

#### **Turkish Journal of Mathematics**

http://journals.tubitak.gov.tr/math/

Research Article

Turk J Math (2018) 42: 12 – 20 © TÜBİTAK doi:10.3906/mat-1612-84

# A coanalytic Menger group that is not $\sigma$ -compact

### Seçil TOKGÖZ\*

Department of Mathematics, Hacettepe University, Beytepe, Ankara, Turkey

Received: 21.12.2016 • Accepted/Published Online: 26.02.2017 • Final Version: 22.01.2018

**Abstract:** Under V = L we construct coanalytic topological subgroups of reals, demonstrating that even for *definable* groups of reals, selection principles may differ.

Key words: Coanalytic, Menger, Hurewicz, Rothberger,  $\gamma$ -property,  $\sigma$ -compact, V = L, productively Lindelöf, topological group

#### 1. Introduction

All spaces are assumed to be regular. For all undefined notions we refer the reader to [9, 16, 19, 21].  $\mathbb{R}$  denotes the space of real numbers with the Euclidean topology. Consider  $\mathbb{N}$  as the discrete space of all finite ordinals and  $\mathbb{N}^{\mathbb{N}}$  as the Baire space with the Tychonoff product topology.  $P(\mathbb{N})$ , the collection of all subsets of  $\mathbb{N}$ , is the union of  $[\mathbb{N}]^{\infty}$  and  $\mathbb{N}^{<\infty}$ , where  $[\mathbb{N}]^{\infty}$  denotes the family of infinite subsets of  $\mathbb{N}$  and  $\mathbb{N}^{<\infty}$  denotes the family of finite subsets of  $\mathbb{N}$ . Identify  $P(\mathbb{N})$  with the Cantor space  $\{0,1\}^{\mathbb{N}}$ , using characteristic functions.

Define the quasiorder, i.e. reflexive and transitive relation,  $\leq^*$  on  $\mathbb{N}^{\mathbb{N}}$  by  $f \leq^* g$  if  $f(n) \leq g(n)$  for all but finitely many  $n \in \mathbb{N}$ . A subset D of  $\mathbb{N}^{\mathbb{N}}$  is dominating if for each  $g \in \mathbb{N}^{\mathbb{N}}$  there exists  $f \in D$  such that  $g \leq^* f$ . A subset B of  $\mathbb{N}^{\mathbb{N}}$  is unbounded if for all  $g \in \mathbb{N}^{\mathbb{N}}$  there is a member  $f \in B$  such that  $f \nleq^* g$ ; otherwise, it is called a bounded set.

Define the quasiorder  $\subseteq^*$  on  $P(\mathbb{N})$  by  $A \subseteq^* B$  if  $A \setminus B$  is finite. A pseudointersection of a family  $\mathcal{F}$  is an infinite subset A such that  $A \subseteq^* F$  for all  $F \in \mathcal{F}$ . A tower of cardinality  $\kappa$  is a set  $T \subseteq [\mathbb{N}]^{\infty}$  that can be enumerated bijectively as  $\{x_{\alpha} : \alpha < \kappa\}$ , such that for all  $\alpha < \beta < \kappa$ ,  $x_{\beta} \subseteq^* x_{\alpha}$ . The tower number  $\mathfrak{t}$  is the minimal cardinality of a tower that has no pseudointersection.

We denote the *cardinality of the continuum* by  $\mathfrak{c}$ . Recall that  $\mathfrak{b}$  ( $\mathfrak{d}$ ) is the minimal cardinality of unbounded (dominating) subsets of  $\mathbb{N}^{\mathbb{N}}$ . It is known that  $\mathfrak{t} \leq \mathfrak{b} \leq \mathfrak{c}$  [8].

A subset of a Polish space is analytic if it is a continuous image of the space  $\mathbb{P}$  of irrationals. We denote by  $\Sigma_1^1$  the family of analytic subsets of a Polish space. For a Polish space X, a set  $A \subseteq X$  is coanalytic if  $X \setminus A$  is analytic [19]. We denote by  $\Pi_1^1$  the family of coanalytic subsets of X. More generally, for  $n \ge 1$  the families  $\Sigma_n^1$ ,  $\Pi_n^1$  are known as projective classes; for details, see Section 37 in [19]. Since there is a connection between the projective hierarchy and the Lévy hierarchy of formulas, the family of analytic subsets is classified according to the logical complexity of the formula defining it. Let  $\mathcal{A}^2$  denote the second-order arithmetic. A

<sup>\*</sup>Correspondence: secil@hacettepe.edu.tr

<sup>2010</sup> AMS Mathematics Subject Classification: 03E15, 03E35, 54A25, 54D20, 54H05, 03E57

set  $A \subseteq \mathbb{N}^{\mathbb{N}}$  is  $\Sigma_1^1$  if it can be written as  $A = \{x \in \mathbb{N}^{\mathbb{N}} : \mathcal{A}^2 \models \phi(x)\}$  where  $\phi$  of the form  $\exists^1 y \, \psi$  and  $\psi$  is an arithmetical formula, i.e. it is a formula in which all quantifiers range over  $\mathbb{N}$ . Then a set  $A \subseteq \mathbb{N}^{\mathbb{N}}$  is  $\Pi_1^1$  if it can be written as  $A = \{x \in \mathbb{N}^{\mathbb{N}} : \mathcal{A}^2 \models \phi(x)\}$  where  $\phi$  is of the form  $\forall^1 y \, \psi$  and  $\psi$  is an arithmetical formula; see the section entitled "The Definability Context" in [18], and also [20].

