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1. I N T R O D U C T I O N  

Let T(n,  p) denote the class of functions f ( z )  of the form: 

o o  

f ( z )  = z p -- E ak+p Z k+p (ak+p _ > 0; p E N := {1, 2, 3 , . . .  }; n E N), (1.1) 
k = n  

which are analytic in the open unit disk 

b l = { z : z e C  and Izl<l}. 

A function f(z) ~ T(n,p) is said to be in the class T(n,p, A, ct) if it satisfies the inequality: 

{ zf'(z) + 2/"(z) > (1.2) 
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for some c~ (0 < ex < 1) and A (0 < )` < 1), and for all z E H. We note that  

1,0, -- 
T(n,  1, 1,a) -- C~(n), 

T(1, 1,0,a) -- T*(a), 

7"(1, 1, 1, a) = C(a), 

(1.3) 
(1.4) 

(1.5) 
(1.6) 

and 
T(n,  1, )`, a) =- 7)(n, )`, a). 

The classes T,~(n) and Ca(n) were studied earlier by Srivastava et al. [1], the classes 

(1.r) 

T*(4) = Ta(1) and C(a) --- C~(1) 

were studied by Silverman [2], and the class 7~(n, ),, a) was studied by Altinta~ [3]. 
The object of the present paper is to give various basic properties of functions belonging to 

the general class T(n,p ,  A, 4). We also prove (in Section 3) several distortion theorems (involving 
certain operators of fractional calculus) for functions in the class T(n,  p, )`, 4). 

2. A T H E O R E M  O N  C O E F F I C I E N T  B O U N D S  

We begin by proving some sharp coefficient inequalities contained in the following theorem. 

THEOREM 1. A function f (z)  E T(n,  p) is in the class T(n,  p, )`, 4) if and only if  

oo  

E (k + p  - a)()`k + ),p - A + 1) ak+p <_ (p -- 4)(1 + Ap -- )`) 
k ~ n  

(2.1) 

( 0 < a < l ;  0 < ) , <  1; ) ` ( p - 1 ) ( p - c ~ ) > _ a ( p ¢ l ) ;  p e N ;  n E N ) .  

The result is sharp. 

PROOF. Suppose that  f ( z )  E T(n ,p ,A,  cx). Then we find from (1.2) that  

[ p(1 + )`p - A) z p - ~--:~°=n (k + p)(),k + ),p - A + 1) ak+p z k+p 
( 

( 0 < a < l ;  0 < A < l ;  A ( p - 1 ) ( p - a ) > a ( p # l ) ;  p e N ;  h e N ;  z E/g). 

If we choose z to be real and let z --* 1- ,  we get 

p(1 + Ap - )`) - ~.,k°~=n (k + p)(Ak + Ap - )` + 1) ak+p ~ a 
1 + ),p - A - Ek°°__n ()`k + Ap - )` + 1) ak+v 

(0 <: a < 1; 0 < )` < 1; A(p -  1 ) ( p -  a) > a ( p #  1); p E  N; n E N) 

or, equivalently, 

oo  

E (k + p - c~)(),k + Ap - )` + 1) ak+p <_ (p - c~)(1 + )`p - A) 
k = n  

( 0 < : a <  1; 0 < ) , < 1 ;  ) , ( p - 1 ) ( p - a ) > _ a ( p ¢ l ) ;  p e N ;  n e N ) ,  

which is precisely the assertion (2.1) of Theorem 1. 

Conversely, suppose that  the inequality (2.1) holds true and let 

zEOU={z:zeC and Izl--1}. 
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Then we find from the definition (1.1) that  

I z$'(z)+~z2f'(z) +~P-~)l 

= I - ( 1  + ~p  - x ) [ ~ ( p  - 1 ) ( v  - ~ )  - . ] z p  - E ~ ' _ - . ( ~  + ~ - ~ + ~)[a  + ~ - ~ ( p  - ~ ) ( ~  - ~ ) ] ~ + ~ + ~ l  

I(~ + ~ - ~)~-"  - E~=. (xk  + ~ -  ~ + ~ ) ~ + ~ + ~ l  

11 

< (1 + Ap -- A) [A(p - 1)(p - o 0 - o~] IzlP + ~ ' = , . ,  (,Xk + *Xp - ,X + 1)[k + a - A(p  - 1)(p - a ) ]  a k + p  Izl ~'+p 

- (1 + ,Xp - ,X) IzlP - ~ ' = , ,  (,Xk + ,Xp - ,X + 1) a l ,+p Iz lk+P 

_< (p - (~)(1 + Ap - A) - 

( 0 < a <  1;0<A_< 1 ; A ( p - 1 ) ( p - a ) > a ( p ~ l ) ; z E 0 / g ; p E N ; n E N ) ,  

provided that  the inequality (2.11 is satisfied. Hence, by the maximum modulus theorem, we 
have 

f ( z )  e ~ r (n ,p ,  ~, a ) .  

