Semi-interior and Semi-closure of a Fuzzy Set*

TUNA HATICE YALVAÇ

Department of Mathematics, Hacettepe University, Ankara, Turkey
Submitted by L. A. Zadeh
Received May 17, 1985

INTRODUCTION

We generally follow the terminology of Azad [1] and Ming and Ming [3].

Azad defined the fuzzy semi-open, fuzzy semi-closed, fuzzy regular-open, and fuzzy regular-closed sets and the fuzzy semi-continuous, fuzzy weakly-continuous, fuzzy semi-open, and fuzzy open functions in [1].

We defined the fuzzy H. almost-continuous and fuzzy W. almost-open functions in [8].

Continuing the work in [8], we define the semi-interior and semi-closure of a fuzzy set in a manner similar to that used in ordinary topological spaces. At the same time, the definition of almost-open function defined by Singal (cf. [6]) and irresolute, pre-semi-open functions and semi-homeomorphism defined by Crossley et al. [2] are extended to fuzzy sets. Some results are obtained in the functions of fuzzy topological spaces defined by Azad [1] and those are defined in [8] and here.

1. BASIC NOTATION AND DEFINITIONS

Fuzzy sets of a non-empty set X will be denoted by the capital letters A, B, C, etc. The value of a fuzzy set A at the element x of X will be denoted by A(x) and a fuzzy point will be denoted by p.

If we write $p \in A$, then the definitions of a fuzzy point and being an element of a fuzzy set are understood as in [5] or [3], i.e., $p \in A$ either means that fuzzy point p takes its non-zero value in (0, 1) at the support x_p and $p(x_p) < A(x_p)$ [5] or fuzzy point p takes its non-zero value in (0, 1] and $p(x_p) \le A(x_p)$ [3]. Furthermore, if we say only "fuzzy point p," then p

^{*} This research is part of the authors' Ph. D. thesis, which was submitted to the University of Hacettepe in 1982.

will be considered as in [5] or [3]. If we write $p \in {}_{1}A$ then the definition of fuzzy point-fuzzy elementhood will be the same as Srivastava *et al.* used in [5].

If for a fuzzy point p and a fuzzy set A, we have $p(x_p) + A(x_p) > 1$, then this case, which is defined by Ming and Ming [3] as "p quasi coincident with A," will be denoted by pqA.

In this work, X and Y denote fuzzy topological spaces with fuzzy topology τ and ϑ , respectively, and by $f: X \to Y$ we denote a function f of a fuzzy space X into a fuzzy space Y.

 A^o , \overline{A} and A' will denote respectively the interior, closure, and complement of the fuzzy set A.

2. Fuzzy Semi-interior and Fuzzy Semi-closure

DEFINITION 2.1. Let $A \subset X$ be a fuzzy set and define the following sets:

$$\underline{A} = \bigcap \{B \mid A \subset B, B \text{ fuzzy semi-closed}\}\$$

$$A_o = \bigcup \{B \mid B \subset A, B \text{ fuzzy semi-open}\}.$$

We call \underline{A} the fuzzy semi-closure of A and A_o , the fuzzy semi-interior of A. Obviously A_o is the greatest fuzzy semi-open set which is contained in A and \underline{A} is the lowest fuzzy semi-closed set which contains A, and we have

$$A \subset \underline{A} \subset \overline{A}$$
 and $A \supset A_o \supset A^o$.

These are easely seen from [1, Theorem 4.3 and Remark 4.4] and the definitions of \underline{A} and A_a .

In addition to these facts, if $A, B \subset X$ then

A is fuzzy semi-open
$$\Leftrightarrow A = A_o$$

A is fuzzy semi-closed $\Leftrightarrow A = \underline{A}$
 $A \subset B \Rightarrow \underline{A} \subset \underline{B}$ and $A_o \subset B_o$.

THEOREM 2.2. Let $f: X \to Y$. f is fuzzy semi-continuous iff $f(\underline{A}) \subset \overline{f(A)}$ for every $A \subset X$.

Proof. Let $A \subset X$. Since $\overline{f(A)}$ is a fuzzy closed set, $f^{-1}(\overline{f(A)})$ is a fuzzy semi-closed set [8, Theorem 4.5].

