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Abstract

In this paper we study the global attractors for wave equations with nonlinear interior damping. We prove
the existence, regularity and finite dimensionality of the global attractors without assuming a large value for
the damping parameter, when the growth of the nonlinear terms is critical.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Let Ω ⊂ R3 be a bounded regular domain. We consider the following problem:

wtt − �w + g(wt ) + f (w) = h(x) in (0,+∞) × Ω, (1.1)

w = 0 on (0,+∞) × ∂Ω, (1.2)

w(0, ·) = w0, wt (0, ·) = w1 in Ω, (1.3)

where h ∈ L2(Ω) and the functions f and g satisfy the following conditions:

f ∈ C1(R),
∣∣f ′(s)

∣∣ � c
(
1 + |s|2), (1.4)

lim inf|s|→∞
f (s)

s
> −λ1, (1.5)

E-mail address: azer@hacettepe.edu.tr.
0022-0396/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jde.2006.06.001



A.Kh. Khanmamedov / J. Differential Equations 230 (2006) 702–719 703
where λ1 is the first eigenvalue of −� with zero Dirichlet data,

g ∈ C1(R), g(0) = 0, g is strictly increasing, and lim inf|s|→∞ g′(s) > 0, (1.6)

∣∣g(s)
∣∣ � c

(
1 + |s|5). (1.7)

We denote the spaces L2(Ω), W 1
2 (Ω) and W̊ 1

2 (Ω), by H , H 1 and H 1
0 , respectively. The scalar

product and the norm in H are denoted by 〈,〉 and ‖ · ‖. We also denote the norm in H 1 by ‖ · ‖1.
The well-posedness of problem (1.1)–(1.3) was discussed in [1,2]. We recall definitions of

strong and generalized (weak) solutions.

Definition 1.1. [1,2] A function w ∈ C([0, T ];H 1
0 ) ∩ C1([0, T ];H) possessing the properties

w(0, ·) = w0 and wt(0, ·) = w1 is said to be

(S) strong solution to problem (1.1)–(1.3) on [0, T ] × Ω , iff
• wt ∈ L1([a, b];H 1

0 ) and wtt ∈ L1([a, b];H) for any 0 < a < b < T ;
• −�w+ g(wt ) ∈ H for almost all t ∈ [0, T ];
• Eq. (1.1) is satisfied for almost all t ∈ [0, T ] and x ∈ Ω ;

(G) generalized (weak) solution to problem (1.1)–(1.3) on [0, T ]×Ω , iff there exists a sequence
of strong solutions {wn(t, x)} to problem (1.1)–(1.3) with initial data (wn

0 , wn
1 ) instead of

(w0, w1) such that

lim
n→∞

(∥∥w − wn
∥∥

C([0,T ];H 1
0 )

+ ∥∥wt − wn
t

∥∥
C([0,T ];H)

) = 0.

As mentioned in [2] applying Faedo–Galerkin method (see [3,4]) one can show the existence
and uniqueness of a generalized solution, that is:

Theorem 1.1. [1,2] Assume conditions (1.4)–(1.7) hold. Then for every T > 0 and every
(w0,w1) ∈ H 1

0 × H there exists a unique generalized solution (w,wt ) ∈ C([0, T ];H 1
0 × H)

to problem (1.1)–(1.3), which continuously depends on the initial data and satisfies the energy
inequality

E
(
w(t)

) +
t∫

s

∫
Ω

g
(
wt(τ, x)

)
wt(τ, x) dx dτ +

∫
Ω

F
(
w(t, x)

)
dx −

∫
Ω

h(x)w(t, x) dx

� E
(
w(s)

) +
∫
Ω

F
(
w(s, x)

)
dx −

∫
Ω

h(x)w(s, x) dx, ∀t � s � 0, (1.8)

where E(w(t)) = 1
2 (‖∇w(t)‖2 + ‖wt(t)‖2) and F(w) = ∫ w

0 f (u)du.

Thus problem (1.1)–(1.3) generates a continuous semigroup {S(t)}t�0 in H 1
0 × H by the

formula S(t)(w0,w1) = (w(t),wt (t)), where w(t) is the unique generalized solution to problem
(1.1)–(1.3) with initial data (w0,w1).
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The global attractors for wave equations with linear interior damping were studied in [5–10]
and references therein. In the case of nonlinear interior damping the first pioneering papers in-
clude [11–14]. In [12] a global attractor was established assuming a large value of the damping
parameter in the case when the exponent for the growth of the damping function g is 1 2

