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The category Rel whose objects are all pairs (U , r), where r is a relation on a universe U , 
and whose morphisms are relation-preserving mappings is a canonical example in category 
theory. One of the convenient categories for rough set systems on a single universe 
is Rel since the objects of Rel are approximation spaces. The morphisms of a ground 
category dfTex whose objects are textures can be characterized by definability. Therefore, 
we particularly investigate a textural counterpart of the category Rel denoted by diRel
of textural approximation spaces and direlation preserving difunctions. In this respect, 
we prove that diRel is a topological category over dfTex and Rel is a full subcategory 
of diRel. In view of the textural arguments, we show that the preimage of a definable 
subset of an approximation space with respect to a relation preserving function is also 
definable in the category Rere of reflexive relations. Furthermore, we denote the category 
of all information system homomorphisms and all information systems by IS and we show 
that the category ISO of all information system homomorphisms and all object-irreducible 
information systems where the attribute functions are surjective is embeddable into Rel.

© 2014 Elsevier Inc. All rights reserved.

0. Introduction

It is well-known that the category Rel whose objects are all pairs (U , r), where r is a relation on a universe U , and 
whose morphisms are relation-preserving mappings is a canonical example in category theory [1]. In rough set theory, 
the pair (U , r), as an object of Rel, is called an approximation space. Recently, Juan Lu et al. studied a different version 
of this category denoted by M-IndisSp whose objects are M-indiscernibility spaces and the morphisms M-equivalence 
relation-preserving mappings where M is a fixed index set for the families of equivalence relations on a given universe [26]. 
If M is countable, then M-indiscernibility spaces are multiple-source approximation systems defined by Khan and Banerjee 
in [23]. Essentially, if the index set M is a singleton, then M-IndisSp turns into a category of approximation spaces and 
equivalence relations which is a full subcategory of Rel. In fact, an M-indiscernibility space is a dynamic relational system 
defined by Pagliani in [27]. Some applications on dynamic relational systems can be found in [22,37,38]. Recently, there have 
been developments in the subject of textural rough sets [11–15]. A ground category in texture space theory is dfTex whose 
objects are textures and morphisms are difunctions. Difunctions can be characterized using the prime concept of definability 
of rough set theory. That is, for any two textures (U , U) and (V , V), a direlation (r, R) : (U , U) → (V , V) is a morphism in
dfTex if and only if every subset A ∈ U is (r, R)-definable [8]. In the context of rough sets, this result can be stated as a fact 
that a relation r : U → V is a function if and only if every subset of V is r-definable. Recall that the presections with respect 
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to direlations are natural generalizations of lower and upper approximations based on relations. Hence, from the textural 
point of view, one can observe that the lower and upper approximations of a set A can be given using the point-free 
formulations appr(A) = U \ r−1(V \ A) and appr(A) = r−1(A) for any subset A ⊆ V where r : U → V is a relation [15]. 
These arguments help us to focus our attention on a new category denoted by diRel of textural approximation spaces and 
direlation preserving difunctions. One of the important full subcategories of Rel is the category of sets and reflexive relations 
denoted by Rere [1]. A textural approach shows that the preimage of a definable subset of an approximation space with 
respect to a relation preserving function is also definable in the category Rere. On the other hand, invariance of upper 
and lower approximations under information system homomorphisms are studied in [36]. Here, we note that information 
systems and information system homomorphisms form a category denoted by IS. An object function of an information 
system homomorphism between information systems is a relation preserving function with respect to equivalence relations 
determined by the attribute sets. Hence, definable sets of information systems can be also considered using the object 
functions of information system homomorphisms.

Note that the category REL of sets and relations is subject to rough set models on two universes and it is isomorphic 
to the category R-APR of power sets and approximation operators [16,30]. Hence, the categories Rel and REL have different 
directions. Some works on categorical results in rough set theory can be found in [2,3,16–19,25,26]. For the basic categorical 
results and terminology, we refer to [1].

This paper is organized as follows. In Section 1, we recall the motivation, and necessary concepts and results related to 
textures from [6–9,15]. Section 2 is devoted to direlation preserving difunctions. Here, we show that textural approximation 
spaces and direlations preserving difunctions form a category denoted by diRel. We prove that Rel is isomorphic to a full 
subcategory of diRel. Further, we show that diRel is a topological category and hence, it has products and sums. In Section 3
we discuss textural definability and bicontinuity. In particular, we prove that under pre-images of relation preserving di-
functions, textural definability is preserved. Sections 4 and 5 are devoted to approximation spaces and information systems, 
respectively. First, we give some basic results related to definability and we discuss the category Rel and the category IS of 
information systems and information system homomorphisms.

1. Textures

Let U be a set. Then U ⊆P(U ) is called a texturing of U , and (U , U) is called a texture space, or simply a texture [6], if

(i) (U , ⊆) is a complete lattice containing U and ∅, which has the property that arbitrary meets coincide with intersections, 
and finite joins coincide with unions,

(ii) U is completely distributive, that is, for all index set I , and for all i ∈ I , if J i is an index set and if A j
i ∈ U , then we 

have ⋂
i∈I

∨
j∈ J i

A j
i =

∨
γ ∈∏

i J i

⋂
Ai

γ (i).

(iii) U separates the points of U , that is, given u1 �= u2 in U there exists A ∈ U such that u1 ∈ A, u2 /∈ A, or u2 ∈ A, u1 /∈ A.

A complementation on (U , U) is a mapping cU : U → U satisfying the conditions

∀A ∈ U, c2
U (A) = A,

∀A, B ∈ U, A ⊆ B ⇒ cU (B) ⊆ cU (A).

Then the triple (U , U , cU ) is said to be a complemented texture space.
In a texture (U , U), p-sets and q-sets are defined by

Pu =
⋂

{A ∈ U | u ∈ A} and Q u =
∨

{A ∈ U | u /∈ A},
respectively. The condition (ii), that is, the complete distributivity of (U , U) is equivalent to the following statement [10].

(ii)′ For A, B ∈ U , if A �⊆ B then there exists u ∈ U with A �⊆ Q u and Pu �⊆ B .

A nonempty set A ∈ U is a molecule if ∀B, C ∈ U , A ⊆ B ∪ C ⇒ A ⊆ B or A ⊆ C . Clearly, p-sets are molecules of a texture 
space. A texture space (U , U) is called simple if all molecules of the space are p-sets.

A trivial example of a texture is the pair (U , P(U )) where P(U ) is the power set of U . It is called a discrete texture. 
Clearly, (U , P(U )) is simple and for u ∈ U we have

Pu = {u} and Q u = U \ {u}
and cU :P(U ) →P(U ) is the ordinary complementation on (U , P(U )) defined by cU (A) = U \ A for all A ∈P(U ). However, 
the basic motivation of textures is in fact, the natural correspondence between the fuzzy lattices and simple textures [7]. 
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Let (L, ≤, ′) be a fuzzy lattice (Hutton algebra), that is, a complete, completely distributive lattice with an order reversing 
involution “′”. Recall that 0 �= m ∈ L is join-irreducible, if

∀a,b ∈ L, m ≤ a ∨ b ⇒ m ≤ a or m ≤ b.

Consider the sets

ML = {m | m is join-irreducible in L},

ML = {̂a | a ∈ L}, and

â = {m | m ∈ ML and m ≤ a}, for all a ∈ L.

Then the mapping ̂ : L → ML defined by ∀a ∈ L, a 
→ â is a lattice isomorphism and the triple (ML, ML, cML ) is a 
complemented simple texture space which is called a Hutton texture. Here the complementation cML :ML →ML is defined 
by

∀a ∈ L, cML ( â ) = â ′.
For L = [0, 1], we may also consider the Hutton texture. The family M = {(0, r] | r ∈ [0, 1]} is a texture on M = (0, 1] which 
is called the Hutton texture. Clearly, M is closed under arbitrary intersections. Then it is easy to see that it is a complete 
lattice with respect to set inclusion. Now let us take (0, r], (0, s] ∈ M where (0, r] �⊆ (0, s]. Then we have s < r. Choose a 
point t ∈ [0, 1] where s < t < r. Since we have Pt = Q t = (0, t], we may write that (0, r] �⊆ Q t and Pt �⊆ (0, s]. Further, M is 
simple and the complementation cM :M →M is defined by ∀r ∈ (0, 1], cM(0, r] = (0, 1 − r].

