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A numerical solution of the modified Korteweg-de Vries (MKdV) equation is presented by using a nonstandard finite difference
(NSFD) scheme with theta method which includes the implicit Euler and a Crank-Nicolson type discretization. Local truncation
error of the NSFD scheme and linear stability analysis are discussed. To test the accuracy and efficiency of the method, some
numerical examples are given. The numerical results of NSFD scheme are compared with the exact solution and a standard finite
difference scheme. The numerical results illustrate that the NSFD scheme is a robust numerical tool for the numerical integration
of the MKdV equation.

1. Introduction

This paper is concerned with the nonstandard integration of
modified Korteweg-de Vries (MKdV) equation

𝑢𝑡 + 𝑞𝑢2𝑢𝑥 + 𝑟𝑢𝑥𝑥𝑥 = 0, (𝑥, 𝑡) ∈ [𝑥𝐿, 𝑥𝑅] × [0, 𝑇] (1)

with initial condition

𝑢 (𝑥, 0) = 𝑢0 (𝑥) , 𝑥 ∈ [𝑥𝐿, 𝑥𝑅] (2)

and boundary conditions

𝑢 (𝑥𝐿, 𝑡) = 𝑓 (𝑡) ,
𝑢 (𝑥𝑅, 𝑡) = 𝑔 (𝑡) ,𝑡 ∈ [0, 𝑇] ,

(3)

where 𝑞, 𝑟 ∈ R.Theanalytical solution of theMKdV equation
(1) can be expressed as [1]

𝑢 (𝑥, 𝑡) = ∓√−6𝑟𝑞 tanh (𝑥 + 2𝑟𝑡) . (4)

It plays an important role in the study of nonlinear physics
such as fluid physics and quantum field theory. It is a model
equation for the weakly nonlinear long waves which occur in
many different physical systems. It is an integrable equation
and admits soliton solution obtained by means of the inverse
scattering method and Hirota’s direct method and by using
Backlund transformations [2, 3]. It is well known that (1) has
a solitary wave solution of the form

𝑢 (𝑥, 𝑡) = ∓√ 6𝑟𝑞 𝑘 sech 𝑘 (𝑥 − 𝑟𝑘2𝑡) . (5)

Although the MKdV equation has been extensively studied
by many authors in soliton theory, the solution (4) is
never considered before in the literature. For the purpose
of nonstandard integration, the kink soliton solution (4)
will be used throughout the study. A nonstandard finite
difference scheme can be constructed from the exact finite
difference scheme [4]. An exact finite difference scheme can
be constructed for any ordinary differential equation (ODE)
or partial differential equation (PDE) from the analytical
solution of the differential equation [5–7]. Among the various
numerical techniques such as classical finite difference, finite
volume, adaptive mesh, finite element, and spectral method
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for solvingODEs andPDEs,NSFD schemes have been proved
to be one of the most efficient approaches in recent years.
The authors in [8] proposed a nonstandard finite volume
method for the numerical solution of a singularly perturbed
Schrödinger equation. They have shown that the proposed
nonstandard finite volume method is capable of reducing the
computational cost associated with most classical schemes.
They have highlighted that NSFD schemes have been efficient
in tackling the deficiency of classical finite difference scheme
for the approximation of solutions of several differential
equation models. A nonstandard symplectic Runge-Kutta
method is applied to Hamiltonian systems in [9]. In [9], it
has been shown that nonstandard schemes are better than
standard finite difference schemes in long time computations.
Compared with some other methods, NSFD method is more
stable [10].

Up to the author’s knowledge, a NSFD scheme for the
numerical solution of theMKdV equation (1) is never studied
before. The aim of this paper is to designed a robust NSFD
scheme for the numerical solution of the MKdV equation
(1) that is better than the standard scheme in the numerical
precision for large spatial step size which reduces the com-
putational cost associated with most classical schemes. This
paper is organized as follows. In the next section we begin
with proposing the NSFD scheme for the MKdV equation
(1). Stability and local truncation error of the NSFD scheme
are examined in Section 3. In Section 4 some numerical
experiments for the NSFD scheme are presented to show that
our proposed method is efficient and accurate. Finally, we
summarize our observation in Section 5.

2. Nonstandard Discretization

In this section, we will propose the NSFD model for the
numerical solution of the MKdV equation (1). Firstly, we
give three basic definitions and properties of the NSFD dis-
cretization proposed by Mickens [11, 12] to construct a NSFD
scheme.

(1) The orders of the discrete derivatives must be exactly
equal to the orders of the corresponding derivatives
of the differential equations.

(2) Denominator functions for the discrete derivatives
must, in general, be expressed in terms of more
complicated functions of the step sizes than those
conventionally used. For example, the discrete deriva-
tives 𝑢𝑡(𝑥, 𝑡) and 𝑢𝑥(𝑥, 𝑡) are generalized as

𝑢𝑡 (𝑥, 𝑡) ≅ 𝑢𝑛+1𝑗 − 𝑢𝑛𝑗Φ (Δ𝑡, 𝜆) , Φ (Δ𝑡, 𝜆) = Δ𝑡 + O (Δ𝑡2) ,
𝑢𝑥 (𝑥, 𝑡) ≅ 𝑢𝑛𝑗+1 − 𝑢𝑛𝑗Γ (Δ𝑥, 𝜇) ,
𝑢𝑥 (𝑥, 𝑡) ≅ 𝑢𝑛𝑗 − 𝑢𝑛𝑗−1Γ (Δ𝑥, 𝜇) ,

Γ (Δ𝑥, 𝜇) = Δ𝑥 + O (Δ𝑥2) .