3 . In [13],
the existence of the global attractor was claimed assuming a large value of the damping pa-
rameter in the case when growth exponents are critical. But, as mentioned in [1], the detailed
proof of this result was not published. The existence of the global attractor for the wave equation
with supercritical source term was proved in [3], imposing a condition relating the growth of the
damping function g to the growth of the source term f . In [14], in the one-dimensional case the
finite dimensionality of the attractors for wave equations with nonlinear damping was studied.
In [15] the existence, regularity and finite dimensionality of attractors for wave equations with
nonlinear interior damping is shown for the two-dimensional case. In [16] an upper bound of the
Hausdorff dimension of the global attractor for the wave equation was obtained by imposing lin-
ear growth conditions on damping and source terms. Finite dimensionality of the global attractor
for problem (1.1)–(1.3) is shown in [17] in the subcritical case. In [1] the authors established
the existence and finite dimensionality of the global attractors for the wave equations with non-
linear damping and source terms with critical growth exponents assuming a large value for the
damping parameter. Recently in [2] the existence of a global attractor for the wave equation with
subcritical damping and critical source term has been proved without assuming a large value for
the damping parameter.

In this paper using ideas developed in [1,15,18] we prove the existence of a global attractor
for the problem (1.1)–(1.3) under conditions (1.4)–(1.7) and improve the result of [2]. Moreover
under an additional condition (see (3.7)) we prove regularity and finite dimensionality of the
global attractor and improve the previous results.

2. Existence of a global attractor

We first recall definitions of a global attractor and asymptotically compact semigroup.

Definition 2.1. [19] Let {S(t)}t�0 be a semigroup on a metric space (X, d). A smallest, non-
empty, bounded closed set A ⊂ X that satisfies

lim
t→∞ sup

v∈B

inf
u∈A

d
(
S(t)v,u

) = 0

for each bounded set B ⊂ X, is called a global attractor of {S(t)}t�0.

Definition 2.2. [19] A semigroup {S(t)}t�0 defined on a metric space (X,d), is called asymp-
totically compact iff for each bounded set B ⊂ X such that

⋃
t�0 S(t)B is bounded in (X,d),

a sequence of the form {S(tk)vk}∞k=1, tk → ∞, vk ∈ B , has a convergent subsequence.

Taking into account conditions (1.4)–(1.6) in (1.8) we obtain that the problem (1.1)–(1.3)
admits a nonincreasing Lyapunov function

L
(
w(t)

) := E
(
w(t)

) +
∫

F
(
w(t, x)

)
dx −

∫
h(x)w(t, x) dx
Ω Ω
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and for every bounded set B in H 1
0 × H , the set

⋃
t�0 S(t)B is bounded in H 1

0 × H . On the

other hand, under conditions (1.4)–(1.5) the set of stationary solutions is bounded in H 1
0 . Thus

according to Theorem 3.2 of [19], in order to prove the existence of a global attractor it is suffi-
cient to show that {S(t)}t�0 is asymptotically compact. To prove the asymptotic compactness of
{S(t)}t�0 we need the following lemmas:

Lemma 2.1. Assume f (·) satisfies condition (1.4) and (w,wt ) ∈ L∞(0, T ;H 1
0 × H). Then

F(w) ∈ C([0, T ];L1(Ω)) and

∫
Ω

F
(
w(t, x)

)
dx =

t∫
s

〈
f

(
w(τ)

)
,wt (τ )

〉
dτ +

∫
Ω

F
(
w(s, x)

)
dx (2.1)

for every t, s ∈ [0, T ].
Proof. By the second condition of the lemma it follows that w ∈ C([0, T ]; H)and accord-
ing to [20, Lemma 8.1, p. 275] we have w ∈ Cs(0, T ;H 1

0 ). This means that if tn → t0, then
w(tn) → w(t0) weakly in H 1

0 . So by the compact embedding theorem we obtain

F
(
w(tn)

) → F
(
w(t0)

)
strongly in L1(Ω).

Hence F(w) ∈ C([0, T ];L1(Ω)).
Let the sequence wn ∈ C∞

0 ((0, T ) × Ω) be such that

wn → w strongly in L4
(
0, T ;H 1

0

)
,

and

wn
t → wt strongly in L4(0, T ;H).

Then we have

F
(
wn

) → F(w) strongly in L1
(
(0, T ) × Ω

)
, (2.2)

and 〈
f

(
wn

)
,wn

t

〉 → 〈
f (w),wt

〉
strongly in L1(0, T ). (2.3)

On the other hand, since

∂

∂t

∫
Ω

F
(
wn(t, x)

)
dx = 〈

f
(
wn(t)

)
,wn

t (t)
〉

by (2.2)–(2.3) we find that

∂

∂t

∫
Ω

F
(
w(t, x)

)
dx = 〈

f (w),wt

〉 ∈ L∞(0, T )

which yields (2.1). �



706 A.Kh. Khanmamedov / J. Differential Equations 230 (2006) 702–719
Lemma 2.2. Assume f (·) satisfies condition (1.4) and the sequence {(wn(t),wn
t (t))} is weakly

star convergent in L∞(s, T ;H 1
0 × H). Then

lim
n→∞ lim

m→∞

T∫
s

〈
f

(
wn(t, x)

) − f
(
wm(t, x)

)
,wn

t (t, x) − wm
t (t, x)

〉
dt = 0. (2.4)

Proof. Let {
wn → w weakly star in L∞

(
s, T ;H 1

0

)
,

wn
t → wt weakly star in L∞(s, T ;H).