A subset of  $\mathbb R$  is called *perfect* if it is nonempty, closed, and has no isolated points. By a set of reals, we mean a separable, metrizable space that is homeomorphic to a subset of  $\mathbb R$ . An uncountable subset of reals is *totally imperfect* if it includes no uncountable perfect set. Let  $\kappa$  be an infinite cardinal.  $X \subseteq \mathbb R$  is  $\kappa$ -concentrated on a set Q if, for each open set U containing Q,  $|X \setminus U| < \kappa$ .

The theory of selection principles in mathematics is a study of diagonalization processes and its root goes back to Cantor. The oldest well-known selection principles are the Menger, Hurewicz, and Rothberger properties; the first two are generalizations of  $\sigma$ -compactness.

In 1924, Menger [23] introduced a topological property for metric spaces, which was referred to as "property E". A space with property E was called "property M" (in honor of Menger) by Miller and Fremlin [26]. Soon thereafter, Hurewicz [15] reformulated property E as the following and nowadays it is called the Menger property: a topological space X satisfies the Menger property if, given any sequence  $\{U_n\}_{n\in\mathbb{N}}$  of open covers of X, there exist finite subsets  $\mathcal{V}_n$  of  $\mathcal{U}_n$  such that  $\bigcup_{n\in\mathbb{N}} \mathcal{V}_n$  covers X. By the following standard terminology,  $S_{fin}(\mathcal{O}, \mathcal{O})$  denotes the Menger property. Menger [23] made the following conjecture:

Menger's Conjecture. A metric space X satisfies the Menger property if and only if X is  $\sigma$ -compact.

In 1925, Hurewicz [14] introduced a stronger property than the Menger property, which today is called the Hurewicz property: for any sequence  $\{U_n\}_{n\in\mathbb{N}}$  of open covers of X one may pick finite set  $\mathcal{V}_n\subset\mathcal{U}_n$  in such a way that  $\{\bigcup\mathcal{V}_n:n\in\mathbb{N}\}$  is a  $\gamma$ -cover of X. An infinite open cover  $\mathcal{U}$  is a  $\gamma$ -cover if for each  $x\in X$  the set  $\{U\in\mathcal{U}:x\notin\mathcal{U}\}$  is finite. The collection of  $\gamma$ -covers of X is denoted by  $\Gamma$ . Following standard terminology let  $U_{fin}(\mathcal{O},\Gamma)$ ) denote the Hurewicz property. Hurewicz [14] made the following conjecture and also posed the question of whether the Menger property is strictly weaker than the Hurewicz property [14, 15].

Hurewicz's Conjecture. A metric space X satisfies the Hurewicz property if and only if X is  $\sigma$ -compact.

It was observed that Menger's conjecture is false, if one assumes the continuum hypothesis [15]. It was only recently that the conjecture was disproved by Miller and Fremlin in ZFC [26]. After that, many authors used different methods (topological, combinatorial) to settle Menger's conjecture (e.g., see [5, 17, 41]).

In 1938, Rothberger [31] introduced the following selection principle: a topological space X satisfies the Rothberger property if for every sequence  $\{U_n\}_{n\in\mathbb{N}}$  of open covers of X, there exists a  $V_n\in\mathcal{U}_n$  such that  $\bigcup_{n\in\mathbb{N}}V_n$  covers X. It is clear that every Rothberger space is Menger. By the following standard terminology  $S_1(\mathcal{O},\mathcal{O})$  denotes the Rothberger property. There is a critical cardinal bound for the Rothberger property.  $cov(\mathcal{M})$  is the minimal cardinality of a covering of the real line by meager sets. It is also known to be the minimum cardinality of a set of reals that fails to have the Rothberger property [26].

In this paper, we add a new aspect to Menger's and Hurewicz's conjectures by using the family  $\Pi_1^1$  of coanalytic sets. In Section 2, we construct a coanalytic unbounded tower, assuming V=L. In Section 3, using critical cardinalities, we present many algebraic definable examples that show the connection between Menger, Hurewicz, and Rothberger properties if V=L holds.

### 2. Coanalytic sets with selection principles

We assume a general background about set theory. Gödel defined the class of constructible sets  $L = \bigcup_{\alpha \in ON} L_{\alpha}$ , where the sets  $L_{\alpha}$  are defined by recursion on  $\alpha$  (for details, see, e.g., [21]). The axiom of constructibility V = L says that all sets in the universe are constructible, i.e.  $\forall x \exists \alpha (x \in L_{\alpha})$ . It is well known that V = L implies AC.