(6)

(3) Nonlinear terms must, in general, be modeled nonlo-
cally on the computational grid or lattice; for example,

(𝑢𝑛𝑗)2 ≈ 𝑢𝑛𝑗+1𝑢𝑛𝑗 ,
(𝑢𝑛𝑗)2 ≈ (𝑢𝑛𝑗−1 + 𝑢𝑛𝑗 + 𝑢𝑛𝑗+13 )𝑢𝑛𝑗 .
(𝑢𝑛𝑗)3 ≈ (𝑢𝑛𝑗)2 (𝑢𝑛𝑗+1 + 𝑢𝑛𝑗−12 ) ,
(𝑢𝑛𝑗)3 ≈ 𝑢𝑛𝑗−1𝑢𝑛𝑗𝑢𝑛𝑗+1.

(7)

It is well known that a NSFDmethod is constructed from the
exact finite difference schemes. But Mickens [11] discussed
some difficulties of applying the nonstandard modeling rules
in the actual construction of exact finite difference scheme
for the MKdV equation. Some pitfalls in the procedures for
constructing an exact finite difference schemes in terms of
basic rules of the NSFDmethods are investigated [11]. For the
MKdV equation (1) two nonstandard finite differencemodels
are proposed [11], namely, the explicit scheme

𝑈𝑛+1𝑗 − 𝑈𝑛𝑗𝐷3 (Δ𝑡) + 𝑞𝑈𝑛+1𝑗 [[
(𝑈𝑛𝑗 )2 − (𝑈𝑛𝑗−1)2𝐷2 (Δx) ]]

+ 𝑈𝑛𝑗+2 − 3𝑈𝑛𝑗+1 + 3𝑈𝑛𝑗 − 𝑈𝑛𝑗−1𝐷1 (Δ𝑥)2𝐷2 (Δ𝑥) = 0
(8)

and the implicit scheme

𝑈𝑛+1𝑗 − 𝑈𝑛𝑗𝐷3 (Δ𝑡) + 𝑞𝑈𝑛+1𝑗 [[
(𝑈𝑛𝑗 )2 − (𝑈𝑛𝑗−1)2𝐷2 (Δ𝑥) ]]

+ 𝑈𝑛+1𝑗+2 − 3𝑈𝑛+1𝑗+1 + 3𝑈𝑛+1𝑗 − 𝑈𝑛+1𝑗−1𝐷1 (Δ𝑥)2𝐷2 (Δ𝑥) = 0,
(9)

where 𝑈𝑛𝑗 is the approximation to the exact solution 𝑢(𝑥, 𝑡)
at the mesh point (𝑥𝑗, 𝑡𝑛) and 𝐷1(Δ𝑥) = Δ𝑥, 𝐷2(Δ𝑥) = Δ𝑥,
and 𝐷3(Δ𝑡) = Δ𝑡.The above construction processes do not
give functional relation between the space and time step sizes
which is not known yet (see Mickens [11], p: 228). The step
sizes for exact schemes must satisfy some fixed conditions.
In order to release these conditions for step size, we follow
the way of Zhang et al. [13] and construct the following non-
standard-theta scheme [13]

𝑈𝑛+1𝑗 − 𝑈𝑛𝑗Φ
+ 𝑞𝑈𝑛𝑗𝑈𝑛+1𝑗 𝜃 (𝑈𝑛+1𝑗 − 𝑈𝑛+1𝑗−1 ) + (1 − 𝜃) (𝑈𝑛𝑗 − 𝑈𝑛𝑗−1)Γ
+ 𝑟𝜃 (𝑈𝑛+1𝑗+2 − 2𝑈𝑛+1𝑗+1 + 2𝑈𝑛+1𝑗−1 − 𝑈𝑛+1𝑗−2 )Ψ
+ 𝑟(1 − 𝜃) (𝑈𝑛𝑗+2 − 2𝑈𝑛𝑗+1 + 2𝑈𝑛𝑗−1 − 𝑈𝑛𝑗−2)Ψ = 0

(10)
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for the numerical integration of theMKdV equation (1). HereΦ is the time step function and Γ and Ψ = 2Γ3 are the space
step functions; 𝑈𝑛𝑗 is an approximation to the exact solution𝑢(𝑥, 𝑡) at the mesh point (𝑥𝑗, 𝑡𝑛). A standard finite difference
scheme for the MKdV equation (1) can be proposed as

𝑈𝑛+1𝑗 − 𝑈𝑛𝑗Δ𝑡
+ 𝑞 (𝑈𝑛𝑗 )2 𝜃 (𝑈𝑛+1𝑗 − 𝑈𝑛+1𝑗−1 ) + (1 − 𝜃) (𝑈𝑛𝑗 − 𝑈𝑛𝑗−1)Δ𝑥
+ 𝑟𝜃 (𝑈𝑛+1𝑗+2 − 2𝑈𝑛+1𝑗+1 + 2𝑈𝑛+1𝑗−1 − 𝑈𝑛+1𝑗−2 )2Δ𝑥3
+ 𝑟(1 − 𝜃) (𝑈𝑛𝑗+2 − 2𝑈𝑛𝑗+1 + 2𝑈𝑛𝑗−1 − 𝑈𝑛𝑗−2)2Δ𝑥3 = 0.