(2.5)

Then by the embedding theorem we have

wn → w strongly in C
([s, T ];H )

. (2.6)

On the other hand, according to [20, Lemma 8.1, p. 275] and (2.5) we have that the sequence
{wn} is bounded in Cs(s, T ;H 1

0 ) and consequently the sequence {wn(t)} is bounded in H 1
0 for

every t ∈ [s, T ]. So by (2.6) we obtain

wn(t) → w(t) weakly in H 1
0 ,

which according to the compact embedding theorem yields that

F
(
wn(t)

) → F
(
w(t)

)
strongly in L1(Ω), ∀t ∈ [s, T ].

Now using Lemma 2.1 we find that

lim
n→∞ lim

m→∞

T∫
s

〈
f

(
wn(t, x)

) − f
(
wm(t, x)

)
,wn

t (t, x) − wm
t (t, x)

〉
dt

= lim
n→∞

∫
Ω

F
(
wn(T , x)

)
dx + lim

m→∞

∫
Ω

F
(
wm(T ,x)

)
dx − lim

n→∞

∫
Ω

F
(
wn(s, x)

)
dx

− lim
m→∞

∫
Ω

F
(
wm(s, x)

)
dx − lim

n→∞ lim
m→∞

T∫
s

∫
Ω

f
(
wn(t, x)

)
wm

t (t, x) dx dt

− lim
n→∞ lim

m→∞

T∫
s

∫
Ω

f
(
wm(t, x)

)
wn

t (t, x) dx dt

= 2
∫
Ω

F
(
w(T ,x)

)
dx

− 2
∫

F
(
w(s, x)

)
dx − 2

T∫ ∫
f

(
w(t, x)

)
wt(t, x) dx dt = 0. �
Ω s Ω
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Lemma 2.3. Assume the conditions (1.4)–(1.7) are satisfied, and B is a bounded subset of
H 1

0 × H . Then for any ε > 0 there exists T = T (ε,B) such that

lim sup
n→∞

sup
p∈N

∥∥S(T )θn+p − S(T )θn

∥∥
H 1

0 ×H
� ε, (2.7)

where {θn} is a sequence in B and {S(t)θn} is weakly star convergent in L∞(0,∞;H 1
0 × H).

Proof. We will use the techniques used in [1,15,18]. Let (wn(t),wn
t (t)) = S(t)θn. Taking into

account conditions (1.4)–(1.7) in (1.8), we find that

T∫
0

∫
Ω

g
(
wn

t (t, x)
)
wn

t (t, x) dx dt � c1
(‖B‖H 1

0 ×H

)
, ∀T � 0, (2.8)

and

E
(
wn(T )

)
� c1

(‖B‖H 1
0 ×H

)
, ∀T � 0, (2.9)

where ‖B‖H 1
0 ×H = supv∈B ‖v‖H 1

0 ×H . Multiplying both sides of

(
wn − wm

)
t t

− �
(
wn − wm

) + g
(
wn

t

) − g
(
wm

t

) + f
(
wn

) − f
(
wm

) = 0

by (wn
t − wm

t ), integrating over [s, T ] × Ω we have

E
(
wn(T ) − wm(T )

) +
T∫

s

∫
Ω

(
g
(
wn

t (t, x)
) − g

(
wm

t (t, x)
))(

wn
t (t, x) − wm

t (t, x)
)
dx dt

+
T∫

s

∫
Ω

(
f

(
wn(t, x)

) − f
(
wm(t, x)

))(
wn

t (t, x) − wm
t (t, x)

)
dx dt

� E
(
wn(s) − wm(s)

)
, (2.10)

and consequently

T∫
0

∫
Ω

(
g
(
wn

t (t, x)
) − g

(
wm

t (t, x)
))(

wn
t (t, x) − wm

t (t, x)
)
dx dt

+
T∫

0

∫
Ω

(
f

(
wn(t, x)

) − f
(
wm(t, x)

))(
wn

t (t, x) − wm
t (t, x)

)
dx dt � c‖B‖2

H 1
0 ×H

.

