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We generally follow the terminology of Azad (J. Math. Anal. Appl. 82 (1981),
14-32) and Ming (J. Math. Anal. Appl. 76 (1980), S71-599). In addition to the fun-
damental concepts for fuzzy sets, we emphasize the usefulness of the concepts of
fuzzy point—fuzzy elementhood. For fuzzy sets 4 and B a new characterization is
given for relations 4 < B and A = B. This knowledge permits us to combine the two
definitions of fuzzy point-fuzzy elementhood. In the third section some results are
given concerning various special types of fuzzy sets in fuzzy topological spaces, and
the fuzzy semi-regular, fuzzy regular spaces defined by Azad. In the last section, the
definitions of H. almost continuous, W. almost open functions Urysohn space
which are defined by Hussain, Wilansky, and Noiri, respectively, are extended to
fuzzy sets. Furthermore some results are obtained in the functions of the fuzzy
topological spaces defined by Azad and those are defined here. € 1987 Academic Press,

Inc.

1. Basic NOTATION AND DEFINITIONS

X always denotes a nonempty set. Fuzzy sets of X will be denoted by
capital letters as A4, B, C, etc. The value of a fuzzy set A at the element x of
X will be denoted by A(x), and fuzzy points will be denoted by p, r, s.

We write pe; A, pe, A, respectively, when the definitions of a fuzzy
point and being an element of a fuzzy set are as given by
Srivastava-Lal [3] and Ming [2]. Hence p €, 4 means p takes its single
non-zero value in (0,1) at the support x, (the support of p), and
p(x,)<A(x,), while pe, A means p takes its single non-zero value in
(0, 11, and p(x,) < A(x,).

In this article p e 4 will stand for either pe, A or pe, A. If we say only
“fuzzy point p” then p will be considered as in [2] or [3]. Also, in the case
p €; A we use the same definitions as given in [2].

Let 4 and B be fuzzy sets, p a fuzzy point in X. (p), ko(p), 4, 4, 4’
will denote, respectively, the neighborhood system of p, the O-

* This research is a part of auther’s Ph.D. Thesis which was submitted to the University of
Hacettepe in 1982.
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neighborhood system of p, the interior of A, the closure of A4, and the com-
plement of A. If 4 is quasi-coincident with B this will be denoted by AqB,
and if p is quasi-coincident with A4 this will be denoted by pqA.

Known results valid for the general case pe 4 will not be proved.

2. Fuzzy SETS

PrROPOSITION 2.1. If A(x) is not zero for x€ X then,

A(x)= sup  p(x)=  sup p(x).

0 <pi(x} < Alx) 0 < pi(x) € A(x)
(Here supp p; = x for every A.)
Proof. Trivial.

THEOREM 2.2.

(i) A<Biff pe, A implies p e, B for every pe, X.

(i) AcBiff pe, A implies p e, B for every pe, X.

(ili) A< B iff pe A implies p(x,) < B(x,) for every p in X.

Proof. (i) Let AcB and pe, A. Clearly p(x,) < A(x,) < B(x,). This
gives p(x,) < B(x,), so we have pe, B.

Conversely suppose pe; A=>pe, B but that 4 ¢ B. Then for some
xeX, B(x)<A(x). If p is a fuzzy point with support x, and satisfying
B(x) < p(x) < A(x) then pe, A but p¢, B, which is a contradiction. This
completes the proof of (i).

The proofs of (ii) and (iii) are similar. ||

COROLLARY 2.3, A=Biff pe A< pe B for every p in X.
THEOREM 2.4. (i) peAnBiff peAand peB.
(i) peAuBiffpeAorpeB.
Proof. Let us prove that pe, AnBiff pe, A and pe, B;
pe AnB< p(x,)<An B(x,)

< p(x,) <inf{4(x,), B(x,)}
<« p(x,)<A(x,) and plx,) < B(x,)
<pe A and pe, B

The proofs of the other case, and of (ii) can be given in a similar way. |
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PROPOSITION 2.5. Let A be a fuzzy set and for xe X, A(x)=1t#0. If for
any A which satisfies the inequality 0 <A <t, we choose the fuzzy point p
such that p(x)=1— 4, then pqd because A(x)+ (1 —A)=1—A+1>1. 1

3. Fuzzy TOPOLOGICAL SPACES

Throughout this section, X will denote a fuzzy topological space with
fuzzy topology 1.