(11)

According to (10), we can write

Φ = (𝑈𝑛𝑗 − 𝑈𝑛+1𝑗 )ΨΓ𝑞𝑈𝑛𝑗𝑈𝑛+1𝑗 Ψ𝐴 + 𝑟Γ𝐵 , (12)

where

𝐴 = 𝜃 (𝑈𝑛+1𝑗 − 𝑈𝑛+1𝑗−1 ) + (1 − 𝜃) (𝑈𝑛𝑗 − 𝑈𝑛𝑗−1)
𝐵 = 𝜃 (𝑈𝑛+1𝑗+2 − 2𝑈𝑛+1𝑗+1 + 2𝑈𝑛+1𝑗−1 − 𝑈𝑛+1𝑗−2 )

+ (1 − 𝜃) (𝑈𝑛𝑗+2 − 2𝑈𝑛𝑗+1 + 2𝑈𝑛𝑗−1 − 𝑈𝑛𝑗−2) .
(13)

When 𝜃 = 1, we select Γ(Δ𝑥) = Γ(ℎ) = (𝑒2ℎ − 1)/2 and henceΨ = 2Γ3 = (𝑒2ℎ − 1)3/4.Then substituting Γ and Ψ into (12),
we can rewriteΦ as

Φ = 𝑒4𝑟Δ𝑡 − 14𝑟 × [4 (1 + 𝑠𝑒4𝑟Δ𝑡) (1 + 𝑠𝑒4𝑟Δ𝑡−2ℎ)
⋅ (1 + 𝑠𝑒4𝑟Δ𝑡+4ℎ) (1 + 𝑠𝑒4𝑟Δ𝑡+2ℎ) ⋅ (1 + 𝑠𝑒4𝑟Δ𝑡−4ℎ)]
× [6 (𝑠 − 1) (𝑠𝑒4𝑟Δ𝑡 − 1) (1 + 𝑠𝑒4𝑟Δ𝑡+4ℎ)
⋅ (1 + 𝑠𝑒4𝑟Δ𝑡+2ℎ) ⋅ (1 + 𝑠𝑒4𝑟Δ𝑡−4ℎ) 2𝑒4𝑟Δ𝑡−2ℎ − 4 (𝑒2ℎ
+ 1) (𝑠 + 1) (1 + 𝑠𝑒4𝑟Δ𝑡)2
⋅ {𝑠2𝑒12𝑟Δ𝑡−4ℎ − 𝑠𝑒8𝑟Δ𝑡−6ℎ (𝑒2ℎ+1)2 + 𝑒4𝑟Δ𝑡−4ℎ}]−1 ,

(14)

where 𝑠 = 𝑠𝑛𝑗 = 𝑒2(𝑥𝑗+2𝑟𝑡𝑛). If Γ(Δ𝑥) = Γ(ℎ) = ℎ + O(ℎ2) whenℎ → 0, Δ𝑡 → 0, after tedious calculation we obtain

Φ (Δ𝑡) 󳨀→ 𝑒4𝑟Δ𝑡 − 14𝑟 with Φ (Δ𝑡) = Δ𝑡 + O (Δ𝑡2) . (15)

Similarly, for 𝜃 = 0 and 𝜃 = 1/2, if Γ is selected to be

Γ (Δ𝑥) = Γ (ℎ) = 𝑒2ℎ − 12 (16)

we obtain the same “denominator function”Φ
Φ 󳨀→ 𝑒4𝑟Δ𝑡 − 14𝑟 . (17)

We note thatΦ → Δ𝑡, Γ → Δ𝑥, andΨ → 2Δ𝑥3 as (Δ𝑡, Δ𝑥) →(0, 0).
3. Stability and Local Truncation Error

In this section, stability and local truncation error of the
nonstandard scheme (10) are examined. For stability analysis
we use the von Neumann method. Since the method is appli-
cable only for linear PDE, we consider the linearized MKdV
equation

𝑢𝑡 + 𝑎𝑢𝑥 + 𝑟𝑢𝑥𝑥𝑥 = 0, (𝑥, 𝑡) ∈ [𝑥𝐿, 𝑥𝑅] × [0, 𝑇] , (18)

where 𝑎 = max{𝑞𝑢2(𝑥, 𝑡)} in the domain (𝑥, 𝑡) ∈ [𝑥𝐿, 𝑥𝑅] ×[0, 𝑇].The application of the nonstandard-theta scheme (10)
to the linear equation (18) yields

𝑈𝑛+1𝑗 − 𝑈𝑛𝑗Φ
+ 𝑎𝜃 (𝑈𝑛+1𝑗 − 𝑈𝑛+1𝑗−1 ) + (1 − 𝜃) (𝑈𝑛𝑗 − 𝑈𝑛𝑗−1)Γ
+ 𝑟𝜃 (𝑈𝑛+1𝑗+2 − 2𝑈𝑛+1𝑗+1 + 2𝑈𝑛+1𝑗−1 − 𝑈𝑛+1𝑗−2 )Ψ
+ 𝑟(1 − 𝜃) (𝑈𝑛𝑗+2 − 2𝑈𝑛𝑗+1 + 2𝑈𝑛𝑗−1 − 𝑈𝑛𝑗−2)Ψ = 0.

