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1. Introduction

Let q be an integer which is a power of a prime. Let k � 2 be an integer and m = � k
2 �, the integer

part of k/2. Let ε0, ε1, . . . , εm ∈ Fqk . The map

Q : Fqk → Fq,

x �→ Tr
(
x
(
ε0x + ε1xq + · · · + εmxqm))
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is a quadratic form over Fqk . It is well known (cf. [19, Proposition 6.4.1]) that the quadratic form Q
is related to an Artin–Schreier type curve given by the affine equation

χ : yq − y = x
(
ε0x + ε1xq + · · · + εmxqm)

. (1.1)

We assume that at least one of ε0, ε1, . . . , εm is nonzero if q is odd and at least one of ε1, . . . , εm is
nonzero if q is even. Then the genus of χ is positive. The radical of Q is an Fq-linear subspace of Fqk .
There is another invariant Λ(Q ) of Q , which is an integer in the set {−1,0,1}. The dimension of the
radical and the value of Λ(Q ) determine the number of Fqk -rational points of χ .

If the codimension of the radical is 0, then it is not difficult to determine the invariant Λ(Q ) of Q
and the number of Fqk -rational points of χ (see Proposition 7.1 below). We consider the problem of
determining Q explicitly when the radical is of codimension 2 and Fq is an extension field of F4. It is
well known that when q is even, the codimension is an even integer and hence it natural to consider
this problem after codimension 0 case. Our result is an extension of [4].

We put an extra condition. We assume that ε0, ε1 ∈ F4 and ε2 ∈ F4 for k � 4; that is, the first three
coefficients are in F4 instead of Fqk for k � 4. Then we explicitly determine all of the coefficients of
Q when the codimension is 2, depending on ε0, ε1 and ε2. We obtain that there are very strict
restrictions on k, q and the coefficients when the codimension is 2. We give a full classification of
such quadratic forms in our main result (see Theorem 3.1). Note that in [4] the coefficients are only
in F2.

Maximal curves (see Section 7.1 for definition) of the form (1.1) were studied and certain classifi-
cation results were obtained in the literature (see, for example, the references given in Section 7.1). In
particular it is shown that (cf. [2]) χ is a Galois subcover of the Hermitian curve

H : yqk/2 + y = xqk/2+1

over Fqk , when k is even. However as far as we know, there is no general result in the literature
giving the coefficients of χ explicitly when χ is maximal. It seems a difficult problem when Q is not
trivial and the codimension of Q is not small. Moreover such results are also not known when χ is
minimal.

As an application of our main result we determine the coefficients of Q explicitly when χ is
maximal or minimal, under the conditions that Fq is an extension of F4, ε0, ε1, ε2 ∈ F4 and the
codimension of Q is 2 (see also Remark 7.3). In particular we note that there are rather complicated
conditions on the coefficients of Q , the extension degree k and q (see Proposition 7.2).

As we obtain a full classification of such quadratic forms, in the course of our proof we obtained
existence results of certain systems of equations over Fqk . This full classification also implies certain
nonexistence results of the corresponding systems of equations over Fqk . We report them in Sec-
tion 7.2, which would be useful in some applications.

We note that our results and methods are more complicated than [4]. Nevertheless our main
motivation and approaches stem from [4]. In particular we would like to indicate that the technical
lemmas [4, Lemma 2.3] and Lemma 5.4 below seem very interesting.

This paper is organized as follows. In Section 2 we give some preliminaries. We state our main
result in Section 3. We consider the proof of necessary conditions in Section 4 and the proof of suffi-
cient conditions in Section 5. The proofs of the main and related results are completed in Section 6.
In Section 7 we give applications to curves over finite fields (see Section 7.1) and systems of equations
over finite fields (see Section 7.2). We also give a motivation for our application and an exposition on
related results for curves over finite fields in Section 7.1.

2. Preliminaries

In this section we recall some basic facts that we use. Let q � 2 be an integer which is a power
of 2. We recall some basic facts from quadratic forms (see, for example, [14, Chapter 6]). For an
integer k � 2, a map Q : Fqk → Fq is called a quadratic form if
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i. Q (ax) = a2 Q (x) for all a ∈ Fq and x ∈ Fqk , and
ii. B(x, y) = Q (x + y) + Q (x) + Q (y) is a bilinear map from Fqk × Fqk to Fq .

The radical of Q is defined as

W = {
x ∈ Fqk : B(x, y) = 0 for all y ∈ Fqk

}
.

It is easy to observe that W is an Fq-linear subspace of Fqk . It is well known that k- dimFq W is even.
Let w denote the dimension of W over Fq . Let N(Q ) denote the number

N(Q ) = ∣∣{x ∈ Fqk : Q (x) = 0
}∣∣.

It is also well known (cf. [14, Theorem 6.32]) that there exists an invariant Λ(Q ) in the set {−1,0,1}
such that

N(Q ) = qk−1 + Λ(Q )(q − 1)q
k+w

2 −1.

Next we recall two important results from [4].

Theorem 2.1. (See [4, Theorem 1.2].) Let q = 2h, Q : Fqk → Fq be a quadratic form and let m = �k/2�. Then
there exist ε0, ε1, . . . , εm ∈ Fqk such that

Q (x) = Tr
(
x
(
ε0x + ε1xq + · · · + εmxqm))

. (2.1)

Moreover ε0, ε1, . . . , εm are uniquely determined, except when k is even in which case εm is only unique
modulo Fqm .

If the codimension of the radical is 2, then we have further information on Q .

Theorem 2.2. (See [4, Corollary 1.3].) Let q = 2h and ε0, ε1, . . . , εm be the coefficients corresponding to Q
as in (2.1). Then we have w = k − 2 if and only if there exist a,b ∈ Fqk such that the set {a,b} is linearly
independent over Fq and for 1 � i � �(k − 1)/2� we have

εi = aqi
b + abqi

, (2.2)

and if k is even, then furthermore

εm − abqm ∈ Fqm .

Moreover we have the following:

• if Λ(Q ) = 1, then

ε0 = ab;
• if Λ(Q ) = −1, then there exists s ∈ Fq such that TrFq/F2 (s) = 1 and

ε0 = a2 + ab + sb2,

where TrFq/F2 is the trace from Fq to F2;
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• if Λ(Q ) = 0, then there exists c ∈ Fqk such that {a,b, c} is linearly independent over Fq and

ε0 = c2 + ab.

3. Main result

In this section we state our main result and some related results. First we introduce some no-
tation. For certain integers k � 4, first we define three types of polynomials A1(ε0, ε1), A2(ε0, ε1)

and A3(ε0, ε1, ε2) in F4[x]. For simplicity of notation we indicate neither the variable x nor their
dependence on k in denoting these polynomials. Let m = � k

2 �.

• If 4 | k, then for ε0, ε1 ∈ F4 let

A1(ε0, ε1) = ε0x + ε1
(
xq + xq3 + · · · + xqm−1) ∈ F4[x].

• If 3 | k, then for ε0, ε1 ∈ F4 let

A2(ε0, ε1) = ε0x + ε1
(
xq + xq2 + xq4 + xq5 + · · ·) ∈ F4[x],

where the last term of A2(ε0, ε1) is ε1xqm
if k ≡ 3 mod 6 and ε1xqm−1

if k ≡ 0 mod 6.
• If 5 | k, then for ε0, ε1, ε2 ∈ F4 let

A3(ε0, ε1, ε2) = ε0x + ε1
(
xq + xq4 + xq6 + xq9 + · · ·)

+ ε2
(
xq2 + xq3 + xq7 + xq8 + · · ·),

where last terms of A3(ε0, ε1, ε2) are ε1(xqm−4 + xqm−1
) and ε2(xqm−3 + xqm−2

) if k ≡ 0 mod 10,
and ε1(xqm−3 + xqm−1

) and ε2(xqm−4 + xqm
) if k ≡ 5 mod 10.

Now we state our main result.

Theorem 3.1. Let q = 4r , k � 4 be an integer and set m = � k
2 �. Let ε0, ε1, ε2 ∈ F4 , and for k � 8 let

ε3, . . . , εm−1 ∈ Fqk and

εm ∈
{

Fqm if k is even,

Fqk if k is odd.

For k = 6 we let ε3 ∈ Fq3 and for k = 7 we let ε3 ∈ Fq7 . Let Q be the quadratic form from Fqk to Fq defined as

Q (x) = Tr

(
x

m∑
i=0

εi x
qi

)
, (3.1)

where Tr is the trace map from Fqk to Fq. If the Fq-dimension of the radical of Q is k − 2, then exactly one of
the following holds:

(1) 4 | k, q = 4r where r � 1 is an odd integer, ε1 	= 0, ε0 	= 0, ε0 	= ε1 and for 1 � i � � k−1
2 � we have

εi =
{

ε1 if i ≡ 1 mod 2,
0 otherwise.
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In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A1(ε0, ε1) + γ xqm
,

where γ is an arbitrary element of Fqm . Moreover the invariant Λ(Q ) of Q is equal to 1 in this case.
(2) 4 | k, q = 4r where r � 1 is an odd integer, ε1 	= 0, ε0 = 0 or ε0 = ε1 , and for 1 � i � � k−1

2 � we have

εi =
{

ε1 if i ≡ 1 mod 2,

0 otherwise.

In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A1(ε0, ε1) + γ xqm
,

where γ is an arbitrary element of Fqm . Moreover the invariant Λ(Q ) of Q is equal to −1 in this case.
(3) 4 | k, q = 4r where r � 2 is an even integer, ε1 	= 0 and for 1 � i � � k−1

2 � we have

εi =
{

ε1 if i ≡ 1 mod 2,

0 otherwise.

In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A1(ε0, ε1) + γ xqm
,

where γ is an arbitrary element of Fqm . Moreover the invariant Λ(Q ) of Q is equal to −1 in this case.
(4) 3 | k, q = 4r where r � 1 is an integer, ε1 	= 0, ε0 = ε1 and for 1 � i � � k−1

2 � we have

εi =
{

ε1 if i ≡ 1 or 2 mod 3,

0 otherwise.

In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A2(ε0, ε1) + γ xqm
,

where γ = 0 if k is odd and γ is an arbitrary element of Fqm if k is even. Moreover the invariant Λ(Q ) of
Q is equal to 1 in this case.

(5) 3 | k, q = 4r where r � 1 is an integer, ε1 	= 0, ε0 	= ε1 and for 1 � i � � k−1
2 � we have

εi =
{

ε1 if i ≡ 1 or 2 mod 3,

0 otherwise.

In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A2(ε0, ε1) + γ xqm
,

where γ = 0 if k is odd and γ is an arbitrary element of Fqm if k is even. Moreover the invariant Λ(Q ) of
Q is equal to 0 in this case.



F. Özbudak et al. / Finite Fields and Their Applications 18 (2012) 396–433 401
(6) 5 | k, q = 4r where r � 2 is an even integer, ε1 	= 0, ε2 	= 0, ε2 	= ε1 , ε0 /∈ {0, ε1, ε2} and for 1 � i � � k−1
2 �

we have

εi =
⎧⎨
⎩

ε1 if i ≡ 1 or 4 mod 5,

ε2 if i ≡ 2 or 3 mod 5,

0 otherwise.

In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A3(ε0, ε1, ε2) + γ xqm
,

where γ = 0 if k is odd and γ is an arbitrary element of Fqm if k is even. Moreover the invariant Λ(Q ) of
Q is equal to 1 in this case.