With a small modification the following result is taken from [2,
Theorem 4.1'].

THEOREM 3.1. Let peX and AcX. If peA then AqQM for every
Mexy(p). If AQM for every M ek y(p) then p(x,) < A(x,).

Proof. Clear from [2, Theorem4.1']. |

THEOREM 3.2. A is a fuzzy open set iff A is a Q-neighborhood of p for
every pe X which is quasi-coincident with A.

Proof. Let A be fuzzy open. Clearly if any fuzzy point p is quasi-coin-
cident with 4 then 4 exy(p).

Conversely, let pe, A. Then 0 +# p(x,) < A(x,) and we may consider the
fuzzy point r with support x, and r(x,)=1— p(x,). By Proposition 2.5 we
have rq4 so by hypothesis A € «,(r). Hence we have Uet with rqU and
UcA,

r(x,)+ U(x,)=1- p(x,)+ Ul(x,)>1=Ul(x,)> plx,)
=pe, UcA
=pe, A
Hence A c A, and A is fuzzy open. |
ProPOSITION 3.3. For a fuzzy topological space X, the following are
equivalent:

(i) For any distinct fuzzy points pe, X, re, X (ie, satisfying
supp p #supp r), there exist fuzzy open sets U and V such that pe, U,
re, Vand UnV=¢.
(ii) For any distinct fuzzy points p €, X, r €, X, there exist fuzzy open
sets U and U and V such that pqU, rqU, and UnV = (.
(iiiy For any distinct fuzzy points p €, X, r €, X, there exist fuzzy open
sets U and V such that pqU, rqV, and UnV = .

409/126/2-8
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Proof. The proof is easy but rather long and is omitted. ||

X is said to be Hausdorfl if it satisfies the equivalent condition of the
Proposition 3.3 ([3] and [2]).

PROPOSITION 3.4. Let A,Bc X and A< B< A.

(i) If A is a fuzzy semi-open set then so is B.
(ii) If A is a fuzzy semi-closed set then so is B.

Proof. (i) Let A be a fuzzy semi-open set and A  B< A. There exists
a fuzzy open set U such that Uc A < U. It follows that Uc Ac Ac AU
and hence U< B< U. Thus B is a fuzzy semi-open set.

(i) The proof is similar to (i). ||

THEOREM 3.5. Let Ac X. A is a fuzzy semi-open set iff for every pe A
there exists a fuzzy semi-open set O, such that pe O,c A.

Proof. 1If A is a fuzzy semi-open set then we may take O, = 4 for every
peA. )

Conversely we have A=U,.,{p}<cU,..0,c4 and hence
A=1{J,.40,. This shows that 4 is a fuzzy semi-open set. |}

It can be easily seen from [2] that A4 is a fuzzy regular open (regular
closed) set iff there exists a fuzzy set B such that A =B (4 = B).

PROPOSITION 3.6. X is a fuzzy semi-regular space iff for every pe, X
there exists a neighborhood base of p consisting of fuzzy regular open sets.

Proof. Let pe; X and M ek(p). There exists a fuzzy open set T such
that p e, T = M. From the definition of a fuzzy semi-regular space made by
Azad [1] and [3, Theorem 2.1] there exists a fuzzy regular open set A4
such that pe, A = T. Clearly A € k(p).

Conversely, let T be a fuzzy open set. Then Tek(p) for every pe; T.
Thus there exists a fuzzy regular open set A, such that 4,ex(p) and
pe A,cTflorevery pe, T.

From this we get T={) 4,. Hence X is a fuzzy semi-regular space. |

THEOREM 3.7. X is a fuzzy semi-regular space iff for every pe X there
exists a Q-neighborhood base of p consisting of fuzzy regular open sels.

Proof. Let pe X and M € ky(p). There exists T'e 7 such that T< M and
Teky(p). Since pqT, there exists a regular open set 4 such that pg4 and
A c T ([1, Definition 7.8; 2, Proposition 2.3]. This implies that 4 € xy(p).

Conversely we suppose that X is not a fuzzy semi-regular space. This
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implies that there exists a fuzzy open set T such that T cannot be written as
a union of fuzzy regular open sets.