(19)

We take the difference between the exact solution 𝑢(𝑥, 𝑡) at
the mesh point (𝑥𝑗, 𝑡𝑛) and the approximate solution 𝑈𝑛𝑗 and
define the error 𝜖𝑛𝑗 = 𝑢(𝑥𝑗, 𝑡𝑛) − 𝑈𝑛𝑗 . Substituting 𝑈𝑛𝑗 =𝑢(𝑥𝑗, 𝑡𝑛) − 𝜖𝑛𝑗 into the difference equation (19), we see that the
error 𝜖𝑛𝑗 satisfies the same discrete equation

𝜖𝑛+1𝑗 − 𝜖𝑛𝑗Φ + 𝑎𝜃 (𝜖𝑛+1𝑗 − 𝜖𝑛+1𝑗−1 ) + (1 − 𝜃) (𝜖𝑛𝑗 − 𝜖𝑛𝑗−1)Γ
+ 𝑟𝜃 (𝜖𝑛+1𝑗+2 − 2𝜖𝑛+1𝑗+1 + 2𝜖𝑛+1𝑗−1 − 𝜖𝑛+1𝑗−2 ) +Ψ
+ 𝑟(1 − 𝜃) (𝜖𝑛𝑗+2 − 2𝜖𝑛𝑗+1 + 2𝜖𝑛𝑗−1 − 𝜖𝑛𝑗−2)Ψ = 0.

(20)

The von Neumann stability analysis uses the fact that every
linear constant coefficient difference equation has a solution
of the form

𝜖𝑛𝑗 = (𝑒𝛼Δ𝑡)𝑛 𝑒𝑖𝛽𝑗Δ𝑥 = (𝜉)𝑛 𝑒𝑖𝛽𝑗Δ𝑥, 𝛼, 𝛽 ∈ R, 𝑖2 = −1. (21)

The function 𝜉 is determined from the difference equation by
substituting the Fourier mode (21) into (20), and we obtain

𝜉𝑛+1𝑒𝑖𝛽𝑗Δ𝑥 (1 + 𝐴2 + 𝑖𝐵2) = (1 − 𝐴1 − 𝑖𝐵1) 𝜉𝑛𝑒𝑖𝛽𝑗Δ𝑥, (22)
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where

𝐴1 = 2Φ𝑎Γ (1 − 𝜃) sin2 (𝛽Δ𝑥2 ) ,
𝐴2 = 2Φ𝑎Γ 𝜃sin2 (𝛽Δ𝑥2 ) ,
𝐵1 = Φ𝑎Γ (1 − 𝜃) sin (𝛽Δ𝑥)

− 8Φ𝑟Ψ (1 − 𝜃) sin (𝛽Δ𝑥) sin2 (𝛽Δ𝑥2 ) ,
𝐵2 = Φ𝑎Γ 𝜃 sin (𝛽Δ𝑥)

− 8Φ𝑟Ψ 𝜃 sin (𝛽Δ𝑥) sin2 (𝛽Δ𝑥2 ) .

(23)

Canceling the exponential term, we have 𝜉𝑛+1 = 𝜌𝜉𝑛, where
𝜌 = 1 − 𝐴1 − 𝑖𝐵11 + 𝐴2 + 𝑖𝐵2 (24)

is the amplification factor of the method. If the method is to
be stable, the stability requirement |𝜌| ≤ 1 should be satisfied.
Now we consider the following cases.

Crank-Nicolson Type Scheme. When 𝜃 = 1/2, the amplifica-
tion factor is simplified to

𝜌 = 1 − 𝐴 − 𝑖𝐵1 + 𝐴 + 𝑖𝐵 , (25)

where

𝐴 = Φ𝑎Γ sin2 (𝛽Δ𝑥2 )
𝐵 = Φ𝑎2Γ sin (𝛽Δ𝑥) − 4Φ𝑟Ψ sin (𝛽Δ𝑥) sin2 (𝛽Δ𝑥2 ) . (26)

From (25) we get |𝜌|2 = 𝜌𝜌 ≤ 1; hence the proposed method
(10) is unconditionally stable for 𝜃 = 1/2.
The Fully Implicit Scheme. When 𝜃 = 1, the amplification
factor is simplified to

𝜌 = 11 + 𝐴 + 𝑖𝐵 , (27)

where

𝐴 = 2Φ𝑎Γ sin2 (𝛽Δ𝑥2 )
𝐵 = Φ𝑎Γ sin (𝛽Δ𝑥) − 8Φ𝑟Ψ sin (𝛽Δ𝑥) sin2 (𝛽Δ𝑥2 ) . (28)