Now assuming V = L, we will employ an encoding argument that was first used by Erdös, Kunen, and Mauldin [10]. A general method was given by Miller [25]. It was also mentioned in [26].

**Theorem 2.1** V = L implies there is a coanalytic unbounded tower.

**Proof** Assume V = L. It is well known that there is a well-ordering  $<_L$  on L. By using  $<_L$  one can construct a  $\Sigma_2^1$  set of the reals ([18, Theorem 13.9]. Let X be defined by  $x \in X$  if and only if  $\exists z \in \mathbb{N}^{\mathbb{N}} [(M_z \text{ is well-founded and extensional}) \land (\pi_z(M_z) \models (ZF - P + V = L) \land (\exists n \in \mathbb{N} ((\pi_z(n) = x) \land \pi_z(M_z) \models \forall y <_L x \exists m(\pi_z(m) = y)))]$  where  $\pi_z$  denotes Mostowski's collapse by a real number z and  $M_z$  denotes the countable elementary submodel coded by a real number z. Proposition 13.8 in [18] shows that X is a  $\Sigma_2^1$  subset of  $\mathbb{N}^{\mathbb{N}}$ . Therefore, there is a coanalytic set  $B \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$  such that p(B) = X where p is the projection map on the first coordinate [19, Section 37.A]. By Kondô's uniformization theorem [18, Theorem 12.3], there exists a coanalytic set  $C \subset B$  that is a graph of a function f such that the domain of f is X. The importance of the uniformization is that for each  $x \in X$  there exists exactly one y such that f(x) = y and  $(x, f(x)) \in C$ . By using an arithmetical coding, we can obtain a coanalytic set of reals. For each (x, f(x)) in C, define

$$c_x(i) = \begin{cases} 1, & \text{if } f(x)(i) \in \text{ran}(x) \\ 0, & \text{otherwise} \end{cases}$$

where  $\operatorname{ran}(x)$  denotes the length of the sequence defined as  $z_n = \pi_z(n) = x$ . Notice that  $C' = \{c_x : x \in X\}$  can be defined as

 $c_x \in C'$  if and only if  $\forall x \, \psi(c_x, x)$  where  $\psi$  is the formula above in which all quantifiers are defined over  $\mathbb{N}$ . Therefore, C' is a coanalytic set of reals.

Since all  $L_{\alpha}$  are increasing in L, we can enumerate X by using the countable levels of L. This implies that C' can be enumerated as  $C' = \{c_{\alpha} : x_{\alpha} \in X\}$ . For each  $\alpha < \beta < \omega_1, c_{\beta} \subseteq^* c_{\alpha}$ , because  $\operatorname{ran}(x_{\beta}) \setminus \operatorname{ran}(x_{\alpha})$  is finite by the formula defining the set X. On the other hand, for each  $g \in \mathbb{N}^{\mathbb{N}}$  there is an ordinal  $\delta < \omega_1$  such that  $g \in L_{\delta}$ . Pick  $x_{\xi} \in X$  such that  $\operatorname{ran}(x_{\xi}) \subseteq^* \operatorname{ran}(g)$  and  $\operatorname{ran}(x_{\xi}) \subseteq^* \operatorname{ran}(x_{\delta})$ . Then  $g(m) \leq c_{\xi}(m)$  for all but finitely many  $m \in \mathbb{N}$ , and so  $c_{\xi} \nleq^* g$ .

We remark that this encoding method to construct a coanalytic set does not work for all  $\Sigma_2^1$  sets. Under V = L there is a Luzin set, which cannot be encoded by using this method. See Miller's paper [25] for more details

By using semifilters, Tsaban and Zdomskyy [41] introduced a general combinatorial method to disprove Menger's conjecture. Simplified versions of this method are described nicely in Tsaban's paper [39]. To investigate a definable version of Menger's conjecture, Tall and Tokgöz used a combinatorial method from [39] and obtained the following result, which was mentioned in [26]:

**Theorem 2.2** ([36]) V = L implies there is a coanalytic Menger set of reals that is not  $\sigma$ -compact.

However, we have a stronger result:

Gerlits and Nagy [13] introduced a covering property that satisfies all of the former selection principles mentioned above. An open cover  $\mathcal{U}$  is called an  $\omega$ -cover of X if for each finite  $F \subseteq X$  there is  $U \in \mathcal{U}$  such that  $F \subseteq U$ . A topological space X satisfies the  $\gamma$ -property if for every sequence  $\{\mathcal{U}_n\}_{n\in\mathbb{N}}$  of open  $\omega$ -covers of X, there exists a  $V_n \in \mathcal{U}_n$  such that  $\{V_n\}_{n\in\mathbb{N}}$  is a  $\gamma$ -cover for X. Following standard terminology  $S_1(\Omega, \Gamma)$  denotes the  $\gamma$ -property.  $\gamma$ -spaces that are homeomorphic to sets of reals are called  $\gamma$ -sets.

Let  $\mathfrak{p}$  be the minimal cardinality of a family  $\mathcal{F}$  of infinite subsets of  $\mathbb{N}$  that is closed under finite intersections and has no pseudointersection. It is well known that  $\aleph_1 \leq \mathfrak{p} \leq \mathfrak{t}$  [8].