On the other hand, recall that a fuzzy subset α of U is a membership function α : U → [0, 1]. We denote the set of all 
fuzzy subsets of U by F(U ). It is well known that F(U ) is also a Hutton algebra with the pointwise ordering

∀u ∈ U , α ≤ β ⇐⇒ α(u) ≤ β(u)

and the order reversing involution α′(u) = 1 − α(u). Here the join and the meet of fuzzy sets are considered as

(α ∧ β)(u) = α(u) ∧ β(u) and (α ∨ β)(u) = α(u) ∨ β(u)

for all α, β ∈F(U ). Now consider the fuzzy points us of F(U ) defined by

us(z) =
{

s, if z = u

0, if z �= u

for all z ∈ U . Let us take the sets:

α̂ = {us | us ≤ α},
MF(U ) = {

α̂ | α ∈ F(U )
}
, and

MF(U ) = {
us | us is a fuzzy point in F(U )

}
.

Then under the lattice isomorphism ̂ : F(U ) → MF(U ) , the corresponding texture space will be (MF(U ), MF(U )). Every 
fuzzy point us can be regarded as an ordered pair (u, s) ∈ U × (0, 1] and then we may write that α̂ = {(u, s) | s ≤ α(u)}. 
Therefore, it can be shown that the texture (MF(U ), MF(U )) is isomorphic to the product texture(

U × M, P(U ) ⊗M, cU×M
)

of (U , P(U ), cU ) and (M, M, cM) while the complementation mapping is defined by

cU×M( α̂ ) = 1̂ − α

for all α ∈ F(U ) [7]. Meanwhile, we immediately have that ûs = {u} × (0, s] = P (u,s) . This means that the texture
(U × M, P(U ) ⊗M, cU×M) is an alternative point-based setting for the fuzzy lattice F(U ).

2. Direlations and rough set approximation operators

Direlations are morphisms between textures which are compatible with the structures of textures [8]. Let (U , U), (V , V) be 
texture spaces and let us consider the product texture P(U ) ⊗ V of the texture spaces (U , P(U )) and (V , V) and denote 
the p-sets and the q-sets of P(U ) ⊗ V by P (u,v) and Q (u,v) , respectively (for product textures, see [7]). Note that here we 
take the discrete texture P(U ) on U instead of the original texture U . Further, we have

P (u,v) = {u} × P v and Q (u,v) = ((
U \ {u}) × V

) ∪ (U × Q v).

However, the p-sets and q-sets are considered with respect to texture U in the following conditions. This kind of choice 
on textures not only gives a natural way for the construction of morphisms of textures, but also provides a reasonable 
generalization for the approximation operators in rough set theory.
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Now let us consider the following concepts.

(i) r ∈P(U ) ⊗ V is called a relation from (U , U) to (V , V) if it satisfies
R1 r � Q (u,v), Pu′ � Q u �⇒ r � Q (u′,v) .
R2 r � Q (u,v) �⇒ ∃u′ ∈ U such that Pu � Q u′ and r � Q (u′,v) .

(ii) R ∈P(U ) ⊗ V is called a corelation from (U , U) to (V , V) if it satisfies
CR1 P (u,v) � R, Pu � Q u′ �⇒ P (u′,v) � R .
CR2 P (u,v) � R �⇒ ∃u′ ∈ U such that Pu′ � Q u and P (u′,v) � R .

A pair (r, R), where r is a relation and R a corelation from (U , U) to (V , V) is called a direlation from (U , U) to (V , V). Note 
that if (r, R) is a direlation from the texture (U , P(U )) to (V , P(V )), then r and R are ordinary relations from U to V , that 
is, r, R ⊆ U × V since P(U ) ⊗P(V ) =P(U × V ).

The identity direlation (i, I) on (U , U) is defined by

i =
∨

{P (u,u) | u ∈ U } and I =
⋂{

Q (u,u) | u ∈ U �
}
,

where U � = {u | U �⊆ Q u}. Recall that if (r, R) is a direlation on (U , U), then r is reflexive if i ⊆ r and R is reflexive if R ⊆ I . 
Then we say that (r, R) is reflexive if r and R are reflexive.

Now let (r, R) be a direlation from (U , U) to (V , V) where (U , U) and (V , V) are any two texture spaces. Then the 
inverses of r and R are defined by

r← =
⋂

{Q (v,u) | r � Q (u,v)} and R← =
∨

{P (v,u) | P (u,v) � R},
respectively, where r← is a corelation and R← is a relation.

Further, the direlation (r, R)← = (R←, r←) from (V , V) to (U , U) is called the inverse of the direlation (r, R). Then (r, R)

is called symmetric if r = R← and R = r← .
The A-sections and the B-presections with respect to relation and corelation are given as

r→ A =
⋂

{Q v | ∀u, r � Q (u,v) ⇒ A ⊆ Q u}
R→ A =

∨
{P v | ∀u, P (u,v) � R ⇒ Pu ⊆ A}

r←B =
∨

{Pu | ∀v, r � Q (u,v) ⇒ P v ⊆ B}, and

R←B =
⋂

{Q u | ∀v, P (u,v) � R ⇒ B ⊆ Q v}
for all A ∈ U and B ∈ V , respectively.

Now let (U , r) be an approximation space, that is, let r ⊆ U × U . Recall that a generalized rough set based on r is given 
by (apr

r
A, aprr A) where

aprr A = {
x | ∀y ∈ U , (x, y) ∈ r �⇒ y ∈ A

}
, and

aprr A = {
x | ∃y ∈ U , (x, y) ∈ r and y ∈ A

}
for all A ⊆ U (see e.g. [31–33]). On the other hand, the pair (r, (U × U ) \ r) can be regarded as a complemented direlation 
on the discrete texture (U , P(U )) where R = U × U \ r. Conversely, if (r, R) is a complemented direlation on (U , P(U )), 
then r and R are ordinary relations on U where R = (U × U ) \ r. Therefore, using the facts

(1) r �⊆ Q (u,v) ⇐⇒ (u, v) ∈ r, and
(2) P (u,v) �⊆ R ⇐⇒ (u, v) /∈ R ,

we immediately conclude that

(r← A, R← A) = (aprr A, aprr A)

for every set A ∈P(U ). Moreover, we see that if r is an ordinary relation on U , that is, r ⊆ U × U , then

∀X ⊆ U , aprr X = U \ r−1(U \ X) and aprr X = r−1(X).

Therefore, a quadruple (U , U , r, R) where (r, R) is any direlation on a texture (U , U) can be regarded as a natural general-
ization of an approximation space in rough set theory.

Now we may recall the composition of direlations.
Let (U , U), (V , V), (W , W) be texture spaces. For any relation p from (U , U) to (V , V) and for any relation q from (V , V)

to (W , W) their composition q ◦ p from (U , U) to (W , W) is defined by
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q ◦ p =
∨

{P (u,w) | ∃ v ∈ V with p � Q (u,v) and q � Q (v,w)}
and any corelation P from (U , U) to (V , V) and for any corelation Q from (U , U) to (V , V) their composition Q ◦ P from 
(U , U) to (W , W) defined by

Q ◦ P =
⋂

{Q (u,w) | ∃ v ∈ V with P (u,v) � P and P (v,w) � Q }.
Finally, the composition of the direlations (p, P ), (q, Q ) is the direlation

(q, Q ) ◦ (p, P ) = (q ◦ p, Q ◦ P ).

Further, r is transitive if r ◦ r ⊆ r and R is transitive if R ⊆ R ◦ R . Then we say that (r, R) is transitive if r and R are transitive.
Now let cU and cV be the complementations on (U , U) and (V , V), respectively. The complement r′ of the relation r is 

the corelation

r′ =
⋂{

Q (u,v) | ∃w, z with r �⊆ Q (w,z), cU (Q u) �⊆ Q w and P z �⊆ cV (P v)
}
.

The complement R ′ of the corelation R is the relation

R ′ =
∨{

P (u,v) | ∃w, z with P (w,z) �⊆ R, P w �⊆ cU (Pu) and cV (Q v) �⊆ Q z
}
.

The complement (r, R)′ of the direlation (r, R) is the direlation (r, R)′ = (R ′, r′). A direlation (r, R) is called complemented if 
r = R ′ and R = r′ .

