
Journal of Algebra 243, 473–485 (2001)
doi:10.1006/jabr.2001.8864, available online at http://www.idealibrary.com on

The Automorphism Group of Certain
Radical Matrix Rings1

Feride Kuzucuoglu

Department of Mathematics, University of Hacettepe,
06532 Beytepe, Ankara, Turkey

E-mail: feridek@eti.cc.hun.edu.tr

and

Vladimir M. Levchuk

Department of Mathematics, Krasnoyarsk State University,
av. Svobodny 79, Krasnoyarsk 660041, Russia
E-mail: levchuk@math.kgu.krasnoyarsk.su

Communicated by Walter Feit

Received January 31, 2000

INTRODUCTION

This paper is devoted to the study of automorphisms of matrix radical
rings. The area has been under active investigation since the 1950s. Auto-
morphisms of the algebra NTn�K� of all (lower) niltriangular n× n matrices
over a field K were described by Dubish and Perlis [1, Theorem 5-7]. It is
easy to verify that the automorphism group AutR of any radical ring R
coincides with the intersection of the automorphism group of the adjoint
group G�R� and the automorphism group of the associated Lie ring ��R�
of R. The adjoint group of NTn�K� is isomorphic to the unitriangular
group UTn�K�. If K is a finite field, then the group UTn�K� is a Sylow
subgroup of GLn�K� and its automorphisms were studied in [13, 14, 16,
17]. For arbitrary associative ring K with identity automorphism groups of
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NTn�K�, G�NTn�K�� and ��NTn�K�� were described in [9; 10, Theorem
1]; see surveys in [2, 15]. This result was extended to all Chevalley groups in
[11, 12] and so the problem (1.5) of [6] on unipotent subgroups of Chevalley
groups was solved. On the other hand, the question about description of
automorphisms of Sylow p-subgroups of Chevalley groups over Zpm for
m > 1 [7, Question 12.42] is still open. Let Mn�J� be the ring of all n× n
matrices over an ideal J of K and

Rn�K� J� �= NTn�K� +Mn�J��

By [4, 11.3.3] Sylow p-subgroups of the group GLn�Zpm� are isomorphic to
the adjoint group of the ring Rn�Zpm� �p��. Note that for any radical ring
Rn�K� J� investigations of the question about description of automorphism
groups AutG�R� and Aut��R� for R = Rn�K� J� have some additional dif-
ficulties. In fact, general results in [9, 10] were found by using close struc-
tural connections between the associated Lie ring and the adjoint group of
NTn�K�. However, for Rn�K� J�, these structural connections do not hold;
see [7, Question 10.19; 8].

The aim of the present paper is to describe the automorphism group
AutRn�K� J� for arbitrary K and quasi-regular ideal J with certain spe-
cific properties. Theorems 2.1 and 3.1 establish the structure of the
automorphism group AutRn�K� J� when J coincides with a one-sided or
two-sided annihilator of Jt in K for t ≥ 0. As a corollary, Proposition 3.3
describes automorphisms of K-algebra Rn�K� J�. The order of AutRn�K� J�
is given in Proposition 3.2 for any finite ring K and J as in Theorem 2.1.
In particular, for an arbitrary divisor d of m �1 ≤ d < m� we obtain
	AutR2�Zpm� �pd��	 = �pm − pm−1� · p2m and

	AutRn�Zpm� �pd��	 = �pm − pm−1�n−1 · p�2m−d�·C2
n+d�n−2�� n > 2�

1. FUNDAMENTAL AUTOMORPHISMS AND
POWERS OF Rn�K� J�

Throughout this paper K� J, and J+ denote an associative ring with iden-
tity, an ideal of K, and the additive group of J, respectively. If �auv� is a
matrix, then aij is called the �i� j�-coefficient. We denote by e, the iden-
tity matrix, by eij , the matrix unit of Mn�K� in which the �i� j�-coefficient is
equal to 1 and others are zero. We use standard terminology, as in [3, 4].

The following lemma determines “annihilator” automorphisms of an
arbitrary ring R. We set AnnR = 
α ∈ R 	 αR = Rα = 0�.
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Lemma 1.1. Let ζ � R→ AnnR be an additive map. Then

(a) the map 1+ ζ � x→ x+ ζ�x� is an endomorphism of the ring R if
and only if ζ�R2� = 0;

(b) if ζ�R2� = 0 and AnnR ⊆ R2, then 1 + ζ is an automorphism of
the ring R.