(7) 5 | k, q = 4r where r � 1 is an odd integer, ε1 	= 0, ε2 	= 0, ε2 	= ε1 , ε0 /∈ {0, ε1, ε2} and for 1 � i � � k−1
2 �

we have

εi =
⎧⎨
⎩

ε1 if i ≡ 1 or 4 mod 5,

ε2 if i ≡ 2 or 3 mod 5,

0 otherwise.

In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A3(ε0, ε1, ε2) + γ xqm
,

where γ = 0 if k is odd and γ is an arbitrary element of Fqm if k is even. Moreover the invariant Λ(Q ) of
Q is equal to −1 in this case.

(8) 5 | k, q = 4r where r � 1 is an integer, ε1 	= 0, ε2 	= 0, ε2 	= ε1 , ε0 ∈ {0, ε1, ε2} and for 1 � i � � k−1
2 � we

have

εi =
⎧⎨
⎩

ε1 if i ≡ 1 or 4 mod 5,

ε2 if i ≡ 2 or 3 mod 5,

0 otherwise.

In particular the polynomial
∑m

i=0 εi xqi
is equal to

R(x) = A3(ε0, ε1, ε2) + γ xqm
,

where γ = 0 if k is odd and γ is an arbitrary element of Fqm if k is even. Moreover the invariant Λ(Q ) of
Q is equal to 0 in this case.

Conversely, for each of the eight cases above, there exist ε0, ε1, ε2, . . . , εm−1, εm ∈ F4 ⊆ Fq ⊆ Fqk sat-
isfying the corresponding conditions. Hence we have quadratic forms as in (3.1) from Fqk to Fq, even with
coefficients from F4 , such that their radicals are of codimension 2 and their invariants Λ(Q ) are given as in
the eight cases above.

There are 8 cases in Theorem 3.1. For clarity we state Theorem 3.1 in detail above. It would be
useful to express the results of Theorem 3.1 in short together. We summarize the results of Theo-
rem 3.1 in Table 1. We recall that the polynomials A1(ε0, ε1), A2(ε0, ε1) and A3(ε0, ε1, ε2) in F4[x]
are defined in the beginning of this section.
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Table 1
Summary of Theorem 3.1. Here k � 4, ε1 ∈ F4 \ {0} in all cases and R(x) = A(x) + γ xqm

, where A(x) is given in the table and
γ = 0 if k is odd and γ is an arbitrary element of Fqm if k is even.

k q A(x) Λ(Q R )

4 | k 4r , r odd A1(ε0, ε1), ε0 /∈ {0, ε1} 1
4 | k 4r , r odd A1(ε0, ε1), ε0 ∈ {0, ε1} −1
4 | k 4r , r even A1(ε0, ε1) −1
3 | k 4r A2(ε0, ε1), ε0 = ε1 1
3 | k 4r A2(ε0, ε1), ε0 	= ε1 0
5 | k 4r , r even A3(ε0, ε1, ε2), ε2 /∈ {0, ε1}, ε0 /∈ {0, ε1, ε2} 1
5 | k 4r , r odd A3(ε0, ε1, ε2), ε2 /∈ {0, ε1}, ε0 /∈ {0, ε1, ε2} −1
5 | k 4r A3(ε0, ε1, ε2), ε2 /∈ {0, ε1}, ε0 ∈ {0, ε1, ε2} 0

Remark 3.2. Recall that in Theorem 3.1, if k is even, then we only consider the case that εm ∈
Fqm � Fqk . The remaining case that εm ∈ Fqk \ Fqm holds with only the following small change in
the statement: We use the expression as in Table 1. If εm ∈ Fqk \ Fqm , then the statements are exactly
the same; only the condition that γ ∈ Fqm is changed to the condition that γ − εm ∈ Fqm .

In order to complete the study of quadratic forms of codimension 2, we give the results for the
remaining cases k ∈ {2,3} in the following proposition.

Proposition 3.3. Let q = 4r , k ∈ {2,3} be an integer and m = 1. Let ε0, ε1 ∈ F4 . Let Q be the quadratic form
from Fqk to Fq. If the Fq-dimension of the radical is k − 2, then exactly one of the following holds:

(1) k = 3, q = 4r where r � 1 is an integer, ε1 	= 0 and ε0 = ε1 . The invariant Λ(Q ) is equal to 1 in this case.
(2) k = 3, q = 4r where r � 1 is an integer, ε1 	= 0 and ε0 	= ε1 . The invariant Λ(Q ) is equal to 0 in this case.

In particular k 	= 2 and Λ(Q ) 	= −1. Conversely, for each of the two cases above, there exist ε0, ε1 ∈ F4 ⊆
Fq ⊆ Fq3 , satisfying the corresponding conditions.

4. Necessary conditions

In this section we prove the necessary conditions of Theorem 3.1. First we prove two general
lemmas that we will use in our proofs.

The following is a restatement of [4, Lemma 2.2]. For completeness we include a proof here.

Lemma 4.1. Let F be a finite field of characteristic 2. Let x, y ∈ F and t be a positive integer. We put

u = x + y and v = xy.

Then the following holds:

x2t+1 + y2t+1 = u2t+1 + [
vu2t+1−2 + v2u2t+1−22 + v22

u2t+1−23 + · · · + v2t−1
u2t+1−2t ]

.

Proof. We proceed by induction on t . First we assume that t = 1. Note that

u2+1 = (x + y)2+1

= (
x2 + y2)(x + y)

= x3 + y3 + x2 y + xy2

= x3 + y3 + xy(x + y).
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As the characteristic is 2, this is equivalent to

x3 + y3 = u2+1 + xy(x + y) = u2+1 + vu,

which completes the proof for t = 1.
Let t � 2 and assume that the lemma holds for t − 1, which is the induction hypothesis. We have

that 2t = 2t−1 + 2t−1 and hence

(x + y)2t+1 = (x + y)2t−1+1(x + y)2t−1
. (4.1)

By the induction hypothesis we obtain that

(x + y)2t−1+1 = x2t−1+1 + y2t−1+1

+ (
vu2t−1+1−2 + v2u2t−1+1−22 + · · · + v2t−2

u2t−1+1−2t−1)
. (4.2)

Note that

(
x2t−1+1 + y2t−1+1)(x + y)2t−1 = (

x2t−1+1 + y2t−1+1)(x2t−1 + y2t−1)
= x2t+1 + y2t+1 + (xy)2t−1(x + y)

= x2t+1 + y2t+1 + v2t−1u. (4.3)

Moreover

(
vu2t−1+1−2 + v2u2t−1+1−22 + · · · + v2t−2

u2t−1+1−2t−1)
(x + y)2t−1

= (
vu2t−1+1−2 + v2u2t−1+1−22 + · · · + v2t−2

u2t−1+1−2t−1)
u2t−1

= vu2t+1−2 + v2u2t+1−22 + · · · + v2t−2
u2t+1−2t−1

. (4.4)

Combining (4.1), (4.2), (4.3) and (4.4) we get that

u2t+1 = (x + y)2t+1

= x2t+1 + y2t+1 + vu2t+1−2 + v2u2t+1−22 + · · · + v2t−1
u2t+1−2t

,

which completes the proof. �
The following lemma gives an important tool that we will use. Its analog over F2 is given in the

proof of [4, Theorem 2.4]. By using almost the same arguments we obtain the following lemma.

Lemma 4.2. Let F4 ⊆ Fq ⊆ F with F finite and let ε1, ε2 ∈ F4 . Assume that there exist a,b ∈ F such that

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b.

We put

u = aq−1 + bq−1 and v = ab.
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Let q = 2t . Then we have that

vqε2 = ε2
1 + ε2

1

t−1∑
i=0

(
ε1 vq+1)2i

.

Proof. Let A = aq−1, B = bq−1, X = A + B , and Y = AB . Note that

X = aq−1 + bq−1 = u, and Y = (ab)q−1 = vq−1. (4.5)

Using Lemma 4.1 we have that

Aq+1 + Bq+1 = A2t+1 + B2t+1

= (A + B)q+1 + (
Y Xq+1−2 + Y 2 Xq+1−22 + · · · + Y q/2 Xq+1−q). (4.6)

We observe that

ε2

v
= aq2−1 + bq2−1 = Aq+1 + Bq+1. (4.7)

Hence using (4.5), (4.6) and (4.7) we obtain that

ε2

v
= uq+1 + (

vq−1uq+1−2 + v2(q−1)uq+1−22 + · · · + vq/2(q−1)uq+1−q). (4.8)

Multiplying (4.8) by vq+1 and noting that ε1 = uv we get that

vqε2 = ε
q+1
1 + (

vq+1ε
q+1−2
1 + v2(q+1)ε

(q+1)−4
1 + · · · + vq/2(q+1)ε

(q+1)−q
1

)
. (4.9)

As ε1 ∈ F4 ⊆ Fq , we have that ε
q
1 = ε1. Therefore using (4.9) we obtain that

vqε2 = ε2
1 + ε2

1

(
vq+1ε1 + v2(q+1)ε2

1 + · · · + vq/2(q+1)ε
q/2
1

)
= ε2

1 + ε2
1

t−1∑
i=0

(
ε1 vq+1)2i

,

which completes the proof. �
For the rest of this section we fix the following notation and assumptions. Let q � 4 be an integer

which is a power of 4. Let k � 4 be an integer and put m = � k
2 �. Let ε0, ε1, ε2 ∈ F4. For k � 8 let

ε3, . . . , εm−1 ∈ Fqk and let εm ∈ Fqk if k is odd and εm ∈ Fqm if k is even. Let Q : Fqk → Fq be the
quadratic form given by

Q (x) = Tr

(
x

m∑
i=0

εi x
qi

)
,

where Tr is the trace map from Fqk to Fq . We assume that the Fq-dimension of the radical of Q is
k − 2. Using Theorem 2.2 we obtain a,b ∈ Fqk such that {a,b} is linearly independent over Fq and
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ε1 = abq + aqb,

ε2 = abq2 + aq2
b,

...

εm−1 = abqm−1 + aqm−1
b. (4.10)

Moreover if k is odd, then

εm = abqm + aqm
b, (4.11)

and if k is even, then

aqm
b ∈ Fqm . (4.12)

We also have the following:

1. If Λ(Q ) = 1, then

ε0 = ab.

2. If Λ(Q ) = −1, then we obtain s ∈ Fq such that TrFq/F2 (s) = 1 and

ε0 = a2 + ab + sb2.

3. If Λ(Q ) = 0, then we obtain c ∈ Fqk such that {a,b, c} is linearly independent over Fq and

ε0 = c2 + ab.

Now we are ready to start to prove the necessary conditions of Theorem 3.1. First we show that
ε1 	= 0. Indeed, otherwise using (4.10) we have ε1 = abq + aqb, and hence

ab
(
aq−1 + bq−1) = 0.

As {a,b} is linearly independent over Fq , ab 	= 0 and then

aq−1 + bq−1 = 0.

This implies that (a/b)q−1 = 1, or equivalently,

a

b
= α ∈ Fq \ {0},

which is a contradiction to the fact that {a,b} is linearly independent over Fq .
In the rest of this section we prove the necessary conditions corresponding to the cases ε2 = 0,

ε2 = ε1 and ε2 	= ε1 in three subsections.
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4.1. Case ε2 = 0

In this subsection we consider the case that ε2 = 0.