3. Direlation preserving difunctions

Difunctions are important tools for textures as morphisms of the category dfTex whose objects are textures [8]. A difunc-
tion (r, R) on a texture (U , U) is a direlation satisfying the following two conditions:

DF1 For u, v ∈ U , Pu � Q v �⇒ ∃ w ∈ U with r � Q (u,w) and P (v,w) � R .
DF2 For u, v ∈ U and w ∈ U , r � Q (w,u) and P (w,v) � R �⇒ P v � Q u .

It is remarkable to note that a direlation on a texture (U , U) is a difunction if and only if every set A ∈ U is (r, R)-definable 
[13].

Definition 3.1. (See [15].) Let (r, R) be a direlation on a texture (U , U). Then the quadruple (U , U , r, R) is called a textural 
approximation space.

Definition 3.2. Let (U , U , r, R), (V , V, h, H) be textural approximation spaces. Then a difunction ( f , F ) from (U , U , r, R) to 
(V , V, h, H) is called

(i) relation-preserving if

∀u, u′ ∈ U , r �⊆ Q (u,u′) �⇒ ∃v, v ′ ∈ V , f �⊆ Q (u,v), P (u′,v ′) �⊆ F and h �⊆ Q (v,v ′),

(ii) corelation-preserving if

∀u, u′ ∈ U , P (u,u′) �⊆ R �⇒ ∃v, v ′ ∈ V , f �⊆ Q (u′,v ′), P (u,v) �⊆ F and P (v,v ′) �⊆ H .

If ( f , F ) is a relation and corelation-preserving difunction, then we say that ( f , F ) is a direlation-preserving difunction.

Now let us give the following result:

Theorem 3.3. Let ( f , F ) : (U , U , r, R) → (V , V, h, H) and (g, G) : (V , V, h, H) → (W , W, k, K ) be any two direlation preserving 
difunctions. Then

(i) (g ◦ f , G ◦ F ) : (U , U , r, R) → (W , W, k, K ) is also a direlation preserving difunction.
(ii) The identity direlation

(iU , IU ) : (U ,U, r, R) → (U ,U, r, R)

is a direlation preserving difunction.
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Proof. (i) Let u, u′ ∈ U and r �⊆ Q (u,u′) . Then by the assumption there exist v, v ′ ∈ V such that f �⊆ Q (u,v), P (u′,v ′) �⊆
F and h �⊆ Q (v,v ′) . Since h �⊆ Q (v,v ′) , for some w, w ′ ∈ W , g �⊆ Q (v,w) , P (v ′,w ′) �⊆ G and k �⊆ Q (w,w ′) . Then clearly, we have

g ◦ f �⊆ Q (u,w), P (u′,w ′) �⊆ G ◦ F .

Since we also have k �⊆ Q (w,w ′) , (g ◦ f , G ◦ F ) a relation preserving difunction. Likewise, (g ◦ f , G ◦ F ) is a corelation 
preserving difunction.

(ii) Let u, u′ ∈ U and r �⊆ Q (u,u′) . By R1, we have u1 ∈ U such that Pu �⊆ Q u1 and r �⊆ Q (u1,u′) . Now let us choose 
u2, u3 ∈ U such that r �⊆ Q (u2,u3) and P (u2,u3) �⊆ Q (u1,u′) . We have u2 = u1 and Pu3 �⊆ Q u′ . By definition of identity difunction 
Pu �⊆ Q u1 and Pu3 �⊆ Q u′ implies that

iU �⊆ Q (u,u1) and P (u′,u3) �⊆ IU .

Since we also have r �⊆ Q (u1,u3) , the identity direlation (iU , IU ) is a relation preserving difunction. Similarly, it can be shown 
that (iU , IU ) is also a corelation preserving difunction and this completes the proof of (ii). �
Theorem 3.4. Textural approximation spaces and direlation preserving difunctions form a category denoted by diRel.

Let r be an ordinary relation on U , that is, r ⊆ U × U . It is known that reflexive approximation spaces and relation 
preserving functions determine a category denoted by Rere [1]. Here, we consider the textural version diRere of Rere as the 
category of reflexive textural approximation spaces and direlation-preserving difunctions.

If (U , r) is an approximation space, then (U , P(U ), r, r′) is a textural approximation space where r′ is the set theoretical 
complement of r, that is, (U × U ) \ r = r′ . Further, if f : (U , r) → (V , h) is a relation preserving function, then(

f , f ′) : (U ,P(U ), r, r′) → (
V ,P(V ),h,h′)

is a direlation preserving difunction. Indeed, since (r, r′) is a complemented direlation on (U , P(U )), we have the following 
facts:

r �⊆ Q (u,v) ⇐⇒ (u, v) ∈ r,

P (u,v) �⊆ r′ ⇐⇒ (u, v) /∈ r′.
Now let r �⊆ Q (u,u′) . Then (u, u′) ∈ r and since f is a relation preserving function, ( f (u), f (u′)) ∈ h. Let f (u) = v and 
f (u′) = v ′ . This means that (u, v) ∈ f and (u′, v ′) ∈ f , that is, (u′, v ′) /∈ (U × V ) \ f = f ′ . Therefore, f �⊆ Q (u,v) and 
P (u′,v ′) �⊆ f ′ . Further, we have h �⊆ Q (v,v ′) and hence, ( f , f ′) is a relation preserving difunction. Similarly, one can be shown
that ( f , f ′) is a corelation preserving difunction.

Now we may claim:

Theorem 3.5. The mapping T: Rel → diRel defined by

T
(
(U , r)

) = (
U ,P(U ), r, r′) and T( f ) = (

f , f ′)
for all (U , r) ∈ ob(Rel) and f ∈ hom(Rel) is a functor and full embedding.

Proof. Let (U , r), (V , h) and (W , k) be approximation spaces, f : (U , r) → (V , h) and g : (V , h) → (W , k) be mor-
phisms in Rel. Let us consider the difunctions ( f , f ′) : (U , P(U ), r, r′) → (V , P(V ), h, h′), and (g, g′) : (V , P(V ), h, h′) →
(W , P(W ), k, k′). By Lemma 3.1.(8) in [8], for the corelations f ′ and g′ , we have

f ′ ◦ g′ = ((
f ′)′ ◦ (

g′)′)′ = ( f ◦ g)′.
Therefore, by definition of T and the composition of direlations, we also have

T( f ◦ g) = (
f ◦ g, ( f ◦ g)′

) = (
f ◦ g, f ′ ◦ g′) = (

f , f ′) ◦ (
g, g′) = T( f ) ◦T(g)

and

T(Δ) = T
({

(u, u) | u ∈ U
}) = (

Δ,Δ′) = (
Δ,(U × U ) \ Δ

)
where Δ and (Δ, Δ′) are the identity function and identity difunction for U and the texture (U , P(U )), respectively. Hence, 
T is indeed a functor. Further, T is injective on objects and it is faithful, that is, the home-set restriction T : homRel(U , V ) →
homdiRel(T(U ), T(V )) is injective. Indeed, for the morphisms f , g : (U , r) → (V , h) where f �= g , we have ( f , f ′) �= (g, g′). 
It is also surjective. Since T(U ) and T(V ) are discrete textures, it is easy to see that if ( f , F ) is a morphism from T(U ) to 
T(V ), then F = f ′ . Therefore, T( f ) = ( f , F ) where f : (U , r) → (V , h) is a morphism in Rel. �

Clearly, if (U , r) is a reflexive approximation space, then (U , P(U ), r, r′) is a reflexive textural approximation space. In 
view of Theorem 3.5, it is easy to see that Rere is also a full subcategory of diRere.
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Theorem 3.6. Let (U , U) be a texture space, {(V j, V j, h j, H j) | j ∈ J } be a family of textural approximation spaces, and {( f j, F j) |
j ∈ J } be a collection of difunctions from (U , U) to (V j, V j). Then there exists a unique direlation (r, R) for which for all j ∈ J , ( f j, F j)

is a diRel-morphism from (U , U , r, R) to (V j, V j, h j, H j) where

r =
∨{

P (u,u′) | ∃v, v ′ ∈ V j, f j �⊆ Q (u,v), P (u′,v ′) �⊆ F j and h j �⊆ Q (v,v ′), ∀ j ∈ J
}

and

R =
⋂{

Q (u,u′) | ∃v, v ′ ∈ V j, f j �⊆ Q (u′,v ′), P (u,v) �⊆ F j and P (v,v ′) �⊆ H j, ∀ j ∈ J
}
.

