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A numerical solution of the modified Korteweg-de Vries (MKdV) equation is presented by using a nonstandard finite difference
(NSFD) scheme with theta method which includes the implicit Euler and a Crank-Nicolson type discretization. Local truncation
error of the NSFD scheme and linear stability analysis are discussed. To test the accuracy and efficiency of the method, some
numerical examples are given. The numerical results of NSFD scheme are compared with the exact solution and a standard finite
difference scheme. The numerical results illustrate that the NSFD scheme is a robust numerical tool for the numerical integration

of the MKdV equation.

1. Introduction

This paper is concerned with the nonstandard integration of
modified Korteweg-de Vries (MKdV) equation

u +quiu, +ru, =0, (1) € [x,xg] x[0,T] (1)
with initial condition
u(x,0)=uy(x), x€[xp,xg] (2)
and boundary conditions
u(xp.t)=f(),
u(xpt) =g, (3)
tel0,T],

where g, € R. The analytical solution of the MKdV equation
(1) can be expressed as [1]

u(x,t) = 1\]—761’ tanh (x + 2rt). (4)

It plays an important role in the study of nonlinear physics
such as fluid physics and quantum field theory. It is a model
equation for the weakly nonlinear long waves which occur in
many different physical systems. It is an integrable equation
and admits soliton solution obtained by means of the inverse
scattering method and Hirota’s direct method and by using
Backlund transformations [2, 3]. It is well known that (1) has
a solitary wave solution of the form

u(x,t) = $\j%k sech k (x - rkzt) . (5)

Although the MKdV equation has been extensively studied
by many authors in soliton theory, the solution (4) is
never considered before in the literature. For the purpose
of nonstandard integration, the kink soliton solution (4)
will be used throughout the study. A nonstandard finite
difference scheme can be constructed from the exact finite
difference scheme [4]. An exact finite difference scheme can
be constructed for any ordinary differential equation (ODE)
or partial differential equation (PDE) from the analytical
solution of the differential equation [5-7]. Among the various
numerical techniques such as classical finite difference, finite
volume, adaptive mesh, finite element, and spectral method
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for solving ODEs and PDEs, NSFD schemes have been proved
to be one of the most efficient approaches in recent years.
The authors in [8] proposed a nonstandard finite volume
method for the numerical solution of a singularly perturbed
Schrodinger equation. They have shown that the proposed
nonstandard finite volume method is capable of reducing the
computational cost associated with most classical schemes.
They have highlighted that NSFD schemes have been efficient
in tackling the deficiency of classical finite difference scheme
for the approximation of solutions of several differential
equation models. A nonstandard symplectic Runge-Kutta
method is applied to Hamiltonian systems in [9]. In [9], it
has been shown that nonstandard schemes are better than
standard finite difference schemes in long time computations.
Compared with some other methods, NSFD method is more
stable [10].

Up to the author’s knowledge, a NSFD scheme for the
numerical solution of the MKdV equation (1) is never studied
before. The aim of this paper is to designed a robust NSFD
scheme for the numerical solution of the MKdV equation
(1) that is better than the standard scheme in the numerical
precision for large spatial step size which reduces the com-
putational cost associated with most classical schemes. This
paper is organized as follows. In the next section we begin
with proposing the NSFD scheme for the MKdV equation
(1). Stability and local truncation error of the NSFD scheme
are examined in Section 3. In Section 4 some numerical
experiments for the NSFD scheme are presented to show that
our proposed method is efficient and accurate. Finally, we
summarize our observation in Section 5.

2. Nonstandard Discretization

In this section, we will propose the NSFD model for the
numerical solution of the MKdV equation (1). Firstly, we
give three basic definitions and properties of the NSFD dis-
cretization proposed by Mickens [11, 12] to construct a NSFD
scheme.

(1) The orders of the discrete derivatives must be exactly
equal to the orders of the corresponding derivatives
of the differential equations.

