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Abstract—Making use of certain operators of fractional calculus, we introduce a new class
Fs(n, A\, ) of functions which are analytic in the open unit disk &/ and obtain a necessary and
sufficient condition for a function to be in the class Fs(n, A, a). We also determine the radii of
close-to-convexity, starlikeness, and convexity. Finally, an application involving fractional calculus of
functions in the class Fg(n, A, @) is considered.
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1. INTRODUCTION AND DEFINITIONS
Let F(n) denote the class of functions f(z) of the form

f(z)=2z- f: ax 2¥, (ar > 0; ne N:={1,2,3,...}), (1.1)
k=n+1
which are analytic in the open unit disk
U={z:z€Cand|z| <1}.
Let Fs(n, A, a) be the subclass of F(n) consisting of functions which also satisfy the inequality
R{F2-62"1 [1-NDf(z) + 2D f(2)]} >a, (6+a<]l), (1.2)

for some 6 (0 <6 <1),A(0<A<1),and a (0 < a < 1), and for all z € Y. Here, and
throughout this paper, Dﬁ denotes an operator of fractional calculus, which is defined as follows
(cf., e.g., [1,2]).
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DEFINITION 1. The fractional integral of order u is defined by

D710 = [ i % (>0) (139

where f(z) is an analytic function in a simply-connected region of the z-plane containing the
origin, and the multiplicity of (z — ¢)*~! is removed by requiring log(z — ¢) to be real when
z2—¢>0.

DEFINITION 2. The fractional derivative of order p is defined by

__ 145
D) = 4 ) g @<u<D), (14

where f(z) is constrained, and the multiplicity of (z — {)™* is removed, as in Definition 1.

DEFINITION 3. Under the hypotheses of Definition 1, the fractional derivative of order k + u is

defined by .
d
DEtE f(2) = —FDf(2),  (0<p<1 keNo:=NU{0}). (1.5)

The object of the present paper is to investigate various interesting properties of functions
belonging to the class Fg(n, A, ). We remark in passing that

Fo(1, A\, 0) = Fy(a), (0<A<L;0<a<y, (1.6)
where the class F(c) was studied recently by Bhoosnurmath and Swamy [3].

2. A THEOREM ON COEFFICIENT BOUNDS

THEOREM 1. A function f(z) € F(n) is in the class Fg(n, A, a) if and only if

5‘: 14+ Ak —1-8)(k+1)

<1-XA6— 1). 2.1
Thii=0) ap <1 a, (6+a<l) (2.1)

k=n+1

The result is sharp.
PRrROOF. Suppose that f(z) € Fs(n,A,a). Then, we find from Definitions 1 and 3, and the
inequality (1.2), that

§R{1—/\6— i [1+)\(k_1_6)]F(k+1)akzk‘1}>a, (z €U).

Ml [(k+1-9)

If we choose z to be real and let z — 1—, we get

(+a<1;0<a<1;0<6<),

L6 i L+ Ak-1-8IT(k+1)

akg 2 a,
Mo I'k+1-96)

which is equivalent to the assertion (2.1) of Theorem 1.
Conversely, let us suppose that the inequality (2.1) holds true. Then, we have

IT(2-6) 2271 [(1 = N) D¢ f(2) + 2A DT f(2)] — 1 + 74|

_ N I+ XME—-1-8T(k+1) -
> T(k+1-9) ax 27!

k=n+1
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= [L+Mk—-1-8)T(k+1) _
Skgl Th+1-0) ax 2|~

<1-=-MX—a, (zeU; 6+a<1;0<a<1;0<56<1),

which implies that f(z) € Fs(n, A, a).
Finally, we note that the assertion (2.1) of Theorem 1 is sharp, the extremal function being

(1-X-a)T(n+2-6) ,.4

f(z2)=2z— SRS 2", (n €N). (2.2)
COROLLARY 1. If f(2) € Fs(n, A, ), then
1-XM-a)T(n+2-46)
WS TSm0 eV (23)

COROLLARY 2. A function f(z) € F(n) is in the class Fo(n, A, o) if and only if

[o o]
> [M+AMk-Djar<l-a, (0<A<L0<a<]) (2.4)
k=n+1

COROLLARY 3. (cf,, [3, p. 90, Theorem 1J). A function f(z) € F(1) is in the class Fo(1, ), ) if
the only if

s )

Z[1+)\(k—1 Nar <1-a 0<A<1;,0<a<). (2.5)

COROLLARY 4. If f(z) € Fo(n,1,a), then R{f'(2)} > a for all z € U.
PRrROOF. Since f(2) € Fo(n,1,a), we have (cf., [4])

00
> kax<l-a, (0<a<l) (2.6)
k=n+1
The result now follows from Theorem 1.