Proof. (a) It follows from equalities �x+ ζ�x���y + ζ�y��=xy�x� y ∈R�.
(b) Evidently Ker�1 + ζ� ⊆ ζ�R� ⊆ AnnR and if ζ�R2� = 0, then

1 + ζ induces the identity map on R2. If also AnnR ⊆ R2, then the map
1 + ζ is an endomorphism of the ring R with zero kernel. It remains to
note that inclusions

R ⊆ ζ�R� + �1+ ζ�R ⊆ R2 + �1+ ζ�R ⊆ �1+ ζ�R ⊆ R

are equalities. The lemma is proved.

For an arbitrary associative ring R the adjoint multiplication ◦ and the
associated Lie multiplication ∗ are defined as

α ◦ β = α+ β+ αβ� α ∗ β = αβ− βα�

An element α ∈ R is called quasi-regular if there exists an element α′ ∈ R
such that α ◦ α′ = α′ ◦ α = 0. For instance, the quasi-inverse element for a
nilpotent element −α is defined as �−α′� = α+ α2 + α3 + · · ·. The adjoint
conjugation of R by a quasi-regular element

α′ ◦ y ◦ α = y + y ∗ α+ α′�y ∗ α�� y ∈ R� (1)

gives an “inner” automorphism of the ring R. It coincides with ordinary
conjugation of R by the element e+ α when the ring R contains identity e.
A ring R is called radical if �R� ◦� is a group. Each element α of any radical
ring determines an inner automorphism as in (1).

Let R be the ring Rn�K� J�. It is a radical ring if and only if J is a quasi-
regular ideal of K; i.e., �J� ◦� is a group. The conjugation δ−1αδ �α ∈ R� by
an arbitrary invertible diagonal n× n matrix δ over K determines an auto-
morphism of R which is called “diagonal.” An automorphism θ of the ring
K determines an automorphism �auv� → �θ�auv�� of the ring R if and only
if the ideal J is θ-invariant. Such an automorphism of R is called a “K-ring”
or “ring” automorphism as usual. On the other hand, an automorphism θ
of the additive group K+ determines an automorphism of the ring R2�K� J�
as above if the ideal J is θ-invariant and the relation �zy�θ = zθyθ is satis-
fied for z ∈ K, y ∈ J and for z ∈ J, y ∈ K. This generalization of a K-ring
automorphism will be called a �K+� J�-ring automorphism of R2�K� J� if
1θ = 1.

Note that the ring R is generated by sets Kei+1i �i = 1� 2� � � � � n − 1�
and Je1n since 1 ∈ K. The following lemmas describe powers Rk and their
annihilators in the ring R. We put J0 = K.



476 kuzucuoglu and levchuk

Lemma 1.2. Let k be a positive integer and k = sn+ t, 0 ≤ t < n. Then
the ideal Rk consists of all matrices �auv� such that the element auv is placed
in the ideal Js, Js+1, Js+2 respectively to cases t ≤ u− v, t − n ≤ u− v < t,
u− v < t − n.

Proof. It is easy to show by induction on k. (See also [4, 16.1.2; 5,
Theorem 3].)

An ideal J is called nilpotent of class m, if m is the smallest positive
integer such that Jm = 0. As a corollary of Lemma 1.2 we obtain that if J
is a nilpotent ideal of K of class m, then the ring R is nilpotent of class mn.

Lemma 1.3. The left (resp. right) annihilator of Rk (k = sn+ t, 0 ≤ t < n)
in the ring R consists of all matrices α ∈ R such that all elements of the first
t columns (resp. last (n− t) rows) of α are in the left (resp. right) annihilator
of Js+1 in K and other elements are placed in the left (resp. right) annihilator
of Js in K.

Proof. It is sufficient to note that elements of the first t rows of matri-
ces of Rk are ranged over the ideal Js+1. Remaining elements of the first
column of these matrices are ranged over the ideal Js by Lemma 1.2.

Let AnnKJ = 
x ∈ K 	 xJ = Jx = 0�. Then AnnR = �AnnKJ�en1 by
Lemma 1.3. If n > 2 or n = 2 but AnnKJ ⊆ J, then AnnR ⊆ R2 by
Lemma 1.2 and an arbitrary annihilator automorphism of the ring R has
the form

�auv� → �auv� +
(
λn�a1n� +

n−1∑
i=1

λi�ai+1i�
)
en1 ��auv� ∈ R�� (2)

where additive maps λn of J and λ1� λ2� � � � � λn−1 of K into AnnK J satisfy
λn�J2� = 0, λi�J� = 0, 1 ≤ i < n. We denote by ζi�λ� �1 ≤ i ≤ n� an
annihilator automorphism (2) of R such that λi = λ and λj are zero for all
j �= i. It is clear that the annihilator automorphism (2) of R is equal to the
product ζ1�λ1�ζ2�λ2� · · · ζn�λn�.