Proposition 4.3. We keep the notation and assumptions as above. If ε2 = 0, then we have that

(1) 4 | k,
(2) a,b ∈ Fq2 ,
(3) ε1 = ε3 = ε5 = · · · = εm−1 , and ε2 = ε4 = ε6 = · · · = εm−2 = 0.

Proof. Using (4.10), Lemma 4.2 and the fact that ε2 = 0 we obtain that

0 = ε2
1 + ε2

1

t−1∑
i=0

(
ε1 vq+1)2i

, (4.13)

where v = ab. As ε1 	= 0, dividing (4.13) by ε2
1 we get that

1 =
t−1∑
i=0

(
ε1 vq+1)2i = ε1 vq+1 +

t−1∑
i=1

(
ε1 vq+1)2i

. (4.14)

Taking the square of (4.14) we have that

1 =
t−1∑
i=0

(
ε1 vq+1)2i+1 =

t∑
i=1

(
ε1 vq+1)2i = (

ε1 vq+1)2t +
t−1∑
i=1

(
ε1 vq+1)2i

. (4.15)

Adding (4.14) and (4.15) we obtain that

ε1 vq+1 = (
ε1 vq+1)2t = (

ε1 vq+1)q = ε1 v(q+1)q, (4.16)

where we use the fact that F4 ⊆ Fq and hence ε
q
1 = ε1. Note that (4.16) implies that

vq+1 ∈ Fq.

As v = ab 	= 0 (otherwise the set {a,b} is linearly dependent over Fq), then we have that

v(q+1)(q−1) = vq2−1 = 1,

in particular v ∈ Fq2 .
Recall that ε2 = 0 and

ε2 = v
(
aq2−1 + bq2−1).

As v 	= 0, therefore aq2−1 + bq2−1 = 0 and a/b ∈ Fq2 . Hence

v
a = ab

a = a2 ∈ Fq2 ,

b b
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which implies that a ∈ Fq2 as the characteristic is 2. Then using the fact that v = ab ∈ Fq2 we obtain
that b ∈ Fq2 .

Next we use (4.10) in order to prove (3) of the proposition. Using (4.10) and the fact that a,b ∈ Fq2

we obtain that

ε2 = abq2 + aq2
b = ab + ab = 0,

ε3 = abq3 + aq3
b = abq + aqb = ε1,

ε4 = abq4 + aq4
b = ab + ab = 0.

Continuing in this way we complete the proof of (3) of the proposition.
Finally we prove (1) of the proposition. First we show that k is even. Indeed, otherwise k is odd

and a,b ∈ Fqk and a,b ∈ Fq2 by (2), we have a,b ∈ Fq2 ∩ Fqk = Fq . This contradicts to the assumption
that {a,b} is linearly independent over Fq . Hence k is even. Then by (4.12) we have

abqm ∈ Fqm . (4.17)

As k is even and m = k/2, we have that

m =
{

even if k ≡ 0 mod 4,

odd if k ≡ 2 mod 4.
(4.18)

If k ≡ 2 mod 4, then by (4.17) and (4.18) we have that

abqm = abq ∈ Fq2 ∩ Fqm = Fq. (4.19)

Then

(
abq)q = aqbq2 = aqb ∈ Fq. (4.20)

Using (4.19) and (4.20) we get that

ε1 = abq + aqb = 0,

which is a contradiction. Therefore using (4.18) we complete the proof of the proposition. �
4.2. Case ε2 = ε1

In this subsection we consider the case that ε2 = ε1.

Proposition 4.4. We keep the notation and assumptions as above. If ε2 = ε1 , then we have that

(1) 3 | k,
(2) a,b ∈ Fq3 ,
(3) ε1 = ε4 = ε7 = · · · = εm−2 , ε2 = ε5 = ε8 = · · · = εm−1 = ε1 , and ε3 = ε6 = ε9 = · · · = εm−3 = 0.

Moreover εm = ε1 if k is odd.
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Proof. Using (4.10), Lemma 4.2 and the fact that ε2 = ε1, we obtain that

vqε1 = ε2
1 + ε2

1

t−1∑
i=0

(
ε1 vq+1)2i

, (4.21)

where v = ab. Dividing (4.21) by ε1 we get that

vq = ε1 + ε1

t−1∑
i=0

(
ε1 vq+1)2i

. (4.22)

Taking the square of (4.22) we have that

v2q = ε2
1 + ε2

1

t∑
i=1

(
ε1 vq+1)2i

= ε2
1 + ε2

1ε
q
1 vq(q+1) + ε2

1

t−1∑
i=1

(
ε1 vq+1)2i

= ε2
1 + vq(q+1) + ε2

1

t−1∑
i=1

(
ε1 vq+1)2i

, (4.23)

where we use the facts that F4 ⊆ Fq , ε
q
1 = ε1 and ε3

1 = 1.
Note that (4.21) is equivalent to

ε1 vq = ε2
1 + vq+1 +

t−1∑
i=1

(
ε1 vq+1)2i

. (4.24)

Adding (4.23) and (4.24) we get that

v2q + ε1 vq = vq+1 + vq(q+1). (4.25)

Dividing (4.25) by vq and rearranging the terms we conclude that

v + vq + vq2 = ε1. (4.26)

We consider the equation

Z 2 + Z + ε1 vq+1 = 0. (4.27)

We will show that the set of solutions of the equation in (4.27) is {vaq−1/ε1, vbq−1/ε1}. First note
that vaq−1/ε1 	= vbq−1/ε1. Indeed, otherwise aq−1 = bq−1 and hence a/b ∈ Fq , which implies a con-
tradiction to the fact that {a,b} is linearly independent over Fq . Using (4.10) we have

vaq−1

+ vbq−1

= aqb + abq

= 1.

ε1 ε1 ε1
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Moreover we also have(
vaq−1

ε1

)(
vbq−1

ε1

)
= a2b2aq−1bq−1

ε2
1

= ε1(ab)q+1 = ε1 vq+1.

These imply that {vaq−1/ε1, vbq−1/ε1} is the set of solutions of the equation in (4.27).
Let z be an arbitrary element of {vaq−1/ε1, vbq−1/ε1}. Using (4.27), its square, its 4-th power, . . . ,

and its q/2-th power we obtain that

z2 + z = ε1 vq+1,

z4 + z2 = (
ε1 vq+1)2

,

...

zq + zq/2 = (
ε1 vq+1)q/2

. (4.28)

Summing the equations in (4.28) we get that

zq + z =
t−1∑
i=0

(
ε1 vq+1)2i

. (4.29)

Multiplying (4.21) by ε1 we have

ε2
1 vq = 1 +

t−1∑
i=0

(
ε1 vq+1)2i

. (4.30)

Combining (4.29) and (4.30) we obtain

zq = z + 1 + ε2
1 vq. (4.31)

Taking the q-th power of (4.31) we get that

zq2 = zq + 1 + ε2
1 vq2

= (
z + 1 + ε2

1 vq) + 1 + ε2
1 vq2

= z + ε2
1 vq + ε2

1 vq2
. (4.32)

Using (4.31) and (4.32) we have

zq2+q = z2 + z
(
1 + ε2

1 vq + ε2
1 vq + ε2

1 vq2) + ε2
1 vq + ε2

1 vq2 + ε1 v2q + ε1 vq2+q

= (
z + ε1 vq+1) + z

(
1 + ε2

1 vq2) + ε2
1 vq + ε2

1 vq2 + ε1 v2q + ε1 vq2+q

= z
(
ε2

1 vq2) + (
ε2

1 vq + ε2
1 vq2 + ε1 vq+1 + ε1 v2q + ε1 vq2+q). (4.33)

From (4.26) we obtain that

ε1 vq+1 + ε1 v2q + ε1 vq2+q = ε1 vq(v + vq + vq2) = ε2
1 vq. (4.34)
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Combining (4.33) and (4.34) we conclude that

zq2+q = z
(
ε2

1 vq2) + ε2
1 vq2

. (4.35)

Then using (4.35) we get that

zq2+q+1 = z2(ε2
1 vq2) + zε2

1 vq2

= (
z + ε1 vq+1)ε2

1 vq2 + zε2
1 vq2

= vq2+q+1. (4.36)

For z = vaq−1/ε1, from (4.36) we obtain that

vq2+q+1 aq3−1

ε
q2+q+1
1

= vq2+q+1 and hence aq3−1 = 1, (4.37)

where we use that ε
q2+q+1
1 = ε3

1 = 1. Therefore a ∈ Fq3 . Similarly putting z = vbq−1/ε1 in (4.36) we
obtain that b ∈ Fq3 .

Next we prove (3) of the proposition. This part of the proof is similar to the proof of (3) of Propo-
sition 4.3. As a,b ∈ Fq3 , using (4.10) and (4.11) we obtain that

ε3 = abq3 + aq3
b = ab + ab = 0,

ε4 = abq4 + aq4
b = abq + aqb = ε1,

ε5 = abq5 + aq5
b = abq2 + aq2

b = ε2 = ε1,

ε6 = abq6 + aq6
b = ab + ab = 0.

Continuing in this way we complete the proof of (3) of the proposition.
Finally we prove (1) of the proposition. As a,b ∈ Fq3 and {a,b} is linearly independent over Fq ,

at least one of a,b is in Fq3 \ Fq . Recall that a,b ∈ Fqk . Then we obtain that 3 | k. Indeed, otherwise
if a ∈ Fq3 \ Fq (or b ∈ Fq3 \ Fq), then a ∈ Fq3 ∩ Fqk = Fq (or b ∈ Fq), which is a contradiction. This
completes the proof. �
4.3. Case ε2 	= ε1

In this subsection we consider the case that ε2 /∈ {0, ε1}.

Proposition 4.5. We keep the notation and assumptions as above. If ε2 /∈ {0, ε1}, then we have that

(1) 5 | k,
(2) a,b ∈ Fq5 ,
(3) ε1 = ε6 = ε11 = · · · = εm−4 , ε2 = ε7 = ε12 = · · · = εm−3 , ε3 = ε8 = ε13 = · · · = εm−2 = ε2 , ε4 = ε9 =

ε14 = · · · = εm−1 = ε1 , and ε5 = ε10 = ε15 = · · · = εm−5 = 0.
Moreover εm = ε2 if k is odd.
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Proof. Using (4.10) and Lemma 4.2 we obtain that

vqε2 = ε2
1 + ε2

1

t−1∑
i=0

(
ε1 vq+1)2i = ε2

1 + ε2
1ε1 vq+1 + ε2

1

t−1∑
i=1

(
ε1 vq+1)2i

. (4.38)

Taking the square of (4.38) we get that

v2qε2
2 = ε1 + ε1

t−1∑
i=0

(
ε1 vq+1)2i+1 = ε1 + ε1ε

q
1 vq(q+1) + ε1

t−1∑
i=1

(
ε1 vq+1)2i

. (4.39)

Multiplying (4.39) by ε1 and then adding the result to (4.38) we obtain that

v2qε1ε
2
2 + vqε2 = (

ε2
1 + ε2

1ε
q
1 vq(q+1)

) + (
ε2

1 + ε2
1ε1 vq+1) = vq2+q + vq+1. (4.40)

Dividing (4.40) by vq we get that

vqε1ε
2
2 + ε2 = vq2 + v. (4.41)

Taking the q-th power of (4.41) and then multiplying the result with ε2
1ε2 we obtain that

vq2 + ε2
1ε2

2 = ε2
1ε2 vq3 + ε2

1ε2 vq. (4.42)

Taking the q2-th power of (4.41) we have that

vq3
ε1ε

2
2 + ε2 = vq4 + vq2

. (4.43)

Adding (4.41), (4.42) and (4.43) we get that

vq4 + (
ε2

1ε2 + ε1ε
2
2

)
vq3 + (

ε2
1ε2 + ε1ε

2
2

)
vq + v = ε2

1ε2
2 . (4.44)

Note that ε1 + ε2 	= 0 as ε2 	= ε1. Moreover, as ε1ε2 	= 0, we have

ε1 + ε2 	= ε1 and ε1 + ε2 	= ε2.