Finally, we note that  the assertion (2.1) of Theorem 1 is sharp, the extremal function being 

f ( z )  = zp - (p - ~ ) (1  + ~p  - ~) zn+p 
(n + p  - a)(An + Ap - A + 1) (p E N; n E N ) .  (2.2) 

THEOREM 2. Let the function f(z) defined by (1.1) and the ~nction g(z) defined by 

oo 

g(z) = z p - Z bk+p z k+p (bk+p >_ 0; p E N; n E N) (2.3) 
k = n  

be in the same class T(n, p, A, a). Then the function h(z) defined by 

(x) 

- z k+p  ( 2 . 4 )  h(z) = (1 - ~3) f ( z  I + ~g(z) = z p Z ck÷p 
k ~ n  

(Ck+p := (1 --/3) ak+p + ~bk+p >_ 0; 0 _< j3 _< 1; p E N 1 

is also in the class T(n,p, A, (~). 

PROOF. Suppose that  each of the functions f(z) and g(z) is in the class T(n,p, A,a). Then, 
making use of (2.1), we see that  

o o  o c  

Z ( k  + p - (~)(Ak + Ap - A + 1) ca+p = (1 - 81 Z (k + p - a)(Ak + Ap - A + 11 ak+p 
k = n  k = n  

oo 

+ 8 Z (k + p - a ) ( A k  + A p -  A + 11 bk+, 
k - ~ n  

= (1 -- f~)(p -- a)(1 + )~p -- ~) + f~(p -- (~)(1 + Ap -- A) 

--- ( p  - a ) ( 1  + A p  - A )  

( 2 . 5 /  

(0 < a < 1; 0 < A < 1; A ( p -  1 ) ( p -  a)  _> a ( p #  1); p e  N; ,n  e N), 

which completes the proof of Theorem 2. 
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Next we define the modified Hadamard product of the functions f ( z )  and g(z), which are 
defined by (1.1) and (2.3), respectively, by 

CX3 

f * g(z) = z p - E ak+p bk+p z k+p 
k=n (2.6)  

(ak+p >_ 0; bk+p >_ 0; p • N). 

THEOREM 3. / f  each of the functions f ( z )  and g(z) is in the class T(n ,  p, A, o0, then 

f • g(z) • T (n ,  p, A, 5), 

where 
(p - ~)2(1 + Ap - A) 

5 < p -  ( p + n _ a ) ( A p + A n _ A + l )  

The result is sharp for the functions f ( z )  and g(z) given by 

f ( z )  = g(z) = z p - (p - a)(1 + Ap - A) 
(p + n - a)(Ap + An - A + 1) 

P~tOOF. From Theorem 1, we have 
o o  

E ( k + p - a ) ( A k + A p - A + l )  
k=n -~----- - ~  "+---~'7--- -~-) a k + v <_ 1 

and 

(p • N; n • N). (2.7) 

z "+~ (p • N; n • N). (2.8) 

(p • N; n • N) (2.9) 

-~ (k + p - a ) ( A k  + A p -  A + l) 

We have to find the largest 5 such that 

(k + p -  ~)(Ak + Ap-  A + 1) 
~= ~ ~-'_ 5--~II -+--A--~-Z_ -A- ) a k + p b k + p <_ 1 

From (2.9) and (2.10) we find, by means of the Cauchy-Schwarz inequality, that 

~ (k+p-a)(Ak+ Ap- A+ I) 

( k > n ; p E N ;  n • N ) ,  

( k > n ;  p E N ; h E N ) ,  

(k>_n; p e N ;  h E N ) .  