Proof. Let us show that (r, R) is a direlation on (U , U).
(R1) Let r �⊆ Q (u1,u2) and Pu3 �⊆ Q u1 . We show that r �⊆ Q (u3,u2) . By definition of r there exist v, v ′ ∈ V such that for 

some u′ ∈ U we have

Pu′ �⊆ Q u2 , f j �⊆ Q (u,v), P (u′,v ′) �⊆ F j and h j �⊆ Q (v,v ′).

Since f j is also a relation, f j �⊆ Q (u1,v) and Pu3 �⊆ Q u1 implies that f j �⊆ Q (u3,v) . Let us choose a point u4 ∈ such that 
Pu′ �⊆ Q u4 and Pu4 �⊆ Q u2 . Now F j is a corelation and so P (u′,v ′) �⊆ F j, Pu′ �⊆ Q u4 gives that P (u′,v ′) �⊆ F j . Then by definition 
of r, we may write P (u3,u4) ⊆ r. However, p(u3,u4) �⊆ Q (u3,u4) and hence we conclude that r �⊆ Q (u3,u2) .

(R2) Let r �⊆ Q (u1,u2) . Then for some u, u′ ∈ U , we have

u = u1, Pu′ �⊆ Q u2 , f j �⊆ Q (u1,v), P (u′,v ′) �⊆ F j and h j �⊆ Q (v,v ′).

Since f j is also a relation, for some u3 ∈ U , we have Pu1 �⊆ Q u3 and f j �⊆ Q (u3,v) . Now let us choose a point u4 ∈ U such 
that Pu′ �⊆ Q u4 and Pu4 �⊆ Q u2 . Since F j is a corelation, Pu′ �⊆ Q u4 and P (u′,v ′) �⊆ F j implies that P (u4,v ′) �⊆ F j . As a result, 
f j �⊆ Q (u3,v) and P (u4,v ′) �⊆ F j gives that P (u3,u4) ⊆ r. Clearly, we have P (u3,u4) �⊆ Q (u3,u2) , and so we find r �⊆ Q (u3,u2) . Since 
Pu1 �⊆ Q u3 , the proof of R1 is complete.

The proof of CR1 and CR2 is omitted. Clearly, ( f j, F j) is a diRel-morphism from (U , U , r, R) to (V j, V j, h j, H j). Indeed, if 
for all u, u′ ∈ U , r �⊆ Q (u,u′) , then by definition of r, there exist v, v ′ ∈ V such that f �⊆ Q (u1,v), P (u′

1,v ′) �⊆ F and h �⊆ Q (v,v ′)
where P (u1,u′

1) �⊆ Q (u,u′) . However, we have u1 = u and Pu′
1

�⊆ Q u′ and this gives that f �⊆ Q (u,v), P (u′,v ′) �⊆ F . Therefore, 
( f j, F j) is a relation preserving difunction. Likewise, ( f j, F j) is a corelation preserving difunction.

Now we show that (r, R) is a unique direlation satisfying the conditions of theorem. Suppose that (e, E) is another dire-
lation on (U , U) satisfying the condition. Let us take (W , W, k, K ) = (U , U , e, E). Since (iU , IU ) : (U , U , e, E) → (U , U , e, E)

is a direlation preserving difunction, ( f j ◦ iU , F j ◦ IU ) = ( f j, F j) is a direlation preserving mapping from (U , U , e, E) to 
(V j, V j, h j, H j). Then we have e ⊆ r and R ⊆ E . Indeed, let e �⊆ Q (u,u′) . Choose u′′ ∈ U such that e �⊆ Q (u,u′′) and Pu′′ �⊆ Q u′ . 
Since ( f j, F j) is relation preserving difunction, for some v, v ′ ∈ U , we may write

f �⊆ Q (u,v), P (u′′,v ′) �⊆ F and h �⊆ Q (v,v ′)

By definition of r, we have P (u,u′′) ⊆ r. However, P (u,u′′) �⊆ Q (u,u′) and this implies that r �⊆ Q (u,u′) and so we obtain e ⊆ r. 
Using a similar argument, it is easy to see that R ⊆ E . For the reverse inclusions, let (W , W, k, K ) = (U , U , r, R) and take 
the identity direlation (iU , IU ) : (U , U , r, R) → (U , U , e, E). Since (U , U , e, E) satisfies the condition, ( f j, F j) : (U , U , r, R) →
(V j, V j, h j, H j) is a direlation preserving difunction. Then using a similar argument as above we may easily see that r ⊆ e
and E ⊆ R . �
Theorem 3.7. Let (W , W, k, K ) be a textural approximation space and (g, G) : (W , W) −→ (U , U) be any difunction. Then 
(g, G) : (W , W, k, K ) −→ (U , U , r, R) is a diRel-morphism if and only if ( f j ◦ g, F j ◦ G) : (W , W, k, K ) −→ (V j, V j, h j, H j) is 
a diRel-morphism.

Proof. Suppose that (g, G) : (W , W, k, K ) −→ (U , U , r, R) is a diRel-morphism. Let k �⊆ Q (w,w ′) . By the assumption, for 
some u, u′ ∈ U , we have g �⊆ Q (w,u), P (w ′,u′) �⊆ G and r �⊆ Q (u,u′) . By definition of r, for some v, v ′ ∈ V we have that 
f j �⊆ Q (u,v), P (u′,v ′) �⊆ F j and h j �⊆ Q (v1,v2) . Finally, we obtain

f j ◦ g �⊆ Q (w,v), P (w ′,v ′) �⊆ F j ◦ G and h j �⊆ Q (v,v ′),

that is, ( f j ◦ g, F j ◦ G) is a relation preserving difunction. Dually, we may show that ( f j ◦ g, F j ◦ G) is a corelation preserving 
difunction and so ( f j ◦ g, F j ◦ G) is a diRel-morphism.

Now let ( f j ◦ g, F j ◦ G) be a diRel-morphism. Let k �⊆ Q (w,w ′) where w, w ′ ∈ W . By the assumption for some v, v ′ ∈ V j , 
we have

f j ◦ g �⊆ Q (w,v), P (w ′,v ′) �⊆ F j ◦ G and h j �⊆ Q (v,v ′).
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Then for some u, u′ ∈ U , we may write g �⊆ Q (w,u) , f j �⊆ Q (u,v) , P (w ′,u′) �⊆ G and P (u′,v ′) �⊆ F j . Now f j �⊆ Q (u,v), P (u′,v ′) �⊆ F j

and h j �⊆ Q (v,v ′) gives that r �⊆ Q (u,u′) . Finally,

r �⊆ Q (u,u′), g �⊆ Q (w,u), and P (w ′,v ′) �⊆ G

implies that (g, G) is a relation preserving difunction. Similarly, one can show that (g, G) is a corelation preserving difunc-
tion. �

Let us consider the forgetful functor U : diRel → dfTex.

Theorem 3.8. The source (( f j, F j) : (U , U , r, R) → (V j, V j, h j, H j)) j∈ J in diRel is U-initial if and only if (r, R) is unique direlation 
on (U , U) such that ( f j, F j), j ∈ J are direlation preserving difunctions.

Proof. �⇒: Assume that (r, R) is not unique and let us consider a source (( f j, F j) : (U , U , e, E) → (V j, V j, h j, H j)) j∈ J in
diRel with (r, R) �= (e, E). Let (iU , IU ) : (U , U) → (U , U) be the identity morphism in dfTex. Clearly, the diagram

(U ,U) (U ,U)

(V j,V j)

(iU , IU )

( f j , F j)
( f j , F j)

is commutative in dfTex, that is, ( f j, F j) = ( f j, F j) ◦ (iU , IU ). Since the source (( f j, F j) : (U , U , r, R) → (V j, V j, h j, H j)) j∈ J
in diRel is U-initial, the diagram

(U ,U, e, E) (U ,U, r, R)

(V j,V j,h j, H j)

(iU , IU )

( f j , F j)
( f j , F j)

is also commutative in diRel. Hence, by Theorem 7.5, (iU , IU ) : (U , U , e, E) → (U , U , r, R) is also a morphism in diRel. Now 
it is easy to see that e ⊆ r and R ⊆ E . To show this, let e �⊆ Q (u,u′) . Since (iU , IU ) is a relation preserving difunction, we 
have

iU �⊆ Q (u,u1), P (u′,u2) �⊆ IU and r �⊆ Q (u1,u2)

for some u1, u2 ∈ U . From the first two statements, we find Pu �⊆ Q u1 and Pu2 �⊆ Q u′ , respectively. By R1, we have r �⊆
Q (u,u2) and finally, we obtain r �⊆ Q (u,u′) and this gives us that e ⊆ r. The second and reverse inclusions are similar. Hence, 
we have the equalities e = r and E = R .