We note that any  $\gamma$ -set is totally imperfect [17]. By the Cantor-Bendixon theorem, every uncountable  $\sigma$ -compact set of reals contains a perfect set. Therefore, uncountable  $\gamma$ -sets are never  $\sigma$ -compact.

**Theorem 2.3** V = L implies there is an uncountable coanalytic  $\gamma$ -set.

**Proof** Following Theorem 2.1, there is an unbounded coanalytic tower T of size  $\aleph_1$ . Note that  $\mathfrak{p} = \aleph_1$  since V = L. Define  $X = T \cup \mathbb{N}^{<\infty}$ . Then X satisfies the  $\gamma$ -property [29]. It is known that the family of coanalytic sets  $\Pi_1^1$  contains all Borel sets and is closed under countable unions [19, pp. 242]. Therefore, X is a coanalytic set.

### 3. Algebraic coanalytic sets of reals

Question 1 Is the Menger (Hurewicz) conjecture true for coanalytic topological groups?

We will show that under V=L Menger's conjecture and Hurewicz's conjecture are not true for coanalytic topological groups. Tall [35] proved that the axiom of coanalytic determinacy affirmatively settles both conjectures.

Tall and Tokgöz [36] reproved Miller and Fremlin's result [26] that the axiom of coanalytic determinacy implies that Menger coanalytic sets of reals are  $\sigma$ -compact. After that, Tall proved:

**Theorem 3.1 ([35])** The axiom of coanalytic determinacy implies that every Menger coanalytic topological group is  $\sigma$ -compact.

However, under V = L, we can disprove Menger's conjecture.

In the following observation we add a new ingredient to obtain a coanalytic set, stronger than the earlier result in [29].

**Theorem 3.2** V = L implies there is a coanalytic  $\gamma$ -subgroup.

**Proof** By Theorem 2.3, there is an uncountable coanalytic  $\gamma$ -set, called H. Since the  $\gamma$ -property is linearly  $\sigma$ -additive, hereditary for closed subsets, and preserved by continuous images, there is a subgroup of reals that satisfies the  $\gamma$ -property [29]. For the reader's convenience we reproduce the subgroup in [37].

Let  $H^0 = H$ , and  $H^n = H^{n-1} \times H$  for  $n \geq 1$ . For each natural number n, let  $\Psi_{\alpha^n} \colon H^n \to \mathbb{R}$  be defined by  $\Psi_{\alpha^n}((g_1, g_2, \dots, g_n)) = \sum_{i=1}^n \alpha_i g_i$  for all  $(g_1, g_2, \dots, g_n) \in H^n$ , where  $\alpha^n = (\alpha_1, \alpha_2, \dots, \alpha_n)$  and  $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$  is a linearly independent subset of the set  $\mathbb{Z}$  of integers. Now, for each natural number n, set  $G_n = \{\sum_{i=1}^n \alpha_i g_i : \{\alpha_1, \alpha_2, \dots, \alpha_n\} \subseteq \mathbb{Z}$  is linearly independent and  $(g_1, g_2, \dots, g_n) \in H^n\}$ . Let  $G_H$  denote the subgroup H. Since H is a linearly independent and H is a linearly independent and H is a linear linea

### Claim. $G_H$ is coanalytic.

Recall that a map  $f: X \to Y$  between two topological spaces X and Y is Borel (measurable) if the inverse image of a Borel (equivalently, open or closed) set is Borel. It is well known that the family  $\Pi_1^1$  is closed under Borel preimages [19, pp. 242]. Obviously, any continuous map on topological space is a Borel map. Note that  $H^n$  is coanalytic for each natural number n, since H is a coanalytic set and each  $H^n$  is the Borel preimage of  $H^{n-1}$  under the first coordinate projection. Clearly, each  $\Psi_{\alpha^n}$  is a linear homeomorphism onto its image, so  $\Psi_{\alpha^n}: H^n \to \Psi_{\alpha^n}(H^n)$  is a Borel isomorphism [19, pp. 71]. This implies that each image of  $H^n$  under  $\Psi_{\alpha^n}$  is coanalytic due to  $\Psi_{\alpha^n}(H^n) = (\Psi_{\alpha^n}^{-1})^{-1}(H^n)$ . Since  $\alpha^n$  is an n-tuple, we have countably many  $\alpha^n$  for each natural number n. Then  $G_n$  is coanalytic, as the countable union of continuous images of  $H^n$ . Therefore,  $G_H = \bigcup_n G_n$  is coanalytic.

A topological space is productively Lindelöf if its product with every Lindelöf space is Lindelöf [4]. A Michael space is a Lindelöf space M such that  $M \times \mathbb{P}$  is not Lindelöf. Michael spaces can be constructed from many axioms such as  $\mathfrak{d} = \aleph_1$ , MA (see, e.g., [2, 3, 30]). Today it is still an open problem whether they can be constructed outright in ZFC. On the other hand, there is a close connection between productively Lindelöf spaces and Michael spaces. It is known that if there is no Michael space, then there is a productively Lindelöf metrizable space that is not  $\sigma$ -compact, and if there is a Michael space, then productively Lindelöf spaces are Menger [30]. Recently Tall [35] showed that there is a Michael space if and only if every productively Lindelöf Čech-complete space is  $\sigma$ -compact.