(2) Denominator functions for the discrete derivatives
must, in general, be expressed in terms of more
complicated functions of the step sizes than those
conventionally used. For example, the discrete deriva-
tives u,(x, t) and u,(x, t) are generalized as

n+l _ n
u, (x,t) = m, D (AL L) = At + O (AF),
ul, —u
ux (x, t) = u)
I (Ax, p) 6)
u! —u}
u, (x,t) = ! ! 1,
T (Ax,u)

I (Ax,p) = Ax + @(sz).
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(3) Nonlinear terms must, in general, be modeled nonlo-
cally on the computational grid or lattice; for example,

( n)2 N n
Ltj ~uj+1uj,

n n n

e (Wi T u R

u.) =~ —m |u..
j 3 j

n n

n\3 _ (. n)? Ui T U,

ul) = (u}) | ———— ),
j j B

(u")3 ~u W
j) U

7)

It is well known that a NSFD method is constructed from the
exact finite difference schemes. But Mickens [11] discussed
some difficulties of applying the nonstandard modeling rules
in the actual construction of exact finite difference scheme
for the MKdV equation. Some pitfalls in the procedures for
constructing an exact finite difference schemes in terms of
basic rules of the NSFD methods are investigated [11]. For the
MKdV equation (1) two nonstandard finite difference models
are proposed [11], namely, the explicit scheme

ot -y () - ()
D, T D, (Ax)
(8)
Uj,, —3U7, +3U7 - U7,
D, (Ax)?D, (Ax)
and the implicit scheme
2 2
ot vp [0 (1)
D, (At) J D, (Ax)
)

n+1 n+l1 n+l n+l
UL, - 30U + 30T - U

D, (Ax)’ D, (Ax)

>

where U]’.’ is the approximation to the exact solution u(x, t)
at the mesh point (x,t,) and D, (Ax) = Ax, D,(Ax) = Ax,
and D;(At) = At. The above construction processes do not
give functional relation between the space and time step sizes
which is not known yet (see Mickens [11], p: 228). The step
sizes for exact schemes must satisfy some fixed conditions.
In order to release these conditions for step size, we follow
the way of Zhang et al. [13] and construct the following non-
standard-theta scheme [13]

n+1 n
Uj - Uj
O
n+l n+l n n
vt O U7 -UR) + (-0 (U -UY)
+ qu Uj T

10
0 (Un+1 _ 2Un+1 + 2Un+l _ Un+l) ( )
j-1 j=2

j+2 j+1

v

+r

n n n n
. r(1 -0) (U7, - 2U\J;1 +2U7, -U},) L
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for the numerical integration of the MKdV equation (1). Here
@ is the time step function and T and ¥ = 2I° are the space
step functions; U}“ is an approximation to the exact solution
u(x,t) at the mesh point (x » t,). A standard finite difference
scheme for the MKdV equation (1) can be proposed as

n+1 n
Uj - Uj
At
20U U s (-0 (U -UT)
*tq (Uj ) Ax
(11)
0 (U, —2utt! + 22U - Ut
+r
2Ax3
(1-6)(Ut,,-2U}, +2U7, - UT,)
+r =0.
2Ax3
According to (10), we can write
U'-urtt)wr
= (n] n+1 : ) ’ (12)
qU;U YA + 1B
where
n+1 n+1 n n
A=0(Ur -ur))+a-6) (Ui -Ut,)
B=0(U}, —2Utf) + 207 - UT)) (13)

+(1-0) (U}, - 2U%, +2U7, -UY,).
When 6 = 1, we select I'(Ax) = T'(h) = (€2h —1)/2 and hence
Y =203 = (eZh —1)*/4. Then substituting I and ¥ into (12),
we can rewrite @ as

et -1 4rAt 4rAt-2h
D= " x[4(1+ser )(l+ser )
_ (1 N se4rAt+4h) (1 N se4rAt+2h) _ (1 N Se4rAt—4h)]

X [6 (s-1) (se‘“m _ 1) (1 " Se4rAt+4h)

. (1 + Se4rAt+2h) . (1 + Se4rAt—4h) 2641*At72h _4 (€2h

(14)

+ 1) (s+1) (1 + se‘”m)2

2 12rAt-4h 8rat—6h [ 2h1\2  arAt—ah] ]t
- {s%e —se e +e

>

where s = 5} = &%) If T(Ax) = T(h) = h + O(h) when
h — 0, At — 0, after tedious calculation we obtain

4rA
ert_

@ (At) — with @ (A1) = At + 0 (AF%).  (15)

Similarly, for @ = 0 and 0 = 1/2, if ' is selected to be

o
(16)

T(Ax)=T(h) =% .