Let To=\) {B|B<T, B a fuzzy regular open set}. We have T, T but
T, # T. It can be easily shown that T, # (.

T, # T implies that there exists an element x of X such that To(x) < T(x).
We can choose ¢> 0 such that Ty(x)+¢&< T(x). If we define p such that
p(x)=1—Ty(x)—e then pqT. Clearly Teky(p). There exists a fuzzy
regular open set A such that A= T and Aek,(p). At the same time,
Ac T, We have

AX)+ p(x) S To(x)+ 1 = To(x)—e<1

which is a contradiction. Hence X is a fuzzy semi-regular space. ||

PROPOSITION 3.8. X is a fuzzy regular space iff for every pe, X there
exists a neighborhood base of p consisting of fuzzy closed sets.

Proof. For every fuzzy open set T there exist fuzzy open sets U,, a e Q
(2 is an index set) such that
T=Uv,=)U0, and U,c U, foreverya.

The remainder of the proof is similar to the proof of Proposition 3.6. |}

THEOREM 3.9. X is a fuzzy regular space iff for every p e X there exists a
Q-neighborhood base of p consisting of fuzzy closed sets.

Proof. This is similar to the proof of Theorem 3.7, the set T, involved
in showing sufficiency in this case being

To=\J) {B<T| B is a fuzzy open set with B T}. |

4. FuNCTION ON Fuzzy SPACES

As the light to the knowledge in this section, the following theorem is
gathered from some dissertation concerning fuzzy sets. For example, see
[1,4,5]

THEOREM 4.1. Let f be a function from X to Y, and I be any index set.
The following statements are true:
(1) If A= X then f(A) = f(A4").
(2) If BcY then f~Y(B')=f"Y(B).
(3) IfA,,AycX and A, = A, then f(A,) = f(A4,).
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(4) If B,B,c Y and B, =B, then f ~'(B,)c f(B,).

(5) If A X then A< f(f(A)).

(6) If B Y then f(f '(B))c B.

(7) If A;=X for every i€l then f(U;c; A)=U;c, f(4,).
(8) If B,c Y for every i€l then

[ (U B,->= U/ (B,

iel iel
) If fis one-to-one and A< X then f ~'(f(A4)) = A.
(10) If fis onto and B< Y then f(f ~'(B))=B.
) If A, B< X then f(An B)< f(A)~ f(B).
) If B,< Y for every i€l then

f! <ﬂ Bi) zl_olfwl(Bi)-

(13) Let g be a function from Y to Z. If Bc Z then (g-f) '(B)=
S7HEg (B If A X then (gof)(A)= g(f(A)).

In addition to these properties the following statement is true at the same
time.

(14) If f is bijection then for A< X, f(A) = f(A’), because

SUTHSAYN =, (f(A))) = f(4).

Let f be a function from X to Y. Clearly for every pe X, f(p) is a fuzzy

point in Y, and if supp p = x, then supp(f(p))=f(x,), f(p)f(x,)) = p(x,).
If pe Y then f ~'(p) needs not be a fuzzy point in X. If f is one-to-one and
pe f(X) then f~'(p) will be a fuzzy point in X. In this case if supp p= Vp

then supp f~'(p)=f"'(y,) and f~'(p)(f~(y,) = p(¥,).

PROPOSITION 4.2. Let f be a function from X to Y and pe X.

(1) If for B Y we have f(p) qB then pqf '(B).
(2) If for A< X we have pqA then f(p) qf(A).

Proof. (1) Let f(p)qB for Bc Y. Clearly f(p)(f(x,)) <= B(f(x,))> 1.
This gives that

7 B)x,) + plx,) = B(f(x,)) + f(pNf(x,)) > 1= paf ~'(4),
[4, Definition 1.1; 2, Definition 2.2"].
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(2) Let pqA for A< X. This gives, p(x,)+ A(x,) > 1. This implies that
S SOx )+ A ASf(x,)=p(x,)+ sup  A(x)

xef~f(xp))
= plx,)+A(x,)> 1.

Clearly we have f(p) qf(4). 1

To the end of this work, X and Y denote fuzzy topological spaces with
fuzzy topology t and 9, respectively, and by f: X —» Y we denote a function
f of a fuzzy space X into a fuzzy space Y.