Clearly $f^{-1}(\overline{f(A)}) = \underline{f^{-1}(\overline{f(A)})}$. From [4, Lemma 1.1], step by step we get

$$A \subset f^{-1}(f(A))$$

$$\underline{A} \subset \underline{f^{-1}(f(A))} \subset \underline{f^{-1}(\overline{f(A)})} = f^{-1}(\overline{f(A)})$$

$$\underline{f(A)} \subset f(f^{-1}(\overline{f(A)})) \subset \overline{f(A)}.$$

Conversely, let $B \subset Y$ be a fuzzy closed set. From the hypothesis we have

$$f(\underline{f^{-1}(B)}) \subset \overline{f(f^{-1}(B))} \subset \overline{B} = B.$$

So
$$\underline{f^{-1}(B)} \subset f^{-1}(f(\underline{f^{-1}(B)})) \subset f^{-1}(B)$$
.
Since $\underline{f^{-1}(B)} \subset f^{-1}(B)$ and $f^{-1}(B) \subset \underline{f^{-1}(B)}$, we get $f^{-1}(B) = \underline{f^{-1}(B)}$.
Hence $\underline{f^{-1}(B)}$ is a fuzzy semi-closed set and f is a fuzzy semi-continuous function.

3. FUZZY IRRESOLUTE, FUZZY ALMOST-OPEN, AND FUZZY PRE-SEMI-OPEN FUNCTIONS

DEFINITION 3.1. Let f be a function from a fuzzy topological space X to a fuzzy topological space Y.

- (i) If for any fuzzy semi-open set B in Y, $f^{-1}(B)$ is a fuzzy semi-open set in X, then we say that f is a fuzzy irresolute function.
- (ii) If for any fuzzy semi-open set A in X, f(A) is a fuzzy semi-open set in Y, then we say that f is a fuzzy pre-semi-open function.
- (iii) If for any fuzzy regular-open set A in X, f(A) is a fuzzy open set in Y, then we say that f is a fuzzy almost-open function.
- (iv) If f is one-to-one, onto, fuzzy pre-semi-open, and fuzzy irresolute, then we say that f is a fuzzy semi-homeomorphism.

Remark 3.2. For the function $f: X \to Y$, the following statements are valid:

f, fuzzy continuous $\neq f$, fuzzy irresolute, f, fuzzy irresolute $\neq f$, fuzzy weakly-continuous, f, fuzzy irresolute $\neq f$, fuzzy H. almost-continuous, f, fuzzy irresolute $\Rightarrow f$, fuzzy semi-continuous. EXAMPLE 3.3. Let $X = \{a, b, c\}$, $Y = \{x, y, z\}$ and $T_1 \subset X$, $T_2 \subset X$, $U_1 \subset Y$, $U_2 \subset Y$ be defined as follows:

$$T_1(a) = 0,$$
 $T_1(b) = 0, 3,$ $T_1(c) = 0, 2$
 $T_2(a) = 0,$ $T_2(b) = 0, 2,$ $T_2(c) = 0, 2$
 $U_1(x) = 0,$ $U_1(y) = 0, 4,$ $U_1(z) = 0, 2$
 $U_2(x) = 0,$ $U_2(y) = 0, 2,$ $U_2(z) = 0, 7.$

(a) Let
$$\tau = \{X, \phi, T_2\}, \vartheta = \{Y, \phi, U_2\}.$$

If we define $f: X \to Y$ satisfying f(a) = x, f(b) = y, f(c) = y, then f is fuzzy continuous but not fuzzy irresolute. Because if we define the fuzzy set A in Y being A(x) = 0, A(y) = 0, A(z) =

Clearly f is fuzzy continuous.

(b) Let
$$\tau = \{X, \phi, T_1\}, \vartheta = \{Y, \phi, U_1\}.$$

If we define $f: X \to Y$ satisfying f(a) = x, f(b) = y, f(c) = z, then f is fuzzy irresolute but not fuzzy weakly-continuous and not fuzzy H. almost-continuous.

Remark 3.4. For the function $f: X \to Y$ the following statements are valid:

f, fuzzy pre-semi-open $\Rightarrow f$, fuzzy semi-open

f, fuzzy pre-semi-open $\neq f$, fuzzy almost-open

f, fuzzy pre-semi-open $\neq f$, fuzzy W. almost-open

f, fuzzy open $\neq f$, fuzzy pre-semi-open

f, fuzzy open $\Rightarrow f$, fuzzy almost-open

f, fuzzy almost-open $\neq f$, fuzzy semi-open

f, fuzzy almost-open $\neq f$, fuzzy W. almost-open

f, fuzzy W. almost-open $\neq f$, fuzzy almost-open.