Therefore the set {ε1, ε2, ε1 + ε2} consists of the three distinct nonzero elements of F4 and hence

ε1ε2(ε1 + ε2) = ε2
1ε2 + ε1ε

2
2 = 1. (4.45)

Using (4.44) and (4.45) we get that

vq4 + vq3 + vq2 + vq + v = ε2
1ε2

2 . (4.46)

Recall from the proof of Proposition 4.4 that the set {vaq−1/ε1, vbq−1/ε1} is the set of the solutions
of the equation

Z 2 + Z = ε1 vq+1. (4.47)
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In the rest of this proof, we follow a similar but more involved method than the one in the proof of
Proposition 4.4. Let z be an arbitrary element of {vaq−1/ε1, vbq−1/ε1}. As in (4.29) using (4.47) we
obtain that

zq + z =
t−1∑
i=0

(
ε1 vq+1)2i

. (4.48)

Multiplying (4.38) with ε1 we get that

t−1∑
i=0

(
ε1 vq+1)2i = 1 + ε1ε2 vq. (4.49)

Combining (4.48) and (4.49) we have

zq = z + 1 + ε1ε2 vq. (4.50)

Using (4.50) and (4.47) we obtain that

zq+1 = z2 + z
(
1 + ε1ε2 vq)

= (
z + ε1 vq+1) + z

(
1 + ε1ε2 vq)

= z
(
ε1ε2 vq) + ε1 vq+1. (4.51)

Taking the q-th power of (4.51) and then using (4.50) we have

zq2+q = zq(ε1ε2 vq2) + ε1 vq2+q

= (
z + 1 + ε1ε2 vq)(ε1ε2 vq2) + ε1 vq2+q

= z
(
ε1ε2 vq2) + ε1ε2 vq2 + ε2

1ε2
2 vq2+q + ε1 vq2+q.

Then multiplying by z and using (4.47) we get that

zq2+q+1 = z2(ε1ε2 vq2) + z
(
ε1ε2 vq2 + ε2

1ε2
2 vq2+q + ε1 vq2+q)

= (
z + ε1 vq+1)(ε1ε2 vq2) + z

(
ε1ε2 vq2 + ε2

1ε2
2 vq2+q + ε1 vq2+q)

= z
(
ε2

1ε2
2 vq2+q + ε1 vq2+q) + ε2

1ε2 vq2+q+1. (4.52)

Taking the q-th power of (4.52) and then using (4.50) we have

zq3+q2+q = zq(ε2
1ε2

2 vq3+q2 + ε1 vq3+q2) + ε2
1ε2 vq3+q2+q

= (
z + 1 + ε1ε2 vq)(ε2

1ε2
2 vq3+q2 + ε1 vq3+q2) + ε2

1ε2 vq3+q2+q

= z
(
ε2

1ε2
2 vq3+q2 + ε1 vq3+q2) + ε2

1ε2
2 vq3+q2 + ε1 vq3+q2 + vq3+q2+q.

Then multiplying by z and then using (4.47) we get that
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zq3+q2+q+1 = (
z + ε1 vq+1)(ε2

1ε2
2 vq3+q2 + ε1 vq3+q2) + z

(
ε2

1ε2
2 vq3+q2 + ε1 vq3+q2 + vq3+q2+q)

= z
(

vq3+q2+q) + (
ε2

1 + ε2
2

)
vq3+q2+q+1. (4.53)

Taking the q-th power of (4.53) and then using (4.50) we obtain that

zq4+q3+q2+q = (
z + 1 + ε1ε2 vq)(vq4+q3+q2) + (

ε2
1 + ε2

2

)
vq4+q3+q2+q

= z
(

vq4+q3+q2) + (
ε2

1 + ε2
2 + ε1ε2

)
vq4+q3+q2+q + vq4+q3+q2

. (4.54)

As ε1 	= ε2 we have that ε1ε2 	= ε2
1 , ε1ε2 	= ε2

2 and ε2
1 	= ε2

2 . Therefore the set {ε2
1 , ε2

2 , ε1ε2} consists of
the three distinct nonzero elements of F4 and hence

ε2
1 + ε2

2 + ε1ε2 = 0. (4.55)

Combining (4.54) and (4.55) we get that

zq4+q3+q2+q = z
(

vq4+q3+q2) + vq4+q3+q2
.

Then multiplying by z and using (4.47) we obtain that

zq4+q3+q2+q+1 = (
z + ε1 vq+1)(vq4+q3+q2) + zvq4+q3+q2 = ε1 vq4+q3+q2+q+1. (4.56)

For z = vaq−1/ε1 in (4.56) we obtain that

vq4+q3+q2+q+1 aq5−1

ε
q4+q3+q2+q+1
1

= ε1 vq4+q3+q2+q+1 (4.57)

and hence

aq5−1 = ε5
1ε1 = ε6

1 = 1. (4.58)

Therefore a ∈ Fq5 . Similarly putting z = vbq−1/ε1 in (4.56) we conclude that b ∈ Fq5 .
Next we prove (3) of the proposition, whose proof is slightly different from the ones in Proposi-

tions 4.3 and 4.4. As a,b ∈ Fq5 , using (4.10) and (4.11) we obtain that

ε5 = abq5 + aq5
b = ab + ab = 0,

ε6 = abq6 + aq6
b = abq + aqb = ε1,

ε7 = abq7 + aq7
b = abq2 + aq2

b = ε2,

ε8 = abq8 + aq8
b = abq3 + aq3

b = ε3,

ε9 = abq9 + aq9
b = abq4 + aq4

b = ε4. (4.59)

Here we also use the fact that ε3 ∈ Fq ⊆ Fq2 and ε4 ∈ Fq . We have

ε3 = ε
q2

3 = (
abq3 + aq3

b
)q2 = aq2

b + abq2 = ε2,

ε4 = ε
q
4 = (abq4 + aq4

b)q = aqb + abq = ε1. (4.60)
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Combining (4.59) and (4.60) we obtain that

ε3 = ε2, ε4 = ε1, ε5 = 0, ε6 = ε1, ε7 = ε2.

Continuing in this way we complete the proof of (3) of the proposition.
Finally we prove (1) of the proposition. As a,b ∈ Fqk and {a,b} is linearly independent over Fq ,

either a or b is in Fq5 \ Fq . Then there exists an element in Fqk which is also in Fq5 \ Fq . This implies
that Fq5 ⊆ Fqk and hence 5 | k, which completes the proof. �
5. Sufficient conditions

In this section we prove the sufficient conditions of Theorem 3.1. We present our results in three
subsections, which correspond to the subsections of Section 4. We note that combining the necessary
and sufficient conditions in Theorem 3.1, we obtain various nonexistence results that we present in
Section 7 below. We find it interesting to note that the result in this section are quite rigid. Namely
small changes to the statements in Sections 5.1, 5.2 and 5.3 below transform these existence results
to the corresponding nonexistence results of Section 7.2.

5.1. Case ε2 = 0

In this subsection we obtain the sufficiency conditions corresponding to Section 4.1. Namely we
prove the following proposition.

Proposition 5.1. Let q = 4r , ε0 ∈ F4 and ε1 ∈ F4 \ {0}. We have the following:

(1) If ε0 	= 0, ε0 	= ε1 and r is odd, then there exist a,b ∈ Fq2 such that {a,b} is linearly independent over Fq

and

ε0 = ab,

ε1 = abq + aqb.

(2) Assume that one of the following holds:
i. ε0 	= 0, ε0 	= ε1 and r is even,

ii. ε0 = 0 or ε0 = ε1 (and r is an arbitrary positive integer).
Then there exist a,b ∈ Fq2 and s ∈ Fq such that {a,b} is linearly independent over Fq, TrFq/F2 (s) = 1, and

ε0 = a2 + ab + sb2,

ε1 = abq + aqb.

Proof. First we prove (1) and we assume that ε0 	= 0, ε0 	= ε1 and r is odd. As r is odd, it is easy to
observe that q = 4r ≡ −1 mod 5 and hence 5 | (q + 1). Let ω be a primitive element in Fq2 and for
i ∈ {1,2} we set that

αi = ωi q+1
5 , ai = αi and bi = ε0

αi
.

Note that it is enough to prove that

{
aq−1

i + bq−1
i : i ∈ {1,2}} = F4 \ F2. (5.1)
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Indeed, for ε0 ∈ F4 \ {0}, we have that

{ε1/ε0: ε1 ∈ F4, ε1 	= 0 and ε1 	= ε0} = F4 \ F2.

Let A = ω
q2−1

5 . Note that α
q−1
1 = A and α

q−1
2 = A2. Hence (5.1) is equivalent to

{
A + 1

A
, A2 + 1

A2

}
= {

A + A4, A2 + A3} = F4 \ F2. (5.2)

As A5 = 1 and ω is primitive we have A 	= 1,

min
{

i � 1: Ai = 1
} = 5 and A4 + A3 + A2 + A + 1 = 0. (5.3)

Hence using (5.3) we obtain that

A + A4 	= A2 + A3, A + A4 /∈ {0,1} and A2 + A3 /∈ {0,1}. (5.4)

Combining (5.2) and (5.4) we note that it is enough to prove that

(
A + A4)3 = (

A2 + A3)3 = 1. (5.5)

We have

(
A + A4)3 = A3 + A2 A4 + A A8 + A12 = A3 + A + A4 + A2, and(

A2 + A3)3 = A6 + A4 A3 + A2 A6 + A9 = A + A2 + A3 + A4. (5.6)

Combining (5.3) and (5.6) we obtain (5.5), which completes the proof of (1).
Next we prove (2) and assume that one of the conditions in (2) holds. Let s ∈ Fq with TrFq/F2 (s) = 1

and let γ be an arbitrary element of F4 \ F2. We put

θ =
⎧⎨
⎩

0 if ε0 = 0,

1 if ε0 = ε1,

γ if ε0 	= 0, ε0 	= ε1 and r is even.

Note that

TrFq/F2(1) = 2r = 0,

and if r is even

TrFq/F2(γ ) = TrF4/F2 ◦TrFq/F4(γ ) = TrF4/F2(rγ ) = 0.