(k>_n; p E N ;  n E N ) ,  

Therefore, (2.11) holds true if 

v/ak+p bk+p < p -____~5 
p - c~ 

that is, if 

(2.10) 

( p - a ) ( l  + Ap-  A) < p - 5  
(k + p  - a ) ( A k  + Ap - A + 1) - p - a 

which readily yields 

(p - a)2(1  + Ap - A) 
5 < p - -  ( k + p - ~ ) ( A k + A p - A + l )  

Finally, letting 

(p - ~)2(1 + Ap - A) 
• ( k ) = p -  ( k + p - a ) ( A k + A p - A + l )  

we see that the function ~(k) is increasing in k. This shows that 

(p - ~ ) ~ ( 1  + Ap - A) 
5 < ¢ ( n ) = p -  ( p + n _ a ) ( A p + A n _ A + l )  

which completes the proof of Theorem 3. 

(p C N; n E N). (2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(p e N), (2.17) 
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COROLLARY 1. I f  f ( z )  • ~T(n,p,/~, ~), then 

(p - a)(1 + Ap - A) 
ap+n < (p + n - a)(Ap + An - A + 1) (P • N; n • N). (2.18) 

Numerous consequences of Theorems 1-3 (and of Corollary 1) can indeed be deduced by spe- 
cializing the various parameters involved. Many of these consequences were proven by earlier 
workers on the subject (cf., e.g., [1-3]). 

3. D I S T O R T I O N  T H E O R E M S  INVOLVING 
O P E R A T O R S  O F  F R A C T I O N A L  C A L C U L U S  

In this section, we shall prove several distortion theorems for functions belonging to the general 
class T(n, p, A, a). Each of these theorems would involve certain operators of fractional calculus, 
which are defined as follows (cf., e.g., [4-6]). 

DEFINITION 1. The fractional integral of order # is defined by 

fo z d( (# > 0), 
f ( ( )  

D["  f(z)  = (z - - ~ l - ~  

where f (z)  is an analytic function in a simply-connected region of the z-plane containing the 
origin, and the multiplicity o f ( z - ( )  ~- 1 is removed by requiring log(z- ( )  to be real when z - (  > O. 

DEFINITION 2. The fractional derivative of order/~ is defined by 

1 d < (o < ,  < 
Df  f (z)  - r(1 ~) dz (z - ¢)~ - 

I), 

where f (z)  is constrained, and the multiplicity of (z - ()-t '  is removed, as in Definition 1. 

DEFINITION 3. Under the hypotheses of Definition 1, the fractional derivative of order n + # is 
defined by 

d n 
D~ +~ f(z) = ~ D~ f(z) (0 <_ # < 1; n • No := NU {0}). 

THEOREM 4. I f  f (z)  • T(n,p, A, a), then 

[D_i, f (z)  I < izlp+, ( F ( p +  1) 
- \ r ( p + . +  1) 

and 

( r(p_+ 1) 
ID-~" f(z)l  >- IzlP+" \ r(p + ~ + 1) 

(p - a)(1 + Ap - A) P(n + p + 1) ) 
+ ( n + p - - ~ ( - ~ - - n + - - t p - ' ) ' - 7 - ~ r ' ~ p - 7 - ~ +  1)Izl (3.1) 

(p - a)(1 + Ap - A) r(n + p + 1) 
(n + p -  a ) ( An +  A p -  A + 1 ) r ( n + p + #  + 1) 

for # > O, n • N, and p • N, and for all z • bl. 
The result is sharp for the function f(z) given by 

(p - a)(1 + Xp - A) zn+p 
f(z)  = z p -  (n + p - a ) ( A n  + A p -  A + l) ( n • N ;  p • N ) .  

PROOF. Suppose that  f (z)  • T(n,p, A, a). We then find from (2.1) that  

oo (p - cQ(1 + Ap - A) 

k=n 
(HEN;  p e N ) .  

Izl/ (3.2) 

(3.3) 

(3.4) 
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Making use of (3.4) and Definition 1, we have 

D_[.f(z)=z,+.{ F__(__p + I )  
\ F ( p + i t  + 1) 

/ 
kF(p  + it + 1) 

where, for convenience, 

r(k + p + 1) 
• (k) = r(k + p + it + 1) 

O. ALTINTA~ et al. 

r(k + p + 1) ) 
k=n F(k + p + it + 1) ak+p Z k 

~ q2(k)ak+pzk), 
k=rt 

( # > 0 ;  k > n ; n E N ;  p e N ) .  