It is well known that V = L implies CH. Michael [24] proved that CH implies that every productively Lindelöf metrizable space is  $\sigma$ -compact. Therefore, a stronger statement of Theorem 3.2 can be given in the following:

Corollary 3.3 V = L implies there is a coanalytic  $\gamma$ -subgroup of reals that is not productively Lindelöf.

The first uncountable ordinal in L is denoted by  $\omega_1^L$ . Since  $\omega_1^L$  is an ordinal of the universe, in general, it satisfies  $\omega_1^L \leq \omega_1$ . Clearly, V = L implies  $\omega_1^L = \omega_1$ . However, in some other models of ZFC, the inequality could be strict, since the notion of cardinality is not absolute. In fact, more generally:

The Gödel constructibility was generalized by Levy and Shoenfield to relative constructibility, which gives a transitive model L[a] of ZFC for any set a.

**Theorem 3.4** Suppose  $\omega_1^{L[a]} = \omega_1$  for some  $a \in \mathbb{N}^{\mathbb{N}}$ . If  $\mathfrak{p} > \aleph_1$ , then there is a coanalytic  $\gamma$ -subgroup of reals that is not productively Lindelöf.

Proof It is known that  $\omega_1^L = \omega_1$  implies there is a coanalytic set of reals without perfect set property [18, Theorem 13.12]. In analogy with L, the inner model L[a] has a well-ordering  $<_{L[a]}$ , and Theorem 13.12 in [18] relativizes to produce corresponding results about L[a] and  $\Pi_1^1(\mathbf{a})$  [18, pp. 171]. Then there is a coanalytic totally imperfect set of reals T of size  $\aleph_1$ . Any set of reals of size  $< \mathfrak{p}$  is a  $\gamma$ -set [12]. Therefore, T is a  $\gamma$ -set. Consider the topology on the real line generated by the base  $\mathcal{B} = \{U : U \text{ is open in } \mathbb{R}\} \cup \{p : p \in \mathbb{R} \setminus T\}$ , denoted by  $R^*$ . Clearly,  $R^*$  is Lindelöf and contains  $\mathbb{R}$ . Since  $T \times R^*$  is not normal, T cannot be productively Lindelöf [24]. By using a similar argument as in Theorem 3.2, we can obtain a coanalytic  $\gamma$ -subgroup of reals denoted by  $G_T$ . Notice that T is a closed subset of  $G_T$  (see [37]) and not productively Lindelöf. Every closed subset of a productively Lindelöf space is productively Lindelöf. Thus,  $G_T$  cannot be productively Lindelöf.  $\square$ 

Therefore, even if CH fails we have a model:

Corollary 3.5 It is consistent that CH fails and there is a coanalytic  $\gamma$ -subgroup of reals that is not productively Lindelöf.

**Proof** Start with the constructible universe L, and force  $\mathbf{MA} + 2^{\aleph_0} = \aleph_2$  via a countable chain condition iteration. By Theorem 2.1 and Theorem 2.3, in L, there is a coanalytic tower T of cardinality of  $\aleph_1$ , and  $T \cup \mathbb{N}^{<\infty}$  is a coanalytic  $\gamma$ -set. It is known that  $\mathbf{MA}$  implies  $\mathfrak{p} = \mathfrak{t} = \mathfrak{b} = \mathfrak{c}$  [6] and countable chain condition iterations preserve cardinality [16]. Since  $\mathfrak{p} > \aleph_1$  in the extension,  $T \cup \mathbb{N}^{<\infty}$  remains a  $\gamma$ -set [12]. Then, using Theorem 3.4, one can obtain a coanalytic  $\gamma$ -subgroup of reals that is not productively Lindelöf.

We can also separate the Hurewicz and the Rothberger properties under V = L. In the following observation we modify the argument in [39], but we obtain a stronger definable version:

**Theorem 3.6** V = L implies there is a coanalytic Rothberger subgroup of reals that is not Hurewicz.

**Proof** By Theorem 2.1, there is a coanalytic unbounded tower S. By using elements of S we will construct a coanalytic Rothberger set of reals that is not Hurewicz.

Notice that we can identify elements  $x \in [\mathbb{N}]^{\infty}$  with increasing elements of  $\mathbb{N}^{\mathbb{N}}$  by letting x(n) be the nth element in the increasing enumeration of x [41, Lemma 2.4]. Then S is both dominating (under V=L) and well-ordered by  $\leq^*$ . Fix  $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subseteq \mathbb{N}^{\uparrow \mathbb{N}}$  where  $\mathbb{N}^{\uparrow \mathbb{N}}$  denotes the collection of all increasing elements of  $\mathbb{N}^{\mathbb{N}}$ . For each  $\alpha < \mathfrak{d}$ , pick  $a_{\alpha} \in \mathbb{N}^{\uparrow \mathbb{N}}$  such that:

- (1)  $a_{\alpha}^{c} \in \mathbb{N}^{\uparrow \mathbb{N}}$ , i.e. the complement of the image of  $a_{\alpha}$  is infinite;
- (2)  $a_{\alpha} \nleq^* s_{\alpha}$ ;
- (3)  $a_{\alpha}^{c} \nleq^{*} s_{\alpha}$ .