Choose an arbitrary homomorphism σ � J+ → K+ and λ, µ ∈ End�J+�.
Consider the following map of the set of all elementary matrices

ye1n → ye1n + yλe11 + yµenn + yσen1� yein → yein + yλei1�

ye1j → ye1j + yµenj� 1 < i ≤ n� 1 ≤ j < n� y ∈ J� (3)

(We assume that the remaining elementary matrices from R are fixed.)
If map (3) determines an automorphism of the ring R, then the invar-
iance under (3) of relations xei1ye1n = xyein, ye1nxenj = yxe1j , and
�ye1n� �ze1n� = 0 gives

�xy�λ=xyλ� �yx�µ=yµx� yzµ=−yλz� �zy�σ=zµyλ�
yµzσ+yσzλ=yzσ+yλzλ=yσz+yµzµ=0� y�z∈J� x∈K� (4)
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On the other hand, if λ�µ, and σ satisfy (4), then map (3) preserves all
basic relations

xeij+yeij=�x+y�eij� �xeij��yejm�=xyeim� �xeij��yekm�=0� j �=k�
in the ring R and hence it determines an automorphism of the ring R which
will be called almost-annihilator. We denote by ζ�l��λ� (resp. ζ�r��µ��, an
automorphism (3) with zero µ�σ (resp. λ� σ). By Lemma 1.3, ζ�l��λ� is the
identity map of R modulo the left annihilator of R.

2. THE AUTOMORPHISM GROUP

We investigate the automorphism group AutRn�K� J� of a radical ring
Rn�K� J�. Let K be an associative ring with identity, as above, and K# be
the multiplicative group of all invertible elements of K. Denote by � (resp.
�′), the subgroup of AutRn�K� J� which is generated by all annihilator
and almost-annihilator (resp. almost-annihilator) automorphisms. Also, we
denote by ��� ���K� J�, and ��K+� J�, subgroups which form all diagonal,
inner, K-ring, and �K+� J�-ring (for n = 2� automorphisms, respectively.

The following theorem is the main result of this section.

Theorem 2.1. Let J be an ideal of K such that a one-sided or two-sided
annihilator of Jt in K coincides with J for a nonnegative integer t. Then
AutRn�K� J� = �����K� J� for n > 2. If inclusion


c ∈ K	cJ = Jc = J�mod J2�� ⊆ K# (5)

is satisfied then AutR2�K� J� = �′����K+� J�.
Let R = Rn�K� J�. We require the following lemmas.

Lemma 2.2. Let K be an associative ring with identity and n > 2. Then
each automorphism of the ring NTn�K� is equal to a product of certain diag-
onal, inner, K-ring, and annihilator automorphisms of NTn�K�.
Proof. See [9; 10, Theorem 1].

Lemma 2.3. If an ideal J of the ring K coincides with a one-sided or two-
sided annihilator of Jt in K for a nonnegative integer t and n ≥ 2, then the
ideal Mn�J� of the ring R is characteristic.

Proof. If t = 0, then Jt = K and J = 0 since 1 ∈ K. Suppose t > 0.
All powers of R and also their one-sided annihilators are characteristic in
R. The left (resp. right) annihilator of Rtn in R is equal to the set of all
matrices of R over the left (resp. right) annihilator of Jt in K by Lemma 1.3.
The intersection of one-sided annihilators is equal to Mn�AnnK�Jt�� ∩ R.
The lemma is proved.
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Lemma 2.4. Let J be a quasi-regular ideal of K�n ≥ 2, and let (5) hold
for n = 2. Let φ be an automorphism of the ring R and let the ideal Mn�J�
be φ-invariant. Then there exists a diagonal automorphism δ of R such that
the �i+ 1� i�-coefficient of the matrix eφδi+1i is equal to 1 for all i, 1 ≤ i < n.