THEOREM 4.3. If f: X — Y fuzzy open then f~"(B)< f~ 7 (B), for every
BcY.
Proof. Let B<Y and pef ~'(B). First let us show that if Neky(p)

then f(N) e xo(f(p))-
Let Nexy(p). Then there exists Uet such that pqU < N. This implies

that f(p) qf(U) < f(N) (Proposition 4.2). Since f'is fuzzy open function we
have f(U)e 8 Thus f(N)exy(f(p)),

- pefTi(B)=f(p)ef(f '(B)<=B

Again let Neky(p). Since f(N)exy(f(p)) and from Theorem 3.1 there
exists ye Y such that f(N)(y)+ B(y)>1. We choose ¢>0 such that
S(N)y)+B(y)—e>1. Since f(N)y)=5up.. -1, N(x) there exists
xo€f ™ '(y) such that f(N)(y)—e < N(x,) for this & For this x,,

S (B)(xo) = B(f(xo)) = B(y).

We have N(x,)+f '(B)(xo)>f(N)(y)—e+ B(y)>1. Thus qu‘ (B).
Since this result is true for every Nek,(p), we have p(x </ '(B)(x »)

(Theorem 3.1). Now we arrive at the result f— 1(B)cf 1(B),
{Theorem 2.2). |

CoroLLARY 44. If f1X—Y is a fuzzy open and fuzzy continuous
function then f~'(BY= f~(B), for every B Y.

Proof. 1t is clear from [4] and Theorem 4.3.

THEOREM 4.5. Let - X — Y. The following are equivalent:

(1) fis a fuzzy semi-continuous function.

(2) For every pe X and every M e x(f(p)), there exists a fuzzy semi-
open set A such that pe A and A f~1(M).
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(3) For every peX and every Mex(f(p)), there exists a fuzzy
semi-open set A such that pe A and f(A)c M.

(4) For every pe X and every Mexk,(f(p)), there exists a fuzzy
semi-open set A such that pqA and Ac M.

(5) For every pe X and every M e ky(f(p)), there exists a fuzzy semi-
open set A such that pqA and Ac f !

(6) fHU)cf(U), for every Ue 3.

(7) For every fuzzy closed set Bin Y, f~'(B) is a fuzzy semi-closed set
in X. ]

(8) For every fuzzy closed set Bin Y, f "(B)>f '(B).

Proof. (1)=>(2). Let pe X and Me«(f(p)). There exists Ue 3 such
that f(p)eUc M. f’ (U) is a fuzzy semi-open set and we have
pef ((U)y=Acf (M)

(2)=(3) Let pe X and M e x(f(p)). There exists a fuzzy semi-open set
A such that ped and Acf '(M) So we have pe4,
fA)ye f(f (M) M.

(3)=(1) Let Ue$ and let us take pef '(U). This shows that
f(p)ef(f '(U))=U. Since U is a fuzzy open set we have Uex(f(p
There exists a fuzzy semi-open set A4 such that pe 4 and f( < U. This
shows pe A f'(f(A4)) = f~}(U). From Theorem 3.5, f ~'(U) is a fuzzy
semi-open set.

(1)=(4) Let peX and Meky(f(p)). There exists Ue d such that
f(p)qUc M. f~'(U) is a fuzzy semi-open set and from Proposition 4.2 we
have pqf~'(U). If we take 4= f'(U) then

fA) =/ (U)cUcM

(4)=(5) Let peX and Meky(f(p)). There exists a fuzzy semi-open
set A such that pgd and f(4)cM. Hence we have pqd and
Ac [N ()= f~ 1 (M).

(5)= (1) Let us show that f~'(U) is a fuzzy semi-open set for any
Ues.

Let Ue$ and pe, f "(U). This implies that f(p)e, U (because
p(x,) < f~HUNx,), [(x, 0 f(x,)) = p(x,) and £~ (U)(x,) = U(f(x,))),

f(p) e, U= f(p)f(x,)) < U(f(x,))
If we define the fuzzy point p’ being

p/(xp) =1- p(‘xp)’
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then
S(pWSf(x,)=p'(x,)=1—p(x,)=1—f(p)(f(x,)),

f(p')qU (Proposition 2.5). Since U is a fuzzy open set, we have
Ueky(f(p')). Thus there exists a fuzzy semi-open set A4 such that
p'qd < fH(U).
p'gd=p'(x,)+ A(x,)>1
= A(xp) >1-— p’(xp) = p(xp)
=pe, Acf ().
From Theorem 3.5, we have f~!(U) is a fuzzy semi-open set.
(1)=>(6) Since f~'(U) is a fuzzy semi-open set for every Ue 3 we have
F=YU)<=f~Y(U) [1, Theorem 4.2).