EXAMPLE 3.5. Let $X = \{a, b, c\}$, $Y = \{x, y, z\}$ and $T_1 \subset X$, $T_2 \subset X$, $T_3 \subset X$, $U_1 \subset Y$, $U_2 \subset Y$ be defined as follows:

$$T_1(a) = 0,$$
 $T_1(b) = 0, 3,$ $T_1(c) = 0, 2$
 $T_2(a) = 0, 9,$ $T_2(b) = 0, 6,$ $T_2(c) = 0, 7$
 $T_3(a) = 0,$ $T_3(b) = 0, 8,$ $T_3(c) = 0, 9$
 $U_1(x) = 0,$ $U_1(y) = 0, 3,$ $U_1(z) = 0, 2$
 $U_2(x) = 0,$ $U_2(y) = 0, 2,$ $U_2(z) = 0, 1.$

(a) Let $\tau = \{X, \phi, T_1, T_2\}, \vartheta = \{Y, \phi, U_1\}.$

If we define $f: Y \to X$ satisfying f(x) = a, f(y) = b, f(z) = c, then f is fuzzy open, but not fuzzy pre-semi-open.

(b) Let $\tau = \{X, \phi, T_1\}, \ \vartheta = \{Y, \phi, U_2\}.$

If we define $f: X \to Y$ satisfying f(a) = x, f(b) = y, f(c) = z, then f is fuzzy pre-semi-open, but neither fuzzy almost-open nor fuzzy W. almost-open.

(c) Let $\tau = \{X, \phi, T_1, T_3\}, \vartheta = \{Y, \phi, U_1\}.$

If we define f as in (b), then f is fuzzy almost-open, but not fuzzy semi-open.

- (d) If we define τ and ϑ as in (b), and f as in (a), then f is fuzzy W. almost-open, but not fuzzy almost-open.
 - (e) Let $\tau = \{X, \phi, T_2\}, \ \vartheta = \{Y, \phi, U_1\}.$

If we define f as in b), then f is fuzzy almost-open, but not fuzzy W. almost-open.

THEOREM 3.6. Let $f: X \to Y$. The following are equivalent:

- (1) f is fuzzy irresolute.
- (2) For every $p \in X$ and for every fuzzy semi-open set O in Y containing f(p) there exists a fuzzy semi-open set O^* in X such that $p \in O^* \subset f^{-1}(O)$.
- (3) For every $p \in X$ and for every fuzzy semi-open set O in Y containing f(p) there exists a fuzzy semi-open set O^* in X such that $p \in O^*$ and $f(O^*) \subset O$.
- (4) For every $p \in X$ and for every fuzzy semi-open set O in Y satisfying f(p) qO there exists a fuzzy semi-open set O^* in X such that $pqO^* \subset f^{-1}(O)$.
- (5) For every $p \in X$ and for every fuzzy semi-open set O in Y satisfying f(p) qO there exists a fuzzy semi-open set O^* in X such that pqO^* and $f(O^*) \subset O$.
- (6) For every fuzzy semi-closed set F in Y, $f^{-1}(F)$ is a fuzzy semi-closed set in X.
 - (7) For every fuzzy semi-open set O in Y, $f^{-1}(O) \subset \overline{f^{-1}(O)}$.
 - (8) For every fuzzy semi-closed set F in Y, $f^{-1}(F) \supset \overline{f^{-1}(F)}^o$.

Proof. (1) \Rightarrow (2): Let $p \in X$ and O be any fuzzy semi-open set such that $f(p) \in O$.

Since f is fuzzy irresolute, $f^{-1}(O)$ is a fuzzy semi-open set and we have $p \in f^{-1}(O) = O^* \subset f^{-1}(O)$

- $(2) \Rightarrow (3)$ and $(3) \Rightarrow (2)$ can be easily seen.
- (2) \Rightarrow (1): Let $O \subset Y$ be a fuzzy semi-open set and $p \in f^{-1}(O)$ be any fuzzy point. This implies $f(p) \in f(f^{-1}(O)) \subset O$. From hyphothesis there exists a fuzzy semi-open set O^* in X such that $p \in O^* \subset f^{-1}(O)$.

Hence, $f^{-1}(O)$ is a fuzzy semi-open set [8, Theorem 3.5].

- $(4) \Rightarrow (5)$ and $(5) \Rightarrow (4)$ can be easily seen.
- (1) \Rightarrow (4): Let $p \in X$ and O be any fuzzy semi-open set such that f(p) qO. Clearly $f^{-1}(O)$ is a fuzzy semi-open set and $pqf^{-1}(O) = O^* \subset f^{-1}(O) \lceil 8$, Proposition 4.2].
- $(4)\Rightarrow (1)$: Let $O\subset Y$ be any fuzzy semi-open set. Let $p\in {}_1f^{-1}(O)$. Clearly $f(p)\in {}_1O$. Choose the fuzzy point p' as $p'(x_p)=1-p(x_p)$. For this p', we have $f(p')\ qO$ [8, Proposition 2.5]. From (4), there exists a fuzzy semi-open set such that $p'qO^*\subset f^{-1}(O)$.