Now define  $A = \{ a_{\alpha} : \alpha < \mathfrak{d} \}$ .

Claim. A is coanalytic.

A is defined recursively in the second-order arithmetic from the set S by a coanalytic formula. Indeed,  $a \in A$  if and only if  $\forall s \, \psi(a, s)$  where  $\psi$  states the formula given by (1), (2), and (3). Since  $\psi$  is arithmetical, A is coanalytic. Therefore,  $A \cup \mathbb{N}^{<\infty}$  is coanalytic as a union of two coanalytic subsets.

Notice that by (3)  $A \cup \mathbb{N}^{<\infty}$  is unbounded, and it cannot be Hurewicz [15]. Since A is  $\mathfrak{d}$ -concentrated on  $\mathbb{N}^{<\infty}$ ,  $A \cup \mathbb{N}^{<\infty}$  satisfies the Rothberger property [39]. Then by a similar argument to Theorem 3.2, we can obtain a coanalytic Rothberger (Menger) non-Hurewicz subgroup of reals.

It is well known that the additive group of  $\mathbb{R}$  with the usual topology is Borel, in fact  $\sigma$ -compact. Then it is a coanalytic Hurewicz group of reals. Notice that every closed subset of a Rothberger space is Rothberger [17, Theorem 3.1]. Also, every uncountable closed subset of reals contains a perfect subset by the Cantor-Bendixson result [28, 2A.1]. Therefore,  $\mathbb{R}$  cannot be Rothberger, since every Rothberger space is totally imperfect [22].

**Theorem 3.7** V = L implies there is a coanalytic totally imperfect Hurewicz subgroup of reals that is not Rothberger.

**Proof** Borel [7] introduced the notation of a strong measure zero set (or strongly null). A set of reals X has strong measure zero property if for each sequence  $\{\epsilon_n\}_{n\in\mathbb{N}}$  of positive reals, there exists a cover  $\{\mathcal{I}_n\}_{n\in\mathbb{N}}$  of X such that diam $(\mathcal{I}_n)$  <  $\epsilon_n$  for all n. By using a modification of Theorem 2.1 in [38], we can code a

coanalytic Hurewicz set of reals that is not Rothberger: an unbounded set  $\{f_{\alpha} : \alpha < \mathfrak{b}\}$  is called a  $\mathfrak{b}$ -scale if the enumeration is increasing with respect to  $\leq^*$ . V = L implies  $\mathfrak{b} = \mathfrak{d}$ . Then there is a  $\mathfrak{b}$ -scale [39], called  $H = \{s_{\alpha} : \alpha < \mathfrak{b}\}$ . A set A is called *strongly unbounded* if for each  $f \in \mathbb{N}^{\mathbb{N}}$ ,  $|\{s_{\alpha} \in A : s_{\alpha} \leq^* f\}| < |A|$ . Notice that H is strongly unbounded since it is dominating.

Let SMZ denote the collection of strong measure zero subsets of the real line, and non(SMZ) denote the minimal cardinality for a set of reals that does not have strong measure zero. Under V=L, non(SMZ) =  $\aleph_1=\mathfrak{b}$  [32], and then there is a set of reals  $Y=\{y_\alpha:\alpha<\mathfrak{b}\}$  that is not strong measure zero. Without loss of generality, we may assume that  $Y\subseteq\{0,1\}^{\mathbb{N}}$  (see, e.g., [40]). Define  $H'=\{s'_\alpha:\alpha<\mathfrak{b}\}$ , where  $s'_\alpha(n)=2s_\alpha(n)+y_\alpha(n)$  for all n. Then H' is also strongly unbounded and  $\mathfrak{b}$ -scale. The mapping  $\phi\colon H'\to Y$  defined by  $s'(n)\to s'(n)\pmod 2$  for all n is a continuous and surjective map [38]. We adopt the notation from [41]. Since  $\overline{\mathbb{N}^{\uparrow\mathbb{N}}}=\mathbb{N}^{\uparrow\mathbb{N}}\cup\mathbb{N}^{<\infty}$  and  $H'\subseteq\mathbb{N}^{\uparrow\mathbb{N}}$  [41],  $\phi$  can be extended to a surjective continuous mapping  $\phi^*\colon H'\cup\mathbb{N}^{<\infty}\to Y\cup\mathbb{N}^{<\infty}$  [9, Corollary 3.6.6].