It is easy to see [18] that for any δ > 0 there exists c2(δ) > 0, such that

|u − v|2 � δ + c2(δ)
(
g(u) − g(v)

)
(u − v), ∀u,v ∈ R.
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So by the last two inequalities we obtain

T∫
0

∥∥wn
t (t) − wm

t (t)
∥∥2

dt

� δT mesΩ + cc2(δ)‖B‖2
H 1

0 ×H

+ c2(δ)

T∫
0

∫
Ω

(
f

(
wm(t, x)

) − f
(
wn(t, x)

))(
wn

t (t, x) − wm
t (t, x)

)
dx dt (2.11)

for every δ > 0. On the other hand, multiplying both sides of

(
wn − wm

)
t t

− �
(
wn − wm

) + g
(
wn

t

) − g
(
wm

t

) + f
(
wn

) − f
(
wm

) = 0

by (wn − wm), integrating over [0, T ] × Ω and taking into account (2.9) we have

T∫
0

∥∥∇(
wn(t) − wm(t)

)∥∥2
dt

� c3
(‖B‖H 1

0 ×H

) +
T∫

0

∥∥wn
t (t) − wm

t (t)
∥∥2

dt

+
T∫

0

∫
Ω

(
f

(
wm(t, x)

) − f
(
wn(t, x)

))(
wn(t, x) − wm(t, x)

)
dx dt

+
T∫

0

∫
Ω

(
g
(
wm

t (t, x)
) − g

(
wn

t (t, x)
))(

wn(t, x) − wm(t, x)
)
dx dt, ∀T � 0. (2.12)

Thus by (2.11) and (2.12) we obtain

T∫
0

E
(
wn(t) − wm(t)

)
dt

� δT mesΩ + c̃
(‖B‖H 1

0 ×H , δ
)

+ c2(δ)

T∫
0

∫
Ω

(
f

(
wm(t, x)

) − f
(
wn(t, x)

))(
wn

t (t, x) − wm
t (t, x)

)
dx dt

+ 1

2

T∫ ∫ (
f

(
wm(t, x)

) − f
(
wn(t, x)

))(
wn(t, x) − wm(t, x)

)
dx dt
0 Ω
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+ 1

2

T∫
0

∫
Ω

(
g
(
wm

t (t, x)
) − g

(
wn

t (t, x)
))(

wn(t, x) − wm(t, x)
)
dx dt, ∀T � 0.

Integrating (2.10) with respect to s from 0 to T and taking into account the last inequality we
find that

E
(
wn(T ) − wm(T )

)
� δ mesΩ + 1

T
c̃
(‖B‖H 1

0 ×H , δ
)

+ 1

T
c2(δ)

T∫
0

∫
Ω

(
f

(
wm(t, x)

) − f
(
wn(t, x)

))(
wn

t (t, x) − wm
t (t, x)

)
dx dt

+ 1

T

T∫
0

T∫
t

∫
Ω

(
f

(
wm(s, x)

) − f
(
wn(s, x)

))(
wn

t (s, x) − wm
t (s, x)

)
dx ds dt

+ 1

2T

T∫
0

∫
Ω

(
f

(
wm(t, x)

) − f
(
wn(t, x)

))(
wn(t, x) − wm(t, x)

)
dx dt

+ 1

2T

T∫
0

∫
Ω

(
g
(
wm

t (t, x)
) − g

(
wn

t (t, x)
))(

wn(t, x) − wm(t, x)
)
dx dt

≡ δ mesΩ + 1

T
c̃
(‖B‖H 1

0 ×H , δ
) + K1 + K2 + K3 + K4. (2.13)

From Lemma 2.2 it follows that

lim
n→∞ lim

m→∞K1 = 0 and lim
n→∞ lim

m→∞K2 = 0. (2.14)

On the other hand, since

wn converges weakly star in L∞
(
0, T ;H 1

0

)
,

wn
t converges weakly star in L∞(0, T ;H),

by the compact embedding theorem (see [4, Theorem 5.1, p. 58]) we have

wn converges strongly in L2
(
0, T ;H 1−ε

0

)
, ∀ε ∈ (0,1],

which yields

lim lim K3 = 0. (2.15)

n→∞ m→∞
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Now let us estimate K4. Applying Hölder inequality we have

|K4| � 1

2T
T

1
6 c4

(‖B‖H 1
0 ×H

)∥∥g
(
wm

t

) − g
(
wn

t

)∥∥
L 6

5
((0,T )×Ω)

. (2.16)

Using the same techniques as in [15], by (1.7) and (2.8) we find that

c− 1
5

T∫
0

∫
Ω

∣∣g(
wn

t (t, x)
)∣∣ 6

5 dx dt

�
T∫

0

∫
Ω

∣∣g(
wn

t (t, x)
)∣∣(1 + ∣∣wn

t (t, x)
∣∣)dx dt

� c1
(‖B‖H 1

0 ×H

) +
T∫

0

∫
Ω

∣∣g(
wn

t (t, x)
)∣∣dx dt

= c1
(‖B‖H 1

0 ×H

) +
T∫

0

∫
{x: x∈Ω, |wn

t (t,x)|�δ}

∣∣g(
wn

t (t, x)
)∣∣dx dt

+
T∫

0

∫
{x: x∈Ω, |wn

t (t,x)|<δ}

∣∣g(
wn

t (t, x)
)∣∣dx dt

� c1
(‖B‖H 1

0 ×H

)