From (27) we get |𝜌|2 = 𝜌𝜌 ≤ 1; hence the proposed method
(10) is unconditionally stable for 𝜃 = 1.
The Explicit Scheme. When 𝜃 = 0, the amplification factor is
simplified to

𝜌 = 1 − 𝐴 − 𝑖𝐵, (29)

where

𝐴 = 2Φ𝑎Γ sin2 (𝛽Δ𝑥2 )
𝐵 = Φ𝑎Γ sin (𝛽Δ𝑥) − 8Φ𝑟Ψ sin (𝛽Δ𝑥) sin2 (𝛽Δ𝑥2 ) . (30)

It is well known that the explicit methods are conditionally
stable. Numerical experiments show that the amplification
factor |𝜌| ≤ 1 when Φ/Γ < 0.03 (or Δ𝑡/Δ𝑥 < 0.1) for the
parameters 𝑞 = 0.3 and 𝑟 = −0.5.

Now, we will discuss the local truncation error of the
nonstandard scheme (10). In theory, we can approximate the
original problem as accurately as we wish by making the time
step Δ𝑡 and Δ𝑥 small enough. It is said in this case that the
approximation is consistent. The local truncation error and
the stability play important roles in the convergence of the
numerical method. In a convergent method, the order of the
error is determined by the order of the local truncation error.
The local truncation error 𝑇𝑛𝑗 of the nonstandard scheme (10)
is defined by

𝑇𝑛𝑗 = (𝜕𝑡𝑢𝑛𝑗 − 𝑢𝑡 (𝑥𝑗, 𝑡𝑛))
+ 𝑞 (𝑢𝑛𝑗𝑢𝑛+1𝑛 𝜕𝑥𝑢𝑛𝑗 − 𝑢 (𝑥𝑗, 𝑡𝑛)2 𝑢𝑥 (𝑥𝑗, 𝑡𝑛))
+ 𝑟 (𝜕𝑥𝑥𝑥𝑢𝑛𝑗 − 𝑢𝑥𝑥𝑥 (𝑥𝑗, 𝑡𝑛)) ,

(31)

where

𝜕𝑡𝑢𝑛𝑗 = 𝑢𝑛+1𝑗 − 𝑢𝑛𝑗Φ ,
𝜕𝑥𝑢𝑛𝑗 = 𝜃 (𝑢𝑛+1𝑗 − 𝑢𝑛+1𝑗−1) + (1 − 𝜃) (𝑢𝑛𝑗 − 𝑢𝑛𝑗−1)Γ ,

𝜕𝑥𝑥𝑥𝑢𝑛𝑗 = 𝜃 (𝑢𝑛+1𝑗+2 − 2𝑢𝑛+1𝑗+1 + 2𝑢𝑛+1𝑗−1 − 𝑢𝑛+1𝑗−2)Ψ
+ (1 − 𝜃) (𝑢𝑛𝑗+2 − 2𝑢𝑛𝑗+1 + 2𝑢𝑛𝑗−1 − 𝑢𝑛𝑗−2)Ψ

(32)

and 𝑢𝑛𝑗 is the approximate solution for the MKDV equation
(1) obtained from the nonstandard scheme (10) and 𝑢(𝑥𝑗, 𝑡𝑛)
is the exact solution at the mesh point (𝑗Δ𝑥, 𝑛Δ𝑡). For 𝜃 = 1,
the principal part of the local truncation error is

𝑇𝑛𝑗 = (Δ𝑡Φ − 1) 𝑢𝑡 + Δ𝑡22Φ 𝑢𝑡𝑡 + Δ𝑡
3

6Φ 𝑢𝑡𝑡𝑡
+ (Δ𝑥Γ − 1) 𝑞𝑢2𝑢𝑥 − Δ𝑥22Γ 𝑞𝑢2𝑢𝑥𝑥
+ Δ𝑥Δ𝑡Γ 𝑞𝑢2𝑢𝑥𝑡 + Δ𝑥36Γ 𝑞𝑢2𝑢𝑥𝑥𝑥
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− Δ𝑥2Δ𝑡2Γ 𝑞𝑢2𝑢𝑥𝑥𝑡 + Δ𝑥Δ𝑡22Γ 𝑞𝑢2𝑢𝑥𝑡𝑡
+ Δ𝑥Δ𝑡Γ 𝑞𝑢𝑢𝑥𝑡 − Δ𝑥2Δ𝑡2Γ 𝑞𝑢𝑢𝑥𝑥𝑡
+ Δ𝑥Δ𝑡2Γ 𝑞𝑢𝑢𝑡𝑢𝑥𝑡 + Δ𝑥3Δ𝑡6Γ 𝑞𝑢𝑢𝑡𝑢𝑥𝑥𝑥
− Δ𝑥2Δ𝑡22Γ 𝑞𝑢𝑢𝑡𝑢𝑥𝑥𝑡 + Δ𝑥Δ𝑡32Γ 𝑞𝑢𝑢𝑡𝑢𝑥𝑡𝑡
+ Δ𝑥Δ𝑡22Γ 𝑞𝑢𝑢𝑡𝑡𝑢𝑥 − Δ𝑥2Δ𝑡24Γ 𝑞𝑢𝑢𝑡𝑡𝑢𝑥𝑥
+ Δ𝑥Δ𝑡32Γ 𝑞𝑢𝑢𝑡𝑡𝑢𝑥𝑡 + Δ𝑥3Δ𝑡212Γ 𝑞𝑢𝑢𝑡𝑡𝑢𝑥𝑥𝑥
− Δ𝑥2Δ𝑡34Γ 𝑞𝑢𝑢𝑡𝑡𝑢𝑥𝑥𝑡 + 𝑟(2Δ𝑥3Ψ − 1)𝑢𝑥𝑥𝑥.