Since $p'qO^*$,

$$p'(x_p) + O^*(x_p) = 1 - p(x_p) + O^*(x_p) > 1 \Rightarrow O^*(x_p) > p(x_p) \Rightarrow p \in_1 O^*.$$

Hence we have $p \in {}_{1} O^{*} \subset f^{-1}(O)$. From [8, Theorem 3.5], $f^{-1}(O)$ is a fuzzy semi-open set.

- (1) \Rightarrow (6): Let F be any fuzzy semi-closed set in Y. F' is a fuzzy semi-open set. From (1), $f^{-1}(F')$ is a fuzzy semi-open set and from known equality $f^{-1}(F') = (f^{-1}(F))'$, $(f^{-1}(F))'$ is a fuzzy semi-open set and hence $f^{-1}(F)$ is a fuzzy semi-closed set [1, Theorem 4.2].
 - $(6) \Rightarrow (1)$ can be proved in the same way as $(1) \Rightarrow (6)$.
- $(6) \Rightarrow (8), (8) \Rightarrow (6), (1) \Rightarrow 7), (7) \Rightarrow (1)$ can be easily proved by using Theorem 4.2 in $\lceil 1 \rceil$.

PROPOSITION 3.7. Let (Z, W) be a fuzzy topological space and $f: X \to Y$, $g: Y \to Z$. Then the following statements are valid:

- (1) If f and g are fuzzy pre-semi-open functions then $g \circ f$ is too.
- (2) If f and g are fuzzy irresolute functions then $g \circ f$ is too.
- (3) If f is fuzzy irresolute and g is fuzzy semi-continuous then $g \circ f$ is a fuzzy semi-continuous function.
- (4) If f is fuzzy semi-open and g is fuzzy pre-semi-open then $g \circ f$ is a fuzzy semi-open function.
- (5) If f is fuzzy almost-open and g is fuzzy open then $g \circ f$ is a fuzzy almost-open function.
- *Proof.* It is easy since we have $(g \circ f)(A) = g(f(A))$ for $A \subset X$ and $(g \circ f)^{-1}(B) = f^{-1}(g^{-1}(B))$ for $B \subset Z$.

THEOREM 3.8. If $f: X \to Y$ is fuzzy almost-open and fuzzy semi-continuous then f is a fuzzy irresolute function.

Proof. It can be easily shown as in ordinary topological spaces [6, Theorem 1.12].

THEOREM 3.9. If $f: X \to Y$ is fuzzy H. almost-continuous and fuzzy semiopen then f is a fuzzy pre-semi-open function.

Proof. It can be proved as in the proof of Theorem 2.5 in [6] by using Theorem 4.17 and Proposition 3.4 in [8]. ■

COROLLARY 3.10. If $f: X \to Y$ is fuzzy continuous and fuzzy open then f is both fuzzy irresolute and fuzzy pre-semi-open.

COROLLARY 3.11. Eevery fuzzy homeomorphism (i.e., one-to-one, onto, fuzzy continuous, and fuzzy open function) is a fuzzy semi-homeomorphism.

THEOREM 3.12. If $f: X \to Y$ is fuzzy semi-continuous and fuzzy W. almost-open then f is a fuzzy irresolute function.

Proof. Let $B \subset Y$ be any fuzzy semi-open set in Y. There exists a fuzzy open-set U in Y such that $U \subset B \subset \overline{U}$. From [8, Definition 4.13(b)], we have $f^{-1}(U) \subset f^{-1}(B) \subset f^{-1}(\overline{U}) \subset \overline{f^{-1}(U)}$.

Since f is fuzzy semi-continuous, $f^{-1}(U)$ is a fuzzy semi-open set. Hence $f^{-1}(B)$ is a fuzzy semi-open set [8, Proposition 3.4].

THEOREM 3.13. $f: X \to Y$ is a fuzzy irresolute function iff for every $A \subset X$, $f(A) \subset f(A)$.

Proof. It can be easily proved as in ordinary topological space [2, Theorem 1.5]. ■

Theorem 3.14. $f: X \to Y$ is a fuzzy irresolute function iff for every $B \subset Y$, $f(B) \subset f^{-1}(\underline{B})$.

Proof. It is similar to the proof of Theorem 1.6 in [2].

PROPOSITION 3.15. Let $f: X \to Y$ be one-to-one and onto. f is a fuzzy semi-homeomorphism iff f and f^{-1} are fuzzy irresolute functions iff f and f^{-1} are fuzzy pre-semi-open functions.