Therefore TrFq/F2 (s + θ) = TrFq/F2 (s) + TrFq/F2 (θ) = 1 + 0 = 1.
We consider the polynomial

x2 + x + s + θ ∈ Fq[x]. (5.7)
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As TrFq/F2(s + θ) = 1, using Hilbert’s Theorem 90 (cf. [14, Theorem 2.25]) we obtain that the polyno-
mial in (5.7) is irreducible. Therefore there exists α ∈ Fq2 \ Fq such that

α2 + α + s + θ = 0. (5.8)

Using (5.8), its square, its 4-th power, . . . , and its q/2-th power we obtain that

α2 + α = s + θ,

α4 + α2 = (s + θ)2,

α8 + α4 = (s + θ)4,

...

αq + αq/2 = (s + θ)q/2. (5.9)

Summing the equations in (5.9) we get that

αq + α = TrFq/F2(s + θ) = 1. (5.10)

We put

a = ε2
1α and b = ε2

1 .

As α ∈ Fq2 \ Fq , the set {a,b} is linearly independent over Fq . Moreover we have

a2 + ab + sb2 = (
α2 + α + s

)
b2

= θε1

=
⎧⎨
⎩

0 if ε0 = 0,

ε1 if ε0 = ε1,

γ ε1 if ε0 	= 0, ε0 	= ε1 and r is even.

Using (5.10) we also have

abq + aqb = (
α + αq)bq+1 = bq+1 = (

ε2
1

)q
ε2

1 = ε2
1ε2

1 = ε1.

This completes the proof of (1). �
5.2. Case ε2 = ε1

In this subsection we obtain the sufficiency conditions corresponding to Section 4.2. It is given in
the following proposition.
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Proposition 5.2. Let q be a power of 4. Let ε0 ∈ F4 and ε1 ∈ F4 \ {0}. We have the following:

(1) If ε0 = ε1 (in particular ε0 	= 0), then there exist a,b ∈ Fq3 such that {a,b} is linearly independent over
Fq and

ε0 = ab,

ε1 = abq + aqb, and

abq2 + aq2
b = abq + aqb.

(2) If ε0 	= ε1 (for example if ε0 = 0), then there exists {a,b, c} ⊆ Fq3 such that {a,b, c} is linearly indepen-
dent over Fq and

ε0 = c2 + ab,

ε1 = abq + aqb, and

abq2 + aq2
b = abq + aqb.

Proof. We first prove (1). Assume that ε0 = ε1. Let ω be a primitive element in Fq3 . As q ≡ 1 mod 3,

we have 3 | q2 + q + 1. We set α = ω(q2+q+1)/3. Then the order of α is 3(q − 1), α3(q−1) − 1 = (αq−1 −
1)(α2(q−1) + αq−1 + 1) and hence

α2(q−1) + αq−1 + 1 = 0. (5.11)

We put a = ε2
1α−2 and b = ε2

1α2. Then b
a = α4 and α4(q−1) 	= 1, that is, b

a /∈ Fq , which implies that
{a,b} is linearly independent over Fq . Note that 2(q + 1) ≡ 2 · 2 ≡ 1 mod 3 and hence 2(q2 − 1) =
2(q − 1)(q + 1) ≡ q − 1 mod 3(q − 1). Hence we have that

α2(q2−1) = αq−1, α−2(q2−1) = α2(q−1), α−(q−1) = α2(q−1). (5.12)

Using (5.11) and (5.12) we obtain that

ab = ε1,

abq + aqb = ε
2(q+1)
1 α2(q−1) + ε

2(q+1)
1 α−2(q−1) = ε1,

abq2 + aq2
b = ε

2(q2+1)
1 α2(q2−1) + ε

2(q2+1)
1 α−2(q2−1) = ε1.

This completes the proof of (1).
Next we prove (2). Assume that ε0 	= ε1. We keep ω and α as in the proof of (1) and let β = α2.

Note that gcd(2,3(q − 1)) = 1 and hence the order of β is the same as the order of α, which is
3(q − 1). We still have a = ε2

1β−1 and b = ε2
1β . Then by the proof of (1) we have ab = ε1, abq +

aqb = ε1 and abq2 + aq2
b = ε1.

Let η ∈ F4 \ {0}, c = η2 and ε0 = η + ε1. It is enough to prove that the set {η2, ε2
1β−1, ε2

1β} is
linearly independent over Fq . As η2, ε2

1 ∈ F4, it is equivalent to show that the set {1, β−1, β} is linearly
independent over Fq . First we note that β /∈ Fq2 . Indeed, otherwise the order of β should divide

q2 − 1 = (q + 1)(q − 1), and hence

3(q − 1) | (q + 1)(q − 1) ⇒ 3 | (q + 1),
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which is a contradiction as q ≡ 1 mod 3. Now we show that {1, β−1, β} is linearly indepen-
dent over Fq . Otherwise there exist c1, c2, c3 ∈ Fq such that c1 + c2β

−1 + c3β = 0, or equivalently
c2 + c1β + c3β

2 = 0. We consider the polynomial

c2 + c1x + c3x2 ∈ Fq[x]. (5.13)

If c3 = 0, then any root of the polynomial in (5.13) is in Fq . If c3 	= 0, then the polynomial in (5.13) is
reducible or irreducible over Fq . If it is reducible, then its roots are only in Fq ⊆ Fq2 . If it is irreducible,
then its roots are in Fq2 . As β is a root of the polynomial in (5.13), these imply that β ∈ Fq2 , which is
a contradiction. This completes the proof of (2). �
5.3. Case ε2 	= ε1

In this subsection we obtain the sufficiency conditions corresponding to Section 4.3. This is the
most difficult part. Nevertheless there is a special subcase, which is much easier. We start with this
subcase in the following lemma.

Lemma 5.3. Let q = 4r , ε0 ∈ F4 , ε1, ε2 ∈ F4 \ {0} and ε2 	= ε1 . If ε0 /∈ {0, ε1, ε2} and r is even, then there exist
a,b ∈ Fq5 such that {a,b} is linearly independent over Fq and

ε0 = ab,

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b.

Proof. As q = 4r and r is even, we have q ≡ 1 mod 5 and hence 5 | q4 + q3 + q2 + q + 1. Let ω be a

primitive element in Fq5 and define β = ω
q4+q3+q2+q+1

5 . Then the order of β is 5(q − 1). Let

A = β(q−1), u1 = A3 + A2 and u2 = A + A4. (5.14)

As A5 = 1 and ω is primitive, we have A 	= 1,

min
{

i � 1: Ai = 1
} = 5 and A4 + A3 + A2 + A + 1 = 0. (5.15)

Moreover u2
1 = (A3 + A2)2 = A6 + A4 = A + A4 = u2, u2

2 = (A + A4)2 = A2 + A8 = A2 + A3 = u1 and
hence u1 and u2 are the roots of the polynomial x2 + x + 1 ∈ F2[x]. In particular u1, u2 ∈ F4. Using
also (5.14) and (5.15) we obtain that

u1 	= u2, {u1, u2} = F4 \ F2.

We first set a = ε2
0β and b = ε2

0β−1. They are independent over Fq as (a/b)q−1 = β2(q−1) 	= 1. Now,
we compute

ab = ε0,

abq + aqb = ε
2(1+q)
0

(
β1−q + βq−1) = ε0

(
A−1 + A

) = ε0u2,

abq2 + aq2
b = ε

2(1+q2)
0

(
β1−q2 + βq2−1) = ε0

(
A−(1+q) + Aq+1) = ε0u1,

where we use that q ≡ 1 mod 5 and hence Aq+1 = A2, A−(1+q) = A3.
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Similarly if we set a = ε2
0β2 and b = ε2

0β−2, then we obtain that {a,b} is linearly independent over
Fq and

ab = ε0,

abq + aqb = ε
2(1+q)
0

(
β2(1−q) + β2(q−1)

) = ε0
(

A2 + A3) = ε0u1,

abq2 + aq2
b = ε

2(1+q2)
0

(
β2(1−q2) + β2(q2−1)

) = ε0
(

A + A4) = ε0u2.

This completes the proof. �
Next we give a very technical lemma. It is related to [4, Lemma 2.3]. We find both [4, Lemma 2.3]

and the following lemma very interesting. Using the following lemma we complete the sufficiency
conditions in the most difficult case in Proposition 5.5 below. We have obtained the statement of
the following lemma using various ad hoc techniques. Its statement complies exactly with the tools
we need in order to complete the sufficiency conditions of the remaining cases of Theorem 3.1 in
Proposition 5.5 below.

Lemma 5.4. Let n be a non-negative integer and q0 = 4(5n) . Let e,d ∈ F4\{0} with e 	= d. Let f (x) ∈ F4[x] be
the polynomial depending on q0 , e and d defined as

f (x) = xq0+1(1 + ex−2 + e2x−4 + ex−8 + e2x−16 + · · · + e2x−q0
) + d. (5.16)

Let y be a root of f (x) in an extension field of Fq0 . Then the following hold:

(1) y ∈ Fq5
0
\Fq0 .

(2) y2q0 + de2 yq0+1 + y2 = d2e2 .

(3) yq2
0+1 + y2q0 = d2e2 .

(4) yq3
0+1 + yq2

0+q0 = e.

Proof. As y is a root of f (x) we have

1 + ey−2 + e2 y−4 + ey−8 + · · · + e2 y−q0 = dy−(q0+1). (5.17)

Taking the square of (5.17) we get

1 + e2 y−4 + ey−8 + e2 y−16 + · · · + ey−2q0 = d2 y−2(q0+1). (5.18)

Adding (5.17) and (5.18), we obtain

ey−2 + ey−2q0 = dy−(q0+1) + d2 y−2(q0+1). (5.19)

Multiplying (5.19) by e2 y2q0+2 we get the identity in (2) of the lemma.
Next we prove the identity in (3) of the lemma. Multiplying (2) by de2 y−2 we have

de2 y2q0−2 + d2eyq0−1 = de2 + ey−2. (5.20)

Using (5.20), its square, its 4-th power, . . . , and its q0/2-th power we obtain that
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de2 y2(q0−1) + d2eyq0−1 = de2 + ey−2,

d2ey4(q0−1) + de2 y2(q0−1) = d2e + e2 y−4,

de2 y8(q0−1) + d2ey4(q0−1) = de2 + ey−8,

...

d2eyq0(q0−1) + de2 y
q0
2 (q0−1) = d2e + e2 y−q0 . (5.21)

As e,d ∈ F4\{0} with e 	= d we have that de2 ∈ F4 \ F2. Then de2 + (de2)2 = de2 + d2e = 1. Moreover
q0 = 4(5n) = 2(2·5n) and hence the number of equations in (5.21) is 2 · 5n . Therefore summing the
equations in (5.21), for the right-hand side we get

5n(de2 + d2e
) + (

ey−2 + e2 y−4 + ey−8 + · · · + e2 y−q0
)

= 1 + (
ey−2 + e2 y−4 + ey−8 + · · · + e2 y−q0

)
= dy−(q0+1), (5.22)

where we use (5.17) in the third equation in (5.22). Summing the equations in (5.21), for the left-hand
side we have

d2eyq0(q0−1) + d2eyq0−1. (5.23)

Combining (5.22) and (5.23) we obtain that

d2e
(

yq0(q0−1) + yq0−1) = dy−(q0+1). (5.24)

Multiplying (5.24) by de2 yq0+1 we prove the identity in (3) of the lemma.
Now we prove the identity in (4) of the lemma. Multiplying (5.24) by de2 we obtain

yq2
0−q0 + yq0−1 = d2e2 y−(q0+1). (5.25)