3
we obtain the same “denominator function” @
4rAt
e -1
O — (17)
4r

We note that ® — At,T — Ax,and ¥ — 2Ax> as (At, Ax) —
(0,0).

3. Stability and Local Truncation Error

In this section, stability and local truncation error of the
nonstandard scheme (10) are examined. For stability analysis
we use the von Neumann method. Since the method is appli-
cable only for linear PDE, we consider the linearized MKdV
equation

U +au, +ru,,, =0, (1) € [x;,xx] x[0,T], (18)
where a = max{quz(x, t)} in the domain (x,t) € [x,xg] X
[0, T]. The application of the nonstandard-theta scheme (10)
to the linear equation (18) yields

n+1 n
Ut -t
®
n+1 n+1 n n
. aG(Uj -U )+ (1-06) (Uj - UH)
g (19)
0 (Un+1 — U™l 4 ount! — Un+1)
4y Jj+2 j+1 j-1 j=2
v
. r(1 -6) (U7, - ZU\J; +2U}, -UY,) .

We take the difference between the exact solution u(x, t) at
the mesh point (x;,#,) and the approximate solution UJ'.’ and

define the error €; = u(x;t,) — U;. Substituting U7 =
u(x i t,)— e}l into the difference equation (19), we see that the
error e? satisfies the same discrete equation

o€l o(e - e;’fll) +(1-0) (e;‘ - 67_1)

j Iy g
[} r
n+l n+l n+l n+l
+r9(ej+2 —2ei, +2e —ej72)+ 20)
¥
(1-0)(e", 26", +2e7, — €L
tr (]+2 \]I;i—l j-1 ]2)20.

The von Neumann stability analysis uses the fact that every
linear constant coeflicient difference equation has a solution
of the form

6;1 _ (eaAt)" eiﬂij _ (E)n eiﬁij’ (X,ﬁ c R, i2 - 1. (21)

The function & is determined from the difference equation by
substituting the Fourier mode (21) into (20), and we obtain

EPA (14 A, +iB,) = (1- A, —iB,) &"eP™,  (22)



where

A
AI:ZEE(I—GMh3<E—f>,
T 2
A, = Z%GSin2 (ﬁﬂ>,
T 2

B, = % (1-0)sin (BAx)
23
—8g(1—9)sin(/3Ax)sin2<&> ()
v 2 )’

B, = %6 sin (BAX)

—S%EGSm(ﬁAx)ﬁn2<E§f>.

Canceling the exponential term, we have £"*' = p&”, where
1-A,-iB,

= 24
1+A,+1iB, @4

P

is the amplification factor of the method. If the method is to
be stable, the stability requirement |p| < 1 should be satisfied.
Now we consider the following cases.

Crank-Nicolson Type Scheme. When 0 = 1/2, the amplifica-
tion factor is simplified to
_1-A-iB

=" 25
1+A+iB 25)

P

where

A= %Sinz (&)
T 2
(26)

_ Da Dr .2 BAx
B= or i (BAx) - 4? sin (BAx) sin (T)

From (25) we get |p|> = pp < 1; hence the proposed method
(10) is unconditionally stable for 6 = 1/2.

The Fully Implicit Scheme. When 6 = 1, the amplification
factor is simplified to
1

:—, 27
1+A+iB @7

P

where

A= Z%Sinz (&)
T 2
(28)

B::%?sumﬁAx)—sggshmﬁAx)gn2<E§f>.

From (27) we get |p|2 = pp < 1; hence the proposed method
(10) is unconditionally stable for 6 = 1.