Clearly, the function ~(k) is decreasing in k, and we have 

r(n + p + 1) 
0 < ~(k) < ¢(n)  = r(n  + p + it + 1)" 

Thus we find from (3.4)-(3.6) that  

< izl~+. ( r ( p + l )  ID;" S(z)I - r ( p + ~ + i )  
\ 

< i~1,+, (" r ~ +  1) 
- \ r ( p + # + l )  

+ Izlk~(n) E ak+p 
k=n 

(p-al ( l  + ~p- ~lr(n + p+ l) ) 
+ 1)Izl  , 

which is precisely the assertion (3.1), and that 

/ r(p+l) 
ID;  (zll > izt t - \ r ( v  + ,  + 1) 

> izlP+, f r(p + 1) 
- \ r ( p  + # + 1) 

which is the same as the assertion (3.2). 

Izl¢(~) Z ak+p 
k = n  

(p - a)(1 + Ap - A)r(n + p + 1) ) 
(n + p - ~)(),n + Ap - )~ + 1)r(n  + p + # + 1) Iz[ ' 

(3.5) 

(3.6) 

( r(_~+ 1) (p - ~)(1 + ~p - x)r(n + v + 1) ) 
[D~f(z)l <_ [z[ p-" \ F ( p .  it + 1) + (n + p  - a)---~7~pp ---~7~)F(-n + p  --- # + 1) Izl 

and 

/ r(p + 1) (r - ~)(1 + ~v - x)r(n + v + 1) 
ID~f(z)[>_]zlP-t',\ Lp--tt-r ' ( n + v - a ) ( A n + A p - A + l ) r ( n + p - # + l ) l Z [  ) 

for 0 <_ # < 1, n E N, and p E N, and for 311 z E U. 
The result is sharp for the function f(z) given by (3.3). 

(3.7) 

(3.8) 

THEOREM 5. If f(z) E T(n,p,A,c O, then 

In order to complete the proof of Theorem 4, it is easily observed that the equalities in (3.1) 
and (3.2) are satisfied by the function f(z) given by (3.3). 

The proofs of Theorems 5 and 6 below are much akin to that  of Theorem 4, which we have 
detailed above fairly fully. Indeed, instead of Definition 1, we make use of Definitions 2 and 3 to 
prove Theorems 5 and 6, respectively. 
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THEOREM 6. I f  f ( z )  E T(n, p, A, a), then 

Y'(p 4- 1) ID +" f(z)[ <-IziP- '-I F~--lz) - - +  
(p - c~)(1 + Ap - x)r(n + v + 1) 

(n + p  - a)(An + Ap - A + 1)r(n + p  - u) 
(3.9) 

and 

r ( p +  1) ( p -  a)(1 + Ap-  A)r(n + p  + 1) ) 
> Iz lP-"- i  

for 0 < # < 1, n E N, and p 6 N, and for a//z E/~. 
The result is sharp for the function f(z) given by (3.3). 

Setting p = 0 in Theorem 5, we obtain the following corollary. 

COROLLARY 2. I[  f ( z )  e T ( n , p ,  A, a) ,  then 

(3.10) 

(p - a)(1 + Ap - A) ) 
[f(z)[<[z[ p l +  ( n + p _ - - ~ + l )  [Z[ (3.11) 

and 
( ( p - a ) ( l + A p - A )  ) 

I/(41 > Izl; 1 -  ( n + ~ - ~ - - ~ 7 ~ % ~ - ~ - 7 + 1 )  Izl 

for n E N and p E N, and for all z 6 hi. 
The resu]t is sharp for the function f(z) given by (3.3). 

If, on the other hand, we set # = 0 in Theorem 6, we shall arrive at Corollary 3. 

COROLLARY 3. I l l (z)  6 T(n,p,A,a), then 

(3.12) 

ll'(z)l < Izl - - (P+ ¥ kp -- (p - a)(1 + Izl) (3.13) 

and 
[f'(z)]>[z[P-1- ( P -  (n- '+p---~)~'A~Ap---A~]) 09-  ~) (1+ A p - A ) ( n + p )  ]z[) (3.14) 

for n E N and p E N, and for all z E H. 
The result is sharp for the function f(z) given by (3.3). 

Further consequences of the distortion properties (given by Corollary 2 and Corollary 3) can be 
obtained for each of the function classes studied by earlier workers. The details may be omitted. 
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