COROLLARY 5. If f(2) € Fo(n,0, ), then

m{@} > ;;‘; (n€N).

PROOF. Since f(z) € Fo(n,0,a), we have
o0 oo
(n+1) > &< Y kax<l-a  (0<a<l;neN), (2.7)
k=n+1 k=n+1

by applying the known inequality (2.6). Therefore, we obtain

oo

l-a
> a< — (neN). (2.8)
k=n+1
COROLLARY 6. (cf., [3, p. 91, Corollary 1.2]). If f(z) € Fy(1,0,0), then
f(z) 1
3%{ 2 J7 2

forallzeld.
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THEOREM 2. Let the function f(z) defined by (1.1) and the function g(z) defined by
oo
g(2)=z— Y bez*, (>0, neN) (2.9)
k=n+1
be in the same class Fs(n, A, o). Then, the function h(z) defined by

Wz)=(1-8)f(z)+Bg(z)=2— > ¥,

k=n+1
ek =(1-Ba+Pb,>0; 0<B<1;neN)

is also in the class Fg(n, A, o).
PrOOF. By the hypotheses of Theorem 2, we find from (2.1) that

Z [1+)\(k—1—6)]I‘(k+1)Ck___(l_ﬁ) Z T+Ak-1-6)]I(k+1)

Ak
et I(k+1-9) W L(k+1=9)
=~ [1+Xk—-1-8)T(k+1)
+ﬂk§+1 Thrio)  O*

SA-HA-A-a)+B(1l=-XM-a)=1-A—-q,
which completes the proof of Theorem 2.

3. DISTORTION THEOREMS INVOLVING OPERATORS
OF FRACTIONAL CALCULUS

THEOREM 3. If f(2) € Fs(n, A, ), then

- | 2|1+ 1=-X—-a)T2+u)T(n+2-46)
Do# < 1 , 3.1
I 2 f(z)l‘l‘2+,u) Q+An-8)T(n+2+pu) 12 (3.1)
and 2|1+ (1-X6— )T+ ) D(n +2 - 6)
_ z - A -« +w)T(n+2 -
Do# > _(1- , 3.2
|D; f(")|-r(2+u) ( T+ Mn—08)C(n+2+p) ‘ZO (3:2)
forp>0andn €N, and for all z € U.
PROOF. Suppose that f(z) € Fs(n, A,). Then, we find from (2.1) that
1+ Mn—8)T(n+2) i = [L+AMk—-1-8)]T(k+1)
ar < Z Ak, (3.3)
F'n+2-26) W W I'k+1-9)
which evidently yields
= (1-X-a)T(n+2-46)
> a< ., (neN). (3.4)
iy 1+ A(n—-268)]T(n+2)
Making use of (3.4) and Definition 1, we have
Pa 2 TR+1)T2+p)
DTH e — — k—1
S @)= e (1 kz Tk+1+p) Ok°
i (3.5)

[o. ]

1+u
=I"(z2+u) (1— > e(k)akzk'1>,

k=n+1
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where, for convenience,

T(k+1)T(2 + p)
T(k+1+4+p) '

ok) = (b>0; k>n+1; neN).