⇐�: Suppose that (r, R) is unique direlation on (U , U) such that ( f j, F j), j ∈ J are direlation preserving mappings. 
Now let us consider the following diagrams for the source ((g j, G j) : (W , W, k, K ) → (V j, V j, h j, H j)) j∈ J and the morphism 
(g j, G j) : (W , W) → (V j, V j) in diRel and dfTex, respectively.

(W ,W,k, K ) (U ,U, r, R)

(V j,V j,h j, H j)

(iU , IU )

(g j , G j)
( f j , F j)

(W ,W) (U ,U)

(V j,V j)

(iU , IU )

(g j , G j)
( f j , F j)

Suppose that the right hand diagram is commutative in dfTex. Then we have

( f j, F j) ◦ (iU , IU ) = (g j, G j).

By the assumption (g j, G j) is a morphism in diRel and hence, by Theorem 3.7, (iU , IU ) is also a morphism in diRel. There-
fore, the left hand diagram is also commutative in diRel. As a result the source (( f j, F j) : (U , U , r, R) → (V j, V j, h j, H j)) j∈ J
is U-initial. �
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Theorem 3.9. The forgetful functor U: diRel→ dfTex is topological, that is, the category diRel is a topological category over dfTex.

Proof. Let (( f j, F j) : (U , U) → (V j, V j) j∈ J ) be a source in dfTex where U(V j, V j, h j, H j) = (V j, V j) for j ∈ J . Consider the 
direlation (r, R) on (U , U) given in Theorem 3.6. By Theorem 3.8, the source (( f j, F j) : (U , U , r, R) → (V j, V j, h j, H j)) j∈ J is 
a unique U-initial source and hence, diRel is a topological category over dfTex. �

Theorem 3.6 and Theorem 3.7 are also true for equivalence relations:

Lemma 3.10. Let (r, R) and (h j, H j) be the direlations given in Theorem 3.6. If (h j, H j) is an equivalence direlation, then (r, R) is also 
an equivalence direlation.

Proof. We give the proof leaving the dual parts to the interested reader. First let us show that (r, R) is reflexive. Suppose 
that iU �⊆ r. Let us choose u, u′ ∈ U such that i �⊆ Q (u,u′) and P (u,u′) �⊆ r. By definition of identity relation iU , we have 
Pu �⊆ Q u′ . Then by DF1, there exists v ′ ∈ V such that f �⊆ Q (u,v) and P (u′,v) �⊆ F . Take v1 ∈ V such that f �⊆ Q (u,v1) and 
P v1 �⊆ Q v . By definition of the identity relation iV , we have iV �⊆ Q (v1,v) . By the assumption iV ⊆ h and so h �⊆ Q (v1,v) . 
Finally, by definition of r we obtain P (u,u′) ⊆ r which is a contradiction.

Suppose that (h j, H j) symmetric, that is H j = h←
j and let r �⊆ R← . Let us choose u, u′ ∈ U such that r �⊆ Q (u,u′) and 

P (u,u′) �⊆ R← . By definition of (r, R), we may write

f j �⊆ Q (u,v), P (u′,v ′) �⊆ F j and h j �⊆ Q (v,v ′),

and for all v2, v3 ∈ V ,

f j �⊆ Q (u,v3), P (u′,v2) �⊆ F j �⇒ P (v2,v3) ⊆ H j .

Then we have P (v ′,v) ⊆ H j = h←
j and by Lemma 2.4 in [8], h ⊆ Q (v,v ′) is a contradiction.

Suppose that (h j, H j) is transitive. Then h j ◦ h j ⊆ h j . and H j ⊆ H j ◦ H j . Suppose that r ◦ r �⊆ r. Let us choose u, u′ ∈ U
such that r ◦ r �⊆ Q (u,u′) and P (u,u′) �⊆ r. By definition of composition, we have r �⊆ Q (u,u2) and r �⊆ Q (u2,u′) for some u2 ∈ U . 
By definition of r, for some v, v1, v2, v3 ∈ V we also have

f j �⊆ Q (u,v), P (u2,v1) �⊆ F j h j �⊆ Q (v,v1) and f j �⊆ Q (u2,v2), P (u′,v3) �⊆ F j, h j �⊆ Q (v2,v3).

Since P (u,u′) �⊆ r, f j �⊆ Q (u,v) and P (u′,v3) �⊆ F j implies that h j ⊆ Q (v3) . By DF1, P (u2,v1) �⊆ F j and f j �⊆ Q (u2,v2) gives that 
P v1 �⊆ Q v2 . Therefore, h j �⊆ Q (v,v1) implies that h j �⊆ Q (v,v2) . Now choose v4 ∈ V such that h j �⊆ Q (v2,v4) and P v4 �⊆ Q v3 . 
Then we find P (v,v4) ⊆ h j ◦ h j . Now we conclude that h j ◦ h j �⊆ Q (v,v3) , that is, h j �⊆ Q (v,v3) , which is a contradiction. �
Corollary 3.11. The categories diRere and diProst are topological categories over dfTex with respect to forgetful functor U.

By Example 11.4(1) and Proposition 13.15 in [1], we have the following.

Theorem 3.12. The source (( f j, F j) : (U , U , r, R) → (V j, V j, h j, H j)) j∈ J is U-initial and (( f j, F j) : (U , U) → (V j, V j)) j∈ J is a 
product of U ◦D : J → dfTex if and only if ( f j, F j) : (U , U , r, R) → (V j, V j, h j, H j) is a product of the functor D : J → diRel where 
J is regarded as a discrete category.

The following is a result of Theorem 3.8 and Theorem 3.12.

Proposition 3.13. The source ( f j, F j) : (U , U , r, R) → (V j, V j, h j, H j) is a product of the family (V j, V j, h j, H j) j∈ J in diRel if and 
only if (r, R) is given as in Theorem 3.6 and ( f j, F j) : (U , U) → (V j, V j) is a product of the family (V j, V j) j∈ J in dfTex.

The following result gives the set-indexed product in diRel.

Corollary 3.14. Let (V , V) be the product of textures (V j, V j) j∈ J . Then the source ((π j, Π j) : (V , V, r, R) → (V j, V j, h j, H j)) j∈ J is 
a product in diRel where v = (v j) j∈ J , v ′ = (v ′

j) j∈ J ∈ ∏
i∈ J V j ,

r =
∨

{P (v,v ′) | h j �⊆ Q (v j ,v ′
j)
,∀ j ∈ J } and R =

⋂
{Q (v,v ′) | P (v j ,v ′

j)
�⊆ H j,∀ j ∈ J }.

Proof. By Theorem 3.4 in [8], ((π j, Π j) : (V , V) → (V j, V j) j∈ J ) j∈ J is a product in dfTex. By Theorem 3.6, for (r, R), we have

r =
∨

{P (v,v ′) | ∃a j,b j ∈ V j,π j �⊆ Q (v,a ), P (v ′,b ) �⊆ Π j and h j �⊆ Q (a ,b ),∀ j ∈ J }
j j j j
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and

R =
⋂

{Q (v,v ′) | ∃a j,b j ∈ V j, π j �⊆ Q (v ′,b j), P (v,a j) �⊆ Π j and P (a j ,b j) �⊆ H j,∀ j ∈ J }.
Therefore, the equivalences

P v j �⊆ Q a j ⇐⇒ π j �⊆ Q (v,a j) and Pb j �⊆ Q v ′
j

⇐⇒ P (v ′,b j) �⊆ Π j

implies that

r =
∨

{P (v,v ′) | ∃a j,b j ∈ V j, P v j �⊆ Q a j , Pb j �⊆ Q v ′
j

and h j �⊆ Q (a j ,b j),∀ j ∈ J }
and

R =
⋂

{Q (v,v ′) | ∃a j,b j ∈ V j, Pa j �⊆ Q v j , P v ′
j
�⊆ Q b j and P (a j ,b j) �⊆ H j,∀ j ∈ J }.