+ 1

δ

T∫
0

∫
{x: x∈Ω, |wn

t (t,x)|�δ}
g
(
wn

t (t, x)
)
wn

t (t, x) dx dt

+ T mesΩ
(∣∣g(−δ)

∣∣ + ∣∣g(δ)
∣∣) �

(
1 + 1

δ

)
c1

(‖B‖H 1
0 ×H

)
+ T mesΩ

(∣∣g(−δ)
∣∣ + ∣∣g(δ)

∣∣), ∀T > 0. (2.17)

From (2.16) and (2.17) it follows that

|K4| � c
1
6

T
5
6

c4
(‖B‖H 1

0 ×H

)[(
1 + 1

δ

)
c1

(‖B‖H 1
0 ×H

)] 5
6

+ c
1
6 c4

(‖B‖H 1
0 ×H

)[
mesΩ

(∣∣g(−δ)
∣∣ + ∣∣g(δ)

∣∣)] 5
6 . (2.18)

Thus by (2.13)–(2.15) and (2.18) we get
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lim sup
n→∞

lim sup
m→∞

E
(
wn(T ) − wm(T )

)
� δ mesΩ + 1

T
c̃
(‖B‖H 1

0 ×H , δ
)

+ c
1
6

T
5
6

c4
(‖B‖H 1

0 ×H

)[(
1 + 1

δ

)
c1

(‖B‖H 1
0 ×H

)] 5
6

+ c
1
6 c4

(‖B‖H 1
0 ×H

)[
mesΩ

(∣∣g(−δ)
∣∣ + ∣∣g(δ)

∣∣)] 5
6 .

Consequently

lim sup
n→∞

sup
p∈N

E
(
wn+p(T ) − wn(T )

)
� 2 lim sup

n→∞
sup
p∈N

lim sup
m→∞

E
(
wn+p(T ) − wm(T )

)
+ 2 lim sup

n→∞
lim sup
m→∞

E
(
wm(T ) − wn(T )

)

� 4

(
δ mesΩ + 1

T
c̃
(‖B‖H 1

0 ×H , δ
))

+ 4c
1
6

T
5
6

c4
(‖B‖H 1

0 ×H

)[(
1 + 1

δ

)
c1

(‖B‖H 1
0 ×H

)] 5
6

+ 4c
1
6 c4

(‖B‖H 1
0 ×H

)[
mesΩ

(∣∣g(−δ)
∣∣ + ∣∣g(δ)

∣∣)] 5
6 .

Since g ∈ C(R) and g(0) = 0, the last inequality yields (2.7). �
Now we can prove asymptotic compactness of {S(t)}t�0.

Theorem 2.1. Assume the conditions (1.4)–(1.7) hold. Then the semigroup {S(t)}t�0 generated
by (1.1)–(1.3) is asymptotically compact in H 1

0 × H .

Proof. Using Lemma 2.2 and repeating the argument used in the proof of Theorem 2 from [18]
we obtain the asymptotic compactness of {S(t)}t�0 in H 1

0 × H . �
Thus using Theorem 3.2 of [19] we have the following result.

Theorem 2.2. Assume that (1.4)–(1.7) hold. Then problem (1.1)–(1.3) has a global attractor A
in H 1

0 × H , which is invariant and compact.

3. Regularity and finite dimensionality of attractors

By the invariance of A it follows (see [7, p. 159]) that, for every ϕ ∈ A there exists an invariant
trajectory γ = {W(t), t ∈ R} ⊂ A such that

W(0) = ϕ. (3.1)
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Here, by an invariant trajectory we mean a continuous curve γ = {W(t), t ∈ R} such that
S(t)W(τ) = W(t + τ) for ∀t � 0 and ∀τ ∈ R (see [7, p. 157]).

To prove the regularity and finite dimensionality of the global attractor A we need the follow-
ing lemmas:

Lemma 3.1. Assume K is a relatively compact subset of H 1 and f (·) satisfies condition (1.4).
Then for any ε > 0 there exists δ > 0 such that ‖u2 − u1‖1 < δ implies

∥∥f ′(u2) − f ′(u1)
∥∥

L3(Ω)
� ε (3.2)

for every u1, u2 ∈ K .

Proof. Assume that lemma is not true. Then there exists ε0 > 0 and the sequences {u1
n}, {u2

n}
in K , such that

⎧⎪⎨
⎪⎩

u1
n → v strongly in H 1,

u2
n → v strongly in H 1,∥∥f ′(u2

n

) − f ′(u1
n

)∥∥
L3(Ω)

> ε0 for every n.

(3.3)

From (3.3)1 and (3.3)2 it follows that there exist subsequences {u1
nk

} and {u2
nk

} such that

u1
nk

→ v and u2
nk

→ v a.e. in Ω.