(6)=1(1) From [2, Theorem 4.2], since any fuzzy set 4 which satlsﬁes
the relation 4 = A in X will be a fuzzy semi-open set, we have that £~
is a fuzzy semi-open set for every Ue 3.

(1)=(7) Let B be a fuzzy closed set in Y. This implies that B’ 3. We
have f (B)=f BY. f (B') is a fuzzy semi-open set so is f '(B)
Clearly f ~!(B) is a fuzzy semi-closed set [ 1, Theorem 4.2].

(7)=(8), (8)=(7), and (7)= (1) can be easily proved. |

THEOREM 4.6, Let - X — Y. The following are equivalent:

(1) fis a fuzzy weakly continuous function.

(2) For every fuzzy closed set B in Y, we have f ~'(B) > f ~'(B).

(3) For every pe X and Mex(f(p)), f ' (M)ex(p).

(4) For every pe X and Mek(f(p)), there exists Uet such that
pelU, f(Uye M

(5) For every pe X and Mexo(f(p)), f ' (M)ekyp).

(6) For every pe X and Mex,(f(p)), there exists Uet such that
Ueky(p) and f(U)c M.

(7) For every pe X and any fuzzy net {p,},.s which is converging to
p, if Mexky(f(p)) then there exists fe€® such that f(p,) qM for every
o= B, where @ is a directed set.

(8) For every Ve, f '(V)ycf (V).

Proof. (1)=(2) Let B be a fuzzy closed set in Y.B' e,
f7(B)=(f"'(B))°. This implies that (f (B))<=(/'((8)))% [1,
Lemma 3.2],

(S BY <((f ' B = ("B =f"(B)>f(B).
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(2= (1) Proof is similar to (1)=(2).

(1)=(3)=(4)=(1) and (5)= (6) can be easily proved.

(6)=(7) Let peX, p,— p, and Mexy(f(p)). There exists Uet such
that Uexky(p) and f(u)yc M. Since p, - p, there exists fe @ such that
P, qU for every a = f§ [2, Definition 11.4]. From Proposition 4.2 we have
f(p.)af(U)yc M, for every a > B. Clearly f(p,) qM, for every a = f.

(7)=(5) We suppose that (7) does not imply (5). There exists at least
one pe X and M ek ,(f(p)) such that for every fuzzy open set Ue xy(p),
we have U & (M)

Thus, there exists an element x, of X such that U(x,)> f~'(M)(x,), for
every Ueky(p). We can choose ¢, > 0 for every fuzzy open set Ueky(p)
such that U(x,)> [~ "(M)(x,)+e¢,. Clearly, U(x,)+1—f YM)(x,)—
e, > 1 for every fuzzy open set Ueky(p).

Let us define the fuzzy points in the following way.

pux)=1—f""(M)x,)—¢,, for every fuzzy open set Ue ky(p).

This follows that U(x,) + p,(x,) > 1 for every fuzzy open set Ueky(p).

If we denote the family of fuzzy open sets which belong to x,(p) by &,
then we can easily see from [2, Proposition 2.2] that ¥ is a directed set
(the relation < in .2 is in the meaning of Uc V<= U= V).

The net { p,} . » which is chosen in the above way converges to p.

For every Ue &,

Flp ) f(x,)) = pux,)
=1—f"(M)(x,)~e,
=1-M(f(x,))— ¢,

We have f(p )(f(x.)+ M(f(x,))=1—¢,<1, which contradicts (7).

Thus (7) implies (5).