We have the following equivalences:

(i) ∃a j, b j ∈ V j, P v j �⊆ Q a j , Pb j �⊆ Q v ′
j

and h j �⊆ Q (a j ,b j) ⇐⇒ h j �⊆ Q (v j ,v ′
j)

(ii) ∃a j, b j ∈ V j, Pa j �⊆ Q v j , P v ′
j
�⊆ Q b j and P (a j ,b j) �⊆ H j ⇐⇒ P (v j ,v ′

j)
�⊆ H j .

We prove (i) leaving the dual proof of (ii). By R1, if P v j �⊆ Q a j and h j �⊆ Q (a j ,b j) , then we have h j �⊆ Q (v j ,b j) . If Pb j �⊆ Q v ′
j
, 

then it is easy to see that h j �⊆ Q (v j ,v ′
j)

. Conversely, suppose that h j �⊆ Q (v j ,v ′
j)

. If we apply the condition R2, we have 

P v j �⊆ Q a j and h j �⊆ Q (a j ,v ′
j)

for some a j ∈ V j . Further, we may find some a′
j ∈ V j such that h j �⊆ Q (a j ,v ′

j)
and Pb j �⊆ Q v ′

j
. 

Hence, we obtain r = ∨{P (v,v ′) | h j �⊆ Q (v j ,v ′
j)
, ∀ j ∈ J }. Similarly, we have R = ⋂{Q (v,v ′) | P (v j ,v ′

j)
�⊆ H j, ∀ j ∈ J }. �

Corollary 3.15. The categories diRel, diRere and diProst have products.

Note that the product in diRel is a natural generalization of product in Rel. Indeed, if all textures are discrete in Corol-
lary 3.14, then for v = (v j) j∈ J and v ′ = (v ′

j) j∈ J ∈ ∏
i∈ J V j , we have

r =
∨

{P (v,v ′) | h j �⊆ Q (v j ,v ′
j)
,∀ j ∈ J } = {(

v, v ′) | h j(v j) = v ′
j,∀ j ∈ J

}
.

Since a topological functor is self-dual, the categories diRel, diRere and diProst have also co-products. Let us determine 
the co-products in diRel. Let (V , V) be a texture space, {(V j, V j, h j, H j) | j ∈ J } be a family of textural approximation spaces, 
and {( f j, F j) | j ∈ J } be a collection of difunctions from (V j, V j) to (V , V). Then we may prove that there exists a unique 
direlation (h, H) on (V , V) such that for all j ∈ J , ( f j, F j) is a diRel-morphism from (V j, V j, h j, H j) to (V , V, h, H) where

h =
∨

{P (v,v ′) | ∃ j ∈ J ,∃a,b ∈ V j, f j �⊆ Q (b,v ′), P (a,v) �⊆ F j and h j �⊆ Q (a,b)}
and

H =
⋂

{Q (v,v ′) | ∃ j ∈ J ,∃a,b ∈ U j, f j �⊆ Q (a,v), P (b,v ′) �⊆ F j and P (a,b) �⊆ H j}.
Now we may determine the set-indexed co-products (sums) in diRel with respect to injection difunctions. Let {(V j, V j) |
j ∈ J } be a family of textures with V j ∩ Vk = ∅ for j �= k. Recall that a pair (V , V) where

V =
⋃
j∈ J

V j and V = {A ⊆ V | A ∩ V j ∈ U j,∀ j ∈ J }

is called a disjoint sum of the textures (V j, V j), j ∈ J and the jth-injection difunction (e j, E j) : V j → V [9] is defined by

e j =
∨

{P (z, (z, j))| z ∈ V j}, E j =
⋂

{Q (z,(z, j))|z ∈ V j}.
It is easy to see that the sink(

(e j, E j) : (V j,V j,h j, H j)
)

j∈ J → (V ,V,h, H)

is a coproduct in diRel where

h =
∨

{P (v,v ′) | h j �⊆ Q (v,v ′),∀ j ∈ J } and H =
⋂

{Q (v,v ′) | P (v,v ′) �⊆ H j,∀ j ∈ J }.
For discrete textures, coproduct in diRel corresponds to coproduct in Rel.

h =
∨

{P (v,v ′) | h j �⊆ Q (v,v ′),∀ j ∈ J } = {(
v, v ′) ∣∣ h j(v) = v ′,∀ j ∈ J

}
.
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4. Definability and bicontinuity

Theorem 4.1. Let (U , U , r, R) and (V , V, h, H) be textural approximation spaces, and ( f , F ) be a difunction from (U , U , r, R) to 
(V , V, h, H). Then we have the following.

(i) ( f , F ) is a relation preserving difunction if and only if f ◦ r ⊆ h ◦ f .
(ii) ( f , F ) is a corelation preserving difunction if and only if H ◦ F ⊆ F ◦ R.

Proof. (i) ⇐�: Suppose that f ◦ r ⊆ h ◦ f and r �⊆ Q (u,u′) for some u, u′ ∈ U . Let us choose u1, u2 ∈ U such that r �⊆ Q (u1,u2)

and P (u1,u2) �⊆ Q (u,u′) . Clearly, we have r �⊆ Q (u,u2) and Pu2 �⊆ Q u′ . By DF1, we have

f �⊆ Q (u2,v) and P (u′,v) �⊆ F

for some v ∈ V . Choose a point v1 ∈ V such that f �⊆ Q (u2,v1) and P v1 �⊆ Q v . Then r �⊆ Q (u,u2) and f �⊆ Q (u2,v1) implies that 
P (u,v1) ⊆ f ◦ r and this gives f ◦ r �⊆ Q (u,v) . Now by the assumption, we have h ◦ f �⊆ Q (u,v) . By definition of composition, 
for some v ′ ∈ V we write f �⊆ Q (u,v ′) and h �⊆ Q (v ′,v) . Then v, v ′ ∈ V are the desired points for the theorem, that is, ( f , F )

is a relation preserving difunction.
�⇒: Let us show the inclusion f ◦ r ⊆ h ◦ f . Let f ◦ r �⊆ Q (u1,v1) . Then there exist u ∈ U and v ∈ V such that P (u,v) �⊆

Q (u1,v1) where

r �⊆ Q (u,u2) and f �⊆ Q (u2,v)

for some u2 ∈ U . Then r �⊆ Q (u1,u2) and f �⊆ Q (u2,v1) . By the assumption

f �⊆ Q (u1,v3), P (u2,v4) �⊆ F and h �⊆ Q (v3,v4)

for some v3, v4 ∈ V . By DF2, f �⊆ Q (u2,v1) and P (u2,v4) �⊆ F implies that P v4 �⊆ Q v1 . Then h �⊆ Q (v3,v1) . Let us choose a point 
v2 ∈ V such that h �⊆ Q (v3,v2) and P v2 �⊆ Q v1 . Clearly, we have P (u1,v2) ⊆ h ◦ f . Note that P (u1,v2) �⊆ Q (u1,v1) and we obtain 
h ◦ f �⊆ Q (u1,v1) .

(ii) It is left to the reader. �
Theorem 4.2. Let (U , U , r, R) and (V , V, h, H) be textural approximation spaces, and ( f , F ) be a direlation preserving difunction 
from (U , U , r, R) to (V , V, h, H). If B ∈ V is (h, H)-definable, then f ←B or F ←B is (r, R)-definable.

Proof. Let B ∈ V be (h, H)-definable, that is, h←B = H←B . Since ( f , F ) is a difunction, f ←h←B = F ←H←B and so
(h ◦ f )←B = (H ◦ F )←B . By Theorem 4.1(ii), we have f ◦ r ⊆ h ◦ f and H ◦ F ⊆ F ◦ R . By Lemma 2.4(3) in [8], we con-
clude that (h ◦ f )← ⊆ ( f ◦ r)← and (F ◦ R)← ⊆ (H ◦ F )← . Therefore, by Lemma 2.7 in [8], we find

(F ◦ R)←B ⊆ (H ◦ F )←B = (h ◦ f )←B ⊆ ( f ◦ r)←B,

that is, R← F ←B ⊆ r← f ←B . Since (r, R) is reflexive, we have already r← f ←B ⊆ R← F ←B and hence,

r← f ←B = R← F ←B.