Clearly, the function ©(k) is decreasing in k, and we have

I'n+2)T(2+p)
0<Ok)<O 1) = .
() < On+1) = =g (36)
Thus, we find from (3.4)-(3.6) that
DT# < i =
D 6| < iy (1O +D) 3 o
< | 2|1+ <1+ 1-XM-0)T2+p)T(n+2-46) .
T2+ p) N+Xn=8)]T(n+2+u)
which is precisely the assertion (3.1), and that
|D;# £(2)] > ‘z| 1-|2|©(n +1) f: a
=z I-.. ) k
k=n+1
S |z|1tH ( (=M -alC+pT(n+2-9) 2
T T2+ 1+ An-8)T(n+2+nu)
which is the same as the assertion (3.2).
THEOREM 4. If f(z) € Fs(n, A\, a), then
|z|1—# ( (1-A6~a)0(2—p)I(n+2-6)
D*# < 1 .
DS 5= ' T otz ) @)
e 4 (| (-M-a)T@- W +2-6)
1-X -« —wln+2-
D —_—[1- .
211> iy (- e M) 09
forO<pu<1landn €N, and for all z € U.
PROOF. Suppose that f(z) € Fs(n, A, ). Then, we find from (2.1) that
1+ An—-8)T(n+1) i o~ [L+Xk—-1-8)]T(k+1)
ka Z Ak (39)
I(n+2-9) W Moot Fk+1-46)
which evidently yields
- -a)T(n+2-96)
< . .
Z kak_ [1+)\n— JRCESUR (0<A<1;0<6<1;neN). (3.10)
k=n+1
Now, making use of (3.10) and Definition 2, we have
Zl- 2. T(k+1)T(2 - p)
D f(z = |1 - ‘ ay 2F1
1@ =ta—y ( ,c_;q Tk+1-p)
_ 21-u 1 i @(k)ka zk—l (3 11)
F(Q - N) k=n+1 ¢ ‘ .
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where, for convenience,

L(k)T(2 - p)

(k) = T(k+1—-p)

(0<u<i;k>2n+1; neN).

Since the function ®(k) is decreasing in k, we also have

Fn+1)T'(2- y,).

0<8(K) < B(n+1) = —Fr o

(3.12)

Thus, we find from (3.10)—(3.12) that

1—u st
ID’;f(Z)Isfl(z—zl_—ﬂj (1+|z|<I>(n+1) > kak)

k=n+1

|2|1=# (1-XM—a)T(2-p)T(n+2-16)
5r<2—u>(1 T+ MNn-06)T(n+2—p) 'Z‘)’

which is precisely the assertion (3.7), and that

" |2|*—# .-
|Dg f(2)| 2 Te=p) (1 = |z{@(n +1) Z kak)

k=n+1
zl—u _ _ — —
2| (1 (=M -oI2-pT(n+2-6) |2|> ’

l+An—-8)Tn+1-p)
which is the same as the assertion (3.8).

THEOREM 5. If f(z) € Fs(n, )\, ), then

-6 1-X6 - -HIr(1-6
D3 )] < ol (14 B2 Lo DTA0 )

|2|~¢ (1-X—a)(n+1-6T(2-56)
r(1-4) (1 - 1+ A(n - §) |z|> , (3.14)

for0<é<landneN, and forall z € U.
PROOF. Suppose that f(z2) € Fs(n, A\, @). Then, we find from (2.1) that

(3.13)

|D:* f(2)] 2

> T(k+1)T(1-6) (1-X-a)(n+1-6)T(1-96)
Z T'(k — 6) % < 1+ A(n - 6) (3.15)

(0<A<1;0<6<1;neN).

k=n+1

On the other hand, by applying Definition 3 (with £ =1 and u = §), we obtain

_é el —
DI ) = s (1— Y s akzk'l). (316

k=n+1

Thus, by combining (3.15) and (3.16), we immediately get the assertions (3.13) and (3.14) of
Theorem 5.

Setting 6 = p = 0 in Theorem 4, we have the following corollary.
COROLLARY 7. If f(z2) € Fo(n, A, a), then

l—-a
14+ An

l-a
1+ An

|2| - 212 < 1£(2)] < |2 + |2[2, (3.17)

forallzeUd andn € N.
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For 6 = 0, Theorem 5 yields the following corollary.

COROLLARY 8. If f(2) € Fo(n, A\, ), then

(1-—a)(n+1)
14+ An

(1-a){n+1)

1- 14+ An

|2l < |f ()| <1+ |2, (3.18)

forall ze U4 andn € N.

Next, setting 6 = 4 = 0 and n = 1 in Theorem 4 (or, simply, n = 1 in Corollary 7), we have
the following corollary.

COROLLARY 9. (cf., [3, p. 91, Theorem 2]). If f(z) € Fo(1, A, &), then

Z 3.19

2« <
5 P < 1) < 2+

|2] -

forall ze U.

If we set 6 =0 and n = 1 in Theorem 5 (or, alternatively, if we just let n = 1 in Corollary 8),
we obtain the following corollary.