(1)=(5) Let pe X and Mer([(p)). There exists Uel? such that
Ueky(f(p)). Since, paf "(U)c f~'(M)cf (M) and fY{M)er, we
have /= '(M) e xy(p). H

(5)=1(1) Let us show that f ~"(U)c f (D) for Ue . Let Ue § and
pe f (U)=f(p)e, U If we define p'(x,)=1—p(x,) then
WS (x,))=1—=f(p)f(x,)). Since f(p)(f(x,))<U(f(x,)), we have
f(p'yqU (Proposition 2.5). Thus Ueky(f(p’)). This implies that
f ' (O)exy(p'). There exists T et such that p'qT < f~'(U). From here we
write, p'(x,) + T(x,)=1— p(x,) + T(x,) > 1. This gives that

T(x,)> p(x,) = peT<f (D)
=pef (D)

Hence we obtain f ~(U) < f 1 D).
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(2)=(8) Let Ved. V is a fuzzy closed set and Ve V. Hence

D)= W) ).
(8)=(2) Let Bbea fuzz_y closed set in Y. This gives that Be 3 and
Bc B. Hence f(B)cf (B) =S '(B). 1

DerINITION 4.7. Let (X, ) be a fuzzy topological space. If for any dis-
tinct fuzzy points p, r in X such that p(x,) <1, r(x,) <1, there exists fuzzy
open sets U and V such that p(x,) < U(x,), r(x,)<V(x,) and UnV =S
then we say that X is a fuzzy Urysohn space.

PROPOSITION 4.8. For fuzzy topological space X, the following are
equivalent:
(1) X is a fuzzy Urysohn space.

(2) For any distinct fuzzy points p €, X, r €, X, there exist fuzzy open
sets U and V such that pe, U, re, V,and UnV=.

(3) For any distinct fuzzy points pe X, r€ X, there exist fuzzy open
sets U and V such that pqU, rqV, and UnV = (.

Proof. The proof is easy but iong.

THEOREM 4.9. Let Y be a fuzzy Urysohn space. If f: X » Y is fuzzy
weakly continuous and one-to-one then X is a fuzzy Hausdorff space.

Proof. Omitted.

THEOREM 4.10. Let fi: X > Y, f5: X > Y be fuzzy weakly continuous
functions, let Y be a Urysohn space, and A=) {peX | fi(p)=/1ip)}
Then, A is a fuzzy closed set.

Proof. Omitted.

COROLLARY 4.11. Let fi: XY, fo: X > Y be fuzzy weakly continuous
functions, Y be a fuzzy Urysohn space and A= X. If A= X and f\(p)=f>(p)
for every pe A then f, = f,.

THEOREM 4.12. Let f: X — Y. The following are equivalent:
(1) fis fuzzy almost continuous.
(2) For every Ve 8, f~'(V)c (f ~1(V))".

(3) For every fuzzy regular closed set A in Y, f ~'(A4) is a fuzzy closed
set.

(4) For every fuzzy closed set B in Y, f~\(B)< f ~'(B).
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(5) For every pe X and every M e K(f(p)),f”(]lfl)ex(p).

(6) For every pe X and every M e k(f(p)), there exists Ue t such that
pelU andf(U)CA_oJ.

(7) For every pe X and every Me ko(f(p)), there exists Uet such
that pqU and f(U)= M.

(8) Forevery pe X and every M e KQ(f(p)),f“‘(Ail)eKQ(p).

(9) For every pe X, if any net {p,} .o converges to p, then for every
Mexy(f(p)), there exists e ® such thatf(pa)qﬁ_}for every o= f.

Proof. (1)< (2), (3)<> (4) are proved by Azad [1]. The others can be
proved in a similar way to the proof of Theorem 4.6. |

DEerFINITION 4.13. Let /2 X - Y be a function. f is called,

(a) Fuzzy H. almost continuous, if for every fuzzy open set U in 7Y,
f NU)cf Y (U) (in short f, fuzzy H.a.c.).

(b) Fuzzy W. almost open, if for every fuzzy open set U in 7Y,
YOy f~Y(U) (in short f, fuzzy W.a.0.).

Remark 4.14. For the function f: X — Y, the following statements are
valid:

fuzzy continuous = f, fuzzy H.a.c,

fuzzy H.a.c. % f, fuzzy weakly continuous,
fuzzy almost continuous # f, fuzzy H.a.c.,
fuzzy H.a.c. % f, fuzzy semi-continuous,
fuzzy semi-continuous # f, fuzzy H.a.c.,,
fuzzy open = f, fuzzy W.a.o.,

e L T e N

fuzzy W.a.o. # f, fuzzy semi-open.