So applying Egorov’s theorem we obtain that for any δ > 0 there exists a set Aδ ⊂ Ω such that
mesAδ < δ and

u1
nk

→ v and u2
nk

→ v uniformly in Ω \ Aδ,

which implies

lim
k→∞

∥∥f ′(u2
nk

) − f ′(u1
nk

)∥∥
L3(Ω\Aδ)

= 0. (3.4)

On the other hand, from (3.3)1, (3.3)2 and (1.4) it follows that

lim
δ→0

lim sup
k→∞

∥∥f ′(u2
nk

) − f ′(u1
nk

)∥∥
L3(Aδ)

= 0,

which together with (3.4) yields

lim sup
k→∞

∥∥f ′(u2
nk

) − f ′(u1
nk

)∥∥
L3(Ω)

� lim
δ→0

lim
k→∞

∥∥f ′(u2
nk

) − f ′(u1
nk

)∥∥
L3(Ω\Aδ)

+ lim
δ→0

lim sup
k→∞

∥∥f ′(u2
nk

) − f ′(u1
nk

)∥∥
L3(Aδ)

= 0.

The last relation contradicts (3.3)3. �
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Lemma 3.2. Assume K is a relatively compact subset of H 1 and f (·) satisfies condition (1.4).
Then for any ε > 0 there exists c(ε) > 0 such that

∥∥f ′(v)u
∥∥ � ε‖u‖1 + c(ε)‖u‖ (3.5)

for every v ∈ K and every u ∈ H 1.

Proof. Let δ > 0 be as in Lemma 3.1 for ε
2 > 0. Since K is relatively compact in H 1, there exist

nδ ∈ N and vi ∈ K , i = 1, nδ , such that

min
1�i�nδ

‖v − vi‖1 � δ

for every v ∈ K . Then by Lemma 3.1 we obtain

min
1�i�nδ

∥∥f ′(v) − f ′(vi)
∥∥

L3(Ω)
� ε

2

for every v ∈ K . On the other hand, since C∞(Ω) is dense in H 1, there exist wi ∈ C∞(Ω),
i = 1, nδ , such that

∥∥f ′(vi) − f ′(wi)
∥∥

L3(Ω)
� ε

2
for i = 1, nδ.

So we have

min
1�i�nδ

∥∥f ′(v) − f ′(wi)
∥∥

L3(Ω)
� ε (3.6)

for every v ∈ K . Since

max
1�i�nδ

max
x∈Ω

∣∣f ′(wi(x)
)∣∣ � c(ε),

by (3.6) we find (3.5). �
Now we can prove regularity of the global attractor.

Theorem 3.1. Let the conditions (1.4)–(1.7) hold. In addition assume that

0 < m � g′(s) � M
(
1 + g(s)s

) 2
3 , ∀s � 0. (3.7)

Then there exists R> 0 such that

‖ϕ1‖1 + ‖ϕ2‖1 + ∥∥�ϕ1 + g(ϕ2)
∥∥ � R

for every ϕ = (ϕ1, ϕ2) ∈ A.
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Proof. Let ϕ = (ϕ1, ϕ2) ∈ A and γ = {W(t) ∈ A, t ∈ R} be an invariant trajectory which sat-
isfies (3.1). From definition of the invariant trajectory it follows that W(·) = (w(·), wt(·)) and
(w(t + s), wt(t + s)) = S(t)(w(s), wt(s)) for ∀t � 0 and ∀s ∈ R. Then v(t) = w(t + s) is the
solution of the problem:

{
vtt − �v + g(vt ) + f (v) = h in (0,+∞) × Ω,

v = 0 on (0,+∞) × ∂Ω,

v(0, ·) = w(s, ·), vt (0, ·) = wt(s, ·) in Ω.

(3.8)

Let s < 0, and 0 < l < −s. Denoting z(t, ·) = v(t + l, ·) − v(t, ·) from (3.8) we have

⎧⎨
⎩

ztt − �z + g̃
(
vt (t), l

)
zt + f̃

(
v(t), l

)
z = 0 in (0,+∞) × Ω,

z = 0 on (0,+∞) × ∂Ω,

z(0) = z0, zt (0) = z1 in Ω,

(3.9)

where

g̃
(
vt (t), l

) =
1∫

0

g′(τvt (t + l) + (1 − τ)vt (t)
)
dτ,

f̃
(
v(t), l

) =
1∫

0

f ′(τv(t + l) + (1 − τ)v(t)
)
dτ,

z0 = w(s + l) − w(s) and z1 = wt(s + l) − wt(s).