Proof. Denote the �i + 1� i�-coefficient of matrix eφi+1i by ci. First, we
show that ci ∈ K# for all i, 1 ≤ i < n. If n = 2, we obtain eφ21 ∈ c1e21 +
M2�J� and

R2 = �e21 +M2�J��φR = Je21 + c1Je22 + Je11 +M2�J2�
since R2 and M2�J� are φ-invariant. It gives c1J + J2 = J and similarly
Jc1 + J2 = J. Consequently, c1 ∈ K# by (5). Suppose n > 2. The automor-
phism φ induces an automorphism of the quotient-ring R/Mn�J� which
is isomorphic to the ring NTn�K/J� over the associative ring K/J with
identity. By Lemma 2.2 there exist elements fi ∈ K and ui ∈ J such that
cifi = 1+ ui, i = 1� 2� � � � � n− 1. Therefore all elements 1+ ui and ci are
invertible in K since the ideal J is quasi-regular.

Choose now the conjugation δ of R by the diagonal matrix diag�d1�
d2� � � � � dn� where d1 = 1 and di+1 = cici−1 · · · c2c1, 1 ≤ i < n. Then the
�i+ 1� i�-coefficient of matrix eφδi+1i is equal to 1 for all i as required.

Lemma 2.5. Let n ≥ 2 and let φ be an automorphism of a ring Rn�K� J�
such that the �i + 1� i�-coefficient of a matrix eφi+1i is equal to 1 for each i,
1 ≤ i < n. Then φ ∈ ���K� J�� for n > 2 and φ ∈ �′��K+� J�� for n = 2.

Proof. First, we show that there exists an inner automorphism ψ such
that each matrix eφψi+1i − ei+1i has zero ith column. Clearly, for any matrix
β the mth column of the matrix βekm is equal to the kth column of β and
other columns of βekm are zero. Let αt = �eφtt−1 − ett−1�et−1t , 1 < t ≤ n.
The matrix αt is placed in the left ideal Rett of the ring R and α2

t = 0.
By (1) we get

α′
t ◦ eφi+1i ◦ αt = e

φ
i+1i − αte

φ
i+1i + �e− αt�eφi+1iαt ∈ eφi+1i − αte

φ
i+1i + Rett �

Denote by dj the �2� j�-coefficient of the matrix eφ21. Since d1 = 1, matrices
α2 and α2e

φ
21 have zero second rows and hence

α2e
φ
21 = �eφ21 − e21�e12eφ21 =

n∑
j=1

�eφ21 − e21�dje1j�

�α′
2 ◦ eφ21 ◦ α2�e11 = e

φ
21e11 − �eφ21 − e21�e11 = e21�

Consequently, the first column of the matrix α′
2 ◦ eφ21 ◦ α2 is equal to the

second column of the identity matrix. Suppose that 1 < i < n and each
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matrix eφt+1t − et+1t , 1 ≤ t < i, has the zero tth column. The adjoint conju-
gation of the element αi+1 does not change the tth column of such a matrix
since the tth column of αi+1e

φ
t+1t is zero. On the other hand, the ith column

of the matrix �α′
i+1 ◦ eφi+1i ◦ αi+1� − ei+1i is also zero. Thus, without loss of

generality we may assume that the ith column of each matrix eφi+1i − ei+1i
�1 ≤ i < n� is zero.

Consider the product �xekm�φeφi+1i, 1 ≤ i < n. Its ith column is equal to
the �i+ 1�st column of the first factor. If i+ 1 �= m, this product is equal to
zero. Therefore, all columns of matrix �xekm�φ (1 ≤ k ≤ n, 1 ≤ m ≤ n) are
zeros except the first and mth columns. In particular, eφi+1i ∈ ei+1i + Re11
for 1 < i < n and e

φ
21 = e21. Consequently, the first row of each matrix

�xekm�φ for k > 1 is zero since eφ21�xekm�φ = 0. For n > 2 we set α1 =
−b3e21 − b4e31 − · · · − bnen−11 where bi+1 is the �i+ 1� 1�-coefficient of the
matrix eφi+1i. By (1) we obtain

α′
1 ◦ e21 ◦ α1 = e21� α′

1 ◦ eφi+1i ◦ α1 = e
φ
i+1i + e

φ
i+1iα1 = e

φ
i+1i − bi+1ei+11

for 1 < i < n. Therefore, without loss of generality we may assume that
the �i+ 1�st row of each matrix eφi+1i − ei+1i �1 ≤ i < n� is also zero. Since
e
φ
i+1i�xekm�φ = 0 for i �= k, 1 ≤ i < n, we obtain that all rows of a matrix
�xekm�φ are zeros except the kth and nth rows. In particular, the restriction
of φ on NTn�K� is an automorphism of the ring NTn�K�.