Since the collection of all infinite sets of natural numbers  $[\mathbb{N}]^{\aleph_0}$  is a semifilter,  $\phi^*(H' \cup \mathbb{N}^{<\infty})$  satisfies the Hurewicz property [41, Theorem 2.14]. On the other hand, since the property of having strong measure zero is hereditary [38] and  $\phi^*(H') = \phi(H')$  does not have strong measure zero,  $\phi^*(H' \cup \mathbb{N}^{<\infty})$  does not have strong measure zero, and then it does not satisfy Rothberger property [26].

For each  $y \in Y$  is defined by the arithmetical formula  $\forall n(y(n) = s'(n) \pmod{2})$ , and so Y is coanalytic. Thus,  $Y \cup \mathbb{N}^{<\infty}$  is co-analytic. By following a similar argument as in Theorem 3.2, one can obtain a coanalytic totally imperfect Hurewicz subgroup of reals that is not Rothberger.

It is not obvious that there is a coanalytic Menger subgroup of reals that is neither Hurewicz nor productively Lindelöf in ZFC. Tall [35] proved that, assuming there is a Michael space and CH holds, there is no such space.

We also have:

Corollary 3.8 Suppose  $\omega_1^{L[a]} = \omega_1$  for some  $a \in \mathbb{N}^{\mathbb{N}}$ . If  $\mathfrak{d} > \mathfrak{b} = \aleph_1$ , then there is a coanalytic Menger subgroup of reals that is neither Hurewicz nor productively Lindelöf.

**Proof** By the discussion in Theorem 3.4, there is a coanalytic set of reals S of size  $\aleph_1$  that does not contain a perfect subset. The assumption  $\mathfrak{d} > \mathfrak{b} = \aleph_1$  implies S is Menger but not Hurewicz [15]. Moreover, using the same argument as in Theorem 3.4, S cannot be productively Lindelöf, since  $S \times R^*$  is not normal [24]. Thus, we can construct a coanalytic Menger subgroup of reals that is neither Hurewicz nor productively Lindelöf.  $\square$ 

Corollary 3.9 It is consistent that CH fails and there is a coanalytic Menger subgroup of reals that is neither Hurewicz nor productively Lindelöf.

**Proof** There is a model of set theory satisfying these two hypotheses in Corollary 3.8. Start with the constructible universe L. Take any regular cardinal  $\kappa > \aleph_1$  such that  $\kappa^{\aleph_0} = \kappa$ . Then, in the Cohen extension L[G] via Cohen forcing  $\mathbb{C}(\kappa)$ , we have  $\mathfrak{d} > \mathfrak{b} = \aleph_1$  [11]. Also, notice that Cohen forcing preserves the cardinality  $\aleph_1$ , since forcings with countable chain condition (abbreviated c.c.c.) preserve cardinalities [33].

## 4. Comments on productivity

Let P be a property (or class) of spaces. A space X is called *productively* P if  $X \times Y$  has the property P for each space Y satisfying P. Productively P properties have been studied by many authors (see, e.g., [3, 27, 34]).

It is known that  $\mathfrak{b} = \aleph_1$  implies every productively Lindelöf space is Menger [1], but this implication is not reversible:

Following Theorem 2.3, under the assumption V = L, there is an uncountable coanalytic  $\gamma$ -set X. Thus, X is Menger. On the other hand, X is not  $\sigma$ -compact, and so X is not productively Lindelöf.

Note also that one can obtain a productively Menger set by using a nonproductively Menger set in the constructible universe L: clearly, every unbounded tower of size  $\mathfrak{b}$  is a scale (see, e.g., [39]) under V = L. Theorem 2.1 and [27, Theorem 6.2] imply that there is a coanalytic productively Menger but nonproductively Lindelöf set of reals, but  $\mathfrak{d}$ -concentrated sets satisfy the Menger property [39] and then any unbounded tower (under V=L) is not productively Menger by Theorem 4.8 in [34].

#### Acknowledgments

This research was supported by the Scientific and Technological Research Council of Turkey (TÜBİTAK) in the context of the 2219 Post-Doctoral Fellowship Program. The author would like to thank Prof FD Tall for valuable suggestions. The author also wishes to thank the referee for useful comments and suggestions.