ExaMmpLE 4.15. Let X={a,b,c}, Y={x,y,z} and T\cX, T,c X,
T.<cX,U,cY, Uy,c¥, Uyc Y be defined as follows:

T\(a)=0, T,b)=0,3,  T,(c)=0,2,
Tya)=0,9, T,(b)=0,6, Ty(c)=0,7,
Tya)=0,2, Ty(b)=0,3,  Ts(c)=0,2,
U,(x)=0, Ul(y)=0,4, U(z)=0,2,
Uy(x) =0, Uy(p)=0,8, Uydz)=0,2,

Us(x)=0, Uyd(p)=0,6,  Uy(z)=0,2,
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(@) Lett={X, &, T,,T,}, 9$={Y, 3, U}

If we define f: Y — X satisfying f(x)=aq, f(y)=>b, f(z) = c then f'is fuzzy
H.a.c. but not fuzzy weakly continuous.

(b)y Lett={X, &, T,,T,}, $={Y,F, U,}.

If we define f: X — Y satisfying f(a)=x, f(b) =y, f(c) =z then fis fuzzy
almost continuous but not fuzzy H.a.c.

(¢c) If we define 7 and 3 as in (a) and f as in (b) then f1s fuzzy W.a.o.
but not fuzzy semi-open.

(d) Lett={X, @, T, T}, $={Y, &, U,}.
If define f as in (b) then f'is fuzzy H.a.c. but not fuzzy semi-continuous.
COROLLARY 4.16. f: X — Y is fuzzy W.a.0. and fuzzy weakly continuous
iff f~UV)=f"Y(V) for every fuzzy open set V in Y.
Proof. Clear from Definition 4.13 and Theorem 4.6.

THEOREM 4.17. Let f: X — Y. The following are equivalent:
(1) fis fuzzy Ha.c.
(2) For every fuzzy closed set Fin Y, f ~'(F)> f ~1(F).
(3) For every pe X and every M e ;c(f(p)),f_"fAT)ex(p).
(4) For every pe X and every M€ k,(f(p)), fTM)e Kol p)

(5) For every pe X, if any net {p,},.q converges to p then for every
Mexy(f(p)) there exists e ® such that p,qf ~'(M) for every o> .

(6) For every fuzzy open set T in X, f(T)< f(T).

Proof. (1)< (2)<>(3)<>(4)<>(5) can be proved in a similar way to
that of Theorem 4.6.

(2)=(6) Let Te1. Clearly T=T. f(T) is a fuzzy closed set in Y. We
have

T (M) s ()’ >T>T

This implies that f(f ~'(f(T)))> f(T)
Hence f(T) = f(T).

(6)=(2) Let F be a fuzzy closed set in Y. Clearly f*f(F)er. We have
ASTIEN) e f S HUEFN) e f(f (F))cF=F.

This implies that

P f M ATTEN s UE. )
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THEOREM 4.18. If f: X — Y is fuzzy W.a.0. and fuzzy weakly continuous
then f is fuzzy almost continuous.

Proof. Let A be a fuzzy regular closed set in Y. Clearly A = A. Since A
is a fuzzy open set and by Corollary 4.16, we have / ~'(4) = f ~'(A4). Hence

f~YA)=f~"(A). This shows that f ~'(A4) is a fuzzy closed set. Thus fis a
fuzzy almost continuous function, (Theorem 4.12). |

COROLLARY 4.19. Let f: X > Y. f is fuzzy W.a.0. and fuzzy almost con-
tinuous iff f~"(V)=f""(V) for every fuzzy open set V in Y.

Proof. Necessity is clear from [1, Remark 8.2] and Corollary 4.16.
Sufficiency is clear from Corollary 4.16 and Theorem 4.18. ||

THEOREM 4.20. If /- X — Y is fuzzy W.a.0. and fuzzy weakly continuous
then, fis fuzzy H.a.c.

Proof. Let Ued. We have f "(U)c f~ "(U)<c f (U) (Theorem 4.6
and Definition 4.13). Hence f'is fuzzy H.a.c. |

ProposiTiON 4.21. If f: X —> Y is fuzzy W.a.0. and fuzzy weakly con-
tinuous then for every fuzzy regular open (fuzzy regular closed) set A in Y,
fYA) is fuzzy regular open (fuzzy regular closed) set in X.

Proof. Easy. |
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