Multiplying Eq. (3.9)1 by zt and by z, and integrating over (σ, t) × Ω we obtain

E
(
z(t)

) +
t∫

σ

∫
Ω

g̃
(
vt (τ ), l

)
z2
t (τ ) dx dτ � E

(
z(σ )

) −
t∫

σ

〈
f̃

(
v(t), l

)
z, zt (τ )

〉
dτ (3.10)

and

〈
zt (t), z(t)

〉 +
t∫

σ

∥∥∇z(τ )
∥∥2

dτ +
t∫

σ

∫
Ω

g̃
(
vt (τ ), l

)
zt (τ )z(τ ) dx dτ

=
t∫

σ

∥∥zt (τ )
∥∥2

dτ + 〈
zt (σ ), z(σ )

〉 −
t∫

σ

〈
f̃

(
v(t), l

)
z, z(τ )

〉
dτ. (3.11)

On the other hand, by (3.7) we have

0 < m �
1∫
g′(τu1 + (1 − τ)u2

)
dτ � M

(
1 + g(u1)u1 + g(u2)u2

) 2
3 , ∀u1, u2 ∈ R,
0



A.Kh. Khanmamedov / J. Differential Equations 230 (2006) 702–719 715
which together with (3.10) yields

t∫
σ

∥∥zt (τ )
∥∥2

dτ � 1

m

(
E

(
z(σ )

) −
t∫

σ

〈
f̃

(
v(t), l

)
z, zt (τ )

〉
dτ

)
(3.12)

and

∣∣∣∣∣
t∫

σ

∫
Ω

g̃
(
vt (τ ), l

)
zt (τ )z(τ ) dx dτ

∣∣∣∣∣

� λ

t∫
σ

∫
Ω

g̃
(
vt (τ ), l

)
z2(τ ) dx dτ

+ 1

4λ

t∫
σ

∫
Ω

g̃
(
vt (τ ), l

)
z2
t (τ ) dx dτ

� 1

4λ

(
E

(
z(σ )

) −
t∫

σ

〈
f̃

(
v(t), l

)
z, zt (τ )

〉
dτ

)

+ λ

( t∫
σ

∫
Ω

∣∣g̃(
vt (τ ), l

)∣∣ 3
2 dx dτ

) 2
3

sup
σ�τ�t

∥∥z(τ )
∥∥2

L6(Ω)

� 1

4λ

(
E

(
z(σ )

) −
t∫

σ

〈
f̃

(
v(t), l

)
z, zt (τ )

〉
dτ

)

+ λc1(A) sup
σ�τ�t

E
(
z(τ )

)
, ∀λ > 0. (3.13)

By (3.10)–(3.13) we find that

E
(
z(t)

) +
t∫

σ

E
(
z(τ )

)
dτ � μ sup

σ�τ�t

E
(
z(τ )

) + c2(A)E
(
z(σ )

)

+ c2(A)

(∣∣∣∣∣
t∫

σ

〈
f̃

(
v(t), l

)
z, zt (τ )

〉
dτ

∣∣∣∣∣
+

∣∣∣∣∣
t∫

σ

〈
f̃

(
v(t), l

)
z, z(τ )

〉
dτ

∣∣∣∣∣
)

, 0 � σ � t, (3.14)

for some μ ∈ (0,1).
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We note that the argument above is of a formal character. We can justify it by considering
strong solutions. Since (3.14) is true for strong solutions of (3.8), it remains true also for gener-
alized solutions, because they can be approximated by a sequence of strong solutions.

Now let us estimate the right side of (3.14). From compactness of A it follows that the set⋃
0�τ�1(τA+ (1 − τ)A) is also compact in H 1

0 × H . So by Lemma 3.2 we find that

∥∥f̃
(
v(t), l

)
z
∥∥ � ε‖z‖1 + c3(ε)‖z‖, ∀t � 0. (3.15)

Thus by choosing ε small enough, from (3.14) and (3.15) we obtain

E
(
z(t)

) +
t∫

σ

E
(
z(τ )

)
dτ � c4(A)

(
E

(
z(σ )

) +
t∫

σ

∥∥z(τ )
∥∥2

dτ

)
, 0 � σ � t. (3.16)

Integrating (3.16) with respect to σ from 0 to t we have

tE
(
z(t)

)
� c4(A)

t∫
0

E
(
z(σ )

)
dσ + c4(A)

t∫
0

t∫
σ

∥∥z(τ )
∥∥2

dτ dσ

� c2
4(A)

(
E

(
z(0)

) +
t∫

0

∥∥z(τ )
∥∥2

dτ

)
+ tc4(A)

t∫
0

∥∥z(τ )
∥∥2

dτ

� c5(A)E
(
z(0)

) + c5(A)(1 + t)

t∫
0

∥∥z(τ )
∥∥2

dτ, ∀t � 0. (3.17)

On the other hand, since (w(s),wt (s)) ∈A, for ∀s ∈ R, using by (1.8) and (3.7) we obtain

t∫
0

∥∥vt (τ )
∥∥2

dτ � c(A), ∀t � 0,

and consequently

t∫
0

∥∥z(τ )
∥∥2

dτ � l2

t∫
0

1∫
0

∥∥vt (τ + sl)
∥∥2

ds dτ � l2c(A), ∀t � 0.