Suppose n > 2. By Lemma 2.2 there exist an automorphism θ of the ring
K and endomorphisms φi of the additive group K+ such that

�xei+1i�φ = xθei+1i + xφien1� (6)

e
φ
i+1i = ei+1i + aien1� a1 = an−1 = 0 �x ∈ K� 1 ≤ i < n� (7)

for ai = 1φi . Clearly �xeij�φ = xθeij for i − j > 1. The relations yen1 =
enn−1 · · · e32�ye21� = en1�ye1n�en1 are φ-invariant for all y ∈ J. Hence the
�1� n�-coefficient of a matrix �ye1n�φ is equal to yθ. By using (6) and (7)
we get

�ye1n�φ=yθe1n+yλe11+yµenn+yσen1� �yein�φ=yθein+yλei1�
�ye1j�φ=�ye1n�φenj=yθe1j+yµenj�1≤ j<n� 1<i≤n� y∈J� (8)

where λ�µ ∈ End�J+� and σ is a homomorphism of J+ into K+. Since the
set of all �1� n�-coefficient of matrices in Rφ coincides with Jθ we obtain the
equality J = Jθ. Therefore, θ induces a K-ring automorphism of the ring
R. Without loss of generality we may assume that θ is the identity map of
K. The φ-invariance of relations �Kei+1i��Je1n� = 0 = �Je1n��Keii−1� gives
�Kφi�J = 0 = J�Kφi−1� for 1 < i < n. Also we obtain

�xJei+1i�φ=�xei+1i�φ�Jeii�φ=�xei+1i+xφien1��Jeii�� 1≤ i<n� x∈K�
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Consequently, Jφi = �Kφi�J = aiJ and similarly Jφi = J�Kφi� = Jai. Taking
into account (7) we get that φ is a product of the annihilator and almost-
annihilator automorphisms as in Section 1.

Assume n = 2. Let xθ be the (2,1)-coefficient of a matrix �xe21�φ for
x ∈ K. As above, we get 1θ = 1 and

�xe21�φ = xθe21�x ∈ K��
e21�ye12�φe21 = �e21�ye12�e21�φ = yθe21� y ∈ J�

Therefore, (8) is satisfied and θ is an automorphism of the additive group
K+ such that Jθ = J. Finally, relations �zy�θe21 = �ze21�φ�ye11�φ = zθyθe21
show that the relation �zy�θ = zθyθ is satisfied for z ∈ K, y ∈ J and similarly
for z ∈ J, y ∈ K. Consequently, φ is a product of the almost-annihilator
and �K+� J�-ring automorphisms of R2�K� J�. The lemma is proved.

Now Theorem 2.1 follows easily by Lemmas 2.3–2.5.
We consider some cases when the conditions of Theorem 2.1 hold.

(A) Let J be a maximal ideal of K which is nilpotent of a class
t + 1 > 1. Then AnnK�Jt� = J since AnnK�Jt� is a proper ideal of K which
contains J. If K is a local ring, then K\J = K# and (5) is satisfied.

(B) Let a be an element of a ring K and aK = Ka = AnnK�at� for
a positive integer t. Let J be the principal ideal �a�. Clearly AnnK�Jt� = J.
Suppose J contains one-sided annihilators of a. (For instance, AnnKa =
AnnKJ ⊆ AnnK�Jt� = J if a is in the center of the ring K.) Then (5) is
satisfied. In fact, if c ∈ K and cJ+ J2 = J then there exist elements x� y ∈ K
such that �cx+ ya− 1�a = 0 and cx ∈ 1+ J ⊆ K#. Therefore there exists
a right (similarly, left) inverse of c in K.

(C) Let p be a prime and m be a positive integer. Let K =Mn�Zpm�
for n ≥ 1 or K is a ring of polynomials in commutative or noncommutative
indeterminates (of finite or infinite number) over Zpm . If d is an arbitrary
divisor of m, 1 ≤ d < m, and J is the principal ideal pdK of K, then the
case (B) for t = �m− d�/d holds.