The Explicit Scheme. When 0 = 0, the amplification factor is
simplified to

p=1-A-iB, (29)
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where

A= 2%sin2 (ﬂﬁ)
T 2
(30)

B= % sin (BAx) — 8% sin (BAx) sin” (@)

It is well known that the explicit methods are conditionally
stable. Numerical experiments show that the amplification
factor |p| < 1 when ®/T < 0.03 (or At/Ax < 0.1) for the
parameters g = 0.3 and r = —0.5.

Now, we will discuss the local truncation error of the
nonstandard scheme (10). In theory, we can approximate the
original problem as accurately as we wish by making the time
step At and Ax small enough. It is said in this case that the
approximation is consistent. The local truncation error and
the stability play important roles in the convergence of the
numerical method. In a convergent method, the order of the
error is determined by the order of the local truncation error.
The local truncation error T]’.‘ of the nonstandard scheme (10)

is defined by
Tj = (0}~ (xt2))
+q (u;'u;'+1axu7 -u (xj, tn)z u, (xj, tn)) (31)

+7 (axxxu;? — Uy (xj, tn)) ,

where
Wty
Btu;l = > L,
, 0 (u;‘” - u;’fll) +(1-6) (u;‘ - u;.’_l)
axu. = ,
: g (32)
n+1 n+1 n+1 n+1
; G(uj+2—2uj+1+2uj_1—uj_2)
axxxuj = \{,
N (1-96) (u;‘+2 -, 20 - u;‘fz)

v

and /] is the approximate solution for the MKDV equation
(1) obtained from the nonstandard scheme (10) and u(x irtn)
is the exact solution at the mesh point (jAx, nAt). For 0 = 1,
the principal part of the local truncation error is

. (At A#? AP
T] = (6 — l)ut + %utt + GT()uttt
Ax 2 sz 2
+ (T - l>qu U, — Equ Uy
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AXPAt AxA
T W e t o Y

AxX*At
2T

AxAt
+
T

quiy, — qUl sy

. AxAL? AX> At

T quu Uy + Tquutuxxx

AxAP

AxXPA
- qUULU 4y

quUU s +

AxAt? Ax*At?
+ Tquuttux - Tquuttuxx
Ax> AL

12T

AxAP

T quuy Uy +

2 qUUyUxx

(33)

It is clear that (®,T,¥) — (Af, Ax,2Ax°) as (At, Ax) —
(0,0). Thus, we get the local truncation error TJ’.I = O(At+Ax).
Similarly, one can show that the local truncation error for
0 = 0 is first-order in time and space. The principal part of
the local truncation error for 0 = 1/2 is

Ty‘l:

( At ) A AP
J

6 -1 U, + ﬁuﬁ + Eum
2

Ax 2 Ax 2
+ (T - l)qu U, — Equ Uy

AxAt A,

T qu Uy + Equ Uyxx
AxXPAt AxA
- AT qu Uy + Tqu Ut ( )
34
AxAt? Ax*At?
+ T quu, Uy — Tquuxxutt
Ax*At? AxAt?
- 4T QuU Uy + — QUL Uy
AxAt? 2Ax°
+ Tquuttuttx + T -1 TUysx
AX® AL Ax®
+ Truttxxx + ﬁruxxxxx'

It is clear that (O,T,¥) — (At,Ax,2Ax%) as (At,Ax) —
(0,0). Thus, we get the local truncation error T;‘ = O(Af +
Ax). We deduce that the nonstandard scheme (10) is consis-
tent since the local truncation T” tends to zero as At and Ax
tend to zero. The centerpiece for the theory of convergence
of linear difference approximations of time-dependent partial
differential equations is the Lax Equivalence Theorem [14].
Since the proposed scheme (10) is consistent and stable, it is
convergent according to the Lax theorem.