Taking the q0-th power of (5.25) we get

yq3
0−q2

0 + yq2
0−q0 = d2e2 y−(q2

0+q0). (5.26)

Adding (5.25) and (5.26) we have

yq3
0−q2

0 + yq0−1 = d2e2 y−(q0+1) + d2e2 y−(q2
0+q0). (5.27)

Multiplying (5.27) by yq2
0+1 we arrive

yq3
0+1 + yq2

0+q0 = d2e2 yq2
0−q0 + d2e2 y−q0+1. (5.28)

Note that adding identities in (2) and (3) of the lemma we have

yq2
0+1 = de2 yq0+1 + y2. (5.29)



F. Özbudak et al. / Finite Fields and Their Applications 18 (2012) 396–433 421
Multiplying (5.29) by d2e2 y−q0−1 we get

d2e2 yq2
0−q0 + d2e2 y−q0+1 = e. (5.30)

Combining (5.28) and (5.30) we prove the identity in (4) of the lemma.
It remains to prove the identity in (1) of the lemma. Taking the q0-th power of (5.29) we have

yq3
0+q0 = de2 yq2

0+q0 + y2q0 . (5.31)

Multiplying (5.31) by y−q0+1 we get

yq3
0+1 = de2 yq2

0+1 + yq0+1. (5.32)

Taking the q0-th power of (5.32) we obtain

yq4
0+q0 = de2 yq3

0+q0 + yq2
0+q0 . (5.33)

Multiplying (5.31) by de2 and adding to (5.33) we have

yq4
0+q0 = (

d2e + 1
)

yq2
0+q0 + de2 y2q0 . (5.34)

Multiplying (5.34) by y−q0+1 we get

yq4
0+1 = (

d2e + 1
)

yq2
0+1 + de2 yq0+1. (5.35)

Taking the q0-th power of (5.35) we obtain

yq5
0+q0 = (

d2e + 1
)

yq3
0+q0 + de2 yq2

0+q0 . (5.36)

Multiplying (5.36) by y−q0 we get

yq5
0 = (

d2e + 1
)

yq3
0 + de2 yq2

0 . (5.37)

Dividing (5.29) by y and then taking the q0-th power of the result we obtain the identities

yq2
0 = de2 yq0 + y,

yq3
0 = de2 yq2

0 + yq0 . (5.38)

Using (5.37) and the identities in (5.38) we obtain

yq5
0 = (

d2e + 1
)(

de2 yq2
0 + yq0

) + de2 yq2
0
(
1 + de2 + de2)yq2

0 + (
d2e + 1

)
yq0de2 yq0 + y

+ (
d2e + 1

)
yq0

(
de2 + d2e + 1

)
yq0 + y. (5.39)

Note that de2 ∈ F4 \ F2 as d 	= e and e,d ∈ F4 \ {0}. Hence de2 + d2e + 1 = α2 + α + 1 = 0, where α is
a primitive element in F4. Hence using (5.39) we get

yq5
0 = y,
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which proves that y ∈ Fq5
0
. Assume that y ∈ Fq0 . Then using say (5.38), we obtain

y = (
de2 + 1

)
y,

which implies that de2 = 0 as y 	= 0. This completes the proof. �
The following proposition gives the sufficiency conditions corresponding to Section 4.3.

Proposition 5.5. Let q = 4r , ε0 ∈ F4 , ε1, ε2 ∈ F4 \ {0} and ε2 	= ε1 . We have the following:

(1) If ε0 /∈ {0, ε1, ε2} and r is even, then there exist a,b ∈ Fq5 such that {a,b} is linearly independent over Fq
and

ε0 = ab,

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b.

(2) If ε0 /∈ {0, ε1, ε2} and r is odd, then there exist a,b ∈ Fq5 and s ∈ Fq such that {a,b} is linearly indepen-
dent over Fq, TrFq/F2 (s) = 1, and

ε0 = a2 + ab + sb2,

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b.

(3) If ε0 ∈ {0, ε1, ε2}, then there exist a,b, c ∈ Fq5 such that {a,b, c} is linearly independent over Fq, and

ε0 = c2 + ab,

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b.

Proof. Let n be the non-negative integer and t0 be the positive integer such that r = 5nt0 and
gcd(5, t0) = 1. We set the positive integer q0, as q0 = 45n

and hence we have q = qt0
0 . Note that

Fq0 ⊆ Fq and Fq5
0
⊆ Fq5 .

Let e,d ∈ F4 \ {0} be arbitrary elements with e 	= d, which will be determined later. Let f (x) be
the polynomial given in (5.16) depending on q0, e and d. Let y be a root of f (x) in some extension
field of Fq0 . By (1) of Lemma 5.4, we have y ∈ Fq5

0
⊆ Fq5 and y /∈ Fq0 . As gcd(5, t0) = 1 we have

Fq5
0

∩ Fq = Fq5
0

∩ F
q

t0
0

= Fq0 . Therefore we have even y /∈ Fq . Indeed, otherwise y ∈ Fq5
0

∩ Fq = Fq0 ,

which is a contradiction to (1) of Lemma 5.4.
First we prove (3) of the proposition. Let c1 ∈ F4\{0} and c2 ∈ F4\{0,1} be arbitrary elements to

be determined later. We put

a = yq0 , b = y, and c = c1 + c2(a + b).

We first prove that {a,b, c} is linearly independent over Fq . Indeed, otherwise there exist
v1, v2, v3 ∈ Fq , not all zero, such that

v1 yq0 + v2 y + v3c1 + v3 yq0 + v3 y = 0. (5.40)
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If v1 + v3 = 0, then from (5.40) we have

(v2 + v3)y + v3c1 = 0. (5.41)

If also v2 + v3 = 0, then v3 = 0 by (5.41). This implies that v1 = v2 = v3 = 0, which is a contradiction.
If instead v2 + v3 	= 0, then by (5.41) we get y ∈ Fq , which is a contradiction as well (see (1) of
Lemma 5.4). Hence we have v1 + v3 	= 0. Then dividing (5.40) by v1 + v3 we obtain that there exist
u0, u1 ∈ Fq such that

yq0 = u1 y + u0. (5.42)

By (2) of Lemma 5.4, we have

y2q0 + de2 yq0+1 + y2 + d2e2 = 0. (5.43)

Combining (5.42) and (5.43) we conclude that

0 = (u1 y + u0)
2 + de2(u1 y2 + u0 y

) + y2 + d2e2

= y2(1 + u2
1 + u1de2) + y

(
u0de2) + (

u2
0 + d2e2). (5.44)

If 1 + u2
1 + u1de2 	= 0 or u0de2 	= 0, then by (5.44) y is a root of a polynomial of degree 2 or degree 1

in Fq[x]. This implies that y ∈ Fq2 and hence y ∈ Fq2 ∩ Fq5 = Fq , which is a contradiction. Hence for
the coefficients in (5.44) we have

1 + u2
1 + u1de2 = u0de2 = u2

0 + d2e2 = 0. (5.45)

As d, e ∈ F4 \ {0}, using (5.45) we obtain that u0 = 0, which also leads the contradiction d2e2 = 0. This
proves that {a,b, c} is linearly independent over Fq .

Next we compute the values c2 + ab, abq + aqb and abq2 + aq2
b. Throughout these computations

we use the properties of the arithmetic of F4 given in Table 2. We have

c2 + ab = (
c1 + c2

(
yq0 + y

))2 + yq0+1

= c2
1 + c2

2 y2q0 + c2
2 y2 + yq0+1

= c2
1 + c2

2

(
de2 yq0+1 + y2 + d2e2) + c2

2 y2 + yq0+1

= (
c2

2de2 + 1
)

yq0+1 + (
c2

1 + c2
2d2e2)

= c2
1 + c2

2d2e2, (5.46)

where we use (2) of Lemma 5.4 and Table 2 (see the column corresponding to de2c2
2 +1) for the third

and fifth equations in (5.46), respectively.
Recall that t0 is a positive integer with gcd(5, t0) = 1 and q = qt0

0 . If t0 ≡ 1 mod 5, then as y ∈ Fq5
0

we have yq = yq0 and

abq + aqb = yq0 yq + yq0q y = y2q0 + yq2
0+1 = d2e2, (5.47)

where we use (3) of Lemma 5.4. Moreover we have
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Table 2
Some equalities in F4 = {0,1,α,α2} where α is a root of the primitive polynomial x2 + x + 1 ∈ F2[x].

d e c2 c1 c2
1 + c2

2d2e2 d2e2 de2c2
2 + 1 Line number

1 α α2 1 0 α2 0 line 1
α α α2 0 line 2
α2 α2 α2 0 line 3

α2 α 1 0 α 0 line 4
α α α 0 line 5
α2 α2 α 0 line 6

α 1 α 1 α2 α2 0 line 7
α 1 α2 0 line 8
α2 0 α2 0 line 9

α2 α2 1 α2 1 0 line 10
α 1 1 0 line 11
α2 0 1 0 line 12

α2 1 α2 1 α α 0 line 13
α 1 α 0 line 14
α2 0 α 0 line 15

α α 1 α 1 0 line 16
α 1 1 0 line 17
α2 0 1 0 line 18

abq2 + aq2
b = yq0 yq2 + yq0q2

y = yq2
0+q0 + yq3

0+1 = e, (5.48)

where we use (4) of Lemma 5.4.
Similarly using Lemma 5.4 we obtain the following results:

If t0 ≡ 2 mod 5, then we have yq = yq2
0 and

abq + aqb = e,

abq2 + aq2
b = d2e2. (5.49)

If t0 ≡ 3 mod 5, then we have yq = yq3
0 and

abq + aqb = e,

abq2 + aq2
b = d2e2. (5.50)

If t0 ≡ 4 mod 5, then we have yq = yq4
0 and

abq + aqb = d2e2,

abq2 + aq2
b = e. (5.51)

If t0 ≡ 1 mod 5, then combining (5.46), (5.47), (5.48) and Table 2 we complete the proof of (3) of
the proposition. If t0 ≡ 2,3 or 4 mod 5, similarly using (5.49), (5.50) or (5.51), respectively, instead
of (5.47) and (5.48), we complete the proof of (3) of the proposition. For example, if ε1 = 1, then
ε2 ∈ F4 \ {0, ε1} = {α,α2} and ε0 ∈ {0, ε1, ε2}. Hence there are 6 values that we need to prove that all
of these values are assumed, which are

(ε0, ε1, ε2) = {
(0,1,α),

(
0,1,α2), (1,1,α),

(
1,1,α2), (α,1,α),

(
α2,1,α2)}.

If t0 ≡ 1 mod 5, then we show that all of these values are assumed using lines 18, 12, 17, 11, 16 and
10 of Table 2.
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Note that for ε1 = α there are 6 such values and for ε1 = α2 there are 6 such values. Totally there
are 18 distinct values which correspond one-to-one to 18 lines of Table 2. This completes the proof
of (3) of the proposition.

Next we prove (2) of the proposition. Assume that r is odd. We put

a = de2 yq0 , b = d2ey and s = de2 ∈ F4 ⊆ Fq.