Taking into account the last inequality in (3.17) we find

tE
(
z(t)

)
� cE

(
z(0)

) + cl2(1 + t), ∀t � 0, (3.18)

where c depends on A, but is independent of z(t). Taking t = τ − s − l in (3.18), we have

E
(
w(τ) − w(τ − l)

)
� cE(z(0)) + cl2(1 + τ − s − l)

, ∀τ � 0,

τ − s − l
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passing to limit as s → −∞,

E
(
w(τ) − w(τ − l)

)
� cl2, ∀τ, l � 0. (3.19)

Inequality (3.19) together with wt ∈ C([0,∞);H) yields

wt ∈ Cs

(
0,∞;H 1

0

)
and

∥∥wt(τ)
∥∥

1 � r1, ∀τ � 0, (3.20)

and consequently

g(wt ) ∈ Cs

(
0,∞;L 6

5
(Ω)

)
and

∥∥g
(
wt(τ)

)∥∥
L 6

5
(Ω)

� r2, ∀τ � 0, (3.21)

where ri (i = 1,2) are independent of w(t). Since w(τ) = v(τ − s), taking into account (3.21)
in (3.8)1 we obtain wtt ∈ Cs(0,∞;H−1), which together with (3.19) implies

wtt ∈ Cs(0,∞;H) and
∥∥wtt (τ )

∥∥ � r3, ∀τ � 0, (3.22)

where r3 is independent of w(t). Taking into account (3.20)–(3.22) in Eq. (3.8)1 we find that∥∥wt(τ)
∥∥

1 + ∥∥�w(τ) + g
(
wt(τ)

)∥∥ � r4, ∀τ � 0, (3.23)

where r4 is independent of w(t). Thus for every ϕ = (ϕ1, ϕ2) ∈A we obtain

‖ϕ1‖1 + ‖ϕ2‖1 + ∥∥�ϕ1 + g(ϕ2)
∥∥ � R,

where R is independent of ϕ. �
Now let us prove finite dimensionality of A.

Theorem 3.2. Assume the conditions of Theorem 3.1 are satisfied. Then the fractal dimension of
the global attractor A is finite.

Proof. Let ϕ1 = (w0,w1) ∈ A, ϕ2 = (v0, v1) ∈ A, (w,wt ) = S(t)ϕ1, (v, vt ) = S(t)ϕ2 and u =
w − v. Then u(t, x) is the solution of the problem

{
utt − �u + g(ut + vt ) − g(vt ) + f (u + v) − f (v) = 0 in (0,+∞) × Ω,

u = 0 on (0,+∞) × ∂Ω,

u(0) = w0 − v0, ut (0) = w1 − v1 in Ω.

(3.24)

Formally multiplying Eq. (3.24)1 by ut and by u, and integrating over (σ, t) × Ω we obtain

E
(
u(t)

) +
t∫

σ

∫
Ω

(
g(ut + vt ) − g(vt )

)
ut (τ ) dx dτ

� E
(
z(σ )

) −
t∫ 〈

f (u + v) − f (v),ut (τ )
〉
dτ (3.25)
σ
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and

〈
ut (t), u(t)

〉 +
t∫

σ

∥∥∇u(τ)
∥∥2

dτ +
t∫

σ

∫
Ω

(
g(ut + vt ) − g(vt )

)
u(τ) dx dτ

=
t∫

σ

∥∥ut (τ )
∥∥2

dτ + 〈
ut (σ ),u(σ )

〉 −
t∫

σ

〈
f (u + v) − f (v), z(τ )

〉
dτ. (3.26)

As mentioned in the proof of Theorem 3.1 we can justify (3.25) and (3.26) using a density
argument. Now using Gronwall’s lemma, from (3.25) we obtain∥∥S(t)ϕ1 − S(t)ϕ2

∥∥
H 1

0 ×H
� c1e

ωt‖ϕ1 − ϕ2‖H 1
0 ×H , (3.27)

where constants c1 and ω depend on A, but are independent of ϕi (i = 1,2).
On the other hand, taking into account Lemma 3.2 in (3.25)–(3.26) and repeating the argument

which has been done in the proof of Theorem 3.1, we find that

E
(
u(t)

) +
t∫

s

E
(
u(τ)

)
dτ � c2

(
E

(
u(s)

) +
t∫

s

∥∥u(τ)
∥∥2

dτ

)
, ∀t � s � 0.

Integrating the last inequality with respect to s from 0 to t we have

E
(
u(t)

)
� c3

t
E

(
u(0)

) + c3(1 + t) sup
0�τ�t

∥∥u(τ)
∥∥2

, ∀t > 0, (3.28)

where c3 depends on A, but is independent of ϕi (i = 1,2).
Thus according to [1, Theorem 3.11] by (3.27) and (3.28) it follows that the fractal dimension

of A is finite. �
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