Proof. Obvious.

COROLLARY 3.16. Let $f:X \to Y$ be one-to-one and onto. f is a fuzzy semi-homeomorphism iff for every $A \subset X$, $f(\underline{A}) = \underline{f(A)}$.

Proof. It can be seen from Proposition 3.15, Theorem 3.13, Theorem 3.14, and the fact $(f^{-1})^{-1} = f$.

COROLLARY 3.17. Let f be one-to-one and onto. f is a fuzzy semi-homeomorphism iff for every $B \subset Y$, $f^{-1}(\underline{B}) = f(B)$.

THEOREM 3.18. $f: X \to Y$ is a fuzzy irresolute function iff for every $B \subset Y$, $f^{-1}(B_o) \subset (f^{-1}(B))_o$.

Proof. Let $B \subset Y$. B_o is a fuzzy semi-open set. Clearly $f^{-1}(B_o)$ is a fuzzy semi-open set and we have $f^{-1}(B_o) = (f^{-1}(B_o))_o \subset (f^{-1}(B))_o$.

Conversely, let B be any fuzzy semi-open set in Y. Then $B_o = B$ and $f^{-1}(B) = f^{-1}(B_o) \subset (f^{-1}(B))_o$.

Hence we have $f^{-1}(B) = (f^{-1}(B))_o$. This shows that $f^{-1}(B)$ is a fuzzy semi-open set.

THEOREM 3.19. Let $f: X \to Y$ be one-to-one and onto. f is fuzzy irresolute function iff for every $A \subset X$, $(f(A))_o \subset f(A_o)$.

Proof. Let $A \subset X$. $(f(A))_o$ is a fuzzy semi-open set. Clearly $f^{-1}((f(A))_o)$ is a fuzzy semi-open set. $f^{-1}(f(A)) = A$ [4, Lemma 1.1]. We have

$$f^{-1}((f(A))_o) \subset (f^{-1}(f(A)))_o = A_o$$
 (Theorem 3.18)

$$f(f^{-1}((f(A))_o)) \subset f(A_o).$$

Since f is onto

$$(f(A))_{o} = f(f^{-1}((f(A))_{o})) \subset f(A_{o}),$$
 [4, Lemma 1.1].

Conversely, let $B \subset Y$ be any fuzzy semi-open set. Immediately $B = B_o$. From hypothesis

$$f((f^{-1}(B))_o) \supset (f(f^{-1}(B)))_o = B_o = B.$$

This implies that $f^{-1}(f((f^{-1}(B))_o)) \supset f^{-1}(B)$. Since f is one-to-one we have $(f^{-1}(B))_o \supset f^{-1}(B)$. Hence $f^{-1}(B) = (f^{-1}(B))_o$, i.e., $f^{-1}(B)$ is a fuzzy semi-open set.

COROLLARY 3.20. Let $f: X \to Y$ be one-to-one and onto. f is a fuzzy semi-homeomorphism iff for every $A \subset X$, $f(A_o) = (f(A))_o$.

COROLLARY 3.21. Let $f: X \to Y$ be one-to-one and onto. f is a fuzzy semi-homeomorphism iff for every $B \subset Y$, $f^{-1}(B_o) = (f^{-1}(B))_o$.

REFERENCES

- K. K. AZAD, On fuzzy semicontinuity, fuzzy almost continuity and fuzzy weakly continuity, J. Math. Anal. Appl. 82 (1981), 14-32.
- S. G. CROSSLEY AND S. K. HILDEBRAND, Semi-topological properties, Fund. Math. 74 (1972), 233–254.
- 3. P. P. Ming and L. Y. Ming, Fuzzy topology. I. Neighborhood structure of a fuzzy point and Moore Smith convergence, J. Math. Anal. Appl. 76 (1980), 571-599.
- 4. P. P. MING AND L. Y. MING, Fuzzy topology. II. Product and quotient spaces, J. Math. Anal. Appl. 77 (1980), 20-37.
- S. SRIVASTAVA, S. N. LAL, AND A. K. SRIVASTAVA, Fuzzy Hausdorff topological spaces, J. Math. Anal. Appl. 81 (1981), 497-506.
- N. TAKASHI, Semi-continuity and weak continuity, Czechoslovak Math. J. 31 (1979), 314–321.
- 7. T. THOMPSON, Semicontinuous and irresolute images of S-closed spaces, Proc. Amer. Math. Soc. 66 (1977), 359-362.
- 8. T. H. YALVAÇ, Fuzzy sets and functions on fuzzy spaces, J. Math. Anal. Appl., in press.