(33)

It is clear that (Φ, Γ, Ψ) → (Δ𝑡, Δ𝑥, 2Δ𝑥3) as (Δ𝑡, Δ𝑥) →(0, 0).Thus,we get the local truncation error𝑇𝑛𝑗 = O(Δ𝑡+Δ𝑥).
Similarly, one can show that the local truncation error for𝜃 = 0 is first-order in time and space. The principal part of
the local truncation error for 𝜃 = 1/2 is

𝑇𝑛𝑗 = (Δ𝑡Φ − 1) 𝑢𝑡 + Δ𝑡22Φ 𝑢𝑡𝑡 + Δ𝑡
3

6Φ 𝑢𝑡𝑡𝑡
+ (Δ𝑥Γ − 1) 𝑞𝑢2𝑢𝑥 − Δ𝑥22Γ 𝑞𝑢2𝑢𝑥𝑥
+ Δ𝑥Δ𝑡2Γ 𝑞𝑢2𝑢𝑥𝑡 + Δ𝑥36Γ 𝑞𝑢2𝑢𝑥𝑥𝑥
− Δ𝑥2Δ𝑡4Γ 𝑞𝑢2𝑢𝑥𝑥𝑡 + Δ𝑥Δ𝑡24Γ 𝑞𝑢2𝑢𝑥𝑡𝑡
+ Δ𝑥Δ𝑡22Γ 𝑞𝑢𝑢𝑥𝑢𝑡𝑡 − Δ𝑥2Δ𝑡24Γ 𝑞𝑢𝑢𝑥𝑥𝑢𝑡𝑡
− Δ𝑥2Δ𝑡24Γ 𝑞𝑢𝑢𝑡𝑢𝑥𝑥𝑡 + Δ𝑥Δ𝑡34Γ 𝑞𝑢𝑢𝑡𝑢𝑥𝑡𝑡
+ Δ𝑥Δ𝑡48Γ 𝑞𝑢𝑢𝑡𝑡𝑢𝑡𝑡𝑥 + (2Δ𝑥3Ψ − 1) 𝑟𝑢𝑥𝑥𝑥
+ Δ𝑥3Δ𝑡22Ψ 𝑟𝑢𝑡𝑡𝑥𝑥𝑥 + Δ𝑥52Ψ 𝑟𝑢𝑥𝑥𝑥𝑥𝑥.

(34)

It is clear that (Φ, Γ, Ψ) → (Δ𝑡, Δ𝑥, 2Δ𝑥3) as (Δ𝑡, Δ𝑥) →(0, 0).Thus, we get the local truncation error 𝑇𝑛𝑗 = O(Δ𝑡2 +Δ𝑥).We deduce that the nonstandard scheme (10) is consis-
tent since the local truncation 𝑇𝑛𝑗 tends to zero as Δ𝑡 and Δ𝑥
tend to zero. The centerpiece for the theory of convergence
of linear difference approximations of time-dependent partial
differential equations is the Lax Equivalence Theorem [14].
Since the proposed scheme (10) is consistent and stable, it is
convergent according to the Lax theorem.

4. Numerical Results

In this sectionwe present some numerical experiments to test
the accuracy and efficiency of the proposed NSFD scheme
(10) for the numerical solution of theMKdV equation (1) over
the solution domains 𝑥𝐿 ≤ 𝑥 ≤ 𝑥𝑅 and 0 ≤ 𝑡 ≤ 𝑇. The
solution domain is divided into equal intervals with lengthΔ𝑥 = (𝑥𝑅−𝑥𝐿)/𝑀 in the direction of the spatial variable𝑥 andΔ𝑡 = 𝑇/𝑀 in the direction of time 𝑡 such that 𝑥𝑗 = 𝑥𝐿 + 𝑗Δ𝑥,𝑗 = 0, 1, . . . , 𝐽, 𝑡𝑛 = 𝑛Δ𝑡, and 𝑛 = 0, 1, . . . ,𝑀. The initial
condition 𝑢0(𝑥) and boundary conditions are taken from the
exact solution (4)

𝑢0 (𝑥) = √−6𝑟𝑞 tanh (𝑥) , 𝑥 ∈ [𝑥𝐿, 𝑥𝑅] (35)

𝑢 (𝑥𝐿, 𝑡) = √−6𝑟𝑞 tanh (𝑥𝐿 + 2𝑟𝑡) , 𝑡 ≥ 0 (36)

𝑢 (𝑥𝑅, 𝑡) = √−6𝑟𝑞 tanh (𝑥𝑅 + 2𝑟𝑡) , 𝑡 ≥ 0, (37)

respectively, where 𝑟 = −𝛽/2, 𝛽, 𝑞 ∈ R.We use the following
error norms:

𝐿∞ = max
0≤𝑗≤𝐽

󵄨󵄨󵄨󵄨𝑢𝑒 (𝑗) − 𝑢𝑎 (𝑗)󵄨󵄨󵄨󵄨 ,
𝐿2 = √ 𝑀∑

𝑗=0

[𝑢𝑒 (𝑗) − 𝑢𝑎 (𝑗)]2, (38)

to assess the performance of the NSFD scheme. Here 𝑢𝑒 is the
exact solution obtained from (4) and 𝑢𝑎 is the approximate
solution obtained from the NSFD scheme (10).