#### References

- Alas OT, Aurichi LF, Junqueira LR, Tall FD. Non-productively Lindelöf spaces and small cardinals, Houston J Math 2011; 37: 1373-1381.
- [2] Alster K. The product of a Lindelöf space with the space of irrationals under Martin's Axiom, P Am Math Soc 1990; 110: 543-547.
- [3] Aurichi LF, Tall FD. Lindelöf spaces which are indestructible, productive or D, Topol Appl 2012; 159: 331-340.
- [4] Barr M, Kennison JF, Raphael R. On productively Lindelöf spaces, Sci Math Jpn 2007; 65: 319-332.
- [5] Bartoszyński T, Shelah S. Continuous images of sets of reals, Topol Appl 2001; 116: 243-253.
- [6] Blass A. Combinatorial cardinal characteristics of the continuum. In Handbook of Set Theory, M. Foreman and A. Kanamori, eds. Springer, Berlin, 2010.
- [7] Borel E. Sur la leassification des ensembles de mesure nulle, Bulletin de la Societe Mathematique de France 1919; 47: 97-125.
- [8] van Douwen EK. The integers and topology. In: K. Kunen and J. E. Vaughan (Eds.) Handbook of Set-Theoretic Topology, North-Holland, Amsterdam, 1984, pp. 111-167.
- [9] Engelking R. General Topology. Monografie Matematyczne, Vol. 60. PWN-Polish Scientific Publishers, Warsaw, 1977.
- [10] Erdös P, Kunen K, Mauldin R D. Some additive properties of sets of real numbers, Fund Math 1981; 113: 187-199.
- [11] Frankiewicz R, Zbierski P. Hausdorff Gaps and Limits. Studies in logic and the foundations of mathematics, vol. 132, North-Holland, Amsterdam, 1994.
- [12] Galvin F, Miller AW.  $\gamma$ -sets and other singular sets of real numbers, Topol Appl 1984; 17: 145-155.
- [13] Gerlits J, Nagy Zs. Some properties of C(X), I, Topol Appl 1982; 14: 151-161.
- [14] Hurewicz W. Über eine Verallgemeinerung des Borelschen Theorems, Math Z 1925; 24: 401-421.
- [15] Hurewicz W. Über Folgen stetiger Funktionen, Fund Math 1927; 9: 193-204.
- [16] Jech T. Set Theory. The Third Millenium ed., Springer, 2002.
- [17] Just W, Miller AW, Scheepers M, Szeptycki PJ. The combinatorics of open covers II, Topol Appl 1996; 73: 241-266.
- [18] Kanamori A. The Higher Infinite. Perspectives in Mathematical Logic, Springer-Verlag, Berlin, 1994.

- [19] Kechris AS. Classical Descriptive Set Theory. Graduate Texts in Mathematics, 156. Springer-Verlag, New York, 1995.
- [20] Khomskii Y. Regularity Properties and Definability in the Real Number Continuum. ILLC Dissertation Series DS-2012-04. Institute for Logic, Language and Computation, Amsterdam, 2012.
- [21] Kunen K. Set Theory. Studies in Logic (London), 34. College Publications, London, 2011.
- [22] Kuratowski C. Topology. vol. I. Academic Press, New York, 1966.
- [23] Menger K. Einige Überdeckungssätze der Punktmengenlehre, Sitzungsberichte Abt. 2a, Mathematic, Astronomie, Physic, Meteorologie und Mechanic (Wiener Akademie) 1924; 133: 421-444.
- [24] Michael E. Paracompactness and the Lindelöf property in finite and countable cartesian products, Compos Math 1971; 23: 199-214.
- [25] Miller AW. Infinite combinatorics and definability, Ann Pure Appl Logic 1989; 41: 179-203.
- [26] Miller AW, Fremlin DH. On some properties of Hurewicz, Menger, and Rothberger, Fund Math 1988; 129: 17-33.
- [27] Miller AW, Tsaban B, Zdomskyy L. Selective covering properties of product spaces, Ann Pure Appl Logic 2014; 165: 1034-1057.
- [28] Moschovakis YN. Descriptive Set Theory. North-Holland, Amsterdam, 1980.
- [29] Orenshtein T, Tsaban B. Linear σ-additivity and some applications, T Am Math Soc 2011; 363: 3621-3637.
- [30] Repovš D, Zdomskyy L. On the Menger covering property and D spaces, P Am Math Soc 2012; 140: 1069-1074.
- [31] Rothberger F. Eine Verschärfung der Eigenschaft C, Fund Math 1938; 30: 50-55.
- [32] Scheepers M. Combinatorics of open covers (IV): subspaces of the Alexandroff double of the unit interval, Topol Appl 1998; 83: 63-75.
- [33] Shelah S. Proper forcing. Lecture Notes in Mathematics, vol. 940, Springer-Verlag, Berlin-New York, 1982.
- [34] Szewczak P, Tsaban B. Products of Menger spaces: A combinatorial approach, Ann Pure Appl Logic 2017; 168: 1-18.
- [35] Tall FD. Definable versions of Menger's conjecture, arXiv:1607.04781.
- [36] Tall FD, Tokgöz S. On the definability of Menger spaces which are not  $\sigma$ -compact, Topol Appl, to appear.
- [37] Tsaban B. o-Bounded groups and other topological groups with strong combinatorial properties, P Am Math Soc 2006; 134: 881-891.
- [38] Tsaban B. Some new directions in infinite-combinatorial topology. In: Topics in Set Sheory and its Applications (J. Bargaria and S. Todorcevic, eds.) Trends in Mathematics. New York: Birkhäuser, 2006; pp. 225-255.
- [39] Tsaban B. Menger's and Hurewicz's Problems: Solutions from "The Book" and refinements, Contemp Math 2011; 533: 211-226.
- [40] Tsaban B, Weiss T. Products of special sets of real numbers, Real Anal Exchange 2004/05; 30: 819-836.
- [41] Tsaban B, Zdomskyy L. Scales, fields, and a problem of Hurewicz, J Eur Math Soc 2008; 10: 837-866.