As a result, f ←B (F ←B) is (r, R)-definable. �
Recall that [14] if (r, R) is a reflexive direlation on (U , U ), then (τ (r), κ(R)) is a ditopology on (U , U) where

τ (r) = {
A ∈ U | r← A = A

}
and κ(R) = {

A ∈ U | R← A = A
}
.

Theorem 4.3. Let (U , U , r, R) and (V , V, h, H) be textural approximation spaces where (r, R) and (h, H) are reflexive direlations on 
(U , U) and (V , V), respectively. Further, let ( f , F ) : (U , U , r, R) → (V , V, h, H) be a direlation preserving difunction. Then ( f , F ) :
(U , U , τ (r), κ(r)) → (V , V, τ (h), κ(h)) is bicontinuous.

Proof. Let B ∈ τ (h). Then B = h←B , and so f ←B = f ←h←B . Therefore,

f ←B = (h ◦ f )←B ⊆ ( f ◦ r)←B = r← f ←B.

Since r is reflexive, by Theorem 4.4(i) in [15], we also have r← f ←B ⊆ B . This gives that r← f ←B = B , that is f ←B ∈ τ (r). 
Hence ( f , F ) is continuous. The proof of cocontinuity of ( f , F ) is similar. �
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5. Definability and approximation spaces

Definability is one of the core concepts of rough set theory (see, [20,21,28,29,34,35]). Therefore, the connection between 
definable sets of approximation spaces may be highly important. To see this connection, let us consider first the following 
result given in [12] for U = V .

Theorem 5.1. Let r be a relation from U to V . Then the following conditions are equivalent.

(i) r is a function from U to V .
(ii) ∀Y ⊆ V , Y is definable.

(iii) ∀v ∈ V , {v} is definable.

Proof. (i) �⇒ (ii) Let r be a function from U to V and suppose that aprr Y �= aprr Y . Let u ∈ U \ r−1(V \ Y ) and u /∈ r−1(Y )

for some u ∈ U . Then we have

u /∈ r−1(Y ) ∪ r−1(V \ Y ) = r−1(V ∪ (V \ Y )
) = r−1(U ).

But this implies a contradiction, since r−1(V ) = U . Now let u /∈ U \ r−1(V \ B) and u ∈ r−1(Y ). Then u ∈ r−1(V \ Y ) and this 
implies that (u, v), (u, v ′) ∈ r for some v, v ′ ∈ V where v �= v ′ . Since r is a function, we also obtain a contradiction.

(ii) �⇒ (iii) Immediate.
(iii) �⇒ (i) Now suppose that for all v ∈ V , {v} is definable. If r is not a function, then we have two cases:

(a) For some u ∈ U and v, v ′ ∈ V we have (u, v), (u, v ′) ∈ r where v �= v ′ , or
(b) For some u ∈ U , u /∈ r−1(V ).

Consider the case (a). By the assumption, we have U \ r−1(V \ {v}) = r−1({v}). Since v ′ ∈ V \ {v}, u ∈ r−1(V \ {v}), that is, 
u /∈ U \ r−1(V \ {v}). But u ∈ r−1({v}) implies a contradiction.

Now take the case (b). Since {v} is definable, we have U \ r−1(V \ {v}) = r−1({v}). Further, by (b), u /∈ r−1({v}) and 
u /∈ r−1(V \ {v}) and so u ∈ U \ r−1(V \ {v}) is a contradiction. �
Theorem 5.2. Let (U , r) and (V , h) be approximation spaces and f : (U , r) → (V , h) be a function. Then f is relation preserving if 
and only if f ◦ r ⊆ h ◦ f .

Proof. �⇒: Suppose the contrary, that is, let f ◦ r �⊆ h ◦ f . Let us choose u ∈ U and v ∈ V such that (u, v) ∈ f ◦ r and 
(u, v) /∈ h ◦ f . Then we have

∀v ′ ∈ V ,
(

v ′, v
) ∈ h ⇒ (

u, v ′) /∈ f . (1)

By definition of composition, we have (u, u′) ∈ r and (u′, v) ∈ f for some u′ ∈ U . Since f is relation preserving mapping, 
we may write ( f (u), f (u′)) ∈ h. Let f (u) = v ′ where v ′ ∈ V . Since f (u′) = v , (v ′, v) ∈ h, and so by (1), (u, v ′) /∈ f , that is, 
f (u) �= v ′ is a contradiction.

⇐�: Let (u, u′) ∈ r. Since f is function from U to V , f (u′) = v for some v ∈ V , that is, (u′, v) ∈ f . By definition of 
composition of relations, we have (u, v) ∈ f ◦ r and so (u, v) ∈ h ◦ f . Therefore, (u, v ′) ∈ f and (v ′, v) ∈ h for some v ′ ∈ V . 
Hence, we obtain ( f (u), f (u′)) ∈ h. �

By Theorem 5.1, if f ⊆ U × V , then every subset of V is f -definable provided that f is a function. This result gives a 
connection between information systems for single universes, that is, inverse image of a definable set is also definable in 
the category Rere of reflexive relations:

Theorem 5.3. Let (U , r) and (V , h) be approximation spaces where r and h are reflexive relations on U and V , respectively. Further, 
let f : (U , r) → (V , h) be a relation preserving mapping. If Y ⊆ V is h-definable, then f −1(Y ) is r-definable.

Proof. Let Y ⊆ V be an h-definable set, that is aprhY = aprhY . Since f is a function from U to V , by Theorem 5.1, every 
subset of V is f -definable, that is

apr f aprhY = apr f aprhY .

Then by Theorem 6.2 in [15], we have

U \ f −1(V \ (
V \ h−1(V \ Y )

)) = f −1(h−1(Y )
)

�⇒ U \ f −1(h−1(V \ Y )
) = f −1(h−1(Y )

)
�⇒ U \ (h ◦ f )−1(V \ Y ) = (h ◦ f )−1(Y ).
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Further, by Theorem 5.2, we also have the inclusion ( f ◦ r)−1 ⊆ (h ◦ f )−1 and this implies that

( f ◦ r)−1(Y ) ⊆ (h ◦ f )−1(Y ) = U \ (h ◦ f )−1(V \ Y ) ⊆ U \ ( f ◦ r)−1(V \ Y )

= U \ r−1( f −1(V \ Y )
) = U \ r−1(U \ f −1(Y )

)
,

that is, r−1( f −1(Y )) ⊆ U \ r−1(U \ f −1(Y )) and so we obtain

aprr f −1(Y ) ⊆ aprr f −1(Y ).

Since r is reflexive, we conclude that

aprr f −1(Y ) = aprr f −1(Y ). �
Theorem 5.4. Let (U , r) and (V , h) be approximation spaces and let f : (U , r) → (V , h) be a relation preserving mapping. Then we 
have the following inclusions:

(i) ∀Y ⊆ V , f −1(aprh(Y )) ⊆ aprr( f −1(Y )).

(ii) ∀X ⊆ U , f (aprr(X)) ⊆ aprh( f (X)).

Proof. (i) Let Y ⊆ V . By Theorem 5.2, we have

f −1(aprh(Y )
) = f −1(V \ h−1(V \ Y )

) = U \ f −1(h−1(V \ Y )
)

= U \ (h ◦ f )−1(V \ Y ) ⊆ U \ ( f ◦ r)−1(V \ Y )

= U \ r−1( f −1(V \ Y )
) = U \ r−1(U \ f −1(Y )

)
= aprr

(
f −1(Y )

)
.

(ii) If X ⊆ U , then by Theorem 5.2, we obtain

f
(
aprr(X)

) = f
(
r−1(X)

) = (
f ◦ r−1)(X) ⊆ (

h−1 ◦ f
)
(X)

= h−1( f (X)
) = aprh

(
f (X)

)
. �

Recall that if r is a reflexive relation on a universe U , then by Proposition 2 in [24], the family

τr = {
X ⊆ U | aprr(X) = X

}
is a topology on U . Now we have the following:

Theorem 5.5. Let (U , r) and (V , h) be approximation spaces where r and h are reflexive relations on U and V , respectively. Further, 
let f : (U , r) → (V , h) be a relation preserving mapping. Then f : (U , τr) → (V , τh) is continuous.