4. Numerical Results

In this section we present some numerical experiments to test
the accuracy and efficiency of the proposed NSFD scheme
(10) for the numerical solution of the MKdV equation (1) over
the solution domains x; < x < xzand 0 < ¢t < T. The
solution domain is divided into equal intervals with length
Ax = (xg—x)/M in the direction of the spatial variable x and
At = T/M in the direction of time ¢ such that x; = x; + jAx,
j=01,....],t, = nAt,and n = 0,1,..., M. The initial
condition u,(x) and boundary conditions are taken from the
exact solution (4)

uy (x) = \j% tanh (x), x € [x},xg] (35)

u(xp,t) = \]_7& tanh (x; +2rt), t>0 (36)

-6
u(xp,t) = \]_r tanh (xp +2rt), t>0, (37)
q
respectively, where r = —f3/2, 8, q € R. We use the following
error norms:

Loo = (1)2;‘25. |ue (]) — U (])l >

M (38)
L,= \jz [t () = ua ()],
=0

to assess the performance of the NSFD scheme. Here u, is the
exact solution obtained from (4) and u, is the approximate
solution obtained from the NSFD scheme (10).

Table 1 represents L, and L, errors of the NSFD scheme
(10) and the standard finite difference scheme (11) at different
times for the MKdV equation (1) with 6 = 1, = 0.001, and
q = 50 in the spatial domain —15 < x < 15 with Ax = 2.0
and At = 0.01. From the table we see that the NSFD scheme
(10) is more accurate than standard finite difference scheme
(11) in all cases. We obtained similar results for & = 0 and
0 = 1/2. The absolute error is defined by

Ju(x;0t,) = U5 (39)

for the standard scheme (11) and the nonstandard scheme
(10) are provided in Table 2 at various x and t values. From
the experiments it is readily seen that our method is more
accurate than the standard method.

Table 3 also measures the accuracy and the versatility of
the NSFD scheme (10) with @ = 1 by using the absolute
error at the mesh point (x;,#,). From the table we see that
the nonstandard scheme is very accurate and efficient. In
addition, we notice that increasing the value of the nonlinear
term g does not affect the accuracy for large spatial step sizes.
Similar results are obtained for 6 = 0 and 6 = 1/2.

It is well known that numerical instabilities occur in
many discrete models unless certain numerical conditions on
spatial and temporal step sizes are satisfied. For examples,
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TaBLE I: L, and L, errors for MKDV equation (1) with 6 = 1, g = 50, and 3 = 0.001, on —15 < x < 15 with At = 0.01 and Ax = 2.0. N:

nonstandard; S: standard.

T L, (N) L, () L, (N) L

2.0 6.261E - 6 1.466E — 5 8.007E - 6 1.560E — 5
4.0 1.251E-5 2912E -5 1.601E -5 3.104E -5
6.0 1.872E -5 4.339E -5 2.402E -5 4.630E -5
8.0 2492E -5 5.747E -5 3.202E -5 6.140E — 5
10.0 3.111E-5 7.137E -5 4.002E -5 7.632E -5

TABLE 2: Absolute errors for MKDV equation (1) with6 = 1,4 = 0.3,and § = 0.1 on —15 < x < 15 with At = 0.0l and A = x = 1.0. N:

nonstandard; S: standard.

X t N S
0.2 1.203E - 10 8.241E — 10
-10 0.5 2.897E - 10 2.251E - 09
0.8 4.466E — 10 3.949E — 09
0.2 1.983E — 02 1.448E — 02
0 0.5 4.953E - 02 3.636E — 02
0.8 7.915E — 02 5.833E — 02
0.2 3.298E - 10 6.636E — 10
10 0.5 9.267E — 10 1.969E — 09
0.8 1.668E — 09 3.761E — 09

TABLE 3: Nonlinear effect: absolute errors for @ = 1 and = 0.1 on -15 < x < 15 with Ax = 1.0 and T' = 1 with At = 0.01.

X t q=03 q =10 q =100
0.2 1.203E - 10 2.083E — 11 6.588E — 12
-10 0.5 2.897E — 10 5.018E — 11 1.587E — 11
0.8 4.466E — 10 7.734E — 11 2.446E — 11
0.2 1.983E - 02 3.434E - 03 1.086E - 03
0 0.5 4.953E - 02 8.579E — 03 2.713E - 03
0.8 7.915E — 02 1.371E - 02 4.335E - 03
0.2 3.298E - 10 5.713E — 11 1.807E - 11
10 0.5 9.267E — 10 1.605E - 10 5.075E — 11
0.8 1.668E — 09 2.889E — 10 9.136E — 11