Table 1 represents 𝐿∞ and 𝐿2 errors of the NSFD scheme
(10) and the standard finite difference scheme (11) at different
times for the MKdV equation (1) with 𝜃 = 1, 𝛽 = 0.001, and𝑞 = 50 in the spatial domain −15 ≤ 𝑥 ≤ 15 with Δ𝑥 = 2.0
and Δ𝑡 = 0.01. From the table we see that the NSFD scheme
(10) is more accurate than standard finite difference scheme
(11) in all cases. We obtained similar results for 𝜃 = 0 and𝜃 = 1/2.The absolute error is defined by󵄨󵄨󵄨󵄨󵄨𝑢 (𝑥𝑗, 𝑡𝑛) − 𝑈𝑛𝑗 󵄨󵄨󵄨󵄨󵄨 (39)

for the standard scheme (11) and the nonstandard scheme
(10) are provided in Table 2 at various 𝑥 and 𝑡 values. From
the experiments it is readily seen that our method is more
accurate than the standard method.

Table 3 also measures the accuracy and the versatility of
the NSFD scheme (10) with 𝜃 = 1 by using the absolute
error at the mesh point (𝑥𝑗, 𝑡𝑛). From the table we see that
the nonstandard scheme is very accurate and efficient. In
addition, we notice that increasing the value of the nonlinear
term 𝑞 does not affect the accuracy for large spatial step sizes.
Similar results are obtained for 𝜃 = 0 and 𝜃 = 1/2.

It is well known that numerical instabilities occur in
many discretemodels unless certain numerical conditions on
spatial and temporal step sizes are satisfied. For examples,
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Table 1: 𝐿∞ and 𝐿2 errors for MKDV equation (1) with 𝜃 = 1, 𝑞 = 50, and 𝛽 = 0.001, on −15 ≤ 𝑥 ≤ 15 with Δ𝑡 = 0.01 and Δ𝑥 = 2.0. N:
nonstandard; S: standard.

T L∞ (N) L∞ (S) L2 (N) L2 (S)2.0 6.261𝐸 − 6 1.466𝐸 − 5 8.007𝐸 − 6 1.560𝐸 − 54.0 1.251𝐸 − 5 2.912𝐸 − 5 1.601𝐸 − 5 3.104𝐸 − 56.0 1.872𝐸 − 5 4.339𝐸 − 5 2.402𝐸 − 5 4.630𝐸 − 58.0 2.492𝐸 − 5 5.747𝐸 − 5 3.202𝐸 − 5 6.140𝐸 − 510.0 3.111𝐸 − 5 7.137𝐸 − 5 4.002𝐸 − 5 7.632𝐸 − 5
Table 2: Absolute errors for MKDV equation (1) with 𝜃 = 1, 𝑞 = 0.3, and 𝛽 = 0.1 on −15 ≤ 𝑥 ≤ 15 with Δ𝑡 = 0.01 and Δ = 𝑥 = 1.0. N:
nonstandard; S: standard.

𝑥 𝑡 N S

−10 0.2 1.203𝐸 − 10 8.241𝐸 − 100.5 2.897𝐸 − 10 2.251𝐸 − 090.8 4.466𝐸 − 10 3.949𝐸 − 09
0 0.2 1.983𝐸 − 02 1.448𝐸 − 020.5 4.953𝐸 − 02 3.636𝐸 − 020.8 7.915𝐸 − 02 5.833𝐸 − 02
10 0.2 3.298𝐸 − 10 6.636𝐸 − 100.5 9.267𝐸 − 10 1.969𝐸 − 090.8 1.668𝐸 − 09 3.761𝐸 − 09

Table 3: Nonlinear effect: absolute errors for 𝜃 = 1 and 𝛽 = 0.1 on −15 ≤ 𝑥 ≤ 15 with Δ𝑥 = 1.0 and 𝑇 = 1 with Δ𝑡 = 0.01.
𝑥 𝑡 𝑞 = 0.3 𝑞 = 10 𝑞 = 100
−10 0.2 1.203𝐸 − 10 2.083𝐸 − 11 6.588𝐸 − 120.5 2.897𝐸 − 10 5.018𝐸 − 11 1.587𝐸 − 110.8 4.466𝐸 − 10 7.734𝐸 − 11 2.446𝐸 − 11
0 0.2 1.983𝐸 − 02 3.434𝐸 − 03 1.086𝐸 − 030.5 4.953𝐸 − 02 8.579𝐸 − 03 2.713𝐸 − 030.8 7.915𝐸 − 02 1.371𝐸 − 02 4.335𝐸 − 03
10 0.2 3.298𝐸 − 10 5.713𝐸 − 11 1.807𝐸 − 110.5 9.267𝐸 − 10 1.605𝐸 − 10 5.075𝐸 − 110.8 1.668𝐸 − 09 2.889𝐸 − 10 9.136𝐸 − 11