Example 2.6. Let K1 be an associative ring with identity which has a
nilpotent ideal J1 of class two. Let K be a direct product �K1�K1� of two
copies of the ring K1 and let J be the ideal �J1� 0� of K. If λ � �a� 0� →
�a� a��a ∈ J1� then ζn�λ� is an automorphism of the ring Rn�K� J��n > 2�
by Lemma 1.1 and the ideal Mn�J� is not ζn�λ�-invariant.
Remark 2.7. Let J be an arbitrary quasi-regular ideal of a ring K and

n > 2. All automorphisms of the ring Rn�K� J� that leave invariant the
ideal Mn�J� are described by Lemmas 2.4 and 2.5. In the general case,
the subgroup of such automorphisms does not coincide with the automor-
phism group of the ring Rn�K� J� as the last example shows. However, the
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authors have no example of a radical ring Rn�K� J� such that the equality
AutRn�K� J� = �����K� J� does not hold.

3. THE STRUCTURE OF THE AUTOMORPHISM GROUP

We investigate the structure of the automorphism group of a radical ring
R in Theorem 2.1. As above, R = Rn�K� J�. Consider the subgroup series

� ⊆ �� ⊆ ��� ⊆ �����K� J�� (9)

We denote the multiplicative group of all invertible diagonal n× n matrices
over K by Dn�K� as usual. Let �′

� (resp. �� ) be the subgroup of inner
automorphisms that are induced by adjoint conjugations with elements from
Ken1 (resp. 
Ken1 + �AnnKJ�en2 + �AnnKJ�en−11� ∩R). Let ��K� J� (resp.
�′�K� J�� be the additive group of all homomorphisms λ � K+ → AnnKJ
(resp. λ � J+ → AnnKJ) such that λ�J� = 0 (resp. λ�J2� = 0�. We also
denote by ��l��K� J� the additive group of all K-module homomorphisms
of the left K-module J into the left annihilator of J in J. Using (4) it is
easy to verify that maps

ζi: ��K� J� → ��1 ≤ i < n�� ζn: �
′�K� J� → ��

ζ�l�: ��l��K� J� → ��

(see Section 1) are group monomorphisms.

Theorem 3.1. Let C�K� be the center of a ring K, n ≥ 2, and C�R� =
AnnR+ �J ∩ C�K��e. Let AnnKJ ⊆ J for n = 2. Then,

(i) the subgroup series (9) is normal in the group �����K� J� and
equalities ����� ∩ ��K� J� = � ∩ ��K� J�, ��� � ∩ � = � ∩ �, and � ∩
� = �� hold;

(ii) there exist the isomorphisms

� � Dn�K�/�K# ∩ C�K��e� � ∩ ��K� J� � K#/�K# ∩ C�K���

� � �R� ◦�/C�R�� � ∩� �
( n∑
i=1

Jeii� ◦
)/

�J ∩ C�K��e�

(iii) the subgroup � is a direct product of subgroups �′, ζi���K� J��,
1 ≤ i < n;

(iv) if J is a principal ideal �a� and aK = Ka, then

�′ = �′
� × ζn��′�K� J�� × ζ�l����l��K� J���
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Proof. (i) The subgroup � is normal in AutR since AutR ⊆ Aut�R� ◦�
and � �Aut�R� ◦�. It is easy to show that �� ����K� J��. Similarly, nor-
malizers in AutR of subgroups ζi���K� J��, 1 ≤ i < n, and �′ contain
� and ��K� J�. By (2) subgroups ζi���K� J�� and �′ generate � so ��
is a normal subgroup of series (9). Consequently, the subgroup series (9)
of the group �����K� J� is normal. We get ��� � ∩ � = � ∩ � since
each intersection �Keij� ∩ R is �-invariant. Similarly, ����� ∩ ��K� J� =
�∩��K� J�. Clearly, �� ⊆ �∩� for n > 2. It is also true for n = 2 if J is a
quasi-regular ideal such that AnnKJ ⊆ J. Suppose that the adjoint conjuga-
tion of R by an element α ∈ R is equal to an element χ ∈ �. By (1) we get
�Kei+1i� ∗ α ⊆ �e+ α�AnnR = AnnR for 1 ≤ i < n since βχ − β ∈ AnnR
for each β ∈ NTn�K�. It follows that χ ∈ �� and � ∩� = �� .

(ii) The subgroup � is isomorphic to the quotient-group of the
adjoint group of R by its center. The center of the ring R coincides with
the center of the adjoint group and it contains C�R�. The inverse inclu-
sion is also true since any matrix α in the center of R satisfies relations
α ∗ �Kei+1i� = α ∗ �Je1n� = 0, 1 ≤ i < n. Thus, the center of the adjoint
group is equal to C�R� and � � �R� ◦�/C�R�.