Proof. Let Y ∈ τh . Then by the preceding theorem, we have

f −1(Y ) = f −1(aprh(Y )
) ⊆ aprr

(
f −1(Y )

)
.

Since r is reflexive, this gives that f −1(Y ) = aprr( f −1(Y )), that is, f −1(Y ) ∈ τr . �
6. Information systems

Recall that an information system is a quadruple S = (U , AT , V , f ) where U is a set of objects, AT is a set of attributes, 
V = ⋃

a∈AT Va is a set of values of attributes and Va is the domain of a where f : U × AT → V is a description function 
such that f (x, a) ∈ Va for every x ∈ U and a ∈ AT [4,5]. Take B ⊆ AT and x, y ∈ U . Then the equivalent relation

IND(B) = {
(x, y) | ∀a ∈ B, f (x,a) = f (y,a)

}
is called B-indiscernibility relation. Now let S = (U , AT , V , f ) and S = (U ′, AT ′, V ′, f ′) be two information systems, let hO
be a mapping of U into U ′ , let hA be a mapping of AT into AT ′ , and let hD be a mapping of V into V ′ . The triple 
h = (hO , hA, hD) is called a homomorphism of S into S ′ [4,5], if for all x ∈ U and a ∈ AT ,

hD
(

f (x,a)
) = f ′(hO (x),hA(a)

)
.

Clearly, if B ⊆ AT , then IND(B) = {(x, y) | ∀a ∈ B, f (x, a) = f (y, a)} is an equivalence relation on U . Now consider the 
approximation space (U , IND(B)) corresponding to the information system S = (U , AT , V , f ) for some B ⊆ AT .
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Table 1
Information systems S and S ′ .

a b

x1 1 2
x2 2 1
x3 2 1

a′ b′

x′
1 1 2

x′
2 2 1

x′
3 1 2

Table 2
hO and hA .

x1 x2 x3

x′
1 x′

3 x′
3

a b

a′ b′

Proposition 6.1. If h = (hO , hA, hD) is a homomorphism of S into S ′ , then for all B ⊆ AT ,

hO : (U , IND(B)
) → (

U ′, IND
(
hA(B)

))
is a relation preserving function.

Proof. Let (x, y) ∈ IND(B). Then for all a ∈ B , we have f (x, a) = f (y, a). Since hD is a function, we also have hD( f (x, a)) =
hD( f (y, a)). If we consider that h is a homomorphism of S into S ′ , then for all hA(a) ∈ hA(B), f ′(hO (x), hA(a)) =
f ′(hO (y), hA(a)) and so (hO (x), hO (y)) ∈ IND(hA(B)). �

In general, the converse of Proposition 6.1 is not true:

Example 6.2. Let S = (U , AT , V , f ) and S = (U ′, AT ′, V ′, f ′) be the information systems given as in Table 1. If the object and 
attribute function is given as in Table 2, then the triple h = (hO , hA, hD) is not an information system homomorphism since 
hD( f (x3, a)) = 2 and f ′(hO (x3), hA(a)) = f ′(x′

3, a
′) = 1. However, hO : (U , AT ) → (U ′, AT ′) is a relation preserving function. 

To see this, consider the relations IND(AT ) = {{x1}, {x2, x3}} and IND(AT ′) = {{x′
1, x

′
3}, {x′

2}} on U and U ′ , respectively. Clearly, 
(x2, x3) ∈ IND(AT ) and (hO (x2), hO (x3)) = (x′

3, x
′
3) ∈ AT ′ .

Corollary 6.3. Let h = (hO , hA, hD) be a homomorphism of S into S ′ , hA be surjective and Y ⊆ U ′ . If the set Y is IND(C)-definable in 
S ′ for some C ⊆ AT ′ , then h−1

O (Y ) is IND(h−1
A (C))-definable in S.

Proof. Immediate from Proposition 6.1 and Theorem 5.3. �
Now for an information system S = (U , AT , V , f ), let us consider the lower and upper approximation operators,

aprIND(B)(X) = B(X) and aprIND(B)(X) = B(X),

respectively, where B ⊆ AT and X ⊆ U .
The following result is already proved in [36].

Corollary 6.4. Let h = (hO , hA, hD) be a homomorphism of S into S ′ . Then we have the following:

(i) If B ⊆ AT and X ⊆ U , then hO (B(X)) ⊆ hA(B)(hO (X)).
(ii) If C ⊆ AT ′ and Y ⊆ U ′ , then h−1

O (C(Y )) ⊆ h−1
A (C)(h−1

O (Y )).

Proof. (i) By Proposition 6.1, hO : (U , IND(B)) → (U ′, IND(hA(B))) is a relation preserving function and then by Theo-
rem 5.4(ii), we obtain the desired inclusion.

(ii) By Proposition 6.1,

hO : (U , IND
(
h−1

A (C)
)) → (

U ′, IND
(
hA

(
h−1

A (C)
)))

is a relation preserving function. Since hA(h−1
A (C)) ⊆ C , the object function

hO : (U , IND
(
h−1

A (C)
)) → (

U ′, IND(C)
)

is also a relation preserving function. Then by Theorem 5.4(ii), we obtain the inclusion. �
Theorem 6.5. Information systems and homomorphisms form a category denoted by IS.
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Proof. Let S = (U , AT , V , f ), S ′ = (U ′, AT ′, V ′, f ′), and S ′′ = (U ′′, AT ′′, V ′′, f ′′) be information systems where h : S → S ′ , 
h′ : S ′ → S ′′ be homomorphisms. Let us define the composition of h′ and h as

h′ ◦ h = (
h′

O ◦ hO , h′
A ◦ hA, h′

D ◦ hD
)
.

Then

(
h′

D ◦ hD
)(

f (x,a)
) = h′

D

(
hD

((
f (x,a)

)))
= h′

D

(
f ′(hO (x), hA(x)

))
= f ′′(h′

O

(
hO (x)

)
, h′

A

(
hA(x)

))
= f ′′((h′

O ◦ hO
)
(x),

(
h′

A ◦ hA
)
(x)

)
and so h′ ◦ h : U → U ′′ is also an information system homomorphism. Further, the composition is associative and for any 
information system S = (U , AT , V , f ), I S = (I O , I A, I D) is the identity homomorphism on S where

I O : U → U , I A : AT → AT and I D : V → V

are the identity functions, respectively. Indeed, for all x ∈ U and a ∈ AT , we have

I D
(

f (x,a)
) = f (x,a) = f

(
I O (x), I A(x)

)
. �

Now let us consider the category of all information system homomorphisms and all object-irreducible information sys-
tems where the attribute functions are surjective. We denote this category by ISO.

Theorem 6.6. (i) The mapping B: IS → Rel defined by

B
(
(U , AT , V , f )

) = (
U , IND(AT )

)
and B(h) = hO

for all (U , AT , V , f ) ∈ ob(IS) and h ∈ hom(IS) is a functor.
(ii) If BISO is the restriction functor of B, then BISO: ISO → Rel is an embedding.

Proof. By Proposition 6.1,

h′
O ◦ hO : (U , IND(AT )

) → (
U ′′, IND

((
h′

A ◦ hA
)
(AT )

))
is a relation preserving function and hence,

B
((

h′ ◦ h
)) = h′

O ◦ hO =B
(
h′) ◦B(h).

Further, B(I S) = B(I O , I A, I D) = I O .
(ii) By Theorem 4 in [36], hO is uniquely determined by hA and hD . �

7. Conclusion

In this work, we call attention to the category Rel of approximation spaces and relation preserving functions. To this end, 
we defined a textural version of Rel as the category diRel of textural approximation spaces and direlation preserving di-
functions. We observed that Rel can be fully embedded into diRel. Moreover, we proved that diRel is a topological category 
and hence, it has product and sums. Furthermore, we discussed textural definability between textural approximation spaces 
under direlation preserving difunctions. We extended these arguments to approximation spaces. We showed that relation 
preserving functions preserve the definability under the inverse images. Information systems and information system ho-
momorphisms form a category denoted by IS. If the information systems are object irreducible and the attribute functions 
are surjective, then we obtain a subcategory ISO of IS. We proved that ISO is embeddable into Rel.
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