forward and backward Euler and central difference for decay
equations produce numerical instability for large step sizes
[11]. Figure 1 compares the numerical solution of nonstandard
scheme (10) and the exact wave solution (4). This picture
represents the result of an integration with 𝑞 = 0.3, 𝛽 = 0.1,
and 𝜃 = 1/2, over the spatial domain −15 ≤ 𝑥 ≤ 15 and
temporal interval 0 ≤ 𝑡 ≤ 1 with spatial step size Δ𝑥 = 0.5
and temporal step size Δ𝑡 = 0.001. From the figure we see
that nonstandard scheme well simulates the exact solution
without showing any numerical instabilities. Figures 2 and 3
represent the 𝐿∞ and 𝐿2 errors and Figures 4 and 5 represent
the absolute errors for various spatial step sizes of the NSFD
scheme (10) and the standard finite difference scheme (11) for
the MKdV equation (1) with the same set of parameters of
Figure 1. From the figures it is obvious that the NSFD scheme
is better than the standard scheme in the numerical precision

for large spatial step size, but it is inferior for small spatial step
size. We obtained similar results for 𝜃 = 0 and 𝜃 = 1.

A final issue to consider is the effect of the third-order
dispersion coefficient 𝑟 = −𝛽/2 in (1). We see that for various
values of 𝛽, as shown in Table 4, dispersion-dominated
solution demonstrated that the error is increased at the place
where the shock wave occurs. Both Tables 3 and 4 show that
the errors are concentrated in the spatial region where there
are steep solutions.

5. Conclusion

It is well known that explicit finite difference models for solu-
tion of differential equation require restriction on step size to
prevent the numerical instabilities. For this reason, small step
sizes are used to ensure the numerical stability. This causes
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Figure 1: Surface for 𝜃 = 1/2. Nonstandard (a). Exact (b).
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Figure 2: 𝜃 = 1/2, 𝐿∞ and 𝐿2 errors for the NSFD scheme (10), and standard scheme (11): Δ𝑥 = 2.
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Figure 3: 𝜃 = 1/2, 𝐿∞ and 𝐿2 errors for the NSFD scheme (10), and standard scheme (11): Δ𝑥 = 0.5.
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Figure 4: 𝜃 = 1/2, absolute errors for the NSFD scheme (10) (a) and standard scheme (11) (b). Δ𝑡 = 0.01, 𝑞 = 0.3, 𝛽 = 0.1, and Δ𝑥 = 2.
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Figure 5: 𝜃 = 1/2, absolute errors for the NSFD scheme (10) (a) and standard scheme (11) (b). Δ𝑡 = 0.01, 𝑞 = 0.3, 𝛽 = 0.1, and Δ𝑥 = 0.5.
Table 4: Dispersion effect: absolute errors for 𝜃 = 1 and 𝑞 = 0.3 on −15 ≤ 𝑥 ≤ 15 with Δ𝑥 = 1.0 and 𝑇 = 1 with Δ𝑡 = 0.01.

𝑥 𝑡 𝛽 = 0.001 𝛽 = 1.0 𝛽 = 10
−10 0.2 1.232𝐸 − 13 3.060𝐸 − 09 1.609𝐸 − 080.5 3.079𝐸 − 13 5.364𝐸 − 09 4.417𝐸 − 090.8 4.925𝐸 − 13 6.117𝐸 − 09 1.305𝐸 − 09
0 0.2 1.982𝐸 − 05 0.619 9.4960.5 4.957𝐸 − 05 1.448 9.6090.8 7.931𝐸 − 05 2.080 9.310
10 0.2 3.047𝐸 − 13 2.214𝐸 − 08 8.238𝐸 − 040.5 7.626𝐸 − 13 2.011𝐸 − 07 0.102𝐸 − 040.8 1.221𝐸 − 12 1.230𝐸 − 06 0.236𝐸 − 05
many grid points and hence round-off errors in numeri-
cal computations. Moreover the use of small step size is com-
putationally expensive. In this study a nonstandard finite
difference (NSFD) model is proposed for the numerical
solution of the modified Korteweg-de Vries (MKdV) equa-
tion based on kink soliton solution. Local truncation error

is discussed. Linear stability analysis is performed for the
linearized equation. The numerical results obtained by the
NSFD scheme is compared to the exact solution and a stan-
dard finite difference scheme. Proposed scheme indicates that
NSFD scheme shows better performance for large step sizes.
The effect of nonlinear term and the dispersive term is also
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studied numerically. The numerical results that have been
obtained in this paper exhibit that the coefficient of the non-
linear term does not change the numerical results much.
Tables and figures illustrate that the NSFD scheme can be a
robust tool for numerical solution of various nonlinear prob-
lems such as 2D-KdV.
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