall into
the frequency band of thefilter. In TFCA, on the other hand,
the components are obtained in the form of time—frequency
localized ‘islets’. These islets show, without any prede-
fined windows, the natural time and frequency spread of
the components. Hence, TFCA appears to be an appropri-
ate tool for decomposing ERP into a set of superimposed
oscillatory components under variable experimental con-
ditions Bagar and Ungan, 1973; Bag 1980; Karakast

al., 2000a, 20000

Brain neuroelectricity is the result of the temporal and

duce oscillatory components that fall within the cut-off spatial integration of time-varying oscillatory activity of var-

frequencies of the filter. These techniques can thus accu-ious frequencies. The brain is essentially a nonlinear and
rately capture a component whose frequency support doeson-stationary system. The time—frequency-domain analy-
not change with time. However, they cannot differentiate sis technique, TFCA, does not assume that the brain is either
between components if more than one component occurlinear or stationary. Yet, TFCA suppresses the cross-terms
in the same frequency range over the time agisdk Il| (both inner and outer interference terms), which are associ-
and Miller, 1992; Farwell et al., 1993; Karakasd Basu, ated with the Wigner distribution. It accurately identifies the
1998. auto-terms in the time—frequency plane, and can do this for
The findings of the present study demonstrated that com-mono- and multi-component signals with linear or curved
ponents do not always obey the conventional limits of the time—frequency supports. TFCA is thus an effective, high-
frequency ranges. There are frequency transitions whoseresolution signal analysis technique that can yield the global
components consist of delta and theta, or alpha and betadistribution of uncontaminated components in the form of
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Fig. 11. Comparison of the conventional frequency limits of oscillatory components and the components obtained with TFCA for an ERP evoked by deviant
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spatially and temporally integrated, time-varying oscillatory
activity of various frequencies. TFCA seems therefore an
appropriate tool for studying the intricate machinery of the
human brain.

Recent work on brain neuroelectricity stresses the impor-
tance of single sweep analysiansen et al. (2003ointed
out that ensemble averages will not resemble single trial
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Bagr-Erdjlu C, Bagr E, Demiralp T, Sclirmann M. P300-response:
possible psychophysiological correlates in delta and theta frequency
channels. A review. Int J Psychophysiol 1992;13:161-79.

Berger H. Uber des elektroenkephalogram. Arch Psychiatry Nervenkr
1929;87:527-70.

Boashash B, O'Shea P. Use of the cross Wigner—Ville distribution for
estimation of instantaneous frequency. IEEE Trans Signal Process
1993;41:1439-45.

responses. Likewise, single trial responses are not amp"tudeBoudreaux—Bartels GF, Parks TW. Time-varying filtering and signal es-

scaled versions of ensemble averadyéskeig (2002showed

timation using Wigner distribution synthesis techniques. |IEEE Trans
Acoust Speech Signal Process 1986(34):442-51.

thatby means of an adequate analysis of single trials, dynamicgrandt ME, Jansen BH. The relationship between prestimulus alpha
consistencies between features of EEG averages (ERPS) amplitude and visual evoked potential amplitude. Int J Neurosci
and event-related changes in EEG signals can be found. The 1991;61:261-8.

recently developed piecewise Prony meth@hiossi and
Jansen, 20Qthas proven to be useful in decomposing non-
stationary signals into a sum of oscillatory components with

time-varying frequency, amplitude, and phase characteristics.

The method could show the temporal profile of poststimulus
signal changes in single-trial evoked potentials. A goal for
the future studies should thus be to test the utility of TFCA on

Brown MK, Rabiner LR. An adaptive, ordered, graph search technique
for dynamic time warping for isolated word recognition. IEEE Trans
Acoust Speech Signal Process 1982;30:535-44.

Coates M, Fitzgerald W. Time—frequency signal decomposition using en-
ergy mixture models. Proc IEEE Int Conf Acoust Speech Signal Pro-
cess 2000;11:633—6.

Choi HI, Williams WJ. Improved time—frequency representation of mul-
ticomponent signals using exponential kernels. IEEE Trans Acoust
Speech Signal Process 1989;37:862-71.

single sweep ERPs that have been obtained under differeniconen L. Time—frequency distributions: a review. Proc IEEE 1989:

paradigms, and in different states of consciousness. Such

studies might help to gain new insights into the oscillatory
dynamics of the brain during different cognitive operations.
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