The intersection �∩��K� J� coincides with the set of all conjugations of
R by matrices from K#e. In fact, if θ ∈ � ∩ ��K� J� and θ coincides with
the conjugation of R by a diagonal matrix α ∈ Dn�K�, then all elements
of the main diagonal of α pairwise coincide because eθi+1i = ei+1i, 1 ≤
i < n. The centralizer of R in Dn�K� coincides with �K# ∩ C�K��e. It
gives required isomorphisms of � and � ∩ ��K� J�. Also we get � ∩� �
�C�R� + �R ∩ �Dn�K� − e��� ◦�/C�R�. Since C�R� ∩ R ∩ �Dn�K� − e� =
C�R� ∩ �Dn�K� − e� = �J ∩ C�K��e we obtain the required isomorphism
of � ∩�.

(iii) Note that the subring NTn�K� of R is �-invariant and
each almost-annihilator automorphism of R induces the identity map
on NTn�K�. By using (2) we obtain � = �′ × ζ1���K� J�� × · · · ×
ζn−1���K� J��.

(iv) Suppose that J = aK = Ka for some a ∈ K. The decomposition
of the subgroup �′ follows easily if we show that subgroups ζn��′�K� J��,
ζ�l����l��K� J��, and �′

I generate the subgroup �′. Choose an arbitrary
almost-annihilator automorphism χ of the ring R. It is determined in (3)
by means of a homomorphism σ : J+ → K+ and endomorphisms λ�µ ∈
End�J+� which satisfy (4). In particular, λ and µ are K-module endomor-
phisms of the left and right K-module J, respectively. By (1) we get

�−xen1� ◦ �ae1n�χ ◦ xen1 ∈ ae1n + �aλ + ax�e11 + �aµ − xa�enn +Ken1

for all x ∈ K. The equation aµ − xa = 0 is solvable in K because Jµ ⊆
J = Ka. Therefore we can account aµ = 0 up to multiplication of χ by
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an inner automorphism from �′
I . Hence Jµ = �aK�µ = aµK = 0 since µ

is a K-module endomorphism of the right K-module J. By (4) we obtain
�J2�σ = JµJλ = 0 = �Jµ�2 = JσJ and JλJ = JJµ = 0 = �Jλ�2 = JJσ .
Consequently, σ ∈ �′�K� J�, λ ∈ ��l��K� J�, and χ = ζn�σ� · ζ�l��λ�. The
theorem is proved.

We now consider the order 	AutRn�K� J�	 of the automorphism group
for any finite ring K (which are within Theorem 2.1). Taking into account
Remark 2.7 we define Qn to be the order of the subgroup of �����K� J�
and Q+

2 to be the order of �����K+� J� for n = 2.

Proposition 3.2. Let K be a finite ring and J be a quasi-regular ideal of
K. Suppose AnnKJ ⊆ J for n = 2. Then Q+

2 = 	�′	 · 	��K+� J�	 · 	�#	 · 	J	
and

Qn = �	�′	/�	K	 · 	AnnKJ	2�� · 	��K� J�	 · �	K#	 · 	��K� J�	�n−1

· �	K	 · 	J	�C2
n � n > 2�

If J = �a� for a ∈ C�K�, then 	�′	 = 	�′�K� J�	 · 	K	 · 	AnnJJ	 · 	AnnKJ	−1.

Proof. By Theorem 3.1 we get

	�	/	� ∩ ��K� J�	 = 	Dn�K�	/	K#	 = 	K#	n−1�

	� 	/	� ∩�	 = 	R	/�	AnnR	 · 	J	n�
= �	K	 · 	J	�C2

n /	AnnKJ	�
	�	 = 	��K� J�	n−1 · 	�′	�

	� ∩ � 	 = 	�� 	 = 	K	 · 	AnnKJ	�
for each n ≥ 2. Note that the order 	HM	 of the product of two arbi-
trary subgroups H�M in an arbitrary group is equal to the product 	H	 ·
	M	 · 	H ∩M	−1; see [3, Theorem I.4.7]. Therefore, we obtain the required
decomposition of Qn by Theorem 3.1(i). Suppose n = 2 and AnnK J ⊆ J.
Then ζ1���K� J�� ⊆ ���K+� J� and �����K+� J� = �′����K+� J� as
in the proof of Theorem 2.1. We get �′ ∩ � = �′ ∩�� = �′