forward and backward Euler and central difference for decay
equations produce numerical instability for large step sizes
[11]. Figure 1 compares the numerical solution of nonstandard
scheme (10) and the exact wave solution (4). This picture
represents the result of an integration with g = 0.3, # = 0.1,
and 6 = 1/2, over the spatial domain —-15 < x < 15 and
temporal interval 0 < ¢ < 1 with spatial step size Ax = 0.5
and temporal step size At = 0.001. From the figure we see
that nonstandard scheme well simulates the exact solution
without showing any numerical instabilities. Figures 2 and 3
represent the L, and L, errors and Figures 4 and 5 represent
the absolute errors for various spatial step sizes of the NSFD
scheme (10) and the standard finite difference scheme (11) for
the MKdV equation (1) with the same set of parameters of
Figure 1. From the figures it is obvious that the NSFD scheme
is better than the standard scheme in the numerical precision

for large spatial step size, but it is inferior for small spatial step
size. We obtained similar results for 6 = 0 and 0 = 1.

A final issue to consider is the effect of the third-order
dispersion coefficient » = —f3/2 in (1). We see that for various
values of 8, as shown in Table 4, dispersion-dominated
solution demonstrated that the error is increased at the place
where the shock wave occurs. Both Tables 3 and 4 show that
the errors are concentrated in the spatial region where there
are steep solutions.

5. Conclusion

It is well known that explicit finite difference models for solu-
tion of differential equation require restriction on step size to
prevent the numerical instabilities. For this reason, small step
sizes are used to ensure the numerical stability. This causes
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u(x,t)

u(x,t)

0 ~15 10

(®)

F1GURE 1: Surface for 8 = 1/2. Nonstandard (a). Exact (b).
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FIGURE 2: 0 = 1/2, L and L, errors for the NSFD scheme (10), and standard scheme (11): Ax = 2.
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FIGURE 3: 0 = 1/2, L, and L, errors for the NSFD scheme (10), and standard scheme (11): Ax = 0.5.



Error

Advances in Mathematical Physics

FIGURE 4: 6 = 1/2, absolute errors for the NSFD scheme (10) (a) and standard scheme (11) (b). At = 0.01,g = 0.3, 8 = 0.1, and Ax = 2.

Error

Error
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FIGURE 5: 0 = 1/2, absolute errors for the NSFD scheme (10) (a) and standard scheme (11) (b). At = 0.01,¢ = 0.3, $ = 0.1, and Ax = 0.5.

TaBLE 4: Dispersion effect: absolute errors for 6 = 1 and g = 0.3 on —15 < x < 15 with Ax = 1.0 and T = 1 with At = 0.01.

x t B =0.001 B=10 B =10
0.2 1.232E - 13 3.060E — 09 1.609E — 08

-10 0.5 3.079E — 13 5.364E — 09 4.417E - 09
0.8 4.925E - 13 6.117E — 09 1.305E - 09
0.2 1.982E - 05 0.619 9.496

0 0.5 4.957E - 05 1.448 9.609
0.8 7.931E - 05 2.080 9.310
0.2 3.047E - 13 2214E - 08 8.238E — 04

10 0.5 7.626E — 13 2.011E - 07 0.102E — 04
0.8 1.221E - 12 1.230E - 06 0.236E — 05

many grid points and hence round-off errors in numeri-
cal computations. Moreover the use of small step size is com-
putationally expensive. In this study a nonstandard finite
difference (NSFD) model is proposed for the numerical
solution of the modified Korteweg-de Vries (MKdV) equa-
tion based on kink soliton solution. Local truncation error

is discussed. Linear stability analysis is performed for the
linearized equation. The numerical results obtained by the
NSED scheme is compared to the exact solution and a stan-
dard finite difference scheme. Proposed scheme indicates that
NSED scheme shows better performance for large step sizes.
The effect of nonlinear term and the dispersive term is also
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studied numerically. The numerical results that have been
obtained in this paper exhibit that the coefficient of the non-
linear term does not change the numerical results much.
Tables and figures illustrate that the NSFD scheme can be a
robust tool for numerical solution of various nonlinear prob-
lems such as 2D-KdV.
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