As d, e ∈ F4 \ {0} with d 	= e, de2 ∈ F4 \ {0,1}. Then TrF4/F2 (de2) = α + α2 = 1, where α is a primitive
element in F4. As r is odd we conclude that

TrFq/F2(s) = TrF4/F2 ◦TrF4r /F4(s) = TrF4/F2

(
rde2) = TrF4/F2

(
de2) = 1. (5.52)

First we show that {a,b} is linearly independent over Fq . Note that in the beginning of the proof
of (3) above we have proved that the set {yq0 , y, c}, where c is a certain element of Fq5 , is linearly
independent over Fq . This implies in particular that {yq0 , y} is linearly independent over Fq . Hence
as de2,d2e ∈ F4 ⊆ Fq , the set {a,b} = {de2 yq0 ,d2ey} is also linearly independent over Fq .

It remains to compute the values of a2 +ab + sb2, abq +aqb and abq2 +aq2
b. Using similar methods

as in the proof of (3) of the proposition above we obtain that

a2 + ab + sb2 = d,

abq + aqb =
{

d2e2, if t0 ≡ 1 or 4 mod 5,

e, if t0 ≡ 2 or 3 mod 5,

abq2 + aq2
b =

{
e, if t0 ≡ 1 or 4 mod 5,

d2e2, if t0 ≡ 2 or 3 mod 5.
(5.53)

For example we have

a2 + ab + sb2 = d2ey2q0 + yq0+1 + de2(de2 y2)
= d2ey2q0 + yq0+1 + d2ey2

= d2e
(

y2q0 + de2 yq0+1 + y2)
= d2e

(
d2e2) = d

where we use (2) of Lemma 5.4 in the third equation above.
Combining (5.52), (5.53) and Table 2 we complete the proof of (2) of the proposition. For example,

let t0 ≡ 2 mod 5 and ε1 = α under the notation of Table 2. Then ε2 ∈ F4 \ {0, ε1} = {α2,1} and
ε0 /∈ {0, ε1, ε2}. Hence there are 2 values that we need to consider, which are

(ε0, ε1, ε2) = {(
α2,α,1

)
,
(
1,α,α2)}.

These values are attained in lines {16,17,18} and {1,2,3} of Table 2, respectively. In particular for
each value of (ε0, ε1, ε2), there are 3 distinct possible lines. There are altogether 3 · 2 = 6 distinct
values of (ε0, ε1, ε2), which correspond to the 18 lines of Table 2. This is a 1 to 3 correspondence. In
this correspondence, the different 3 lines corresponding to a given value of (ε0, ε1, ε2) have the same
values of d and e. Finally we note that the proof of (1) of the proposition follows from Lemma 5.3.
This completes the proof. �
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6. Proofs of Theorem 3.1 and Proposition 3.3

In this section we complete the proofs of Theorem 3.1 and Proposition 3.3.

Proof of Theorem 3.1. It follows using the results of Section 4 and Section 5. For the necessary con-
ditions we have the results in Section 4. For the sufficiency conditions we have various restrictions
on ε0, ε1, ε2. Note that there are certain cases that we do not consider. In fact using the well-known
facts from quadratic forms, we immediately get that such cases are not needed to consider. For ex-
ample in Proposition 5.2 we observe that under the assumption of ε2 = ε1, the case ε0 = ε1 holds in
(1) of Proposition 5.2, which implies that the invariant Λ(Q ) is 1 (see also Table 1). The remaining
case ε0 	= ε1 holds in (2) of Proposition 5.2, which implies that the invariant Λ(Q ) is 0. Clearly a
quadratic form cannot have two different Λ(Q ) values simultaneously. Hence there is no situation
giving Λ(Q ) = −1 in Proposition 5.2, or equivalently under the assumption that ε2 = ε1. We note
that we have presented such nonexistence results in Section 7.2 below. �
Proof of Proposition 3.3. First we assume that k = 2 and consider the necessity part. Then using
Theorem 2.2 there exist a,b ∈ Fq2 such that {a,b} is linearly independent over Fq and the invariant
Λ(Q ) is 1 or −1. Moreover abq2 + aq2

b = 0. Then the arguments in the proof of Proposition 4.3 hold.
These imply in particular that 4 | k, which is a contradiction. This proves that the case k = 2 is void.

Next we assume that k = 3 and consider the necessity part. Here again by Theorem 2.2 we get
that there exist a,b ∈ Fq3 such that {a,b} is linearly independent over Fq . Moreover ε1 = abq + aqb
and ε1 	= 0. Then abq2 + aq2

b = (abq + aqb)q2 = ε
q2

1 = ε1, where we use the fact that ε1 ∈ F4 ⊆ Fq . It
remains to show the sufficiency of the cases (1) and (2) of the proposition. This part follows immedi-
ately from Proposition 5.2. �
7. Applications to curves and system of equations

In this section we give some applications of our results in Section 3 to algebraic curves over finite
fields and to certain systems of equations over finite fields. We present them in two subsections.

7.1. Algebraic curves over finite fields

In this subsection we give some classification results for certain curves over finite fields.
Throughout this subsection by a curve we mean a smooth, geometrically irreducible projective

curve defined over a finite field. Curves over finite fields have interesting applications in coding theory,
cryptography, finite geometry and related areas (see, for example, [11,19,16,20,12,15,17]). It is an
important problem to classify curves over finite fields depending on their number of rational points.
These kind of results are important for certain applications cited in the references above.

Let Fq be a finite field with q elements. For an integer k � 1, let χ be a curve defined over Fqk .
Let N(χ) and g(χ) denote the number of Fqk -rational points and the genus of χ , respectively. The
Hasse–Weil inequality states that

1 + qk − 2g(χ)q
k
2 � N(χ) � 1 + qk + 2g(χ)q

k
2 . (7.1)

For certain families of curves, it is difficult to determine the distribution of N(χ) in the interval given
by the lower and upper bounds in (7.1). Moreover not all the values in this interval are attained in
general. A curve is called maximal if the upper bound in (7.1) is attained and minimal if the lower
bound is attained. There are interesting results on existence and classification of maximal and minimal
curves using various approaches (see, for example, [18,5,1,3,13,21,6,2,7–9]).

Let q be an integer which is a power of a prime, in particular q may be odd or even. Let k � 2
be an integer and m = � k

2 �. In this subsection we consider the curve χ over Fqk given by the affine
equation

χ : yq − y = x
(
ε0x + ε1xq + · · · + εmxqm)

. (7.2)
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Here ε0, ε1, . . . , εm ∈ Fqk and at least one of them is nonzero. If q is even we further assume that at
least one of ε1, . . . , εm is nonzero. Let l = max{i: 0 � i � m, εi 	= 0}, that is the largest index i such
that εi 	= 0. Using [19, Proposition III.7.10] we determine the genus g(χ) of χ as

g(χ) = (q − 1)ql

2
. (7.3)

The curve χ is directly related to the quadratic form Q : Fqk → Fq (see also Section 2) given by

Q (x) = Tr

(
x

m∑
i=0

εi x
qi

)
,

where Tr is the trace map from Fqk to Fq . Recall that the corresponding bilinear form on Fqk is
defined as B(x, y) = Q (x + y) − Q (x) − Q (y), which holds in both cases that q is odd or q is even.
Let w be the Fq-dimension of the radical

W = {
x ∈ Fqk : B(x, y) = 0 for all y ∈ Fqk

}
.

Another invariant of Q is Λ(Q ), which is an integer in the set {−1,0,1}. Recall that N(Q ) denotes
the number

N(Q ) = ∣∣{x ∈ Fqk : Q (x) = 0
}∣∣,

and Λ(Q ) can be defined as the integer such that

N(Q ) = qk−1 + Λ(Q )(q − 1)q
k+w

2 −1. (7.4)

Using Hilbert’s Theorem 90 and (7.4), for the number N(χ) of Fqk -rational points of χ we obtain that

N(χ) = 1 + qk + Λ(Q )(q − 1)q
k+w

2 . (7.5)

Therefore we get information for the curve χ using the quadratic form Q . In particular when w = k,
i.e., the codimension of Q is 0, we completely classify such curves depending their Fqk -rational points
in the next proposition. Note that the following proposition holds both in even and odd characteristics.

Proposition 7.1. Let q be an integer which is a power of a prime. Let k � 2 be an integer. Let m = � k
2 �. Let

ε0, ε1, . . . , εm ∈ Fqk . If q is even, then we assume that at least one of ε1, ε2, . . . , εm is nonzero. If q is odd, then
we assume that at least one of ε0, ε1, . . . , εm is nonzero. Let Q : Fqk → Fq be the quadratic form given by

Q (x) = Tr

(
x

m∑
i=0

εi x
qi

)
,

where Tr is the trace map from Fqk to Fq. Let χ be the curve over Fqk given by the affine equation

χ : yq − y = x
(
ε0x + ε1xq + · · · + εmxqm)

.

Assume also that the codimension of the radical of Q is 0. Then the following hold:
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(1) If k is even, ε0 = ε1 = · · · = εm−1 = 0 and εm ∈ Fqk \ {0} with εm + ε
qm

m = 0, then for the invariant Λ(Q )

of Q and the number N(χ) of Fqk -rational points of χ we have

Λ(Q ) = 1 and N(χ) = qk+1 + 1.

In particular χ is a maximal curve.
(2) Otherwise, that is, if k is odd, or if k is even and ((ε0, ε1, . . . , εm−1) 	= (0,0, . . . ,0) or εm ∈ Fqk \ {0}

with εm + ε
qm

m 	= 0), then for the invariant Λ(Q ) of Q and the number N(χ) of Fqk -rational points of χ
we have

Λ(Q ) = 0 and N(χ) = qk + 1.

In particular (when qk is a square), χ is neither maximal nor minimal.

Proof. We first show that Λ(Q ) 	= −1. Indeed, otherwise using (7.4) for the cardinality N(Q ) we
obtain that N(Q ) = qk−1 − (q − 1)qk−1. It is clear that the cardinality is non-negative and

N(Q ) = qk−1 − (q − 1)qk−1 � 0,

which gives a contradiction if q 	= 2. Next assume that Λ(Q ) = −1 and q = 2. Then N(Q ) = 0. How-
ever if x = 0, then

Q (x) = Tr

(
x

m∑
i=0

εi x
qi

)
= 0,

and hence N(Q ) � 1, which implies a contradiction. This proves that Λ(Q ) 	= −1.
Next we assume that Λ(Q ) = 1. First we show that this assumption implies that k is even. Indeed,

otherwise for the integer l = max{i: 0 � i � m, εi 	= 0}, we have

l � m = k − 1

2
<

k

2
. (7.6)

By the Hasse–Weil inequality we have

N(χ) � 1 + qk + 2(q − 1)ql

2
q

k
2 = 1 + qk + (q − 1)ql+ k

2 . (7.7)

As Λ(Q ) = 1 and the codimension is 0, using (7.5) we have

N(χ) = 1 + qk + (q − 1)qk. (7.8)

Comparing (7.7) and (7.8) we obtain that qk � ql+ k
2 , and hence

k

2
� l,

which is a contradiction to (7.6).
Next we show that εm 	= 0. Indeed, otherwise l < m = k

2 and by the same reasoning above we get
a contradiction.
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Under the assumption that Λ(Q ) = 1, it remains to show that ε0 = ε1 = · · · = εm−1 = 0 and εm +
ε

qm

m = 0. First note that as εm 	= 0 and Λ(Q ) = 1, we have

N(χ) = 1 + qk + (q − 1)qk = 1 + qk+1 = 1 + qk + 2g(χ)q
k
2 ,

where g(χ) = (q−1)qm

2 is the genus of χ . Hence χ is maximal. Next we recall the notion of q-
cyclotomic coset modulo qk − 1. For 1 � i � qk − 2, let t(i) be the smallest non-negative integer
such that qt(i)+1i ≡ i mod (qk − 1). The q-cyclotomic coset containing i modulo qk − 1 is the set
{i,qi,q2i, . . . ,qt(i)i}. If 1 � i1 < i2 � qk/2 + 1, then the q-cyclotomic coset containing i1 modulo qk − 1
is distinct from the q-cyclotomic coset containing i2 modulo qk −1. Therefore using [10, Corollary 2.6]

we conclude that ε0 = ε1 = · · · = εm−1 = 0 and εm + ε
qm

m = 0.
Hence in the other cases Λ(Q ) = 0. That implies that if k is odd, then Λ(Q ) = 0. Moreover if k

is even and (ε0, ε1, . . . , εm−1) 	= (0,0, . . . ,0), then Λ(Q ) = 0. Also if k is even, (ε0, ε1, . . . , εm−1) =
(0,0, . . . ,0) and εm ∈ Fqk with εm + ε

qm

m 	= 0, then Λ(Q ) = 0. It is easy to observe these do not give
maximal or minimal curves. This completes the proof. �

In the rest of this subsection we assume that q � 4 is an integer, which is a power of 4. It is well
known that the codimension of the radical of a quadratic form is even when the characteristic of the
finite field is 2. Hence after Proposition 7.1 it is natural to consider the case that the codimension is 2.
Using Hilbert’s Theorem 90, Theorem 3.1 and Proposition 3.3, we immediately obtain a classification
of curves of the form

χ : yq + y = x
(
ε0x + ε1xq + · · · + εmxqm)

.