� and 	�′
� 	 =

	K	/	AnnKJ	. The formula for Q+
2 follows easily since by 3.1(i) we obtain

��′� � ∩� = � ∩��

��′��� ∩ ��K+� J� = � ∩ ��K+� J� = � ∩ ��K� J��
Suppose that J = aK = Ka for some element a ∈ K. Each K-module
endomorphism of the left K-module J is uniquely defined by an image of
the element a and this image may be an arbitrary element in J. Therefore
	��l��K� J�	 = 	AnnJJ	 for a ∈ C�K�. Using Theorem 3.1(iv) we now obtain
the required decomposition of 	�′	. This completes the proof.
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Using Theorem 2.1 we may describe automorphisms of K-algebras
Rn�K� J�. Let �mod be the automorphism group of the algebra Rn�K� J�.

Proposition 3.3. Let K be a commutative ring and let J be an ideal of
K such that AnnK�Jt� = J for a positive integer t. Suppose (5) is satisfied for
n = 2. Then �mod = ��mod ∩����. If K is a finite ring and J is a principal
ideal, then 	�mod	 = 	K#	 · 	K	 · 	J	 · 	AnnKJ	 for n = 2 and

	�mod	 = 	K#	n−1 · 	AnnKJ	n−2 · �	K	 · 	J	�C2
n � n > 2�

Proof. Let �mod = �mod ∩� and let φ ∈ �mod. By Theorem 2.1 there
exist a K-ring or �K+� J�-ring automorphism θ of R and an automorphism
χ ∈ ��� such that φ = χθ. Without loss of generality we may assume
that χ ∈ � since �� ⊆ �mod. Similarly χ ∈ �′ for n = 2 as in Theorem 2.1
so �xe21�χ = xe21 for n ≥ 2. We get

xθe21 = �xe21�θ = �xe21�φ = x�eφ21� = x�eθ21� = xe21�

Consequently, θ is the identity map, χ ∈ �mod, and the decomposition of
�mod is proved.

By using Theorem 3.1(iii) we obtain that �mod is equal to a direct
product of subgroups �mod ∩ �′��mod ∩ ζi���K� J��, 1 ≤ i < n. Clearly,
an annihilator automorphism ζi�λ� (resp. an almost-annihilator automor-
phism (3)) of R is a K-module if and only if λ (resp. σ) is a K-module
homomorphism of the K-module K (resp. J). Therefore, we obtain
	�mod ∩ ζi���K� J��	 = 	AnnKJ	 (1 ≤ i < n) for a finite ring K. Suppose
J = aK for some a ∈ K. Then �′ ∩ �mod is equal to a direct product of
subgroups �mod ∩ ζn��′�K� J��, ζ�l����l��K� J�� and �′

� by Theorem 3.1(iv).
Since AnnKJ ⊆ AnnK�Jt� = J we get equalities.

	�mod ∩ ζn��′�K� J��	 = 	AnnKJ	 = 	AnnJJ	 = 	��l��K� J�	�
Using Theorem 3.1 and Proposition 3.2 we obtain the required formula for
�mod. This completes the proof.

Note that the description of �mod was found by Dubish and Perlis
[1, Theorem 5-7] for arbitrary field K and J = 0. See also [9, Corollary 1].
If K = Zpm , then �mod = AutRn�K� J�. Therefore,

Corollary 3.4. Let K = Zpm and d be an arbitrary divisor of m such
that 1 ≤ d < m. If J = �pd�, then 	AutR2�K� J�	 = �pm − pm−1� · p2m and

	AutRn�K� J�	 = �pm − pm−1�n−1 · p�2m−d�·C2
n+d�n−2�� n > 2�

Proof. It follows from the equality 	K	 = 	AnnKJ	 · 	J	 and Proposi-
tion 3.3.
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According to [1] the automorphism group AutR of an arbitrary asso-
ciative ring R has a normal subgroup � of all “monic” automorphisms of
R which induce the identity map into quotient-ring Rk/Rk+1 for all posi-
tive integers k. Let R = Rn�K� J�, n > 2. Clearly � ⊇ �� . If J = 0, then
� ∩� = 1 (see [1, 9]) and even the group AutR is equal to the semidirect
product of subgrpups � and ���K� J� [9]. However, the intersection �∩�
is nontrivial for each nonzero quasi-regular ideal J by Theorem 3.1(ii).
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