COROLLARY 10. (cf, [3, p. 92, Theorem 3]). If f(z) € Fo(1, A, &), then

_2(1-a)
1+

2(1-a)

1
1+ A

Izl < If'(2)| <1+

|z], (3.20)

forall ze lU.

Numerous further consequences of Theorems 3-5 (and of Corollaries 7-10) can indeed be de-
duced by specializing the various parameters involved.

4. RADII OF CLOSE-TO-CONVEXITY,
STARLIKENESS, AND CONVEXITY

A function f(z) € F(n) is said to be close-to-convez of order (3 if it satisfies the inequality
(cf., 5,6])
R{f'(2)} > B, (4.1)
for some 8 (0 < 8 < 1) and for all 2 € Y. On the other hand, a function f(z) € F(n) is said to
be starlike of order (3 if it satisfies the inequality (cf., [5,6])

zf'(2) }
R > B, 4.2
{5 42
for some § (0 < § < 1) and for all z € Y. Furthermore, a function f(z) € F(n) is said to be
convez of order (3 if and only if zf'(2) is starlike of order §, that is, if it satisfies the inequality

(ct., [5,6])
zf"(z)
§R{1 i } > 8, (4.3)

for some 8 (0 < 8 < 1) and for all z € Y.

THEOREM 6. If f(2) € Fs(n, A, ), then f(z) is close-to-convex of order 3 in {z| < r1(a, A, 6, 3),
where

(1-8)Tk)1+Xk-1- 5)]] 1/(k-1)

ri{a, A, 6, 6) zi%f |: (1-X-a)T(k+1-96)

, (k2n+1; neN).
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ProOOF. It is sufficient to show that |f'(z) — 1] < 1 — §. Indeed, we have

o0
F@) -1 Y kel <1-5, (44)
k=n+1
and o
L(k+1)[1+ Ak —6-1)
> ar <1-X—a. (4.5)
Wo D(k+1-96)
Hence, (4.4) is true if
k—1 _s_

1-8 ~ 1-X-a)(k+1-6)’
Solving (4.6) for ||, we obtain
ol < [ ATE + Mk~ 1= 87 70
| @=-XM-a)l'(k+1-9)
which obviously proves Theorem 6.
THEOREM 7. If f(z) € Fs(n, A, @), then f(z) is starlike of order (3 in
|z| < T2(a1A76»ﬂ))

, (k>n+1; neN),

where

ro(a, A, 6, 0) = i%f [

(1=-B)Ik+1)[1+Ak—1- 5)]] 1/(k=1)
(k—B)(1-X-a)T(k+1-96)
Proor. We must show that

Zf’(Z) _ ll <1 _ﬂ7 for |Z| < rz(a,)\,é,ﬁ)'

, (k>n+1; neN).

f(2)
In fact, we have -
zf'(2) Yhent (E—1)ax 2|~
i@ ’ STy et ST .7
if
(k—B)|z*~1 _Dk+1)1+Ak—6-1)] .
= SO M-aTkhiize) (rzntlineh), (48)

which evidently proves Theorem 7.
COROLLARY 11. If f(z) € Fs(n, A, @), then f(z) is convex of order (8 in
|Z| < r3(a) A’ 61 :3)1

where
_ (1- BT + Mk —1-6)] /¢
7‘3((1,)\75,,3) —lr;éf [(k—ﬁ)(l —Aé—a)r(k_*_l —(5) y
COROLLARY 12. If f(2) € Fo(1, ), @), then f(2) is close-to-convex of order 3 in |z| < r4(a, A, B),
where

(k>n+1; neN).

LA =B+ A=) 1/(k-1)
) =it |y ,

COROLLARY 13. If f(z) € Fo(1, A, a), then f(z) is starlike of order § in |z| < rs(a, A, B), where

re1 _ 11/(k-1)
rs(n8) = inf | (kﬂi[lﬂ;;\(_ka)l)} . (keN\{1}

COROLLARY 14. If f(2) € Fo(1, ), @), then f(z) is convex of order 8 in |z| < r¢(c, A, B), where
- 1 1/(k=1)
_ . [a=g+ k-1
Tﬁ(a’)‘vﬂ) "‘l%f i k(k—ﬂ)(l—a) ] s
In their special cases when 8 = 0, Corollaries 12-14 were proved earlier by Bhoosnurmath and
Swamy [3, pp. 93-94, Theorems 5 and 6}.

(ke N\ {1}).

(k€ N\ {1}).
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