Here the main assumptions are that q is a power of 4, the codimension of the corresponding quadratic
form is 2 and ε0, ε1, ε2 ∈ F4. We prefer not to state this result explicitly, which can be derived easily
from Theorem 3.1, Remark 3.2 and Proposition 3.3. Instead we give its consequences on maximal and
minimal curves in the next proposition.

Proposition 7.2. Let q = 4r , k � 2 be an integer and m = � k
2 �. Let ε0, ε1 ∈ F4 . For k � 4 let ε2 ∈ F4 . For k � 6

let ε3, . . . , εm ∈ Fqk . Let Q be the quadratic form from Fqk to Fq defined as

Q (x) = Tr

(
x

m∑
i=0

εi x
qi

)
,

where Tr is the trace map from Fqk to Fq. Assume that at least one of ε1, . . . , εm is nonzero. Let χ be the curve
over Fqk given by the affine equation

χ : yq + y = x
(
ε0x + ε1xq + · · · + εmxqm)

.

Assume also that the codimension of the radical of Q is 2. Then we have the following:

(1) If χ is maximal, then one of the following holds:
(a) 4 | k, q = 4r where r � 1 is an odd integer, ε1 	= 0, ε0 /∈ {0, ε1}, εm = 0 and for 1 � i � m − 1 we

have

εi =
{

ε1 if i ≡ 1 mod 2,

0 otherwise.
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(b) 6 | k, q = 4r where r � 1 is an integer, ε1 	= 0, ε0 = ε1 and for 1 � i � m − 1 we have

εi =
{

ε1 if i ≡ 1 or 2 mod 3,

0 otherwise.

(c) 10 | k, q = 4r where r � 2 is an even integer, ε1 	= 0, ε2 /∈ {0, ε1}, ε0 /∈ {0, ε1, ε2} and for 1 � i �
m − 1 we have

εi =
⎧⎨
⎩

ε1 if i ≡ 1 or 4 mod 5,

ε2 if i ≡ 2 or 3 mod 5,

0 otherwise.

(2) If χ is minimal, then one of the following holds:
(a) 4 | k, q = 4r where r � 1 is an odd integer, ε1 	= 0, ε0 = 0 or ε0 = ε1 , and for 1 � i � m − 1 we have

εi =
{

ε1 if i ≡ 1 mod 2,

0 otherwise.

(b) 4 | k, q = 4r where r � 2 is an even integer, ε1 	= 0 and for 1 � i � m − 1 we have

εi =
{

ε1 if i ≡ 1 mod 2,

0 otherwise.

(c) 10 | k, q = 4r where r � 1 is an odd integer, ε1 	= 0, ε2 /∈ {0, ε1}, ε0 /∈ {0, ε1, ε2} and for 1 � i � m−1
we have

εi =
⎧⎨
⎩

ε1 if i ≡ 1 or 4 mod 5,

ε2 if i ≡ 2 or 3 mod 5,

0 otherwise.

Conversely if either of the conditions in (1a), (1b) or (1c) hold, then χ is a maximal curve with the number
N(χ) of Fq-rational points and genus g(χ) of χ as

N(χ) = 1 + qk + (q − 1)qk−1 = 1 + 2qk − qk−1,

g(χ) = (q − 1)q
k
2 −1

2
.

Also if either of the conditions in (2a), (2b) or (2c) hold, then χ is a minimal curve with the number N(χ) of
Fq-rational points and genus g(χ) of χ as

N(χ) = 1 + qk − (q − 1)qk−1 = 1 + qk−1,

g(χ) = (q − 1)q
k
2 −1

2
.

Proof. Assume that χ is maximal. We first show that εm = 0. Indeed, otherwise the genus of χ is
g(χ) = (q−1)qm

2 and hence by the maximality of χ

N(χ) = 1 + qk + (q − 1)qm+ k
2 . (7.9)
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As the dimension w of the radical is k − 2, using (7.5) we obtain

N(χ) � 1 + qk + (q − 1)qk−1, (7.10)

and the equality holds only if Λ(Q ) = 1. Comparing (7.9) and (7.10) we obtain that m + k
2 � k − 1.

Then

m =
⌊

k

2

⌋
� k

2
− 1,

a contradiction. As at least one of ε1, . . . , εm is nonzero by the assumption, this shows in particular
that there is no maximal curve under assumption of the proposition when m = 1, or equivalently
k ∈ {2,3}. Hence we assume that m � 2, or equivalently k � 4.

Next we show that εm−1 	= 0 and k is even. Indeed note that for the integer l = max{i: 0 � i � m,

εi 	= 0} we have

1 � l � m − 1 (7.11)

and the genus of χ is g(χ) = (q−1)ql

2 . Then by the maximality of χ we get

N(χ) = 1 + qk + (q − 1)ql+ k
2 . (7.12)

As the dimension w of the radical is k − 2, using (7.5) we have

N(χ) = 1 + qk + Λ(Q )qk−1, (7.13)

where Λ(Q ) ∈ {−1,0,1}. If Λ(Q ) ∈ {−1,0}, then (q − 1)ql+ k
2 > 0 � Λ(Q )qk−1 and hence the right-

hand sides of (7.12) and (7.13) are distinct, which gives a contradiction. Therefore Λ(Q ) = 1 and
comparing (7.12) and (7.13) we obtain that

l + k

2
= k − 1,

which implies that l = k
2 − 1, εm−1 	= 0 and k is even. Moreover it is easy to observe that under the

conditions of the proposition, χ is a maximal curve if and only if k � 4, k is even and Λ(Q ) = 1.
Using Theorem 3.1 we obtain the cases for such quadratic forms Q . For example among the cases
(1), (2) and (3) of Theorem 3.1, only the case (1) of Theorem 3.1 gives maximal curves. This is case
(1a) of the current proposition. Secondly among the cases (4) and (5) of Theorem 3.1, under the extra
condition that k is even (and hence 6 | k), only the case (4) of Theorem 3.1 gives maximal curves. This
is the case (1b) of the current proposition. Similarly using the cases (6), (7) and (8) of Theorem 3.1,
we obtain the case (1c) of the current proposition.

Next we assume that χ is minimal. The proof is very similar the case χ is maximal above. We
again obtain that k � 4, εm = 0, εm−1 	= 0 and k is even. But now it is necessary that Λ(Q ) = −1.
Then using Theorem 3.1 similarly we obtain the cases (2a), (2b) and (2c) of the current proposition.

The converse statement implying explicit construction of maximal and minimal curves with the
stated genera is clear from arguments above. This completes the proof. �
Remark 7.3. Note that a main assumption in Proposition 7.2 is that the codimension of Q is 2. It is
easy to observe from the proof of Proposition 7.2 that this assumption would be replaced with the
following assumption, which may be useful in some applications. We keep the notation and assump-
tions of Proposition 7.2 except the condition that the codimension of Q is 2. Instead of this condition
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we assume that εm = 0 and εm−1 	= 0. Then the same conditions of Proposition 7.2 hold. In its proof

it is important to note that the new condition implies that the genus of χ is (q−1)qm−1

2 . Then by
definition and (7.5) we obtain that the codimension is 2 if χ is maximal or minimal.

7.2. Some nonexistence results on systems of equations over finite fields containing F4

In this subsection we give certain nonexistence results in Proposition 7.4 below. It is a consequence
of Theorem 3.1 and the simple but useful observation that the invariant Λ(Q ) of a quadratic form Q
can only attain a unique value in the set {−1,0,1}. Let q � 4 be a power of 4, k � 4 be an integer.
Under certain conditions on ε0, ε1, ε2, we obtain a full classification of quadratic forms of the form
(3.1) in Theorem 3.1. We refer to Table 1 for the summary of the results of Theorem 3.1. For example
when ε2 = 0, the invariant Λ(Q ) cannot be 0 (see the first three lines of Table 1). By Theorem 2.2,
the case Λ(Q ) = 0 implies an existence result for a system of equations over Fq . Hence we obtain
a nonexistence result for that system in case (1) of the next proposition. We note here that this
existence and nonexistence depends on the parity of r. If r is even as in case (2) of Proposition 7.4
below, then we have a nonexistence result. However if r is odd, then the same system gives the
corresponding existence result, which is proved in (1) of Proposition 5.1 in Section 5 above.

The other nonexistence results of the following proposition are obtained similarly.

Proposition 7.4. Let q = 4r , k � 4 be an integer, ε0, ε2 ∈ F4 and ε1 ∈ F4 \ {0}. We have the following:

(1) There is no Fq-linearly independent set {a,b, c} ⊆ Fqk such that

ε0 = c2 + ab,

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b = 0.

(2) If r is an even integer then there is no Fq-linearly independent set {a,b} ⊆ Fqk such that

ε0 = ab,

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b = 0.

(3) There is no Fq-linearly independent set {a,b} ⊆ Fqk such that there exists s ∈ Fq with TrFq/F2 (s) = 1,

ε0 = a2 + ab + sb2,

ε1 = abq + aqb, and

ε2 = abq2 + aq2
b = ε1.

(4) If r is an even integer then there is no Fq-linearly independent set {a,b} ⊆ Fqk such that there exists s ∈ Fq
with TrFq/F2(s) = 1,

ε0 = a2 + ab + sb2,

ε1 = abq + aqb,

ε2 = abq2 + aq2
b 	= 0 and

ε2 	= ε1.



F. Özbudak et al. / Finite Fields and Their Applications 18 (2012) 396–433 433
(5) If r is an odd integer then there is no Fq-linearly independent set {a,b} ⊆ Fqk such that

ε0 = ab,

ε1 = abq + aqb,

ε2 = abq2 + aq2
b 	= 0 and

ε2 	= ε1.
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